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Strategies for Converting RNA 
to Amplifiable cDNA for Single-Cell RNA 
Sequencing Methods

Yohei Sasagawa, Tetsutaro Hayashi, and Itoshi Nikaido

Abstract  This review describes the features of molecular biology techniques for 
single-cell RNA sequencing (scRNA-seq), including methods developed in our 
laboratory. Existing scRNA-seq methods require the conversion of first-strand 
cDNA to amplifiable cDNA followed by whole-transcript amplification. There are 
three primary strategies for this conversion: poly-A tagging, template switching, 
and RNase H-DNA polymerase I-mediated second-strand cDNA synthesis for 
in vitro transcription. We discuss the merits and limitations of these strategies and 
describe our Reverse Transcription with Random Displacement Amplification tech-
nology that allows for direct first-strand cDNA amplification from RNA without the 
need for conversion to an amplifiable cDNA. We believe that this review provides 
all users of single-cell transcriptome technologies with an understanding of the rela-
tionship between the quantitative performance of various methods and their molec-
ular features.

�Background

Single-cell transcriptome analysis is a useful tool to identify novel cell types and 
states in a population. In the early stages of single-cell transcriptome analysis, sev-
eral methods were developed on the microarray platform (Eberwine et  al. 2001; 
Iscove et  al. 2002; Tietjen et  al. 2003; Kamme et  al. 2003; Kurimoto 2006; 
Subkhankulova and Livesey 2006). Nearly all molecular biology techniques used in 
these methods—several of which have been reported since 2009 (Tang et al. 2009; 
Islam et  al. 2011, 2013; Hashimshony et  al. 2012, 2016; Ramsköld et  al. 2012; 
Sasagawa et al. 2013, 2018; Wu et al. 2013; Picelli et al. 2013; Streets et al. 2014; 
Jaitin et al. 2014; Soumillon et al. 2014; Fan et al. 2015; Nakamura et al. 2015; 
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Matsunaga et al. 2015; Klein et al. 2015; Bose et al. 2015; Macosko et al. 2015; 
Muraro et al. 2016; Sheng et al. 2017; Yang et al. 2017; Avital et al. 2017; Hochgerner 
et al. 2017; Zheng et al. 2017; Gierahn et al. 2017; Hashimoto et al. 2017; Herman 
et al. 2018; Rosenberg et al. 2018; Han et al. 2018; Hayashi et al. 2018)—are applied 
for single-cell RNA-sequencing (scRNA-seq) (Fig. 1). Cell barcoding is a key tech-
nology for improving the throughput of scRNA-seq (Islam et  al. 2011), which 
allows for obtainment of transcriptome data from thousands of single cells in a 
single experiment (Klein et al. 2015; Macosko et al. 2015; Zheng et al. 2017). Full-
length read coverage across all transcripts from single cells has also improved 
(Ramsköld et al. 2012; Picelli et al. 2013; Sheng et al. 2017), enabling the detection 
of fusion genes, copy number variations, single nucleotide variations, allele-specific 
expression, isoforms, and splice variants. These features make scRNA-seq methods 
invaluable in medical and basic research (Regev et al. 2017). However, these meth-
ods have a limited capability to assess the expression of many genes and elucidate 
their cellular function by these methods.

We recently improved the reaction efficiency of molecular biology techniques 
for scRNA-seq methods (Sasagawa et  al. 2018) and devised a novel reaction 
(Hayashi et al. 2016) (manuscript in preparation), which increase the sensitivity and 
quantitative capability of our Quartz-Seq2 and RamDA-seq methods (Sasagawa 
et al. 2018; Hayashi et al. 2018). Other studies have focused on improving the reac-
tion efficiency of molecular biology techniques for quantitative scRNA-seq (Picelli 
et al. 2013; Hashimshony et al. 2016; Zajac et al. 2013). Herein, we describe the 
features of molecular biology techniques for scRNA-seq, including our methods. 
This review will provide end-users and developers of single-cell transcriptome tech-
nologies with an understanding of the relationship between the quantitative perfor-
mance of various methods and their molecular features.

�scRNA-Seq Methods Require cDNA Amplification

Single mammalian cells have a limited amount of total RNA (between 1 and 30 pg). 
scRNA-seq methods typically target poly-adenylated (polyA) RNA, which accounts 
for 1–5% of total RNA. However, sequencing platforms require approximately 5 ng 
of DNA from a library. This requires the conversion of polyA RNA to amplifiable, 
cDNA followed by whole-transcript amplification. Reverse transcription is per-
formed to convert mRNA to first-strand cDNA. A universal adaptor is then added to 
the 5′ end. However, the resulting first-strand cDNA cannot be amplified. An addi-
tional step is required to convert first-strand cDNA to amplifiable cDNA. Unconverted 
cDNA cannot be amplified and detected in the sequencer. Low conversion efficiency 
can prevent the detection of the target gene; improving this process is therefore criti-
cal for quantitative scRNA-seq. There are three common strategies for this conver-
sion: poly-A tagging, template-switching, and RNase H-DNA polymerase 
I-mediated second-strand cDNA synthesis for in  vitro transcription (IVT). We 
describe each of these in strategies in the following paragraphs.

Y. Sasagawa et al.
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�Poly-A Tagging for scRNA-Seq

Terminal deoxynucleotidyl transferase (TdT) is used to label the 3′ end of DNA 
with a homopolymeric sequence (Roychoudhury et al. 1976). TdT was first used in 
cDNA cloning, such as the Okayama-Berg method (Okayama and Berg 1982; Land 
et al. 1981). Thereafter, the poly-A tagging strategy had been developed to clone 
full-length cDNA from minute amounts of RNA via a combination of cDNA label-
ing by TdT and PCR amplification (Frohman et al. 1988; Ohara et al. 1989; Loh 
et al. 1989; Belyavsky et al. 1989).

The poly-A tagging strategy is categorized as 5′ RACE (Rapid Amplification of 
cDNA Ends) technique. The strategy came into use for single-cell transcript analy-
sis and single-cell microarray analysis (Iscove et  al. 2002; Tietjen et  al. 2003; 
Kurimoto 2006; Brady et al. 1990, 1995; Dulac and Axel 1995). In 2009, Tang et al. 
developed the first scRNA-seq method, using a poly-A tagging strategy (Tang et al. 
2009). The poly-A tail was added to the 3′ end of first-strand cDNA by TdT (Fig. 2). 
A poly-T primer was then annealed to the poly-A tail, yielding amplifiable cDNA 
containing binding sites for PCR primers at both ends. In reverse transcription, trun-
cated first-strand cDNA is usually formed as a long transcript. Poly-A tagging tar-
gets both full-length and truncated first-strand cDNAs (Sasagawa et al. 2013), and 
the conversion efficiency is independent of transcript length. Thus, poly-A tagging 
has advantages for gene detection (Subkhankulova and Livesey 2006). However, no 
studies have attempted to improve the efficiency of poly-A tagging itself for 
scRNA-seq.

We recently established the optimal buffer and temperature conditions for poly-
A tagging, which improved the efficiency of this process by 3.6-folds (Fig. 3). We 
also enhanced the efficiency of reverse transcription at low enzyme concentrations. 
We incorporated these improvements into a scRNA-seq method that we named 
Quartz-Seq2, which increased the number of detected genes and unique molecular 
identifiers (Fig. 3). Moreover, the number of detected genes was higher with Quartz-
Seq2 than with other methods (Fig.  3). Quartz-Seq2 analysis also yielded more 
information on functional terms and biological pathways. Thus, improving the effi-
ciency of conversion from first-strand cDNA to amplifiable cDNA is essential for 
quantitation in scRNA-seq.

�Template Switching

Template switching (also known as Switching Mechanism at 5′ End of RNA 
Template [SMART]) had been developed similar to 5′ RACE (Petalidis 2003; Matz 
1999). In reverse transcription, first-strand cDNA is extended from the poly-
adenylated site. When the 3′ end of first-strand cDNA reaches the 5′ end of total 
RNA, non-template nucleotides are added to the former by the terminal transferase 
activity of reverse transcriptase. Deoxycytidine trimer is predicted to account for 

Y. Sasagawa et al.
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46% of the nucleotide sequence (Zajac et al. 2013); accordingly, template-switching 
primers contain three guanines at the 3′ end. By including template-switching prim-
ers in the reverse transcription reaction, the enzyme further extends the complemen-
tary sequence of the primer at the 3′ end of first-strand cDNA (Fig. 2), which has 
binding sites for the PCR primer at both ends. The cDNA can then be amplified.

Template-switching, which is globally marketed as the SMART/SMARTer kit, is 
exclusively applicable to reverse transcription and is widely used in various scRNA-
seq methods owing to its relative ease of use (Islam et al. 2011, 2013; Ramsköld 
et al. 2012; Wu et al. 2013; Picelli et al. 2013; Soumillon et al. 2014; Macosko et al. 
2015; Hochgerner et al. 2017; Zheng et al. 2017; Gierahn et al. 2017; Hashimoto 
et al. 2017; Rosenberg et al. 2018; Han et al. 2018). Template-switching is specific 
to full-length cDNA and is therefore suitable for detecting full-length or the 5′ end 
of a transcript (Islam et al. 2011, 2013; Ramsköld et al. 2012; Picelli et al. 2013); its 
efficiency has been improved with locked nucleic acids (Picelli et al. 2013). Notably, 
truncated first-strand cDNA cannot be converted into amplifiable cDNA via tem-
plate switching for detection by a sequencer. Therefore, the completeness of first-
strand cDNA for various transcript lengths is very important for this strategy. 
Moreover, the preference of TdT activity for non-templated nucleotides is non-
uniform (Zajac et al. 2013). A uniform non-templated nucleotide preference is nec-
essary for further improvement of the strategy.

�RNase H-DNA Polymerase I-Mediated Second-Strand cDNA 
Synthesis for IVT

RNase H-DNA polymerase I-mediated second-strand cDNA synthesis was devel-
oped to achieve cloning of full-length cDNA (Gubler and Hoffman 1983). An IVT 
strategy for cDNA amplification has been established on the basis of this method, 
using T7 RNA polymerase (Van Gelder et al. 1990; Eberwine et al. 1992). In this 
method, RNA-DNA hybrids are synthesized following reverse transcription. RNase 
H specifically targets and nicks the RNA strand of the RNA/cDNA hybrid. 
Subsequently, DNA polymerase I synthesizes and extends second-strand cDNA 
from the 3′ end of the nicked RNA; DNA ligase then joins the second-strand cDNA 
fragments and the resultant cDNA can be amplified. The IVT strategy was first 
applied for single-cell transcriptome analysis on a microarray in neuronal cells 
(Eberwine et al. 2001). CEL-seq was developed on the basis of IVT and cell barcod-
ing (Hashimshony et  al. 2012), with CEL-seq2 showing improved quantitation 
capabilities (Hashimshony et al. 2016). In their study, the authors selected optimal 
enzymes for reverse transcription and second-strand cDNA synthesis. However, the 
ideal reaction conditions (e.g., buffer or enzyme) have not been optimized for RNase 
H-DNA polymerase I-mediated second-strand cDNA synthesis. Optimization of the 
current method or development of novel approaches can potentially improve IVT-
based scRNA-seq.

Strategies for Converting RNA to Amplifiable cDNA for Single-Cell RNA Sequencing…
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�Limitations of the Three Strategies

As described above, we described three basic strategies (poly-A tagging, IVT, 
template-switching) used in almost all scRNA-seq methods. In all of these 
approaches, cell barcoding and unique molecular identifier sequences can be used 
to quantify the number of transcripts expressed in a single cell (Islam et al. 2011, 
2013; Hashimshony et al. 2012; Jaitin et al. 2014; Soumillon et al. 2014). Although 
they are useful for high-throughput analysis of single-cell transcriptomes, these 
strategies have some technical limitations. For instance, non-polyadenylated RNA 
cannot be detected (Tang et al. 2009; Islam et al. 2011, 2013; Hashimshony et al. 
2012, 2016; Ramsköld et  al. 2012; Sasagawa et  al. 2013, 2018; Wu et  al. 2013; 
Picelli et al. 2013; Streets et al. 2014; Jaitin et al. 2014; Soumillon et al. 2014; Fan 
et al. 2015; Nakamura et al. 2015; Matsunaga et al. 2015; Klein et al. 2015; Bose 
et al. 2015; Macosko et al. 2015; Muraro et al. 2016; Yang et al. 2017; Hochgerner 
et al. 2017; Zheng et al. 2017; Gierahn et al. 2017; Hashimoto et al. 2017; Herman 
et al. 2018; Rosenberg et al. 2018; Han et al. 2018), since the methods target poly-A 
RNA, using oligo-dT primers through a reverse transcription reaction (Fig.  4a). 
Moreover, reverse transcription with oligo-dT primer shows a 3′ bias in RNA-seq 
read coverage (Wang et al. 2009). cDNA synthesis by reverse transcriptase from the 
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non-poly-A RNA
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Amplification
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TTTT

Long poly-A RNA (over 10kb)

AAAA
TTTT

High risk of incomplete reverse-transcription

c) Amplifiable cDNA from long poly-A RNA (over 10kb)
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3’

5’
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1st strand cDNA

Fig. 4  Limitations of oligo-dT primer-based single-cell RNA sequencing method. Red and blue 
lines represent RNA strand and first-strand cDNA, respectively
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3′ end of RNA is occasionally halted by RNA secondary structures or enzyme 
inhibitors. Thereafter, regions further downstream cannot be detected. Reverse tran-
scriptase has an extension limit of first-strand cDNA for a long transcript (i.e., 
>10 kb) (Hayashi et al. 2018; Tang et al. 2012; Archer et al. 2016). Even if a long 
transcript is converted to first-strand cDNA and then to amplifiable cDNA, it is dif-
ficult to amplify effectively. Thus, in theory, there is a bias in the PCR amplification 
of short vs. long RNA in these strategies. Additionally, read coverage across a tran-
script is low when using an oligo-dT primer (Fig. 4). Ideally, more uniform read 
coverage across all transcript types (including poly-A and non-poly-A RNA) is 
desired for scRNA-seq.

The three strategies involve many biological reactions to convert target RNA to 
an analyzable DNA sequence library (Fig. 5a), which collectively comprises over 
10 components (e.g., enzymes, primers, purification column/beads, etc.). 
Theoretically, the conversion efficiency from RNA to DNA library can be expressed 
as a multiple of the reaction efficiencies of individual components; that is, if 10 
components have reaction efficiencies of 80%, then the cumulative efficiency is 
only 10% (Fig. 5b). A reduced efficiency of individual reactions has a major impact 
on the ability to detect an RNA molecule. It is therefore important to tune all com-
ponents to maximize quantitative performance in scRNA-seq. Notably, up to one 
molecule of first-strand cDNA can be generated from one poly-A RNA via reverse 
transcription. Thus, low conversion efficiency from first-strand cDNA to an analyz-
able sequence library results in many low-copy genes that cannot be detected by the 
sequencer (Fig.  5c). This issue can be resolved by generating many first-strand 
cDNAs a single RNA molecule (Fig.  5c). Hence, we developed the Reverse 
Transcription with Random Displacement Amplification (RT-RamDA) technology, 
which allows for direct first-strand cDNAs from RNA without conversion to an 
amplifiable cDNA form (Hayashi et al. 2018) (Fig. 6). We established a single-cell 
full-length total RNA sequencing method based on RT-RamDA, which is described 
in detail in the following section.

�cDNA Amplification During Reverse Transcription 
Without Conversion to an Amplifiable Form

In the previous sections, we described the importance of conversion efficiency to an 
amplifiable cDNA form to reduce the probability of dropout genes and achieve uni-
form read coverage across all transcripts. We also attempted to reduce dropout 
genes via RT-RamDA. This has two major advantages: it eliminates the requirement 
for conversion to amplifiable cDNA and allows for random priming during reverse 
transcription, thereby increasing the types of RNA that can be detected.

Random primers can anneal non-specifically to an RNA molecule, resulting in 
cDNA synthesis from multiple sites. This inevitably reduces the number of dropout 
genes during reverse transcription. Since they can anneal even on the 5′ side of RNA, 
random primers can in theory cover the entire length of the molecule regardless of 

Strategies for Converting RNA to Amplifiable cDNA for Single-Cell RNA Sequencing…



AAAA
5’ 3’

cDNA
conversion

cDNA
Amplification

Reverse-
transcription

a)

Sequence
Library DNAPoly-A RNA

AAAA TTTT

Amplifiable cDNA

TTTTAAAA

Amplified cDNA

TTTT
TTTT

TTTTAAAA

TTTTAAAA

1st strand cDNA

5’ 3’
5’3’ 5’3’

TTTT

loss

Incomplete
1st strand cDNA

loss

TTTT
5’Uncoverted

cDNA

loss

TTTT
Unamplified

cDNA

loss

Incomplete
Library DNA

Sequence
Library preparation

b)

AAAA
TTTT

TTTT
5’ 3’

5’3’

Sequence
Library DNATarget RNA 1st strand cDNA

Total conversion 
efficiency (Y %)

Total conversion 
efficiency (Y %)

Conventional
Strategy

Sequence
Library DNATarget RNA Amplified

1st strand cDNA(Ideal)
Direct amplification 
of 1st strand cDNA
from RNA

Reverse-
transcription

Reverse-
transcription

3.0

2.5

2.0

1.5

1.0

0.5

0
3.02.52.01.51.00.50

The number of input RNA molecule
log (Copy+1)

A
na

ly
za

bl
e 

R
N

A
 m

ol
ec

ul
es

lo
g 

(C
op

y+
1)

A
na

ly
za

bl
e 

R
N

A
 m

ol
ec

ul
es

lo
g 

(C
op

y+
1)

3.0

2.5

2.0

1.5

1.0

0.5

0
3.02.52.01.51.00.50

The number of input RNA molecule
log (Copy+1)

Conventional Strategy
(assuming Y=10%)

Ideal
(assuming Y=10%)

Experimental
Dropout gene

Reaction efficiency of respective components, X (%)
20100 30 40 50 60 70 80 90 100

20
10
0

30
40
50
60
70
80
90

100

To
ta

l c
on

ve
rs

io
n 

ef
fic

ie
nc

y 
fro

m
 R

N
A

 
to

 s
eq

ue
nc

e 
lib

ra
ry

 D
N

A
, X

10
 (%

)

10.7%

34.8%

59.8%

c)

Assuming 10 components

Fig. 5  Simulation of conversion efficiency from first-strand cDNA to analyzable DNA sequence 
library. (a) Schematic representation of molecule loss during conventional RNA-seq. (b) X axis 
represents the reaction efficiency of each component; Y axis represents the tenth power of the reac-
tion efficiency of each component. (c) Simulation of experimental dropout genes. In theory, 10 
molecules of first-strand cDNA are generated from one poly-A RNA



RNase H minus RTase

RNase H minus RTase

DNase I 

DNase I

 oligo dT primer

RNA

3. Random nicking of the cDNA strand of the RNA:cDNA hybrid

2. cDNA synthesis

1. RT primer annealing

4. Strand displacement amplification

Amplified cDNAs

T4 gene 32 protein

T4 gene 32 protein

cDNA

random primer

5’ 3’

0 10 20 30

30

RT time 

30

60

120 

Relative yield of cDNA

RT-RamDA

Conventional RT

(min)

a

b

Fig. 6  Reverse transcription with random displacement amplification (RT-RamDA) can amplify 
cDNA directly from RNA through reverse transcription. (a) Schema of RT-RamDA. (b) Relative 
yield of cDNA molecules in RT-RamDA from 10 pg total RNA, calculated using conventional 
reverse transcription as a standard



12

gene length. They can also detect non-poly-A RNAs through their ability to anneal 
to RNA independent of poly-A sequences. In contrast, oligo-dT primers can only 
recognize poly-A sequences at the 3′ end of RNA; hence, one primer molecule can 
only anneal to a single RNA molecule, which increases the risk of gene dropout. 
Furthermore, as mentioned earlier, oligo-dT priming cannot detect non-poly-A RNA 
and does not offer full coverage of long transcripts.

Reverse transcription using random primers can prevent gene dropout. However, 
in scRNA-seq analysis, it has the disadvantage that even rRNA is converted to 
cDNA; the efficiency of reverse transcription is greatly reduced when an additional 
adaptor sequence is added to random primers for the amplification reaction. We 
avoided rRNA contamination by using not-so-random primers (Armour et al. 2009; 
Ozsolak et al. 2010), in which are sequences complementary to rRNA are removed 
beforehand. This approach has been used in bulk-RNA-seq; however, it was first 
applied in scRNA-seq, using RamDA-seq. However, there was no cDNA amplifica-
tion method targeting whole transcripts without adding universal adaptors to ran-
dom primers in reverse transcription. Therefore, we needed to develop RT-RamDA 
method.

In RT-RamDA, DNase I randomly introduces multiple nicks in only the first 
strand of cDNA of the RNA:cDNA hybrid during reverse transcription. From these 
nicked sites, the downstream cDNA strand is isolated via strand displacement activ-
ity of reverse transcriptase, which then synthesizes a new cDNA strand to re-form 
an RNA:cDNA hybrid. Importantly, T4 gene 32 protein, a single-stranded DNA-
binding protein, promotes the strand displacement activity of reverse transcriptase 
and protects isolated cDNAs from the nuclease activity of DNase I (Fig. 6a). By 
repeating these reactions, first-strand cDNA can be amplified 30 times or more 
directly from an RNA template (Fig.  6b) (Hayashi et  al. 2018). Moreover, 
RT-RamDA is very convenient because these reactions occur in one tube in a single 
step. Since only the RNA is used as a template for RT-RamDA, nonspecific ampli-
fication of contaminating DNA does not occur, as is observed in multiple displace-
ment amplification (Lizardi et al. 1998; Dean et al. 2002; Takahashi et al. 2016). 
Thus, utilizing the characteristic of RT-RamDA that is a cDNA amplification 
method with few dropout genes, RamDA-seq can detect a larger number of genes 
than existing methods, including from RNAs >10  kb and non-poly(A) RNAs 
(Fig.  7). This is particularly useful for detecting long introns exceeding 150  kb, 
recursive splicing, and enhancer RNAs (Hayashi et al. 2018).

Fig. 7  (continued) (Fan et al. 2015) and the following oligo-dT primer-based methods: Switching 
Mechanism at 5′ End of RNA Template (SMART-Seq v4), a commercially available kit based on 
Smart-seq2 (Ramsköld et al. 2012; Picelli et al. 2013); and Quartz-Seq (Sasagawa et al. 2013). 
(a) Number of detected transcripts with twofold or lower changes in expression relative to rRNA 
depleted RNA-seq (rdRNA-seq). paRNA-seq, poly(A) RNA-selected RNA-seq. (b) Heat map 
showing the sensitivity for detecting histone transcripts, which serve as an indicator of non-
poly(A) transcript detection capability. Each row represents a histone transcript, and each col-
umn represents a sample analyzed with the indicated scRNA-seq method. Expression levels are 
indicated as log10 (transcript per million [TPM]  +  1) in accordance with the color key. (c) 
Percentage of sequence read coverage throughout the length of the transcript. The X axis shows 
the absolute distance (bp) from the 3′ end of the transcript. (d) Summary of scRNA-seq by 
RamDA-seq

Y. Sasagawa et al.
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�Concluding Remarks

The three molecular biology methods used in scRNA-seq discussed in this review 
have a history of approximately 40 years (Fig. 1). However, various improvements 
have been made in these methods for high-throughput scRNA-seq. Moreover, our 
developed RT-RamDA technology generate new value to detect full length total 
RNA. RamDA-seq could help investigate the dynamics of gene expression, RNA-
processing events and transcriptional regulation in single cells. However, RT-RamDA 
and RamDA-seq are technologies that have been developed shortly. One disadvan-
tage of RamDA-seq is that it does not enable cell barcoding for multiplex library 
preparation. Additionally, to achieve uniform read coverage across full-length tran-
scripts, the number of reads required per cell is larger than for other high-throughput 
scRNA-seq methods. Since the amplification rate is lower than that of other cDNA 
amplification methods, for RT-RamDA to become a standard technique, it will be 
necessary to enhance the amplification capacity. The same is true for existing full-
length sequencing methods for single cells; however, RamDA-seq has yet to achieve 
directional sequencing. This issue is expected to be resolved in the near future.

For targeting an entire molecule of long pre-mRNA and lincRNA via RamDA-
seq, we required numerous sequence reads. Currently, RamDA-seq needs 1–4 M 
reads per cell to over a detectable number of a transcript in typical single-cell polyA 
RNA-seq. To generate numerous sequencing libraries of RamDA-seq in the future, 
the throughput of DNA sequencing needs to be increased. We hope to increase the 
throughput of DNA sequencing by 10–100  times of the current sequencing plat-
forms. We hope to develop an altogether new DNA sequencing technology.
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Integrated Fluidic Circuits for Single-Cell 
Omics and Multi-omics Applications

Mark Lynch and Naveen Ramalingam

Abstract  Single-cell genomics plays a crucial role in several aspects of biology, 
from developmental biology to mapping every cell in the human body through the 
Cell Atlas initiative. To meet these various applications, single-cell methods are 
rapidly evolving to increase throughput; improve sensitivity, quantification accu-
racy, and usability; and reduce nucleic-acid amplification bias and cost. In addition 
to improvement in single-cell methods, there is a huge interest in analyzing multiple 
analytes such as genome, epigenome, transcriptome, and protein from the same 
single cell. This approach is generalized as single-cell multi-omics. Automation of 
multi-step single-cell methods is highly desired to achieve a reproducible workflow; 
reduce human error and avoid contamination; and introduce technical variability to 
an existing stochastic process. Typically single-cell reactions start with a low level 
of nucleic acid, in the range of picograms. Miniaturization in microfluidic devices 
leads to a gain in reaction efficiency in Nanoliter or picoliter reaction volumes and 
active mixing help ensure that solid-state microfluidic devices provide the broadest 
flexibility and best sensitivity in single-cell reactions, compared to other methods. 
In this chapter, we will present integrated fluidic circuit (IFC) microfluidics for vari-
ous single-cell multi-omics applications, and show how this technology fits into the 
current single-cell technology portfolio available from various vendors. We will 
then discuss possible uses for IFCs in multi-omics applications that are on the 
horizon.

�Introduction

In the last decade single-cell methods have enabled us to understand the role of  
cell heterogeneity in many basic biological processes, particularly developmental 
biology (Briggs et  al. 2018; Farrell et  al. 2018; Wagner et  al. 2018), oncology  

M. Lynch (*) · N. Ramalingam 
Fluidigm Corporation, South San Francisco, CA, USA
e-mail: mark.lynch@fluidigm.com

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-6037-4_2&domain=pdf
mailto:mark.lynch@fluidigm.com


20

(Brady et al. 2017), neurology (Lake et al. 2016), and immunology (See et al. 2017). 
The first single-cell RNA seq method were published in 2009 using two blastomeres 
(Tang et al. 2009). In this work, the authors targeted the poly-A+ RNA transcripts 
with an oligo-dT primer with anchor sequence (UP1). Poly(A) tail was then added 
to first strand cDNA at 3′ end. The second strand cDNA was the synthesized using 
poly(A) with another anchor sequence (UP2). The cDNA was finally amplified 
using UP1 and UP2, fragmented, and sequenced on a SOLiDTM system. Following 
this there is a huge surge in number of single-cell methods to improve throughputs 
through the use of 96-well plates (Islam et al. 2011), 384-well plates (Jaitin et al. 
2014), microfluidics (Bose et al. 2015; Fan et al. 2015; Goldstein et al. 2017; Pollen 
et al. 2014), droplets (Klein et al. 2015; Macosko 2015), and more recently in fixed 
cells or nuclei (Rosenberg et al. 2018); improve sensitivity through various modifi-
cations to the single-cell chemistry through methods such as single-cell tagged 
reverse transcription (STRT) (Islam et al. 2011), Smart-Seq and Smart-seq2 (Picelli 
et  al. 2013; Ramsköld et  al. 2012), SCRB-seq (Soumillon et  al. 2014), Cell 
Expression by Linear amplification and Sequencing (CEL-Seq and CEL-Seq2) 
(Hashimshony et al. 2016; Hashimshony et al. 2012) and Massively parallel RNA 
single-cell sequencing (MARS-seq) (Jaitin et al. 2014). The ease of use in workflow 
is improved by barcoding template and pooling analytes at initial stages of chemis-
try steps (Jaitin et al. 2014; Soumillon et al. 2014).

�Single-Cell Applications

Over the last 9 years, various single-cell applications for genome (Szulwach et al. 
2015), transcriptome (Shalek et  al. 2014), protein (Gong et  al. 2016), chromatin 
accessibility (Buenrostro et  al. 2015), methylation profiling (Guo et  al. 2013) 
through reduced representation bisulfite sequencing (RRBS), three-dimensional 
architecture of whole genomes through scHi-C (Nagano et al. 2013), and chromatin 
state through chromatin immunoprecipitation followed by sequencing (ChIP-seq) 
(Rotem et al. 2015) have been published. To understand the functional aspects of 
single cells, recently there have been numerous reports analyzing multiple analytes 
per cell and correlating these measurements. There are reports analyzing transcrip-
tomic and genomic information (Dey et al. 2015; Macaulay et al. 2015), transcrip-
tomic and epigenomic information (Angermueller et  al. 2016), or transcriptomic 
and proteomic information (Darmanis et al. 2016; Frei et al. 2016; Peterson et al. 
2017; Stoeckius et al. 2017; Gong et al. 2017) from the same single cell. Going one 
step further, there are a couple of reports analyzing three analytes (genome, epig-
enome and transcriptome) simultaneously such as simultaneous single-cell methy-
lome and transcriptome sequencing (scMT-seq) (Hu et  al. 2016) and single-cell 
triple omics sequencing (scTrio-seq) (Hou et al. 2016).
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�Fluidigm Single-Cell Applications

The C1™ system has over 30 individual applications. The system provides the most 
comprehensive application breadth of any commercial system  housed on Script 
Hub™, as shown in the table below.

Application Description
Compatible 
Fluidigm IFCs

T-ATAC Seq Multi-omic application combined T cell receptor (TCR) and 
ATAC to allow investigation of the epigenetic landscape and 
the TCR simultaneously. This method allows the discovery 
of antigens that drive T cell fate or cis and trans regulators 
that drive the expansion of a T cell clone.

Open App

CEL-Seq 2 CEL-Seq2 is a 3′-end counting mRNAseq method that uses 
in vitro transcription for initial amplification. CELseq2 
incorporates numerous improvements over the original 
method including increased sensitivity and incorporation of 
unique molecular identifiers (UMIs).

Open App

STRT-Seq STRT mRNA Seq protocol is an optimized SMARTer® 
protocol using optimized components and UMIs to identify 
individual molecules.

Open App

SMART-seq2 Modification of Picelli et al Nature Methods 2014. Protocol 
modified from plate based method to ensure performance on 
C1.

Open App

C1 CAGE C1 CAGE is a method for single-cell transcriptome analysis 
for molecular counting of RNA 5′-ends. Paired-end 
sequencing, random priming and unique molecular 
identifiers are used for single-molecule fragment assembly 
of mRNAs and long non-coding RNAs, including non-
polyadenylated transcripts.

Open App

TCR-Seq This protocol is intended to produce data from T 
lymphocytes compatible with T cell receptor (TCR) 
sequence determination using the TraCeR computational 
method, as well as standard gene expression analysis.

mRNA 
sequencing and 
Open App

ATAC-Seq To reveal the landscape and principles of cellular DNA 
regulatory variation by developing a robust method for 
mapping the accessible genome of individual cells via assay 
for transposase-accessible chromatin using sequencing 
(ATAC-seq).

