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Preface

This book extends the possibility of a cancer gene diagnosis using many results.
Medical researchers tried to identify oncogenes from genetic data such as
microarrays since 1970, but they did not obtain precise results because the statistical
discriminant analysis was useless for their research. In 2017, we explained our
surprising results to Japanese genetic expert. He told us as follows: “After NIH
reports microarrays are useless for cancer gene diagnosis, many researchers believe
that this theme has ended. Therefore, you terminate your research.” I am regretful to
start the study from 2015. If we could show our results before NIH’s report, we
believe that microarray genetic diagnosis has contributed to cancer control at this
time. Some statisticians focused on this research theme as a new field of “big or
high-dimensional data analysis” which is different from a small sample (small n and
small p data). However, they pointed out three excuses for the difficulty of research.
Although it was easy to use highly reliable data collected by physicians, they did
not obtain a definite result. The discriminant analysis is the most useful method to
classify the two groups of cancer and normal patients or two different cancers.
However, since the statistical discriminant functions are utterly useless, medical
researchers use cluster analysis such as “self-organizing map” (SOM) and so forth.
They seemed to have used discriminant analysis in the early stages of the study, but
they probably judged it to be utterly useless.

In this book, as a successful application example of “high-dimensional data
analysis” using microarray, it concretely shows that new discriminant theory
(Theory) is most suitable for cancer gene analysis and diagnosis in addition to the
small samples (small n and small p). The fatal problem of conventional studies is
that they do not know that the two classes are entirely separable in the
high-dimensional gene space (Fact3). There was no research of linearly separable
data (LSD) discrimination except for our research. Most researchers did not
understand that only H-SVM and Revised IP-Optimal Linear Discriminant
Function (Revised IP-OLDF, RIP) can find Fact3, and other LDFs including
LASSO cannot discriminate microarray correctly. This fact indicates only mathe-
matical programming (MP)-based LDFs can find Fact3. Statistical discriminant
functions are useless for cancer gene analysis. Therefore, they could not define
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“signal” in high-dimensional genetic space clearly. They cannot select cancer genes
from microarray or filter oncogenes from noise without being based on the correct
signal. We call the linearly separable gene space and subspaces as Matryoshka.
Microarrays (big Matryoshka) include many small Matryoshkas in it. Moreover,
RIP and the Matryoshka feature selection method (Method2) can decompose
microarray into many Small Matryoshkas (SMs) and noise gene subspace (Fact4).
Because the quadratic programming (QP) defines SVMs, those cannot decompose
into many SMs. QP finds only one optimal H-SVM on the whole region. In order to
find optimal subspace (SM), H-HVM surveys all possible models. It is NP-hard. If
we call the smallest Matryoshka as cancer basic gene set (BGS), LINGO Program3
can find many SMs and LINGO Program4 can find many BGSs. At first, because
each SM (or BGS) consists of few genes, we expected statistical methods analyzed
those small samples and obtained many useful results for cancer gene diagnosis.
However, although all NMs of logistic regression are zero for all SMs of six
microarrays, other methods do not show the linear separable facts (Problem6).
After many trials, we produce the signal data made by RIP discriminant scores of all
SMs instead of genes included in SM or BGS. LINGO Program3 decomposes
Alon’s microarray into 64 SMs, and LINGO Program4 decomposes it into 130
BGSs. The RatioSVs of 64 SMs and 130 BGSs are [2.33%, 26.76%] and [0.00%,
0.9%], respectively. Because 64 RatioSVs of all SMs are over 2.33%, we judge
SMs are useful for cancer gene diagnosis. On the other hand, BGSs are useless for
cancer gene diagnosis because 130 RatioSVs of all BGSs are 0.9% or less. We
expect BGS is important for cancer gene research as same as Yamanaka’s four
genes in iPS research. That is, when a normal patient becomes cancer, RIP dis-
criminates two classes clearly. However, statistical discriminant functions cannot
discriminate two classes (Problem6) because of two reasons. First reason is those
cannot discriminate LSD theoretically. Second reason is all RatioSVs of BGS are
tiny. When other genes are added to BGS and become 64 SMs, SV can separate two
classes very easy. This result seems that SM is more suitable for the cancer gene
diagnosis than BGS. As a future task, we must clarify of the classification and roles
of many SMs and BGS (Problem7).

This book proposes the cancer gene diagnosis and malignancy indexes analyzing
all SMs obtained from six microarrays. However, the malignancy indexes need to
be verified by medical professionals. Therefore, we disclose LINGO programs and
explain many statistical results used for verification in this book. These results offer
benefits for statistical researchers and statistical education because many persons
can easily participate in this field, using our successful examples of the
“high-dimensional data analysis.” Also, due to maximum use of our statistical
knowledge, this book can be used for the excellent guidebook of the data analysis.
Moreover, seven problems and four facts that no one has pointed out in statistics
will undoubtedly be useful to improve your actual data analysis abilities. We expect
many persons such as medical researchers, statisticians, and statistical users con-
tribute to the cancer gene diagnosis, in order to produce useful results. However,
although many engineers such as pattern recognition and machine-learning tried
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Problem5, they did not succeed also. It was very strange because they were free
from the restriction of normal distribution.

Chapter 1 introduces a novel theory of discriminant analysis and its application
to the genetic analysis of cancer with a new perspective (New Theory of
Discriminant Analysis After R. Fisher, Springer 2016). I graduated from the uni-
versity in 1971 and participated in the development project of “Electrocardiogram
Automatic Diagnosis System” at the Osaka Prefectural Adult Disease Center.
Dr. Nomura, the leader of project, given us the theme of diagnostic logic to separate
normal symptom and several abnormal symptoms by discriminant analysis. Four
years the discriminant study was inferior to empirical branching logic developed by
doctor Nomura at all. The reason is that the statistical discriminant theory is useless
because many data used for medical diagnosis are not a normal distribution. This
failure was motivated to research new discriminant theory. Then, based on many
empirical studies such as medical data until 2015, I established a new discriminant
theory. I first showed the relationship between number of misclassification
(NM) and discriminant coefficient (Fact1). From this fact, we could explain many
defects of NM (Problem1). We have developed IP-OLDF and Revised IP-OLDF
(RIP) based on minimum NM (MNM) criterion instead of NM. I found a monotonic
decrease of MNM (Fact2). Also, for Swiss banknote data with six variables,
MNM = 0 for two variables (X4, X6). In other words, we can ultimately distinguish
between genuine and counterfeit notes. With MNM monotonic decreasing nature,
the 16 models containing these two variables are MNM = 0, and 47 out of the
remaining MNMs are more than one. This fact is a first discriminant study on LSD
that is essential for the genetic analysis of cancer (Problem2). There are other two
problems such as deficiencies of generalized inverse matrices (Problem3) and
discriminant theory that is not inference statistics (Problem4). Because both prob-
lems have little relation with cancer gene analysis, we do not explain in this book
precisely. The six research groups in the USA published papers on the genetic
diagnosis of cancer using microarrays during the period from 1999 to 2004. They
released the microarrays on the Internet. When RIP discriminates the microarrays in
54 days from 25th October to 20th December 2015, we found that the six MNMs
are zero (Problem5). No researchers could solve this problem since 1970 because
the existing discriminant theory was useless. That is, cancer and normal patients are
entirely separable in the high-dimensional genetic space, which is the fact that it is
LSD (Fact3). Based on Fact2, we found that the gene space is a Matryoshka
structure containing many SMs in which MNM = 0. We developed a Matryoshka
feature selection method (Method2). RIP and Method2 could decompose
microarrays into many SMs (or BGS) (Fact4). Because of completing the research
theme since 1971, we published “New Theory of Discriminant Analysis After
R. Fisher” from Springer (2016). In Chap. 1, Method2 decomposes Swiss banknote
data and Japanese car data into several SMs. In other words, Method2 is a
general-purpose method for high-dimensional data and common data. Furthermore,
it shows how RIP and Revised LP-OLDF can easily produce many SMs. The reason
why H-SVM using QP cannot obtain SM can be understood by the common sense of
MP. That is, the cancer gene analysis cannot be done with a statistical discriminant
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function based on normal distribution. And the cancer gene analysis is easy for
MP-based LDFs. Using LINGO Program3 introduced in Chap. 10, we can divide
arbitrary microarray and ordinary data into SM. We analyze this SM by statistical
method and propose genetic diagnosis of cancer in Chap. 2 and below.

Chapter 2 introduces the cancer gene diagnosis using SMs (From Cancer Gene
Analysis to Cancer Gene Diagnosis. 2017). In order to evaluate many SMs found in
Method2, we created a statistic called RatioSV. Like MNM, this is an essential
statistic of LSD-discrimination. In Alon’s dataset (Proc.Natl.Acad. Sci. USA 96:
6745–6750, 1999), RIP found 130 pairs of BGS in addition to 64 pairs of SM. The
130 SVs of BGS separated cancer and normal patients at less than 1%. The 64 SVs
of SM separated the two groups from 2.4% to 26.8%. Although these results
indicate the discrimination of SM is easy, no researchers could not succeed from
1970. BGS is vital for the study of oncogene combinations, but we judged that it
was not useful for cancer gene diagnosis. Because SM is a small sample (small n
and small p), we considered the standard statistical methods are useful for the
analysis of SM. However, only logistic regression was found to be NM = 0 for all
SMs. Two groups often overlapped by other statistical methods (Problem6).
Therefore, we created new data with RIP discriminant score (RipDS) as a variable
and showed this signal data is a true signal in microarrays. By this breakthrough,
the analysis was carried out by standard statistical methods using signal data.
Especially, PCA and cluster analysis separate the two groups completely. It was
also found that the first principal component of PCA represents the malignancy
index of cancer the same as the DS of each SM. Because we need to verify these
results medically, we published the book from Amazon to call for cooperation
among the six research groups. However, there were no answers as following
reasons: (1) Six projects may have ended after 2004, (2) they did not access this
book and our papers because we are medically unknown, and (3) the Kindle version
is not an academic journal. In Chap. 2, we outline the results of cluster analysis and
PCA obtained by using six microarrays. After Chap. 3, we examine our claim about
the signal by many approaches.

Chapter 3 explains the cancer gene diagnosis of Alon dataset to compare 39 SMs
by Revised LP-OLDF and 56 SMs by RIP. In 2017, only RIP and Revised
LP-OLDF were convinced that the datasets could be decomposed into different
combinations of SMs. Therefore, if 39 pairs of SM obtained by Revised LP-OLDF
with a short calculation time are useful for genetic analysis of cancer, it is more
useful than using 56 sets of SM obtained by RIP. Therefore, they were analyzed by
RatioSV and various statistical methods, compared and evaluated. In conclusion,
almost the same results were obtained in any analysis.

In Chap. 4, we try that we have not done so far. One is the evaluation of the
signal and noise separated by the RIP and Revised LP-OLDF. For this reason, we
analyze Alon’s microarray (2000 genes). RIP finds 62 SMs (1968 genes) and noise
subspace (32 genes). Revised LP-OLDF finds 32 SMs (1005 genes) and noise
subspace (995 genes). Although we have analyzed individual SMs so far, we have
not evaluated a signal subspace and noise subspace. When we discriminate the
signal and noise subspaces by RIP, it is certainly confirmed that the MNM of the
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signal subspace is 0 and the noise subspace is more than one. In addition, many
normal cases locate on SV = −1, and many cancer cases were on SV = 1. This
shows that many cases are concentrated on two points in a high-dimensional signal
subspace. The Revised LP-OLDF decomposes a signal subspace with 1005 genes
into 32 SMs and a noise subspace with 995 genes. Both the signal and noise
subspaces are NM = 0, which indicates that Revised LP-OLDF cannot separate SM
from the noise subspace. This is the reason why the Revised LP-OLDF cannot
make NM = 0 for all of the linearly separable subspaces (Fact1). We examine the
correlation of the genes contained in the signal subspace, and it was found that they
are all fairly high-positive correlations. Moreover, we explain the reason why the
statistical methods cannot find Fact3.

From Chaps. 5 to 9, we introduce the cancer gene diagnosis of other five
datasets. Those datasets are Golub dataset (Science 286(5439): 531–537. 1999),
Shipp dataset (Nature Medicine 8(1.1): 68–74. 2002), Chiaretti dataset (Blood 103:
2771–2778. 2004), Singh dataset (Cancer Cell 1(1.1): 203–209. 2002), and Tian
dataset (The New England Journal of Medicine, 349: 2483–2494. 2003). Each
chapter shows different verification results to explain Problem6 and Problem7.

In Chap. 10, we will discuss three LINGO programs. The first model is the
LINGO sample model developed by Schrage, which is explained by common data
such as Swiss banknote data, Japanese automobile data, and iris data. Since the
high-dimensional gene datasets are unfamiliar for a statistical user, the threshold is
high for statistical users. By explaining genetic diagnosis with common data,
familiarity is born even for general statistical users. In particular, Swiss banknote
data and Japanese automobile data are LSD, but RatioSV is very small, less than 0
0.1% as same as BGSs. This contrasts with the genetic diagnosis. With these
programs, not only microarrays but also other data can easily be decomposed by
RIP. This will be useful for research on marketing and exam questions and product
characteristics as a new research theme to classify many variables. We are released
from the curse of high-dimensional data and prove the theory can solve six prob-
lems of discriminant analysis.
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evaluates eight LDFs such as three OLDFs, three SVMs, logistic regression, and
Fisher’s LDF. Moreover, Method2 firstly succeeds in the cancer gene analysis
using six microarrays as follows:

(1) RIP and Fact1 solve Problem1.
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M2s of RIP are better than those of other seven LDFs. These facts show LDFs
based on MNM criterion do not overestimate the validation samples.

(4) Method2 and RIP solve Problem5.

Problem1 All LDFs cannot discriminate the cases on the discriminant hyper-
plane. This is one of the defects of NM.

Problem2 All LDFs, except H-SVM and RIP, cannot recognize linearly
separable data (LSD) theoretically. Error rates of discriminant
functions based on variance–covariance matrices are very high.

Problem3 The defect of the generalized inverse matrix technique and quadratic
discriminant function (QDF) misclassifies all cases as other classes for
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solves Problem3.

Problem4 Fisher never formulated an equation for the standard error of the error
rate and discriminant coefficient. Method1 offers a 95% confidence
interval (CI) for the error rate and coefficient. Because M1 and M2 are
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the 95% CI of the error rate.

Book3 discusses two problems and two facts.

Matryoshka We call all linear separable gene space, and subspaces are
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equal to n. LINGO Program3 of RIP finds all SMs correctly.
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Problem5 From 1970, many researchers could not succeed in the cancer gene
diagnosis. Three OLDFs and H-SVM find the microarrays are LSD
(Fact3). Moreover, only RIP and Revised LP-OLDF can decom-
pose the microarrays into many SMs and noise subspace. These
facts show RIP and Revised LP-OLDF make feature selection and
separate signal gene subspace from noise subspace naturally.
Method2 of RIP finds a surprising structure of the microarrays
those are the exclusive unions of many SMs. Therefore, we can
analyze all SMs for the cancer gene diagnosis.
However, Method2 of H-SVM cannot decompose the microarrays
into SM because QP finds only one H-SVM on the whole domain.
H-SVM needs to compute all possible models to find SM.

Problem6 Although the microarrays and all SMs are LSD, statistical methods
cannot find the linear separable facts. Book3 explains this reason.

Problem7 We must survey the categories of many SMs and explain the
relation of SM and BGS. This theme will be explained by the next
book (Book4).

Fact3 Because the six microarrays are LSDs and the two classes are
completely separated in the high-dimensional gene space, LSD is
an important signal for cancer gene diagnosis.

Fact4 OnlyRIP andRevisedLP-OLDFcan decompose sixmicroarrays into
several SMs (signal, MNM = 0) and noise subspace (MNM> = 1).
H-SVM cannot find SM.

Fact5 All SMs are small samples, but not all statistical methods can show
linearly separable signs for all SMs. Only logistic regression can
correctly discriminate all SMs, and all NMs are empirically zero
because it is free from Fisher’s assumption.

Problem6 RatioSV of many RipDSs is large and easy to discriminate two
classes correctly, but statistical methods other than logistic
regression are utterly useless. We discuss this reason in Chap. 4.
RipDS data gives a hint in this chapter. It seems that the signal
found by the RIP and logistic regression may have small variations
that are hidden by massive variations of noise. Problem6 is the
second reason why many researchers could not find useful meaning
in microarrays
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Chapter 1
New Theory of Discriminant Analysis
and Cancer Gene Analysis

Abstract This chapter explains the “New Theory of Discriminant Analysis after
R. Fisher (Theory)” and the first success of cancer gene analysis as its application
(Problem 5). The theory consists of four Optimal Linear Discriminant Functions
(Optimal LDFs, OLDFs), two facts of discriminant analysis, two methods, and two
statistics such asMNMand RatioSV. Section 1.1 summarises the theory and explains
new results. Section 1.2 explains two facts as follows: (1) the relation of NMand LDF
coefficient that solves Problem 1 (the defect of NM). (2) MNMmonotonic decrease
that is important for Problem5. Furthermore, we explain the reason why statisticians
andmachine learning researchers could not solve the cancer gene analysis since 1970.
Only RIP and Revised LP-OLDF can decompose microarrays into many SMs. This
fact is vital for cancer gene diagnosis. Section 1.3 introduces five severe problems
of discriminant analysis. Section 1.4 introduces four OLDFs and three SVMs in
addition to statistical discriminant functions. Section 1.5 explains the Matryoshka
feature selection method (Method2) that solves Problem5 completely. Section 1.6
describes how to validateMethod2 by two common data such as Swiss banknote data
and Japanese car data those are LSD. Thus, this section indicates Method2 is useful
for LSD including the common data and microarrays. Section 1.7 is the conclusion.
We can explain the reason why only RIP and Revised LP-OLDF can decompose the
microarray into many SMs. This reason is the answer why statisticians and machine
learning researchers could not solve the cancer gene analysis since 1970.

Keywords Microarrays · Cancer gene analysis · Matryoshka feature selection
method (Method2) · Small Matryoshka (SM) · Revised IP-OLDF (RIP) ·
Minimum number of misclassifications (MNM) · Relation of NM and LDF
(Fact1) · Monotonic Decrease of MNM (Fact2)

1.1 Introduction

We found five serious problems of discriminant analysis (Shinmura 2014a, 2015c,
d) through our discriminant analysis research after 1973 (Shimizu et al. 1975; Shin-
mura et al. 1973, 1974, 1983, 1987; Nomura and Shinmura 1978; Shinmura and
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2 1 New Theory of Discriminant Analysis and Cancer Gene Analysis

Miyake 1979; Shinmura 1984, 2001). We developed the new theory of discriminant
analysis (Theory; Shinmura 2016d) that consists of four optimal linear discrim-
inant functions (optimal LDFs, OLDFs) using mathematical programming (MP),
two methods, and two statistics such as the minimum number of misclassifications
(minimumNM,MNM) and RatioSV after 1997. Theory solved five problems of dis-
criminant analysis completely. Especially, IP-OLDF and Revised IP-OLDF (RIP)
defined by integer programming (IP) are very important LDFs based on MNM cri-
terion (Shinmura 1998, 2000a, b, 2003, 2004, 2005, 2007a, b, 2011a; Shinmura and
Tarumi 2000). All LDFs, except for IP-OLDF and RIP, use the NM that has many
defects (Problem1). On the other hand, MNM is the best statistic in the discrimi-
nant analysis instead of NM. Let us consider the two-class discrimination of data
with n cases and p variables. Because the formulation of IP-OLDF is shown on the
p-discriminant coefficient space by fixing discriminant intercept � 1, it can reveal
the relation of NM and LDF coefficient clearly (Fact1) and introduce MNM that is
important statistics for LSD (Fact2). However, IP-OLDF cannot find a right vertex of
an optimal convex polyhedron (optimal CP, OCP) if data does not satisfy the general
position (Shinmura 2000a). Thus, we developed RIP that looked for the interior point
of OCP. Only RIP can solve Problem1. Because Revised LP-OLDF is weak for Prob-
lem1, it cannot find all SMs from the microarray explained in Chap. 4. Moreover,
other NMs and error rates of LDFs may not be correct. Only RIP and hard-margin
SVM (H-SVM; Vapnik 1995) can discriminate LSD theoretically. Thus, statistical
discriminant functions based on the variance–covariance matrix are useless for LSD-
discrimination, especially cancer gene analysis using microarrays (Problem2). This
is the reason why researchers could not solve the cancer gene analysis since 1970.
Although the generalized inverse matrix has a fatal defect (Problem3), Problem3
is not important for Problem5. Because Fisher never defined the standard error of
discriminant coefficient and error rate (Problem4; Miyake and Shinmura 1976), we
developed the 100-fold cross-validation for a small sample (Method1; Shinmura
2013; 2014c; 2015a). Although most cancer gene researchers validated their results
by the leave-one-out (LOO) procedure (Lachenbruch and Mickey 1968), we do not
validate our results by Method1 because two classes are completely separable in the
microarrays and all SMs. RIP and twomethods solved five problems. Especially, RIP
and theMatryoshka feature selection method (Method2) solved cancer gene analysis
as its application in 2015 (Problem5).

Section 1.2 explains two new facts of discriminant analysis as follows:

(1) The relation of NM and LDF coefficient that solves Problem1 (the defect of
NM).

