
Chapter 8
Cancer Gene Diagnosis of Tian et al.
Microarray

Abstract We developed the New Theory of Discriminant Analysis after R. A.
Fisher (theory). Although there are five severe problems of discriminant analy-
sis, theory solves five problems completely. Especially, Revised IP-OLDF (RIP)
based on MNM and Method2 firstly succeed in the cancer gene analysis (Prob-
lem5) from 1970. RIP decomposes six microarrays into the many SMs those are
signals (MNM � 0) explained in Chap. 1. Although Revised LP-OLDF decomposes
the microarray into many SMs as same as RIP, we find the defect of Revised LP-
OLDF that cannot find all SMs from the microarray in Chap. 4. However, Revised
LP-OLDF can find many SMs faster than RIP. It may be convenient for many
researchers to analyze SMs found by Revised LP-OLDF. Tian’s microarray con-
sists of 173 subjects (36 False subjects and 137 True patients) and 12,625 genes. In
this chapter, Revised LP-OLDF decomposes Tian’s microarray into the 104 SMs.
We analyze 104 SMs by the standard statistical method such as one-way ANOVA,
t-test, Ward cluster analysis, PCA, logistic regression, and Fisher’s LDF. Although
we expected standard statistical methods were useful for cancer gene diagnosis, only
logistic regression could discriminate 104 SMs correctly, and other methods did not
show the linear separable facts. Because Revised LP-OLDF discriminates 104 SMs,
and the range of 104 RatioSVs is [8.34%, 22.79%], we make signal data by 104
Revised LP-OLDF discriminant scores (LpDSs) instead of 12,625 genes. By this
breakthrough, hierarchical cluster methods can separate two classes as two clusters
entirely. In addition to these results, the Prin1 axis of PCA indicates proper malig-
nancy indexes as same as 104 malignancy indexes. Thus, we reconsider the signal
data is the signal. Moreover, we examine the characteristic of 104 LpDSs precisely
as same as Chap. 7 using the correlation analysis.
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Thanks to Tian et al.
We appreciate Tian et al. (2003)1 for providing excellent data. Below, we will quote
their “summary” for the reader.

Background
Myeloma cells may secrete factors that affect the function of osteoblasts, osteoclasts,
or both.

Methods
We subjected purified plasma cells from the bonemarrowof patientswith newly diag-
nosedmultiplemyeloma and control subjects to oligonucleotidemicroarray profiling
and biochemical and immunohistochemical analyses to identify molecular determi-
nants of osteolytic lesions.

Results
We studied 45 control subjects, 36 patients with multiple myeloma in whom focal
lesions of bone could not be detected bymagnetic resonance imaging (MRI), and 137
patients in whomMRI detected such lesions.Different patterns of expression of 57
of approximately 10,000 genes from purifiedmyeloma cells could be used to distin-
guish the two groups of patients (P < 0.001). Permutation analysis, which adjusts the
significance level to account for multiple comparisons in the datasets, showed that 4
of these 57 genes were significantly overexpressed by plasma cells from patients with
focal lesions. One of these genes, dickkopf1 (DKK1), and its corresponding protein
(DKK1) were studied in detail because DKK1 is a secreted factor that has been
linked to the function of osteoblasts. Immunohistochemical analysis of bone mar-
row–biopsy specimens showed that only myeloma cells contained detectable DKK1.
Elevated DKK1 levels in bone marrow plasma and peripheral blood from patients
with multiple myeloma correlated with the gene-expression patterns of DKK1 and
were associated with the presence of focal bone lesions. Recombinant human DKK1
or bone marrow serum containing an elevated level of DKK1 inhibited the differen-
tiation of osteoblast precursor cells in vitro.

Conclusion
The production of DKK1, an inhibitor of osteoblast differentiation, by myeloma
cells is associated with the presence of lytic bone lesions in patients with multiple
myeloma.”

8.1 Introduction

We developed the New Theory of Discriminant Analysis after R. A. Fisher (theory)
(Shinmura 2016). Although there are five severe problems of discriminant analysis
(Shinmura 2016), theory solves five problems completely. Especially, Revised IP-
OLDF (RIP) based onMNMandMethod2 firstly succeed in the cancer gene analysis

1Erming Tian, Fenghuang Zhan, Ronald Walker, Erik Rasmussen, Yupo Ma, Bart Barlogie, and
John D. Shaughnessy.
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(Problem5) since 1970. RIP decomposes six microarrays into the many SMs those
are signals and linearly separable gene subspaces (MNM � 0) explained in Chap. 1
(Schrage 2006). Although Revised LP-OLDF decomposes the microarray into many
SMs as same as RIP, we find the defect of Revised LP-OLDF that cannot find all
SMs from the microarray in Chap. 4. However, Revised LP-OLDF can find many
SMs faster than RIP. It may be convenient for many researchers to analyze SMs
found by Revised LP-OLDF. Tian’s microarray consists of 173 subjects (36 False
subjects and 137 True patients) and 12,625 genes. In this chapter, Revised LP-OLDF
decomposes Tian’s microarray into the 104 SMs. We analyze 104 SMs by six MP-
based LDFs. Because the ranges of 104 RatioSVs by the RIP and Revised LP-OLDF
are [8.34, 22.79%] and [4.2, 21.8%], this chapter introduces the result of Revised LP-
OLDF.Wemake signal data that consists of 173 subjects and 104 Revised LP-OLDF
discriminant scores (LpDSs) instead of 12,625 genes. By this breakthrough, Ward
cluster analysis can separate two classes as two clusters, and the Prin1 axis of PCA
indicates propermalignancy index as same as 104malignancy indexes.Moreover, we
examine the characteristic of 104 LpDSs precisely as same as Chap. 7. Furthermore,
we examine the Problem6 of cancer gene analysis using 104 SMs and LpDSs as
follows:

Problem6: Why can no researchers find the linear separable facts in SM since
1970?

We had already obtained the hint of Problem6 in Chaps. 4 and 5. The hint is
as follows: Although two SVs can separate two classes of microarray, the variation
of the two classes is tiny, and the signal is buried in the noise. This fact is already
pointed out as one of three difficulties discussed by the statisticians. In this chapter,we
explain the reason by clear information about LpDSs and SMs using the correlation
analysis. This book concept is as follows. LINGO (Schrage 2006) decomposes Tian’s
microarray into 104 SMs and opens a new frontier of cancer gene analysis. JMP (Sall
et al. 2004) analyzes all SMs and offers cancer gene diagnosis. Shinmura (2016, 2017,
2018a, b) relate to this Chapter.

8.2 Examination of Revised LP-OLDF Discriminant Scores
and SMs

Because we obtain almost the same results by the RIP and Revised LP-OLDF, we
answer the Problem6 from the examination of 104 LpDSs and SMs.