Open App

CORTAD-Seq A new multi-omic approach enabling concurrent 
measurement of full-length mRNA and targeted genomic 
DNA from the same single cell. CORTAD Seq offers an 
unbiased and flexible approach for single-cell multi-omic 
analysis. As described recently in Clinical Chemistry, C1 
Open App IFCs are used to generate high-quality RNA 
sequencing data with good coverage of the targeted genomic 
loci, which is essential for accurate detection of single-
nucleotide variations, deletion mutations, copy number 
variation and haplotype construction

Open App

(continued)
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Application Description
Compatible 
Fluidigm IFCs

HT REAP-Seq The RNA expression and protein sequencing (REAP-seq) 
assay uses DNA-barcoded antibodies to measure protein 
expression levels in conjunction with
gene expression on the same single cells.
This method leverages the DNA polymerase activity of 
reverse transcriptase to extend antibody barcodes
(Ab BC) containing a poly(dT) tail, and synthesize cDNA 
from mRNA in the same reaction.

HT

�Enhanced Efficiency Due to Microfluidics

Numerous reports highlight advantages of performing multi-step chemistry in 
microfluidics devices in nanoliter or picoliter reaction volume (Wu et  al. 2014; 
Svensson et al. 2017; Ziegenhain et al. 2017; Hashimshony et al. 2016). One highly 
desired feature of the single-cell methods is the sensitivity to detect single-cell tran-
scripts at single-molecule resolution. Wu et al. reported reduced bias when SMARTer 
chemistry was performed using Fluidigm C1 IFCs. Using ERCC spike-in, the 
authors reported quantum efficiency of amplification and detection of a single mol-
ecule in C1 to be approximately 0.63. This detection has been the best to date. It is 
postulated that the increased efficiency in microfluidic chambers is due to an 
increase in effective concentration of reactants leading to increased interaction of 
templates with enzymes compared to enzyme interaction with non-specific tem-
plates. Based on this idea, enhanced molecular crowding has been reported in well-
plates using PEG800 (Bagnoli et al. 2017).

The original CEL-seq protocol had an efficiency of approximately 6%. Further 
improvement to this chemistry (CEL-seq2) by shortening RT primers, optimizing 
reverse transcriptase vendor, and switching to bead cleanup instead of column 
cleanup improved the efficiency to 19.7%. Further improvement to efficiency (22%) 
was noted when the chemistry was imported to Fluidigm C1 (Hashimshony et al. 
2016). A recent comparison study of 15 distant experimental protocols concluded 
that SMARTer and CEL-seq2 on C1 have the potential to detect single-digit spike-
in molecule (Svensson et al. 2018). This is in addition to two other protocols, STRT-
seq and inDrop. The authors also compared use of the 96-well plate to the Fluidigm 
C1 system for the CEL-seq2 protocol and reported poor sensitivity for the 96-well 
plate compared the Fluidigm C1 system. In addition to sensitivity that translates to 
number of genes detected, Dueck et al. (2016) report high reproducibility of repli-
cates with the C1 IFC.
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�Future Perspective

There is a huge interest in understanding and correlating the gene expression level 
to the protein expression in a high-throughput manner. Recent publications have 
demonstrated this application in droplet-based microfluidics (Peterson et al. 2017; 
Stoeckius et al. 2017). Gong et al. analyzed 31 proteins and mRNA in three cell 
lines at single-cell resolutions and noted that the distribution profile between 
mRNA and protein was dependent on the gene. Researchers at Merck quantified 82 
barcoded antibodies with over 20,000 genes. Recently Fluidigm adjusted the work-
flow of the C1 Single-Cell mRNA Seq HT 10–17 μm IFC to enable C1 REAP-seq. 
Our new application is a powerful multi-omic single-cell application that enables 
deep characterization of unique cellular subtypes and functional states by measur-
ing the expression of both cellular proteins and RNAs. Capable of pairing with 
functional imaging assays that measure differences in cell size, morphology, or 
phenotype within the clear C1 microfluidic cell chambers, C1 REAP-seq repre-
sents a significant step forward in multi-omic analysis for basic and translational 
research.

�Conclusion

The Fluidigm C1 system and IFCs provide the single-cell community with the most 
comprehensive tools to study single-cell omics and single-cell multi-omics.  The 
applications provided through Script Hub enable the C1 to provide a full localite 
and cellular characterization system that profiles thousands of single cells in 
parallel.

C1 Script Hub is the most up-to-date repository for new applications, and the C1 
Script Builder™ provides the single-cell community the tools to develop custom 
applications and scripts to build the applications of importance to their research 
area.

While ultrahigh-throughput methods using droplets have emerged to provide 
high-throughput, cell identification and classification, our solid-state microfluidic 
devices with multi-step chemistry and active mixing provide the increased sensitiv-
ity to perform cell characterization upstream or downstream of droplet 
technologies.
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Single-Cell DNA-Seq and RNA-Seq 
in Cancer Using the C1 System
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Abstract  Heterogeneous phenotypes of cancer cells enable them to adapt to vari-
ous environments. The heterogeneity results from diversity of genome, transcrip-
tome, and epigenome at a single-cell level. The C1 system can automatically 
perform single-cell capture and whole genome amplification (WGA) or whole tran-
scription amplification (WTA) by MDA or Smart-Seq, respectively. Here, we 
describe the protocols for WGA and WTA from a single cell by using the C1 system 
and the protocols for sequence library preparation from amplified gDNA and 
cDNA. We also described about the computational analysis for single-cell data of 
cancer.

�Introduction

�Cell Heterogeneity

Individual cancer cells occasionally have significant heterogeneity in their pheno-
typic behaviors (Meacham and Morrison 2013). Even within a single population of 
the same cancer origin, the cells show distinct features regarding their growth rate, 
nutrient and oxygen requirements, and above all, eventual malignancy. Acquired 
mutations, which constitute so-called cancer evolution, are believed to underlie this 
diversification. A number of examples have been reported in which a single cell 
acquires advantageous mutations and expands within a cancer population, despite 
otherwise adverse environmental conditions (Navin et al. 2011; Hou et al. 2012; Xu 
et al. 2012; Wang et al. 2014). Moreover, even though not fully proven, it is thought 
that changes in the cell’s epigenome, without accompanying genomic mutations, 
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can invoke changes in gene expression and similar phenotypic changes (Hitchins 
2015). Indeed, except for several exceptional genes, comprehensive data explaining 
how each cancer cell accommodates to its varying microenvironment remain elu-
sive. This knowledge is particularly important because only a limited number of 
cancer cells within a population that shows distinct behaviors will eventually 
develop into metastatic cells or cells resistant to anti-cancer drugs. Although current 
next-generation sequencing technology is powerful, its application in single-cell 
analysis has been hampered mainly by technical difficulties in handling the 
extremely small amounts of DNA/RNA contained within a single cell. However, 
very recently, these technical difficulties have begun to be overcome by refined 
experimental protocols as well as the automation of the procedure, which excludes 
human error in manipulating samples on the picogram scale.

�Single-Cell DNA-Seq Method

Various whole genome amplification (WGA) methods for single-cell DNA-Seq 
have been developed, such as MDA (multiple displacement amplification), 
MALBAC (Multiple Annealing and Looping Based Amplification Cycles), and 
PicoPLEX (Spits et al. 2006; Zong et al. 2012; Langmore 2002). MDA is the most 
used method for single-cell DNA-Seq (Fig. 1). MDA employs Phi29 polymerase, 
which has strand displacement activity, and random primers (Spits et  al. 2006). 
First, random primers hybridize with gDNA, and are elongated by Phi29 poly-
merase (Fig. 1). When double-stranded DNA exists in the direction of elongation, 
Phi29 polymerase dissociates it by using its strand displacement activity. Moreover, 

Elongation

Strand displacement

Random primer

DNA

Primer annealing

Fig. 1  Overview of whole genome amplification by multiple displacement amplification
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random primers hybridize with the generated single-stranded DNA by strand dis-
placement and are elongated. By repeating these reactions, the entire genome is 
amplified under isothermal conditions. By library preparation from amplified gDNA 
and sequencing following it, single-cell whole genome sequencing (scWGS) is con-
ducted. Because of the high DNA replication fidelity of Phi29 polymerase, MDA 
has fewer amplification errors than MALBAC and PicoPlex (de Bourcy et al. 2014). 
Thus, MDA is suited to single nucleotide polymorphism (SNP) or single nucleotide 
variant (SNV) analysis of single cells. However, because MDA shows high amplifi-
cation bias, MALBAC and PicoPlex are better suited for structural variation detec-
tion from single cells, such as copy number variation.

�Single-Cell RNA-Seq Method

Various methods for single-cell RNA-Seq (scRNA-Seq) have also been developed 
and include Smart-Seq, CEL-Seq, and Quatz-Seq (Ramsköld et  al. 2012; 
Hashimshony et al. 2012; Sasagawa et al. 2013). Although it is difficult to synthe-
size a sequence library directly from the small amount of mRNA from a single cell, 
these methods enable scRNA-Seq via whole transcriptome amplification (WTA) by 
PCR or in vitro transcription of cDNA. Smart-Seq is one of the most used methods 
for scRNA-Seq (Fig. 2). In Smart-Seq, reverse transcriptase, derived from Moloney 
murine leukemia virus (MMLV-RT), is employed (Ramsköld et al. 2012). In addi-
tion to its reverse transcriptase activity, MMLV-RT has two other important activi-
ties: terminal transferase activity to the 3′ end of cDNA and template switch activity. 
MMLV-RT reverse transcribes mRNA by using a primer that contains the PCR 
primer and a poly-dT sequence, and MMLV-RT adds dG-rich sequence to the 3′ end 
of the cDNA by using its terminal transferase activity. The template switch oligo 
(TSO), containing the PCR primer sequence and the sequence complementary to 
the 3′ end of the cDNA, is hybridized to cDNA. By the template switch reaction 
from mRNA to TSO, MMLV-RT performs further elongation and addition of the 
PCR primer sequence. By utilizing both ends of the PCR primer sequence of the 
cDNA, cDNAs are amplified. Subsequently, the sequence library is synthesized 
from amplified cDNA by fragmentation and ligation of adapters.

�About the C1 System

The C1 system released by Fluidigm is a microfluidics-based machinery for 
single-cell analysis. The C1 system can automatically perform single-cell sepa-
ration of up to 96 cells and WTA or WGA by Smart-Seq or MDA, respectively 
(Wu et al. 2014; Szulwach et al. 2015). The C1 system is also applicable to other 
scRNA-Seq methods, such as CEL-Seq and STRT-Seq, and the single-cell open 
chromatin analysis method, scATAC-Seq (Hashimshony et al. 2012; Islam et al. 
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2014; Buenrostro et al. 2015). The C1 mRNA Seq HT kit, which can capture up 
to 800 cells and prepare scRNA-Seq libraries, is also available.

Here, we describe the standard protocols of WGA and WTA using the C1 system 
and library preparation protocols for Illumina sequencing from amplified gDNA 
and cDNA. There are several methods for library preparation. We describe library 
preparation protocols for the KAPA HyperPlus Kit, which is an enzymatic fragmen-
tation and ligation-based method, and the Nextera XT DNA Library Prep Kit, which 
is a method utilizing TD5 transposase, for scDNA-Seq and scRNA-Seq, 
respectively.

�Materials

�Reagents for scDNA-Seq

Illustra GenomiPhi V2 DNA Amplification Kit (GE Healthcare Life Sciences, cat. 
25-6600-30)

C1 Single-Cell Auto Prep Reagent Kit for DNA Seq (Fluidigm, cat. 100-7357).
C1 Single-Cell Auto Prep IFC for DNA Seq 5–10 μm (Fluidigm, cat. 100-5762).
C1 Single-Cell Auto Prep IFC for DNA Seq 10–17 μm (Fluidigm, cat. 100-5763).
C1 Single-Cell Auto Prep IFC for DNA Seq 17–25 μm (Fluidigm, cat. 100-5764).
KAPA HyperPlus Kit (KAPA Biosystems, cat. KK8514).
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XXX

Reverse Transcription

Template Switch Reaction
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Tagmentation & PCR

mRNA

Library for Sequencing

Transposase

Template Switch Oligo
Poly-dT primer 

Fig. 2  Overview of single-cell RNA-Seq by Smart-Seq
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Agencourt AMPure XP (Beckman Coulter, cat. A63880).
Nuclease-Free Water (Thermo Fisher Scientific, cat. AM9932).
Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, cat. Q32851).
SureSelect XT2 Reagent Kit HSQ (Agilent Technologies, cat. G9661B).
10 mM Tris-HCl (pH 8.0).
High Sensitivity DNA kit (Agilent Technologies, cat. 5067-4626).

(Optional)
LIVE/DEAD Viability/Cytotoxicity Kit for mammalian cells (Thermo Fisher 

Scientific, cat. L-3224).
SureSelect XT2 capture library Human All Exome (Agilent Technologies, cat. 

5190-9312).
Dynabeads MyOne Streptavidin T1 (Thermo Fisher Scientific, cat. 65601).
High Sensitivity D1000 kit (Agilent Technologies, cat. 5067-5584 and 

5067-5585).

�Reagents for scRNA-Seq

SMARTer Ultra Low RNA Kit for the Fluidigm C1 System (Clontech, cat. 634833).
C1 Reagent Kit for mRNA Seq (Fluidigm, cat. 100-6201).
C1 Single-Cell Auto Prep IFC for mRNA Seq 5–10 μm (Fluidigm, cat. 100-5759).
C1 Single-Cell Auto Prep IFC for mRNA Seq 10–17  μm (Fluidigm, cat. 

100-5760).
C1 Single-Cell Auto Prep IFC for mRNA Seq 17–25  μm (Fluidigm, cat. 

100-5761).
Nextera XT DNA Sample Prep Kit (Illumina, cat. FC-131-1096).
Nextera XT Index Kit (Illumina, cat. FC-131-1002).
Agencourt AMPure XP (Beckman Coulter, cat. A63880).
High Sensitivity DNA kit (Agilent Technologies, cat. 5067-4626).

(Optional)
LIVE/DEAD Viability/Cytotoxicity Kit for mammalian cells (Thermo Fisher 

Scientific, cat. L-3224).
ArrayControl RNA Spikes (Thermo Fisher Scientific, cat. AM1780).
THE RNA Storage Solution (Thermo Fisher Scientific, cat. AM7000).

�Equipment

C1 Single-Cell Auto Prep system (Fluidigm, cat. 100-7000).
Agilent 2100 Bioanalyzer (Agilent Technologies).
Qubit 4 Fluorometer (Thermo Fisher Scientific, cat. Q33226).
Centrifuge.
Optical microscope.

Single-Cell DNA-Seq and RNA-Seq in Cancer Using the C1 System
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Cell counter.
Thermal cycler.
Magnetic stand.

(Optional)
Fluorescence microscope.
Agilent TapeStation (Agilent Technologies).
Agilent Bravo NGS Workstation (Agilent Technologies).

�Methods

In the C1 system, the efficiency of single-cell capture is largely affected by the size 
of the cells. In particular, when analyzing a mixture of cells of various sizes, the 
single cells captured by the C1 system do not necessarily reflect the original popula-
tion. To collect single-cell data without cell size bias, cell size-independent meth-
ods, such as manual manipulation, microwell-based systems, and droplet-based 
systems, are appropriate (Gierahn et al. 2017; Macosko et al. 2015).

In WGA and WTA amplification steps, use RNase- and DNase-free pipette tips 
and water, and wear latex gloves to avoid RNA degradation and contamination of 
extraneous DNA and RNA. Unless otherwise noted, perform all experiments on ice. 
It is possible that leaving the dissociated cells for a long time may influence their 
expression patterns. Prior to conducting scRNA-Seq, prepare the reagents and per-
form Integrated Fluidic Circuit (IFC) priming first to minimize the time after single-
cell preparation.

�Preparation of Single Cells

	1.	 For adherent cells and tissues, dissociate the cells by treating with a dissociation 
reagent, such as trypsin or collagenase (see Note 1). This step is unnecessary for 
non-adherent cells.

	2.	 Centrifuge at 300 g for 3 min and discard the supernatant. Resuspend the cells in 
PBS or cell culture medium.

	3.	 Repeat step 2.
	4.	 Filter the cell suspension by using a 40-μm cell strainer to remove cell clumps 

and large debris (see Note 2).
	5.	 Count the number of cells, and measure the cell size using a cell counter.
	6.	 Dilute the cell suspension to 66–800 cells/μl.
	7.	 (Optional) When distinguishing whether the captured single cells are alive or 

dead, prepare the C1 LIVE/DEAD solution. Mix 1.25 ml of Cell Wash Buffer, 
2.5 μl of Ethidium homodimer-1, and 0.625 μl of Calcein AM. Vortex and spin 
down.
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�Whole Genome Amplification for scDNA-Seq

An outline of the C1 IFC for scDNA-Seq is indicated in Fig. 3a.

�Priming of C1 DNA Seq IFC

When injecting reagents into the IFC, do not place a bubble on the bottom of the 
wells.

	1.	 Choose proper C1 DNA Seq IFC that is appropriate for the cell size. Peel off the 
seal at the bottom of the IFC (see Note 3).

	2.	 Push the lid of the well with a pipette and inject 200 μl of C1 Harvest Reagent 
into 2 wells shown by the P1 arrows.

	3.	 Inject 20 μl of C1 Harvest reagent into 40 wells shown by the P2 arrows.
	4.	 Inject 20 μl of C1 Preloading reagent into inlets 2 and 5 shown by arrow P3.
	5.	 Inject 20 μl of C1 DNA Seq Cell Wash Buffer into a well shown by arrow P4
	6.	 Inject 15 μl of C1 Blocking Reagent into two wells shown as by arrows P5 and 

P6.
	7.	 Set the IFC to the C1 system and touch the icon “DNA Seq: Prime”. When prim-

ing is finished, eject the IFC from the C1 system (see Note 4).

�Loading Cells

	1.	 Inject 20 μl of C1 DNA Seq Cell Wash Buffer into inlet 1 shown by arrow L1.
(Optional) If distinguishing whether the captured single cells are alive or 

dead, inject C1 LIVE/DEAD solution instead of C1 Cell Wash Buffer.
	2.	 Remove reagents from two wells shown by arrows P5 and P6.
	3.	 Mix 12 μl of cell suspension and 8 μl of C1 Cell Suspension Reagent. Mix well 

by pipette and proceed immediately to the next step.
(Optional) When the rate of cell capture is low, it is possibly improved by 

changing the volume of cell suspension and C1 Cell Suspension Reagent to 14 μl 
and 6 μl, respectively.

	4.	 Inject the mixture into the well shown by arrow P5.
	5.	 Set the IFC to the C1 system and touch the icon “DNA Seq: Cell Load”.

(Optional) If distinguishing whether the captured single cells are alive or 
dead, touch the icon “DNA Seq: Cell Load & Stain” instead of “DNA Seq: Cell 
Load”.

	6.	 When cell loading is finished, eject the IFC from the C1 system. Check the num-
ber of captured cells in the chamber by using an optical microscope (see Note 5).

(Optional) When the cells are stained with C1 LIVE/DEAD solution, the status of 
the single cells can be distinguished by fluorescence microscope. Live cells show 
green fluorescence, whereas dead cells show red fluorescence (Fig. 4).

Single-Cell DNA-Seq and RNA-Seq in Cancer Using the C1 System
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Fig. 3  Outline of IFCs of the C1 system. An outline of the C1 IFCs for DNA-Seq and RNA-Seq 
are shown in (a) and (b), respectively. The wells where the reagents are injected and the outlets of 
amplified DNA are indicated by arrows
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�Preparation of C1 Reagents

	1.	 Mix 193.1 μl of Nuclease-Free Water, 2.3 μl of Sample Buffer, 2.3 μl of Reaction 
Buffer, and 2.3 μl of C1 DTT in a tube labeled “DTT Mix”. Vortex and spin 
down.

	2.	 Mix 13.5 μl of C1 DNA Seq Lysis Buffer and 1.5 μl of C1 DTT in a tube labeled 
“Lysis Mix”. Vortex and spin down.

(Optional) If preparing the control for gDNA amplification, mix 19.8 μl of C1 
DNA Seq Lysis Buffer and 2.2 μl of C1 DTT in a tube labeled “Lysis Mix”. 
Vortex and spin down.

	3.	 Mix 30 μl of C1 DNA Seq Reaction Buffer, 21 μl of DTT Mix, and 3 μl of 
Enzyme Mix in a tube labeled “Reaction-Enzyme Mix”. Vortex and spin down.

(Optional) If preparing the control for gDNA amplification, mix 45 μl of C1 DNA 
Seq Reaction Buffer, 31.5 μl of DTT Mix, and 4.5 μl Enzyme Mix in a tube 
labeled “Reaction-Enzyme Mix”. Vortex and spin down.

�Cell Lysis and gDNA Amplification

	1.	 Add 180 μl of C1 Harvest Reagent to four rectangular wells in the four corners 
of the IFC shown by the A1 arrows.

	2.	 Inject 10 μl of Lysis Mix into inlet 4 shown by arrow A2.
	3.	 Inject 10 μl of C1 DNA Seq Stop Buffer into inlet 6 shown by arrow A3.
	4.	 Inject 24 μl of Reaction-Enzyme Mix into inlets 7 and 8 shown by arrow A4.
	5.	 Place the IFC into the C1 system and touch the icon “DNA Seq: Amplify”. 

Adjust the ending time of this step (see Note 6).

Fig. 4  Single-cell capture by the C1 system. (a) Picture of the chamber containing a single cell 
(arrowhead). (b) Enlarged view of a single cell is shown below. A single cell is shown by the 
arrowhead

Single-Cell DNA-Seq and RNA-Seq in Cancer Using the C1 System
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�Collection of Amplified gDNA

	1.	 Dispense 10 μl of C1 DNA Dilution Reagent to a new 96-well plate. Peel off the 
tape sealing the outlets of the IFC.

	2.	 Pipette the amplified gDNA from the outlets of the IFC and transfer to the plate. 
The chamber numbers correspond to positions of outlets indicated in Table 1. 
Seal the plate, vortex, and spin down.

	3.	 Perform quantification of the amplified gDNA by the Qubit dsDNA HS assay kit 
(see Note 7).

	4.	 Add Nuclease Free Water to 50 ng of the amplified cDNA to bring the volume to 
35 μl.

�(Optional) Preparation of Control of gDNA Amplification

	 1.	 Prepare 1 ml of a 200 cells/μl cell suspension from the same pool used for cell 
loading.

	 2.	 Centrifuge the suspension at 300 g for 3 min. Remove the supernatant.
	 3.	 Suspend the cell pellet in 1 ml of C1 Cell Wash Buffer. Centrifuge the suspen-

sion at 300 g for 5 min. Remove the supernatant. Repeat this step once more.
	 4.	 Resuspend the cell pellet in 0.9 ml of C1 Cell Wash Buffer.
	 5.	 Mix 1 μl of washed cell suspension and 2 μl of Lysis Mix in a new PCR tube 

labeled “Cell Mix”.
	 6.	 Mix 1 μl of 10 ng/μl gDNA from the Illustra kit and 2 μl of Lysis Mix in a new 

PCR tube labeled “gDNA Mix”.
	 7.	 Mix 1 μl of Nuclease Free Water and 2 μl of Lysis Mix in a new PCR tube 

labeled “NTC”.

Table 1  Correspondence table between the number of chambers and positions of the outlet

Left side Right side

C03 C02 C01 C49 C50 C51
C06 C05 C04 C52 C53 C54
C09 C08 C07 C55 C56 C57
C12 C11 C10 C58 C59 C60
C15 C14 C13 C61 C62 C63
C18 C17 C16 C64 C65 C66
C21 C20 C19 C67 C68 C69
C24 C23 C22 C70 C71 C72
C25 C26 C27 C75 C74 C73
C28 C29 C30 C78 C77 C76
C31 C32 C33 C81 C80 C79
C34 C35 C36 C84 C83 C82
C37 C38 C39 C87 C86 C85
C40 C41 C42 C90 C89 C88
C43 C44 C45 C93 C92 C91
C46 C47 C48 C96 C95 C94
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	 8.	 Vortex and spin down. Incubate on ice for 10 min.
	 9.	 Add 4 μl of C1 DNA Seq Stop Buffer to each tube. Vortex and spin down. 

Incubate at room temperature for 3 min.
	10.	 Mix 1.05 μl of the sample and 8.95 μl of Reaction-Enzyme Mix in three new 

tubes labeled with each sample name. Incubate the tubes in a thermal cycler 
using the following cycle for amplification by MDA.

38 °C for 2 hours.
70 °C for 15 min.
Hold at 4 °C.

	11.	 Vortex and spin down. Dilute 1 μl of each control sample after amplification 
with 9 μl of C1 DNA Dilution Reagent.

	12.	 Perform quantification by using the Qubit dsDNA HS assay kit.

�scDNA-Seq Library Preparation from Amplified gDNA

We describe the library preparation method using the KAPA HyperPlus Kit. 
Procedures for library preparation and purification are automatable by using the 
Agilent Bravo Workstation. Other methods are also applicable, such as the Nextera 
Rapid Capture Kit and Truseq Nano DNA Kit combined with sonication.

�Fragmentation and Adapter Ligation

	1.	 Mix 35 μl of diluted DNA, 5 μl of KAPA Frag Buffer, and 10 μl of KAPA Frag 
Enzyme in a 96-well plate. Vortex gently and spin down.

	2.	 Incubate the plate in a thermal cycler using the following cycle for fragmentation 
(see Note 8).

Pre-cooling at 4 °C.
37 °C for 20 min.
Hold at 4 °C.

	3.	 Once the sample reaches 4 °C, immediately proceed to the next step.
	4.	 Add 7 μl of End Repair & A-Tailing Buffer and 3 μl of End Repair & A-Tailing 

Enzyme Mix to the plate. Vortex and spin down.
	5.	 Incubate the plate in a thermal cycler using the following cycle for end repair and 

dA-tailing.

65 °C for 30 min.
Hold at 4 °C.

	6.	 Add 5 μl of Nuclease Free Water, 30 μl of Ligation Buffer, 5 μl of SureSelect 
XT2 Pre-capture Index Adapter, and 10 μl of DNA Ligase to the plate. Incubate 
the plate in a thermal cycler at 20 °C for 15 min (see Note 9).
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�Purification After Ligation

Perform this step at room temperature.

	1.	 Add 88 μl of AMPure XP to the plate (see Note 10). Mix well by pipette and 
incubate for 5 min.

	2.	 Place the plate on a magnetic stand and incubate until the liquid is completely 
clear.

	3.	 Remove supernatant. Add 200 μl of 80% ethanol and incubate for 30 s. Repeat 
this step once more.

	4.	 To remove the ethanol completely, air-dry the sample for 5 min (see Note 11). 
Remove the tube from the magnetic stand.

	5.	 Suspend the bead in 21 μl of 10 mM Tris-HCl (pH 8.0). Disperse dried beads by 
pipette and incubate for 2 min.

	6.	 Place the tube on the magnetic stand until the liquid is completely clear. Transfer 
20 μl of the supernatant to a new 96-well plate.

�Library Enrichment and Purification

	1.	 Add 25  μl of 2× KAPA HiFi Hotstart ReadyMix and 5  μl of 10× Library 
Amplification Primer Mix to the plate. Incubate the tube in a thermal cycler 
using the following cycle for PCR amplification (see Note 9 and 12).

98 °C for 45 s.
8 cycles of

98 °C for 15 s.
60 °C for 30 s.
72 °C for 30 s.

72 °C for 60 s.
Hold at 4 °C.

The following procedure is performed at room temperature.
	2.	 Add 50 μl of AMPure XP to the plate (see Note 10). Mix well by pipette and 

incubate for 5 min.
	3.	 Place the plate on a magnetic stand and incubate until the liquid is completely 

clear.
	4.	 Remove the supernatant. Add 200 μl of 80% ethanol and incubate for 30  s. 

Repeat this step once more.
	5.	 To remove the ethanol completely, open the lid of the tube and air-dry the sample 

for 5 min (see Note 11). Remove the tube from the magnetic stand.
	6.	 Resuspend the beads in 21 μl of Nuclease Free Water. Disperse dried beads by 

pipette and incubate for 2 min.
	7.	 Place the tube on a magnetic stand until the liquid is completely clear. Transfer 

approximately 20 μl of the supernatant to a new 96-well plate.
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	8.	 Perform quantification and quality analysis of the purified sequence library by 
using the High Sensitivity Kit of the Agilent Bioanalyzer or TapeStation (Fig. 5a).

	9.	 (Optional) For multiplexing libraries, mix the libraries with different indexes at 
equal molarity.

�Sequencing and Computational Analysis of the scDNA-Seq 
Library

By sequencing the enriched library on the Illumina platform, you can conduct 
scWGS of a single cell. If scExome-Seq is desired, perform exon capture and PCR 
amplification by using the SureSelect XT2 Target Enrichment System before 
sequencing.

The inherent advantage of using scDNA-Seq for identifying SNVs in a single or 
limited number cells is that the SNV data can be treated in a digital manner. Only 
three statuses are possible for each SNV: namely, null (wild type homo), hetero and 
homo. Therefore, the problem is how to distinguish these three statuses from given 
sequence data. This outcome is conceptually different from the SNV calling of bulk 

Fig. 5  Quantification and quality analysis of amplified DNA and libraries. (a) scDNA-Seq library 
quantified by the HighSensitivity D1000 kit from Agilent TapeStation. (b and c) Amplified cDNA 
(b) and multiplexed scRNA-Seq library (c) quantified by the High Sensitivity DNA kit from the 
Agilent 2100 Bioanalyzer

Single-Cell DNA-Seq and RNA-Seq in Cancer Using the C1 System



40

cells, where the SNV should be represented as a frequency of alleles within the 
population and this frequency can sometimes be very low. Indeed, assuming that an 
error rate of the sequencer is 0.1%, mutations occurring in 1/1000 cells cannot be 
detected from bulk cells in theory. Moreover, in the analysis of scDNA-Seq data, all 
the sequence data should indicate the presence or absence of the SNV in the corre-
sponding cells. After identifying whether a cell has a SNV, the number of SNV-
containing cells is counted within a population (Fig. 6 for examples).

�Whole Transcriptome Amplification for scRNA-Seq

An outline of the C1 IFC for scRNA-Seq is indicated in Fig. 3b.

�Preparation of Control RNA Spikes (Optional)

	1.	 Dilute 1.5 μl of ArrayControl RNA Spikes 7, 4, and 1 with 13.5 μl, 12.0 μl, and 
148.5 μl of the RNA Storage Solution in tubes labeled “1”, “2”, and “3”, respec-
tively. Vortex and spin down all tubes.

	2.	 Add 1.5 μl of the mixture of tube “1” to tube “2”. Vortex and spin down tube B.
	3.	 Add 1.5 μl of the mixture of tube “2” to tube “3”. Vortex and spin down tube C.
	4.	 Aliquot the RNA Spikes mixture of tube “3” into 1.25  μl aliquots. Store at 

−80 °C, if it will not be immediately used.

Fig. 6  SNV detection of single cells. SNV detection from 5 cells SNV of leukocyte detected by 
scExome-Seq is shown
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�Preparation of C1 Reagents (see Note 13)

	1.	 (Optional) Mix 1 μl of the RNA Spikes mixture and C1 Loading Reagent. Vortex 
and spin down.

	2.	 Mix 11.5 μl of Dilution Buffer, 7 μl of 3’ SMART CDS Primer IIA, 0.5 μl of 
RNA Inhibitor, and 1 μl of C1 Loading Buffer in a tube labeled “Mix A”. Mix by 
pipette.

(Optional) When using RNA Spikes, add a 1 μl dilution of the RNA Spikes 
mixture instead of C1 Loading Buffer.

	3.	 Mix 11.2 μl of 5X First-Strand Buffer, 5.6 μl of 10 mM dNTP, 1.4 μl of DTT, 
1.4 μl of RNase Inhibitor, 5.6 μl of SMARTer IIA Oligonucleotide, 5.6 μl of 
SMARTScribe Reverse Transcriptase, and 1.2 μl of C1 Loading Reagent in a 
tube labeled “Mix B”. Vortex gently and spin down.