(2) MNM monotonic decrease that is important for Problem5.

We explain the reason why statisticians and machine learning researchers could
not solve the cancer gene analysis since 1970. Furthermore, only RIP and Revised
LP-OLDF can decompose microarrays into many SMs.

Section 1.3 summarizes five severe problems of discriminant analysis and three
difficulties of Problem5. Section 1.4 explains fourOLDFs and threeSVMs in addition
to statistical discriminant functions.
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Section 1.5 explains Method2 that solves Problem5 entirely and introduces the
RatioSV. Section 1.6 describes how to validate Method2 by two common data such
as Swiss banknote data (Flury and Riedwyl 1988) and Japanese car data (Shinmura
2016c) those are LSD. Thus, this section indicatesMethod2 is useful for LSD includ-
ing the common data and microarrays. Section 1.7 is the conclusion.

In this chapter,we can explain the reasonwhyonlyRIP andRevisedLP-OLDFcan
decompose the microarray into many SMs. This result is the answer why researchers
could not solve the cancer gene analysis since 1970 (Shinmura 2018a, b).

After all, gene analysis of microarray was possible by discriminant analysis
defined bymathematical programming (MP). Since Chap. 2 and later, it was possible
to divide the microarray into many small subspaces (SMs) that are easy to handle, so
we propose various approaches for genetic diagnosis of cancer by statistical analysis.

1.2 Fundamental of Theory

1.2.1 The Motivation of Our Research

Although we developed a diagnostic logic of Electrocardiogram (ECG) data by
Fisher’s LDF and the quadratic discriminant function (QDF) from 1971 to 1974,
our research was inferior to the decision tree logic developed by the medical doctor
(Shinmura et al. 1973, 1974). After this experience, we concluded these discrimi-
nant functions are not adequate for the discrimination of the normal and abnormal
subjects because of two main reasons as follows:

(1) There are many patients (cases) nearby the discriminant hyperplane. The doctor
is trying to discriminate the case (patient) near the discriminant hyperplane.
Exam scores and rating data have the same characteristic. Most statisticians do
not understand our claim because they are not interested in real data analysis.

(2) If the value of some variable increases or decreases continuously, the probability
of belonging to abnormal disease increases from 0 to 1. Fisher’s LDF assumes
the typical abnormal patients are the average of the abnormal class. However,
typical cases of patients are far from healthy subjects. We proposed “Earth
Model” in medical diagnosis (Shinmura 1984).

(3) The normal group is the land, and the abnormal group is the mountain range.
The discriminant hyperplane is the horizontal line. While many patients locate
near the horizon, a typical patient is at the summit. Taguchimethod (Taguchi and
Jugular 2002) was one of multi-class discrimination by Mahalanobis distance
based on the variance–covariance matrices. Our claim is the same perception
as Taguchi theory. Although the pass/fail determinations using exam score data
are LSD, we observed several error rates are over 20%. These results are caused
by many pass students nearby the discriminant hyperplane obtained by Fisher’s
assumption. Since these data do not satisfy the Fisher hypothesis, the hyperplane
obtained based on the normal distribution does not coincide with the actual
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distribution, and it misclassifiesmany successful applicants. Although this book
illustrates the twoclasses are separable inSMs, the error rates of SMby statistical
LDF are very high.

(4) If some independent variable of logistic regression increases or decreases, the
probability “p” belonging to class1 (normal symptom) increases from 0 (class1)
to 1 (class2). This way is suitable for medical diagnosis and is the same as our
claim. Moreover, the maximum likelihood method developed by Fisher solves
logistic regression coefficients (Cox1958). It finds the coefficients that fit the real
data and can almost discriminate LSD correctly. Thus, most Japanese medical
researchers use logistic instead of Fisher’s LDF empirically. Because JMP does
not support logistic regression for high-dimensionalmicroarrays, we cannot dis-
criminate the microarrays by logistic regression. Even if the logistic regression
could discriminate the microarray into two classes, most of the coefficients are
not zero like H-SVM, as inferred from common data discrimination results.

(5) Many statisticians focus on RDA (Friedman 1989) and LASSO (Simon et al.
2013) based on the variance–covariancematrix, but these discriminant functions
are not suitable for medical diagnosis, especially cancer gene analysis. With
these methods, we cannot distinguish between two classes like Fisher’s LDF.
Cox extends the new frontier of second-generation discriminant analysis, and
logistic regression is the best way of statistical LDF. Also, Vapnik opened a new
boundary for MP-based LDF after the first generation summarized by Stam
(1997). He disseminated SVM in the field of pattern recognition and avoided
the research area on statistics and operations research (OR).Hewas able to avoid
statisticians and OR researchers from ignoring SVM in the same way as us and
refusing. H-SVM and kernel SVM apply to many kinds of data. However, as far
as we know, there are few comparisons with other LDFs, and H-SVM clearly
defines LSD-discrimination, but there is no research of LSD-discrimination.

1.2.2 IP-OLDF Based on MNM Criterion and Two Facts

Above ECG failure was our motivation to develop theory. After many experiences
of the discriminant analysis, we developed IP-OLDF based on MNM criterion in
Eq. (1.1) (Shinmura 1998). Because we fix the intercept of IP-OLDF to one, we
can define it in the p-dimensional coefficient space instead of (p + 1)-dimensional
space. Although

(
txib + 1

)
is a discriminant score (DS), we use the extended DS

such as yi ∗
(
txib + 1

)
. It is a linear hyperplane and divides discriminant space into

two half-planes such as plus half-plane
(
yi ∗

(
txib + 1

)
> 0

)
and minus half-plane(

yi ∗
(
txib + 1

)
< 0

)
. If we choose bk in plus hyperplane as LDF coefficient, LDF

such as yi ∗ (
tbkxi + 1

)
discriminates xi correctly because of yi ∗ (

tbkxi + 1
) �

yi ∗
(
txibk + 1

)
> 0. On the other hand, if we choose bk in minus hyperplane, LDF

misclassifies xi because of yi ∗
(
tbkxi + 1

) � yi ∗
(
txibk + 1

)
< 0. However, we must

solve the other two models such as the intercept � −1 and 0. Setting the intercept
as arbitrary positive real value is the similar result obtained by intercept � 1.



1.2 Fundamental of Theory 5

It looks for the right vertex of an OCP if data is a general position. There are only
p-cases on the discriminant hyperplane, and it becomes the vertex of correct OCP.
On the other hand, if data is not general position, it may not look for the right vertex
of OCP because there are over (p + 1) cases on the discriminant hyperplane, and
we cannot correctly discriminate these cases (Problem1). Thus, we developed RIP
that looks for the interior point of right OCP in Eq. (1.4). Equation (1.1) defines IP-
OLDF based on MNM criterion after the heuristic approach (Miyake and Shinmura
1980). The ei is a 1/0-binary integer, and IP defines IP-OLDF. If the extended DS
classifies the case xi correctly, the ei becomes zero. Otherwise, if the extended DS
misclassifies the case xi, it becomes one. Thus, the minimum value of the objective
function is the minimum NM. If data is LSD, NM becomes MNM � 0. It looks for
the vertex of a correct OCP if data is a general position. There are only p-cases on
the discriminant hyperplane, and it becomes the exact vertex of OCP. However, if
data is not the general position and the vertex consist of over (p + 1) cases, the vertex
may not be the correct vertex of OCP. Because all the LDFs correctly discriminate
just the same case, these LDFs are equivalent. There are only a finite equivalent
LDFs corresponding to a limited number of CPs. Thus, all interior points of each CP
correspond to each equivalent LDF.

MIN � � ei;

yi ∗
(
txib + 1

)
>� − M ∗ ei; (1.1)

ei 0/1 integer variable corresponding to classified/misclassified cases.
yi 1/−1 for class1 /class2 or object variable.
xi p-independent variables.
bi discriminant coefficients.
M big M constant such as 1,000.

If we exchange xi and bi, we understand IP-OLDF on data space. This model
indicates two relevant facts as follows.

(1) Fact1: We explain the notation of IP-OLDF by the Golub microarray. It consists
of two classes such as All (47 cases) and AML (25 cases) with 7,129 genes.
Our primary concern is to discriminate two classes by 7,129 variables (genes)
correctly. The 72 linear hyperplanes, the 7,129 coefficients of those are values of
each case, divide the 7,129-dimensional discriminant coefficient space into finite
CP. The interior points of each CP correspond to the discriminant coefficient
of LDF that discriminates the same cases correctly and misclassifies another
same case. Thus, because the internal points of each CP have unique NM, we
can define the OCP with MNM. Many examinations show the best models
(Shinmura 2016b) of RIP are better than other seven LDFs by Method1.

(2) Fact2: Let MNMk be MNM in the k-dimensional subspace. MNM decreases
monotonously (MNMk >� MNM(k+1)). If MNMk � 0, all MNMs including
these k variables (genes) are zero. We call the minimum-dimensional SM as
Basic Gene Sets (BGS) that is as same as the Yamanaka’s four genes in iPS
research. Yamanaka’s three genes do not produce iPS cell. If we drop one gene
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from BGS, MNM is greater than one. We consider “MNM � 0” equals to
produce iPS cell. This fact tells us BGS can completely describe theMatryoshka
structure of gene space by monotonic decreases of MNM.1 “MNM monotonic
decrease” is the same idea as the Matryoshka structure of microarray. However,
iPS cell does not have the characteristics of “MNMmonotonic decrease.”When
we discriminate all possible models of Swiss banknote data [Shinmura 2016d
(Chap. 6)], IP-OLDF finds a two-variable model, such as (X4, X6), is unique
BGS. By the monotonic decrease of MNN, 16 MNMs including BGS are zero
among 63models (=26 − 1� 63). Other 47MNMs are greater than one.We can
define 16 models as the signal, and 47 models are noise. However, there was no
precise definition of signal and noise until nowbecause researchers did not know
microarrays are LSD and have Matryoshka structure. This book claims that the
16models are signals, and the other 47 models are noise in LSD-discrimination.
Because we had already LSD-discrimination study by common data, we could
solve the cancer gene analysis in 54 days in 2015.

1.2.3 Simple Example

IP-OLDF can explain the relation of NMs and discriminant coefficients clearly
(Fact1). Let us consider the discrimination using three cases and two variables
(n � 3, p � 2) as follows:

Class1 (y1 � 1): case1 � (−1/18, −1/12)
Class2 (y2 � −1, y3 � −1): case2 � (−1, 1/2), case3 � (1/9, −1/3).

Equation (1.2) defines the model of IP-OLDF (Shinmura 2000a, b). We need to
be aware that y2 � y3 � −1. To multiply y2 and y3 changes the signs of case2, case3,
and constant. This role of yi aligns the inequality signs with case1 (Class1). However,
Schrage (2006) proposes the LDF that does not change the sign of data in Chap. 10.

MIN � � ei;

y1 ∗ {−(1/18) ∗ b1 − (1/12) ∗ b2 + 1} >� − e1;

y2 ∗ {−b1 + (1/2) ∗ b2 + 1} >� − e2;

y3 ∗ {(1/9) ∗ b1 − (1/3) ∗ b2 + 1} >� − e3; (1.2)

We consider three linear equations in Eq. (1.3) from the three constraints of
Eq. (1.2).

H1 � −(1/18) ∗ b1 − (1/12) ∗ b2 + 1 � 0,

H2 � b1 − (1/2) ∗ b2 − 1 � 0,

H3 � −(1/9) ∗ b1 + (1/3) ∗ b2 − 1 � 0 (1.3)

1Chapter 6 (Shinmura 2016d) explains this problem in detail.
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Three linear equations divide the two-dimensional coefficient space into seven
CPs in Fig. 1.1. The number of CP is NM of each LDF that equals the number
of minus half-planes of Hi(b) that surrounds CP. The interior point in the triangle
locates in three-plus hyperplanes, NM of which is zero and MNM. This triangle
becomes a feasible region and optimal CP (OCP) for IP-OLDF. This OCP has a
special feature because all interior points have the same values such as MNM � 0.
Thus, all points of OCP become the optimal solutions. Because two linear equations
make three vertexes of OCP, this data is general position and free from Ploblem1.
Because n � 3 and p � 2, the two linear equalities (p � 2) chosen from three cases
(n � 3) make three intersections of the feasible region. In the common data (n >
p), the dimension of a vertex is less than p. In the high-dimensional data such as
microarrays (n� p), this graph explains the dimension of a vertex is less than n. This
fact indicated RIP and Revised LP-OLDF defined by LP can find SM having less
than n genes at the first iteration (Shinmura 2018a, b). NMs of three opposite CPs of
OCP are one. Namely, NMs of adjacent CPs differ by 1. Although we fix the constant
to one, we must solve three models as follows: the constant � 1, the constant � −1,
and the constant � 0, because we cannot decide the sign of discriminant score (DS)
a priori. When we fix the constant � 2, Fig. 1.1 is similarly enlarged to twice.

Fig. 1.1 Relation of NM
and discriminant coefficient

1.2.4 Ordinary LP Solution

We explain the ordinary MP model by Eq. (1.3′). Change the objective function to
“MIN � � 2 * b1 + 3 * b2;” Fix the three binary variables to zeros such as ei � 0
(i � 1, 2, 3). This model consists of n � 3 and p � 2 (n >� p). The feasible region
of b1 and b2 is triangles in Fig. 1.1.
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MIN � 2 ∗ b1 + 3 ∗ b2;

(1/18) ∗ b1 + (1/12) ∗ b2 + 1>� 0;

− b1 + (1/2) ∗ b2 + 1�< 0;

(1/9) ∗ b1 − (1/3) ∗ b2 + 1�< 0; (1.3′)

The optimal solution is (b1, b2) � (3, 4) at the intersection with the second and
third constraints. The minimum value is 18. In this way, the LP solution usually
selects one of the vertexes of the OCP obtained by selecting p constraints from n
constraints. On the other hand, because the gene data is (p � n), the intersection
becomes at most n simultaneous equations by setting (p−n) genes to zero. If we list
up all the candidates and assign them to the objective function, the brute forcemethod
obtains the minimum solution, also. However, the simplex method of LP algorithm
can do this efficiently. In the IP model, the executable area of the LP model is limited
to the integer variable specified. However, because the ei do not affect the feasible
region, RIP and IP-OLDF have the same feasible region as Revised LP-OLDF. Thus,
RIP and Revised LP-OLDF can find the optimal subspace having less than same n
genes at the first step of Method2 and decompose microarrays into many SMs (new
Fact4). On the other hand, three SVMs find the only one optimal SVMs on the
whole domain. These facts are the reason why no statisticians and machine learning
researchers could not solve the cancer gene analysis since 1970 (Shinmura 2018a, b).

1.3 Five Serious Problems and Three Excuses

We found five severe problems and two facts of discriminant analysis (Shinmura
2016d). Moreover, theory solved five problems introduced in Chap. 1. After Chap. 2,
we discuss two new problems and two new facts of cancer gene diagnosis.

1.3.1 Four Problems

Problem12

The discriminant rule is straightforward. However, most researchers believe in the
wrong law. Even now, they think that the following law is correct.

(1) If f(xi) >� 0 and xi belongs to class1, xi belongs to class1 correctly (TP).
Otherwise, if f(xi) >=0 and xi belongs to class2, xi is misclassified to class1
(FP).

2Chapter 1 (Shinmura 2016d) explains this problem in detail.

https://doi.org/10.1007/978-981-13-5998-9_1
https://doi.org/10.1007/978-981-13-5998-9_1
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(2) If f(xi) < 0 and xi belongs to class2, xi is classified to class2 correctly (TN).
Otherwise, if f(xi) < 0 and xi belongs to class1, xi is misclassified to class2 (FN).

(3) NM is defined by (FP + FN).

They misunderstand as following two points:

(1) Generally speaking, it is not possible to determine to which class the case on
the discriminant hyperplane belongs.

(2) If f (xi) >� 0 by statistical LDF, we cannot decide that xi belongs to class1 a
priori.

The values of yi are 1 for class1 with a symbol � and −1 for class2 with symbol
× in the graphs of this book. The yi is the objective variable of the regression model
also. Let f(x) be LDF and yi * f(xi) be an extended discriminant score (DS) for xi.
In the MP-based LDF, the following rule is correct.

(1) If yi * f(xi) > 0, xi is classified to class1/class2 correctly.
(2) If yi * f(xi) < 0, xi is misclassified to class1/class2 correctly.
(3) We cannot properly discriminate xi on the discriminant hyperplane (f(xi) � 0).

Many researchers ignored this unsolved problem until now. Fact1 found by
IP-OLDF solved this Problem1 completely.

Only RIP can treat this Problem1 appropriately. Indeed, except for RIP, no LDFs
can count the NMs correctly. These LDFs should count the number of cases where
f(xi) � 0 and display this figure h alongside the NM in the output. The correct NM
may increase up to h.

Student data3 (Shinmura 2010a) tells us the defect of IP-OLDF caused by Prob-
lem1. Thus, we developRIP. RIP looks for the interior point of OCP.Only the internal
points of CP avoid the cases on the discriminant hyperplane explained by Fact1. The
vertex and edge of CP have over p-cases on the discriminant hyperplane. If another
LDF corresponds to the vertex of CP, it cannot avoid Problem1. Indeed, except for
RIP, no LDFs can count the NMs correctly because these LDFs may choose the
vertex or edge of CP.

Problem24

Only H-SVM and RIP can recognize LSD theoretically. Although many statisticians
and users use NM, without doubt, LSD-discrimination reveals NM is not reliable
because each LDFs have different NM and we get different NM by the change
of discriminant hyperplane. Experimentally, Revised LP-OLDF discriminates LSD
correctly. Nevertheless, it tends to collect cases on the discriminant hyperplane
(Problem1). If we discriminate exam scores by two testlets score such as T1 and
T2, and the pass mark is 50 point, we can obtain a trivial LDF such as f � T1 +
T2 − 50 [Shinmura 2015b, 2016d (Chap. 5)]. Although these data are LSD, NMs

3Chapter 4 (Shinmura 2016d) explains this problem in detail.
4Chapters 4–8 (Shinmura 2016d) explains this problem in detail.
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or error rates are very high. Furthermore, seven LDFs,5 except for Fisher’s LDF,
become the same trivial LDFs if we divide all coefficients by the intercept value and
fix the intercept � 1. We can judge the student pass the exam if f(xi : T1, T2) >� 06

and fail the exam if f(xi) < 0. However, error rates of Fisher’s LDF and QDF based
on variance–covariance matrices are very high because exam scores do not satisfy
Fisher’s assumption (Shinmura 2016c). Thus, these LDFs are useless for important
applications such as cancer gene analysis in addition to medical diagnosis, pattern
recognition, and different rating.

Problem37

Problem3 is the defect of the generalized inverse matrix technique. When we dis-
criminated math exam scores by QDF and RDA, all successful students were mis-
classified in the failed class because all successful students correctly answered a few
questions and the answers of failed students are scattered. In this case, if we add slight
random noise to the constant values, we can solve Problem3 completely. Moreover,
discriminant functions based on the variance–covariancematrix cannot correctly dis-
criminate LSD, such as many SMs in addition to Swiss banknote data, Japanese car
data, pass/fail determination using examination scores, and student linearly separable
data.

Problem48

Fisher never formulated the equation of SE of discriminant coefficients and error
rates based on the normal distribution. Because there is no model selection pro-
cedure instead of the LOO procedure in the discriminant analysis, we propose
Method1. It offers the 95% CIs of error rates and discriminant coefficients. More-
over, it provides a simple and powerful model selection procedure such as the best
model. We confirmed the best models of RIP were better than Fisher’s LDF, logistic
regression, and five MP-based LDFs using six common data. JMP script of Fisher’s
LDF and logistic regression discriminates these data. SAS Institute Japan Ltd. JMP
Japan Division supported us to develop the script of Method2. LINDO Systems Inc
(Schrage 1991, 2006) supported six MP-based LDFs by LINGO Program2.9 We can
establish the theory by JMP and LINGO in 2015.

5We compare eight LDFs such as three OLDFs, three SVMs, logistic regression, and Fisher’s LDF
in addition to QDF.
6Since the discrimination rule is defined with two scores, the path class contains an equal sign.
7Chapter 7 (Shinmura 2016d) explains this problem in detail.
8Chapters 2–7 (Shinmura 2010a, 2016d) explains this problem in detail.
9Chapter 9 (Shinmura 2016d) explains this problem in detail.
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1.3.2 Problem510

Since 1970, many researchers were struggling to select cancer gene features from
the microarrays. However, when we discriminate six microarrays by three Revised
OLDFs, MNM, and two NMs are zero, and most of the coefficients become zero
(Fact3). This fact implies three OLDFs can select cancer genes naturally without
feature selection method. Moreover, we established Method2 within 54 days and
found all SMs of six microarrays (Fact4). On the other hand, we spent three years to
solve Problem3. This comparison tells us that the theory is most suitable for cancer
gene analysis because we study LSD-discrimination by common data. It finds the
surprising fact the microarrays consist of the disjoint unions of many SMs and noise
gene subspace (MNM > 0). Until now, many researchers analyze high-dimensional
gene spacewith noise directly by standard statisticalmethods and could not obtain the
meaningful results. Everybody can analyze eachSMby thesemethods now.Those are
one-way ANOVA, t-test, correlation analysis, hierarchical cluster analysis, principal
component analysis (PCA), QDF, logistic regression, and Fisher’s LDF (Fisher 1936,
1956)

1.3.3 Three Excuses of Cancer Gene Analysis

Since 1970 (Golub et al. 1999), many researchers are struggling to select a cancer
gene (Problem5). They pointed out the three difficulties (or excuses) about cancer
gene analysis as follows:

(1) Small n and large p data (Diao and Vidyashankar 2013, Buhlmann and Geer
2011)

To estimate the variance–covariance matrices for small n and large p was difficult
for statistical discriminant functions based on the variance–covariance matrices. On
the other hand, MP-based LDFs are free from this difficulty. Sall (1981) announced
Fisher’s LDF for high-dimensional microarrays by the singular value decomposi-
tion (SVD) at the Discovery Summit in Tokyo, November 2015. However, when
Fisher’s LDF discriminated the microarrays, six NMs were not zero in Table 1.1.
This fact is the defect of discriminant analysis based on variance–covariance matri-
ces. In addition, discriminant functions bymaximizing the correlation ratio could not
discriminate LSD correctly for many data. Only two standards such as the maximiza-
tion of SV distance by H-SVM and RIP based on MNM criterion can discriminate
LSD theoretically. Moreover, six MP-based LDFs discriminate the small n and large
p data compared with the large n and small p data easily.