8.2.1 Correlation of 104 LpDSs

Figure 8.1 is the histogram of 5,356 correlations (abbreviated R) of 104 LpDSs
analyzed by JMP. The range of correlations is [0.133, 1]. We believe that two LpDSs
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with a correlation of 1 will play the same role in oncogenic diagnosis. The correlation
analysis finds four important SMs such as (SM27, SM28) and (SM98, SM99) in
Table 8.1. We will deeply survey four SMs for solving Problem6 in future research.
If we omit the four SMs, the range of R is [0.133, 0.600]. Tian’s 100 LpDSs seem to
be relatively low correlated.

Fig. 8.1 Histogram of 5,356
correlations by 104 LpDSs

Table 8.1 is the list of 5,356 correlations sorted by descending order of R. The
[2.5, 97.5%] is the 95% confidence interval of each R. Because 5,354 p-values are
0.01, these correlations are positive. However, we cannot explain the reason why
there are no high correlations of 0.658 to less than 1. On the other hand, we expect
four LpDSs having correlation1 may be useful medically.
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Table 8.1 List of 5,356 correlations sorted by descending order of R

Var1 Versus
Var2

Correlation n 2.5% 97.5% p-value

LP28 LP27 1 173 1 1 0.000

LP99 LP98 1 173 1 1 0.000

LP80 LP70 0.658 173 0.564 0.735 0.000

LP86 LP39 0.651 173 0.556 0.729 0.000

LP78 LP56 0.636 173 0.538 0.717 0.000

LP85 LP79 0.634 173 0.536 0.716 0.000

LP49 LP34 0.626 173 0.526 0.709 0.000

LP95 LP49 0.625 173 0.525 0.709 0.000

LP56 LP23 0.624 173 0.524 0.707 0.000

LP53 LP39 0.617 173 0.515 0.702 0.000

– – – – – – –

LP99 LP50 0.226 173 0.079 0.363 0.003

LP96 LP24 0.215 173 0.068 0.353 0.004

LP104 LP98 0.208 173 0.060 0.346 0.006

LP104 LP99 0.208 173 0.060 0.346 0.006

LP104 LP72 0.205 173 0.057 0.343 0.007

LP104 LP17 0.204 173 0.057 0.343 0.007

LP104 LP40 0.204 173 0.057 0.343 0.007

LP104 LP30 0.204 173 0.056 0.343 0.007

LP104 LP102 0.186 173 0.038 0.326 0.014

LP104 LP46 0.133 173 −0.016 0.277 0.080

8.2.2 PCA of 104 LpDSs

We analyze the 104 LpDSs by PCA and output the 30 principal components showed
in Table 8.2. The eigenvalue of Prin1 is 102.668, and the contribution rate is 73.862%.
The eigenvalue of Prin2 is 4.742, and the contribution rate is 3.412%. Thus, two prin-
cipal components explain the 77.274% of total variance and 30 principal components
explain the 94.21% of total variance. Because two classes are completely separated
in the signal data, the first eigenvalue is very large.
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Table 8.2 PCA of 104
LpDSs

Prin Eigenvalue Contribution Cumulative

1 102.668 73.862 73.862

2 4.742 3.412 77.274

3 1.972 1.418 78.692

4 1.802 1.297 79.989

5 1.532 1.102 81.091

6 1.400 1.007 82.098

7 1.240 0.892 82.990

8 1.132 0.815 83.805

9 1.053 0.757 84.562

10 0.976 0.702 85.264

11 0.929 0.668 85.933

12 0.896 0.645 86.578

13 0.888 0.639 87.216

14 0.832 0.598 87.815

15 0.775 0.557 88.372

16 0.704 0.506 88.878

17 0.693 0.499 89.377

18 0.683 0.491 89.868

19 0.648 0.466 90.335

20 0.607 0.437 90.771

21 0.581 0.418 91.190

22 0.555 0.399 91.589

23 0.531 0.382 91.971

24 0.500 0.360 92.330

25 0.488 0.351 92.682

26 0.471 0.339 93.020

27 0.440 0.316 93.337

28 0.419 0.301 93.638

29 0.403 0.290 93.928

30 0.392 0.282 94.210

Figure 8.2 is eight scatter plots. All x-axes are Prin1. The y-axes in the upper plots
are from Prin2 to Prin5, and the y-axes in lower plots are from Prin27 to Prin30. Left
circles are the 99% confidence ellipse of the False class, and right circles are the 99%
confidence ellipse of the True class. The 29 scatter diagrams shows two classes are
separable on Prin1 entirely. Thus, the Prin1 of PCA becomes the malignancy index
to summarize 104 LpDSs.
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Fig. 8.2 Eight scatter plots (x-axis: Prin1; upper y-axes: From Prin2 to Prin5; lower y-axes: from
Prin27 to Prin30)

Figure 8.3 is PCA output of the 104 LpDSs. The scatter plot is the same as the
left upper scatter plot in Fig. 8.2. If we look for the 29 scatter plots from Prin2 to
Prin30, False’s 99% confidence ellipse becomes large sequentially, approaching the
same size as True’s ellipse. Because the eigenvalues of Prin2 and higher are small,
Prin1 is considered to be a malignant index representing two classes.

Fig. 8.3 PCA output of the 104 LpDSs

8.2.3 How to Categorize Many 104 LpDSs

RIP and Revised LP-OLDF can decompose the microarrays into many SMs (Fact4).
Because RIP, Revised LP-OLDF, and H-SVM can discriminate two classes of all
SMs entirely, we consider the genes included in each SM as cancer genes and signals.
However, other statistical discriminant functions cannot discriminate between two
classes completely. On the other hands, because six signal data made by RIP, Revised
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LP-OLDF, andH-SVMusing two kinds of SMs found byRIP andRevised LP-OLDF
show the linear separable facts by other statistical methods, we consider six signal
data are signals. These facts indicate that only three LDFs can discriminate two
classes entirely and other methods cannot find the linear separable facts.

By the breakthrough of signal data made by 104 LpDSs, we can succeed to obtain
the 104 malignancy indexes and open the door of cancer gene diagnosis. Thus, we
survey how to build 104 LpDSs in this section. The second and third columns of
Table 8.3 show the minimum and maximum subjects of LpDS included in each
SM from SM1 to SM104. Because we choose the minimum number of each LpDS
from the 36 False classes, the selected subject is considered to be fairely better. The
maximum number of LpDS among the 137 True classes is that the degree of True
is the worst. The fifth column is the range of LpDS (abbreviated LPi), and the last
column is RatioSV of each LPi. The range of 104 LpDSs is [4.2%, 21.8%]. The
maximum value 21.8% is small compared with other microarrays.