	4.	 Mix 63.5 μl of PCR Water, 10 μl of 10X Advantage 2 PCR Buffer, 4 μl of 50X 
dNTP Mix, 4 μl of IS PCR Primer, 4 μl of 50X Advantage 2 Polymerase Mix, 
and 4.5 μl of C1 Loading Reagent in a tube labeled “Mix C”. Vortex and spin 
down.

	5.	 (Optional) When distinguishing whether captured single cells are alive or dead, 
prepare the C1 LIVE/DEAD solution. Mix 1.25 ml of Cell Wash Buffer, 2.5 μl 
of Ethidium homodimer-1, and 0.625 μl of Calcein AM. Vortex and spin down.

�Priming of C1 IFC

When injecting reagents, do not place a bubble on the bottom of the wells.

	1.	 Choose proper C1 IFC matching that is appropriate for the cell size. Peel the seal 
from the bottom of the IFC.

	2.	 Push the lid of the well by pipette and inject 200 μl of C1 Harvest Reagent into 
2 wells shown by the P1 arrows.

	3.	 Inject 20 μl of C1 Harvest Reagent into 40 wells shown by the P2 arrows.
	4.	 Inject 20 μl of C1 Preloading Reagent into inlet 1 shown by arrow P3.
	5.	 Inject 20 μl of C1 Cell Wash Buffer into two wells shown by arrow P4
	6.	 Inject 15 μl of C1 Blocking Reagent into two wells shown by arrows P5 and P6.
	7.	 Set the C1 IFC to C1 system and push the button “RNA-Seq: Prime”. When the 

priming is finished, eject the C1 IFC from the C1 system.

�Loading Single Cells

	1.	 Inject C1 Cell Wash Buffer into inlet 1 shown by arrow L1.
(Optional) If distinguishing whether the captured single cells are alive or 

dead, inject C1 LIVE/DEAD solution instead of C1 Cell Wash Buffer.
	2.	 Remove the reagents from two wells shown by arrows P5 and P6.
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	3.	 Mix 12 μl of cell suspension and 8 μl of C1 Cell Suspension Reagent. Mix well 
by pipette and proceed to the next step.

(Optional) If the single cell capture rate is low, it is possibly improved by 
changing the volume of cell suspension and C1 Cell Suspension Reagent to 14 μl 
and 6 μl, respectively.

	4.	 Inject the cell mixture into the well shown by arrow P5.
	5.	 Set the C1 IFC on the C1 system and push the button “RNA-Seq: Cell Load”.

(Optional) If distinguishing whether the captured single cells are alive or 
dead, push the button “RNA Seq: Cell Load & Stain” instead of “RNA Seq: Cell 
Load”.

	6.	 When cell loading is finished, eject the C1 IFC from the C1 system. Check the 
number of captured cells in each capture site by using an optical microscope (see 
Note 5).

(Optional) Whether single cells stained with the C1 LIVE/DEAD solution are alive 
or dead can be distinguished using a fluorescence microscope. Live cells show 
green fluorescence, whereas dead cells show red fluorescence.

�Cell Lysis, Reverse Transcription, and Amplification

	1.	 Add 180 μl of C1 Harvest Reagent to four rectangular wells in the four corners 
of the IFC shown by the R1 arrows.

	2.	 Inject 9 μl of Mix A into inlet 3 shown by arrow R2.
	3.	 Inject 9 μl of Mix B into inlet 4 shown by arrow R3.
	4.	 Inject 24 μl of Mix C into inlets 7 and 8 shown by arrow R4.
	5.	 Set the IFC on the C1 system and push the button “mRNA Seq: RT+Amp”. 

Adjust the ending time of this step. Leaving the IFC for a long time causes the 
samples to evaporate. Therefore, eject the IFC from the C1 system and collect 
the samples from the IFC within 2 h after this step is completed.

�Collection of Amplified cDNA

	1.	 Dispense 10 μl of C1 DNA Dilution Reagent to a new 96-well plate. Peel the 
tape that seals the outlets of the amplified cDNA.

	2.	 Pipette samples from the outlets of the IFC and transfer to the plate. The num-
bers of capture sites correspond to the numbers indicated in Table 1. Seal, vortex, 
and spin down the plate.

	3.	 Perform quantification and quality analysis of the amplified cDNA using the 
High Sensitivity DNA Kit of the Agilent 2100 Bioanalyzer (see Note 14). 
Calculate the concentration of DNA from 100 bp to 10,000 bp by region setting 
(Fig. 5b).

	4.	 Dilute 2 μl of cDNA solution with an adequate amount of C1 Harvest Buffer to 
a concentration of 0.1–0.3 ng/μl.
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�(Optional) cDNA Preparation of Bulk Cell Control

	 1.	 Prepare 1 ml of 200 cells/μl cell suspension from the same pool used for cell 
loading.

	 2.	 Centrifuge the suspension at 300 g for 5 min. Remove the supernatant.
	 3.	 Suspend the cell pellet in 1 ml of C1 Cell Wash Buffer. Centrifuge the suspen-

sion at 300 g for 5 min. Remove the supernatant. Repeat this step once more.
	 4.	 Resuspend the cell pellet in 0.9 ml of C1 Cell Wash Buffer.
	 5.	 Mix 1 μl of washed cell suspension and Mix A in a PCR tube. Vortex gently and 

spin down. Incubate the tube in a thermal cycler using the following cycle for 
cell lysis and primer hybridization.

72 °C for 3 min.
4 °C for 10 min.
25 °C for 1 min.
Hold at 4 °C.

	 6.	 Spin down and add 4 μl of Mix B to the tube. Vortex gently and spin down. 
Incubate the tube in a thermal cycler using the following cycle for reverse 
transcription.

42 °C for 90 min.
70 °C for 10 min.
Hold at 4 °C.

	 7.	 Vortex and spin down. Mix 1 μl of Mix C and 1 μl of first strand cDNA in a new 
PCR tube. Vortex and spin down. Incubate the tube in a thermal cycler using the 
following cycle for PCR amplification.

95 °C for 1 min.
5 cycles of

•	 95 °C for 20 s.
•	 58 °C for 4 min.
•	 68 °C for 6 min.

9 cycles of

•	 95 °C for 20 s.
•	 64 °C for 30 s.
•	 68 °C for 6 min.

7 cycles of

•	 95 °C for 30 s.
•	 64 °C for 30 s.
•	 68 °C for 7 min.

72 °C for 10 min.
Hold at 4 °C.
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	 8.	 Vortex and spin down. Mix 1 μl of PCR product and 45 μl of C1 DNA Dilution 
Reagent in a new tube. Vortex and spin down.

	 9.	 Perform quantification and quality analysis of amplified cDNA using the High 
Sensitivity DNA Analysis Kit of the Agilent 2100 Bioanalyzer.

	10.	 Dilute 2 μl of cDNA solution with an adequate amount of C1 Harvest Buffer to 
a concentration of 0.1–0.3 ng/μl.

�scRNA-Seq Library Preparation from Amplified cDNA

�Library Preparation by Tn5 Tagmentation and PCR

	1.	 Add 2.5 μl of Tagmentation DNA Buffer, 1.25 μl of Amplicon Tagment Mix, and 
1.25 μl of diluted cDNA to a new 96-well plate. Seal the plate, vortex gently, and 
spin down.

	2.	 Incubate the plate in a thermal cycler using the following cycle.

55 °C for 10 min.
Hold at 10 °C.

	3.	 When at the plate reaches 10 °C, immediately add 1.25 μl of Neutralize Tagment 
Buffer to stop the tagmentation reaction. Seal the plate, vortex, and spin down.

	4.	 Add 3.75 μl of Nextera PCR Master Mix, 1.25 μl of Index Primer 1, and 1.25 μl 
of Index Primer 2 to the plate. Incubate the plate in a thermal cycler using the 
following cycle.

72 °C for 3 min.
95 °C for 30 s.
12 cycles of

•	 95 °C for 10 s.
•	 55 °C for 30 s.
•	 72 °C for 60 s.

72 °C for 5 min.
Hold at 10 °C.

�Multiplexing of Libraries and Purification

These steps are performed at room temperature.

	 1.	 Incubate AMPure XP at room temperature for 30 min and vortex until the pre-
cipitate disperses completely.

	 2.	 For multiplexing the libraries, mix the libraries with different indexes at equal 
molarity in a tube. Add AMPure XP in an amount that is 0.9 times the amount 
of the mixed library. Mix by pipette and incubate for 5 min.
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	 3.	 Place the tube on a magnetic stand and incubate for 2 min.
	 4.	 Remove the supernatant. Add 180 μl of 70% ethanol and incubate for 30  s. 

Repeat this step once more.
	 5.	 To remove the ethanol, open the lid of the tube and air-dry the sample for 9 min. 

Remove the tube from the magnetic stand.
	 6.	 Add the same amount of Resuspension Buffer as the amount of the library mix-

ture before purification. Disperse dried beads by pipette and incubate for 2 min.
	 7.	 Place the tube on a magnetic stand and incubate for 2 min.
	 8.	 Transfer the supernatant to a new tube. Add AMPure XP in an amount that is 

0.9 times the amount of the supernatant. Mix by pipette and incubate for 5 min.
	 9.	 Place the tube on a magnetic stand and incubate for 2 min.
	10.	 Remove the supernatant. Add 180 μl of 70% ethanol and incubate for 30  s. 

Repeat this step once more.
	11.	 To remove the ethanol completely, open the lid of the tube and air-dry the sam-

ple for 9 min. Remove the tube from the magnetic stand.
	12.	 Add Resuspension Buffer in an amount that is 1.5  times the amount of the 

library mixture before purification. Disperse the dried beads by pipette and 
incubate for 2 min.

	13.	 Place the tube on a magnetic stand for 2 min. Transfer the supernatant to a new 
tube.

	14.	 Perform quality analysis of the multiplexed library using the kit of the Agilent 
2100 Bioanalyzer (Fig. 5c).

�Sequencing and Computational Analysis of the scRNA-Seq 
Library

By sequencing the enriched library on an Illumina platform, you can conduct 
scRNA-Seq. Although the number of samples is generally large, 100–1000 RNA-
Seq datasets, each of which represents a single-cell transcriptome, the basic data 
process itself is the same as that of standard RNA-Seq. For mapping and converting 
the mapping information to gene expression information, general RNA-Seq soft-
ware, such as TopHat2 and Cufflinks, can be used (Trapnell et al. 2009, 2010). For 
visual inspection, IGV and the UCSC Genome Browser can be used (Robinson 
et al. 2011; Thorvaldsdóttir et al. 2013; Kent et al. 2002) (Fig. 7a). Notably, in some 
methods, such as CEL-Seq and STRT-Seq, only one end of the transcripts is repre-
sented, although the entire transcript is represented in the most popular method for 
this purpose, Smart-Seq (Ramsköld et  al. 2012; Hashimshony et  al. 2012; Islam 
et al. 2011). When begun from data collected using specialized methods, the method 
of tag counts should be modified accordingly.

A unique feature of the scRNA-Seq analysis is present in the later step. To extract 
relevant information, the gene expression information collected from hundreds of 
cells should be collectively analyzed. The easiest analysis may be to calculate 
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deviations of gene expression among cells. For this purpose, relative divergence 
(standard deviation divided by average) is often used. When the divergence within 
a population is unknown, it may provide clues for understanding the molecular 
bases of diverse cellular phenotypes. Another frequently used approach is the clus-
tering of cells based on their expression information (Ramsköld et al. 2012; Patel 
et al. 2014; Suzuki et al. 2015). As exemplified in Fig. 7b, even within the same 
cancer cell line, significant expression divergence is sometimes observed. This clus-
tering can be performed using either the entire genes or a group of selected genes, 
such as cancer-related genes. In fusion gene detection, it is difficult to detect signifi-
cant fusion transcripts from single-cell data. Thus, it is better to first detect fusion 
genes from data merged from reads of single cells by using fusion detection soft-
ware, such as TopHat-fusion and DEFUSE, and then to distinguish whether the data 
for each single cell contain sequence tags covers the detected junction (Suzuki et al. 
2015; Kim and Salzberg 2011; McPherson et al. 2011) (Fig. 7c).

�Notes

	 1.	 The incomplete dissociation of cells causes the capture of multiple cells in a 
chamber. The cells should be dissociated completely.

Dead cell shows an aberrant profile. When a sample contains many dead 
cells, remove dead cells using a cell sorter or magnetic bead-based methods.

	 2.	 If the cell suspension contains substantial amounts of small debris, increase the 
number of washing steps.

	 3.	 An unsuitable choice of IFC causes a decrease in single-cell capture 
efficiency.

	 4.	 After priming, the IFC can be stored at 4 °C for several hours.
	 5.	 Living cells have a high degree of transparency. Thus, even without staining, it 

is possible to distinguish whether cells are alive or dead roughly by the degree 
of transparency.

If a single cell is not captured at the capture site, judge single-cell capture as 
successful when the chamber contains a single cell (Fig. 4). In contrast, if a 
single cell is captured in the capture site, judge single-cell capture as a failure 
when the chamber contains two cells or more.

	 6.	 When using the IFC for small cells and others, this step takes approximately 
6.25 and 7.5 h, respectively, at the shortest. Leaving the IFC for a long time 
after the ending time causes the samples to evaporate.

	 7.	 The Quant-iT PicoGreen dsDNA Assay Kit is also applicable for quantifica-
tion. The concentration of amplified gDNA is approximately 5–40 ng/μl.

	 8.	 By changing the incubation time at 37 °C, it is possible to optimize the average 
size of DNA after fragmentation.

M. Seki et al.



47

Fig. 7  Single-cell RNA-Seq analysis in lung adenocarcinoma cell line. (a) Selected 20 single-cell 
RNA-Seq data of PC-9 were visualized by IGV. (b) Hierarchical clustering analysis was performed 
by expression patterns of 138 cancer-driver genes (Vogelstein et al. 2013). Data of 163 individual 
cells were used including 46, 46, 43, and 28 cells from PC-9, VMRC-LCD, LC2/ad, and LC2/ad 
with vandetanib stimulation, respectively. (c) A fusion transcript CCDC6-RET in LC2/ad single-
cell and bulk RNA-Seq data. Junction sequence tags of CCDC6-RET in single-cell RNA-Seq data. 
The junction point of CCDC6-RET was identified from bulk RNA-Seq data. Bulk RNA-Seq tags 
around the junction point in CCDC6 and RET were visualized by IGV

a

b
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	 9.	 If necessary, dilute the adapter oligo mixture according to the instructions of the 
KAPA HyperPlus Kit.

If you do not want to perform scExome-Seq (single-cell exome sequencing) 
using the SureSelect XT2 Target Enrichment System, you can also use the 
adapters released by other manufacturers.

	10.	 Before use, incubate AMPure XP at room temperature for 30 min and vortex 
until the precipitate disperses completely.

	11.	 Remaining ethanol or excess drying causes a low recovery rate of DNA.
	12.	 The required PCR cycle differs depending on the size and concentration of the 

sample. Optimize the number of cycles according to the manufacturer’s 
instructions.

	13.	 These reagents can be stored at 4 °C for a few hours.
	14.	 The Quant-iT PicoGreen dsDNA Assay Kit is also applicable for 

quantification.
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CTGAAGTGCAAGGCACTGCAGGAGGAGAACCGCGACCTGCGCAAAGCCAGCGTTACCATC GAGGATCCAAAGTGGGAATTCCCTCGGAAGAACTTGG
GCAGGAGGAGAACCGCGACCTGCGCAAAGCCAGCGTTACCATC GAGGATCCAAAGTGGGAATTCCCTCGGAAGAACTTGGTTCTTGGAAAAACTCTA
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AAGTGCAAGGCACTGCAGGAGGAGAACCGCGACCTGCGCAAAGCCAGCGTTACCATC GAGGATCCAAAGTGGGAATTCCCTCGGAAGAACTTGGTTC
GCACTGCAGGAGGAGAACCGCGACCTGCGCAAAGCCAGCGTTACCATC GAGGATCCAAAGTGGGAATTCCCTCGGAAGAACTTGGTTCTTGGAAAAA

CTGCAGGAGGAGAACCGCGACCTGCGCAAAGCCAGCGTTACCATC GAGGATCCAAAGTGGGAATTCCCTCGGAAGAACTTGGTTCTTGGAAAAACTC
GCGTTACCATC GAGGATCCAAAGTGGGAATTCCCTCGGAAGAACTTGGTTCTTGGAAAAACTCTAGGAGAAGGCGAATTTGGAAAAGTGGTCAAGGC

GACCTGCGCAAAGCCAGCGTTACCATC GAGGATCCAAAGTGGGAATTCCCTCGGAAGAACTTGGTTCTTGGAAAAACTCTAGGAGAAGGCGAATTTG

AAGGTGCTGAAGATAGAGCTGGAGACCTACAAACTGAAGTGCAAGGCACTGCAGGAGGAGAACCGCGACCTGCGCAAAGCCAGCGTTACCATC GAGGATCCAAAGTGGGAATTCCCTCGGAAGAACTTGGTTCTTGGAAAAACTCTAGGAGAAGGCGAATTTGGAAAAGTGGTCAAGGCAACGGCC

c

Fig. 7  (continued)
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Nx1-Seq (Well Based Single-Cell Analysis 
System)

Shinichi Hashimoto

Abstract  Research on the hierarchical nature of cell differentiation and heteroge-
neity in tissues has been performed by isolating and identifying cells by the use of 
monoclonal antibodies, cell sorting, microdissection, and functional assays. 
However, it is difficult to analyze continuous changes in cell differentiation and the 
identification of cells for which cell markers are unclear. Furthermore, cell popula-
tions considered identical were shown to be diverse. Recently, single cell gene 
expression analysis was performed to help understand the complexity of cell popu-
lations. Single-cell analysis can analyze the diversity of individual cell populations 
as well as the tissue microenvironment, and is extremely useful for research on 
intercellular interactions in diseases and identifying specific marker genes. Recent 
advances in technology have made it possible to analyze hundreds of single cells. In 
this paper, we introduce our newly developed well-based single-cell transcriptome 
method, which includes other methods.

�Introduction

The clarification of a cell phenotype by gene expression analysis is widely used in 
the fields of biology and medicine. Previous measurements of gene expression have 
been performed on bulk samples. However, to characterize the complexity/diversity 
of a tissue it is necessary to analyze the gene expression of a single cell. Gene 
expression analysis of a classical single cell is commonly performed by PCR ampli-
fication of RNA or microarray, which attempts to identify the characteristics of cells 
by analyzing known genes. However, if there is no change in the gene examined, no 
result is obtained. Therefore, methods such as CEL-seq (Hashimshony et al. 2012), 
Quartz-Seq (Sasagawa et al. 2013) and Smart-Seq (Picelli et al. 2014) were devel-
oped to make cDNA from all mRNAs in a cell for analysis. Recently, analyses were 
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performed using Fluidigm Instrument C1, which can analyze the genes of hundreds 
of cells (Pollen et al. 2014; Treutlein et al. 2014). However, at this level, it is not 
suitable when the cell diversity is large. Therefore, methods such as Drop-seq 
(Macosko et al. 2015), iDrop RNA sequencing (Klein et al. 2015), Cyto-Seq (Fan 
et al. 2015a) and Nx1-Seq have been developed to analyze mRNA expression in 
hundreds of individual cells. Currently, the diversity of cells in tissues is studied 
using these methods. To separate specific cells from various cell populations, an 
efficient data analysis procedure in a single cell transcriptome is also provided 
(Jaitin et al. 2014; Buettner et al. 2015; Patel et al. 2014; Li and Li 2018).

�Principle of Cellular Gene Analysis

Every method is based on the classification and identification of individual cells by 
adding barcode sequences to nucleic acids. The basic procedure is as follows: (a) 
lysis of cells in a limited space in a microwell plate or a droplet; and (b) collection 
of RNA from the cell and its capture by microbeads or hydrogel. For these methods, 
specific equipment is necessary. Specifically, one-cell analysis using a microwell 
plate consists of the following steps: (1) prepare a single cell suspension from the 
tissue; (2) insert barcode microparticles and a single cell into one well with pico-
nanoliter scale liquid volume; (3) add lysis buffer to dissolve cells; (4) capture sin-
gle cell-derived mRNA via oligo dT on the barcode microparticle that forms a bead 
to obtain mRNA from a single cell; (5) collect beads in one tube and subject them 
to reverse transcription; and (6) analysis where cells are identified using the bar-
codes. The microparticles currently used are about 20–30 μm in size and bind oli-
gonucleotides containing a barcode sequence on the surface. Oligonucleotides on 
beads consist of the following four parts: (i) a sequence for use as a priming site for 
downstream PCR and sequencing; (ii) a “cell barcode” (identical to the on the sur-
face of one bead – when we use a 12 bp barcode, the diversity of the barcode on the 
bead is 412  =  16,777,216); (iii) a unique molecular identifier (UMI) (identifying 
duplication of PCR); and (iv) an oligo dT sequence for capturing polyadenylated 
mRNA and priming reverse transcription. The barcode portion of this oligonucle-
otide can be synthesized directly on beads by the “split-and-pool” DNA synthesis 
method or by using the emulsion PCR method described later. That is, the 12 bp 
barcode sequence is used to identify the cells and the 8 bp random barcode sequence 
is used to eliminate gene duplication bias by PCR.

�Nx1-Seq (Hashimoto et al. 2017)

We developed a method to analyze one cell from thousands to several tens of thou-
sands simultaneously and named Nx1-seq (Fig. 1). This new approach is simple and 
can be used to analyze hundreds to tens of thousands of cells without any special 
equipment. In addition, this microwell with barcode beads in a Lab-Tek chamber 
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slide can be stored with the buffer for several months before use. Therefore, the 
plate can be carried anywhere and experiments can be performed immediately after 
cell separation without preparing the plate. In addition, the size of the well varies 
with the degree of morphology and film composition depending on the size of the 
target cell: a larger microwell for cancer cells or a smaller microwell for leukocytes 
and other non-cancer cells. It can also be modified: if the cell size is unknown, 
empty wells without beads can easily be checked with a microscope.

However, to obtain more information for a cell, we should measure the gene 
expression and mutations of a specific gene at the same time. In single cell gene 
expression analysis, the barcode is at the 3′ end; thus, in many cases, only the 
sequence at the 3′ end is required. However, utilizing the principle of emulsion (em) 
PCR, we can create barcode beads that trap specific sites of genes and genomes 
using specific primers.

�Procedure of Nx1-Seq

The method is a scalable approach for the digital gene expression profiling of thou-
sands of single cells without the use of robotics. The method has three steps: (1) 
preparation of beads conjugated with barcode nucleotides and of oligo-dTs by 
means of emulsion PCR; (2) placing a barcode bead into 20-pL wells molded in 

AAAAAAAAAA
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20pl
microwell
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Placing into tubedrop

RT to cDNA

Next generation 
sequencing
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b)
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MicrowellChamber Slide

Fig. 1  Schematic of the Nx1-Seq analysis. (a) A cell suspension and barcoded beads are mixed on 
a chamber slide containing a PDMS microwell. In brief, a cell suspension is placed on each PDMS 
microwell slide and allowed to settle into the wells by gravity. The cell seeding process is 90% 
efficient by measuring the cell concentration in seeding buffers for both pre- and post-cell seeding. 
The distribution of cells as single or multiple cells per well was calculated using Poisson statistics. 
The wells are then rinsed with PBS. Next, cold cell lysis solution is applied to wells for 12 min at 
room temperature. The PDMS slide is inverted in a dish containing 2 mL of cold lysis solution to 
force the beads out of the microwells. Subsequently, the beads are washed. The RNAs bound to 
microbeads are converted into cDNA. (b) Red arrows indicate wells that contain a single cell
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polydimethylsiloxane (PDMS) slides (Fig. 2); and (3) adding a population of het-
erogeneous cells into wells. Each slide can contain 1.6  ×  105 wells (2  ×  2  cm). 
Poly(dT) barcoded beads with a diameter of 20 μm are first added to the microwell 
slide to achieve 1 bead/well. Approximately 10,000 cells are allowed to settle into 
the wells of a slide by gravity (Fig. 2①). The slides are then incubated with a cell 
lysis solution containing 1% lithium dodecyl sulfate (Fig. 2③). After lysis, cellular 
mRNA binds to the poly(dT) barcoded beads, which are collected and used for 
reverse transcription.

Cell apply Washing
Cell apply and Cell lysis 

Cell lysis

Break the chamber slide, then cut microwell and transfer to a tube
Transfer beads-mRNA from the microwell by centrifugation

Collect the beads-mRNA by centrifugation 

before after

beads

Synthesis of cDNA from a single cell by reverse transcriptase reaction

Sequence the purified libraries 

Fig. 2  Procedure of the Nx1-Seq analysis. Numbers indicate each step. A red circle around a 
microwell indicates a well containing a cell. The cell is lysed after adding lysis buffer to the well
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�Production of Barcode Beads Using Emulsion PCR

In addition to oligo dT that traps mRNA by creating barcode beads using emulsion 
PCR (emPCR), it is possible to insert chains complementary to specific genes and 
genomic sequences on beads (Fig. 3). Barcode beads are prepared by using beads to 
which arbitrary DNA sequences are bound beforehand and amplifying one mole-
cule of synthetic oligo to be a barcode on the beads. The specific primer is designed 

Fig. 3  Strategy to generate barcoded oligonucleotides. One barcode linker molecule enters a sin-
gle water drop with a DT-primer containing an UMI and forward primer. We then place an insert 
sequence for any binding site such as TCR, or IgG, into the capture beads using specific primers. 
After emulsion PCR, barcode beads are purified as described in the manual for the emPCR kit. 
Then, the barcode beads are treated with ExoI for 30 min. After the inactivation of ExoI at 80 °C, 
the beads are rendered single stranded by the removal of the secondary strand through incubation 
in NaOH solution. Before assay, the barcode beads are stored at −20 °C
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to contain the UMI sequence and dT. In addition, when trapping an arbitrary part of 
a gene such as TCR or IgG, emPCR is performed by changing the dT part of a spe-
cific primer to a TCR or IgG insertion sequence. It is also possible to insert sequences 
such as Oligo dT and TCR at the same time into beads by increasing the type of 
specific primers. After emulsion PCR, barcode beads are purified and barcode beads 
with single strands with barcode sequences are produced by the removal of second-
ary strands by incubation of the beads in NaOH solution.

�Reproducibility and Sensitivity of Nx1-Seq

We used Nx1-seq to analyze single cell transcriptomes in PC9 cells, a lung cancer 
cell line, to ensure the reproducibility of technical replicates. The top 100 libraries 
from PC9 cells were compared to the bulk cell library, and Pearson correlation coef-
ficients of approximately 0.94 were obtained (Fig. 4a). The pooling of Nx1-seq data 
from single cells of two homogeneous cell populations provided rich and highly 
reproducible transcriptional profiles. In addition, gene expression patterns among 
libraries with large sequencing reads were similar (r = 0.97), as shown in the mean 
of the scatter plots (Fig. 4b). Moreover, Nx1-seq data was compared between two 
libraries using mouse cell lines. The gene detection levels per read for each cell line 
were similar to those of Drop-seq (Fig.  4c, d). These data are similar to other 
Droplet-methods.

�Measurement Example

As an example of the single-cell analysis of cancer tissues using Nx1-seq, tissue 
samples were removed from the myometrial infiltration side (M-side) and endome-
trial side (E-side) of a human endometrioid adenocarcinoma tissue (Hashimoto 
et al. 2017). Human endometrioid adenocarcinoma tissues are comprised of varying 
ratios of different cell populations of infiltrating immune cells and cancer cells 
(Fig. 5a). Myometrial invasion is an independent prognostic parameter of endome-
trioid carcinomas and is correlated with the risk of metastasis to the lymph nodes. 
In addition, it is believed that cells expressing some malignancy-related genes 
increase at the myoinvasive front. However, in this study, cancer cells in the E-side 
were highly malignant compared with those in the M-side. Many cells on the E-side 
were positive for spheroid-specific markers such as SOX2, CTSV and GNG2, which 
are related to tumorigenesis. In addition to the increased frequency of cells with a 
cancer stem cell marker in the E-side, the population of EMT in the E-side was 
higher than in the M-side. Moreover, the population of infiltrating T cells in the 
tumor, which is a marker for prognosis, was smaller in the E-side compared with the 
M-side. These data, produced using Nx1-seq, demonstrated that cells with high 
malignant potential (HMP) were present in the site of the same cancer tissue 
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(Fig. 5b). Furthermore, when the gene expressions of cancer cells from the E-side 
and M-side were compared, several genes were identified at sites where cancer cells 
had HMP. Interestingly, the differential gene expression profile of macrophages and 
T cells in the E-side and the M-side were similar to those of cancer cells. To confirm 
this phenomenon, immunostaining of the cancer tissue was carried out. 
Immunostaining of UCHL1, a highly expressed gene in cancer in the E-side, showed 
a similar staining pattern in macrophages and T cells as well as cancer cells. In addi-
tion, other differential genes were also observed in macrophages and T cells as well 
as cancer cells. These data showed that many immune cells have the properties 
(genes) of cancer cells in cancer tissues with HMP. To elucidate this phenomenon, 
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it is very important to clarify the mechanism of new cancer development. Therefore, 
to achieve more effective cancer therapies, the diversity of cancer cells at each dis-
tinct site of tumor tissues must be considered.
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�Other Well-Based Single Cell Analysis Methods

CytoSeq: Fan et al. developed an approach to enable the cytogenetic expression of 
thousands of single cells without using robots and automation, termed CytoSeq 
(Fan et al. 2015b), which is similar to other well-based methods described previ-
ously. Cells settle into wells by gravity. Next, the bead library is loaded onto the 
microwell to saturation so that most wells become filled. After bead placing, the 
microwell is washed to delete the remaining beads. Then, mRNA captured with 
oligo(dT) are sequenced. As an example, a complex complication of the human 
hematopoietic system was characterized using CytoSeq. They examined cytokines, 
transcription factors, and genes that encode intracellular proteins of various cellular 
functions that may not be easily analyzed by flow cytometry. They demonstrated the 
ability to identify major subsets within human peripheral blood mononuclear cells 
and showed cellular heterogeneity in resting CD3+ T cells compared with those 
stimulated with antibodies to CD3 and CD28, as well as resting CD8+ T cells com-
pared with those stimulated with CMV peptides. In addition, they found that the 
upregulation of a number of genes in the stimulated samples originated from only a 
few cells.

Seq-Well: Gierahn et  al. also devised a well-based method, named Seq-Well 
(Gierahn et al. 2017). They improved some of the problems of CytoSeq. To dem-
onstrate the efficiency of cell lysis and mRNA trapping from a single cell, cap-
ture beads and single cells were incubated in semipermeable membranes on the 
microwell. An important feature of Seq-Well is the use of selective chemical 
functionalities to promote the reversible deposition of semipermeable polycar-
bonate membranes (10 nm pore size) in physiological buffers. This enables a 
rapid exchange for efficient cell lysis and capture of transcripts and it reduces 
cross-contamination. As an example, they used cell gene expression profiling for 
human macrophages treated with Mycobacterium tuberculosis.

Microwell-Seq: Hanler et al. reported how to capture mRNA on magnetic beads 
using an agarose microarray to establish a broadly accessible, cost-effective sin-
gle technology, and called Microwell-Seq (Han et al. 2018). They analyzed over 
400,000 single cells covering all major mouse organs and built a basic screening 
system of the mouse cell atlas.