10Chapter 8 (Shinmura 2016d) explains this problem in detail.
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(2) Statistical feature selection is NP-hard (Charikar et al. 2000)

In general speaking, it is challenging to select proper cancer genes for large p vari-
ables by statistical discriminant functions. Many statisticians do not understand that
“feature selection” is finding one of the optimal solutions of subspaces from p-
dimensional space. In general, the statistical discriminant function finds one LDF
on the p-dimensional domain. To see the optimum LDF of the subspaces needs a
stepwise variable selection procedure or all possible models (Goodnight 1978) to
search all optimal subspaces such as SMs. If p is gigantic, it will surely be NP-hard.
However, the LDF formulated with LP and IP can find one of the optimumOLDFs of
subspaces as explained in Sect. 1.2.1. However, because the SVM expressed by QP
finds the only SVM’s coefficient to maximize/minimize the objective function in the
p-dimensional space, it needs feature selection as same as the statistical discriminant
functions (NP-hard).

Because the microarrays are LSD, six MP-based LDFs can discriminate the
microarrays within 10 s. B and B algorithm of LINGO IP solver has the same algo-
rithm to compute all possible models. Thus, RIP can find SM among the massive
number of MNM � 0 on gene subspaces. Moreover, Revised LP-OLDF defined by
LP finds the vertex of the feasible region made by n constraints in the first step
(Shinmura 2018a, b). The vertex is an intersection point of n constraint equations
and corresponds to a subspace of p-dimension (p � n).

On the other hand, SVM can find only one optimal SVM for high-dimensional
gene space (whole domain) and cannot find SM that is one of the small gene sub-
spaces. Because QP defines SVM, it can see only oneminimum ormaximum optimal
solution of the quadratic objective function. Thus, SVM must compute all possible
models for large p genes. This computation is NP-hard because there is no efficient
algorithm such as the B and B algorithm. Revised LP-OLDF can decompose the
microarrays into another combination of SMs as same as RIP. However, it cannot
find all SMs from the microarray introduced in Chap. 4.

(3) The signal is buried in noise (Brahim and Lima 2014)

This difficulty is unclear because the definition of signal and noise is not defined
explicitly until now. Alternatively, it may only refer to the signal/noise ratio used in
the paper by Golub et al. We claim the gene sets included in each SM or BGS is
cancer gene set and signal because two classes are entirely separable in SM. Until
now, because no researchers knew this critical Fact3, they could not define oncogenes
of microarrays clearly. We can decompose signal subspace into many SMs (Fact4).
Thus, RIP can separate the microarrays into signal and noise naturally. Also, RIP
decomposes signal subspace into many SMs that are small signals. Although to
measure microarray is expensive, to measure SM saves the expense for cancer gene
diagnosis if we can decide the best SM for cancer diagnosis (Shinmura 2017a, b, c)
that is the future work (Problem7). In this book, we solve the following Problem6
explained after Chap. 3.

Problem6:Why can no researchers find the linear separable facts in SM since 1970?
We could solve five problems and found two facts. In this book, we discuss two

new problems and two new facts. Only RIP, Revised LP-OLDF, and H-SVM find
the microarrays are LSD (Fact3), and RIP and Revised LP-OLDF can decompose



1.3 Five Serious Problems and Three Excuses 13

the microarrays into many SMs (Fact4). At first, because all SMs are small samples,
the standard statistical methods can easily find the linear separable facts that two
classes are entirely separable in all SMs. However, only RIP, Revised LP-OLDF,
and logistic regression can find the linear separable facts. From Chaps. 3–9 examine
several approaches and explain the several reasons for Problem6.

1.4 Four OLDFs and MNM Instead of NM

We developed four OLDFs, two facts, two methods, and two statistics such as MNM
andRatioSV. Those LDFs are IP-OLDF, RIP, Revised LP-OLDF, andRevised IPLP-
OLDF (Shinmura 2010b, 2014b) that is the mixture model of Revised LP-OLDF
and RIP. Thus, we do not focus on Revised IPLP-ODF in this book. IP-OLDF found
two facts about LDF. Those are (1) the relation of NM and the LDF discriminant
coefficients, and (2) MNM monotonous decreases. Two methods are Method1 and
Method2. Six MP-based LDFs by LINGO Program2 and two statistical LDFs by
JMP discriminate all possible models of 100 training samples of six different types
of common data and compute the minimummeans of 100 error rates (M1) in the 100
training samples. BecauseM1 decreases monotonously as same asMNM,M1s of the
full model are always theminimum value. Thus,M1 is not proper for model selection
statistic. Obtained LDFs are applied for the 100 validation samples and choose the
bestmodelwith theminimummeans of 100 error rates in the validation samples (M2).
We confirmed the M2s of RIP are less than those of the other seven LDFs. Although
some referees of Japanese statistical journal rejected heuristic OLDF based onMNM
criterion 38 years ago because MNM criterion overfitted for the training samples,
JSMEBE (Miyake and Shinmura 1980) accepted our paper later. Our best model
results prove the former journal referees were wrong. However, we do not discuss
Method1 in this book. We need not validate our findings by Method1 because two
classes are entirely separable in SM. RIP and two methods solved five problems of
discriminant analysis, and we established the theory in 2015. Notably, our theory
is the most suitable for cancer gene analysis as its application. On the other hand,
because all LDFs, except forRIP andH-SVM, cannot discriminateLSD theoretically,
these LDFs are useless for cancer gene analysis of microarrays.

1.4.1 Revised IP-OLDF and the Defects of Number
of Misclassifications

On the other hand, if data is not general position and there are over (p + 1) cases
on the discriminant hyperplane, it may not look for the vertex of correct OCP and
cannot discriminate these cases correctly. Thus, we developed RIP that looks for the
interior point of right OCP in Eq. (1.4) directly.
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MIN � �ei;

yi ∗
(
txib + b0

)
>� 1 − M ∗ ei; (1.4)

b0 free decision variables.
M 10,000 (Big M constant).
ei 1/0 binary integer.

Because b0 is the free variable, RIP is defined in (p + 1)-dimensional coefficient
space,11 and we cannot understand the relation of NM and LDF found by IP-OLDF
directly. If it discriminates xi correctly, ei � 0 and yi * (txib + b0) >� 1. If it cannot
discriminate xi correctly, ei � 1 and yi * (txib + b0) >� −9999. Although SV for
classified cases are yi * (txib + b0) � 1, SV for misclassified cases are yi * (txib
+ b0) � −9999. The binary decision variable chooses two alternatively. Thus, we
expect DSs of misclassified cases are less than −1, and there are no cases within SV.
SV is a window with length two that separate two classes completely for LSD. If
M is a small constant, it does not work correctly (Shinmura 2010a). Because there
are no cases on the discriminant hyperplane, we can understand the optimal solution
is an interior point of OCP defined by IP-OLDF in p-dimension space. All LDFs,
except for RIP, cannot solve Problem1 theoretically. Thus, these LDFs must check
the number of cases (h) on the discriminant hyperplane. Correct NM may increase
up to h. Problem1 suggests us the severe defects of NM that is not a reliable statistic
for the discriminant analysis as follows:

(1) Above fact shows NM is not a reliable statistic.
(2) Seven NMs, except for RIP, are often different. Moreover, MNM becomes the

lower limit of all NMs. If the data satisfies Fisher’s assumption, NM of Fisher’s
LDF decreases to MNM. Because there is no proper test statistic for Fisher’s
hypothesis, we can validate whether data satisfies it. If both values are similar,
we can judge data fills it.

(3) We need to select one of the prior probabilities. The first option is proportional
to 1:1 (Fisher’s LDF1). The second option is equivalent to the case numbers
(Fisher’s LDF2). Both NMs are often different. In statistical meaning, the first
option is better. However, because we must evaluate two statistical LDFs and
six MP-based LDFs, we choose the latter Fisher’s LDF2.

(4) Although LDF decides the discriminant hyperplane theoretically, we often
choose better result by changing the discriminant hyperplane. In the logistic
regression, we accept the minimum NM by changing the discriminant hyper-
plane on the receiver operating characteristic curve (ROC). If NM of logistic
regression is zero and MNM � 0 confirmed by RIP, we judge logistic regres-
sion can discriminate LSD correctly. However, some statisticians and users do
not trust logistic regression for LSD because of the defect pointed out by Firth
(1993).

11In pattern recognition, (p + 1) dimensional space with the intercept defines LDF.
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On the other hand, MNM is better than NM.

(1) Because MNM decreases monotonously, MNM of full model is always the
minimum value. Moreover, M1 is always the minimum value. We propose the
best model with M2 among all possible models. We examined the best models
of RIP are better than other best models of seven LDFs using five different
types of common data. Only the iris data (Anderson 1945) is almost the same
as MNM.

(2) For iris data, the best model of Fisher’s LDF is almost the same as that of RIP.
Fisher has chosen the better test data to validate Fisher’s LDF. In the discriminant
analysis, many researchers evaluate their results using this data. However, it is
not adequate for test data because it does not show the severe differences and
consists of only four variables. In Sect. 10.2.5, other OLDF based on MNM
criterion developed by Linus analyze this data. For a while, Japanese academic
journals asked to create and verify training and verification samples with the
normal random numbers. This request is an inaccurate request indicating the
goodness of the method made by assuming a normal distribution.

(3) For Swiss banknote data, the two-variablemodel such as (X4, X6) is BGS.How-
ever, the best model is a five-variable model such as (X1, X3–X6) [Shinmura
2016d (Chap. 6)]. This truth suggests us BGS is not proper for cancer gene diag-
nosis explained in Chap. 2. We discuss this theme in Chap. 3. In Sect. 10.2.1,
Linus OLDF analyzes this data.

(4) Japanese statistical referee rejected our paper about a heuristic OLDF based on
MNM criterion. He claimed MNM was the foolish discriminant criterion and
overestimated the training samples. However, the medical journal published
our paper (Miyake and Shinmura 1980) because the referees knew the real data
examination. The results of the best model proved the first claim was wrong
after 38 years later. Another referee rejected our paper in 2015. He claimed
the purpose of the discriminant analysis is to discriminate the overlapping data,
not LSD. However, he could not distinguish whether data is LSD or overlap
because he could not judge by “MNM � 0 or MNM >=1.” The reason why
many researchers could not be successful in cancer gene analysis is the lack of
knowledge of MNM.

(5) Moreover, we showed several error rates of Fisher’s LDF were very high for
LSD-discrimination. If medical researchers abandoned their research because
of high error rates, they have better reviewed their studies with RIP because they
can obtain a smaller error rate by RIP. RIP can solve Problem1 and Problem2.
Moreover, because it can naturally select features for common data and the
microarrays, it can explain Problem5. However, we develop more powerful
model selection procedure such as the best model. Thus, we had ignored the
natural feature selection for common data before Method2.
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1.4.2 Revised LP-OLDF and Revised IPLP-OLDF

If we change the 1/0 binary integer variable ei to a nonnegative real variable, RIP
changes to Revised LP-OLDF in Eq. (1.5). LP solves this model that is faster than
RIP. Because it tends to collect several cases on the discriminant hyperplane, we
recommend not to use it for the overlapping data because NM is not often correct
(Problem1). However, it can decompose the microarrays into another different com-
bination of SMs.We examine these SMs compared with SMs obtained by a RIP from
Chaps. 3–9.

MIN � �ei;

yi ∗ (txib + b0) >� 1 − M ∗ ei; (1.5)

ei nonnegative real values

Revised IPLP-OLDF is a mixture model of Revised LP-OLDF and RIP. In the
first step, Revised LP-OLDF discriminates all cases. In the second stage, RIP dis-
criminates the restricted cases fixing ei � 0 for classified cases in the first step. In
this book, we do not focus on Revised IPLP-OLDF precisely.

1.4.3 Hard-Margin SVM (H-SVM)

Vapnik proposed three different SVM models. H-SVM indicates the discrimination
of LSD clearly. IP-OLDF confirms that Swiss banknote data is LSD and realizes
the importance of Problem2. H-SVM adapted the maximization of the SV distance
to obtain an excellent k-variable model with good generalization ability, which is
similar to “not overestimating the validation data” in statistics. It is redefined to
minimize (1/distance of SV) in Eq. (1.6). H-SVM can discriminate the only LSD, not
overlapping data. This restriction might ignore the research of LSD-discrimination.
Some statisticians erroneously believe that LSD-discrimination is easy. In statistics,
there was no technical term for LSD before H-SVM. However, the condition “MNM
� 0” is the same as being linearly separable. Note that “NM � 0” does not imply
that the data is linearly separable. Also, because the correct NM may be higher than
the obtained NM, NM is not a reliable statistic. It is unfortunate that there has been
no research on LSD-discrimination for Problem5. Thus, many researchers cannot
select cancer genes naturally. We guess LASSO cannot discriminate LSD correctly
as same as Fisher’s LDF, also. Although H-SVM can discriminate the microarrays
accurately, it cannot find SM because of QP.

MIN � ||b||2/2; yi ×
(
txib + b0

)
>� 1; (1.6)

b: p-discriminant coefficients. b0: H-SVM constant
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1.4.4 Soft-Margin SVM (S-SVM)

Because real data is rarely LSD, most users use S-SVM defined in Eq. (1.7). S-SVM
permits certain cases that are not discriminated by SV (yi × (txib + b0) < 1). The
second objective is to minimize the summation of distances of misclassified cases
(�ei) from SV. The penalty c combines two objects. Revised LP-OLDF minimizes
the summation of misclassified distance from the discriminant hyperplane as same as
the second objective function in Eq. (1.7). This fact is crucial for cancer gene analysis
because Revised LP-OLDF can select SM. On the other hand, H-SVM and SVM4
cannot select SM. The Markowitz portfolio model (Markowitz 1959) that minimizes
risk and maximizes return is the same as S-SVM. Moreover, because all NMs of
SVM1 are often not zero, SVM1 is not used for cancer gene analysis. However, the
return is a constraint, and the objective functionminimizes the only risk. The decision
maker selects a solution on the efficient frontier. On the contrary, S-SVM does not
have the rule to determine a proper c as same as RDA; nevertheless, an optimization
solver solves it. Thus, we compare two S-SVMs, such as SVM4 (c � 10,000) and
SVM1 (c � 1). In many trials, NMs of SVM4 are less than NMs of SVM1. We
claim the methods with tuning parameters such as S-SVM and RDA are useless for
statistical users because they must pay their efforts to select the best parameters for
each data. On the other hand, althoughRIPmust set the bigM constant, we confirmed
M � 10,000 (or 1000) causes good results using six different types of common data
and all possible models. We surveyed and investigated to change the value M from
c � 0.1, 1, 10, 100, 103, 104 and 106 (Shinmura 2010a).

MIN � ||b||2/2 + c × �ei;

yi ×
(
txib + b0

)
>� 1 − M ∗ ei (1.7)

c penalty c for combining two objectives.
ei nonnegative real value.
M big M constant.

1.4.5 Statisticians Claim for MP-Based LDFs

Some statisticians claimedwe did not describe the algorismof fourOLDFs.Although
the notations of four OLDFs and three SVMs are similar, IP solver solves IP-OLDF
and RIP, LP solves Revised LP-OLDF, and QP solves three SVMs. Thus, IP, LP, and
QP solvers are the algorism of MP-based LDFs and conclude completely different
results. First, we must be aware of the optimization criteria. IP-OLDF and RIP use
MNM criterion. Revised LP-OLDF uses to minimize the summation of misclassified
distance from the SVs that is the same as the second object of S-SVM. H-SVM
maximizes the SV distance that is the same as the first object of S-SVM. Because
three SVMs cannot select feature naturally, their standard may cause these results,
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andQP solver prevents to find SMs typically. Second, wemust be aware the all points
of the feasible region are the optimal solutions. Moreover, three SVMs and Fisher’s
LDF accept each one optimal LDF on the whole gene space, not on the subspace. We
must understand the stepwise and all possible model methods are methods to find
the better model in the subspaces. On the other hand, the B and B algorithm of the
IP solver outputs many optimal LDFs in the whole gene space and many subspaces.

1.5 Matryoshka Feature Selection Method (Method2)
and RatioSV

1.5.1 Method2

Many statistical researchers have raised the above three excuses for reasons why
they could not succeed in Problem5. However, when we discriminated against six
microarrays downloaded from Higgins HP (Jeffry et al. 2006), the following surpris-
ing results were obtained.

(1) The microarrays are LSD (Fact3). To the best of our knowledge, there is no
research about LSD-discrimination. MNM decreases monotonously (MNMk

>� MNM(k+1)). If MNMk � 0, all MNMs including these k variables are zero
(Fact2). This fact is essential for cancer gene analysis. We call all linearly sepa-
rablemicroarray and subspaces asMatryoshkas in gene analysis. The full model
having p-variable is a big Matryoshka that includes all smaller Matryoshkas in
it. When RIP discriminates the microarrays, most coefficients of those are zero,
and few coefficients are not zero. RIP can find smaller Matryoshka naturally,
gene number ofwhich is less than the case number n.When again discriminating
Matryoshka, RIP found smaller Matryoshka than the previous Matryoshka. If
we cannot see smaller Matryoshka anymore, we call it the first SM1. Next, RIP
discriminates the reduced microarray removed SM1 again. RIP finds the second
SM2.Moreover, RIP findsmanySMs,MNMof those are zero. Thus,we develop
Method2 within 54 days from October 28, 2015, to December 20, 2015. On the
other hand, we spent three years to solve Problem3 because we approached
by wrong trials from the multivariate analysis. We found the reason of Prob-
lem3 by checking all variables by one-way ANOVA. Many statisticians think
Problem5 using microarrays may be impossible because they could not solve
it from 1970. The actual reason is that the statistical discriminant functions are
useless for Problem5 (Shinmura 2018b). This suggests that RIP is the best LDF
for cancer gene analysis12 for the following reasons. (a) RIP and H-SVM can
theoretically discriminate LSD. (b) RIP can find one of the SMs from the many
optimal solutions which make MNM � 0, but H-SVM finds only the optimal

12Because our results are true from the viewpoint of statistical analysis and are not confirmed by
medical research, we use cancer gene analysis instead of oncogene analysis.
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SVM coefficient for maximizing SV’s distance. Thus, H-SVM cannot separate
the microarrays into signal and noise because of NP-hard. Furthermore, the
statistical discriminant functions based on variance–covariance matrices can-
not discriminate SMs theoretically. On the other hand, logistic regression, three
OLDFs, and H-SVM can discriminate SMs correctly.

(2) Method2 finds the microarray consists of disjoint unions of many SMs and
another noise subspace (MNM >� 1). We think SMs are signals, and another
gene subspace is noise in cancer gene analysis because we can discriminate two
classes entirely by genes set of each SM and misclassify two classes by noise
subspace. However, we could not find the linear separable fact of all SMs by the
standard statistical methods. The “linear separable fact” means that two classes
are separable in each SM.

(3) Because NM of Fisher’s LDF is often large for LSD-discrimination, it is useless
for cancer gene analysis in addition to medical diagnosis, pattern recognition,
rating, and so forth. JMP (Sall, Creighton and Leman 2004) does not support
logistic regression to analyze the microarrays now. Even if logistic regression
could discriminate high-dimensional microarray and its NMmay be zero, most
of the coefficients are not zero like H-SVM. Thus, H-SVM and logistic regres-
sion must compute all possible models to find SM from the microarrays.

(4) Because sixNMs ofH-SVMare zero andmost coefficients are not zero, H-SVM
is useless for cancer gene analysis. H-SVMmust compute all possible models to
find SMs. Thus, NP-hard is true for H-SVM as same as statistical discriminant
functions. The maximization distance of two SVs that is the objective function
of H-SVM in Eq. (1.6) and the first objective of S-SVM in Eq. (1.7) causes this
defect because Revised LP-OLDF can select gene feature naturally. Primarily,
the object function of Revised LP-OLDF is the same as the second object func-
tion of S-SVM. Moreover, it is an essential fact that all LDFs, except for RIP
and Revised LP-OLDF, cannot find one of the several optimal LDFs.