Table 8.3 Minimum and maximum subject’s SM and its RatioSV

SM Min Max LpDS Range RatioSV

SM1 6 150 LP1 15.3 13.1

SM2 23 93 LP2 11.3 17.7

SM3 1 52 LP3 14.0 14.2

SM4 19 157 LP4 10.8 18.5

SM5 34 92 LP5 15.4 13.0

SM6 6 173 LP6 16.3 12.3

SM7 23 107 LP7 13.5 14.9

SM8 23 38 LP8 15.6 12.8

SM9 8 70 LP9 15.6 12.9

SM10 3 145 LP10 24.7 8.1

SM11 33 55 LP11 14.5 13.8

SM12 16 148 LP12 16.4 12.2

SM13 30 154 LP13 12.8 15.7

SM14 29 157 LP14 13.2 15.1

SM15 23 170 LP15 13.5 14.8

SM16 23 37 LP16 15.7 12.7

SM17 26 150 LP17 10.3 19.5

SM18 34 37 LP18 14.2 14.1

SM19 9 51 LP19 15.3 13.0

SM20 3 150 LP20 16.8 11.9

SM21 10 143 LP21 11.3 17.8

(continued)
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Table 8.3 (continued)

SM Min Max LpDS Range RatioSV

SM22 11 145 LP22 19.0 10.5

SM23 25 169 LP23 12.1 16.6

SM24 6 65 LP24 23.6 8.5

SM25 16 82 LP25 14.0 14.3

SM26 23 101 LP26 23.0 8.7

SM27 35 68 LP27 17.4 11.5

SM28 35 68 LP28 17.4 11.5

SM29 14 173 LP29 24.1 8.3

SM30 25 48 LP30 23.8 8.4

SM31 24 73 LP31 14.9 13.4

SM32 7 102 LP32 11.7 17.1

SM33 4 75 LP33 14.2 14.1

SM34 3 84 LP34 14.4 13.9

SM35 10 169 LP35 11.5 17.4

SM36 19 103 LP36 12.3 16.2

SM37 18 46 LP37 13.6 14.7

SM38 22 129 LP38 16.8 11.9

SM39 5 100 LP39 12.7 15.7

SM40 3 44 LP40 15.5 12.9

SM41 8 136 LP41 15.4 13.0

SM42 8 164 LP42 16.9 11.8

SM43 29 84 LP43 20.7 9.6

SM44 32 85 LP44 17.8 11.2

SM45 31 71 LP45 22.5 8.9

SM46 31 100 LP46 16.1 12.4

SM47 5 166 LP47 16.7 12.0

SM48 5 153 LP48 12.8 15.6

SM49 24 46 LP49 10.6 18.9

SM50 16 164 LP50 17.1 11.7

SM51 1 110 LP51 24.8 8.1

SM52 1 63 LP52 19.5 10.3

SM53 31 122 LP53 10.2 19.5

SM54 21 63 LP54 14.6 13.7

SM55 8 169 LP55 13.7 14.5

SM56 33 112 LP56 10.3 19.3

SM57 20 148 LP57 21.0 9.5

SM58 8 102 LP58 12.0 16.6

(continued)
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Table 8.3 (continued)

SM Min Max LpDS Range RatioSV

SM59 10 120 LP59 12.0 16.7

SM60 30 44 LP60 12.1 16.6

SM61 25 37 LP61 18.5 10.8

SM62 12 164 LP62 13.3 15.0

SM63 26 144 LP63 11.7 17.0

SM64 7 114 LP64 9.2 21.8

SM65 33 102 LP65 17.2 11.6

SM66 30 156 LP66 11.7 17.1

SM67 15 71 LP67 19.6 10.2

SM68 31 141 LP68 14.7 13.6

SM69 2 129 LP69 16.9 11.9

SM70 10 65 LP70 12.9 15.5

SM71 12 61 LP71 13.2 15.2

SM72 20 70 LP72 15.1 13.3

SM73 6 100 LP73 14.7 13.6

SM74 22 173 LP74 21.2 9.4

SM75 10 79 LP75 14.0 14.3

SM76 13 102 LP76 13.8 14.5

SM77 3 102 LP77 21.2 9.4

SM78 19 65 LP78 10.4 19.2

SM79 25 44 LP79 11.5 17.4

SM80 30 148 LP80 13.9 14.4

SM81 6 43 LP81 13.9 14.4

SM82 14 107 LP82 15.3 13.0

SM83 9 38 LP83 15.6 12.8

SM84 8 164 LP84 16.6 12.0

SM85 24 40 LP85 12.5 16.0

SM86 3 40 LP86 13.7 14.6

SM87 6 130 LP87 17.9 11.2

SM88 9 153 LP88 15.5 12.9

SM89 10 124 LP89 14.7 13.6

SM90 11 102 LP90 17.7 11.3

SM91 9 173 LP91 9.4 21.3

SM92 13 43 LP92 12.6 15.9

SM93 28 107 LP93 25.3 7.9

(continued)
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Table 8.3 (continued)

SM Min Max LpDS Range RatioSV

SM94 28 70 LP94 12.5 16.0

SM95 34 44 LP95 17.7 11.3

SM96 12 43 LP96 17.8 11.3

SM97 1 37 LP97 15.2 13.2

SM98 11 102 LP98 25.7 7.8

SM99 11 102 LP99 25.7 7.8

SM100 32 105 LP100 20.8 9.6

SM101 8 103 LP101 16.7 12.0

SM102 8 147 LP102 18.8 10.7

SM103 13 100 LP103 22.1 9.1

SM104 32 43 LP104 48.0 4.2

We sort the second column of Table 8.3 in descending order. As also shown
in Chap. 7, the left five columns of Table 8.4 are the first 52 results and the right
five columns are the remaining 52 results. The Pair column is the number of SMs
with the sameminimum andmaximum value. The correlation shows their correlation
coefficient. There are two sets of two LpDSs having the same pair, and the correlation
coefficients are 1 and 0.397. There are one set of three LpDSs having the same
pair, and the correlation coefficients are 1, 0.457, and 0.457. It reflects that only
two correlations are 1, and the rest are less than 0.6 and is entirely different from
Singh’s LpDSs. Because other 97 correlation coefficients are between 0.13 and 0.6,
these LpDSs may be different malignancy indexes. Correlation analysis tells us the
difference between LpDSs. In the abstract, Tian et al. introduce as follows: “Different
patterns of expression of 57 of approximately 10,000 genes from purified myeloma
cells could be used to distinguish the two groups of patients (P < 0.001).” We would
like to compare 104 LpDSs with their patterns.