�Conclusion

It has long been claimed that tumor heterogeneity contributes to the progression of 
the disease and has a major influence on the therapeutic effect. A few studies have 
reported the heterogeneity of both cancer cells and stroma cells. Our newly devel-
oped single cell transcriptome analysis, which we termed Nx1-seq, can overcome 
this problem and provide novel insights into tumor microenvironments. This new 
approach is simple and can be used to analyze several hundreds to tens of thousands 
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of cells without special equipment. The method makes use of beads with barcodes 
that are distributed singly into microwells. In addition, the size of the well can be 
modified depending on the size of the target cells: larger microwells for cancer cells 
or smaller microwells for leukocytes and other non-cancerous cells. Furthermore, 
microwells equipped with barcode-beads in a Lab-Tek chamber slide can be stored 
with the buffer for several months before use. In addition, microwells can be carried 
anywhere and used immediately after cell separation without preparing the plates. 
Alternatively, by using emulsion (em)PCR, we are able to place an insert sequence 
for any binding site such as TCR, or IgG, into the capture beads using specific prim-
ers (Fig. 3). These beads can be used for circulating tumor cell analysis, immune 
disorders and infections, immunotherapy and vaccination. They might also be use-
ful for new clinical applications such as monitoring diagnosis. In conclusion, Nx1-
seq analysis is a powerful approach for characterizing and understanding cellular 
diversity under physiological or pathological conditions. We hope it will be useful 
for driving new clinical applications such as monitoring diagnosis.

Acknowledgements  We are most grateful to T Torigoe, Y Hirohashi and Y Takamura for techni-
cal assistance. This research is (partially) supported by JST CREST Grant Number JPMJCR15G3, 
Japan, and Japan Agency for Medical Research and Development (AMED).

References

Buettner F, et  al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-
sequencing data reveals hidden subpopulations of cells. Nat Biotechnol. 2015;33:155–60. 
https://doi.org/10.1038/nbt.3102.

Fan X, et  al. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in 
mouse preimplantation embryos. Genome Biol. 2015a;16:148. https://doi.org/10.1186/
s13059-015-0706-1.

Fan HC, Fu GK, Fodor SP. Expression profiling. Combinatorial labeling of single cells for gene 
expression cytometry. Science. 2015b;347(6222):1258367.

Gierahn TM, et al. Seq-Well: portable, low-cost RNA sequencing of single cells at high through-
put. Nat Methods. 2017;14:395–8. https://doi.org/10.1038/nmeth.4179.

Han X, et  al. Mapping the mouse cell atlas by microwell-seq. Cell. 2018;172:1091–1107.e17. 
https://doi.org/10.1016/j.cell.

Hashimoto S, et  al. Comprehensive single-cell transcriptome analysis reveals heterogeneity in 
endometrioid adenocarcinoma tissues. Sci Rep. 2017;7:14225. https://doi.org/10.1038/
s41598-017-14676-3.

Hashimshony T, Wagner F, Sher N, Yanai I. CEL-Seq: single-cell RNA-Seq by multiplexed linear 
amplification. Cell Rep. 2012;2:666–73. https://doi.org/10.1016/j.celrep.2012.08.003.

Jaitin DA, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues 
into cell types. Science. 2014;343:776–9. https://doi.org/10.1126/science.1247651.

Klein AM, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. 
Cell. 2015;161:1187–201. https://doi.org/10.1016/j.cell.2015.04.044.

Li WV, Li JJ. An accurate and robust imputation method scImpute for single-cell RNA-seq data. 
Nat Commun. 2018;9:997. https://doi.org/10.1038/s41467-018-03405-7.

Macosko EZ, et  al. Highly parallel genome-wide expression profiling of individual cells using 
nanoliter droplets. Cell. 2015;161:1202–14. https://doi.org/10.1016/j.cell.2015.05.002.

S. Hashimoto

https://doi.org/10.1038/nbt.3102
https://doi.org/10.1186/s13059-015-0706-1
https://doi.org/10.1186/s13059-015-0706-1
https://doi.org/10.1038/nmeth.4179
https://doi.org/10.1016/j.cell
https://doi.org/10.1038/s41598-017-14676-3
https://doi.org/10.1038/s41598-017-14676-3
https://doi.org/10.1016/j.celrep.2012.08.003
https://doi.org/10.1126/science.1247651
https://doi.org/10.1016/j.cell.2015.04.044
https://doi.org/10.1038/s41467-018-03405-7
https://doi.org/10.1016/j.cell.2015.05.002


61

Patel AP, et  al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblas-
toma. Science. 2014;344:1396–401. https://doi.org/10.1126/science.1254257.

Picelli S, et al. Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc. 2014;9:171–
81. https://doi.org/10.1038/nprot.2014.006.

Pollen AA, et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and 
activated signaling pathways in developing cerebral cortex. Nat Biotechnol. 2014;32:1053–8. 
https://doi.org/10.1038/nbt.2967.

Sasagawa Y, et al. Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing 
method, reveals non-genetic gene-expression heterogeneity. Genome Biol. 2013;14:R31. 
https://doi.org/10.1186/gb-2013-14-4-r31.

Treutlein B, et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell 
RNA-seq. Nature. 2014;509:371–5. https://doi.org/10.1038/nature13173.

Nx1-Seq (Well Based Single-Cell Analysis System)

https://doi.org/10.1126/science.1254257
https://doi.org/10.1038/nprot.2014.006
https://doi.org/10.1038/nbt.2967
https://doi.org/10.1186/gb-2013-14-4-r31
https://doi.org/10.1038/nature13173


63© Springer Nature Singapore Pte Ltd. 2019 
Y. Suzuki (ed.), Single Molecule and Single Cell Sequencing, Advances in 
Experimental Medicine and Biology 1129, 
https://doi.org/10.1007/978-981-13-6037-4_5

Quantitation of mRNA Transcripts  
and Proteins Using the BD Rhapsody™  
Single-Cell Analysis System              

Eleen Y. Shum, Elisabeth M. Walczak, Christina Chang, 
and H. Christina Fan

Abstract  In this review, we describe the BD Rhapsody™ Single-Cell Analysis 
System, a platform that allows high-throughput capture of nucleic acids from single 
cells using a simple cartridge workflow and a multitier barcoding system. The 
resulting captured information can be used to generate various types of next-
generation sequencing (NGS) libraries, including whole transcriptome analysis for 
discovery biology and targeted RNA analysis for high sensitivity transcript detec-
tion. The BD Rhapsody system can be used with emerging applications, such as 
BD™ AbSeq assays, to profile gene expression in both mRNA and protein level to 
provide ultra-high resolution analysis of single cells.

�Principles of BD Rhapsody Single-Cell Analysis System

�Mechanism of Cell Capture

The BD Rhapsody Single-Cell Analysis System enables gene expression 
measurements from 100 to >10,000 single cells simultaneously. The technology, 
originally described in 2015 (Fan et al. 2015), makes use of two main elements: (1) 
an array consisting of hundreds of thousands of microwells, and (2) a diverse library 
of barcoded beads. First, cells are loaded sparsely onto the microwell array, such 
that after falling into wells by gravity, each cell occupies a single well according to 
Poisson statistics. Barcoded magnetic BD Rhapsody Cell Capture Beads are then 
loaded close to saturation, such that each cell is paired with a bead. The geometry 
and dimension of the microwell and the bead are designed for single-bead occu-
pancy, with sufficient space for a cell of ≤25 μm in diameter. Upon cell lysis, the 
mRNA content of each cell can be captured by probes via polyA/polyT 
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hybridization. BD Rhapsody beads are subsequently retrieved from the microwells 
by magnets and pooled into a single tube to allow simplified downstream NGS 
library preparation (Fig. 1).

�Multitier Molecular Barcoding Scheme

BD Rhapsody beads contain a two-level barcoding system to differentiate each 
captured polyadenylated RNA by both its cell origin and transcript origin. First, 
each of the millions of oligo-dT (dT) primers carried on a single bead have the same 
cell-label (CL) sequence to allow differentiation of gene detection between different 
cells. Second, adjacent to the CL sequence, a unique molecular identifier (UMI) 
sequence is used to distinguish different mRNA transcripts captured by the bead. 
The use of UMI sequences mitigates biases from downstream PCR amplification 
and enables the counting of transcript molecules (Fu et al. 2011). The number of 
available CL sequences is in excess as compared to the number of cells analyzed per 
cartridge, such that each cell is paired with a bead that has a unique CL. Similarly, 
the diversity of UMIs that coat each bead allows almost all transcripts of the same 
gene from a cell to receive a different UMI. During cDNA synthesis, the reverse 
transcriptase enzyme extends a cDNA complementary to the original mRNA tran-
script from dT, allowing the CL and UMI to be paired with each cDNA molecule 
(Fig. 2a). The resulting reaction generates a barcoded transcriptome of thousands of 
single cells that can be archived.

�Sequencing Library Generation Using BD Rhapsody

To study the single-cell gene expression profiles, cDNA is amplified and converted 
into sequencing libraries. Multiple amplification schemes can be employed depend-
ing on user application. For exploratory and discovery work, the user can append a 
universal adaptor at the 3′ end of the cDNA molecule via ligation, followed by 

Fig. 1  Overview of the BD Rhapsody Single-Cell Analysis System
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Fig. 2  Molecular biology steps of the BD Rhapsody system to convert barcoded transcripts to 
sequencing libraries. (a) Attachment of cell label (CL) and unique molecular identifier (UMI) 
sequences to cDNA molecules via reverse transcription with oligo capture probes on BD Rhapsody 
beads. (b) Targeted amplification and sequencing of cDNA captured on BD Rhapsody beads
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universal amplification to amplify the whole transcriptome. The tradeoff of such an 
approach is a bias for detecting housekeeping genes that are several-fold higher in 
expression as compared to key cell-type identifiers such as transcription factors. 
Alternatively, a targeted approach can be used for routine analysis of larger sample 
sizes, in which a selected set of genes of interest is amplified using multiplex PCR 
(Fig. 2b).

Generally, Illumina® paired-end sequencing is used as a read out for the gene 
identity, CL, and UMI sequences. Sequencing data is then processed using bioinfor-
matics pipelines to decode the CL and UMI and adjust for PCR or sequencing 
errors, before assigning each read to the cell and transcript molecule of origin. The 
end result is a data matrix, containing counts of transcripts per gene per cell. The 
data matrix can then be used for various kinds of clustering analysis and high-
dimensional visualization, such as t-stochastic embedded neighboring (t-SNE) (van 
der Maaten and Hinton 2008).

To demonstrate successful single-cell capture by the system, a 1:1 mixture of 
human 293T cells and mouse NIH/3T3 cells was loaded at a range of cell densities 
and assayed using whole transcriptome profiling. At the current recommended oper-
ating range of ≤20,000 cells, high single-cell purity can be achieved since the pro-
portion of wells filled with cells is low (Fig. 3). The lower the cell number input, the 
higher the single-cell purity that is achieved; for example, at a cell load density of 
~1000 cells, no multiplets can be identified in the experiment (Fig. 3b). Multiplets 
are events where two or more cells are captured by a single BD Rhapsody Cell 
Capture Bead. The occurrence of multiplets increases as more cells are loaded into 
the BD Rhapsody Cartridge, following Poisson distribution calculations.

The system also yields low inter-cell noise, exemplified by extremely low mouse 
signal detected by human cells, and vice versa (Fig. 3a). The overall cell capture rate 
from cell loading to sequencing is ~65%, and can vary due to the use of different 
cell types and user handling. The system is shown to produce reproducible gene 
expression and population profiles ranging from 100 to 10,000 cells (Fig. 4).

�Characteristics of the BD Rhapsody System

Several characteristics of the BD Rhapsody system distinguish it from other single-
cell analysis systems (Wu et al. 2013; Klein et al. 2015; Macosko et al. 2015; Zheng 
et al. 2017):

	1.	 Does not use microfluidics. The microwell array is housed in a fluidic cartridge 
that has a volume of ~600 μL, which is the minimum volume of the cell suspen-
sion to be loaded. This implies that the cell suspension loaded can be rather 
dilute and that concentrating the cell suspension (which is often required in 
microfluidic- or microdroplet-based systems) is not necessary. Additionally, 
because no microfluidic channels are involved, clogging of channels with cells is 
less of a concern. The interior of the cartridge is specially treated to prevent cells 
from adhering to the surfaces.
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Fig. 3  Multiplet rate and single-cell purity demonstrated by the BD Rhapsody system. Mixtures 
of 1:1 human 293T and mouse NIH/3T3 cells were loaded onto a cartridge at different concentra-
tions. cDNA molecules were universally amplified and sequenced shallowly (~8700 reads per 
cell). (a) At the loading condition in which 1109 cells were detected in sequenced data, an average 
of 99.4% of molecules from each cell were identified as either only human, or only mouse (i.e. 
purity), indicating minimal molecular crosstalk between cells. (b) Observed cell multiplet rate and 
purity at various loaded cell densities of 1:1 human 293T and mouse NIH/3 T3 cells
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	2.	 Requires a minimal set of benchtop equipment. Fluidic exchange in the BD 
Rhapsody Cartridge is performed using a set of automated pipettes on a 
mechanical station for magnet operations and fluid collection. Unlike microflu-
idic- or microdroplet-based systems, no fluidic pumps are required.

	3.	 Ability to visualize single-cell capture. The BD Rhapsody Cartridge has an 
optically clear window, enabling visual inspection of the contents of the cartridge 
and of each microwell. The BD Rhapsody Scanner can be used to provide quality 
control measures at different stages of the workflow, such as cell-capture rate and 
cell-multiplet rate, by direct imaging. These measures can be useful for trouble-
shooting and can provide users some expectation of the number of cells recov-
ered by sequencing. Additionally, errors that occur during the cartridge workflow 
are reflected by abnormal quality control metrics, enabling users to decide 
whether to proceed to sequencing the libraries, as sequencing can be expensive.

	4.	 BD Rhapsody beads can be retained for later experimentation. The BD Rhapsody 
beads remain intact throughout the workflow and cDNA molecules can be stored 
for several months on the beads. One can therefore subsample beads for creation 
of multiple sequencing libraries. For instance, a user can first capture mRNA 
from ~10,000 cells from a precious sample, create a library from ~1000 cells 
using ~10% of the beads to study one set of gene targets, and later revisit the 
archived beads to prepare a new library from another subset of cells to analyze a 
different set of gene targets.

Fig. 4  Demonstrating dynamic range of input cell number on the BD Rhapsody system. (a) 
Human PBMCs, ranging from 100 to 10,000 cells, were profiled using a panel of ~400 genes 
designed to analyze human immune cells. The number of cells recovered from sequencing corre-
lated closely to that of the expected number based on number of cells loaded. (b) Known PBMC 
cell types with similar expression profiles were consistently identified across a wide range of 
sample-size inputs
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	5.	 The platform is flexible and compatible with various downstream molecular 
biology workflows. The design of the cartridge enables various reagents and buf-
fers to be loaded. Bead-bound cDNA is amenable to standard molecular biology 
manipulations. Purifications and washes after each molecular biology step are 
relatively straightforward using benchtop tube magnets. These properties can 
potentially lead to new applications from creative users.

�Sample Multiplexing on BD Rhapsody

The BD Rhapsody cartridge is designed to process a single sample of cell suspension. 
However, there are situations in which it is desirable to analyze multiple samples at 
a time; for example, a user might want to compare various test conditions versus a 
control. Instead of performing an experiment over multiple BD Rhapsody cartridges, 
an alternative is to use the BD™ Single-Cell Multiplexing Kit to differentiate 
multiple samples within a single cartridge (Fig. 5a).

The technology uses a prescreened antibody that targets a universally-expressed 
cell-surface antigen across multiple tissues and cell types. The same antibody is 
conjugated to one of 12 sample tags (STs). Each ST is a unique 45-nucleotide bar-
code sequence flanked by a universal PCR handle and poly(A) tail that allows each 
ST to be captured by oligo-dT beads, such as the BD Rhapsody Cell Capture Bead, 
and then amplified by PCR using the ST universal PCR handle region (Fig. 5b).

Fig. 5  Sample 
multiplexing on BD 
Rhapsody using Sample 
Tags (STs). (a) Workflow 
of upstream ST labeling 
prior to BD Rhapsody 
cartridge loading. (b) 
Structure of a ST and its 
compatibility for capture 
by a BD Rhapsody Cell 
Capture Bead via the 
poly(A) tail to mimic 
polyadenylated RNA 
transcripts
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In addition to sample calling, STs allow identification of a subset of multiplets in 
a single-cell sample that have >1 ST associated to the same CL. Even though BD 
Rhapsody microwell technology provides low multiplet occurrence compared to 
conventional droplet-based technologies, the user can still make a decision to limit 
the number of cells loaded into a cartridge to maintain a low multiplet rate. In some 
cases, multiplets are not easily identifiable and can be misinterpreted as biologically 
meaningful.

The labeling of samples using ST is analogous to standard antibody staining 
prior to loading into the BD Rhapsody or comparable single-cell 3′ RNA-seq sys-
tems. After library preparation of the ST library, it can be combined with the RNA-
based library into a single sequencing run. Sample origin is identified after 
sequencing using the BD Rhapsody pipeline with the sample multiplex module. 
This technology greatly enhances sample throughput and flexibility in experimental 
design, while reducing technical errors between samples.

�BD AbSeq Technology: Utilizing Oligonucleotide-Conjugated 
Antibodies for High Parameter Protein Profiling

The emerging use of antibody-oligonucleotides in single-cell sequencing enables 
dual measurement of mRNA and protein expression in each cell. This multi-omic 
analysis (also called BD AbSeq) builds on top of existing 3′ single cell RNA-seq 
capture systems by conjugating a polyadenylated antibody-specific barcode (ABC) 
onto an antibody (Shahi et al. 2017; Stoeckius et al. 2017; Peterson et al. 2017). 
After antibody-labeling of cells, these ABCs act as RNA mimics and are captured 
in the same manner as cellular polyadenylated RNAs (Fig. 6). The ease-of-use and 
simple companion workflow to the BD Rhapsody system allows simultaneous pro-
filing of RNA and protein together.

Fig. 6  BD AbSeq workflow. Current workflow utilizes a conventional antibody labeling step prior 
to BD Rhapsody cartridge loading, followed by a split library preparation workflow to prepare for 
sequencing
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BD AbSeq technology enables researchers to understand single cells in a more 
sophisticated and in-depth manner than standard antibody-based assays such as 
flow cytometry and mass cytometry. In flow cytometry, where antibodies are conju-
gated to fluorophores for single-cell analysis, the number of antibody parameters 
are limited by cytometer hardware configurations, as well as the intrinsic limitation 
of the color spectrum (also called spectral overlap). In recent years, the continued 
improvement of dyes and cytometers, such as the BD FACSymphony™ flow cytom-
eter, has pushed the upper limit of parameters to 30–50 per sample. Moreover, mass 
cytometry instruments are also available to assay a similar number of parameters 
using antibodies conjugated to isotypically pure elements. While mass cytometry 
overcomes the spectral overlap of flow cytometry, the catalog of elements available 
for antibody conjugation and discernable by mass cytometry still appears to be lim-
ited. Most importantly, the ability to profile gene expression at the protein-only 
level is limited by the availability of highly specific antibodies to the antigen of 
interest. BD AbSeq bridges this gap by profiling RNA expression as well, through 
targeted panels of hundreds of genes, or the whole transcriptome.

The ability to profile both mRNA and proteins allows unprecedented resolution in 
the understanding of cellular mechanisms. While genetic information encoded by DNA 
is transcribed to RNA, followed by translation to protein (Crick 1958), this flow of 
information can be affected by complex molecular mechanisms governed by cell-type 
and cell-state regulation pathways. For example, post-transcriptional mechanisms gov-
erned by microRNAs can affect target RNA stability and/or translation efficiency 
(Bartel 2009). Moreover, protein turnover can also affect how genes are dynamically 
regulated (Hochstrasser 1995). As a result, the relationship between the expression 
levels of mRNA and its corresponding protein do not always correlate (Gygi et  al. 
1999), requiring the need to pursue technologies that can profile both arenas of gene 
expression. The BD AbSeq assay allows researchers to scrutinize intricate gene-regula-
tion patterns in single cells, paving the way to understand intricate biological systems.

�Demonstrated Use of the BD Rhapsody System 
and Companion Technologies

�Whole Transcriptome Profiling

The BD Rhapsody system has been used to analyze mammalian cells from various 
sources, such as blood, lung lavage fluids, and dissociated tissues and tumors. 
Generally, any cell suspension that is prepared using processes suitable for flow 
cytometry (except for fixation methods that degrade mRNA, such as formaldehyde) 
can be studied with this system. For example, Birey prepared single-cell whole 
transcriptome libraries from dissociated cortical spheroids and subpallium spher-
oids derived from differentiation of human induced pluripotent stem cells (Birey 
et al. 2017). The authors used the BD Rhapsody system to profile single cells to 
verify the correct neuronal subtypes in these spheroids.
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In another example, cells from human lung lavage fluids were analyzed to 
understand the functional state of the epithelial cells and their potential association 
with various lung diseases. These cells were rare, fragile, and lack robust cell-
surface markers, making enrichment of these cells by flow sorting challenging. The 
use of massively parallel single-cell gene expression analysis was especially useful, 
as the analysis of large numbers of cells enabled sampling of rare cells without 
extensive sample manipulation or enrichment beforehand. By studying ~9000 cells 
on the BD Rhapsody system, various epithelial cell types were detected, including 
club cells, basal cells, and pneumocytes (Fig. 7a, b). Each of these rare cell types 
constituted as few as 0.03% of the entire population (Fig. 7c). Unlike flow cytometry, 
the detection of a rare but distinct population requires only a small number of cells, 
especially if the rare cells co-express very specific combinations of highly abundant 
marker genes.

�Targeted Sequencing in Single Cells

In the two cases above, the whole transcriptome approach was used because 
relatively little was known about the gene-expression profiles of the cell populations 
in the sample types. These exploratory studies provide a shallow survey of population 
architecture, but tend to have lower sensitivity because the preparation of whole-
transcriptome sequencing libraries requires multiple molecular biology steps, with 
each step having non-ideal efficiency. Moreover, sequencing whole transcriptomes 
to saturation (that is, to observe all transcript molecules in sequencing data at least 
once) requires as many as 100,000 sequencing reads per cell, making these analyses 

Fig. 7  Analysis of a human lung lavage fluid sample on BD Rhapsody using whole-transcriptome 
analysis. (a) t-SNE projection showing various cell types detected. (b) Boxplot showing expres-
sion levels of various cell type-specific genes across the detected cell populations (numbered the 
same as in a). (c) Proportions of the identified cell types
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not very scalable nor cost-effective. In many biological systems, less than 1000 
genes of the entire transcriptome (which has >50,000 annotated genes in humans) 
are variable and are responsible for driving clustering of cellular expression profiles 
(Macosko et al. 2015; Birey et al. 2017). Most abundant housekeeping genes are not 
variable but they occupy much of the sequencing space (Wassarman 1995).

Many users may find a targeted approach (focusing on a particular set of genes) 
to be more sensitive and cost-effective for analyzing a large number of samples. For 
instance, the whole-transcriptome data from the above two cases can be used to 
derive lists of population-specific mRNA markers for a targeted panel. Additional 
genes of interest that might not be detected well in whole-transcriptome analysis but 
warrant deeper analysis due to their biological significance can be added to the 
panel.

As an alternative to whole-transcriptome profiling, a multiplex PCR panel of 454 
targets was designed for BD Rhapsody beads to test in human peripheral blood 
mononuclear cells (PBMCs), a very well-characterized, heterogeneous biological 
system. We used this assay to study the gene expression profiles of ~10,000 single 
PBMCs each from a set of 6 individuals comprising 3 healthy donors and 3 patients 
with rheumatoid arthritis (RA) (Fig.  8). In addition to measuring proportions of 
major immune populations, in which we found unusual elevation of plasma-cell pop-
ulations in one of the healthy donors (Fig. 9a), single-cell gene expression profiling 

Fig. 8  Analysis of PBMCs from 3 healthy donors and 3 patients with rheumatoid arthritis (RA) 
using a panel of 454 targets. Gene expression profiles of ~10,000 cells per sample were analyzed. 
(a) t-SNE projection of a total of ~60,000 cells from all 6 samples. Red dotted circle indicates 
presence of large number of plasma cells specific to one of the donors. Green solid circles indicate 
distinct population of classical monocytes of two of the patients. (b) t-SNE projection colored by 
the major immune cell populations
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Fig. 9  (a) Proportion of each major immune cell type in each sample. Heatmaps showing relative 
levels of selected differentially expressed genes across the six individuals (three healthy donors 
and three RA patients) in classical monocytes (b) and T cells (c)
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allowed for differential gene-expression analysis within each immune population 
across individuals (Fig. 9b, c). In particular, we found expression patterns in classical 
monocytes and T cells specific to each of the RA patients. This method of high-
throughput single-cell analysis of blood cells can potentially reveal many more bio-
logical insights than microarray or RNA-seq analysis of bulk RNA from blood, 
especially when further samples are analyzed to provide statistical power.

�Sample Multiplexing and Multiplet Identification Using STs

In addition to increasing sample throughput, another advantage of using STs is that 
one can load a higher number of cells while maintaining a low rate of unidentified 
multiplets. To illustrate this capability, a dataset of four sample types –PBMCs, 
Ramos B cells, Jurkat T cells, and T47D breast cancer cells – split across 12 STs 
(Fig. 10a) was used to demonstrate the assay’s ability to identify multiplets, which 
are cell labels associated with more than one ST (Fig. 10b, c). In this ~20,000 cell 
experiment, the theoretical multiplet occurrence by Poisson statistics was ~4.7%; 
using STs, 4.3% of the putative cells were identified as multiplets (Fig. 10b, c). 
When mRNA expression profiles were projected using t-SNE and overlaid with the 
ST annotation, many of the multiplets identified by the ST determination algorithm 
resided in small clusters between the major cell populations (Fig. 10b). These small 
clusters expressed gene markers from more than one cell type (not shown in this 
publication), thereby validating the use of STs for multiplet identification. In addi-
tion, the assay using these demonstration cell types achieved 98.6% sensitivity and 
>99% specificity, as defined by percentage of cells positive for ST detection and 
percentage of cells assigned to the correct ST, respectively.

�Simultaneous Analysis of Protein and mRNA Expression 
in Single Cells

Using BD AbSeq assays on the BD Rhapsody system, protein and mRNA content 
of PBMCs from different healthy donors were measured. To accomplish this, a 
high-parameter oligo-conjugated antibody panel against immune-relevant cell-
surface markers was paired with a targeted gene expression panel consisting of 399 
mRNA targets. PBMCs from both donors were prepared in the same workflow 
using the BD Single-Cell Multiplexing Kit to minimize technical errors and reduce 
library preparation cost. The combination of protein and mRNA profiling allows 
flexible data analysis options, exemplified by the ability to perform high dimension 
t-SNE visualization by mRNA only, protein only, or both (Fig. 11). While mRNA 
and protein-only t-SNE provided good distinction of cell types within these PBMCs, 
t-SNE driven by both protein and mRNA (Fig.  11c) provided the most robust 
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distinction between critical cell types such as naïve and effector T cells. When com-
paring multiple PBMC donors, we were able to distinguish expression profile dif-
ferences between some populations, such as classical monocytes (Fig. 12). Together, 
BD Rhapsody and its companion technologies allow high resolution analysis of 
complex biological samples.

Fig. 10  The use of STs in single-cell analysis to increase sample throughput and detect cell 
multiplets. (a) Schematic of the 12-ST experiment with 20,000 cells of mixed sample types loaded 
on the BD Rhapsody. ~10,000 cell-equivalent BD Rhapsody beads were used to generate libraries 
for sequencing analysis. (b) t-SNE visualization of cell clusters using 12 STs and the BD Rhapsody 
Immune Response Panel. Annotation of major cell types identified by their ST call with >99% 
specificity, defined by the percentage of STs calling to the right cell type based on cell-specific 
mRNA markers (not shown here). (c) Highlight of multiplets identified using ST-algorithm, which 
are single cells that are assigned to two or more STs. In addition to mixed-cell multiplets, those 
formed by the same cell types can also be identified using Sample Tags even though they are 
embedded within main clusters
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�Summary

BD Rhapsody is a single-cell analysis system that allows high-throughput capture 
and library preparation of single cells. The system utilizes a microwell technology 
that results in high purity of single cells and a low multiplet rate, providing cleaner 
single-cell analysis. Moreover, the multilevel barcoding scheme of CLs and UMIs 
allows simple downstream workflow and the ability to digitally quantify expression 

Fig. 11  Application of BD AbSeq assays on the BD Rhapsody system using PBMCs from two 
healthy donors with major cell types highlighted by different colors. (a) t-SNE projection using 
BD Rhapsody Immune Response Panel (RNA) only; while major immune cell types can be identi-
fied, similar cell types – such as memory and naïve CD4 T cells – are not distinctly separated. (b) 
t-SNE projection using BD AbSeq (protein) profiles only, showing increased separation between 
memory and naïve CD4 T cells. (c) t-SNE projection using both, BD Rhapsody Immune Response 
Panel and BD AbSeq profiles, providing clear distinction between similar cell types, including 
memory and naïve CD4 T cells and more
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of gene transcripts. With emerging technologies such as the BD AbSeq assays, BD 
Rhapsody can be used for single-cell multi-omics profiling and pave the way for a 
new generation of understanding of gene regulation and biological heterogeneity, 
and potentially lead to new clinical applications.

BD FACSymphony™ is a Class 1 Laser Product. BD products described here are 
For Research Use Only. Not for use in diagnostic or therapeutic procedures.
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An Informative Approach to Single-Cell 
Sequencing Analysis              

Yukie Kashima, Ayako Suzuki, and Yutaka Suzuki

Abstract  Recent advances in sequencing technologies enable us to obtain genome, 
epigenome and transcriptome data in individual cells. In this review, we describe 
various platforms for single-cell sequencing analysis across multiple layers. We 
mainly introduce an automated single-cell RNA-seq platform, the Chromium Single 
Cell 3′ RNA-seq system, and its technical features and compare it with other single-
cell RNA-seq systems. We also describe computational methods for analyzing 
large, complex single-cell datasets. Due to the insufficient depth of single-cell 
RNA-seq data, resulting in a critical lack of transcriptome information for low-
expressed genes, it is occasionally difficult to interpret the data as is. To overcome 
the analytical problems for such sparse datasets, there are many bioinformatics 
reports that provide informative approaches, including imputation, correction of 
batch effects, dimensional reduction and clustering.