Shinmura (2015e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, 2016a) finds all SMs of six
microarrays. Thus, we recommend LASSO researchers will evaluate and compare
their results with our results using the microarrays. At first, they must check whether
their methods can discriminate LSD correctly. We consider the LASSO cannot dis-
criminate LSD successfully. Next, it cannot separate themicroarrays intomany small
signals and noise as same as Fisher’s LDF. If our claim is wrong, please show the
results in papers or books.

1.5.2 RatioSV: Measurement of the Degree of Linear
Separability

To evaluate LSD-discrimination by RIP, Revised LP-OLDF, and H-SVM, we intro-
duce a RatioSV that is the ratio of support vector (SV) distance and DS range defined
by Eq. (1.8).
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RatioSV � SVdistance ∗ 100/discriminant score(DS) (1.8)

Because the maximum RatioSV range of six microarrays by RIPs is [11.67,
38.98%] explained in Chap. 2, we expect the RatioSV may be useful as cancer
gene malignancy indicators. Although Golub et al. validated their results by LOO
method, we need not validate our results by Method1 because two classes are sepa-
rated in SM entirely. After many trials, we make new data having n cases (subjects)
and allRipDSs as variables.Whenwe analyze new data by PCA and cluster analysis,
these results show the clear linear separable facts. Thus, we conclude our three new
data made by RipDSs, LpDSs, and HsvmDSs are the true signals instead of SMs.
We show many truths about our claim after Chap. 3.

1.5.3 Six Famous Microarrays

We developed two new methods such as Method1 and Method2. Because Method1
solved Problem4 completely, we misunderstood to establish the theory in 2015. On
October 25, 2015, we presented our theory at the Japanese statistical conference
held in our native Toyama city. Next day, because doctor course student presents
her research using the microarrays (Ishi et al. 2014), we realized we did not solve
Problem5. On October 28, we could download the following microarrays from
Higgins HP.

1. Alon’s microarray (1999) consists of 62 cases and 2,000 genes. Two classes are
the 22 normal cases (Normal, Class1) and the 40 tumor cases (Tumor, Class2).
File volume is 21.12 Kb.

2. Golub microarray (1999) consists of 72 cases and 7,129 genes. Two classes
are the 25 Acute Myeloid Leukemia cases (AML, Class1) and the 47 Acute
Lymphoblastic Leukemia cases (ALL, Class2). File volume is 6,190 Kb.

3. Shipp microarray (2002) consists of 77 cases and 7,129 genes. Two classes are
the 19 Follicular Lymphoma cases (FL, Class1) and 58 DLBCL cases (DLBCL,
Class2). File volume is 9,344 Kb.

4. Chiaretti microarray (2004) consists of 128 cases and 7,129 genes. Two classes
are the 95 patients (B-cell, Class1) and 33 patients (T-cell, Class2). File volume
is 27,409 Kb.

5. Singh’s microarray (2002) consists of 102 cases and 12,625 genes. Two classes
are the 50 normal subjects (Normal, Class1) and the 52 tumor prostate patients
(Tumor, Class2). File volume is 21,888 Kb.

6. Tian’s microarray (2003) consists of 173 cases and 12,625 genes. Two classes
are the 36 false cases (FALSE, Class1) and the 137 true cases (TRUE, Class2).
File volume is 37,000 Kb.

We could develop the first three microarrays on Excel 32 bit version. Later, after
we bought Office 64 bit version and replaced LINGO 32 bit version to LINGO 64
bit version, we could discriminate other three microarrays.
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1.5.4 How to Develop Method2 (a Surprising 54-Day
Research Diary)

Between October 28 and December 28, 2015, we discriminated against six microar-
rays. The microarrays were LSDs (Fact3), and those could be very easily decom-
posed into many SMs (Fact4). Since 1970, many researchers tried to analyze high-
dimensional data such as a microarray. Because there was no success in cancer gene
analysis, there were three excuses. However, our theory solved cancer gene analysis
entirely without being influenced by three excuses.

1. On October 28, 2015, we discriminated against the Shipp microarray. RIP’s
CPU time is less than 1 s. The MNM of RIP was zero. Also, 32 coefficients of
the 7,129 geneswere not zero, and the other 7,097 coefficients were zero. All the
discriminant coefficients on the first sheet were 0, but 32 nonzero coefficients
were found by scrolling the sheet. Thus, 32 genes with nonzero coefficients
were judged to be cancer genes in a statistical sense, as they can ultimately
distinguish between the two classes. In this book, we use “cancer genes” in
place of the technical term “oncology” discovered bymedical research. Because
cancer gene analysis is very important for humans, we decided to upload the
results to Research Gate (Shinmura 2015e) as a position paper.

2. On November 1, 2015, six MP-based LDFs such as three OLDFs and three
SVMs discriminated Alon, Golub, and Shipp microarrays. We find three
microarrays are LSD. Although the nonzero coefficients of the three OLDFs
are less than 62, zero coefficients of three SVMs are few. Although about 1,000
coefficients of H-SVM and SVM1 are zero for Golub microarray, these results
are not used for cancer gene analysis becauseNMs of thesemodelswith nonzero
coefficients are not zero. We claim the models chosen by LASSO are not used
for cancer gene analysis because NMs of these models with nonzero coeffi-
cients may be not zero. Because we count these numbers by eyesight, there
are mistakes in the values. We conclude only three OLDFs find SMs and three
SVMs cannot find SMs (Shinmura 2015f).

3. On November 3, 2015, we considered three steps of feature selection methods
to find smaller gene set using Shipp microarray. In step 1, RIP reduces 72 cases
with 7,129 genes to 72 cases with 72 genes. In step 2, the stepwise forward
method finds 72 cases with six genes data is LSD because of NM of logistic
regression� 0. In step 3, all possiblemodels of six variables find two three-gene
models are a minimum number of SMs. Later, we called these SMs as BGSs.

4. On November 5, 2015, we confirmed the above feature selection method for
Alon’s microarray. In step 1, RIP reduces 77 cases with 2,000 genes to 77 cases
with 63 genes. In step 2, the stepwise forward method finds 77 cases with six
genes data is LSD because of NM of “logistic regression � 0.” In step 3, all
possible models of six variables find BGSs.

5. On November 9, 2015, we confirmed the above feature selection method for
Golub microarray. In step 1, RIP reduces 72 cases with 7,129 genes to 72 cases
with 72 genes. In step 2, the stepwise forward method finds 77 cases with six
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genes data is LSD because of NM of “logistic regression � 0.” In step 3, all
possible models of six variables find BGSs.

6. At Discovery Summit held in Tokyo, Doctor Sall announced JMP version 12
that can support Fisher’s LDF for high-dimensional data.We borrow JMPver.12
from JMP Japan division and discriminate above three microarrays by Fisher’s
LDF. On November 11, 2015, we compared MNM of RIP and two NMs of
Revised LP-OLDF and Fisher’s LDF using three microarrays. NMs of Alon,
Shipp, and Golub are zero, three, and eight, respectively. We report this result to
JMP technical staff. Later, NM of Alon’s microarray becomes to five (Shinmura
2015j).

7. On November 18, 2015, although RIP reduces Golub microarray (72 cases and
7,129 genes) to 72 genes, we get a smaller SMwith 46 geneswhenRIP discrimi-
nates 72 genes again.By three trials of discrimination,we obtained the following
Matryoshka process: Matryoshka7129 -> Matryoshka72 -> Matryoshka46 ->
Matryoshka36. If RIP cannot find a smaller Matryoshka anymore, we stop and
call it SM1 (Shinmura 2015k).

8. On November 22, 2015, we defined the Matryoshka Trap of Feature Selec-
tion Method that was confirmed by six MP-based LDFs and JMP using three
microarrays. Moreover, we find another new truth. When we remove SM1 from
microarray and discriminate the reduced microarray, we find the second SM2.
We realized it was difficult for us to find all SMsmanual work (Shinmura 2015).
Caution: Because above eight position papers have several mistypes, nobody
had better read.

9. We realize we cannot find all SMs by manual work. Thus, we develop LINGO
Program3 of Method2 on December 4. Shinmura lists up all SMs of three
microarrays of Shipp, Golub, and Alon (Shinmura 2015m, n, o).

10. To develop Singh, Tian, and Chisretti microarrays on Excel files, we bought the
64-bit version of Excel, PC, and OS. Shinmura (2015p, q, r) lists up all SMs of
Singh, Tian, and Chiaretti microarrays by LINGO Program3.

After we recognize Problem5 onOctober 28, we completely solve it on December
20, 2015 with 54 days.13 Although we misunderstand the discrimination of microar-
rays requests colossal CPU time, Fisher’s LDF by JMP ver.12 (JMP12) and other
MP-based LDFs coded by LINGO can solve microarrays less than 20 s because the
microarrays are LSD. Although many researchers have complained that Problem5 is
NP-hard, LSD-discrimination is easy. Moreover, MP-based LDFs are free from the
small n and large p problem because these LDFs need not construct the variance—
covariance matrices. Besides, because three OLDFs can decompose the microarrays
into many SMs and noise gene subspace, we get signals naturally. Although there
are many types of research of the filtering systems and feature selection methods, we
need not use these methods. From December 11th to 16th, I presented my paper at
the CMStatistics conference held at the University of London. Other presentations

13I presented at CMStatistics held at London University from December 11 to 16, 2015. My pre-
sentation was related to Method1, but since other researchers’ presentations were a genetic analysis
of cancer by LASSO, I switched the presentation to cancer gene analysis.
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were to analyze microarrays by Lasso in the near future. I did not understand why
they did not analyze at once.

1.5.5 Results of Six Microarrays

Table 1.1 shows the summary of all SMs found byDecember 20, 2015. The “Descrip-
tion” line is the details of the two classes. The row “size” is the number of patients
and the number of genes. “SM: Gene” is the number of SMs and the total number
of genes included in all SMs. The parentheses are reference papers listing them.
Six papers (Shinmura 2015m, n, o, p, q, r) include full gene names of SM. “Min,
Mean, Max” rows are the minimum, mean, and maximum values of genes included
in all SMs of each microarray. Rows JMP12 are two by two contingency tables of
the discrimination by Fisher’s LDF. Six NMs (=False Positive + False Negative) are
5, 3, 8, 10, 3 and 29. Rows “% and error rate” are the percentages of (Maximum
value/number of patients) and error rates of Fisher’s LDF. Maximum percent is 88%
of Tien’s microarray.Minimum percent is 45% of Singh’s microarray. Themaximum
error rate is 17% of Tian’s microarray, and the minimum error rate is 2% of Chiaretti
microarray.

Table 1.1 Summary of six microarrays (December 2015)

Data Alone et al. (1999) Chiaretti et al.
(2004)

Golub et al. (1999)

Description Normal (22) : tumor
cancer (40)

B-cell (95) : T-cell
(33)

All (47) : AML (25)

Size 62 * 2000 128 * 12,625 72 * 7129

(SM: Gene) 66:1131(Shinmura
2015o)

269:5220 (Shinmura
2015r)

67:1203 (Shinmura
2015n)

Min, mean, max 11, 17.1, 32 9, 19.4, 71 10, 19.4, 41

JMP12 20:2/3:37 94:1/2:31 20:5/3:44

% and error rate 52, 8% 55, 2% 57, 11%

Data Singh et al. (2002) Shipp et al. (2002) Tian et al. (2003)

Description Normal (50) : tumor
prostate (52)

Follicular lymphoma
(19) : DLBCL (58)

False (36) : true (137)

Size 102 * 12,626 77 * 7129 173 * 12,625

(SM: Gene) 178: 3984 (Shinmura
2015p)

214: 3040 (Shinmura
2015m)

159: 7221 (Shinmura
2015q)

Min, mean, max 13, 22.4, 46 7, 14.2, 39 28, 48, 152

JMP12 46:4/6:46 17:2/1:51 16:20/9:128

% and error rate (%) 45, 10% 51, 4% 88, 17%

(SM: Gene): Five results of SM: Gene, except for Tian et al. is replaced in new results of Table 1.2
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BGSs may be unique in each microarray. On the other hand, there are defects of
SMs as follows:

(1) Revised LP-OLDF and Revised IPLP-OLDF (Shinmura 2009) find another dif-
ferent SMs. These differences are caused by different optimization criteria and
MP solvers such as IP and LP. From Chaps. 2–9 describe the results of new SMs
obtained by the different versions of LINGO from 2016 to 2018.

(2) LINGO Program3 need to select the iteration number of RIP as an option. In
Table 1.1, because we do not know the appropriate value of it, we used 10 or 15,
and so forth. Because we are not skilled in programming techniques, we chose
a simple program structure to specify the iteration number.

(3) In addition to the iteration number, a yearly version up of LINGO may cause a
different combination of SMs, especially for a RIP. RIP outputs one of the SMs
among many optimal solutions.

In Chap. 3, we consider the method of determining the appropriate number of
repetitions, and we are conducting analyzes on the SM obtained by this method.
Seven chapters from Chaps. 3–9 introduce the cancer gene diagnosis using new SMs
and several different themes.

1.5.6 The Reason for Natural Feature Selection

After finding all the SMs of six microarrays, the following questions arose.

(1) Why couldn’t statisticians find the microarrays are LSD?

If some researchers discriminate themicroarray with H-SVMor RIP, they can find an
essential fact that the six microarrays are LSDs (Fact3). Although some papers used
SVM, there were no explanations which they used H-SVM or S-SVM. Probably,
we understand they used S-SVM because H-SVM does not work correctly for the
overlapping data. When they discriminated the microarray with H-SVM or RIP, they
found essential clues for cancer gene analysis. Several papers have pointed out that
the NMs of SVM were zero with certain small gene combinations selected by the
medical judgments. However, we found LSD has Matryoshka structure by Swiss
banknote data, but no researchers derived essential facts of the Matryoshka structure
of microarrays. In summary, most researchers do not recognize the importance of
LSD. Moreover, it is crucial to find that microarray is LSD and think that systematic
understanding could not be obtained even if the NM of S-SVMwas 0 with arbitrarily
selected genes.
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(2) Why couldn’t Fisher’s LDF find LSD?

Fisher opened the new frontier of the discriminant analysis and developed the maxi-
mum likelihood method. He defined Fisher’s LDF based on the variance–covariance
matrices under Fisher’s assumption. Two classes belong to two same normal distri-
butions with the same variance and different averages such as m1 and m2 (m1 not
� m2). It maximizes the correlation ratio. Because he had no computer power, we
guess he used the character of the exponential function in Eq. (1.9).

log{f1(x : s,m1)/f2(x : s,m2)} � log[e{(x−m2)2−(x−m1)2}/(2 ∗ s2)]

� (m1 − m2)/s2 ∗ x + (m2
2 − m2

1)/
(
2 ∗ s2

)
(1.9)

If we consider the discriminant hyperplane as f1(x: s,m1)� f2(x: s,m2), we obtain
the discriminant hyperplane in Eq. (1.10). In this case, NM becomes MNM because
data satisfies Fisher’s assumption. If the data does not satisfy Fisher’s assumption,
NM is greater than equal MNM.

(m1 − m2)/s2 ∗ x + (m2
2 − m2

1)/
(
2 ∗ s2

) � 0 (1.10)

We consider Fisher’s LDF by F(x) � b * x + b0. Later, he or another statistician
introduced the maximization criterion of correlation ratio. Most statisticians believe
this standard is essential for the discrimination. They do not doubt the defect of this
standard that cannot discriminate LSD correctly and solve Problem5.We had already
confirmed QDF and RDA were very weak for LSD-discrimination, also. We believe
the LASSO cannot solve cancer gene analysis as same as Fisher’s LDF, QDF, and
RDA. If the maximum likelihood method solves Fisher’s LDF as same as logistic
regression, we believe it can often discriminate LSD correctly for a small sample. In
summary, we believe that posterity researchers did not enhance discriminant theory
to solve real essential problems.

(3) Why couldn’t LASSO find SM?

Some statisticiansmisunderstand LASSO can solve the cancer gene analysis because
it can make several coefficients zero. Because it does not adopt the MNM criterion,
the found subspaces are rare to be LSD. We already explained in Fig. 1.1. First,
because it cannot discriminate LSD theoretically, we think it cannot solve the cancer
gene analysis. Next, only coefficients related to BGS or SM must be the nonzero
coefficients. Because all LDFs, except the three OLDFs, find one optimal solution
in the whole domain, it does not find one of the optimal solutions from subspaces.
Thus, it must compute all possible models to find SMs. We must realize the feature
selection methods including all possible models are to find the optimal solution of
subspaces. In summary, we suggested that LASSO researchers examine the above
matters after 2016. It is also worthwhile to announce failed research results.
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(4) Why couldn’t H-SVM find SM?

H-SVM can correctly identify LSD, but it cannot find SM because it can see only
one optimal H-SVM coefficients on the whole domain. This is because QP defines
SVM based on the maximization of SV’s distance. QP minimizes or maximizes
the quadratic objective function on the entire domain. To summarize, if researchers
understand that microarray is LSD and LSD has Matryoshka structure, they may
have found SM by overcoming the difficulty of NP-hard.

(5) Why could only OLDFs find SM?

Because Revised LP-OLDF finds a vertex of the feasible regionwhich is a solution of
simultaneous equations obtained from n or fewer constraints as an optimal solution,
it can discover SM having less than same n genes easily and quickly. Furthermore,
the feasible region has a unique feature that all MNMs of the feasible region are 0.
The reason why RIP can decompose the microarrays is simple. B and B algorithm of
IP solver is the efficient algorithm of all possible models that search all subspaces.
Moreover, the IP model is a restricted LP model that the decision variables are the
binary integers. Thus, it can output one of SM.

On the other hand, in summary, RIP based on the MNM criterion found SMs
at first. However, Revised LP-OLDF (and Revised IPLP-OLDF) can discriminate
against six microarrays correctly and decompose six microarrays into many different
SMs, also. Because Revised LP-OLDF has the defect of Problem1 and its NMs may
not be correct showed in Chap. 3, we recommend not to use it for the overlap data.
For six microarrays, although six MNMs are zero, Revised LP-OLDF cannot find all
SMs from the microarrays. From Chaps. 4–7 introduce this truth. However, because
three microarrays such as Singh, Tian, and Chiaretti consist of 12,625 genes and
find over 150 SMs, we show the evaluation results using SMs found by Revised
LP-OLDF from Chaps. 7–9, and almost the same results as Alon, Golub, and Shipp.
In other words, when there are more than 200 SMs, even if there is a loss, analysis
by SM obtained by Revised LP-OLDF is also conceivable.

1.5.7 Two New Facts

(1) Two Known Facts
This book discusses the two new facts in addition to two known facts such as:

(1) IP-OLDF and Fig. 1.1 can explain the relation of NMs and LDF coefficients on
the p-discriminant hyperplane clearly. This known fact proves the defect of NM
that is not reliable. Correct NM may be higher than obtained NM. Although
microarrays are LSD (Fact3), six NMs of Fisher’s LDF are not zero. This truth
is one of the reasons why researchers could not solve the cancer gene analysis
since 1970, also. The error rate of Fisher’s LDF using Tian’s microarray is
17% in Table 1.1. In the pass/ fail judgment of the test, the error rate was high.
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However, some researchers said that the pass/fail decision of the examination
was meaningless because the results are not applied for the next examination.
The same result was shown even with cancer determination using microarray.

(2) “MNM monotonic decrease” explains the Matryoshka structure of LSD. We
had already found the Swiss banknote data, Japanese car data, and the pass/fail
determination by exam scores (Shinmura 2011b, 2015b) were LSD. We can
easily understand the new idea about Matryoshka structure and SMs of the
microarrays by the results of the above common data. Section 1.6 shows the
Matryoshka structure using the Swiss banknote data and the Japanese car data.

(2) The New Facts in This Book
We introduce several truths to explain the reason why all LDFs, except for three
OLDFs, cannot find SMs (Fact4). Swiss banknote data illustrates the reason for
Fact4. At first, we found MNM of the two-variable model (X4, X6) is zero after
we examined all possible models (Goodnight 1978). This model is the minimum-
dimensional SM.We call it as basic gene set (BGS) among 63models. The BGS is as
same as Yamanaka’s four genes. If we drop one gene from BGS, MNMs of (X4) and
(X6) are higher than zero. Next, we found the MNM monotonic decrease. Third, if
MNMk � 0, allMNMs including these k-variable are zero. Thus, 16MNMs including
(X4, X6) are zero and are signals. Other 47 MNMs those do not include (X4, X6)
are higher than 0. The 47 models are noise. IP-OLDF and RIP could separate signals
and noise naturally and are free from three excuses explained in Sect. 1.3.3.

1.6 Validation of Method2 by Common Data

1.6.1 Matryoshka Structure of Swiss Banknote Data

Although several discriminant coefficients of Swiss banknote data and Japanese car
data became zero by RIP, we do not use this fact for feature selection because we
developed the best model instead of feature selection method for six common data.
Furthermore, we had found the several coefficients of LP-OLDF and IP-OLDF are
zero by the Iris data that is not LSD (Shinmura 2000b).14 We ignored the fact that
a few coefficients become zero. We are happy to avoid a wrong approach because
the nonzero variable model is not valuable. Probably, even if we omit the variables
with zero coefficients, the model differs from SM. Figure 1.2 shows What’s Best!,
add-in solver of Excel. Seven coefficients are output on “I2: O2.” Two hundred ei are
from S3 to S202 cells. Cell S2 defines the objective function. P column stores 200
discriminant scores and R column stores 1 or −9999 of 200 ei. If we choose “IT=4”,
the five-variable model (X1, X3–X6) in Fig. 1.2.