Table 8.4 Sorted in descending order of the second column (False) and the seventh column (False)

SM False True Pair Corr SM FALSE TRUE Pair Corr

SM97 1 37 SM29 14 173

SM3 1 52 SM67 15 71

SM52 1 63 SM25 16 82

SM51 1 110 SM12 16 148

SM69 2 129 SM50 16 164

SM86 3 40 SM37 18 46

(continued)



340 8 Cancer Gene Diagnosis of Tian et al. Microarray

Table 8.4 (continued)

SM False True Pair Corr SM FALSE TRUE Pair Corr

SM40 3 44 SM78 19 65

SM34 3 84 SM36 19 103

SM77 3 102 SM4 19 157

SM10 3 145 SM72 20 70

SM20 3 150 SM57 20 148

SM33 4 75 SM54 21 63

SM39 5 100 SM38 22 129

SM48 5 153 SM74 22 173

SM47 5 166 SM16 23 37

SM81 6 43 SM8 23 38

SM24 6 65 SM2 23 93

SM73 6 100 SM26 23 101

SM87 6 130 SM7 23 107

SM1 6 150 SM15 23 170

SM6 6 173 SM85 24 40

SM32 7 102 SM49 24 46

SM64 7 114 SM31 24 73

SM9 8 70 SM61 25 37

SM58 8 102 SM79 25 44

SM101 8 103 SM30 25 48

SM41 8 136 SM23 25 169

SM102 8 147 SM63 26 144

SM42 8 164 2 0.397 SM17 26 150

SM84 8 164 SM94 28 70

SM55 8 169 SM93 28 107

SM83 9 38 SM43 29 84

SM19 9 51 SM14 29 157

SM88 9 153 SM60 30 44

SM91 9 173 SM80 30 148

SM70 10 65 SM13 30 154

SM75 10 79 SM66 30 156

SM59 10 120 SM45 31 71

SM89 10 124 SM46 31 100

SM21 10 143 SM53 31 122

SM35 10 169 SM68 31 141

SM90 11 102 3 0.457 SM104 32 43

SM98 11 102 0.457 SM44 32 85

(continued)
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Table 8.4 (continued)

SM False True Pair Corr SM FALSE TRUE Pair Corr

SM99 11 102 1.000 SM100 32 105

SM22 11 145 SM11 33 55

SM96 12 43 SM65 33 102

SM71 12 61 SM56 33 112

SM62 12 164 SM18 34 37

SM92 13 43 SM95 34 44

SM103 13 100 SM5 34 92

SM76 13 102 SM27 35 68 2 1.000

SM82 14 107 SM28 35 68

8.3 Analysis of 104 SMs of Tian et al. Microarray (2018)

In 2018, RIP of LINGO Program3 decomposes Tian’s microarray into 104 SMs
(12,334 genes). At first, we consider 104 SMs are signals, and 291 gene sub-
spaces are noise. This fact indicates signal subspace includes 12,334 genes and
noise subspace includes only 291 genes. If this definition of the signal is valid,
other statistical methods can find the linear separable facts easily. However, those
methods cannot find the linear separable facts. Thus, we consider six signal
data define the true definition of signal. If we accept this definition, we can
explain two reasons: (1) why only three LDFs can separate two classes, and (2) why
other statistical methods cannot find the linear separable fact (Shinmura 2018a, b).

Table 8.5 shows the 104 SMs from SM � 1 to SM � 104, which is SM found
by RIP. Although Revised LP-OLDF can decompose microarrays into other types
of SMs, we omit those results. Program3 determines this order of SM. The “gene”
column is the number of genes of each SM. The range of genes included in the
104 SMs is [93,144]. The average is 118.6. Row “SUM” indicates 104 SMs contain
12,334 genes. LP and IP can find an optimal solution of a small gene subspace whose
number of genes is n (173) subjects or less explained in Chap. 1. From RIP column
to H-SVM column show three RatioSVs of 104 SMs by RIP, Revised LP-OLDF
and H-SVM. Three ranges of RatioSV are [8.34, 22.79], [4.17, 21.81], and [14.65,
28.75], respectively. Three averages of RatioSVs are 14.18%, 13.39%, and 20.53%,
respectively. Row “Max Ratio” indicates the number of the maximum RatioSVs of
104 SMs those are 5, 1, and 98, respectively. To summarize these results, the range,
average, andmaximumnumber ofH-SVMare better thanRIP because themaximiza-
tion SV of H-SVM works well. Two columns “MAX and MIN” are the maximum
and minimum values of three LDFs. Because all NMs of logistic regression, SVM4
and QDF are zero and 104 SMs are linearly separable, we omit these columns from
the table. Two columns “SVM1 and LDF2” show the NMs. Although SVM4 can
discriminate 104 SMs completely, SVM1 cannot discriminate four SMs correctly.
The 71 NMs of LDF2 are not zero.
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Table 8.5 Summary of six RatioSVs of six MP-based LDFs and NMs of other discriminant func-
tions

SM Gene RIP LP HSVM Max Min SVM1 LDF2

1 112 17.48 13.06 17.24 17.48 10.17 0 2

2 117 14.34 15.73 21.96 21.96 14.34 0 0

3 132 15.50 17.66 20.98 20.98 15.50 0 0

4 114 17.31 14.24 24.53 24.53 14.24 0 3

5 109 12.19 18.52 19.62 19.62 12.19 0 1

6 116 12.52 12.99 16.64 16.64 12.52 0 3

7 126 8.52 12.28 19.74 19.74 8.52 0 2

8 117 11.66 14.86 21.29 21.29 11.66 0 1

9 117 13.85 12.79 18.03 18.03 12.79 0 2

10 119 12.26 12.86 21.79 21.79 12.26 0 0

11 116 11.16 8.11 17.65 17.65 8.11 0 2

12 119 13.01 13.82 21.07 21.07 13.01 0 0

13 119 14.60 12.21 18.16 18.16 12.21 0 4

14 127 16.35 15.66 26.74 26.74 15.66 0 1

15 121 16.75 15.10 19.19 19.19 15.10 0 0

16 100 18.76 14.77 17.36 18.76 14.77 0 0

17 119 19.31 12.71 23.76 23.76 12.71 0 1

18 137 17.16 19.48 25.00 25.00 13.44 0 0

19 134 16.21 14.09 27.25 27.25 14.09 0 0

20 123 17.19 13.03 20.75 20.75 13.03 0 0

21 108 18.59 11.88 19.08 19.08 11.88 0 2

22 111 14.84 17.75 21.22 21.22 12.41 0 2

23 117 12.77 10.53 20.36 20.36 10.53 0 0

24 107 14.08 16.56 17.54 17.54 12.05 0 0

25 111 14.27 8.48 15.42 15.42 8.48 0 3

26 128 8.36 14.29 17.36 17.36 8.36 0 1

27 123 12.01 8.70 18.67 18.67 8.70 0 3

28 119 14.452 11.515 17.15 17.15 11.52 0 3

29 134 13.80 8.31 18.87 18.87 8.31 0 0

30 118 12.13 8.40 18.70 18.70 8.40 0 2

31 130 14.68 13.41 26.88 26.88 13.41 0 0

32 109 14.52 17.10 19.25 19.25 14.52 0 3

33 128 15.01 14.12 25.35 25.35 13.72 0 1

34 116 14.05 13.93 16.57 16.57 10.45 0 2

35 120 13.85 17.43 22.95 22.95 13.85 0 3

36 130 11.60 16.25 19.02 19.02 11.28 0 3

(continued)
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Table 8.5 (continued)