�Summary of Single-Cell Sequencing Methods

If we analyze cells in bulk, we tend to overlook subtle molecular profiles and 
changes in each individual cell because they are buried in major population-level 
changes. Single-cell analysis can be a strong tool for detecting distinct molecular 
profiles in individual cells and understanding complex systems in organisms 
(Fig. 1). The number of papers using single-cell analysis has been rapidly increas-
ing, especially in cancer and developmental biology studies (Wang and Navin 
2015). In this section, we introduce a brief summary of single-cell sequencing 
methods and their applications for various fields.
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�Single-Cell RNA-Seq

Currently, we can use various platforms of single-cell RNA-seq (scRNA-seq) to 
analyze transcriptome profiles in each individual cell. There are several methods in 
which researchers should manually prepare reagents and instruments. These meth-
ods, including Drop-seq (Macosko et al. 2015) and Microwell-seq (Han et al. 2018), 
make costs reasonable and do not require expensive machines. In contrast, we can 
also utilize commercialized platforms such as the C1, ICELL8 and Chromium sys-
tems. With these platforms, processes including single cell separation, cell lysis, 
reverse transcription and amplification are almost automated. Even though the ini-
tial investment and running costs are high, these platforms could broaden the use of 
single-cell sequencing analysis for many laboratories and researchers.
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Fig. 1  Summary of methods for single-cell sequencing
Single-cell sequencing methods have been developed to analyze various layers of omics profiles at 
the single-cell level. There are diverse methods for scRNA-seq. SMART-seq (Ramsköld et  al. 
2012; Picelli et al. 2013), Quartz-seq (Sasagawa et al. 2013), bead-seq (Matsunaga et al. 2015) and 
CEL-seq (Hashimshony et al. 2012) are methods for whole-transcriptome amplification, molecular 
barcoding and library construction. Researchers have also developed inDrop (Klein et al. 2015) as 
well as Drop-seq (Macosko et al. 2015) and Microwell-seq (Han et al. 2018) for droplet-based and 
well-based platforms of scRNA-seq, respectively. For single-cell genome sequencing, MDA 
(Lasken 2007), MALBAC (Zong et al. 2012) and DOP-PCR (Telenius et al. 1992) are common 
methods of whole-genome amplification. There are also single-cell epigenome sequencing meth-
ods, namely, scRRBS (Guo et al. 2013) and scBS-seq (Smallwood et al. 2014) for DNA methyla-
tion and scATAC-seq (Buenrostro et al. 2015) and scChIP-seq (Rotem et al. 2015) for chromatin 
statuses. In an individual cell, we can analyze multi-layered molecular profiles using G&T-seq 
(Macaulay et  al. 2015), DR-seq (Dey et  al. 2015) (genome and transcriptome), scM&T-seq 
(Angermueller et al. 2016) (DNA methylation and transcriptome) and T-ATAC-seq (Satpathy et al. 
2018) (open chromatin statuses and TCR sequence). CITE-seq (Stoeckius et al. 2017) and REAP-
seq (Peterson et al. 2017) have been developed for analysis of transcriptome and protein statuses 
in a cell. Perturb-seq (Dixit et al. 2016), CRISP-seq (Jaitin et al. 2016) and CROP-seq (Datlinger 
et al. 2017) are provided for scRNA-seq with CRISPR-based genetic perturbation screening
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The Drop-seq method was reported by the McCarroll lab in 2015. It enables us 
to analyze the transcriptome profiles of thousands of cells in parallel (Macosko et al. 
2015). In Drop-seq, cells are individually separated into droplets with barcoded 
beads, resulting in scRNA-seq libraries with different barcodes associated with each 
of the cells. The researchers reported scRNA-seq data of 44,808 mouse retinal cells 
and identified cell populations that showed distinct transcriptome profiles. On the 
other hand, Microwell-seq was developed based on microwell arrays (Han et  al. 
2018). Cells are separated into microwells containing different barcoded beads. 
Using Microwell-seq, a Chinese research group reported a “mouse cell atlas” to 
obtain transcriptome profiles of more than 400 k cells in mice and their cellular 
networks. They could detect 98 major cell clusters and identify cell types/subtypes 
that were unrecognized in previous studies.

We can also exploit scRNA-seq platforms provided by several commercial com-
panies. The C1 Single-Cell Auto Prep system (C1) is commercialized by Fluidigm. 
This instrument is one of the automated scRNA-seq platforms based on microfluid-
ics technology. Cells are separated into an individual chamber of the C1 Integrated 
Fluidic Circuit (IFC). The C1 system also automatically conducts cell lysis, reverse 
transcription and amplification and finally generates amplified cDNAs of up to 96 
cells. ICELL8 (Takara) and Rhapsody (BD) are two other scRNA-seq platforms 
based on microwells. These microwell-based platforms enable us to monitor the 
viability of the cells in each well before the construction of scRNA-seq libraries. In 
addition, there are several scRNA-seq instruments using microdroplet technologies, 
such as ddSEQ (Illumina/BioRad) and Chromium (10x Genomics). Chromium is 
one of the most popular scRNA-seq platforms used worldwide. Detailed informa-
tion about the Chromium system is described below.

�Single-Cell Genome Sequencing

Not all cells harbor identical genome sequences, as is the case with the occurrence 
of mosaicism in somatic/germline cells and accumulation of somatic mutations in 
cancer cells. To grasp such genomic heterogeneity in a population of cells, we can 
conduct single-cell analysis of whole-genome/exome sequencing. Focusing on can-
cers, Navin’s lab reported single-cell genome sequencing analysis of breast cancers, 
mainly to analyze copy number variants (CNVs) in each tumor cell and to charac-
terize cancer evolution (Navin et al. 2011; Wang et al. 2014; Gao et al. 2016).

For single-cell genomics analysis, we need to uniformly amplify genomic DNAs 
from each cell, termed whole genome amplification (WGA); these methods include 
multiple displacement amplification (MDA) (Lasken 2007), multiple annealing and 
looping-based amplification cycles (MALBAC) (Zong et al. 2012) and degenerate 
oligonucleotide-primed PCR (DOP-PCR) (Telenius et al. 1992). However, there are 
some technical problems. Amount of DNA samples is limited for single-cell genome 
sequencing. In addition, allelic dropout is another big problem. This event generally 
occurs during WGA and results in non-uniform coverage and false positive/negative 
detection of alterations. In addition to the scRNA-seq application, the C1 system 
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provides single-cell genome sequencing with automatic cell separation, cell lysis and 
WGA. Futher, 10x Genomics released an application for sinlge-cell CNV (scCNV) 
analysis within the Chromium system. Although the number of cells depends on the 
number of sequencing reads, Chromium can process 5000 cells per cell at most (10x 
Chromium Single Cell DNA Users Guide). Using Chromium’s scCNV and scRNA-
seq method, Ador et al reported a study of gastic cancer. They estimated copy num-
ber information of individual cancer cells and also used data from peripheral blood 
mononuclear cells as genome stable diploid cells. They integrated CNV and RNA 
datasets by their novel method (Ador et al, bioRxiv, 2018). Similar to scRNA-seq, 
rapid development of protocols, instruments and computational methods is required 
for successful genome analysis at the single-cell level.

�Single-Cell Epigenome Sequencing

Using single-cell sequencing techniques, we can also decipher epigenome profiles 
in individual cells. Assay for transposase-accessible chromatin using sequencing 
(ATAC-seq) is a useful method for identifying regions of open chromatin status 
(Buenrostro et al. 2013). ATAC-seq identifies nucleosome-bound and nucleosome-
free positions in regulatory regions and infers binding patterns of transcription fac-
tors (TFs). In 2015, Cusanovich et al. reported ATAC-seq analysis in a large number 
of single cells (Cusanovich et al. 2015). Buenrosto et al. also reported single-cell 
ATAC-seq (scATAC-seq) with the C1 system (Buenrostro et  al. 2015). Recently, 
Chromium scATAC-seq is also released.  These scATAC-seq analysis give us an 
understanding of the heterogeneity of transcriptional regulations.

For analyzing DNA methylation in single cells, there are several bisulfite 
sequencing methods at the single-cell level. Single-cell reduced-representation 
bisulfite sequencing (scRRBS) is one method for single-cell DNA methylation anal-
ysis (Guo et al. 2013). In this method, genomic DNAs are fragmented by restriction 
enzymes and enriched with CpG-rich regions. Guo et al. analyzed methylation sta-
tuses of mouse embryonic stem cells (mESCs) using scRRBS. Smallwood et  al. 
reported single-cell bisulfite sequencing (scBS-seq) (Smallwood et al. 2014). The 
authors also focused on DNA methylation statuses in each of the individual mESCs 
to analyze epigenetic heterogeneity in the DNA methylome.

�Multi-omics Analysis in Single Cells

There are many papers related to single-cell sequencing protocols in which research-
ers independently analyze genome, epigenome and transcriptome patterns of each 
individual cell. In addition, several studies reported using a combination of these 
single-cell sequencing assays across multiple layers. Here, we focus on single-cell 
multi-layered analysis.
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�Genome Sequencing Combined with RNA-Seq at the Single-Cell Level

Cancer research is one of the most important applications of single-cell sequencing 
due to the complicated microenvironment and intratumor heterogeneity in cancer 
tissues (Wang and Navin 2015). Kim et al. revealed the evolution of breast cancers 
by combining datasets from 900 cells’ single-nucleus DNA sequencing, 6,862 cells’ 
single-nucleus RNA-seq and bulk exome deep sequencing (Kim et al. 2018). They 
used frozen tissues from 20 triple-negative breast cancer patients who underwent 
neoadjuvant chemotherapy (NAC). The authors showed that genomic aberrations 
associated with resistance to chemotherapy are pre-existing in tumors. Thus, inte-
gration of multi-layerted single-cell sequencing would give us new insights that we 
overlooked in independent studies.

In addition, there are several methods for obtaining genomic and transcriptomic 
statuses from the same single cell. In G&T-seq reported by Macaulay et al. (2015), 
RNA and DNA are separated using oligo-dT primers and magnetic beads and 
sequenced separately. Another research group reported DR-Seq in which DNA and 
RNA are amplified without separation (Dey et al. 2015).

�scATAC-Seq Combined with RNA Sequencing Analysis

Within 3 years of publishing the scATAC-seq paper, the authors reported an integra-
tive analysis of scATAC-seq and scRNA-seq data (Buenrostro et al. 2018). They 
used the C1 system for scATAC-seq and the Chromium system for scRNA-seq to 
individually obtain transcriptional profiles of diverse cell types. To understand tran-
scriptional heterogeneity in hematopoiesis, they analyzed TF dynamics and 
enhancer-gene correlation in the hematopoietic system.

Immune system researchers combined T cell receptor (TCR) sequencing and 
scATAC-seq (Satpathy et al. 2018). They developed transcript-indexed ATAC-seq 
(T-ATAC-seq) to simultaneously obtain information about TCR specificity and 
epigenomic statuses from a T cell. T-ATAC-seq reveals the clone-specific epig-
enome patterns of T cells.

�Epitope Analysis Combined with scRNA-Seq

Proteins are considered primary targets for various applications, for example, drug 
development. Hence, unbiased detection of proteins is needed. Recently, two inde-
pendent groups published papers describing tools to detect both mRNA and proteins 
simultaneously at the single-cell level.

Stoeckius et al. developed a new method, CITE-seq, to describe the transcrip-
tome profiling together with cell-surface protein levels (Stoeckius et al. 2017). To 
recognize epitopes, they employed antibody-derived tags (ADTs). According to the 
authors, CITE-seq is compatible with most of the known scRNA-seq platforms, 
including 10x Genomics Chromium. Another group, Peterson et  al., published a 
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paper introducing the RNA expression and protein sequencing assay (REAP-seq) 
(Peterson et al. 2017). REAP-seq makes it possible to quantify proteins and mRNAs 
simultaneously at single-cell level. In the paper, they measured proteins with 82 
antibodies and RNA expressions of more than 20,000 genes. These two methods 
differ in how the antibody conjugates the DNA barcode. Compared to CITE-seq, 
REAP-seq uses small and stable covalent bonds between them (Peterson et  al. 
2017).

�Chromium; One of the Most Commonly Utilized Platforms 
for Single-Cell Analysis

In 2016, 10x Genomics released a platform for single-cell RNA-seq analysis, the 
Chromium Single Cell 3′ RNA-seq. This platform can analyze 1200–6000 cells per 
sample and eight samples simultaneously. The updated version, v2, makes it possi-
ble to process 500–10,000 cells per sample at a time. Using this platform, research-
ers can analyze samples in single-cell level. 10x Genomics also announced a version 
upgrade of scRNA-seq, Chromium Single-cell 3’ Solution version 3. Chromium 
scRNA-seq becomes to be able to process 500–80,000 cells per sample (10x 
Genomics webpage).

�A Brief Summary of the Chromium scRNA-Seq Platform

Chromium has three components for making droplets: gel beads, cell suspension 
with RT reagent, and partitioning oil (10x Genomics Single Cell 3′ Reagent Kits v2 
User Guide). These three components are poured into a microfluidic plate with eight 
channels. It enables us to process eight samples at most. In the microfluidic plate, 
cells are divided into each micro-droplet containing a gel bead and reagents in the 
instrument (Fig. 2). This process takes only about 7 min. Gel bead includes primers 
with sequencing adaptors, cell barcode (CB) and unique molecular identifier (UMI). 
CB is unique to each cell and a UMI is a 10 bp randomer associated with each 
mRNA molecule. After sequencing, each cell is identified by the CB and UMI.

After this procedure, we obtain thousands of GEMs (Gel bead in Emulsion). In 
each GEM, an initial cell lysis process is followed by binding the 3′ end of the 
mRNA to a barcoded bead using 30 bp oligo dTs. Then, reverse transcription starts. 
After the first strand is synthesized, template switching begins with a template 
switching oligo (TSO). GEMs are broken, and then, barcoded cDNAs are amplified 
by PCR in bulk. Following fragmentation, end-repir, A-tailing, adaptor ligation and 
sample index PCR, a constructed library is loaded into a next generation sequencing 
platform.
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�scRNA-Seq Papers Using Chromium

�Confirmation of the Chromium Single Cell 3′RNA-Seq Platform

Almost 3  years have already passed since 10x Genomics released Chromium. 
Hence, there are some papers published using the Chromium scRNA-seq system. 
The first paper to report using Chromium was Zheng et al. (2017b). In this paper, 
they conducted a technical demonstration and validation of the sensitivity and abil-
ity of Chromium. According to the paper, Chromium can capture 50% of loaded 
cells. For the microdroplet-based protocols, including Chromium, doublet rates 
truly matter. Using a mixture of mouse and human cell lines, they observed that the 
multiplet rate was 1.6% when they obtained 1012 GEMs. Next, they tested its abil-
ity to distinguish distinct cellular populations and revealed heterogeneity of healthy 
donors’ peripheral blood mononuclear cells by clustering analysis. In this study, 
they used the pipeline called Cell Ranger, which was developed for single-cell 

Cell dissociation

GEM generation

Reverse transcription

cDNA amplification

Library construction

Sequencing

GEM

� Fragmentation
� End repair
� A-tailing
� Adaptor ligation
� Sample index PCR

Gel Beads Oil

Cell

Chromium

Fig. 2  Chromium single cell 3′ RNA-seq
A brief workflow of single-cell RNA-seq using the Chromium Single Cell 3′ RNA-seq protocol. 
Cells are dissociated by a user-provided protocol depending on tissue/cell types. Gel Bead-In-
Emulsions (GEMs) are created by the Chromium system, which includes dT primers with a cell 
barcode and unique molecular identifiers (UMIs), reagent mix for reactions, and a cell. After GEM 
generation, reverse transcription and cDNA amplification are performed, and the amplified cDNAs 
are quantified by BioAnalyzer (Agilent). For sequencing analysis, sequence libraries are con-
structed with fragmentation, end repair, A-tailing, adaptor ligation and PCR amplification. The 
constructed sequence libraries are sequenced by Illumina sequencers
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RNA-seq datasets produced by Chromium. In conclusion, they demonstrated that 
Chromium enables high-throughput scRNA-seq.

�Comparison of Chromium with Other scRNA-Seq Platforms

There are several papers comparing Chromium to other single-cell platforms. 
Svensson et al. highlighted the technological developments of scRNA-seq (Svensson 
et  al. 2017). Based on the External RNA Controls Consortium (ERCC) spike-in 
standards, they computationally compared 15 protocols and experimentally com-
pared four protocols, including CEL-seq (Hashimshony et  al. 2012), Chromium 
(Zheng et  al. 2017b), inDrop (Klein et  al. 2015) and Drop-seq (Macosko et  al. 
2015). To define the sensitivity, they used the minimal number of input RNA mol-
ecules required for detection. They also defined accuracy based on the input mole-
cules and showed that the accuracy of scRNA-seq protocols is generally high and 
that their sensitivity depends on sequencing depth, even though the comparison 
using ERCC spike-in is not perfect.

Our group also attempted to reveal differences between Chromium Single-cell 3’ 
version 1  and another scRNA-seq platform (Suzuki et  al. 2015; Kashima et  al. 
2018). It is sometimes difficult to detect gene expression of low-expressed genes in 
Chromium due to insufficient depths. In contrast, bead-seq (Matsunaga et al. 2015), 
which generates datasets similar to those from C1, generates enough sequencing 
reads but is limited by the number of cells that can be processed at one time. As a 
conclusion, we suggested combining datasets from the two scRNA-seq protocols to 
complement the datasets with each other.

�Screening Analysis Using Chromium

Recently, some papers related to clustered regularly interspaced short palindromic 
repeats (CRISPR) screening combined with Chromium have been reported. 
Combining scRNA-seq and pooled CRISPR-based perturbation, Dixit et al. devel-
oped a novel genetic screening method called Perturb-seq (Dixit et al. 2016). To 
produce perturbations, cells are infected with a pool of lentiviral constructs encod-
ing single-guide RNAs (sgRNAs). The authors used a CRISPR lentiviral vector that 
delivers an sgRNA to a cell and reports the identity of the sgRNA by expressing the 
guide barcode. They also developed a computational framework, Multi-Input-
Multi-Output-Single-Cell-Analysis (MIMOSCA). Using Perturb-seq and 
MIMOSCA, the authors demonstrated the effect of TFs on genes, programs and 
states in the immune cell lipopolysaccharide (LPS) response. Another group pub-
lished CRISP-seq, which is an integrated method for scRNA-seq and CRISPR 
screening (Jaitin et al. 2016).
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�Summary of Chromium

	1.	 Chromium is an automated platform for single-cell sequencing. For capsuling, it 
takes less than 10 min in total. In addition, the results from this platform are 
rarely affected by technicians’ skill.

	2.	 Chromium enables us to process thousands of cells per sample and eight samples 
in parallel at one time.

	3.	 Chromium is easy to handle, but the cost is high.

�Computational Approach for Single-Cell Analysis

With the rapid spread of single-cell analysis in various research areas, issues with 
data processing have emerged due to the large and sparse datasets. The equipment 
makers provide their original bioinformatics tools, such as Cell Ranger for Chromium. 
However, we need to extract distinct additional information for its application in 
each new study. To overcome these problems, various bioinformatics reports have 
introduced new ways of interpreting single-cell datasets. Here, we focus on compu-
tational methods, especially for scRNA-seq datasets, including tools for basic analy-
sis of scRNA-seq, imputation of missing values and trajectory analysis (Table 1).

�General Analysis of scRNA-Seq Data

After sequencing scRNA-seq libraries and computational primary analysis (map-
ping and read count), we obtain a gene-cell matrix with UMI (or read) counts. 
Recently, computational biologists have developed many useful methods and tools 
to analyze these data. Dimensionality reduction is one of the essential methods for 
high-dimensional data such as single-cell expression matrices. It is conducted by 
several methods such as principal component analysis (PCA). This step is followed 
by clustering analysis for inferring cell types and groups and differential expression 
analysis to identify differentially expressed genes (DEGs) or marker genes. The 
scRNA-seq data are often visualized into two dimensions by t-distributed stochastic 
neighbor embedding (t-SNE) or viSNE based methods (Amir et al. 2013). In this 
section, we introduce four tools for computational analysis.

�Seurat

Satija et al. introduced Seurat in 2015. In this paper, Seurat inferred cellular local-
ization by combining scRNA-seq with in situ RNA-patterns. In 2015, Macosko 
et  al. used Seurat for interpreting scRNA-seq datasets produced by 
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microdroplet-based scRNA-seq. Currently, Butler et al reported the renewed ver-
sion of Seurat in 2018 (Butler et al. 2018). Seurat got new skill to analyze datasets 
with each renewal (Seurat). Nowadays, it is thought to be the most commonly used 
tools for scRNA-seq analysis. It includes various functions, such as data filtering, 
dimensionality reduction, clustering and drawing figures. Seurat can also be used to 
compare two scRNA-seq datasets (for example, stimulated vs. unstimulated) using 
the canonical correlation analysis (CCA) function.

�SC3 for Clustering

Single-cell consensus clustering (SC3) is a tool for unsupervised clustering, com-
bining multiple clustering methods (Kiselev et al. 2017). This method is used by 
Zheng et  al. to analyze single-cell transcriptomes of tumor-infiltrating T cells in 
liver cancers (Zheng et al. 2017a). They identified 11 subsets of T cells with unique 
signatures.

Table 1  A list of computational approaches for scRNA-seq data

Category Method/tool Description and references

General analysis Seurat A commonly used R toolkit (Butler et al. Nat 
Biotechnol. 2018)

SC3 Unsupervised clustering (Kiselev et al. Nat 
Methods. 2017)

RCA Semi-supervised clustering (Li et al. Nat 
Genet. 2017)

SCDE Differential expression analysis (Kharchenko 
et al. Nat methods. 2014)

Dimensionality reduction and 
imputation for zero-inflated 
datasets

ZIFA Dimensionality reduction considering zero 
counts (Pierson et al. Genome Biol. 2015)

ZINB-
WaVE

Dimensionality reduction of zero-inflated 
scRNA-seq datasets (Risso et al. Nat 
Commun. 2018)

MAGIC Imputation (van Dijk et al. Cell. 2018)
scImpute Imputation (Li and Li. Nat Commun. 2018)
SAVER Imputation by Bayesian approach (Huang 

et al. Nat Methods. 2018)
Trajectory analysis SCUBA Trajectory anlaysis (Marco et al. Proc Natl 

Acad Sci U S A. 2014)
P-Creode Unsupervised trajectory analysis (Herring 

et al. Cell Syst. 2018)
CellAlign Trajectory analysis (Alpert et al. Nat Methods. 

2018)
Monocle2 Trajectory analysis; A commonly used R 

toolkit (Qiu et al. Nat Methods. 2017)
CellTree Trajectory analysis based on a LDA model 

(duVerle et al. BMC Bioinformatics. 2016)
CellRouter Trajectory analysis (Lummertz da Rocha et al. 

Nat Commun. 2018)
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�Reference Component Analysis (RCA) for Clustering

Reference component analysis (RCA) is a semi-supervised clustering approach for 
scRNA-seq data, which is based on bulk transcriptome data obtained from various 
types of tissue and cell types (Li et al. 2017). In the paper, RCA is used for accurate 
clustering of scRNA-seq data of colon cancers and matched normal tissues. The 
authors identified subpopulations of cancer-associated fibroblasts and single-cell 
transcriptome signatures associated with the prognosis.

�Single-Cell Differential Expression (SCDE) for Differential Expression 
Analysis

Single-Cell Differential Expression (SCDE) is a tool for analyzing scRNA-seq data-
sets using a Bayesian approach (Kharchenko et al. 2014). It contains two frame-
works for single-cell analysis, scde and pagoda. This method assesses differential 
expression between groups of cells, considering dropout and amplification bias in 
scRNA-seq data. It also enables us to analyze pathway and gene set overdispersion 
analysis (Fan et al. 2016).

�Imputation for Missing Values

Depending on sequencing depth, each scRNA-seq dataset has a limited numbers of 
reads. Insufficient sequencing reads result in “dropout” of information with zero 
counts. The dropouts lead to incorrect conclusions in data interpretation. There are 
several computational methods to investigate whether zero counts indicate real low 
expression or technical dropout.

�Zero Inflated Factor Analysis (ZIFA)

In 2015, Pierson et al. introduced a new method to consider dropout in single-cell 
datasets. Zero Inflated Factor Analysis (ZIFA) is a method of dimensionality reduc-
tion that incorporates zero counts (Pierson and Yau 2015). They tested ZIFA in both 
simulation-based and experimental-based datasets. It treats dropouts not as outliers 
but as real observations. The results suggested that ZIFA out-performed standard 
dimensionality-reduction algorithms. Even though ZIFA improves the accuracy of 
single-cell profiles, there are some limitations. First, it strictly models zero mea-
surements. Second, its framework depends on the linear transformation, even 
though nonlinear dimensionality-reduction methods are said to be effective in 
single-cell analysis. Third, the performance of ZIFA rests heavily on the intrinsic 
separability of the cell types and dropout rates.
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�Zero-Inflated Negative Binomial-Based Wanted Variation Extraction 
(ZINB-WaVE)

Risso et  al. reported Zero-Inflated Negative Binomial-based Wanted Variation 
Extraction (ZINB-WaVE), which achieves dimensional reduction of zero-inflated 
datasets (Risso et al. 2018). This method implements more accurate dimensional 
reduction compared with previously employed models, such as PCA and ZIFA.

�Other Imputation Methods

Some imputation methods directly infer expression levels in genes with zero counts. 
Markov Affinity-based Graph Imputation of Cells (MAGIC) is a method for imput-
ing dropouts in scRNA-seq datasets, which infers expression levels by referring to 
similar cell profiles (van Dijk et al. 2018). ScImpute is another method for imputing 
dropouts in scRNA-seq data (Li and Li 2018). Single-cell Analysis Via Expression 
Recovery (SAVER) is a Bayesian-based imputation method (Huang et al. 2018), 
which was also used by Savas et  al. to estimate missing values of marker genes 
specific to distinct T cell populations in breast cancers (Savas et al. 2018).

�Trajectory Analysis

Single-cell trajectory analysis is important for understanding cell-fate transition and 
identifying initiating cells, such as stem cells. There are various methods for track-
ing cell transition trajectories, for example, methods based on minimum spanning 
tree and nonlinear embedding. Here, we focus on novel pipelines recently reported 
for trajectory analysis.

�Single-Cell Clustering Using Bifurcation Analysis (SCUBA)

In 2014, Marco et al. introduced a novel approach for single-cell clustering (Marco 
et al. 2014). Single-cell Clustering Using Bifurcation Analysis (SCUBA) reveals 
lineage relationships and their dynamic changes using single-cell transcriptome 
data. This method is based on a two-step approach. First, SCUBA estimates the 
locations of stage-specific attractors and their relationships (the cellular hierarchy) 
using a binary tree model. Second, SCUBA quantitatively models the dynamics in 
each direction. In this paper, the authors showed analysis of human B-cell differen-
tiation using SCUBA and other methods, such as Wanderlust and Monocle. In 
SCUBA, we do not need to choose an initialization cell. The inferred pseudotime of 
SCUBA and Wanderlust showed high correlation (R2 = 0.70). SCUBA is acceptable 
for RT-PCR, RNA-seq, mass cytometry, and various other experimental data. 
SCUBA is said to be well suited for investing in developmental processes.
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�p-Creode

Herring et al. developed an unsupervised algorithm called p-Creode (Herring et al. 
2018). This method enables us to derive multibranching trajectories from single-cell 
transcriptome data. In this paper, they combined inDrop, multiplex immunofluores-
cence (MxIF) and mass cytometry datasets. P-Creode consists of six steps. Among 
these steps, there are three novel points: automatic identification of the end point, a 
hierarchical placement strategy for placing data points on branches and N resampled 
topologies to depict the relative robustness of data. Using p-Creode, the authors pre-
dicted alternative tuft cell origins and Atoh1-driven developmental programs in the 
gut. They also applied p-Creode to two published scRNA-seq datasets from Fluidigm 
C1 and MARS-seq, to assess their performance. In conclusion, they showed that 
p-Creode is a reliable method to depict branching cell transition trajectories.

�CellAlign

CellAlign is a quantitative method to compare expression dynamics among trajec-
tories and is based on dynamic time warping (Alpert et al. 2018). It enables to reveal 
the phenomenon that would be masked in conventional methods. In the paper, the 
authors evaluated the ability of cellAlign using publicly available scRNA-seq data. 
As a result, cellAlign appears to be an accurate and robust method. They also 
showed that cellAlign could be used for analysis of single-cell trajectories using 
mass cytometry data.

�Other Methods for Trajectory Analysis

To conduct pseudotime analysis using scRNA-seq data, we can also use other meth-
ods such as Monocle2 (Trapnell et  al. 2014; Qiu et  al. 2017), CellTree (duVerle 
et al. 2016) and CellRouter (Lummertz Da Rocha et al. 2018). Monocle2 is one of 
the most common methods for revealing single-cell trajectories by “pseudotime”. 
This method applies reversed graph embedding, which is a machine learning strat-
egy for learning the graph structures of single-cell trajectories.

Recently, numerous methods and tools have been developed for single-cell tra-
jectory analysis. It is difficult to choose suitable methods. Saelens et al. provided an 
assessment of trajectory methods (Saelens et al. 2018). They compared 29 trajectory 
methods and suggested useful guidelines for method selection.

�Summary

Single-cell sequencing analysis is a powerful tool for understanding heterogeneity 
in cellular populations. In particular, scRNA-seq provides comprehensive transcrip-
tome profiles of individual cells for inferring cell types, their states and trajectories. 
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The development of protocols and tools has promoted the accumulation of huge 
scRNA-seq datasets. However, analysis of scRNA-seq data is still difficult because 
the data are sparse and zero-inflated, with insufficient sequencing depths for each 
cell. This problem sometimes results in misleading conclusions. Recent studies of 
single-cell analysis have used diverse computational methods designed for scRNA-
seq data. We need to follow the very rapid advance of experimental and computa-
tional methods for single-cell sequencing analysis.
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Abstract  Next Generation Sequencing (NGS) has rapidly advanced genomic 
research with tremendously increased throughput and reduced cost, through reading 
the fragmented genome content in massively parallel fashion. We have been able to 
sequence and map genomes to reference sequences with relative ease compared to 
the past. However, this mapping can only be accurately accomplished in the single 
copy regions of the genome, leaving out most duplicated genes and structural varia-
tion. Additionally, assembly of long genomic segments remains elusive since multi 
copy regions of the genome produce ambiguity when short read sequence is used.

Most of the large genomes are complex in that they contain not only millions of single 
or multiple base level variants called SNPs (Single Nucleotide Polymorphism) and 
indels (small insertions and deletions), they also contain many thousands of much 
larger structural variants, repetitive regions composed of identical or similar stretches 
of sequences, mobile elements such as transposons, large insertions, deletions, trans-
lations and inversions up to millions of bases, even partial or entire chromosomes 
altered. Often more than half of the genome is composed of these non-unique and 
highly variable regions such as in human and up to 90% in certain plants (Jiao et al. 
2017). And now through studying thousands upon thousands of genomes, we have 
come to realize that each genome from each individual bears the mark of its own 
evolutionary journey and environment. This is seen in the different code in each of the 
two haplotypes from each family or different ethnicity specific signatures in popula-
tions (Sudmant et al. 2015), and even the genomes in different cells derived from the 
same gamete carry non-static sequence variation accumulated throughout its lifetime, 
sometimes leading to tumorigenesis and contributing to the natural aging process.
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It is not enough just to re-sequence each genome by aligning short reads from 
NGS to an existing relatively contiguous reference genome, calling only the SNPs 
and small indels. To realize the full potential of the so-called precision medicine, we 
need to get to the true, accurate, and complete genome information de novo to 
understand how these large structural variations might affect biological functions. 
The first step is creating and identifying technologies that are able to preserve and 
access native long range genomic content, including SNPS, small indels and all 
classes of SVs, without gaps.

Large structural variations (SVs) are less common than SNPs and indels in the 
population in numbers of events but collectively account for a significantly larger 
number of base pair variations, although the impact on genetic variation and diseases 
is yet unknown. While single nucleotide mutations might impact the 2% of protein 
coding regions and key small regulatory elements such as the transcription factor bind-
ing sites, larger structural variations could have additional large effects, including 
eliminating, truncating or altering the coding regions or regulatory elements directly, 
and also changing the copy number, position or orientation of these genes or promot-
ers, placing them into different genomic context. Moreover, large SVs can alter the 
complex three-dimensional folding of the chromatin within the cell and how genomic, 
epigenomic and protein elements interact with each other dynamically in a much more 
profound time and spatial order. However, the existing prevailing methods cannot 
comprehensively and cost effectively detect all of the large structural variations due to 
the limited read lengths of the existing technologies (Huddleston and Eichler 2016).