14This dissertation can be downloaded from Research Gate as same as all English papers related to
OLDFs. Even if LASSO could make some discriminate coefficients of 0, it would be of no use to
cancer research at all because its MNM is not zero.
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Fig. 1.2 Swiss banknote data

1.6.2 Validation of LINGO Program3 Results

We validate the results of Table 1.1 by other approaches as follows:

(1) Although we counted the number of nonzero coefficients on the Excel files by
our eyesight in Table 1.1, we compute those by JMP in Table 1.2.

(2) We explain the logic of Program3 in Sect. 1.6.2.2. If we choose the different
iteration number (option), we may obtain the various combination of SMs. On
the other hand, each microarray has a unique disjoint union of BGSs. Thus,
we targeted to look for all BGSs. However, we realize the analysis of BGSs is
useless for cancer gene diagnosis because the 130 RasioSVs of Alon’s BGS are
too small compared with those of Alon’s SVs in Chap. 2.

1.6.2.1 Validation of Discriminant Coefficients by JMP

We are regretful not to count the number of zero coefficients by JMP. LINGO Pro-
gram1 discriminates themicroarrays by six LDFs and outputs the discriminant coeffi-
cients in arrayVark100 of LINGOProgram1 andExcel array inChap. 10 of Shinmura
(2016d). After JMP replaces zero coefficient as 0 and another nonzero coefficient as
1, JMP counts the number of 0/1 in Table 1.2. Alon’s microarray has 2,000 genes.
The 1,938 coefficients of RIP are zero, and only 62 coefficients are not zero. Bold
figures indicate that the intercept becomes zero. Thus, the bold figures 1938 mean
that 1938 coefficients and the constant are zero. Because 40 coefficients of Revised
IPLP-OLDF and Revised LP-OLDF are not zero, RIP gene subspace is 22 greater
than Revised IPLP-OLDF and Revised LP-OLDF. All coefficients including the
intercept of three SVMs are not zero. Golub microarray has 7,129 genes. The 903
coefficients of H-SVM and 904 coefficients of SVM1 are zero. H-SVM and SVM1
can select features of Golub microarray. However, we consider these SVMs cannot
find SM and BGS, because number of non-zero coefficients are large.
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To summarize these results are as follows:

(1) H-SVM and SVM1 can select features of Golub microarray, and 903 and 904
coefficients of two SVMs are zero. H-SVM and SVM1 cannot reduce the sub-
space to smaller SM again. Thus, these LDFs, like LASSO, cannot find SM and
BGS fewer than case numbers because of QP prevents it. We hope Golub give
us valuable information about this fact.

(2) However, because Revised LP-OLDF is faster than RIP, Revised LP-OLDF is
another choice to survey about SMs.

Table 1.2 Validation of discriminant coefficients

LDF Level Alon Chiaretti Golub Shipp Singh Tian

RIP 0 1938 12,498 7057 7065 12,534 12,452

1 62 127 72 64 91 173

Total 2000 12,625 7129 7129 12,625 12,625

IPLP 0 1960 12,587 2102 7108 12,550 12,507

1 40 38 27 21 75 118

Total 2000 12,625 7129 7129 12,625 12,625

LP 0 1960 12,587 2103 7108 12,550 12,486

1 40 38 26 21 75 139

Total 2000 12,625 7129 7129 12,625 12,625

HSVM 0 0 0 903 0 0 0

1 2000 12,625 6226 7129 12,625 12,625

Total 2000 12,625 7129 7129 12,625 12,625

SVM4 0 0 0 0 0 0 0

1 2000 12,625 7129 7129 12,625 12,625

Total 2000 12,625 7129 7129 12,625 12,625

SVM1 0 0 0 904 0 0 0

1 2000 12,625 6225 7129 12,625 12,625

Total 2000 12,625 7129 7129 12,625 12,625

1.6.2.2 Detail of the Matryoshka Feature Selection Method

We explain Method2 briefly. Table 1.3 is the output of Golub microarray by LINGO
Program3. Two columns LOOP1 and LOOP2 are the sequence number of big and
small loops of Method2. RIP discriminates the microarray with 7,129 genes in the
LOOP1� 1 and LOOP2� 1, and only 34 coefficients of RIP are not zero. In general,
this number is less than the case number such as 72. In the second small loop (LOOP1
� 1, LOOP2 � 2), we discriminate the smaller Matryoshka with 34 genes again,
and only 11 coefficients are not zero. Thus, we get the Matryoshka sequence such as
Matryoshka7,129→Matryoshka34→Matryoshka11 drastically.We stop at LOOP2
� 4 because we cannot find the smaller Matryoshka. We call Matryoshka 11 as the
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SM1 because RIP cannot locate the smaller Matryoshka anymore. We exclude the
first SM1 with 11 genes from the big Matryoshka with 7,129 genes and make the
second big Matryoshka with 7,118 genes. In the second big loop at LOOP1 � 2, we
get the second SM2with 16 genes.We can continue this loop until it cannot naturally
select features and find small subspace with MNM >� 1.

Table 1.3 Outlook for
theory2

SN LOOP1 LOOP2 Gene MNM

1 1 1 7129 0

2 1 2 34 0

3 1 3 11 0

4 1 4 11 0

– – – – –

16 2 1 7118 0

17 2 2 36 0

18 2 3 18 0

19 2 4 16 0

20 2 5 16 0

AfterLINGOProgram3finds69SMs inTable 1.4, it stops the big loopwhenMNM
is higher than one at LOOP1 � 70. However, we can continue this loop by changing
the option and list up all small subspaces withMNM >� 1. Thus,Method2 can apply
for other gene data that are not LSD. However, it is difficult to find valid meanings
in non-LSD subspaces. Because Golub microarray consists of 69 SMs that are LSD,
it is vital for us to analyze all SMs for cancer gene diagnosis.

Table 1.4 All SMs of Golub
et al. microarray

Loop1 Loop2 Gene n MNM

1 11 7129 11 0

2 11 7118 16 0

3 11 7102 11 0

– – – – –

32 11 6683 19 0

33 11 6664 16 0

34 11 6648 18 0

35 11 6630 17 0

36 11 6613 19 0

37 11 6594 12 0

38 11 6582 16 0

– – – – –

67 11 5976 23 0

68 11 5953 31 0

69 11 5922 31 0
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1.6.3 Validation of Method2 by Japanese 44 Cars Data

1.6.3.1 Japanese 44 Cars Data

Japanese car data consists of the 29 regular cars and 15 small cars. The six indepen-
dent variables are the emission rate (X1), the price (X2), the number of seats (X3),
CO2(X4), fuel (X4), and sales (X6). Because the emission (X1) and capacity (X3)
of small cars are less than those of regular cars, two MNMs of these one-variable
models are zero, and those are BGSs. Figure 1.3 shows the Box-whisker plots of X1
and X3. These graphs tell us that X1 and X3 are linearly separable models. Thus, 48
MNMs including (X1) or (X3) are zero. Other 15 MNMs are not zero.

Fig. 1.3 Box-whisker plots of emission and capacity (−1: small car, 1: regular car)

Table 1.5 shows the result of a stepwise forward method that chooses X1, X2,
X3, X4, X5, and X6 in this order. “MNM” column is MNMs of RIP. Because X1
is BGS, all models including X1 are zero by the MNM monotonic decrease. On the
other hand, LDF column (Fisher’s LDF) shows four NMs of (X1), (X1, X2), (X1,
X2, X3), and (X1, X2, X3, X4) are not zero. Although two NMs of (X1) and (X1,
X2) by QDF are zero, QDF misclassifies all 29 regular cars to the small cars because
the seat numbers of 15 small cars are four and those numbers of 29 regular cars vary
from five to eight. If we add a small random number the constant value, we can solve
Problem3. If we set two parameters such as “λ � γ � 0.8,” RDA’s NMs are over
two. By the grid search of two parameters such as “λ � γ � 0.1,” all NMs of six
models change zero. Because there is no rule to choose the best parameter values,
we must survey the better parameters by try and error. This is the reason why we do
not recommend RDA and S-SVM.



32 1 New Theory of Discriminant Analysis and Cancer Gene Analysis

Table 1.5 Comparison of MNM and NMs

p Var. MNM LDF QDF λ � γ �
0.8

0.1

1 Emission (X1) 0 2 0 2 0

2 Price (X2) 0 1 0 4 0

3 Capacity (X3) 0 1 29 3 0

4 CO2 (X4) 0 1 29 4 0

5 Fuel (X5) 0 0 29 5 0

6 Sales (X6) 0 0 29 5 0

1.6.3.2 Validation of Method2 by Japanese Car Data

WhenLINGOProgram3 discriminates against Japanese car data, we obtain the result
in Table 1.6. “SM” column is the sequential number of SM found by Program3. “IT”
column shows the iteration of LOOP2 until three steps introduced in Table 1.3. In the
three steps, Program3 finds the first SM1. From the fifth column to the tenth column
in the third row shows the value of “Choice.” Because six values are 1 s, Program3
discriminates against six-variable model at first. “SUM” column shows the number
of selected variables. The last column “c” means that the constant is always included
in the model. Although the constant sometimes becomes zero, Method2 fixes the
constant to 1. The first discrimination, MNM � 0. Because only the coefficient of
X1 is not zero, the other five values from X2 to X6 become to 0 s in the second
step. When Program3 discriminates one-variable model again, there is no change.
Because of choosing “IT � 3,” Program3 discriminates one-variable model again
and stop the first big loop. We obtain SM1 including X1 that is the first BGS1. In
the second big loop, Program3 drops X1 and discriminates five-variable model in
the first step. Moreover, the only third coefficient is not zero. In the second and third
steps, Program3 discriminates against this model and stops the second big loop.
Thus, Program3 finds the second SM2. In the third big loop, it discriminates the
four-variable model, and two coefficients of X2 and X5 are not zero. Because of
“MNM � 4,” this is not SM. However, we call it SM3 in this section. In the fourth
step, it finds SM4 that consists of the two-variable model such as (X4, X6). Because
we terminate big loop under the condition “NM >=15,” Program3 terminates in the
fifth big loop and output “NM � 15.” The first row indicates Program3 finds four
SMs as follows: SM1 � (X1), SM2 � (X3), SM3 � (X2, X5), and SM4 � (X4).
Four NMs of SM1, SM2, SM3, and SM4 are 0, 0, 4 and 9, respectively.



1.6 Validation of Method2 by Common Data 33

Table 1.6 Results by RIP

Matryoshka 1 3 2 4 3 4 0

SM IT NM SUM X1 X2 X3 X4 X5 X6 c

1 1 0 6 1 1 1 1 1 1 1

1 2 0 1 1 0 0 0 0 0 1

1 3 0 1 1 0 0 0 0 0 1

2 1 0 5 0 1 1 1 1 1 1

2 2 0 1 0 0 1 0 0 0 1

2 3 0 1 0 0 1 0 0 0 1

3 1 4 4 0 1 0 1 1 1 1

3 2 4 2 0 1 0 0 1 0 1

3 3 4 2 0 1 0 0 1 0 1

4 1 9 2 0 0 0 1 0 1 1

4 2 9 2 0 0 0 1 0 1 1

4 3 9 2 0 0 0 1 0 1 1

5 1 15 0 0 0 0 0 0 0 1

5 2 15 0 0 0 0 0 0 0 1

5 3 15 0 0 0 0 0 0 0 1

Table 1.7 is the result of Revised LP-OLDF. Program3 finds four SMs as follows:
SM1 � (X1), SM2 � (X3), SM3 � (X2, X4, X6), and SM4 � (X5). Because NM
of (X5) is over than 15, it terminates in the fourth big loop and output “NM � 15.”

Table 1.7 Result by Revised LP-OLDF

SM IT NM SUM X1 X2 X3 X4 X5 X6 c

1 1 0 6 1 1 1 1 1 1 1

1 2 0 1 1 0 0 0 0 0 1

1 3 0 1 1 0 0 0 0 0 1

2 1 0 5 0 1 1 1 1 1 1

2 2 0 4 0 1 1 1 0 1 1

2 3 0 1 0 0 1 0 0 0 1

3 1 6 4 0 1 0 1 1 1 1

3 2 6 3 0 1 0 1 0 1 1

3 3 6 3 0 1 0 1 0 1 1

4 1 15 1 0 0 0 0 1 0 1

4 2 15 0 0 0 0 0 0 0 1

4 3 15 0 0 0 0 0 0 0 1
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Table 1.8 is the result of H-SVM, SVM4, and SVM1. Because six coefficients of
three SVMs are not zero, Program3 terminates in the first big loop.

Table 1.8 Result by H-SVM, SVM4, and SVM1

SM IT NM SUM X1 X2 X3 X4 X5 X6 c

1 1 – 6 1 1 1 1 1 1 1

1 2 – 6 1 1 1 1 1 1 1

1 3 – 6 1 1 1 1 1 1 1

1.6.3.3 Six Coefficients of Six MP-Based LDFs

Table 1.9 shows six MP-based LDF coefficients by Program1. We set the “absolute
value <� 10ˆ−9” is showed as zero. In three OLDFs of step1, both X3 and constant
are zero. Three columns such as “0< , �0, >0” show the case number of which
discriminant score yi * f(xi) satisfy the condition. All 44 cars are classified correctly.
Seven “1/0” values of “Choice” row indicate which variables are included in the
model. In step 2, we drop (X2, X3) in the models. Six LDFs are in Eq. (1.11). Thus,
three OLDFs choose X1 as BGS correctly. The emission rate of small and regular
cars ranges from [0.657, 0.658] to [0.996, 3.456], respectively. We can discriminate
the data by X1 � (0.658 + 0.996)/2 � 0.827. Because X1 � 4.89/5.9172 � 0.825,
the hyperplane of the threshold are almost the same.

Three OLDFs : 5.9172 ∗ X1 − 4.89

HSVM : 5.9172 ∗ X1 + 1E − 08 ∗ X4 + 7E − 08 ∗ X5 − 4.89

SVM4 : 5.9175 ∗ X1 − 0 ∗ X4 − 0.02 ∗ X5 + 8E − 07 ∗ X6 − 3.97

SVM1 : 2.9806 ∗ X1 + 4E − 06 ∗ X4 + 1E − 05 ∗ X5 − 2.96 (1.11)
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In step 3, we drop (X1) in the models. Six LDFs are in Eq. (1.12). Five LDFs
except for SVM4 find the second BGS X3 correctly. The seats of small and regular
cars are 4 and [5, 8], respectively. We can discriminate the data by X3 � (4 + 5)/ 2
� 4.5 as the discriminant hyperplane is X3 � 4.5. This means the average of small
cars seat numbers and the minimum seat number of regular cars.

RIP : 2 ∗ X3 − 9
IPLP : 2 ∗ X3 − 9
LP : 2 ∗ X3 − 9
HSVM : 2 ∗ X3 − 9
SVM4 : 9E − 09 ∗ X2 + 2.005 ∗ X3 − 0 ∗ X4 − 4E − 08 ∗ X5 − 8.99
SVM1 : 2 ∗ X3 − 9

(1.12)

In step 4, we drop X1 and X3 in the models. NMs of RIP, IPLP, LP, H-SVM,
SVM4, and SVM1 are 3, 3, 4, 4, 4, and 4, respectively. Thus, LINGO Program1 can
simulate Program3 by step-by-step discrimination and conclude as follows:

(1) Three OLDFs can select two BGSs correctly.
(2) H-SVM and SVM1 can scarcely select features.
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1.6.4 Examination of Duplicate Data

We copy the data twice because there may be redundant pairs of genes. Six original
variable names replace to C1–C6. First and second copy variable names change
to c11–c16 and c21–c26. Program3 discriminates this data by ten small loops in
Table 1.10. Program3 can decompose three SMs and three BGS. Three SMs include
c21, c11 and C1. Three BGSs include one of c23, C3 and c13. These results show
that three copies of X1 do not become BGSs because X1 fluctuates. On the other
hand, because X3 is the constant, Program3 can find three BGSs.

Japanese CarDatawith 18 variables � S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 ∪ S6
� (C2,C6, c21, c24, c25) ∪ (c11, c14, c15, c16, c22) ∪ (C1,C4,C5, c12, c26)
∪(c23) ∪ (C3) ∪ (c13)

(1.13)

Program3 cannot find three BGSs such as (C1), (c11), and (c21). However, it finds
three SMs such as (C2, C6, c21, c24, c25) ∪ (c11, c14, c15, c16, c22) ∪ (C1, C4,
C5, c12, c26) before three BGSs such as (c23) ∪ (C3) ∪ (c13). Therefore, we expect
Program3 can decompose the redundant gene pairs.
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Table 1.11 shows six RIPs corresponding to Table 1.10. Three SMs and three
BGSs have the same coefficients.

Table 1.11 Six RIPs corresponding to Table 1.10

IT C2 C6 c21 c24 c25 c

1 −3E−08 −2E−05 5.9999 −0.019 −0.132 0

10 −3E−08 −2E−05 5.9999 −0.019 −0.132 0

c11 c14 c15 c16 c22 c

1 5.9999 −0.019 −0.132 −2E−05 −3E−08 0

10 5.9999 −0.019 −0.132 −2E−05 −3E−08 0

C1 C4 C5 c12 c26 c

1 5.9999 −0.019 −0.132 −3E−08 −2E−05 0

10 5.9999 −0.019 −0.132 −3E−08 −2E−05 0

1 2 c23 4 5 c

1 2 −9

10 2 −9

1 2 C3 4 5 c

1 2 −9

10 2 −9

1 2 c13 4 5 c

1 2 −9

10 2 −9

1.7 Conclusion

From1999 to 2004, sixmajor research groups published papers on oncogene analysis
using six microarrays and released their microarrays to the Internet. Golub et al.
published an article in Science 1999 and summarized their research as follows.
“Although cancer classification has improved over the past 30 years, we identify new
cancer classes (class findings) or assign tumors to known classes (class predictions).
Here, a generic approach to cancer classificationbasedongene expressionmonitoring
by DNA microarrays is described and applied to acute human leukemias as a test
case. A class discovery procedure automatically discovered the distinction between
acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) without
previous knowledge of these classes. An automatically derived class predictor was
able to determine the class of new leukemia cases. The results demonstrate the
feasibility of cancer classification based solely on gene expression monitoring and
suggest a general strategy for discovering and predicting cancer classes for other
types of cancer, independent of previous biological knowledge.” Therefore, we can
see that this kind of research started at least around 1970.
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Because these microarrays are high-dimensional data characterized as “small n
large p,” statisticians targeted this theme as a new frontier of statistics. However, they
offered nonoticeable result. They summarized the difficultieswith the following three
excuses.

(1) Small n large p
(2) NP-hard
(3) It is difficult to separate signal and noise in high-dimensional gene space.

These excuses are mainly for statistical discriminant functions based on vari-
ance–covariance matrices because these discriminant functions could not discrimi-
nate LSD correctly. This fact is the reason why researchers could not solve the cancer
gene analysis since 1970.

On the other hand, we developed the theory (Shinmura 2016d) that solved this
theme only 54 days in 2015 as follows.

(1) Six microarrays are LSD and have the Matryoshka structure (Fact3).
(2) Method2 finds the microarrays consist of many SMs and other noise subspace

very easy (Fact4). That is, three excuses are right only for statistical discrimi-
nant functions based on variance–covariance matrices. Why did not statistical
researchers know that the microarray was LSD? This answer is that they did
not know the essential definition of the signal. There was no exact definition
of the signal until now. Furthermore, they could not solve Problem5 by the
statistical discriminant functions and decompose the microarrays into many
SMs. Chapter 1 explains these two new facts clearly. After Chap. 3, we explain
the reasons why the statistical discriminant functions cannot discriminate the
microarrays and all SMs from the viewpoints of many examinations.
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Chapter 2
Overview of Cancer Gene Diagnosis

Abstract This chapter explains the cancer gene diagnosis using all Small
Matryoshkas (SMs) of six microarrays found in 2016. Section 2.2 explains the dif-
ferent role of cancer gene analysis and cancer gene diagnosis because these technical
terms are our original ones. Section 2.3 shows the analysis of 64 SMs obtained by
RIP usingAlon’smicroarray. Section 2.4 shows the usefulness of 64RIP discriminant
scores (RipDSs) and new data made by 64 RipDSs instead of 2,000 genes. Thus, we
consider RipDSs new data is signal instead of 64 SM. Section 2.5 shows the same
analysis of 130 BGSs of Alon’s microarray found by LINGO Program4 in 2016.
BGS is as same as the Yamanaka’s four genes in iPS research. Section 2.6 shows
the cancer gene diagnosis of other five microarrays those are analyzed in the same
way as Alon. Section 2.7 is the conclusion. Alon and Singh’s microarrays consist of
cancer and normal classes. Other four microarrays consist of two different types of
cancer classes. It is vital for us that six results are almost the same. Thus, we expect
another microarray’s result is as same as our results if medical researchers control
two classes strictly.