SM Gene RIP LP HSVM Max Min SVM1 LDF2

37 128 21.32 14.73 24.53 24.53 12.35 0 0

38 125 15.59 11.90 21.78 21.78 11.90 0 2

39 114 16.59 15.70 18.73 18.73 15.70 0 0

40 121 21.10 12.93 17.90 21.10 11.15 0 1

41 113 9.08 13.01 17.57 17.57 9.08 0 1

42 125 17.22 11.81 18.92 18.92 11.81 0 1

43 106 15.78 9.65 18.20 18.20 9.65 0 0

44 123 10.54 11.20 17.57 17.57 10.54 0 2

45 123 12.73 8.89 22.03 22.03 8.89 0 1

46 116 15.49 12.41 21.03 21.03 12.41 0 0

47 120 18.50 11.95 18.30 18.50 11.95 0 3

48 117 14.73 15.62 20.48 20.48 14.73 0 0

49 110 15.84 18.91 28.02 28.02 15.84 0 0

50 134 9.45 11.69 20.45 20.45 9.45 0 2

51 120 12.76 8.06 17.05 17.05 8.06 0 2

52 115 12.69 10.28 19.53 19.53 10.28 0 0

53 118 12.23 19.53 20.90 20.90 12.23 0 1

54 124 14.55 13.74 21.64 21.64 13.74 0 1

55 117 16.16 14.55 16.97 16.97 11.28 0 1

56 118 16.40 19.34 23.58 23.58 16.40 0 0

57 126 13.70 9.53 22.69 22.69 9.53 0 0

58 116 11.84 16.63 14.87 16.63 11.16 0 4

59 115 12.26 16.73 19.54 19.54 12.26 0 1

60 123 11.59 16.55 22.99 22.99 11.59 0 1

61 105 9.31 10.82 19.40 19.40 9.31 0 1

62 104 10.18 14.99 15.40 15.40 10.18 0 3

63 115 14.75 17.03 24.28 24.28 14.75 0 1

64 111 16.40 21.81 27.08 27.08 16.40 0 0

65 99 15.71 11.61 23.74 23.74 11.61 0 1

66 112 13.38 17.08 21.06 21.06 13.38 0 1

67 110 9.46 10.20 18.51 18.51 9.46 0 1

68 112 16.70 13.56 20.39 20.39 13.56 0 2

69 122 12.69 11.85 26.09 26.09 11.85 0 0

70 119 18.62 15.55 18.52 18.62 14.43 0 1

71 109 13.63 15.17 17.65 17.65 13.63 0 1

72 118 16.94 13.27 17.11 17.11 13.27 0 1

73 104 16.31 13.60 18.04 18.04 13.60 0 1

(continued)
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Table 8.5 (continued)

SM Gene RIP LP HSVM Max Min SVM1 LDF2

74 108 16.76 9.44 18.19 18.19 9.44 0 2

75 112 15.32 14.33 25.87 25.87 14.33 0 2

76 127 13.63 14.46 18.90 18.90 13.63 0 2

77 93 13.749 9.437 16.08 16.08 9.44 0 3

78 116 11.96 19.23 20.32 20.32 11.96 0 5

79 109 16.578 17.44 20.11 20.11 16.58 0 1

80 102 12.946 14.356 21.62 21.62 12.95 0 0

81 112 14.409 14.35 19.6 19.60 14.35 0 1

82 139 9.033 13.043 24.88 24.88 9.03 0 0

83 103 12.749 12.83 22.04 22.04 12.75 0 2

84 109 19.28 12.04 21.16 21.16 12.04 0 1

85 112 13.91 16.02 19.70 19.70 13.91 0 0

86 95 16.41 14.59 24.16 24.16 14.59 0 1

87 117 17.43 11.20 18.57 18.57 11.20 0 5

88 115 13.32 12.90 21.80 21.80 12.90 0 1

89 132 18.47 13.62 26.18 26.18 13.62 0 0

90 99 14.19 11.30 19.93 19.93 11.30 0 1

91 117 22.79 21.28 22.78 22.79 21.28 0 0

92 142 13.26 15.87 21.58 21.58 13.26 0 0

93 100 15.21 7.91 23.67 23.67 7.91 0 0

94 140 17.942 15.977 28.75 28.75 15.98 0 0

95 137 13.65 11.28 23.31 23.31 11.28 0 1

96 112 13.51 11.25 20.15 20.15 11.25 0 3

97 133 11.08 13.16 20.08 20.08 11.08 1 0

98 137 11.14 7.78 19.80 19.80 7.78 0 0

99 119 11.14 7.78 19.80 19.80 7.78 0 4

100 131 12.10 9.60 22.87 22.87 9.60 1 2

101 132 8.34 11.97 16.86 16.86 8.34 0 1

102 138 9.14 10.66 20.17 20.17 9.14 4 2

103 142 9.08 9.06 14.65 14.65 8.06 8 5

104 144 8.97 4.17 15.44 15.44 4.17 0 4

MAX 144 22.79 21.81 28.75 28.75 21.28 8 5

MIN 93 8.34 4.17 14.65 14.65 4.17 0 0

Mean 118.60 14.18 13.39 20.53 20.59 11.95 0.13 1.32

Max Ratio 5 1 98

SUM 12334
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8.4 Analysis of Three Signal Data Made by 104 DSs

We cannot obtain useful results of 104 SMs (173 cases and 12,334 genes) until now.
Next, we analyze three signal data made by RipDSs, LpDSs, and HsvmDSs having
104 DSs instead of 12,334 genes. The cluster analysis and PCA get almost the same
excellent results. Although we show the results of several cluster methods, we do not
interpret detailed analysis results.Manymedical researchers use SOMs, but the use of
hierarchical cluster methods are easy. Although the results of hierarchical methods
usually vary, it is critical that the result of this book is almost the same in each
microarray. Interpretation of the case and variable dendrograms will undoubtedly
yield results that will be useful for medical researchers. For PCA, healthy subjects
place on the negative axis of Prin1. Many cancer patients are on the positive axis, but
there is a common feature that it varies even at Prin2 when the malignancy becomes
high. PCA can easily identify outliers, also.

Short Column
The work of Tien et al. (2003) is different from the other five.They approached
their theme by logistic regression and statistical testing, and validated their
medical diagnosis as follows:

They studied 45 control subjects, 36 patients with multiple myeloma in
whom focal lesions of bone could not be detected by MRI (False), and 137
patients in whom MRI detected such lesions (True). Different patterns of
expression of 57 of 12,625 genes could be used to distinguish the two groups
of patients (p<0.001). Logistic regression was used to model bone disease in
multiple myeloma. The signal for each probe set was log transformed on a
base-2 scale before it was entered into the logistic regression model and sub-
jected to permutation analysis, which adjusts the significance level to account
for multiple comparisons in data sets with high dimensionality.

Significant differences in patients’ characteristics according to their bone-
disease status were evaluated with the use of either Fisher’s exact test or the
chi-square test. Spearman’s correlation coefficient was used to measure the
correlation between the level of gene expression and protein levels.