To address these challenges, Bionano Genomics applies a high-throughput, 
native, single molecule level genome mapping technology to comprehensively 
determine genome wide structure using de novo assembly of sequence motif-
specific labeled long molecules (>150 kb), linearized in massive parallel nanofluidic 
channels fabricated on a solid-state material (Lam et al. 2012). Exploiting this tech-
nology, structurally accurate whole genome de novo assemblies can be generated. 
Typically, comparing to the human reference, thousands of SVs (>500  bp) are 
obtained in a single human genome. Because ultra-long read technology is so new, 
currently only a fraction of SVs is verified in SVs databases while a large portion 
are novel. Due to the nature of ultra-long molecules, haplotypes preserving native 
structural information are phased in differently clustered molecules by the associa-
tion of the same labeling patterns in a straightforward fashion. In addition, these 
data are validated instantly by supporting raw images of the long molecules, not 
inferred by an algorithm (Bickhart et al. 2017). Without excessive processing per-
formed in a typical sample prep such as PCR, adaptor addition, cloning, or library 
construction, the longest possible genomic DNA molecules (150 kb to megabases) 
are isolated directly from cells to be labeled, and imaged at single molecule level, 
ensuring that the integrity of the most native information is preserved at the genomic 
and epigenomic level (Grunwald et al. 2017).

The genome mapping technology enabled by NanoChannel arrays, Bionano 
optical mapping, provides valuable information for endogenous highly variable 
regions such as areas related to immunity (MHC, KIR, TCR, etc.) as well as 
exogenous elements such as free or integrated viral sequence without a priori 
knowledge on a whole genome scale (Cao et al. 2014). Furthermore, dynamic intra-
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cellular genomic events such as DNA replication can be imaged with this platform 
process. DNA replication is often implicated as a major cause of genomic error 
generation eventually causing genome instability and cancers (Klein et al. 2017).

Bionano maps often reach chromosome arm lengths and are therefore highly 
informative for de novo genome assembly projects where they scaffold fragmented 
NGS assemblies and correct assembly errors. Many of the resulting assemblies are 
among the most contiguous and accurate assembled to date.

By employing Bionano mapping’s long-range genome analysis, large SVs can be 
identified in each individual and across multiple ethnic populations where 
population-specific structural variation sets are seen. These results highlight the 
need for a comprehensive set of alternate haplotypes derived from different popula-
tions to resolve structural variation patterns in complex regions of the genome, pro-
viding evidence for population genomic based diagnosis and drug development.

Bionano mapping technology is a high throughput, high fidelity and versatile 
platform with high potential to transform clinical cytogenetic and genetic analysis 
in a fully automated and standardized fashion in a cost-effective way. It has been 
recently demonstrated that comprehensive large SVs can be profiled in prostate can-
cer samples, where novel potential causal events were discovered efficiently de 
novo (Jaratlerdsiri et al. 2017). In a separate study involving rare and undiagnosed 
diseases, a very large 5.1 Mbp inversion in the genome of a patient with Duchenne 
Muscular Dystrophy was discovered with Bionano technology in a single, 1 week 
experiment, leading to the definitive molecular mechanism caused by a truncation 
of Dystrophin gene (Barseghyan et al. 2017). This inversion had previously evaded 
a wide range of standard clinical and molecular tests.

These clinical studies have paved the way for demonstration of the potential of 
routine comprehensive genomic analysis for complex diseases in precision medi-
cine era.

�Background

Existing technologies including chromosomal microarrays and whole genome 
sequencing diagnose less than 50% of patients with genetic disorders (Lee et al. 
2014; Miller et al. 2010). This leaves a majority of patients without ever receiving a 
molecular diagnosis. Undiagnosed disorders are individually rare but their com-
bined incidence and the associated diagnostic odyssey, with resultant delays in 
treatment, are a drain on families and the healthcare system. Many of these diseases 
remain medical mysteries with no root cause or clear basis for treatment.

To close this diagnostic sensitivity gap and get a better understanding of the 
genetic causes of disease, we need better tools to access the entire genome, and 
large translational research studies to apply these tools to the discovery of novel 
biomarkers. Genetic disorders for which no molecular basis is currently known are 
either caused by genomic events that are poorly detected with current technology, 
events occurring in inaccessible parts of the genome, or a combination of events that 
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is too complex to analyze using existing tools. Better molecular tools are needed to 
analyze the entire range of genomic variations. Armed with such tools, large trans-
lational research studies are needed to identify disease correlated biomarkers span-
ning all genomic variants in patients with genetic disorders.

Two thirds of the human genome consist of repetitive sequences (Fig. 1). Exome 
sequencing accesses just 1.5% of the genome (de Koning et al. 2011), and Whole 
Genome Sequencing (WGS) does not align correctly with the repetitive parts of the 
genome. The most common repetitive sequences in the genome are LINEs, SINEs, 
retrotransposons and segmental duplications. The short-read sequences Next-
Generation Sequencing (NGS) provides, map with poor accuracy to these repeats. 
Alignment algorithms typically fail to identify the exact genomic location to align 
these short-reads to. When they do align, the limited 100–150 bp read length and 
spacing of paired-end reads does not allow for a correct sizing of larger repeats.

Structural variants make up the majority of human genomic variation, but Next-
Generation Sequencing technology can’t correctly identify them. Clinical exome 
sequencing solves about 30% of rare diseases (Lee et al. 2014). NGS, consisting of 
Whole Exome Sequencing (WES) and Whole Genome Sequencing (WGS) reliably 
identify single nucleotide variants and small insertions and deletions. However, 
NGS relies on short-read sequences that are mapped to a reference human genome 

Fig. 1  Repetitive structures in the human genome
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and fails to identify most large insertions, deletions, or copy-number variations in 
repetitive regions of the genome. It is incapable of easily detecting other structural 
variations (SVs) such as inversions and translocations. Non-allelic homologous 
recombination of repetitive sequences is thought to be a predominant mechanism 
for the origin of many large SVs. The non-unique sequences flanking these SVs 
often make them invisible to sequencing-based detection methods. Together, struc-
tural variable regions cover 13% of the genome and individuals show structural 
variation covering as much as 30 Mbp between each other (Sudmant et al. 2015).

�Methods

�Mechanism of Bionano Technology and Workflow

�Ultra-Long Range Linear DNA Analysis Technology Enabled 
by NanoChannel Array Technology

An overview of the molecular and bioinformatics method is shown in Fig. 2.
Since structurally accurate genome interrogation and assembly requires long 

molecules, traditional purification methods are not suitable for DNA isolation for 
optical mapping. Bionano Genomics adapted the plug lysis strategy commonly used 
to construct BAC libraries for optical mapping. Briefly, cells/nuclei are embedded 
into an agarose matrix to protect DNA from mechanical shearing during the 
purification process. Agarose is then melted and solubilized, and the resulting mega-
base DNA is further cleaned by drop dialysis prior to labeling at sequence-specific 
sites.

Fig. 2  Bionano workflow for DNA isolation, labeling, imaging, analysis
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Megabase size molecules of genomic DNA are labeled at a specific 6 or 7 
basepair sequence motif, occuring approximately 8–28 times per 100 kbp, depending 
on its frequency in a particular genome. The label patterns allow each long molecule 
to be uniquely identified and aligned.

Labeled DNA is loaded onto the Saphyr chip and placed into the Saphyr 
instrument where Saphyr initiates electrophoresis to move megabase length 
molecules from bulk solution into the silicon chip micro environment before 
unwinding and linearizing the DNA in the NanoChannel arrays. The instrument 
uses machine learning initially and throughout the run to provide adaptive loading 
of DNA, optimize run conditions and maximize throughput.

When molecules are fully loaded into the NanoChannels of one flow cell, 
electrophoresis is halted and the entire surface of the NanoChannel array of that 
flow cell is rapidly imaged. During the imaging phase of the run, electrophoresis in 
the second flow cell is initiated. Cycles of loading of the NanoChannels followed by 
imaging are performed until sufficient data is collected.

�Bioinformatics of Bionano Mapping Using Sequence Motif Pattern Specific 
Labeling

Bionano image detection software creates extracts molecules from raw image data. 
The backbone stain signal of the DNA molecules is used to identify molecules and 
to determine their position and size. The distance between the labels on each mol-
ecule is recorded to generate an extracted molecule file called a BNX file. The BNX 
file is the only input needed for the Bionano de novo assembly process.

Images generated by Saphyr are sent to the analysis server for real time data 
extraction during the run. Image detection is typically completed shortly after the 
run is finished and de novo assembly can be automatically initiated (for human 
genomes).

Using pairwise alignment of the single molecules, an assembly graph is 
constructed and a consensus genome map is produced, refined, extended and 
merged. Molecules are then clustered into two alleles, where there is heterozygous 
structural variation, and a diploid assembly is created to allow for heterozygous SV 
detection. Genome maps can be created using different enzymes labeling different 
sequence motifs to generate broader coverage and higher label density.

A standard automated pipeline for de novo assembly and SV calling was 
developed by Bionano Genomics to enable comprehensive SV analysis. The Python-
based pipeline manages job submission, drives execution of alignment and assembly 
tools, and provides data summary information. It features a haplotype-aware assem-
bler designed to detect and differentiate parental alleles. The de novo assembly 
algorithm is a custom implementation of the overlap-layout-consensus strategy. The 
assembler assembles extracted molecules from raw image data, and the final con-
sensus maps are used as input for SV calling.
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�Examples of Applications with Bionano Mapping

�De novo Assembly of Complex Genomes – Long Contiguity with Accurate 
Complex Structural Context

Hybrid Assembly Combining Mapping and Sequencing Data Derived from All 
Platforms – Single and Multiple Sequence Motif-Based Assembly

The de novo Bionano genome maps are a whole genome de novo assembly and can 
be used to learn about various characteristics of the genome such as size, repetitive 
content, and extent of heterozygosity. They can also be integrated with a sequence 
assembly to order and orient sequence fragments, identify and correct potential chi-
meric joins in the sequence assembly, and estimate the gap size between adjacent 
sequences. In order to do so, the Bionano Solve software imports the sequence 
assembly and identifies the recognition sites for the specifying nick sites in the 
sequence based on the nicking endonuclease-specific recognition site. These in 
silico maps for the sequence contigs are then aligned to the de novo Bionano genome 
maps. Conflicts between the two are identified and resolved, and hybrid scaffolds 
are generated in which sequence maps are used to bridge Bionano maps and vice 
versa. Finally, the sequence assembly corresponding to this hybrid scaffold is gener-
ated and exported as FASTA and AGP files.

The pipeline is fully integrated with Bionano Access which provides a convenient 
interface for running Hybrid Scaffold and viewing scaffolding results.

The hybrid scaffolding process considerably reduces the number of contigs 
found in the initial NGS assembly, improving assembly accuracy and quality while 
reducing the need for deep sequencing coverage.

The hybrid scaffolding approach can yield significant improvements in contiguity, 
as expressed by the assembly N50 values. Assembly contiguity can be further 
increased by performing hybrid scaffolding with maps using two separate nicking 
enzymes. Two sets of Bionano maps, each generated with a different nicking 
enzyme, can be integrated with NGS sequences together. This enables the NGS 
sequences to function as a bridge to merge single-enzyme Bionano maps into two-
enzyme maps that contain the sequence motif patterns from both nicking enzymes. 
Since the Bionano maps are generated independently they serve as orthogonal 
sources of evidence to detect and correct assembly errors in input data. The comple-
mentarity of different data also greatly improves the contiguity of the merged 
Bionano map while doubling the information density, which substantially increases 
the ability to anchor short NGS sequences in the final scaffolds.

The two-enzyme approach was validated on the human NA12878 genome, a 
model data set for which sequence data is publicly available. Three different assem-
blies were tested: Illumina-D, 51x of 250 bp pair-end sequence; Illumina-S, 40x of 
101 bp pair-end and 25x of 2.5–2.5 kbp mate-pair sequence; and PacBio, 46x with 
mean read length of 3.6 kbp. Compared to the input NGS, the two-enzyme approach 
improves the scaffold contiguity up to 100-fold, Fig. 3), anchors 30% more sequence 
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contigs in the final scaffolds and corrects 50% more assembly errors in NGS 
sequences. The pipeline performs robustly in both animal and plant genomes as 
well (Fig. 4). This approach greatly expands the type of NGS data that can be inte-
grated with Bionano maps to produce highly accurate and contiguous assemblies 
for complex genomes.

At the time of writing, all published data using Bionano mapping has been 
generated by labeling DNA with nicking endonucleases. These highly sequence-
specific enzymes create a single stranded nick at the presence of a 6- or 7 bp motif. 
At the site of the nicked DNA, fluorescently labeled nucleotides are inserted by 
polymerization and the molecules are repaired. This method (Nick Label Repair 
Stain, or NLRS) performs with extremely high specificity but can create double 
stranded breaks when nick site appear within about 200 bp on opposite strands. 
Recently Bionano Genomics has developed a novel labeling technology that 
avoids nicking, and instead uses a direct labeling method where the fluorophore is 
attached directly to the DNA at the location of a specific sequence motif. Since this 
Direct Labeling and Staining (DLS) method does not create systematic double 
stranded breaks, Bionano maps created from molecules labeled with DLS typi-
cally show a 50x improvement in contiguity compared to NLRS maps. Bionano 
maps now typically reach chromosome arm length, and the contiguity of sequence 
assemblies built using DLS reaches chromosome arm or full chromosome length 
in a variety of species.

Fig. 3  Improvements in NA12878 assembly contiguity after hybrid scaffold with one-enzyme and 
two-enzyme genome maps. Illumina-D: 51x of 250  bp pair-end sequence; Illumina-S: 40x of 
101 bp pair-end and 25x of 2.5–2.5 kbp mate-pair sequence; PacBio: 46x with mean read length of 
3.6 kbp
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Error Correction and Validation of Sequencing Data

The Bionano hybrid scaffold pipeline detects and resolves chimeric joins. Chimeric 
joins are typically formed when short reads, molecules, or paired-end inserts are 
unable to span across long DNA repeats. The errors appear as conflicting junctions 
in the alignment between the Bionano map and NGS assemblies.

When the hybrid scaffold pipeline detects a conflict, it analyzes the single-
molecule data that underlies a Bionano map and assesses which assembly was 
incorrectly formed. If the Bionano map has long molecule support at the conflict 
junction, the sequence contig is automatically cut, removing the putative chimeric 
join (Fig. 5). If it does not have strong molecule support, then the Bionano map is 
automatically cut. Both assemblies must have coverage spanning both sides of a 
chimeric join to detect and resolve these conflicts.

Automated cuts using Bionano Solve help to resolve conflicts with a high level of 
accuracy. The majority of cuts made using Bionano Solve can be confirmed by com-
parison to the species’ reference assembly. There are several reasons why some cuts 
cannot be confirmed: the reference assembly is incomplete, the two separate input 
assemblies may represent different alleles, or the chimeric joins may have been 
caused by segmental duplications that are too long for Bionano molecules to resolve.

Fig. 4  Improvements in sugar beet and hummingbird assembly contiguity after hybrid scaffolding 
with Bionano genome maps using one-enzyme and two-enzymes. For sugar beet, the fold coverage 
of the PacBio de novo assemblies is shown
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The two-enzyme scaffolding method improves the error correction even further. 
Since the Bionano maps were generated independently they serve as orthogonal 
sources of evidences to detect and correct assembly errors in input data. Compared 
to the published one-enzyme hybrid-scaffolds, the two-enzyme approach corrects 
up to 50% more assembly errors in NGS sequences.

Users can manually inspect all conflict resolution results. Bionano Solve notes 
the IDs and coordinates of the sequences and maps where conflicts have been 
detected and the corresponding resolution approaches taken. This file can be edited 
and modified, and then run again in the hybrid scaffold pipeline to produce a new 
set of scaffolds based on the manual conflict resolution. This manual enhancement 
process can be performed multiple times, giving users fine control in generating 
high-quality, complete hybrid scaffolds.

�Comprehensive Genomic Structural Variation Discovery and Identification

Detecting All Classes of Structural Variants, Mobile Elements and Repeats, at 
Haploid Resolved Level

Bionano genome mapping is the only technology that detects all SV types, 
homozygous and heterozygous, starting at 500 bp up to millions of bp. Bionano 
maps are built completely de novo, without any reference guidance or bias. This 
differentiates Bionano from NGS, where short-read sequences are typically aligned 
to a reference. This alignment often fails to detect true structural variants by forcing 
the short-reads to map to an incorrect or too divergent reference, or by excluding 
mismatched reads from the alignment. Only de novo constructed genomes, like 
Bionano maps, allow for a completely unbiased, accurate assembly.

Bionano’s SVs are observed, and not inferred as with NGS. When short-read 
NGS sequences are aligned to the reference genome, algorithms piece together 
sequence fragments in an attempt to rebuild the actual structure of the genome. SVs 
are inferred from the fragmented data, with mixed success. With Bionano mapping, 
megabase-size native DNA molecules are imaged, and most large SVs or their 

Fig. 5  Example of a conflict between a sequence contig and a Bionano map. The conflict junction 
as shown by the red arrow in the alignment between the sequence contig and the Bionano map. 
There is strong molecule support spanning the junction region on the genome map, so the sequence 
is cut at the label indicated
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breakpoints (in the case of inter-chromosomal translocations) can be observed 
directly in the label pattern on the molecules. If a native-state DNA molecule with a 
specific SV exists, then that SV call cannot be wrong.

SV calls are made based on analyses of a multiple local alignment between 
consensus maps and the reference (Fig. 6). The pipeline supports calling of major 
SV types: insertions, deletions, inversions, and translocation breakpoints. Bionano 
Access also supports visualization and confidence-based filtering of these SV types. 
Poorly aligned or unaligned regions flanked by well-aligned regions are called as 
deletions or insertions, depending on whether there is gain or loss of sequence rela-
tive to the reference. Junctions of neighboring alignments with opposite orientations 
are identified as inversion breakpoints. Fusion points between distant regions of the 
genome are identified as translocation breakpoints. Intrachromosomal translocation 
breakpoints involve regions on the same chromosome but at least 5 Mbp away from 
each other. Interchromosomal translocation breakpoints involve regions on different 
chromosomes.

Fig. 6  Structural variant types detected by Bionano mapping. SVs are identified by comparing 
label patterns in the sample of interest (blue) with those in the reference genome, or in a reference 
sample (green). Major types detected are
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Gain/Loss of material: Labels moving closer together, with or without loss of 
labels, are evidence of deletions. Label spacing that increases with or without addi-
tional labels detected are called as insertions.

Copy number change: Expansions or contractions of tandem arrays or segmental 
duplications. Duplications are called automatically in direct or inverted 
orientation.

Balanced events: Genome maps aligning partially with two or more different 
chromosomes or genomic locations indicate translocations. When label patterns are 
inverted relative to the reference, an inversion is called.

Zygosity and confidence are assigned to each SV call to facilitate downstream 
analysis. An SV call can be labeled as homozygous, heterozygous, or unknown. 
Confidence scores are scaled such that they range from 0 to 1.

SV calls can be exported in a dbVar compliant VCF file. This file format contains 
all genomic variants identified in sample including SNVs, small indels, and SVs of 
various sizes. The VCF file generated by Bionano Access can be used in down-
stream analysis using a variety of existing tools.

Bionano algorithms call SVs by comparing genome structures. To identify a 
structural variation, a de novo genome map assembly can be aligned to a reference 
genome, or two samples can be aligned to each other directly. When aligning a 
genome map to a reference assembly, Bionano software identifies the location of the 
same recognition sequence used to label the DNA molecules in the reference 
genome and aligns matching label patterns in the sample and reference. This align-
ment provides all the annotation of the reference to the de novo assembled genome.

By observing changes in label spacing and comparisons of order, position, and 
orientation of label patterns, Bionano’s automated structural variation calling algo-
rithms detect all major structural variation types.

Bionano detects seven times more SVs larger than 5  kbp compared to 
NGS. Professor Pui-Yan Kwok at the University of California, San Francisco, dem-
onstrated the robustness of Bionano mapping for genome-wide discovery of SVs in 
a trio from the 1000 Genomes Project. Since high quality NGS data on these sam-
ples is publicly available, structural variation analysis using short-read data has 
been performed with over a dozen different algorithms. Using Bionano maps, hun-
dreds of insertions, deletions, and inversions greater than 5 kbp were uncovered, 
7  times more than the large SV events previously detected by NGS (Mak et  al. 
2016). Several are located in regions likely leading to disruption of gene function or 
regulation.

Bionano has exceptional sensitivity and specificity to detect insertions and 
deletions over a wide size range as demonstrated using simulated data. Insertions 
and deletions were randomly introduced into an in-silico map of the human reference 
genome hg19. The simulated events were at least 500 kbp from each other or N-base 
gaps. They ranged from 200 bp to 1 Mbp, with smaller SVs more frequent than 
larger ones.

Based on the edited and the unedited hg19, molecules were simulated to resemble 
actual molecules collected on a Bionano system and mixed such that all events 
would be heterozygous. Two sets of molecules were simulated, each labeled with a 
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different nicking endonuclease. Datasets with 70x effective coverage were gener-
ated. The simulated molecules were used as input to the Bionano Solve pipeline and 
SV calls were made by combining the single-enzyme SV calls from both nicking 
endonucleases using the SV Merge algorithm. SV calls were compared to the 
ground truth.

Figure 7 shows sensitivity and positive predicted value (PPV) for heterozygous 
insertions and deletions within a large size range. SV size estimates were typically 
within 500  bp of the actual SV sizes, while reported breakpoints were typically 
within 10  kbp of the actual breakpoint coordinates. Additional large insertions 
(>200 kbp) were found but classified as end-calls.

Bionano mapping has exceptional sensitivity and specificity to detect 
heterozygous insertions and deletions over a wide size range as demonstrated using 
experimental data. Since there is no perfectly characterized human genome that can 
be considered the ground truth, a diploid human genome was simulated by 
combining data from two hydatidiform mole derived cell lines. These moles occur 
when an oocyte without nuclear DNA gets fertilized by a sperm. The haploid 
genome in the sperm gets duplicated, and the cell lines resulting from this tissue 
(CHM1 and CHM13) are therefore entirely homozygous.

Structural variants detected in the homozygous cell lines were considered the 
(conditional) ground truth. An equal mixture of single molecule data from two such 
cell lines was assembled to simulate a diploid genome, and SV calls made from this 
mixture were used to calculate the sensitivity to detect heterozygous SVs.

Table 1 shows the number of insertions and deletions larger than 1.5 kbp detected 
in the CHM1 and CHM13 homozygous cell lines relative to the reference, and the in 
silico CHM1/13 mixture. SVs detected in CHM1 only or CHM13 only are heterozygous 
and those detected in both are homozygous. Bionano has a sensitivity of 92% for het-
erozygous deletions and 84% for heterozygous insertions larger than 1.5 kbp. The 
largest detected deletion was 4.28 Mbp in size and the largest insertion 412 kbp

Fig. 7  Heterozygous SV calling performance from a simulated dataset. Molecules were simulated 
from unedited and edited versions of hg19 (with insertions and deletions of different sizes) and 
used for assembly and SV calling

Bionano Genome Mapping: High-Throughput, Ultra-Long Molecule Genome Analysis…



110

Ta
bl

e 
1 

Tw
o 

ho
m

oz
yg

ou
s 

ce
ll 

lin
es

, C
H

M
1 

an
d 

C
H

M
13

 w
er

e 
in

de
pe

nd
en

tly
 d

e 
no

vo
 a

ss
em

bl
ed

 a
nd

 in
se

rt
io

ns
 a

nd
 d

el
et

io
ns

 >
1.

5 
kb

p 
ca

lle
d

Pa
cB

io
B

io
na

no
C

H
M

1 
an

d 
C

H
M

13
 

as
se

m
bl

ie
s

M
ix

tu
re

 
as

se
m

bl
y

Se
ns

iti
vi

ty
 

(%
)

PP
V

 
(%

)
C

H
M

1 
an

dC
H

M
13

 
as

se
m

bl
ie

s
M

ix
tu

re
 

as
se

m
bl

y
Se

ns
iti

vi
ty

 
(%

)
PP

V
 

(%
)

H
om

oz
yg

ou
s 

in
se

rt
io

ns
46

7
35

3
75

.6
96

.1
70

7
70

0
99

.0
97

.9

H
et

er
oz

yg
ou

s 
in

se
rt

io
ns

58
6

25
2

43
.0

66
3

55
4

83
.6

H
om

oz
yg

ou
s 

de
le

tio
ns

22
1

18
3

82
.8

94
.9

26
9

26
8

99
.6

97
.1

H
et

er
oz

yg
ou

s 
de

le
tio

ns
50

1
33

7
67

.3
51

7
47

7
92

.3

R
aw

 d
at

a 
w

as
 m

ix
ed

 to
ge

th
er

, a
ss

em
bl

ed
 a

nd
 S

V
s 

ca
lle

d 
(M

ix
tu

re
 a

ss
em

bl
ie

s 
co

lu
m

n)
. T

he
 s

en
si

tiv
ity

 a
nd

 p
os

iti
ve

 p
re

di
ct

iv
e 

va
lu

e 
(P

PV
) 

to
 d

et
ec

t h
et

er
oz

y-
go

us
 r

el
at

iv
e 

to
 h

om
oz

yg
ou

s 
SV

s 
is

 s
ho

w
n

S. Bocklandt et al.



111

A similar experiment on PacBio long-read sequencing was described recently 
(Huddleston et al. 2017). Structural variants were called with the SMRT-SV algo-
rithm in CHM1 and CHM13, and compared to those called in an equal mixture of 
both. The sensitivity to detect homozygous SVs using PacBio was 87%, compared 
to 99.2% using Bionano. The sensitivity to detect heterozygous SVs using PacBio 
was only 41%, which is less than half the 86% sensitivity for heterozygous SV 
detection using Bionano. Even when the PacBio SV calls were limited to insertions 
and deletions larger than 1.5 kbp, the sensitivity for homozygous SVs was only 
78%, and for heterozygous SVs 54% (Table 1).

Bionano genome mapping detects 98% of large inversions. Inversions are the 
invisible variants and have traditionally been the hardest to detect structural events. 
They are balanced, without gain or loss of sequence, and unlike translocations they 
don’t create easily visible changes in genomic context. Inversions often escape 
detection by traditional cytogenetic techniques. Chromosomal Microarray can not 
identify balanced events, and metaphase chromosome spreads can only visualize 
some megabase size inversions. Next Generation Sequencing approaches tend to 
miss inversions because reads from inside the inversion map back to the reference 
without any indication that the orientation has changed. Detection of the break-
points often fails, especially if the inversion is flanked by segmental duplications, 
repeat arrays or other non-unique sequences.

Bionano’s imaging of extremely long molecules overcomes these obstacles to 
identifying inversions. Simulations of thousands of heterozygous inversions of vari-
ous sizes demonstrated that our SV detection algorithms have high sensitivity to 
detect inversions larger than 30 kbp, reaching 98% sensitivity to pick up inversions 
larger than 70 kbp throughout the genome.

Bionano far outperforms other technologies in the detection of translocations. 
Thousands of translocations were simulated similarly to insertions and deletions in 
an in-silico map of the human reference genome hg19. The sensitivity for heterozy-
gous translocations was shown to be 98% for breakpoint detection in both balanced 
and unbalanced translocations. Genome mapping can define the true positions of 
breakpoints within a median distance of 2.9 kbp, which is approximately 1000 times 
more precise than karyotyping and FISH. This accuracy is often sufficient for PCR 
and sequencing if single nucleotide resolution of the fusion point is desired for sub-
sequent gene function studies.

In addition, translocation detection sensitivity was verified in two reference 
samples, NA16736 and NA21891, which are lymphoblast cell lines produced from 
blood cells from patients. One patient had a developmental disorders resulting in 
deafness with DNA repair deficiency caused by a t(9;22) translocation, and a second 
patient had Prader-Willi syndrome associated with a t(4;15) translocation. Both cell 
lines had been characterized by traditional cytogenetic methods. Bionano was able 
to detect both expected translocations as well as the reciprocal translocation 
breakpoints. Additionally, NA16736 contained a t(12:12) rearrangement which 
flanked an inverted segmental duplication. In NA21891, one translocation break-
point could be localized within a gene, resulting in a predicted truncation (Fig. 8).
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Bionano Genomics developed a variant annotation pipeline (VAP) to help 
prioritize variants and to determine if a variant is relevant to the disease or phenotype 
of interest. In particular, it is useful for family-based and case-control studies. The 
two main components of the VAP are: (1) variant annotation, and (2) variant 
validation. The pipeline provides gene annotation and compares a given variant to 
variants detected in phenotypically normal control samples, including tumor versus 
control from the same patient. For a trio analysis, the pipeline annotates whether 
variants in the proband are found in the parents to help identify inherited and de 
novo variants. To validate variants, the pipeline examines assembly quality scores 
and aligns molecules against the assembly of interest to determine if the detected 
variants are well supported.

By using a control database of common variants, VAP filters the thousands of 
identified variants down to hundreds that are rare, or to a handful of e novo variants. 
It also identifies the genes they overlap with or are closest to in the genome. The 
VAP is part of Bionano Access, which provides an interface for setting up experi-
ments on Saphyr, starting and monitoring instrument runs, launching de novo 
assemblies and SV calling, visualizing SVs, and annotating variants with the 
VAP. The results can be exported as a dbVar compliant VCF file, for easy integration 
with variants identified with NGS or other methods.

SV Detection in Cancer and Genetic Disease

Bionano mapping correctly diagnoses genetic disorders: In a publication in Genome 
Medicine, professor Eric Vilain of Children’s National Medical Center, Washington, 
DC, presents molecular diagnoses using Bionano mapping of patients with 
Duchenne Muscular Dystrophy (DMD) (Barseghyan et al. 2017).

His team successfully mapped deletions, a duplication, and an inversion affecting 
the X-linked dystrophin gene, identifying deletions 45–250  kbp in size and an 
insertion of 13 kbp. The Bionano maps refined the location of deletion break points 
within introns compared to current PCR-based clinical techniques. They detected 
heterozygous SVs in carrier mothers of DMD patients as well, demonstrating the 

Fig. 8  Example of a translocation detected by Bionano mapping, associated with Prader-Willi 
syndrome. Blue bars are Bionano maps, and vertical lines represent Nt.BspQI label sites. For each 
of the reciprocal translocation breakpoints, maps are shown with alignments of the maps to chro-
mosome 4 (top) and chromosome 15 (bottom) of the human reference hg19. Breakpoint resolution 
can be determined by the distance between matched and unmatched labels

S. Bocklandt et al.
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ability of Bionano mapping to ascertain carrier status for large SVs. Vilain’s team 
identified a 5.1 Mbp inversion involving the DMD gene, previously only identified 
by RNA sequencing of a muscle biopsy sample but missed by standard clinical 
methods (Fig. 9).

Bionano mapping also identifies genomic rearrangement in prostate cancer: 
Professor Vanessa Hayes at the Garvan Institute of Medical Research published a 
complete tumor-normal comparison from a primary prostate cancer (Jaratlerdsiri 
et al. 2017). Her team identified 85 large somatic deletions and insertions, of which 
half directly impact potentially oncogenic genes or regions. One such insertion, 
disrupting a gene known to be involved in cancer, is shown in Fig. 10.

Only one-tenth of these large SVs were detected using high-coverage short-read 
NGS and bioinformatics analyses using a combination of the best SV calling algo-
rithms for NGS data. A manual inspection of NGS reads corresponding with the 
Bionano derived target regions verified 94% of the total SVs called with Bionano 
mapping. Many SVs detected with Bionano were flanked by repetitive sequences, 
making them all but invisible to short-read sequencing.

Targeted Known SV Detection as Biomarkers in Diagnostics and Companion 
Tests – Cytogenetics, Immuno-Repertoire Variation Mapping

Custom Labeling of Specific Sequences

A team from Drexel University has published several papers on a novel method to 
label any sequence of choice before imaging on a Bionano system (McCaffrey et al. 
2016, 2017). An in vitro CRISPR/Cas9 RNA-directed nickase directs the specific 
labeling of a specific sequence motif that guide RNAs are designed against. In one 
application, they label human (TTAGGG)n DNA tracts in genomes that have also 
been barcoded using Bionano’s standard labeling kits. High-throughput imaging 
and analysis of large DNA single molecules from genomes labeled in this fashion 
using Bionano’s Irys or Saphyr permits mapping through subtelomere repeat ele-
ment (SRE) regions to unique chromosomal DNA while simultaneously measuring 
the (TTAGGG)n tract length at the end of each large telomere-terminal DNA seg-
ment. This method enables global subtelomere and haplotype-resolved analysis of 
telomere lengths at the single-molecule level. Similarly, this team labeled HIV 
insertion sites and a variety of other repeat sequences.