Keywords Gene diagnosis · Malignant indicators · Small Matryoshka (SM) ·
Basic gene subspace (BGS) · Discriminant scores (DSs) · RatioSV of RIP and PCA

2.1 Introduction

We developed the new theory of discriminant analysis (theory) and solved five prob-
lems of discriminant analysis by 2015 (Shinmura 2016). Since 1970, many statis-
ticians and engineers failed to identify oncogenes from microarrays (Problem5)
because statistical discriminant functions were useless for cancer gene analysis.
Mainly, we could completely solve the cancer gene analysis (Problem5) as an applied
problem of our theory. Six medical projects published their articles in prominent
medical journals from 1999 to 2004 and released the microarrays on the Internet
(Golub et al. 1999; Alon et al. 1999; Shipp et al. 2002; Singh et al. 2002; Tian et al.
2003; Chiaretti et al. 2004). When Revised IP-OLDF (RIP) and the Matryoshka fea-
ture selection method (Method2) analyzed six microarrays, our cancer gene analysis

© Springer Nature Singapore Pte Ltd. 2019
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quickly completed in 54 days of 2015. RIP and Method2 could decompose microar-
rays into many SMs. Chapter 1 explains these results. Our cancer gene analysis was
the first successful example of “big data analysis or high-dimensional data analysis”
which was the latest leading theme in statistical analysis. We found the five problems
and two facts of the discriminant analysis and solved five problems entirely.

This chapter explains the cancer gene diagnosis by statistical analysis of all SMs
found in 2016 (Shinmura 2017). Section 2.2 explains the different role of cancer gene
analysis and cancer gene diagnosis because these technical terms are our original
ones. Although medical research authorized about 100 “oncogenes,” we define the
gene combination included in each SM found by Method2 as “cancer genes.” Thus,
we claim we can first succeed in cancer gene analysis. However, physicians need to
examine and validate our malignant indicators are useful for cancer gene diagnosis.
Section 2.3 shows the analysis of 64 SMs obtained by RIP using Alon’s microarray.
The standard statistical methods analyze the 64 SMs. We choose SM8 because its
RatioSV is large. One-way ANOVA with t-test indicates there are three types of
t-values such as the positive, almost zero, and negative values. These results tell us
a proper combination of thee-types genes can separate two classes. If we omit genes
that have t-values near zero, MNMwill exceed 1. We claimed we could first succeed
in cancer gene analysis. However, we expect that physicians examine and validate
our malignant indicators that are useful for cancer gene diagnosis because we are not
the specialist in this area. If they confirm our results, we will be able to open the new
frontier of cancer gene diagnosis shortly. We confirmed MNM using 47 oncogenes
was not zero by data gathered at Japanese cancer blood testing center. However,
our all results showed two classes were separable in the proper gene combinations
such as SM or BGS. Section 2.4 shows the usefulness of 64 RIP discriminant scores
(RipDSs) and new data made by 64 RipDSs. PCA andWard cluster analyze new data
and obtain the linear separable fact, and PCA shows several outliers. If we analyze
the transpose data of new data, we obtain many outliers those are expected to be new
classes of cancer pointed out by Golub et al. Sect. 2.5 shows the same analysis of 130
BGSs of Alon’s microarray found by LINGO Program4 in 2016. BGS is as same as
the Yamanaka’s four genes in iPS research. If we drop one gene from BGS, MNM of
which is greater than 1 and noise. Because 130 RatioSVs of BGSs are less than 1%,
we think BGS is not useful for cancer gene diagnosis. We must validate the results
of BGS by Method1. Probably, BGS is essential to survey the role of the cancer
gene. We examine BGS128 by standard statistical methods because its RatioSV is
the maximum value 0.9%. Section 2.6 shows the cancer gene diagnosis of other
five microarrays analyzed in the same way as Alon. Section 2.7 is the conclusion.
Alon and Singh’s microarrays consist of the cancer and normal classes. Other four
microarrays consist of two different types of cancer classes. It is vital for us that six
results are almost the same. Thus, we expect another microarray’s result is as same
as our results if medical research strictly controls two classes.

Chapter 1 introduced theory about five problems and two facts. After this chapter,
we discuss the cancer gene diagnosis using cancer malignancy indicators.
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2.2 Cancer Gene Diagnosis

In this book, all chapter, except Chaps. 1 and 10, discuss cancer gene diagnosis
analyzing SMs found by the RIP and Revised LP-OLDF.

(1) Why could not the standard statistical methods find the linearly separable fact
in SMs?

At first, we expect the standard statistical methods can find the linear separable
fact that two classes are separable in each SM. Although we tried to consider the
meaning of PCA and cluster analysis, we could not find useful results. Thus, we
recognized our trials are meaningless. On the other hand, three OLDFs and H-SVM
can discriminate all SMs entirely, and there are many RatioSVs over 5%. We find
many facts that explain the reason why the standard statistical methods cannot find
the linearly separable fact in SMs. However, because RIP, Revised LP-OLDF, and
H-SVM can discriminate all SMs completely, we make several new data made by
RIP discriminant scores (RipDSs), Revised LP-OLDF DSs (LpDSs) and H-SVM
DSs (HsvmDSs) as variables instead of genes. Although there are many malignancy
indicators by RipDSs, LpDSs, and HsvmDSs, Prin1 is another malignancy indicator.
Many outliers found by PCA may be the new subclasses of cancer pointed out
by Golub et al. (1999). They developed new methods of cancer gene analysis and
cancer gene diagnosis. However, their methods are difficult for researchers without
the background of medical bits of knowledge. On the other hand, our methods are the
standard statistical methods and offer many pieces of information for both medical
experts and medical non-experts.

(2) This Book Conclusion

This book shows that only RIP and Revised LP-OLDF can decompose microarrays
into many SMs. Although the standard statistical methods cannot find the linear
separable fact, RIP, Revised LP-OLDF, and H-SVM can separate both SMs found
by the RIP and Revised LP-OLDF into two classes entirely. Thus, we obtain many
malignancy indicators made by three LDFs using both different types of SMs. We
make six types of new data by RipDSs, LpDSs, and HsvmDSs as variables. However,
five chapters from Chaps. 2 to Chap. 6 introduce the results of new data made by the
combination of RIP using SM found by RIP. Chapters 7–9 introduce the new data
made by LpDSs. Our examinations show that all malignancy indicators by RipDSs,
LpDSs, and HsvmDSs are useful for cancer gene diagnosis. Moreover, PCA and
several hierarchical cluster analyses show almost the same results. It seems that for
the data managed for research, microarray data may give almost the same results as
shown in this book. Outliers found by PCA may be useful to find new subclasses of
cancer.



48 2 Overview of Cancer Gene Diagnosis

2.3 Analysis of 64 SMs Obtained by Alon’s Microarray

In this section, LINGO Program3 (Schrage 2006) of RIP can discriminate Alon’s
microarray correctly and separate the microarray into 64 SMs (1,999 genes) and
noise subspace (one gene). We omit this one gene from our analysis. Alon et al.
analyzed 6,500 genes by SOM and identified 2,000 genes as oncogenes. Because
both ways got nearly the same result that 2,000 genes are oncogenes and cancer
genes1 included in 64 SMs, it shows the validity of each other’s method. Although
Revised LP-OLDF can select cancer genes naturally as same as RIP, we do not
discuss these SMs because we wish to accomplish our analysis of SM as soon as
possible in Alon’s microarray. At first, standard statistical methods analyze 64 SMs
that consist of 62 subjects (62 cases) and 1,999 genes (1,999 variables). Because all
NMs of logistic regression are zero, logistic regression confirms 64 SMs as signals.
However, other standard statistical methods do not show two classes are separable in
most SMs. On the other hand, when analyzing new data consisting of 62 subjects and
64 RipDSs (64 variables), surprising results are found that two classes are entirely
separable in new data by PCA and cluster analysis. These two different results reveal
the reason why cancer gene analysis and cancer gene diagnosis are difficult until
now (Problem6). Now, only three OLDFs can decompose microarray into signals
and noise. H-SVM and statistical discriminant functions are useless for cancer gene
analysis.

2.3.1 Analysis of 64 SMs

2.3.1.1 NMs of 64 SMs by Four Statistical Discriminant Functions

Table 2.1 shows 64 SMs from SM � 1 to SM � 64 that is the order found by
RIP. This table is sorted in descending order by RatioSV. “Gene” column is the
number of genes included in each SM. The range of gene number is [21, 42] and 64
SMs include 1,999 genes. LP and IP select less 62 nonzero coefficients from 2,000
genes. The maximum number of actual nonzero coefficients is 42. Because the ratio
of signal (RatioS) is 99.9% (=1,999/2,000 * 100%), only this microarray has high
RatioS compared with other five microarrays. It was worthy of praise that SOM
could select 2,000 oncogenes from 6,500 genes. Although anyone cannot achieve
this achievement, we consider it is not a contribution of SOM but a result of medical
knowledge. From a statistical point of view, it is surprising that cluster analysis is
so useful for oncogenes research. Furthermore, in a different approach according
to Method2, it decomposes 2000 genes into nearly 64 SMs and 130 BGSs, with
low noise. These results indirectly indicate that their approach and Method2 are
appropriate. However, the usage of Method2 is easy for many researchers who do
not have medical knowledge.

1Cancer gene means a set of genes included in SM. Those genes separate two classes entirely.



2.3 Analysis of 64 SMs Obtained by Alon’s Microarray 49

Table 2.1 NMs of 64 SMs

SM GENE Logistic QDF LDF2 LDF1 DS RatioSV t (��)

8 31 0 0 0 0 7.5 26.8 0.3

35 30 0 0 1 1 8.5 23.5 4.6

11 25 0 0 2 2 9.7 20.7 3.3

53 29 0 0 3 3 10.1 19.8 2.4

27 28 0 0 1 1 10.2 19.6 2.6

– – – – – – – – –

63 40 0 0 6 8 32.4 6.2 3.5

7 41 0 0 0 1 32.2 6.2 3

59 36 0 0 6 6 37.2 5.4 1.3

14 26 0 0 0 0 39.8 5 0.5

64 42 0 0 8 9 84.9 2.4 3.5

Max 42 0 0 8 9 84.9 26.8 4.6

Mean 31.23 0 0 2.1 2.17 19.04 12.84 1.72

Min 21 0 0 0 0 7.5 2.4 −1.1

Sum 1999 0 0 134 139 1218 821.8 110.3

NM � 0 64 64 13 12

All NMs of logistic regression are zero. Because all NMs of QDF are 0 also, the
distance of two-class averages may be larger than the condition of the difference
of two variance–covariance matrices (Aoshima and Yata 2017; Yata and Aoshima
2010). “LDF2 and LDF1” are NMs of two different prior probability options of
Fisher’s LDFs. The prior probability of LDF2 is proportional to the case number of
22:40. That of LDF1 is “1:1” that is default in much statistical software. However,
we used the proportional prior probability because we wish to compare NMs of six
MP-based LDFs in our research. The NM’s ranges of LDF2 and LDF1 are [0, 8] and
[0, 9], respectively. The 13 NMs of LDF2 and 12 NMs of LDF1 are zero. Because
three LSD ratios of QDF, LDF1, and LDF2 are 64/64 � 100%, 13/64 � 20.3%,
and 12/64� 18.7%, these results are better than the other five microarrays. Thus, we
forecast that two classes of Alon are fairly separable in each SM. “DS” is the range of
RipDSs. The range of 64 RipDSs is [7.5, 84.9]. “RatioSV” is the value calculated by
“2/DS * 100 (%)” that indicates the ratio of the SV width and the RipDSs width. The
range of 64 RatioSVs is [2.4, 26.8]. The eighth RipDF (RipDS8) has the maximum
RatioSV among 64 RipDSs. RipDS64 has the minimum RatioSV less than 5%. The
RatioSV recommends RipDS8 because it is the maximum value of 64 RipDSs. We
claim RatioSV is the best index for the LSD-discrimination of two classes and is
helpful for cancer gene diagnosis. “t” column is t-value to test the mean’s difference
of the RipDSs. The ranges of t-values are [−1.1, 4.6]. Furthermore, we surveyed all
t-values of genes included in each RipDSs. Those values are either of minus, almost
zero, and positive values, not only positive values. On the other hand, some papers
claimed high positive t-values or Welch values are oncogenes. However, our results
of t-test showed that a t-test or Welch’s test was not helpful to find cancer genes.
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Our Claim: The t-test and Welch test may be useless for cancer gene diagnosis.

2.3.1.2 Histogram and Correlation

Figure 2.1 is a histogram of gene, LDF2, LDF1, RatioSV, and t-values. If we select
the case “NM of LDF 2 equals 0,” these cases will be dark green in other variables
also. The dark green cases of “gene, RatioSV, and t ( ��)” spread throughout the range.
On the other hand, dark green cases of LDF1 are less than 3. This fact indicates one of
theNM’s defects that cannot find the linear separable fact at all. In general, examining
the histogram is essential. However, it is more critical whether MNM � 0 or not,
so the results that do not contribute to this are not meaning at all. We obtained the
results of various studies and conducted wasteful investigations.

Fig. 2.1 Histograms of gene, QDF, LDF2, and LDF1, RatioSV and t ( ��)

Figure 2.2 is the matrix correlation of five variables. The upper figure shows the
correlation of ten pairs. We focus on the three positive correlations of (gene, LDF1,
and LDF2). The positive correlations indicate that the larger the number of genes, the
higher the number of misclassifications. That is, SM containing many genes tends to
have a large NM. Three correlations between RatioSV and (gene, LDF1, and LDF2)
are negative correlations. These correlations indicate that the smaller the number of
genes and two NMs, the larger the value of RatioSV. Four correlations between the
t-test with the other four variables are almost zero. These correlations show that the
t-tests are uncorrelated with the number of genes and twoNMs. Again, we emphasize
that using the t-test is useless for cancer gene diagnosis. The figure below is a scatter
plot matrix of five variables.
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Fig. 2.2 Matrix correlation of five variables

2.3.2 Analysis of RipDS8 by Standard Statistical Methods

2.3.2.1 One-Way ANOVA with T-Test

We analyze RipDS8 by standard statistical methods because the RatioSV of RipDS8
has the maximum value among 64 SMs. Four NMs of logistic regression, QDF, and
bothLDFs are zero.Although this fact shows thatQDFandFisher’s LDFcan discrim-
inate RipDS8 correctly in addition to logistic regression, this is a rare case. However,
it is crucial other statistical methods cannot show the linear separable fact. This fact
indicates the discriminant analysis is the best methods for LSD-discrimination and
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cancer gene analysis. QDF and Fisher’s LDF often cannot discriminate SM correctly
for other five microarrays. Table 2.2 is the result of one-way ANOVA of RipDS8
that consists of 31 genes. Two columns “Min and Max” are the range of class1 (nor-
mal, 22 cases). “MIN and MAX” are the range of class2 (tumor, 40 cases). All two
classes overlap. However, RipDS8 is linearly separable that two classes are entirely
separable in RipDS8. Standard statistical methods cannot show the linear separable
fact of SM8 (Problem6). Two t-tests are done to test the difference of means on each
gene. “t ( ��)” is the t-test value under two variances which are not equal, and “t (=)”
is the t-test value in the case of two variances which are equal. The table is sorted in
descending order by the value of “t ( ��).” The range of t-values is [−6.5, 4.27]. Some
papers expected t-value was useful for cancer gene analysis and claimed that some
genes with sizeable positive t-value were oncogenes. We doubt their claims because
two results in Tables 2.1 and 2.2 denied their claim.

Table 2.2 Result by one-way
ANOVA of RIPDS8

Gene Min Max MIN MAX t (��) t (=)

X1473 4.74 8.12 4.89 9.55 4.20 4.27

X698 6.37 8.53 6.50 10.46 3.95 3.43

X1896 3.91 6.60 4.17 6.75 2.27 2.51

X1859 5.11 7.17 4.55 7.66 2.22 2.20

X1485 5.89 10.59 4.87 10.58 2.04 1.92

X1662 5.44 7.15 5.37 7.86 1.70 1.70

X1961 4.44 7.08 4.39 7.98 1.60 1.53

X1464 6.62 11.02 5.16 11.62 1.21 1.11

X1024 6.16 11.50 5.72 11.09 1.20 1.27

S8X6 10.99 13.07 10.28 13.07 0.84 0.87

X1606 4.61 9.72 3.76 10.29 0.60 0.65

X1706 4.69 7.84 4.76 7.96 0.30 0.31

X1077 4.39 9.50 4.30 10.16 0.19 0.20

X1571 3.76 7.05 5.18 7.57 0.17 0.18

X1883 5.02 7.38 4.35 7.33 0.01 0.01

X1207 5.11 7.23 5.29 7.39 −0.01 −0.01

X1177 5.83 9.23 6.30 9.44 −0.34 −0.34

X1228 5.75 7.62 5.52 7.87 −0.51 −0.51

X1958 5.16 7.49 3.50 7.52 −0.91 −0.81

X1433 5.33 9.74 4.47 10.05 −1.03 −0.99

X1295 4.85 7.53 5.10 7.55 −1.23 −1.16

X1448 4.93 7.53 4.39 6.86 −1.42 −1.36

X1182 5.80 9.10 5.86 8.83 −1.54 −1.56

X404 7.30 9.15 6.65 10.24 −1.74 −1.58

X1842 5.50 7.65 4.47 7.75 −2.46 −2.33

(continued)
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Table 2.2 (continued) Gene Min Max MIN MAX t (��) t (=)

X1348 7.08 10.05 4.94 10.07 −2.94 −2.64

X1642 6.22 8.54 4.35 8.48 −3.06 −2.73

X119 10.22 13.07 7.50 12.66 −3.46 −3.07

X1387 6.21 11.52 4.76 11.43 −4.25 −4.14

X14 11.18 12.84 10.18 12.84 −5.24 −5.12

X1423 6.03 10.75 3.50 9.84 −6.68 −6.50

Figure 2.3 is the box–whisker plots of two classes. Three t-values of X1423, X14,
and X1387 are −6.68, −5.24, and −4.25, respectively. Because three averages of
class2 (tumor subjects) are less than those of class1 (normal subjects), these genes
may prevent cancer disease (suppressor of cancer). Although these three genes are
high negative values, two classes are not linearly separable. We investigate 64 SMs
and get the same results. Although some cancer gene researchers expect there is one
oncogene that can discriminate two classes completely, our examination by one-way
ANOVA suggests their expectations are wrong. Our study shows that the appropriate
set of genes included in SM can correctly distinguish between cancer and normal
classes.

Fig. 2.3 Box–whisker plots of two classes

2.3.2.2 Ward Cluster Analysis of RipDS8

We analyze RipDS8 in Ward cluster analysis. Figure 2.4 is a heat map of RipDS8
(64 cases and 31 genes). The right side is the dendrogram of 22 normal cases with
marks � and 40 tumor subjects with marks ×. Although it is difficult to decide the
proper number of clusters, we accept four clusters. However, four clusters include
normal and tumor subjects in each cluster. In the bottom dendrogram of the gene, we
cannot classify genes into clear clusters. In this case, it is meaningless to analyze the
variable dendrogram displayed below. However, sixth and seventh genes from the
right firstly join at a small distance. These are thought to be mutually substitutable.
Nevertheless, four discriminant functions can discriminate RipDS8 completely in
Table 2.1. This fact indicates that the expression level of genes cannot classify two
classes well (Problem6). Moreover, we understand the discriminant functions are the
best methods to discriminate between two classes. However, we concluded that it
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would be better not to analyze the result of each SM in detail. That is, we consider
the gene contained in SM as an oncogene. However, standard statistical methods
cannot find linearly separable fact. Therefore, RIP, Revised LP-OLDF, and H-SVM
DSs are considered to be a signal.

Fig. 2.4 Heat map of RipDS8 with 31 genes by the ward method
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2.3.2.3 PCA and Canonical Plot of LDF2

Figure 2.5 is PCA outputs. Left plot is an eigenvalue. Ten eigenvalues from Prin1 to
Prin10 are greater than one. The central plot is a scatter plot. Two classes overlap. The
right plot is the factor loading plot. The 31 genes are located in four quadrants. Most
factor loading of 64 SMs have the same tendencies. PCA cannot explain the meaning
of two classes. In the end, we concluded that it would be better not to analyze this
result in detail.

Fig. 2.5 PCA figures (eigenvalue, scatter plot, and factor loading plot)

Figure 2.6 is the canonical plot of LDF2. Because three discriminant function’s
NMs are zero, two classes are separable entirely. This figure is quite different from
Fig. 2.5 of PCA. Thus, this result indicates the discriminant analysis is better than
other statistical methods from the viewpoint of classifying two classes. On the
other hand, because statistical discriminant functions are useless for discriminat-
ing microarrays, most medical researchers did not use discriminant functions after
1999.

Fig. 2.6 Canonical plot of QDF
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2.3.2.4 Our Conclusion of Standard Statistical Methods

At first, we expected to obtain a good result by analyzing all SMs using standard
statistical methods. Although we analyzed all SMs by these methods, only logistic
regression was meaningful. In this section, NMs of QDF and Fisher’s LDF occa-
sionally became zero. However, most analyses of SMs showed no useful results that
two classes were completely separable. Thus, we recommended researchers did not
expect the useful results except for definitive result by logistic regression.

Strange fact of cancer gene analysis (Problem5): Although two classes are entirely
separable in high-dimensional microarrays and SMs, we could not observe the linear
separability of two classes by the standard statistical methods. Moreover, logistic
regression can show the linear separability for SMs. This fact implies the noise
entirely includes the signal found by RIP. We forecast the variance of the signal is
smaller than those of noise. This book shows facts by many examinations.