They analyzed 12,625 genes from two groups by logistic regression analysis
and identified 57 genes that were expressed differently (P<0.001) in the two
groups of patients.

Thus, they overcame the curse of higher dimension. Because of this, its NM
will probably not be zero. And it is considered that 57 genes are divided and
included in several SMs. That is, SMs containing 57 genes is a potential SM
candidate for gene diagnosis.
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8.4.1 Cluster Analysis of Three Signal Data

Figure 8.4 is a Ward cluster analysis of RipDSs signal data. Even if it analyzes 104
SMs individually, it cannot separate two classes, but the upper green part is 36 False
subjects, and the lower redpart is 137Truepatients.Weconsider themarvelous effects
of RipDSs cause this surprising result. The case dendrogram shows one cluster of the
False class and four clusters of the True class. Four clusters consist of the 88 green
patients, the 42 blue patients, the three orange patients, and the four green patients.
Among the six research groups, Alon et al. succeeded in using a self-organizing map
(SOM). Furthermore, if medical AI based on the cluster analysis will analyze SM,
it may be able to find useful results among many clusters made by many clustering
methods.

Fig. 8.4 Ward cluster analysis of RipDSs signal data
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Figure 8.5 is aWard cluster analysis of LpDSs signal data. The upper green part is
36 False subjects, and the lower red part is 137 True patients. The case dendrogram
shows one cluster of the False class and four clusters of the True class. Four clusters
consist of the 61 green patients, the 35 blue patients, the 36 orange patients, and the
five green patients. Four clusters are slightly different from Fig. 8.4.

Fig. 8.5 Ward cluster analysis of LpDSs signal data
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Figure 8.6 is a Ward cluster analysis of HsvmDSs signal data. The upper green
part is 36 False subjects, and the lower red part is 137 True patients. The case
dendrogram shows one cluster of the False class and four clusters of the True class.
Four clusters consist of the 78 green patients, the 11 blue patients, the four orange
patients, and the 44 pale green patients. Because four clusters by RipDSs, LpDSs,
and HsvmDSs are entirely different, this is because two classes of Tian et al. have
a different structure from the other five. This theme is a future research subject.
Generally it is not desirable that the results differ depending on the method of cluster
analysis. But if an expert can find a specific meaning in several clusters, it might be
useful for genetic diagnosis of cancer.

Fig. 8.6 Ward cluster analysis of HsvmDSs signal data

8.4.2 PCA of Three Signal Data

Figure 8.7 shows the result of RipDS signal data by PCA. Left eigenvalue shows that
the eigenvalue of Prin1 is larger than the others. The first eigenvalue is 44.930, and
the contribution ratio is 43.2%. The second eigenvalue is 2.227, the contribution ratio
is 2.14, and the cumulative contribution ratio is 45.34%. That is, the Prin1 almost
presents 172 subjects. The score plot shows the second eigenvalue is small and the
variation is small. Although the False subjects are almost on the Prin1, its shape is the
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ellipse because they are not healthy subjects. True patients are in the range [−1.88,
13.75], and as an increasing distance from False subjects, the dispersion of the Prin2
is large. Especially 156th, 100th, 173th, 148th, 99th, 145th, 122th, and 40th patients
are large outliers. That is, the Prin1 becomes cancer malignancy index as same as
104 RipDSs. The score plot shows the second eigenvalue is small and the variation
is small.

Fig. 8.7 Three plots of PCA (RipDS signal data)

The first columns and second columns of Table 8.6 show the case number cor-
responding RipDSs signal data and its value of Prin1 axis. The 173 rows have two
parts. Upper 36 rows are corresponding to the False class, and lower 137 rows are
corresponding to the True class in Fig. 8.7. These two columns are sorted in ascend-
ing order from a small value that corresponds from left to right of Prin1. In Fig. 8.7,
the leftmost point is the 14th False subject, and the value of Prin1 is −14.28. The
35th False subject has a value of −11.48, which is closest to the True patient in the
False case, and 36 cases of false cases are in the range [−14.28, −11.48]. On the
other hand, the 54th patient is the nearest to False class, and the 100th patient is far
from the False class. Its range is [−0.83, 10.02]. SV opens the window having the
width (−11.48, −0.83).

Thus, we can define the RatioSV for PCA in Eq. (8.1).

RatioSVof PCA � (11.48−0.83)/(14.28 + 10.02) ∗ 100 � 1065/24.3 � 43.82716%. (8.1)

Assuming that it is about 44%, SV separates two classes such as True patients and
False subjects in the remaining 56% range. Because this is the overall characteristic
value of RatioSV of 104 RIP, it is larger than the maximum value of RatioSV of
104 RIPs 22.79. In later, we conclude the same results of both RaioSV of PCA by
Revised LP-OLDF and HSVM.
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Table 8.6 Prin1 values of
RIP and Revised LP-OLDF
and HSVM sorted by each
Prin1 values

RatioSV 43.83 36.90 39.34

RIP Prin1 LP Prin1 HSVM Prin1

14 −14.28 3 −14.06 3 −16.93

3 −13.79 31 −13.69 8 −16.59

28 −13.62 25 −13.69 10 −16.39

8 −13.48 10 −13.60 25 −16.34

34 −13.47 11 −13.59 14 −16.02

31 −13.36 8 −13.42 33 −15.75

25 −13.30 6 −13.41 6 −15.59

6 −13.25 33 −13.32 31 −15.43

30 −13.23 9 −13.26 34 −15.41

33 −13.12 23 −13.05 1 −15.36

12 −12.93 1 −12.81 22 −15.27

9 −12.92 14 −12.73 11 −15.25

10 −12.86 32 −12.70 28 −15.05

29 −12.82 30 −12.68 13 −15.05

1 −12.81 22 −12.66 9 −14.87

13 −12.78 34 −12.58 23 −14.78

11 −12.74 29 −12.53 19 −14.76

32 −12.71 13 −12.52 32 −14.67

26 −12.51 28 −12.49 5 −14.61

15 −12.41 5 −12.33 29 −14.51

19 −12.20 19 −12.24 4 −14.47

24 −12.16 12 −12.18 18 −14.45

4 −12.16 18 −12.16 12 −14.43

18 −12.10 20 −12.07 30 −14.38

5 −12.03 24 −11.99 24 −14.24

20 −12.01 26 −11.91 2 −14.23

22 −12.01 16 −11.83 26 −14.18

23 −11.94 4 −11.80 7 −14.17

2 −11.80 7 −11.75 16 −14.16

17 −11.80 2 −11.71 20 −14.12

7 −11.76 15 −11.67 21 −14.12

27 −11.76 36 −11.64 15 −14.04

36 −11.76 35 −11.63 35 −14.01

(continued)
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Table 8.6 (continued) RatioSV 43.83 36.90 39.34