With this custom labeling method, virtually any part of the genome can be 
studied in detail with Bionano mapping, even those parts which don’t have 
identifiable patterns using Bionano’s standard motif labeling.

Targeted Enriched Genomic Regions

Bionano mapping is typically performed on a whole genome scale. To enable 
collection of higher depth coverage of genomic regions of interest, or map a region 
much faster, a team from Tel Aviv University published a method for isolation and 
enrichment of a large genomic region of interest for targeted analysis based on Cas9 
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Fig. 9  A 5.1 Mbp inversion affecting the dystrophin gene detected in a patient with Duchenne 
Muscular Dystrophy. The inversion was detected twice, independently, in maps generated from 
patient DNA labeled after nicking with Nb.BssSI (top) and Nt.BspQI (bottom) nicking endonucle-
ases. In both cases the inverted alignment of patient maps (top and bottom) relative to the reference 
(middle) is shown. Label sites are represented by red (Nb.BssSI) or black (Nt.BspQI) vertical lines 
in patient maps and reference, with grey match lines showing the aligned sites. RefSeq genes 
(orange) and the location of the inversion on the X-chromosome are shown at the top. (Barseghyan 
et al. 2017)

Fig. 10  A 4-kbp somatic insertion within the CHL1 gene on chromosome 3 identified in the 
prostate tumor of UP2153 using Bionano Mapping. The tumor map (blue track) shows a 2.5-kbp 
insertion (Chr3: 302.9–305.4 kbp) relative to hg19 (blue track), defined by a tandem repeat interval 
(inset). However, direct comparison of the tumor to genome maps derived from blood of the same 
patient (red track) found a larger 4-kbp insertion. (Jaratlerdsiri et al. 2017)
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excision of two sites flanking the target region and isolation of the excised DNA 
segment by pulsed field gel electrophoresis (Gabrieli et al. 2017). The isolated gel 
fragment is then used in Bionano’s standard DNA isolation and labeling workflow. 
The result is a highly enriched sample that can be mapped with Bionano or 
sequenced. In addition, analysis is performed directly on native genomic DNA that 
retains genetic and epigenetic composition without amplification bias. This method 
enables detection of mutations and structural variants as well as detailed analysis by 
generation of hybrid scaffolds composed of Bionano maps and sequencing data at a 
fraction of the cost of whole genome sequencing.

Immune Repertoire Mapping

The MHC region of the genome has a higher density of genes and of identified 
disease-causing variants than any other part of the human genome. It is prone to 
rearrangements, and sequencing based methods are unable to correctly identify and 
phase the structure of this region. In a Nature Biotech paper, the authors describe 
constructing Bionano maps covering the 4.7 Mbp MHC region from two individuals 
and performing de novo sequence assembly using NGS reads (Lam et al. 2012). The 
maps and NGS contigs were then compared to the reference sequences reported by 
the MHC Haplotype Consortium as confirmation and to uncover potential 
differences.

Employing this method, the study found and confirmed a number of interesting 
genomic features, including a 4 kb error in one reference sequence, anchoring and 
gap sizing of four NGS contigs, identification of misassembled NGS contigs, dif-
ferentiation of the two HLA-DRB1 variants, and definition of numerous structural 
variants, such as a 5 kb insertion and 30 kb tandem duplication.

A second team studied the MHC region and other complex parts of the genome, 
in the YH reference genome (Cao et al. 2014). They used Bionano maps to compre-
hensively discover genome-wide SVs and characterize complex regions of the YH 
genome using long single molecules. They analyzed the structure of some complex 
regions of the human genome, including MHC also called Human Leukocyte 
Antigen (HLA), Killer-cell Immunoglobulin-like Receptor (KIR), IGL/IGH. The 
YH genome had Asian-specific structural variants in each of these regions. In addi-
tion to the MHC region, we also detected Asian/YH-specific structural differences 
in KIR (Fig. 11), compared to the reference genome.

�Other Applications

�Ultra-Long Range Epigenetic Pattern Mapping

In a recent prepublication (Grunwald et al. 2017), a team from Tel Aviv University 
working with Bionano scientists present a method to fluorescently label DNA mol-
ecules based on their methylation patterns. Using a methylation sensitive methyl-
transferase M.TaqI, a green fluorescent dye is attached to megabase size DNA when 
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the enzyme’s recognition sequence is present without CpG methylation. Bionano’s 
standard nickase is then used with a red dye to allow for identification of the mole-
cules and for assembly of the genome. In Fig. 12, a green signal is repeated every 
50 kbp – this is an unmethylated CpG island in a 50 kbp repeat.

This technology opens up an entirely new field of research: we can now study if 
the methylation status of the promotor of a gene influences that of another promotor 
hundreds of kbp away on single molecule. This compares extremely favorably to the 
standard methylation analysis methods, in which DNA is chemically converted 

Fig. 11  Consensus genome maps compared to hg19 in the KIR region. The green bars represent 
the hg19 in silico motif map; the blue bars represent consensus genome maps. The YH genome 
map shows a huge variation relative to hg19 and HuRef human reference sequences. KIR: killer 
cell immunoglobulin-like receptor. (Cao et al. 2014)

Fig. 12  Individual DNA molecules (blue) are stretch horizontally in NanoChannel arrays. 
Sequence motifs are labeled red, unmethylated sequences are labeled green, showing a repeating 
sequence with 50 kbp spacing. (Grunwald et al. 2017)
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using sodium bisulfite, followed by array hybridization or sequencing. Bisulfite 
conversion damages the DNA, and only very fragmented DNA molecules can be 
isolated and single molecule methylation patterns can be measured over no more 
than a few hundred basepairs at best.

The proof of concept study presented here demonstrates that we can now read the 
genome wide methylation profile of cells on long, single molecules while simulta-
neously mapping major structural variation on these same molecules.

�Dynamic Mapping of Genome Functions – Replication Imaging

Cell replication is essential to life, and uncontrolled replication of cells is the cause 
of cancer. Exactly where eukaryotic cells initiate replication is hard to analyze. 
Studies looking into replication origins have largely focused on simple organisms 
with smaller genomes. Observing this process in large genomes is difficult because 
eukaryotic cells have up to 50,000 replication start points per cell per cycle, and 
even the most commonly observed replication origin in the genome functions as 
such in just 10% of cells. Several groups have demonstrated visualization of these 
replication origins on Saphyr in the bacteriophage Lambda (De Carli et al. 2017) 
and in human cells (Klein et al. 2017). Synchronized and arrested HeLa cells are 
transfected with red fluorescent nucleotides, the cell cycle is allowed to resume and 
DNA prepared using Bionano’s standard workflow. Sequence motifs are then 
labeled green using a Bionano’s NLRS or DLS kits and imaged on Saphyr. The 
green signal is used to assemble and align the molecules to the reference, the red 
signal shows where on those molecules the replication originated. The resulting 
images (Fig. 13) are stunning and the 290x coverage of the genome allows the team 
to identify early-firing human replication origins that occur in as few as 1% of cells.

Fig. 13  Individual DNA molecules (blue) are stretch vertically in NanoChannel arrays. Sequence 
motifs are labeled green, DNA replication origins are shown in red. (Klein et al. 2017)
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Informatics for PacBio Long Reads

Yuta Suzuki

Abstract  In this article, we review the development of a wide variety of 
bioinformatics software implementing state-of-the-art algorithms since the 
introduction of SMRT sequencing technology into the field. We focus on the three 
major categories of development: read mapping (aligning to reference genomes), de 
novo assembly, and detection of structural variants. The long SMRT reads benefit all 
the applications, but they are achievable only through considering the nature of the 
long reads technology properly.

�Advances in SMRT Biology and Challenges in Long Read 
Informatics

In 2011, advent of the PacBio RS sequencer and its SMRT (single molecule real-
time) sequencing technology revolutionized the concept of DNA sequencing. 
Longer reads are promised to generate de novo assembly of much higher contiguity, 
and the claim was proved by several assembly projects (Steinberg  et  al. 
2014;  Pendleton  et  al. 2015; Seo  et  al. 2016). The lack of sequencing bias was 
proved to be able to read regions which are extremely difficult for NGS (Next 
Generation Sequencers) (Loomis et al. 2013).

None of these achievement, however, was just straightforward application of 
conventional informatics strategy developed for short read sequencers; the virtue of 
the long reads was not free at all. As many careful skeptics claimed in the early his-
tory of PacBio sequencing, the long reads seemed too noisy. Base accuracy was 
around ~85% for single raw read, that is, ~15% of bases were wrong calls, and 
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indels consisted most of the errors. The higher error rate made it inappropriate to 
apply informatics tools designed for much accurate short read technologies.

Even the higher error rate is properly handled by sophisticated algorithms, the 
length of the reads itself can pose another problem. Computational burden of many 
algorithms depends on the read length L. When only the short reads are assumed, it 
may be considered as constant, e.g., L = 76, 150, etc. The emergence of long read 
sequencer changed the situation drastically by improving the read length by orders 
of magnitudes, to thousands of bases, and to tens of thousands of bases by now. 
Besides the ongoing innovations for longer reads, there is a large variation in length 
of sequencing reads even in the same sequencing run. Therefore, the assumption 
that the read length is constant is not valid anymore, and one must have a strategy to 
handle (variably) long reads in reduced time (CPU hours) and space (memory foot-
print) requirement.

Availability of long read opened a door to the set of problems which were 
biologically existing in real but implicitly ignored by studies using short read 
sequencing. For example, we had to realize that a non-negligible fraction of reads 
could cover SVs (structural variants), requiring a new robust mapping strategy other 
than simply masking the known repetitive regions.

Consequently, many sophisticated algorithms had to be developed to resolve 
these issues; how to mitigate higher error rate, and how it can be done efficiently for 
long reads. The rest of this article covers some important innovations achieved and 
ongoing efforts in informatics area to make the most of long reads data.

�Aligning Noisy Long Reads with Reference Genome

When one aligns long reads against reference sequence, one must be aware that the 
variations between reads and reference stems from two conceptually separate 
causes. On one hand, there are sequencing errors in its simple sense, which is dis-
crepancy between a read observed and actual sequence being sequenced. On the 
other hand, we expect a sample sequenced would have slightly different sequence 
than a reference sequence (otherwise there is no point in doing sequencing), and 
those difference are usually called variants. Though sequencing errors and sequence 
variants are conceptually different, however, they both appears just as “errors” to us 
unless they have some criteria to distinguish them. The next two examples are for 
understanding why the distinction between two classes of “error” is relevant here.

Let’s consider we have some noisy reads. Clearly, we cannot call sequence 
variants specific to the sample unless the frequency of sequencing errors is controlled 
to be sufficiently low compared to the frequency of variants. This is the reason why 
it is difficult for noisy reads to detect small nucleotide variants such as point 
mutations and indels.

Next, assume we have long reads. Then, there are more chances that the reads 
span the large variations such as structural variations (SVs) between a reference 
genome and the sample sequenced. This situation is problematic for aligners who 
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considered any possible variation between reads and reference to be sequencing 
errors, for such aligners would fail to detect correct alignment as they need to intro-
duce too much errors for aligning these sequences. Some aligners try to combat the 
situation by employing techniques such as chaining and split alignment. Some 
aligners (NGMLR, Minimap2) explicitly introduce an SV-aware scoring scheme 
such as a two-parts concave gap penalty, which reflects the two classes of variations 
between read and reference.

Sequence alignment is so fundamental in sequence analysis that it finds its 
application everywhere. For example, mapping sequencing reads to reference 
genome is the very first step of resequencing studies. Accuracy of mapping can 
directly be translated into the overall reliability of results. Also, mapping is often 
one of the most computationally intensive steps. Therefore, accurate and faster 
mapping software would benefit the whole area of resequencing studies. In the 
context of de novo assembly pipeline, it is used for detecting overlap among long 
reads. Of noted, desired balance of sensitivity and specificity of overlap detection is 
controlled differently from mapping to reference, and it could often be very subtle.

Though it is more or less subjective to make distinction between standalone 
aligners and aligners designed as a module of assembly pipeline or SV detection 
pipeline, we decided to cover some aligners in other sections. MHAP will be intro-
duced in relation with Canu in the section devoted to assembly tools. Similarly, 
NGMLR will be detailed together with Sniffle in the section for SV detection.

�BWA-SW and BWA-MEM

Adopting the seed-and-extend approach, BWA-SW (Li  & Durbin 2010) builds 
FM-indices for both query and reference sequence. Then, DP (dynamic program-
ming) is applied to these FM-indices to find all local matches, i.e., seeds, allowing 
mismatches and gaps between query and reference. Detected seeds are extended by 
Smith-Waterman algorithm. Some heuristics are explicitly introduced to speed up 
alignment of large-scale sequencing data and to mitigate the effect of repetitive 
sequences. BWA-MEM (Li 2013) inherits similar features implemented in 
BWA-SW such as split alignment, but is found on a different seeding strategy using 
SMEM (supermaximal exact matches) and reseeding technique to reduce mismap-
ping caused by missing seed hits.

�BLASR

BLASR (Chaisson  & Tesler 2012) (Basic Local Alignment with Successive 
Refinement) is also one of the earliest mapping tools specifically developed for 
SMRT reads. Like BWA-MEM, it is probably the most widely used one to date. 
Bundled with official SMRT Analysis, it has been the default choice for the 
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mapping (overlapping) step in all protocols such as resequencing, de novo assem-
bly, transcriptome analysis, and methylation analysis. In the BLASR’s paper, the 
authors explicitly stated it was designed to combine algorithmic devices developed 
in two separate lines of studies, namely, a coarse alignment method for whole 
genome alignment and a sophisticated data structure for fast short read mapping. 
Proven to be effective for handling noisy long read, the approach of successive 
refinement, or seed-chain-align paradigm, has become a standard principle.

BLASR first finds short exact matches (anchors) using either suffix array or FM 
index (Ferragina & Manzini 2000). Then, the regions with clustered anchors aligned 
colinearly are identified as candidate mapping locations, by global chaining algo-
rithm (Abouelhoda & Ohlebusch 2003). The anchors are further chained by sparse 
dynamic programming (SDP) within each candidate region (Eppstein et al. 1992). 
Finally, it gives detailed alignment using banded DP (dynamic programming) 
guided by the result of SDP. BLASR achieved tenfold faster mapping of reads to 
human genome than BWA-SW algorithm at comparable mapping accuracy and 
memory footprint.

�DALIGNER

DALIGNER (Myers 2014) is specifically designed for finding overlaps between 
noisy long reads, though its concept can also be adopted for a generic long read 
aligner, as implemented in DAMAPPER (https://github.com/thegenemyers/
DAMAPPER). Like in BLASR, DALIGNER also performs filter based on short 
exact matches. Instead of using BWT (FM index), it explicitly processes k-mers 
within reads by thread-able and cache coherent implementation of radix sort. 
Detected k-mers are then compared via block-wise merge sort, which reduces mem-
ory footprint to a constant depending only on the block size. To generate local align-
ment, it applies O(ND) diff algorithm between two candidate reads (Myers 1986). 
DALIGNER achieved 22 ~ 39-fold speedup over BLASR at higher sensitivity in 
detecting correct overlaps (Myers 2014). DALIGNER is supposed to be a compo-
nent for read overlap (with DAMASKER for repeat masking, DASCRUBBER for 
cleaning up low quality regions, and a core module for assembly) of DAZZLER de 
novo assembler for long noisy reads, which will be released in future.

�Minimap2

Minimap2 (Li 2017) is one of the latest and state-of-the-art alignment program. 
Minimap2 is general-purpose aligner in that it can align short reads, noisy long 
reads, and reads from transcripts (cDNA) back to a reference genome. Minimap2 
combines several algorithmic ideas developed in the field, such as locality-sensitive 
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hashing as in Minimap and MHAP. For accounting possible SVs between reads and 
genome, it employs concave gap cost as in NGMLR, and it is efficiently computed 
using formulation proposed by Suzuki & Kasahara (2017). In addition to these fea-
tures, the authors further optimized the algorithm, by transforming the DP matrix 
from row-column coordinate to diagonal-antidiagonal coordinate for better concur-
rency in modern processors. According to the author of Minimap2, it is supposed to 
replace BWA-MEM, which is in turn a widely used extension of BWA-SW.

�De novo Assembly

As Lander-Waterman theory (Lander & Waterman 1988) would assert, the longer 
input reads are quite essential in achieving a high-quality genome assembly for 
repetitive genomes. Therefore, developing a de novo assembler for long read is nat-
urally the most active area in the field of long read informatics.

To our knowledge, almost all assemblers published for long read take an overlap-
layout-consensus (OLC) approach, where the overall task of assembly can be 
divided into the three steps. (1. Overlap) The overlaps between reads are identified 
as candidate pairs representing the same genomic regions, and the overlap graph is 
constructed to express these relations. (2. Layout) The graph is transformed to gen-
erate linear contigs. The step often starts by constructing the string graph (Myers 
2005), a string-labeled graph which encodes all the information in reads observed, 
and eliminates edges containing redundant information. (3. Consensus) The final 
assembly is polished. To eliminate errors in contigs, consensus is taken among reads 
making up the contigs.

Though we do not cover tools for the consensus step here, there are many of 
them released to date including official Quiver and Arrow bundled in SMRT 
Analysis (https://github.com/PacificBiosciences/GenomicConsensus), another offi-
cial tool pbdagcon (https://github.com/PacificBiosciences/pbdagcon), Racon 
(Vaser et al. 2017), and MECAT (Xiao et al. 2017). Of note, quality of a polished 
assembly can be much better than a short-read-based assembly due to the random-
ness of sequencing errors in long reads (Chin et al. 2013; Myers 2014).

�FALCON

FALCON (Chin et al. 2016) is designed as a diploid-aware de novo assembler for 
long read. It starts by carefully taking consensus among the reads to eliminate 
sequencing errors while retaining heterozygous variants which can distinguish two 
homologous chromosomes (FALCON-sense). For constructing a string graph, 
FALCON runs DALIGNER. The resulted graph contains “haplotype-fused” contigs 
and “bubbles” reflecting variations between two homologous chromosomes. Finally, 
FALCON-unzip tries to resolve such regions by phasing the associated long reads 
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and local re-assembly. The contigs obtained are called “haplotigs”, which are sup-
posed to be faithful representation of individual alleles in the diploid genome.

�Canu (& MHAP)

MHAP (Berlin et al. 2015) (Min-Hash Alignment Process) utilized MinHash for 
efficient dimensionality reduction of the read space. In MinHash, H hash functions 
are randomly selected, each of them maps k-mer into an integer. For a given read of 
length L, only the minimum values over the read are recorded for each of H hash 
functions. The k-mers at which the minimum is attained are called min-mers, and 
resulted representation is called a sketch. The sketch serves as a locality sensitive 
hashing of each read, for the similar sequences are expected share similar sketches. 
Because the sketch retains the data only on H min-mers, its size is fixed to H, inde-
pendent of read length L.

Built on top of MHAP, Canu (Koren  et  al. 2017) extends best overlap graph 
(BOG) algorithm (Miller et al. 2008) for generating contigs. A new “bogart” algo-
rithm estimates an optimal overlap error rate instead of using predetermined one as 
in original BOG algorithm. This requires multiple rounds of read and overlap error 
correction, but eventually enables to separate repeats diverged only by 3%. Though 
BOG algorithm is greedy, the effect is mitigated in Canu by inspecting non-best 
overlaps as well to avoid potential misassemblies.

�HINGE

While there is no doubt that obtaining more contiguous (i.e., higher contig N50) 
assembly is a major goal in genome assembly, the quest just for longer N50 may 
cause misassemblies if the strategy gets too greedy. Being aware that danger, 
HINGE (Kamath et al. 2017) aims to perform the optimal resolution of repeats in 
assembly, in the sense that the repeats should be resolved if and only if it is sup-
ported by long read data available. To implement such a strategy is rather straight-
forward for de Bruijn graphs. In de Bruijn graph, its k-mers representing nodes are 
connected by edges when they co-occur next to each other in reads. In ideal situa-
tion, the genome assembly is realized as an Eulerian path, i.e., trail which visits 
every edge exactly once, in the de Bruijn graph. However, de Bruijn graphs are not 
robust for noisy long read, so overlap graphs are usually preferred for long read. 
One of the key motivations of HINGE is to give such a desirable property of de 
Bruijn graphs, to overlap graphs which is more error-resilient. To do so, HINGE 
enriches string graph with additional information called “hinges” based on the 
result of the read overlap step. Then, assembly graph with optimal repeat resolution 
can be constructed via a hinge-aided greedy algorithm.
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�Miniasm (& Minimap)

Minimap (Li 2016) adopts a similar idea as MHAP, it uses minimizers to represents 
the reads compactly. For example, Minimap uses a concept of (w,k)-minimizer, 
which is the smallest (in the hashed value) k-mer in w consecutive k-mers. To per-
form mapping, Minimap searches for colinear sets of minimizers shared between 
sequences. Miniasm (Li 2016), an associated assembly module, generates assembly 
graph without error-correction. It firstly filters low-quality reads (chimeric or with 
untrimmed adapters), constructs graph greedily, and then cleans up the graph by 
several heuristics, such as popping small bubbles and removing shorter overlaps.

�Detection of Structural Variants (SVs)

Sequence variants are called structural when they are explained by the mechanisms 
involving double-strand breaks, and are often defined to be variants larger than cer-
tain size (e.g., 50 bp) for the sake of convenience. They are categorized into several 
classes such as insertions/deletions (including presence/absence of transposons), 
inversion, (segmental) duplication, tandem repeat expansion/contraction, etc. While 
some classes of SVs are notoriously difficult to detect via short reads (especially 
long inversions and insertions), long reads have promise to detect more of them by 
capturing entire structural events within sequencing reads.

�PBHoney

PBHoney (English, Salerno & Reid 2014) implements combination of two methods 
for detecting SVs via read alignment to reference sequence. Firstly, PBHoney 
exploits the fact that the alignment of reads by BLASR should be interrupted (giv-
ing soft-clipped tails) at the breakpoints of SV events. PBHoney detects such inter-
rupted alignments (piece-alignments) and clusters them to identify individual SV 
events. Secondly, PBHoney locates SVs by examining the genomic regions with 
anomalously high error rate. Such a large discordance can signal the presence of 
SVs because sequencing errors within PacBio reads are supposed to distribute rather 
randomly.

�Sniffles (& NGMLR)

NGMLR (Sedlazeck et al. 2017) is a long-read aligner designed for SV detection, 
which uses two distinct gap extension penalties for different size range of gaps (i.e., 
concave gap penalty) to align entire reads over the regions with SVs. Intuitively, the 
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concave gap penalty is designed so that it can allow longer gaps in alignment while 
shorter gaps are penalized just as sequencing errors. Adopting such a complicated 
scoring scheme makes the alignment process computationally intensive (Miller et al. 
1988), but NGMLR introduces heuristics to perform faster alignment. Then, an 
associated tool to detect SVs, Sniffles scans the read alignment to report putative 
SVs which are then clustered to identify individual events and evaluated by various 
criteria. Optionally, Sniffle can infer genotypes (homozygous or heterozygous) of 
detected variants, and can associate “nested SVs” which are supported by the same 
group of long reads.

�SMRT-SV

SMRT-SV (Huddleston et al. 2017) is a SV detection tool based on local assembly. 
It firstly maps long reads to reference genome, against which SVs are called. Then 
it searches signatures of SVs within alignment results, and 60 kbp regions around 
the detected signatures are extracted. The regions are to be assembled locally from 
those reads using Canu, then SVs are called by examining the alignment between 
assembled contigs and reference. Local assembly is performed for other regions 
(without SV signatures) as well to detect smaller variants.

�Beyond DNA – Transcriptome Analysis and Methylation 
Analysis

SMRT sequencing has been found its applications outside DNA analysis as well. 
When it is applied to cDNA sequencing, long read would be expected to capture the 
entire structures of transcripts to elucidate expressing isoforms comprehensively. 
IDP (Isoform Detection and Prediction) (Au  et  al. 2013) and IDP-ASE 
(Deonovic et al. 2017) are tools dedicated to analyze long read transcriptome data. 
To detect expressing isoforms from long read transcriptome data, IDP formulates it 
in the framework of integer programming. To estimate allele-specific expression 
both in gene-level and isoform-level, IDP-ASE then solves probabilistic model of 
observing each allele in short read RNA-seq. Both IDP and IDP-ASE effectively 
combines long read data for detection of overall structure of transcripts, and short 
read data for accurate base-pair level information.

In methylation analysis, official kineticsTools in SMRT Analysis has been widely 
used to detect base modification sites and to estimate sequence motives for DNA 
modification (see (Flusberg et al. 2010) for the principle of detection). Detecting 
5-methyl-cytosines (5mC), which is by far the dominant type of DNA modification 
in plants and animals, is challenging due to their subtle signal. Designed for detect-
ing 5mC modifications in large genomes within practical sequencing depth, AgIn 
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(Suzuki et al. 2016) exploits the observation that CpG methylation events in verte-
brate genomes are correlated over neighboring CpG sites, and tries to assign the 
binary methylation states to CpG sites based on the kinetic signals under the con-
straint that a certain number of neighboring CpG sites should be in the same state. 
Making the most of high mappability of long read, AgIn has been applied to observe 
diversified CpG methylation statuses of centromeric repeat regions in fish genome 
(Ichikawa et al. 2017), and to observe allele-specific methylation events in human 
genomes.

�Concluding Remarks

We have briefly described some innovative ideas in bioinformatics for an effective 
use of long read data. As concluding remarks, let me mention a few prospects for the 
future development in the field. By now, it is evident the quest for complete genome 
assembly is almost done, but the remaining is the most difficult part such as 
extremely huge repeats, centromeres, telomeres. While many state-of-the-art assem-
blers take the presence of such difficult regions into account and can carefully gen-
erate high quality assembly for the rest of genomes, it is remained open how to 
tackle these difficult part of the genome, how to resolve its sequence, not escaping 
from them.

Base modification analysis using PacBio sequencers may also have huge potential 
to distinguish several types of base modifications and to detect them simultaneously 
in the same sample (Clark et al. 2011), but only the limited number of modification 
types (6 mA, 4mC, and 5mC) are considered for now. This is mainly due to the 
technical challenge to alleviate noise in kinetics data to distinguish each type of 
modifications and unmodified bases from each other.

That said, it will be no doubt that the field would be more attractive than ever, as 
the use of long read sequencer becomes a daily routine in every area of biological 
research, or maybe even in clinical practice.
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Challenges of Single-Molecule DNA  
Sequencing with Solid-State Nanopores

Yusuke Goto, Rena Akahori, and Itaru Yanagi

Abstract  A powerful DNA sequencing tool with high accuracy, long read length 
and high-throughput would be required more and more for decoding the compli-
cated genetic code. Solid-state nanopore has attracted many researchers for its 
promising future as a next-generation DNA sequencing platform due to the process-
ability, the robustness and the large-scale integratability. While the diverse materials 
have been widely explored for a solid-state nanopore, silicon nitride (Si3N4) is espe-
cially preferable from the viewpoint of mass production based on semiconductor 
fabrication process. Here, as a nanopore sensing mechanism, we focused on the 
ionic blockade current method which is the most developed technique. We also 
highlight the main challenges of Si3N4 nanopore-based DNA sequencer that should 
be addressed: the fabrication of ultra-small nanopore and ultra-thin membrane, the 
modulation of DNA translocation speed and the detection of base-specific signals. 
In this chapter, we discuss the recent progress relating to solid-state nanopore DNA 
sequencing, which helps to provide a comprehensive information about the current 
technical situation.

�Introduction

Essential information required for living organisms is encoded into their genomes, 
and deciphering this genetic code via DNA sequencing is the first step in further 
understanding organisms. DNA sequencing is a powerful tool for disclosing genetic 
variations at a molecular, biological level, such as single-nucleotide polymorphism, 
copy number variation, gene fusion, and insertion/deletion, and these genetic varia-
tions are related to various diseases, including cancer (Shendure et al. 2017). The 
significance of DNA sequencing in elucidating disease mechanisms and improving 

Y. Goto (*) · R. Akahori · I. Yanagi 
Center for Technology Innovation – Healthcare, Research & Development Group, Hitachi 
Ltd., Kokubunji-shi, Tokyo, Japan
e-mail: yusuke.goto.bo@hitachi.com

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-6037-4_9&domain=pdf
mailto:yusuke.goto.bo@hitachi.com


132

genetic diagnoses cannot be overlooked. Due to enormous support and investments 
from governments and the private sector, the scientific and economic growth in this 
field shows no signs of slowing down over the last decade.

DNA sequencing techniques should have a high accuracy, long read length, high 
throughput and low cost (Goodwin et al. 2016). Additionally, emerging technolo-
gies, which are represented by single-molecule sequencing, are expected to reduce 
the PCR-derived bias and allow longer reads. Furthermore, these single-molecule 
techniques can detect methylation and footprinting information. One of the most 
promising approaches with the above attributes is the use of DNA translocation 
across nanopores, which is called nanopore sequencing (Branton et al. 2008).

Nanopore sequencing is a label-free, single-molecule approach in which DNA 
molecules are driven through an ultra-tiny one-dimensional channel and produce 
electrical signals corresponding to the DNA sequence (Venkatesan and Bashir 
2011). When negatively charged DNA is driven by an external electric field through 
a nanopore in an ultra-thin membrane between two electrolytes, the target DNA 
molecule temporarily occupies the nanopore (Fig. 1). This occupancy results in a 
change in the electrical signal. For example, because the pore size is close to the 
molecular diameter of DNA, each base (A, G, C, and T) produces its own character-
istic blockage current, which is similar to a fingerprint. This approach, i.e., detection 
of the blockage current, allows DNA to be sequenced with a single-base resolution 
and without the need for fluorescent labels.

Presently, nanopores are categorized as two types: biological nanopores and 
solid-state nanopores. Biological nanopores rely on the use of transmembrane pro-
teins (called porins), such as alpha-hemolisin (α-HL) (Clarke et  al. 2009) or 
Mycobacterium smegmatis porin A (MspA) (Derrington et  al. 2010), with a 
nanometer-scale hole. Recently, great achievements, including de novo assembly of 
the human genome (Jain et al. 2018), have been achieved for practical DNA sequenc-
ing with biological nanopores. However, biological nanopores may still be limited 
by short lifetimes and the intrinsic instability of natural proteins, and therefore, they 
are not especially favorable for long-term operations. Solid-state nanopores are 

Fig. 1  Schematic of a solid-state nanopore embedded in an ultra-thin, insulating Si3N4 membrane 
supported by a silicon chip. A nanopore is fabricated in the ultra-thin Si3N4 membrane, and the 
DNA molecule is typically electrophoretically driven through the nanopore. The DNA sequence is 
read out at the narrowest part of the nanopore during translocation
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typically fabricated by top-down lithography, and they are expected to offer a num-
ber of practical advantages over their biological counterparts. They have superior 
mechanical, thermal and chemical stabilities (Dekker 2007), the potential for large-
scale integration with on-chip electronics, and size tunability (Kwok et al. 2014; 
Yanagi et al. 2014). These advantages endow solid-state nanopore applications with 
the potential for commercial expansion. Therefore, over the past decade, many stud-
ies have been conducted to realize DNA sequencing based on solid-state nanopores 
(Lindsay 2016). This review briefly introduces recent progress in DNA sequencing 
with a solid-state nanopore. Further detailed issues are discussed in a large number 
of comprehensive reviews and books (Dekker 2007; Branton et al. 2008; Iqbal and 
Bashir 2011; Wanunu 2012; Edel and Albrecht 2013; Carson and Wanunu 2015; 
Lindsay 2016).