2.4 Analysis of 64 RipDSs Data

We claimed standard statistical methods could analyze SM very easily because each
SM is a small sample (small n and small pi (pi <� n)). However, we cannot obtain
useful results analyzing 64 SMs in Sect. 2.3. Next, when the standard statistical
methods analyze 64 RipDSs new data with 62 cases and 64 RipDSs (64 variables),
we get the next surprising success explained in this section.

2.4.1 Examination of 64 RipDSs and RatioSV of RIP

Table 2.3 is two ranges of two classes, the range of DS, RatioSV (=200/DS), and
two t-values. Three columns such as DS, RatioSV, and t ( �� 0) are the same as
Table 2.1. The range of 22 cases in class1 (Min and Max columns) is less than equal
−1, and the range of 40 cases in class2 (MIN and MAX columns) is greater than
equal 1. SV separates two classes of 64 SMs. We consider “RatioSV of RIP” is
the most important statistics for cancer gene analysis because it shows the ease of
classification by two classes. The table is sorted in descending order of the value
of “RatioSV of RIP.” Although the SV distance is 2, it is 26.27% for the range of
RipDS8. SV becomes a wide window and separate two classes completely. The last
three rows are the maximum, mean, and minimum of eight variables. The range
of DS, RatioSV, and two t-values are [7.47, 84.94], [2.35, 26.76], [4.22, 15.5], and
[3.12, 14.76], respectively. Table 2.3 shows 64 discriminations by RIP are very easy.
However, standard statistical methods are difficult to obtain the linear separable fact
(Problem6). This fact implies the difficulties of cancer gene analysis until now and
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answers why many researchers could not succeed cancer gene analysis from 1970
because these methods are useless for microarrays and those SMs. We must choose
proper methods for cancer gene diagnosis as same as cancer gene analysis.

Table 2.3 Sixty-four RipDSs, range of DS, RatioSV (=200/DS) and t-values

RipDS Min Max MIN MAX DS RatioSV t (��) t (=)

RipDS8 −3.35 −1 1 4.12 7.47 26.76 15.50 14.76

RipDS35 −2.58 −1 1 5.92 8.51 23.52 13.02 9.94

RipDS11 −4.15 −1 1 5.52 9.67 20.68 12.71 11.17

RipDS53 −3.72 −1 1 6.40 10.13 19.75 11.98 10.20

RipDS27 −3.75 −1 1 6.45 10.20 19.62 13.19 11.58

RipDS46 −5.04 −1 1 5.44 10.48 19.09 10.73 11.04

RipDS30 −3.92 −1 1 6.86 10.79 18.54 11.32 9.67

RipDS33 −5.34 −1 1 5.50 10.85 18.44 11.46 10.77

RipDS3 −4.74 −1 1 6.14 10.88 18.39 11.80 10.01

RipDS25 −5.55 −1 1 5.39 10.94 18.29 11.66 11.45

RipDS17 −4.05 −1 1 7.01 11.06 18.08 12.99 11.14

RipDS15 −5.70 −1 1 5.47 11.17 17.90 10.52 11.01

RipDS51 −3.98 −1 1 7.35 11.34 17.64 11.68 9.95

RipDS42 −6.28 −1 1 5.15 11.43 17.50 10.47 10.38

RipDS19 −6.38 −1 1 5.32 11.70 17.09 10.00 10.42

RipDS9 −3.35 −1 1 8.70 12.04 16.60 12.13 10.00

RipDS22 −4.14 −1 1 7.90 12.05 16.60 10.79 9.25

RipDS6 −4.30 −1 1 8.49 12.78 15.64 11.21 9.93

RipDS23 −7.26 −1 1 5.93 13.19 15.16 9.65 10.75

RipDS10 −6.33 −1 1 6.92 13.25 15.09 9.66 10.26

RipDS16 −5.25 −1 1 8.10 13.35 14.98 10.51 9.29

RipDS48 −6.76 −1 1 6.67 13.43 14.89 10.03 10.22

RipDS31 −5.06 −1 1 8.43 13.50 14.82 10.17 9.52

RipDS1 −5.35 −1 1 8.18 13.53 14.78 11.02 9.80

RipDS24 −4.60 −1 1 9.18 13.78 14.52 10.96 9.12

RipDS21 −4.79 −1 1 9.82 14.62 13.68 10.05 8.70

RipDS18 −5.88 −1 1 8.77 14.66 13.64 10.32 9.46

RipDS2 −5.30 −1 1 9.38 14.68 13.62 9.25 8.07

RipDS32 −7.66 −1 1 7.19 14.85 13.47 9.05 9.32

RipDS34 −5.27 −1 1 9.69 14.96 13.37 9.73 8.29

RipDS36 −8.23 −1 1 6.97 15.20 13.16 9.73 10.00

RipDS5 −6.94 −1 1 8.29 15.22 13.14 9.42 9.04

(continued)
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Table 2.3 (continued)

RipDS Min Max MIN MAX DS RatioSV t (��) t (=)

RipDS20 −6.06 −1 1 9.26 15.32 13.06 9.12 8.42

RipDS49 −4.20 −1 1 11.23 15.43 12.96 9.84 7.67

RipDS56 −5.28 −1 1 10.61 15.89 12.59 8.02 6.44

RipDS26 −6.71 −1 1 9.26 15.96 12.53 9.39 8.53

RipDS54 −5.22 −1 1 11.47 16.69 11.99 9.19 7.34

RipDS38 −7.40 −1 1 9.67 17.07 11.72 9.05 7.94

RipDS29 −6.46 −1 1 10.82 17.28 11.57 10.05 8.55

RipDS55 −9.86 −1 1 7.82 17.68 11.31 8.28 8.52

RipDS58 −5.67 −1 1 12.14 17.81 11.23 8.73 7.26

RipDS60 −4.60 −1 1 13.44 18.05 11.08 9.71 7.52

RipDS52 −5.98 −1 1 12.23 18.21 10.98 8.95 7.61

RipDS40 −7.12 −1 1 11.69 18.81 10.63 8.18 6.83

RipDS43 −8.34 −1 1 10.87 19.21 10.41 9.21 8.41

RipDS4 −7.90 −1 1 12.87 20.77 9.63 9.02 8.53

RipDS45 −12.49 −1 1 9.24 21.73 9.20 7.58 7.66

RipDS44 −8.02 −1 1 13.82 21.84 9.16 8.26 7.16

RipDS37 −10.52 −1 1 13.33 23.84 8.39 7.88 7.07

RipDS41 −10.67 −1 1 15.54 26.21 7.63 8.98 8.18

RipDS39 −14.35 −1 1 11.99 26.35 7.59 8.20 8.43

RipDS61 −12.37 −1 1 14.67 27.04 7.40 6.68 6.50

RipDS62 −8.83 −1 1 19.24 28.07 7.13 6.65 6.12

RipDS57 −12.95 −1 1 15.70 28.66 6.98 6.99 6.48

RipDS12 −16.52 −1 1 13.00 29.52 6.78 6.06 6.46

RipDS47 −12.97 −1 1 17.10 30.07 6.65 7.19 6.55

RipDS50 −11.52 −1 1 18.78 30.30 6.60 7.59 6.95

RipDS13 −10.77 −1 1 19.77 30.54 6.55 8.04 6.94

RipDS28 −15.22 −1 1 16.77 31.99 6.25 7.69 7.58

RipDS7 −7.94 −1 1 24.25 32.19 6.21 6.46 5.06

RipDS63 −8.38 −1 1 24.00 32.38 6.18 6.22 4.72

RipDS59 −15.25 −1 1 21.91 37.17 5.38 6.17 5.53

RipDS14 −21.94 −1 1 17.85 39.79 5.03 7.16 7.42

RipDS64 −3.94 −1 1 81.00 84.94 2.35 4.22 3.12

MAX −2.58 −1 1 81.00 84.94 26.76 15.50 14.76

MEAN −7.35 −1 1 11.69 19.04 12.84 9.49 8.63

MIN −21.94 −1 1 4.12 7.47 2.35 4.22 3.12



2.4 Analysis of 64 RipDSs Data 59

Figure 2.7 is two box–whisker plots of RipDS8 and RipDS64. Left plot is RipDS8
with maximum RatioSV, and the right plot is RipDS64 with minimum RatioSV. Two
ranges are [−3.35, 4.12] and [−3.94, 81], respectively. Both ranges of DS are 7.47
and 84.94. RatioSVs of RipDS8 and RipDS64 opens windows of 26.76 and 2.35%
for each DS. If we will get the validation samples, RipDS8 discriminates validation
sample in two classes very easy and completely. Thus, we judged not to validate
RipDS8 by Method1. However, RipDS64 may not be able to discriminate validation
samples correctly. In other words, six projects are verifying using LOO, but we think
there is no need to verify the malignancy indicator for the case of large RatioSV. This
threshold is future research, but we think that it is enough if it is 5% or more.

Our Claim: If we use the malignancy indicator with “RatioSV >� 5%,” we do not
need to verify it with Method1.

On the other hand, if we remove the outlier value 81 of RipDS64, RatioSV of
RipDS64 becomes large, and we obtain the different result. In this book, we do not
consider the effects of the outliers of cancer gene data. The treatment of outliers is
very vital and the future important research theme.
Future Research: We must consider the effect of the outliers in the cancer gene
diagnosis.

Fig. 2.7 Two box–whisker plots of RipDS8 and RipDS64

2.4.2 Ward Cluster Analysis of RipDSs New Data

Ward cluster analyzes the RipDSs new data (62 cases and 64 variables). Figure 2.8
is the result of two clusters of heat map and dendrogram (22 healthy cases and 40
cancer cases). Two classes become two clear clusters. The top blue cluster is 22
healthy cases in class1, and the second red cluster is 40 cancer cases in class2. The
medical specialist may be able to explain over ten clusters by dendrogram of 62
subjects. However, 64 RipDSs variable dendrogram shown in under heatmap have
more complex clustering. Over five pairs of two RipDSs become one cluster in
the early stage of clustering. This fact may show two RipDSs in each pair can be
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exchanged with each other. These pairs show redundancy. Moreover, if it is possible
to exchange with each other, there is a possibility that BGSs will not be unique.

Fig. 2.8 Heat map and dendrogram of two classes

2.4.3 PCA Results of New Data

2.4.3.1 PCA Using Correlation Matrix

Figure 2.9 is three plots of PCA. Left plot is an eigenvalue. The first eigenvalue of
the Prin1 is 39.36 and enormous because two classes are entirely separable on the
Prin1. Its cumulative contribution ratio is 61.508%. The following three reasons may
cause this result:

(1) Two classes are almost on Prin1. This fact means 64 RipDSs have almost the
same axes in the high-dimensional microarray.
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(2) Because two classes are entirely separable on Prin1, the first eigenvalue is enor-
mous. Because the eigenvalues of the other 63 principal components are smaller
than Prin1, the discrimination axes of 64 RipDSs are almost the same.

(3) The dispersions of the other 63 principal components are 38.5%. Thus, in the
space of the high-dimensional microarray, we assume that the 64 axes produced
by 64 RipDSs are in almost the same direction, the variation of 64 RipDSs is
small, and the noise includes it. We confirm this claim in the later chapter.

The 22 normal cases overlap with the almost negative segment of the Prin1 axis.
The 40 cancer cases scatter on the first and fourth quadrants. Right factor loading
plot explains the correlation of Prin1 and Prin2 with 64 RipDSs. The correlation of
the Prin1 with 64 RipDSs are almost from 0.5 to 1, and the correlation of Prin2 with
64 RipDSs is almost from−0.4 to 0.5. These plots imply us the normal subjects have
a small variance on other 63 principal components, and severe cancer subjects have
a slightly large variance on other 63 principal components. Severe cancer subjects
locate a wide range compared with healthy subjects. These characteristic meets our
common knowledge about cancer. Because two classes of Singh’s microarray are
healthy and cancer subjects in Fig. 2.23, its scatter plot is almost the same. On
the other hand, because other microarrays are two different types of cancers, both
classes do not locate on the segment of the Prin1 such as a healthy class in Fig. 2.9.
Thus, we conclude the 63 variances of the healthy subjects are very small compared
with cancer subjects. Factor loading plot locates on the first and fourth quadrants. If
we obtain the validation cases, we can confirm the scatter plot is useful for cancer
gene diagnosis as same as 64 individual RipDS. Thus, Prin1 indicates the cancer
malignancy indicator in addition to 64 RipDSs.

Alon and Singh consist of two classes of cancer and healthy subjects. Even though
the four microarrays except Alon and Singh are two different types of cancer, we
obtained almost the same results as Alon and Singh. From this, we think that our
analysis results are generally as follows. Because six eigenvalues of the Prin1 in
Sect. 2.6 are large, this fact shows two classes of sixmicroarrays are entirely separable

Fig. 2.9 Three plots of PCA
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in high-dimensional microarray gene space. It is critical that our results may be
almost the same by other microarrays and other types of gene data. We think another
microarrays show the same results.

Figure 2.10 is 63 scatter plots of new data. The x-axis is Prin1. Y-axes are from
Prin2 to Prin5 and fromPrin61 to Prin64. Because other 55 scatter plots are almost the
same, we omit those plots. Although PCA using genes of SMs cannot separate two
classes, it can easily separate two classes by RipDSs new data. The 63 scatter plots
of new data show two classes are separable in 64-dimensional space. Most statistical
users misunderstand PCA can grasp the relevant information by Prin1 and Prin2
which represent large data variations. However, many statistical methods as same as
PCA cannot find the linear separable fact of the signal having small variations.

Fig. 2.10 Sixty-three scatter plots of new data (x-axis: Prin1, y-axis: from Prin2 to Prin5 and from
Prin61 to Prin64)

Table 2.4 is the values of four principal components corresponding to Fig. 2.10.
“ID” is the sequential number from 1 to 62. “Prin1” is the values of Prin1 sorted
in ascending order. We consider “Prin1” is the cancer malignancy indicators. Both
ranges of the 22 cases in class1 and 40 cases in class2 are [−9.57, −5.55] and [0.02,
8.77], respectively. There is 5.57 (=0.02 + 5.55) window width between two classes.
RatioSV of PCA is 30.4% (=(0.02 + 5.55) * 100/(8.77 + 9.57) � 557/18.34 � 30.4).
Because RatioSV of RipDS8 is 26.76%, RatioSV of PCA is 3.64% greater than
RatioSV of RipDS8 because RatioSV of PCA is the total characteristic value of 64
RIPs. If the doctor confirms that the order of magnitude of the DS and the general
severity of the subject are almost the same, Prin1 is available as the total characteristic
value of the cancer malignancy indicator in addition to 64 RipDSs.
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Table 2.4 Ranking of four
principal components

ID Prin1 R1 Prin2 R2 Prin3 R3 Prin4 R4

4 −9.57 1 −0.52 19 0.02 34 −1.04 12

10 −9.33 2 −0.62 12 0.15 40 −1.05 11

21 −9.12 3 −0.07 28 −0.05 31 0.72 49

9 −8.58 4 −0.02 32 0.46 45 0.99 51

19 −8.43 5 0.87 53 −0.05 32 −1.39 6

7 −8.37 6 −0.42 21 0.57 46 −0.29 23

5 −8.34 7 −0.92 8 0.23 42 −0.14 29

11 −8.33 8 −0.55 16 0.11 37 −0.28 24

1 −8.32 9 −0.03 31 0.85 50 0.34 41

13 −8.29 10 −0.01 33 1.06 53 0.58 46

3 −8.27 11 0.54 45 0.99 52 −0.37 22

12 −8.23 12 0.65 47 −0.13 28 −0.92 15

14 −8.15 13 −0.21 25 0.08 35 −1.22 8

16 −7.48 14 0.48 43 −0.72 17 −0.51 20

2 −7.47 15 0.61 46 0.76 48 1.34 55

8 −7.46 16 0.75 52 0.87 51 −0.17 27

15 −7.28 17 0.14 40 0.29 43 −0.73 19

6 −6.84 18 −0.18 27 0.31 44 0.30 39

22 −6.81 19 0.66 48 −0.12 29 −0.19 26

17 −6.80 20 −0.43 20 −0.81 16 −0.19 25

20 −5.64 21 0.22 41 0.13 38 −0.05 32

18 −5.55 22 0.01 34 0.10 36 0.03 35

55 0.02 23 −0.23 24 −0.20 26 0.29 38

52 0.14 24 −0.19 26 0.00 33 0.43 43

58 0.43 25 −0.31 23 −0.14 27 −0.02 33

24 0.52 26 0.08 39 −0.32 24 −0.01 34

30 0.90 27 −0.54 17 −0.63 21 1.27 54

59 0.92 28 0.04 37 −0.63 20 0.06 36

23 1.86 29 −0.62 13 −1.08 13 1.20 53

25 1.86 30 −0.77 10 −0.44 23 −0.14 28

57 2.29 31 −0.52 18 −0.68 19 0.39 42

34 2.32 32 0.02 36 −0.54 22 −1.40 5

29 2.35 33 −0.39 22 −1.27 11 −0.50 21

26 2.36 34 −0.83 9 −0.85 15 −0.11 30

56 2.37 35 −0.04 30 −0.72 18 −0.07 31

50 2.59 36 0.69 50 −1.17 12 1.72 58

(continued)



64 2 Overview of Cancer Gene Diagnosis

Table 2.4 (continued) ID Prin1 R1 Prin2 R2 Prin3 R3 Prin4 R4

31 2.96 37 −0.59 14 −2.13 5 1.13 52

33 3.01 38 −0.07 29 −0.96 14 2.75 61

62 3.40 39 −0.55 15 −1.70 8 1.85 59

27 3.50 40 0.71 51 −1.75 7 4.19 62

35 3.53 41 1.25 56 0.72 47 −1.14 9

61 3.90 42 1.21 55 −0.08 30 2.04 60

32 4.03 43 1.48 57 −0.31 25 0.86 50

42 4.46 44 −3.15 3 −2.28 1 −0.99 14

28 4.57 45 0.04 38 −2.22 3 −0.87 17

41 4.62 46 −1.19 7 −2.26 2 −0.78 18

49 5.11 47 1.56 58 2.34 57 1.52 56

47 5.25 48 −0.67 11 3.53 62 −1.07 10

54 5.43 49 2.34 60 1.59 55 0.47 44

45 5.91 50 0.01 35 1.54 54 0.63 47

37 6.17 51 0.67 49 −1.55 9 0.31 40

44 6.56 52 3.39 61 −1.76 6 −2.63 2

40 7.05 53 0.51 44 2.73 59 0.72 48

51 7.10 54 −3.90 2 0.21 41 0.28 37

60 7.24 55 0.30 42 3.39 61 1.55 57

39 7.74 56 1.01 54 0.14 39 −1.53 4

38 8.13 57 5.19 62 −1.29 10 −2.52 3

43 8.14 58 −1.26 6 1.59 56 −2.94 1

48 8.16 59 −3.96 1 2.78 60 −1.01 13

53 8.29 60 −2.12 4 0.83 49 −0.91 16

36 8.69 61 1.80 59 2.62 58 0.47 45

46 8.77 62 −1.35 5 −2.17 4 −1.29 7

2.4.3.2 Comparison of Correlation Matrix and Variance–Covariance
Matrix

(1) Analysis of New Data by Correlation Matrix

In general, PCA uses a correlation matrix. Correlation matrix makes it possible to
avoid the influence of variables having different units. Because all the variables are
the same units of the gene expression level, it is meaningful to analyze microarray
by the variance-covariance matrix. Attempts with the variance–covariance matrix,
the results were surprisingly different. Examination of the result is future research.
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(2) Analysis of New Data by Variance–Covariance Matrix

If we analyze new datamade by the variance–covariancematrix, we obtain the differ-
ent result in Fig. 2.11. The first eigenvalue is 612.23, and its cumulative contribution
ratio is 51.848%. The second eigenvalue is 208.002, and its cumulative contribution
ratio is 69.4%. Scatter plot has two tendencies. Many subjects are located on a line
about 40° relative to Prin1. Over 13 cancer subjects widely scatter under this line at
an angle of −45° with Prin1. Factor loading plot explains this meaning.

RipDS64 and RipDS7 are in the fourth quadrant. These two RipDSs are differ-
ent from other 62 RipDSs. Especially, RipDS64 may relate over 13 patients. This
example shows the merit of our approach because general knowledge of statistics
can interpret unique cases.

Fig. 2.11 Three plots of PCA (variance–covariance matrix)

(3) The 62 RipDSs new data using the correlation matrix

Afterwe drop two variables such asRipDS64 andRipDS7,we analyze the 62RipDSs
new data with 62 subjects and 62 RipDSs. Figure 2.12 is the three plots using the
correlation matrix. The Prin1 eigenvalue is 38.719, and its cumulative contribution
ratio is 62.45%. Scatter plot and factor loading plot are similar to Fig. 2.9. However,
RipDS63 is different from other 61 RipDSs those are two groups in the first and
fourth quadrants. These two groups have different meanings in Prin2.
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Fig. 2.12 Three plots of PCA without two RipDSs (correlation matrix)

(4) The 62 RipDSs New Data using the Variance–Covariance Matrix

Figure 2.13 shows three plots of PCA using variance–covariance matrix instead of
the correlation matrix in Fig. 2.12. The Prin1 eigenvalue is 500.687, and its cumu-
lative contribution ratio is 58.515%. Although two eigenvalues of Prin1 and Prin2
in Fig. 2.11 are 612.2 and 208, those of Prin1 and Prin2 in Fig. 2.13 are 500.7 and
49.4. We guess to remove RIP64 reduce the variance of Prin2 as Fig. 2.13.