RIP Prin1 LP Prin1 HSVM Prin1

16 −11.75 21 −11.62 17 −14.00

21 −11.70 27 −11.48 36 −13.99

35 −11.48 17 −11.24 27 −13.95

54 −0.83 54 −2.13 54 −1.88

82 −0.34 159 −1.10 82 −1.58

142 0.11 82 −0.90 94 −1.07

79 0.21 94 −0.79 90 −0.98

161 0.22 163 −0.77 108 −0.92

159 0.27 108 −0.77 161 −0.91

94 0.33 111 −0.66 159 −0.76

69 0.44 90 −0.57 142 −0.56

78 0.46 142 −0.51 79 −0.46

64 0.53 64 −0.26 111 −0.36

108 0.54 77 −0.25 77 −0.30

163 0.60 66 −0.08 69 −0.07

74 0.68 161 −0.04 64 0.19

58 0.73 69 0.04 163 0.19

105 0.75 165 0.09 66 0.20

77 0.77 79 0.14 160 0.38

116 0.92 104 0.30 88 0.39

50 1.09 109 0.36 72 0.45

72 1.30 74 0.48 116 0.48

135 1.36 78 0.64 87 0.53

67 1.37 146 0.70 165 0.66

95 1.47 160 0.76 109 0.68

111 1.47 116 0.80 104 0.72

109 1.48 81 0.80 78 0.83

81 1.50 41 0.82 67 0.86

115 1.53 58 0.83 81 0.89

90 1.58 60 0.86 95 0.93

66 1.63 87 0.88 76 1.06

147 1.69 96 0.94 50 1.07

76 1.71 68 0.97 147 1.09

87 1.77 135 1.13 74 1.12

165 1.77 72 1.14 68 1.14

160 1.78 95 1.17 58 1.15

(continued)
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Table 8.6 (continued) RatioSV 43.83 36.90 39.34

RIP Prin1 LP Prin1 HSVM Prin1

68 1.78 67 1.26 60 1.29

88 1.81 138 1.31 96 1.44

60 1.85 139 1.38 138 1.48

96 1.95 50 1.44 139 1.67

73 1.95 115 1.62 151 1.73

37 2.01 37 1.66 146 1.85

104 2.03 88 1.75 37 1.89

80 2.06 149 1.84 39 1.91

75 2.16 168 1.92 168 1.91

146 2.17 76 1.92 135 2.14

86 2.17 39 1.93 115 2.19

168 2.18 147 1.94 75 2.20

170 2.27 162 2.06 80 2.28

151 2.32 89 2.10 121 2.40

138 2.34 105 2.18 140 2.44

152 2.37 167 2.21 93 2.45

139 2.42 121 2.28 105 2.64

129 2.45 75 2.29 73 2.65

41 2.52 140 2.30 41 2.75

121 2.61 127 2.42 86 2.80

119 2.70 93 2.46 126 2.90

107 2.72 80 2.52 119 3.05

39 2.79 107 2.56 124 3.09

103 2.84 170 2.70 162 3.22

132 2.91 129 2.73 152 3.25

126 2.92 73 2.77 97 3.34

134 2.92 117 2.87 170 3.41

56 3.03 126 2.91 137 3.46

112 3.09 55 2.98 149 3.46

55 3.10 133 3.00 127 3.50

123 3.15 97 3.06 134 3.50

106 3.17 171 3.08 133 3.72

92 3.19 132 3.08 155 3.75

53 3.20 124 3.14 128 3.83

131 3.21 119 3.14 89 3.88

133 3.21 137 3.23 55 3.89

(continued)
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Table 8.6 (continued) RatioSV 43.83 36.90 39.34

RIP Prin1 LP Prin1 HSVM Prin1

162 3.26 151 3.29 56 3.89

155 3.29 106 3.29 129 3.97

127 3.31 152 3.33 106 4.00

124 3.33 56 3.44 171 4.07

47 3.39 112 3.44 110 4.14

167 3.39 91 3.48 123 4.18

140 3.39 155 3.50 154 4.20

93 3.43 83 3.61 167 4.29

43 3.56 52 3.66 117 4.30

97 3.59 86 3.67 132 4.32

171 3.61 84 3.69 103 4.40

62 3.68 128 3.70 99 4.43

98 3.73 47 3.75 107 4.47

137 3.74 38 3.89 112 4.51

83 3.79 43 4.02 43 4.66

128 3.83 92 4.08 53 4.72

149 3.89 158 4.13 84 4.86

61 3.97 110 4.17 92 4.87

110 3.98 157 4.22 172 4.91

172 3.98 154 4.24 52 4.92

120 4.00 45 4.25 120 4.93

118 4.01 144 4.33 157 4.93

49 4.02 123 4.36 83 4.98

117 4.13 134 4.40 45 5.26

89 4.14 120 4.40 118 5.36

144 4.27 53 4.44 62 5.38

166 4.29 61 4.48 145 5.54

46 4.34 62 4.64 91 5.56

84 4.42 42 4.65 153 5.60

91 4.44 57 4.69 38 5.67

65 4.44 85 4.71 51 5.69

157 4.44 136 4.81 143 5.70

42 4.46 103 4.85 61 5.73

52 4.49 131 4.85 144 5.77

136 4.52 114 4.85 47 5.79

154 4.62 153 4.87 125 5.82

(continued)
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Table 8.6 (continued) RatioSV 43.83 36.90 39.34

RIP Prin1 LP Prin1 HSVM Prin1

38 4.62 63 4.93 42 5.95

45 4.62 70 4.99 98 5.95

125 4.71 51 5.00 70 6.04

150 4.80 143 5.02 158 6.24

169 4.84 172 5.05 166 6.35

145 4.98 98 5.06 59 6.49

164 5.04 99 5.11 49 6.51

143 5.06 118 5.32 136 6.59

51 5.18 59 5.33 71 6.69

63 5.19 166 5.34 130 6.70

48 5.21 145 5.43 113 6.86

102 5.23 49 6.03 114 6.90

57 5.27 130 6.26 57 6.94

141 5.33 48 6.35 150 7.24

70 5.36 125 6.44 131 7.25

158 5.52 101 6.56 63 7.31

130 5.53 71 6.64 164 7.47

153 5.58 164 6.92 101 7.66

59 5.65 44 6.93 85 7.75

113 5.76 141 6.97 48 8.01

71 5.78 150 6.97 44 8.03

99 5.91 46 7.05 141 8.28

101 5.98 169 7.07 46 8.73

44 6.12 113 7.15 169 8.81

173 6.19 122 7.41 65 9.28

114 6.21 65 7.62 122 9.45

85 6.33 173 8.04 102 9.53

40 8.09 156 8.59 40 10.00

156 8.15 40 8.69 156 10.26

148 8.30 102 8.95 173 11.12

122 8.62 100 9.55 148 13.05

100 10.02 148 10.03 100 13.75
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Figure 8.8 shows the result of LpDSs signal data by PCA. The first eigenvalue
is 46.356, and the contribution ratio is 44.6%. The second eigenvalue is 2.214, the
contribution ratio is 2.13%, and the cumulative contribution ratio is 46.73%. That
is, the Prin1 almost presents 173 subjects. Although the score plot shows several
outliers as same as in Fig. 8.7, the Prin1 becomes an indicator of cancer malignancy
as same as 104 LpDSs. The third and fourth columns of Table 8.6 show the result of
LpDSs. The ranges of False class and True class are [−14.06, −11.24] and [−2.13,
10.03]. SV opens the window that is the interval (−11.24, −2.13). RatioSV of PCA
by LpDSs is Eq. (8.2).