�Solid-State Nanopore DNA Sequencing Based on Ionic 
Current Detection

Nanopore DNA sequencing procedures strongly rely on the sensing mechanism. 
Based on the type of signal, the detection methods can be roughly classified into two 
types: electrical readout and optical detection. In particular, electrical detection is 
preferable due to its potential to reduce the cost and size of the instruments required 
for the procedures. Electrical sensing methods can be categorized into three types: 
ionic blockade current (Howorka et al. 2001), tunneling current (Tsutsui et al. 2010) 
and capacitance variation signal (Sigalov et al. 2008). Among them, the most widely 
developed technique is measuring ionic currents during DNA translocation through 
a nanopore (Iqbal and Bashir 2011; Edel and Albrecht 2013). In this concept (Fig. 2), 
the bases produce unique ionic current patterns as the DNA traverses across the 
nanopore, and these patterns are decoded into the original DNA sequence (Pennisi 
2012). When two chambers containing electrolytic fluid are separated with an 
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Fig. 2  Schematic concept of the sensing mechanism for the ionic blockade current from nanopore 
DNA sequencing. When a DNA molecule is driven through a nanopore, the steady ionic current 
flux is blocked by the geometric exclusion due to DNA. Since this blockade depends on a sequence 
of several nucleotides, the DNA translocation generates unique discrete patterns. The original 
DNA sequence can be determined by deciphering the ionic current pattern
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ultra-thin membrane containing a nanometer-scale hole, the application of a voltage 
bias across the membrane can generate a stable ionic transmembrane current. A 
single-stranded DNA (ssDNA) translocating through the nanopore blocks the ion 
fluxes induced by geometrical exclusion, and the blockade current pattern corre-
sponding to the DNA sequence is recorded as a function of time. The core concept 
of this sequencing method is based on the assumption that the changes in the ionic 
currents strongly correlate with the sequence of several nucleotides located at the 
narrowest part of the nanopore during the translocation (Manrao et al. 2012; Laszlo 
et al. 2014).

In this scheme, strict requirements must be simultaneously satisfied to achieve 
actual DNA sequencing. In particular, the device must be fabricated considering 
three key factors: an ultra-small nanopore, an ultra-thin membrane and control of 
the DNA speed. First, creating an ultra-small nanopore with a diameter size similar 
to that of DNA is essential to prevent multiple or folded DNA strands from entering 
the nanopore. Considering that the diameter of a single-stranded DNA is approxi-
mately 1.4 nm, the preferred nanopore diameter is less than 2 nm. Second, the fab-
rication of an ultra-thin membrane is equally important. The number of nucleotides 
located at the nanopore during DNA translocation increases as the membrane thick-
ness increases. As a result, detecting the unique signal from each nucleotide becomes 
more difficult. Consequently, a thinner membrane is desirable because the mem-
brane determines the spatial resolution of the nanopore sequencing. The third issue 
is controlling the DNA motion across the nanopore. The DNA quickly translocates 
through the nanopore, i.e., typically >1 μs per nucleotide (μs/nt) (Akahori et  al. 
2014), and recording ultra-fast signals with a low noise is difficult using the cur-
rently available amplifiers. Thus, tremendous efforts have been devoted to resolving 
these challenging issues.

�Fabrication of a Single Nanopore with a 1–2 nm Diameter 
in a Solid-State Membrane

Solid-state nanopore technology has advantages in terms of its robustness and pos-
sible large-scale integration. However, this technology has a serious drawback, i.e., 
the nanopore fabrication process. Fabricating solid-state nanopores requires dimen-
sional control at the sub-nm scale, and this can be successfully achieved by means 
of focused-electron beam etching via transmission electron microscopy (TEM). A 
TEM beam can be condensed to a diameter of less than 1 nm and used to success-
fully fabricate a small nanopore with a diameter of less than 2 nm (Storm et  al. 
2003; Larkin et al. 2013; Venta et al. 2013). For mass production, however, TEM-
beam etching is not suitable because of its high cost, low throughput, and complex-
ity. This labor-intensive, low-throughput, non-scalable, high-cost, and sequential 
fabrication process also requires the constant presence of a machine operator, which 
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significantly limits the yield of nanopore devices. Therefore, an alternative nano-
pore fabrication method is strongly desired.

Recently, promising alternative fabrication methods based on controlled break-
down (CBD) have been proposed and demonstrated as shown in Fig. 3a, b (Kwok 
et  al. 2014; Yanagi et  al. 2014). Dielectric breakdown is local failure due to the 
electron-trap density reaching a critical value (Briggs et al. 2015), and this is induced 
by producing a strong electric field across an insulating membrane with two Ag/
AgCl electrodes. A voltage-induced dielectric breakdown event in ultra-thin mem-
branes results in the formation of single nanopores with diameters as small as 1 nm 
(Fig. 3c). The dielectric breakdown is caused by the strong electric field produced 
by two conventional Ag/AgCl electrodes, and no special setup is required to fabri-
cate nanopores. For example, when using the multilevel pulse voltage injection 
technique, the size of the generated nanopores can be calculated by cycle-monitoring 
the ionic current that flows through the newly formed pore. Once the size reaches a 
preset value, the breakdown process can be stopped through feedback control under 
a low monitoring voltage. Thereafter, the diameter of the nanopore can be increased 
by applying short pulse voltages.

CBD has several advantages over conventional methods. First, CBD is an easy, 
simple and low-cost method that does not require special instruments. Second, if the 
method uses the appropriate parameters for single nanopore creation, it can pre-
cisely fabricate nanopores with a sub-nanometer accuracy under the appropriate 
conditions (Briggs et al. 2014; Goto et al. 2016). Third, this method also enables in 
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Fig. 3  Nanopore fabrication via CBD. (a) The voltage is applied against an insulating Si3N4 mem-
brane. (b) This strong electric field induces the dielectric breakdown of the insulating membrane, 
generating a single nanopore with an ultra-small diameter. (c) Typical TEM images of fabricated 
nanopores with diameters of 1–3 nm
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situ fabrication of nanopores in an arrayed device with multiple, ultra-thin mem-
branes (Yanagi et al. 2016). Finally, the method can prepare a fresh nanopore just 
before the DNA measurement, which allows long-term storage of the devices. 
Accordingly, due to its advantages, CBD has the potential allow a greater number of 
researchers to use solid-state nanopore technology.

�Fabrication of Ultra-Thin Solid-State Membranes at the 
Wafer Scale

The membrane thickness determines the spatial resolution of a nanopore sensor. 
Because the distance between neighboring nucleotides in DNA is quite short 
(approximately 0.5 nm) at the molecular level, the fabrication of ultra-thin mem-
branes is important for highly accurate discrimination of each nucleotide in DNA 
(Fig. 4a). One promising approach is to utilize two-dimensional materials such as 
graphene (Schneider et al. 2010), molybdenum disulfide (MoS2) (Liu et al. 2014) 
and boron nitride (Liu et  al. 2013). Although these atomically thin materials are 
quite attractive due to their atomic scale sensitivity (Heerema and Dekker 2016), 
stable mass production and control over their surface conditions are still challenges. 
Another approach is to thin membranes with semiconductor-related materials such 
as Si3N4 and hafnium oxide (HfO2). Recently, HfO2 membranes with 3–8-nm thick-
nesses have been fabricated using atomic layer deposition (Larkin et al. 2013). For 
Si3N4 membranes, thinning a membrane using reactive ion etching (Venta et  al. 
2013) or helium ion beam (Carlsen et al. 2014) etching has been demonstrated, and 
the thickness of the fabricated membrane is approximately 5  nm. In addition, a 
method for transferring a Si3N4 membrane to a quartz substrate has been proposed 
to fabricate 5-nm-thick Si3N4 membranes (Lee et al. 2014).

Spatial
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Fig. 4  Schematic image of a device with an ultra-thin insulating membrane for solid-state nano-
pores. (a) The thickness of the membrane with a nanopore determines the spatial resolution of the 
DNA sequencing. (b) Typical device structure with an ultra-thin Si3N4 membrane and a Si wafer. 
The right image shows a cross-sectional STEM image of a 3-nm-thick Si3N4 membrane
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Si3N4 is a traditional semiconductor-related material that is highly compatible 
with the semiconductor process. Therefore, using Si3N4 as a membrane material for 
solid-state nanopores is highly desirable. Recently, wafer-scale fabrication of Si3N4 
membranes with thicknesses of less than 5 nm can be successfully fabricated by 
employing a polycrystalline-Si (poly-Si) sacrificial layer as shown in Fig.  4b 
(Yanagi et al. 2015). Because this process significantly minimizes the damage to the 
membrane, Si3N4 membranes with thicknesses of 3 nm were stably fabricated with 
small variations. These devices with ultra-thin Si3N4 membranes enabled a detailed 
investigation of nanopore generation mechanisms via dielectric breakdown, espe-
cially the thickness dependence (Yanagi et al. 2017).

These technologies, including CBD, would allow the mass production of nano-
pore devices with an ultra-thin membrane at the wafer scale and contribute to real-
izing practical solid-state nanopore sensor applications.

�Controlling the Speed of DNA Translocation Across a 
Nanopore

The next primal challenge for DNA sequencing with solid-state nanopores is con-
trolling the translocation speed of DNA through a nanopore. When DNA passes 
through a nanopore via an electric field in an ionic solution, the typical dwell time 
of DNA in the nanopore is less than 1 μs/nt (Fig. 5a). This duration time is too short 
to detect the ionic current signal derived from each nucleotide using commercially 
available amplifiers (Wanunu et al. 2008; Venkatesan and Bashir 2011). Ideally, the 
dwell time of DNA in a nanopore should be more than 100 μs/nt to enable a suffi-
cient recording of the signal from each nucleotide.

To reduce the DNA translocation speed through a nanopore, numerous strategies 
have been proposed (Carson and Wanunu 2015). For example, changing the electro-
lyte solutions has been tested as a simple method. The DNA translocation speed can 
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Fig. 5  (a) Typical example of an ultra-fast DNA translocation event for 5 k-mer ssDNA across a 
solid-state nanopore. This dwell time is less than 1 μs per nucleotide. (b) Schematic image of 
external control of DNA motion with a solid-state nanopore
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be reduced by adding ethylene glycol to the ionic solution, and the resulting speed 
is reduced by as much as sixfold compared to that observed without ethylene glycol 
(Fologea et al. 2005). The DNA translocation speed in a LiCl aqueous solution has 
been reported to be approximately tenfold slower than the speed observed using a 
KCl aqueous solution (Kowalczyk et  al. 2010). Several researchers have used a 
strategy in which the membrane is coated with various obstacles to decelerate the 
DNA translocation, such as a nanofibre mesh (Squires et al. 2013), polyethylene 
oxide (PEO)-filled nano-cylindrical domains (Yoshida et  al. 2016), amine-
functionalized beads (Goto et al. 2015), or a hydrophilic self-assembled monolayer 
(Wang et al. 2014). Using that approach, the dwell time of DNA in the nanopore can 
be increased to approximately 10–100 μs/nt without any external instruments.

As shown in Fig. 5b, other speed control approaches utilize a DNA-immobilized 
atomic force microscopy (AFM) probe or bead. Control of the translocation speed 
of the immobilized DNA through the nanopore is achieved by controlling the motion 
of the probe or bead using an actuator or optical potential (Keyser et  al. 2006; 
Nelson et  al. 2014). DNA immobilized on the probe can be inserted into and 
removed from the nanopore using a piezo-actuator (Akahori et al. 2017). In this 
method, the dwell time of DNA is greater than 100 μs/nt. However, at present, every 
reported control method for solid-state nanopores cannot prevent dwell time vari-
ability. This variation is larger than one order of magnitude and is thought to be 
caused by the interaction between DNA and the surface of the nanopore. For the 
realization of actual DNA sequencing, this variance must be resolved.

�Toward Solid-State Nanopore DNA Sequencing with Single-
Nucleotide Discrimination Based on External DNA Motion 
Control

Based on ionic current detection, several studies have reported the possibility of 
identifying each nucleotide. Three types of ssDNA homopolymers (poly(dA), 
poly(dC) and poly(dT)) can be identified using Si3N4 nanopores with a 5-nm thick-
ness (Venta et al. 2013). Similarly, Si3N4 nanopores have been reported to discrimi-
nate three types of nucleotide homopolymers in block-copolymer DNA 
(poly(dT)-poly(dC)-poly(dA)) (Akahori et al. 2017). Molybdenum disulfide nano-
pores enable the discrimination of all four types of ssDNA homopolymers and 
monomers using room-temperature ionic liquids (Feng et al. 2015). Recently, we 
reported that a Si3N4 nanopore with a 5-nm thickness can also discriminate all four 
types of ssDNA homopolymers, even in an aqueous salt solution, by unfolding the 
G-quadruplex complex derived from a guanine homopolymer (Goto et al. 2018). 
These positive results indicate that solid-state nanopores have the potential to detect 
each nucleotide in a DNA strand similar to a biological one. Interestingly, the order 
of the signal magnitude with a solid-state strand (A > G > T > C) is different from 
that of a biological strand (MspA; T > C > G > A) (Derrington et al. 2010). Since 
the sensing mechanism for each nucleotide with a nanopore cannot be explained by 
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a simple size-exclusion effect, further investigation is required to reveal the block-
ade mechanism. However, the detection of signals at the single-nucleotide scale 
with a solid-state nanopore has not yet been demonstrated. Nanopore sequencing 
relies on the sensitivity of the ultra-thin membrane and the technique to precisely 
control DNA motion to acquire single-base resolution.

Recently, we developed a solid-state nanopore system with bidirectional DNA 
motion control for accurate, long-read DNA sequencing as shown in Fig. 6 (Goto 
et al. 2017). As mentioned above, precise semiconductor processes can fabricate 
high-quality solid-state nanopores with a low cost. Solid-state nanopore-based 
sequencing for reading DNA at a single-nucleotide sensitivity by detecting the 
blockage of ionic currents, however, is still under development. Our technology 
enables the fabrication of a precisely controlled ultra-thin Si3N4 nanopore at the 
wafer scale (Yanagi et al. 2015). Nanopores with diameters of a few nanometers, 
thicknesses of several nanometers, and accuracies at the sub-nanometer level can be 
electrically produced using a simple in situ process (Yanagi et al. 2014). Our system 
consists of a nanopore unit and a bidirectional DNA motion control unit that can 
provide single-nucleotide sensitivity and reversible DNA translocation.

We confirmed the proof-of-concept data that demonstrated single-nucleotide dis-
crimination in a large tandem repeat DNA molecule. We observe sequence-dependent 
blockage current levels that corresponded to di-, tri- and tetranucleotide repeats. 
This result clearly indicated that our ultra-thin Si3N4 nanopore can read ssDNA with 
a single-nucleotide sensitivity. We estimated a resolution of 4 nucleotides for the 
nanopore, which contributed to the fine reading accuracy. The bidirectional DNA 
translocation was driven by a piezo-actuator with nanometer-scale accuracy. The 
ionic blockade signature followed the translocation speed of the piezo-actuator at an 
average speed of up to 100 bases per second. The bidirectional DNA measurement 
allows a highly accurate sequence to be obtained from multiple passes of a single 
DNA molecule. We believe that these encouraging proof-of-concept data contribute 
to the auspicious future of solid-state nanopore DNA sequencers.
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Fig. 6  (a) Schematic of a solid-state nanopore DNA sequencing system with a bidirectional DNA 
motion control unit. (b) Conceptual system drawing with a piezo-actuator, an arrayed ultra-thin 
nanopore and an integrated circuit (amplifier and A/D converter)
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�Future Prospects

Solid-state nanopore DNA sequencing has the potential to become a label-free, 
rapid, long-read and low-cost sequencing technology. Solid-state nanopores provide 
several advantages, including mass production and large-scale integration. However, 
significant challenges remain to be resolved. A key limitation of high-accuracy 
DNA sequencing is the requirement of ultra-sensitive DNA detection with ultra-
precise DNA motion control. Therefore, a single-base recognition sensitivity and 
precise control of the DNA speed are still the principal issues. However, solid-state 
nanopore technology can significantly impact the DNA sequencing field and the 
future of molecular biology and precision medicine.
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On-Site MinION Sequencing

Lucky R. Runtuwene, Josef S. B. Tuda, Arthur E. Mongan, 
and Yutaka Suzuki

Abstract  DNA sequencing has reached an unprecedented level with the advent of 
Oxford Nanopore Technologies’ MinION. The low equipment investment, ease of 
library preparation, small size, and powered only by a laptop computer enable the 
portability for on-site sequencing. MinION has had its role in clinical, biosecurity, 
and environmental fields. Here, we describe the many facets of on-site sequencing 
with MinION. First, we will present some field works using MinION. We will dis-
cuss the requirements for targeted or whole genome sequencing and the challenges 
faced by each technique. We will also elaborate the bioinformatics procedures avail-
able for data analysis in the field. MinION has greatly changed the way we do 
sequencing by bringing the sequencer closer to the biodiversity. Although numerous 
limitations exist for MinION to be truly portable, improvements of procedures and 
equipment will enhance MinION’s role in the field.

The arrival of MinION, a portable long read DNA sequencer, has changed many 
aspects of DNA sequencing. The low overhead cost, ease of library preparation, 
small size, and use of a USB port of a laptop computer as its power supply have 
placed DNA sequencing at the frontier of research in the field. Researchers now 
have the freedom to perform DNA sequencing in the field where they collect sam-
ples. MinION has proven to be very beneficial in the clinical, biosecurity, and envi-
ronmental fields (Hardegen et al. 2018).

Since its availability on the market through the MinION Access Program 
(MAP) in 2015, MinION has significantly evolved. From the first iteration that 
produced only up to 1 GB of data, the most recent flow cell is able to produce up 
to10–20 GB of data. The accuracy of MinION has improved dramatically from 
65 to 88% (Lu et al. 2016) to greater than 90% (Oxford Nanopore Technologies 
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2017). Many options are available in proprietary kits, ranging from a PCR-free 
quick preparation to high-accuracy PCR-based kits. Special purposes kits are 
also available, e.g., barcoding, low input, and ultralow input. Furthermore, many 
aspects of DNA sequencing have also been simplified  with the prospective 
release of equipment, such as Zumbador (simplifying DNA extraction and 
library preparation), Voltrax (simplifying library preparation), MinIT (a porta-
ble CPU to substitute the whole laptop), and even further miniaturization of 
MinION itself through sequencing on a smartphone.

The MinION principle relies on the recognition of an electrical current distur-
bance in a nanopore protein. When a strand of DNA is inside the nanopore, the 
nucleotides induce a change in the basal electrical current. This electric current 
disturbance pattern is specific to kmers and is recognized by sensors and translated 
into a sequence of nucleotides by an algorithm. The exclusion of lasers and fluores-
cence, which are commonly used in traditional and high-throughput DNA sequenc-
ers, permits the sequencing technology to be portable and energy efficient. 
Base-calling can be performed on-the-go or after sequencing. An online connection 
is also optional; thus, sequencing can occur in seclusion.

One of the most powerful aspects of MinION is the ability to sample biodiversity 
that is not easily sampled or requires an unmanageable amount of time. Many of the 
planet’s biological resources are locked in the countries inaccessible to DNA 
sequencers. Consequently, instead of taking the sample to a laboratory, a group of 
researchers decided to take DNA sequencing to a remote rainforest of Tanzania 
(Menegon et  al. 2017). These researchers successfully identified a frog species 
based on its DNA barcode, i.e., the small subunit of ribosomal RNA (16s rRNA). 
Despite the high error rate of the first generation of flow cell, a generation of con-
sensus sequence exhibited 97% similarity to the reference genome of the frog. 
Another group of researchers conducted on-site sequencing in the Ecuadorian 
Choco rainforest to sequence the DNA barcodes of a toad and three species of 
snakes (Pomerantz et al. 2018), two of which were previously undescribed. These 
researchers appreciated how mobile laboratories and portable sequencing can accel-
erate species identification in remote areas. Extreme conditions also complicate the 
transport of samples to a laboratory, e.g., in the Canadian high Arctic. In this setting, 
MinION has been utilized to identify microorganisms through 16s rRNA sequenc-
ing. These researchers were able to identify bacteria, archaea, and eukaryotes in the 
permafrost layer (Goordial et al. 2017). Despite the high error rate, the results were 
still comparable to Illumina sequencing. The region resembles the planet Mars and 
acts as a test area should the need to identify Martian microorganisms arise. 
Similarly, DNA sequencing has been performed in space at the International Space 
Station (ISS) (Castro-Wallace et al. 2017). Here, three types of DNA from E. coli 
K-12, bacteria phage, and BALB/C mice were sequenced over four MinION runs, 
and the results did not differ between the space and Earth, suggesting MinION 
makes sequencing in extreme environments possible.

The advantage of MinION’s low overhead cost is welcomed by a group of 
researchers working with metagenomics in waste sludge (Hardegen et  al. 2018). 
Sequencing is rarely used for this purpose partially due to the required investment. 
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Here, MinION has aided in the analysis of real-time changes in microorganisms in 
the biomass industry, increasing the efficiency of the production process. MinION 
has been implemented in food security by identifying begomoviruses causing cas-
sava mosaic disease (Boykin et al. 2018), further protecting the loss of productivity 
for 800 million people worldwide. The researchers performed the experiments in 
Tanzania, Uganda and Kenya, and all of these location lack sequencing facilities. 
The benefit of real-time analysis allowed the identification of begomoviruses as 
early as 11 s after sequencing. MinION has been applied for genomic surveillance, 
e.g., yellow fever outbreak in Brazil. By sequencing 52 whole genome sequences of 
yellow fever virus (YFV), the researchers identified an early case of sylvatic trans-
mission. Seventy percent of the new sequences were generated using MinION 
(N. Faria et al. 2018), further demonstrating MinION’s ability to complement and 
potentially replace established techniques.

When working on-site to identify the causative agent of a disease, researchers are 
puzzled by the available methods to enrich pathogenic nucleic acids. Several meth-
ods might be employed in this setting. Direct metagenomics sequencing is prefera-
ble when the causative agent is not known. However, this method has a direct 
correlation with the concentration of pathogens in the sample (Houldcroft et  al. 
2017). A project in Brazil to improve the molecular surveillance and sequencing of 
Zika virus (ZIKV) reported that direct metagenomics is difficult to perform with 
MinION when the viral concentration in the sample is low (N. R. Faria et al. 2016). 
The sequencing projects were performed in a mobile laboratory across five federal 
states in Northern region of Brazil. A total of 1349 samples were tested in 16 days 
during this field trip. Due to the low virus concentration, the genomes generated 
were fragmented and exhibit less than 50% coverage. A low sample concentration 
must undergo repeated sequencing using several flow cells to reach the adequate 
depth, which is not feasible in the field where resources are limited. To overcome 
this problem, a PCR-amplified tiling sequencing has been developed specifically for 
ZIKV (Quick et al. 2017). This technique requires segmental amplification using 
multiple sets of primers to amplify the entire genome of a virus. This methodology 
can be applied to samples containing as few as 50 genome copies per reaction, and 
the result are available 1–2 days following clinical sample acquisition. This tech-
nique can also be applied in other virus genomes. For example, the same technique 
was employed in the Ebola outbreak in Africa on 2016. MinION was used to 
sequence the entire genome of 146 EBOV samples (Quick et  al. 2016). Using 
reverse transcription and tiling amplification with PCR, the fastest confirmation of 
EBOV infection was attainable within 1  h. Further, by combining the results 
obtained in the field with a database, the rate of EBOV mutation is determined. 
Again, successful detection depends on the viral titer. While this technique is fea-
sible for small-genome viruses, sequencing viruses with 20–50-kB genomes using 
this technique is impractical due to the number of primers needed. The third tech-
nique commonly used to enrich viral genomes is oligonucleotide hybridization. 
Specific or degenerate probes bound to a solid phase (e.g., streptavidin bead) bind 
to the virus nucleic acids and are pulled down. The captured virus is subsequently 
adapter ligated and low-cycle amplified prior to sequencing. However, this technique 
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has not been tested in an on-site sequencing context; this technique most consis-
tently yields full genome results in the laboratory.

When full-genome sequencing of a pathogen is not likely, targeted sequencing is 
the method of choice. Parts of the genome can be amplified by multiple methods 
and subsequently sequenced. The use of this technique offers the advantage of cost-
effectiveness by mixing amplicons together in one sequence run. The mixture can 
be either multiple target genes of a sample or multiple samples of the same gene. 
Due to the high output of the most recent flow cell, a researcher can sequence up to 
96 amplicons and decrease the cost of a sequencing run to $5.2–9.4 per amplicon. 
Multiplexing can be achieved by using the proprietary kit (only available in 1D 
rapid sequencing mode) or the self-produced barcodes attached to the forward 
primer of target gene (for compatibility with 1D^2 sequencing mode). As a proof-
of-concept, we have performed a multiplex sequencing of amplicons of genes 
related to drug resistance in Plasmodium falciparum in the field (Runtuwene et al. 
2018). DNA was extracted using spin-columns, and the 1D^2 sequencing protocol 
for genomic DNA was employed. Amplification was conducted using the mobile 
thermal cycler (Fig. 1), which only requires a USB connection to a laptop computer. 
The flow cell contained a mixture of 11 amplicons of nine genes, and the sequenc-
ing was run for 48 h. Consensus sequence was created for each amplicon per sam-
ple, yielding an 84.56% accuracy for sequencing. This seemingly low accuracy 
despite the use of flow cell R9.4 (i.e., the recent version) is due to the abundance of 
AT-rich and homopolymer tracts in the parasite genome. Nonetheless, we deter-
mined the parasites’ drug-resistance status in Manado (Indonesia) (Fig. 2 presents 
the remote laboratory where we performed the sequencing), Thailand, and Vietnam 
from blood samples that were either frozen or preserved in an FTA card.

An interesting application for the use of MinION to assist in an outbreak is the 
development of a system to detect all of the viruses causing hemorrhagic diseases 
(Brinkmann et  al. 2017). This technique involves targeted sequencing using two 
pools of 285 and 256 primer pairs for the identification of 46 virus species. Target 

Fig. 1  Portable PCR
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genes are amplified with PCR. Using clinical specimens, the panel enables charac-
terization of the causative agent within 10 min of sequencing, and a definitive diag-
nosis can be procured in less than 3.5 h.

Currently, the required starting DNA concentration is approximately 1 μg for 
1D^2 and 10–100 ng for 1D sequencing. Clinical samples rarely yield high concen-
trations for pathogen sequencing. In the event of the unavailability of a thermal 
cycler, PCR can be substituted with isothermal amplifications to enrich the input 
DNA.  Many techniques ranging from targeted [e.g., loom-amplified isothermal 
amplification (LAMP)] to whole genome isothermal amplifications [e.g., multiple 
displacement amplification (MDA)] are possible. LAMP relies on a denaturing-
DNA-polymerase, such as Bst polymerase, to amplify a genome segment flanked by 
two to three pairs of primers (Notomi et al. 2000). The denaturing nature of the 
polymerase (i.e., simultaneously denatures the double strand of DNA and elongates 
the primers) allows the LAMP reaction to be run in isothermal conditions, thus 
completely eliminating the need for a thermal cycler. Further, LAMP reagents can 
be dried to assure their stability upon transportation to the field (Hayashida et al. 
2015). Applying the LAMP technique as the amplification method, we performed a 
genomic epidemiology study of dengue virus in Indonesia and Vietnam (Yamagishi 
et al. 2017). Up to 141 and 80 DENV-positive samples were amplified isothermally 
and sequenced with MinION. We were able to determine the infecting virus sero-
type and reported a successful detection rate of 79%. Serotype can also be deter-
mined despite the 74–80% identity. We also developed LAMP combined with 
MinION sequencing to detect and differentiate among five species of malaria para-
sites by sequencing 18 s rRNA genes.

One of the main bottlenecks of MinION’s analysis (and all next-generation 
sequencing) is the requirement of a bioinfomatician to handle the magnitude of data 
generated. At least a basic knowledge in computer science is necessary to start navi-
gating the information encoded in the output files. MinION’s raw data are provided 
in an incomprehensible binary language that first must be converted to human 

Fig. 2  MinION in the 
remote laboratory
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readable files. Conversion to such files called FASTQ files is performed through 
ONT’s proprietary Metrichor, which has been replaced with Nanonet, Albacore, 
Guppy, and Scrappie, which are also from ONT. These software programs identify 
DNA sequences directly from raw data and subsequently enhance accuracy. The 
output FASTQ file is a set of four lines of readable characters that contains a read 
identifier, the read sequences, a plus sign, and its quality. At this point, data analysis 
depends on the computer skill of the researcher. Realizing that not all researchers 
are adept in computer science, ONT has released their suite software to assist with 
analysis using a graphical user interface. This program is accessible through 
EPI2MEAgent software and is currently a paid service to the members of the 
MinION community. What’s in My Pot (WIMP) is an example of one of these soft-
ware programs that takes the FASTQ file as input and maps sequence fragments to 
a database to provide a set of possible answers to the question: “What organisms are 
likely be sequenced?” A more specific approach is to map the 16s rRNA amplicon 
sequences to the 16 s rRNA database through 16s workflow to know the possible 
bacteria genus (sometimes species) in the sequenced sample. These software pro-
grams are helpful for the crude identification of an organism, which is one of the 
strongest advantages of applying MinION in the workflow. However, the downside 
is that an internet connection is required to execute these cloud-based software pro-
grams. A more experienced researcher in bioinformatics will typically use offline 
software in a Linux environment.

Acclimatization to a Linux environment represents the other half of the on-site 
sequencing pipeline, especially in the field where it is difficult to access the internet. 
Linux provides many open-source software programs for biologists. Using these 
software programs, endless possibilities for MinION analysis are available. A 
decent and powerful laptop computer is required for most of these programs. 
Mapping software programs (or mappers) are the Swiss army knife in on-site 
sequencing. These programs map the input FASTQ files to a set of reference 
genomes. Burrows-Wheeler Aligner (BWA) is probably the most well-known map-
per as it has served as a staple in complementing Illumina sequencers since the 
dawn of the next-generation sequencing. It is designed to be compatible with short 
read sequencing; however, it currently has a MinION-mode to use with MinION’s 
long reads and somewhat noisy sequencing. LAST is also another mapper that is 
comparable to BWA in terms of processing speed. Minimap is a mapper with supe-
rior speed. The second iteration (Minimap2) is threefold and tenfold faster than 
BWA-MEM for mapping >100 bp short reads and >10 kb long reads, respectively 
(Li 2018).

Although organism identification is sufficiently achieved using a mapper alone, 
different tasks require different software tools. For example, variant detection in 
real-time Ebola surveillance in Africa used Nanopolish. The software directly 
detects variants using the event-level (‘squiggle’) data generated by the MinION to 
evaluate candidate variants found in the aligned reads. However, this technique is 
not compatible with non-standard genomes (e.g., P. falciparum) given that 
Nanopolish tends to yield false positive results. Noisy MinION sequencing can gain 
benefits from consensus sequence generation. When we employed this technique to 
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detect the SNPs in genes conferring drug resistance in P. falciparum, it improved 
accuracy in the obsolete flow cell R7 and the most recent flow cell R9 to 73.46% and 
84.56%, respectively (Runtuwene et al. 2018). Nevertheless, these processes were 
not straightforward and required knowledge in programming language.

In summary, on-site sequencing has propelled the advance of genome research. 
In this field, MinION has greatly reduced the equipment investment cost, simplified 
library preparation, and improved the accessibility to biodiversity. Although numer-
ous limitations prevent the complete adoption of MinION as a true portable device, 
accessories currently being developed for MinION. They will simplify everything 
from DNA extraction to laptop computers and even the sequencer itself, causing 
these devices more portable and cheaper in the foreseeable future.
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