(8.2)

RatioSV of PCAbyLpDSs � (11.24−2.13) / (14.06 + 10.63) ∗ 100

� 9.11 ∗ 100/24.69 � 36.89753%

Because the maximum RatioSV of LpDSs is 21.81, RatioSV of PCA becomes a
malignancy index.

Fig. 8.8 Three plots of PCA (LpDS signal data)

Figure 8.9 shows the result ofHsvmDSs signal data. The first eigenvalue is 66.039,
and the contribution ratio is 63.5%. The second eigenvalue is 1.619, the contribution
ratio is 1.56%, and the cumulative contribution ratio is 65.06%. That is, the Prin1
almost presents 173 subjects. The score plot shows several outliers as same as in
Fig. 8.8. Because the second eigenvalue is small and the variation is small, the
False subjects are on the axis of −13.95 or less of the Prin1. In other words, the
Prin1 becomes a malignancy indicator as same as 104 HsvmDSs. The fifth and sixth
columns of Table 8.6 show the result of HsvmDSs. The ranges of False class and True
classes are [−16.93,−13.95] and [−1.88, 13.75], respectively. SV opens the window
that is the interval (−13.95, −1.88). RatioSV of PCA by HsvmDSs is Eq. (8.3).

RatioSVof PCAbyHsvmDSs � (13.95−1.88)/(16.93 + 13.75) ∗ 100 � 39.34159% (8.3)

Because the maximumRatioSV of HsvmDSs is 28.74, RatioSV of PCA is helpful
as a malignancy index.
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Fig. 8.9 Three plots of PCA (HsvmDS signal data)

8.4.3 PCA of Transpose Signal Data

We transpose the RipDSs signal data and analyze this transposed data with 104
RipDSs (104 cases) and 173 patients (173 variables). Figure 8.10 is three plots of
PCA. Because the first eigenvalue is 5.447 and contribution ratio is 3.15%, Prin1
explains only 3.15% variance. This fact indicates us that 104 RipDSs play almost
the same role in the transposed data. Thus, the factor loading plot shows all abso-
lutes of correlation coefficients with Prin1 and Prin2 are less 0.5. We guess other
absolute correlations with other principal components may be less 0.5 also. Scatter
plot suggests us there are many outliers in the four quadrants. Although there are
many outliers in scatter plots, these outliers are considered to represent a unique
malignancy index independent from others.

Fig. 8.10 Three plots of PCA (RipDS data)

We analyze transpose signal data made by 104 LpDSs. Figure 8.11 is three plots
of PCA. Because the first eigenvalue is 11.678 and contribution ratio is 6.75%, Prin1
explains only 6.75% variance. This fact indicates us that 104 LpDSs play almost the
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same role. Thus, the factor loading plot shows all absolutes of correlation coefficients
with Prin1 and Prin2 are less 0.8. We guess other absolute correlations with other
principal components may be less 0.8 also. Scatter plot suggests us two different
outliers such as (LP104) and (LP99). We expect two gene pairs included in (SM104)
and (SM99) are the “new class of cancer subsets” pointed out by Golub et al.

Fig. 8.11 Three plots of PCA (LpDS data)

We analyze the transpose data made by 104 HsvmDSs. Figure 8.12 is three plots
of PCA. Because the first eigenvalue is 6.064 and contribution ratio is 3.51%, Prin1
explains only 3.51% variance. This fact indicates us that 104 HsvmDSs play almost
the same role. Thus, the factor loading plot shows all absolutes of correlation coef-
ficients with Prin1 and Prin2 are less 0.5. We guess other absolute correlations with
other principal components may be less 0.5 also. Scatter plot suggests us there are
many outliers belonging in the first and fourth quadrants such as (HSVM6,HSVM12,
HSVM34, HSVM41, HSVM51, HSVM74, HSVM104) and (HSVM1, HSVM2,
HSVM27, HSVM28, HSVM32, HSVM102). We expect seven and six gene pairs
included in (SM6, SM12, SM34, SM41, SM51, SM74, SM104) and (SM1, SM2,
SM27, SM28, SM32, SM102) are the same “new class of cancer subsets” pointed
by Golub et al.

Fig. 8.12 Three plots of PCA (HsvmDS data)



358 8 Cancer Gene Diagnosis of Tian et al. Microarray

8.5 Conclusions

In Chaps. 3 and 4, we examine Alon’s microarray from the various angles of cancer
gene diagnosis. After Chap. 5, we examine the other five microarrays from the
viewpoints proposed in Chap. 4. Only two classes of Alon and Singh are the healthy
subjects and cancer patients. The remaining four microarrays consist of different
cancers. However, it is vital that the results of all SMs obtained by the RIP and
Revised LP-OLDF are almost the same. Perhaps, if medical projects collect data
for research purposes, we believe that the two classes in the microarray are LSDs
(Fact3) and many SMs (Fact4) show almost the same results explained in this book.
In other words, we believe that microarray provides useful information for cancer
diagnosis. Furthermore, the LSD has a Matryoshka structure, and Method2 is valid
even for general data. Our research is considered to be equally useful for data such
as other high-dimensional data and common data. If researchers create multiple SMs
with RIP and Revised LP-OLDF, they can quickly analyze by standard statistical
analysis by creating signal data using these SMs. Because statistical discriminant
methods were useless at all, Problem5 did not succeed. Moreover, the doctors had no
choice but to develop analytical methods themselves. In addition to their methods,
we believe that using a statistical method will open up a new world of cancer gene
diagnosis.

In this chapter, although RIP and Revised LP-OLDF find two different SMs,
we show the results of 104 SMs found by Revised LP-OLDF using the correlation
analysis and explain the results of three signal data made by RIP, Revised LP-OLDF
and H-SVM. Furthermore, cluster analysis and PCA analyze three signal data made
by RipDSs, LpDSs, and HsvmDSs. We omit the many results of three signal data
made by RipDSs, LpDSs, and HsvmDSs. The outline of these results is almost the
same as other chapters. This fact means that six types of signal data are signals. Also,
only RIP and Revised LP-OLDF can extract signals from noise. This is the gospel
for researchers of cancer genetic diagnosis. A simple analysis method proposed in
this book gives a large amount of information. Researchers can verify those results
by real patients. We expect many people to contribute to cancer diagnosis.
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