If we remove RIP63 in next, RIP13 or RIP44 may become outliers. In future
research, the surveys of PCA using correlation matrix and variance–covariance
matrix may suggest more useful knowledge about cancer gene diagnosis.

Fig. 2.13 Three plots of PCA without two RipDSs (variance–covariance matrix)
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2.4.3.3 Analysis of Transpose Data

We transpose the new data with 62 subjects and 64 RipDSs and analyze the transpose
data that consists of 64 RipDSs (64 cases) and 62 subjects (62 variables). Figure 2.14
is three plots of PCA. Eleven eigenvalues are over one. Scatter plot shows most
RipDSs locate on around the origin. The 13th, 14th, and 28th RipDSs are an outlier
in the fourth quadrant. The 64th DS (64) is an outlier in the first quadrant. These
four RIPsmay become different malignancy indicators from other 60 RipDSs. Factor
loading plot shows most of the healthy subjects in class1 having variable name prefix
“N” located in the second quadrant. The tumor cases variable name prefix “C” locate
in the fourth and first quadrants.

Fig. 2.14 Three plots of PCA

Figure 2.15 is four scatter plots of PCA. The x-axis is the Prin1. Y-axes are Prin2,
Prin3, Prin4, and Prin5. We find several outliers. Both outliers of new data and
transposed new data may be the new subclass of cancers pointed out by Golub et al.
This is the future theme.

Fig. 2.15 Three scatter plots of transposed data
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2.4.3.4 Summary

At first, we claimed standard statistical methods could analyze SM very easily
because these subspaces were small samples with small n and small p (Shinmura
2016). However, our examination shows it is difficult for us to obtain good results
using the 64 SMs. However, we can get surprising results from the RipDSs new data.
Primarily, the 62 subjects are ranking on the Prin1. Thus, we can rank the malig-
nancy of cancer by the value of Prin1 in Fig. 2.9. Moreover, theWard cluster analysis
can identify two clusters entirely in Fig. 2.8. Usually, cluster analysis cannot cluster
two classes. However, we can separate two classes completely by RipDS new data.
We need cooperation with an expert on gene diagnosis. Especially, we expect seven
research members of Alon et al. They can validate our results and confirm our claim.
Alon et al. can prove their research was right. If they offer new validation samples,
we analyze those samples and feedback the results to them.

2.5 The 130 BGSs of Alon’s Microarray

2.5.1 Results by Standard Statistical Methods

After LINGO Program3 found 64 SMs in 2016, LINGO Program4 separates 130
BGSs and noise subspace with five genes in 2016. In this section, we analyze 130
BGSs by standard statistical methods.We claimed standard statistical methods could
analyze BGS very easily because each BGSwas a small sample. However, we cannot
obtain useful results of 130 BGS showed in this section. Next, we analyze 130
RipDSs newdatawith 62 cases and 130RipDSs (130 variables) by standard statistical
methods and get the surprising success in Sect. 2.5.3. However, RatioSVs showBGSs
are not helpful for cancer gene diagnosis because 130 RatioSVs using 130 BGSs are
less than 1%.

2.5.1.1 Validation of 130 BGSs by Three Statistical Discriminant
Functions

Table 2.5 is 130 BGSs from SN � 1 to SN � 130. “BGS” column shows 130 BGSs
sorted by descending order of RatioSVvalues. “Gene” column is the number of genes
in each BGS. Because all NMs of logistic regression are zero, we can confirm 130
BGSs are linearly separable. The 60 NMs of QDF are zero. “LDF2 and LDF1” are
NMsof two different prior probability options of Fisher’s LDFs. The prior probability
of LDF2 is proportional to the case number of 22:40. The prior probability of LDF1
is “1:1” that is default in much statistical software. However, we use the proportional
prior probability because we wish to compare NMs of six MP-based LDFs. We omit
LDF1 from Table 2.5. The RatioSV of RIP using BGS in Table 2.5 recommends
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RipDS128 because it is the maximum value of 130 BGSs. We claim RatioSV is
the best index for the LSD-discrimination of two classes. Last three rows are the
maximum, mean, minimum values of 130 BGSs. The range of gene is [9, 25]. The
ranges of QDF, LDF2 and LDF1 are [0, 7], [3, 14] and [0, 13], respectively. Because
60 NMs of QDF are zero and maximum NM is almost half of NMs of LDF2, QDF is
better than LDF2. Because the range of 130 RatioSVs is [0.00, 0.9], 130 BGSs are
not helpful for cancer gene diagnosis. However, in the case of Swiss banknote data,
two-variable (X4, X6) is BGS, and its RatioSV is 0.524% in Fig. 10.2. Thus, 0.9%
is not such a bad value for BGS. On the other hand, RatioSV of SM is abnormally
large beyond our knowledge.

Future Research (Problem7): We must survey and compare the relation of BGSs
and SMs.

Table 2.5 Hundred and thirty NMs of BGSs by three discriminant functions and RatioSV

SN BGS Gene Logistic QDF LDF2 DS RatioSV

128 BGS128 11 0 0 7 222 0.90

93 BGS93 12 0 3 7 258 0.77

56 BGS56 9 0 2 7 295 0.68

129 BGS129 12 0 3 5 380 0.53

– – – – – – – –

1 BGS1 20 0 0 9 395 0.51

23 BGS23 14 0 2 6 84,975 0.00

32 BGS32 15 0 0 10 82,982 0.00

127 BGS127 14 0 2 14 113,129 0.00

64 BGS64 12 0 4 8 300,470 0.00

83 BGS83 18 0 0 9 176,727 0.00

MAX 25 0 7 14 300,470 0.90

MEAN 15.35 0 1.14 7.36 16,093 0.11

MIN 9 0 0 3 222 0.00

SUM 1995 0 148 957 2,092,140 13.93
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2.5.1.2 Histogram and Correlation

Figure 2.16 is the histograms of gene, QDF, LDF2, RangeSV, and t-value. If we
select the cases with “NM of QDF � 0,” those cases become dark green. Dark green
cases of the other four variables have wide ranges.

Fig. 2.16 Histograms of gene, QDF, LDF2, RatioSV and t-value

Figure 2.17 is the matrix correlation of five variables. Two correlations of (gene,
LDF2) and (RangeSV, t) are positive correlations such as 0.229 and 0.218. These are
weak positive correlations comparedwith SMs. Two correlations of (gene, RangeSV)
and (gene, QDF) are negative correlations such as −0.182 and −0.599. Generally
speaking, as the number of genes increases, NM of QDF becomes smaller, so it is
not very useful information. That is, this analysis is useless.
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Fig. 2.17 Matrix correlation of five variables (BGS)

2.5.1.3 Analysis of Eleven Genes of BGS128 by Standard Statistical
Methods

Weanalyze eleven genes included inBGS128 by standard statisticalmethods because
the RatioSV of RipDS128 has the maximum value among 130 BGSs. Table 2.6 is the
result of one-way ANOVA of BGS128 that consists of 11 genes. Two columns “Min
and Max” are the range of class1 (normal, 22 cases). “MIN and MAX” are the range
of class2 (tumor, 40 cases). “t ( ��)” is the t-test value under two variances which are
not equal, and “t (=)” is the t-test value under two variances which are equal. The
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most important fact is that there are seven positive values and four negative values.
Moreover, these absolute values are not so large. This fact indicates it is entirely
wrong that genes with significant positive values are oncogenes.

Table 2.6 Result by one-way ANOVA of BGS128

Gene Min Max MIN MAX t (��) t (=)

B128X1963 5.18 8.48 3.21 10.53 2.49 2.23

X1964 3.91 6.92 3.21 7.69 −1.13 −1.09

X1965 4.30 6.57 3.76 6.94 3.46 3.29

X1966 4.85 7.14 3.50 7.77 −1.00 −0.89

X1967 7.28 10.95 3.50 10.52 −4.79 −4.17

X1968 4.39 7.13 5.20 7.57 0.35 0.37

X1969 3.76 9.36 4.66 9.18 1.73 1.72

X1970 5.17 7.23 3.21 7.62 −2.45 −2.08

X1971 4.35 8.94 6.27 9.29 1.68 1.89

X1976 4.24 10.43 4.44 9.16 0.23 0.24

X1978 4.61 7.70 3.50 8.08 1.28 1.17

Figure 2.18 is three plots of PCA. Left plot is an eigenvalue. Four principal
components from Prin1 to Prin4 are larger than one. The central plot is a scatter
plot. Two classes overlap. The right plot is the factor loading plot. The 11 genes are
located in three quadrants except for the third quadrant. Because two classes overlap,
these results are not valuable. The presence or absence of the linear separable fact
is vital for the cancer gene diagnosis. This indicator will be an excellent guide to
mitigating sizeable genetic analysis work.

Fig. 2.18 PCA plots (eigenvalue, scatter plot, and factor loading)
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2.5.2 Examination of RipDSs of 130 BGSs

2.5.2.1 Validation of RipDSs and RatioSV of 130 BGSs

Table 2.7 is the summary of 130 BGSs. “BGS” columns correspond “SN” columns
in Table 2.5. The table is sorted in descending order by RatioSV value. “BGS� 128”
is RipDS of BGS128. “Min and Max” columns are the range of class1. The range
of 22 normal subjects with BGS128 is [−74, −1]. “MIN and MAX” columns are
the range of class2. The range of 40 tumor subjects of BGS128 is [1, 148]. Thus,
RipDSs range of BGS128 has 222 widths in “RipDS” column. Because maximum
RatioSV of BGS128 is 0.901% (=200/222), BGS may be useless for cancer gene
diagnosis. However, because BGS explains the structure of Alon’s microarray by
the monotonic decrease of MNM, it is essential for the study of the gene’s role in
cancer. Furthermore, RipDS of BGS may be a valid signal instead of RipDS of SM
(Problem7).

Table 2.7 Summary of RipDSs and RatioSV of 130 BGSs

BGS Min Max MIN MAX RipDS RatioSV

128 −74 −1 1 148 222 0.901

93 −69 −1 1 189 258 0.774

57 −84 −1 1 211 295 0.679

129 −167 −1 1 213 380 0.526

1 −149 −1 1 246 395 0.507

– – – – – – –

23 −46,017 −1 1 38,958 84,975 0.002

32 −35,120 −1 1 47,862 82,982 0.002

127 −46,881 −1 1 66,247 113,129 0.002

64 −118,569 −1 1 181,901 300,470 0.001

83 −72,581 −1 1 104,146 176,727 0.001

Max −69 −1 1 181,901 300,470 0.901

Mean −5979 −1 1 9947 15,926 0.107

Min −118,569 −1 1 148 222 0.001

Range 5910 0 0 171,954 284,544 0.794

We misunderstood BGS was more critical than SM because BGS could explain
the Matryoshka structure of microarrays entirely. However, we think BGS may not
discriminate validation samples correctly. This fact recollects us two facts.

1. Two-variable (X4, X6) is a unique BGS of Swiss banknote data (Flury and
Riedwyl 1988). However, the best model is five variable (X1, X3, X4, X5, X6)
that has the minimum M2 among 63 models. We explain this fact in Table 6.5
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of the Book1 (Shinmura, 2016). Because the M2 of (X4, X6) is larger than (X1,
X3–X6), the two-variable model is not the best model.

2. If we remove one gene from BGS, the removed gene subspace is not LSD and
is not used for cancer gene analysis anymore. For these reasons, we change the
research theme and analyze the SM instead of BGS in the seven chapters after this
chapter. We think that the four genes of Yamanaka’s iPS cells are BGS. However,
it is different in that there is no feature corresponding to themonotonous decrease
of MNM.

Table 2.7 is the result of 130 RipDSs using 130 BGSs. “Min and Max” columns
show the range of 22 normal cases (yi �−1), and “MINandMAX” columns show the
range of 40 tumor cancer cases (yi � 1). Because all 130 pairs of “Max and MIN”
are −1 and 1, this fact tells us 130 BGSs are linearly separable gene subspaces.
“RipDS” is the range of DS of RIP such as [Min, MAX]. “RatioSV of BGS” is the
value calculated by 200/DS that is the ratio (%) of the SV distance and DS. The
RatioSV of BGS128 is 0.901% and maximum value. Although the distance of SV
is two, it is 0.901% of DS. The RatioSV of BGS83 is 0.001% and minimum value.
These ratios tell us that the degree of linear separability is very tiny. Thus, it is hard
for us to find linear separable fact by standard statistical methods for 130 BGSs. Last
three rows are a summary of 130 BGSs. The range of RipDSs is [222, 300470] that is
abnormally large. Because the range of RatioSV is [0.001, 0.901], 130 RIPs scarcely
discriminate two classes in 130 BGSs.

2.5.2.2 Box–Whisker Plots of BGS128 and BGS65

Figure 2.19 is two box–whisker plots of BGS128 with the maximum RatioSV and
BGS65 with the minimum RatioSV. Because SV separates both two classes com-
pletely, many researchers usually willingly accept these results. Until now, there is
no research on LSD-discrimination except for us. MNM is critical statistics, and
RatioSV is the second crucial statistics in addition to MNM. Three SVMs and three
OLDFs discriminate the microarrays by SV that divide the data space into three
subspaces such as yi * f(xi) >� 1, 1 > yi * f(xi) > −1 and −1 >� yi * f(xi). Vapnik
defined LSD as follows:

(1) There are no cases in “1 > yi * f(xi) > −1.”
(2) Two classes can be assigned to either one of “yi * f(xi) >� 1” or “−1 >� yi

* f(xi).”

In this book, we assign the class1 in “−1 >� yi * f(xi)” and the class2 in
“yi * f(xi) >� 1.” MNM is a statistic introduced by Shinmura. This statistic explains
the Matryoshka structure of the microarrays that is the same idea of “MNM mono-
tonic decrease.” RatioSVs of BGS128 and BGS65 are 0.901% (=2/222 * 100) and
0.001% (=2/176727 * 100). The distances of SV are 0.901% and 0.001% for the
width of RipDSs. These values are too small. On the other hand, all RatioSVs of SMs
are larger than RatioSV of BGS. Although BGS can explain Matryoshka structure
of the microarrays completely, we judge those are useless for cancer gene diagno-
sis. Yamanaka’s four genes are a kind of BGS. His team made a new stem cell to
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become gospel to human beings, iPS cell. We consider stem cell formation as the
same phenomenon as LSD. His team replaced c-myc with L-myc to prevent cancer.
The c-myc and L-myc may be compatible, and our research foresaw that there are
other Yamanaka’s genes that pair with L-myc.

Fig. 2.19 Two box–whisker plots of BGS128 and BGS65

2.5.3 Examination of RipDSs New Data by PCA and Cluster
Analysis

2.5.3.1 PCA

We examine 130 RipDSs new data by PCA. The data consist of 62 cases and 130
variables. Figure 2.20 is three plots of PCA. Left plot is an eigenvalue. The first
eigenvalue is 71.322, and contribution is 54%. The central plot is a scatter plot. The
range of 22 normal cases with � on Prin1 is [−13.642, −5.007], and the range of 40
cancer cases with × is [−3.133, 13.005]. In many analyses, all healthy cases have
negative scores, and all cancer patients have positive scores. How to evaluate cancer
patients having negative scores as in this example is a future study. In particular, it is
important whether or not medical meaning can be found. Thus, RatioSV is 7.294%.
Because all subjects are almost nearby Prin1 axis, we can rank the malignancy
indicator by the value of the Prin1. Because maximum RatioSV of 130 RipDSs
is 0.901%, RatioSV on Prin1 is eight times wider than those of 130 RipDSs. The
right plot is the factor loading plot. All RipDSs are in the first and fourth quadrants.
The 130 correlations of Prin1 with RipDSs are from 0.620 to 0.863, and the 130
correlations of Prin2 with RipDSs are from −0.402 to 0.394.
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Fig. 2.20 Three plots of PCA

Figure 2.21 is four scatter plots. The x-axis is the Prin1, and y-axes are the Prin2,
Prin3, Prin4, and Prin5 from the left plot to right plot. A small 95% confidence ellipse
in the left is the normal class, and the right large 95% confidence ellipse is the cancer
class. The negative DS corresponds to a healthy subject group or amild cancer group,
which is a feature shared by six microarrays. There are outliers, and two classes are
separable visually.

Fig. 2.21 Four scatters plots

2.5.3.2 Cluster Analysis

We analyze the new data by Ward cluster analysis. Figure 2.22 is the heat map
and case dendrogram of 62 cases. We categorize two clusters. The upper cluster
includes 22 normal cases marked by �. The lower cluster includes 40 cancer cases
marked by×. Althoughmany researchers approached the gene analysis using cluster
analysis, they could not obtain clear results such as this figure because the cluster
analysis cannot cluster the microarrays. However, by creating signal data, we can
easily capture the linearly separable facts in cluster analysis and PCA.

The bottom dendrogram is the variable dendrogram of 130 RipDSs. More than
ten clusters can be classified. About seven distances of pairs are very close. We think
that these seven pairs are redundant and interchangeable. That is, the orders of the
discrimination scores of 62 cases are considered to be almost the same.
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Fig. 2.22 Heat map and case dendrogram of 62 cases by Ward method. (upper: normal 22 cases;
lower: cancer 40 cases)

2.5.4 Summary

Weclaimed standard statisticalmethods could analyzeBGSvery easily because these
subspaces were small samples as same as SM. However, our examination shows it
is difficult for us to obtain good results from BGS. On the other hand, we can get
useful results from the RipDSs new data as same as SM. Notably, the 64 subjects
are ranking on the Prin1. Thus, we can rank the cancer malignancy indicator by the
value of Prin1 in Table 2.7. Moreover, the Ward cluster analysis can identify two
clusters entirely.
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2.6 Other Five Microarrays

We introduce cancer gene diagnosis of other five microarrays. Because all results
are almost the same as 64 SMs of Alon’s microarray, we focus on the results of
malignancy indicators and outliers of transposed data.

2.6.1 Singh’s Microarray

2.6.1.1 Outlook

We analyze Singh’s microarray that consists of two classes, such as 50 normal sub-
jects (class1) and 52 tumor prostate subjects (class2) with 12,625 genes. LINGO
Program3 finds 179 SMs that include 1,238 genes. Because other 11,387 gene sub-
space is not linearly separable, we omit this subspace from our analysis. In other
words, we choose only the signal by removing noise. Ratio of signal (RatioS) is
9.01% (=1,238/12,625 * 100%). The portion of noise is 91%. Because all researchers
analyze microarrays with noise and do not understand theMatryoshka structure, they
could not find significant facts from 1970. At first, we analyze 179 SMs by standard
statistical methods and cannot obtain useful results. Because 179 NMs of logistic
regression and 26 NMs of QDF are zero, only logistic regression can find that all
SMs are linearly separable. Other standard statistical methods cannot locate linear
separable fact. Becausewe are not the gene specialists, we cannot conclude the useful
meaning of these results without linear separable fact. However, if we analyze new
data with 102 subjects and 179 RipDSs, we find surprising results for cancer gene
analysis.Ward cluster analysis and PCAcan separate two classes correctly. The range
of 179 RatioSVs is [0.28, 11.67%]. If we suppose RatioSVwith over 5% is useful for
cancer gene analysis, 38 RIPs among 179 SMs become different cancer malignancy
indicators. Moreover, both ranges of the 50 subjects in class1 and 52 subjects in
class2 on the Prin1 are [–17.89, –4.81] and [0.99, 22.53], respectively. There is 5.8
(=4.81 + 0.99) windowwidth between two classes. Thus, RatioSV of PCA is 14.35%
(=(4.81 + 0.99) * 100/(17.89 + 22.53) � 580/40.42). Because RatioSV of RIP2 is
11.67%, RatioSV of PCA is 2.68% greater than RatioSV of RIP2 because RatioSV
of PCA is the total characteristic value of 179 RIPs. If cancer gene specialists validate
and confirm our results, we can open a new frontier of cancer gene diagnosis by 38
RIPs and Prin1 malignancy indicators. These results will be helpful for cancer gene
diagnosis. We expect Singh et al. researchers validate our results and confirm our
claim to open a new frontier of cancer gene diagnosis.

At first, we plan to obtain all BGSs and analyze all BGSs. However, because the
range of 130 BGSs RatioSVs of Alon et al. microarray is [0.001, 0.9%], we judge
RIPs of BGSs are not helpful for cancer gene diagnosis.
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2.6.1.2 Malignancy Indexes

Figure 2.23 is three plots of PCA. The first eigenvalue is 113.749 and contribution
ratio is 63.5%. Scatter plot shows two classes are entirely separable. The 50 cases in
class1 locate on negative first principal axis (Prin1). The 52 cases in class2 scatter
on the first and fourth quadrants. Factor loading plot locates on the first and fourth
quadrants.

Fig. 2.23 Three plots of PCA

Figure 2.24 is three scatter plots. The x-axis is Prin1. Y-axes are Prin2, Prin3,
and Prin4 from left, central, and right plots, respectively. The two ellipses are 99%
confidence ellipses. A small one in the left is class1, and right large one is class2.
The 42nd, 54th, 57th, and 100th cases may be outliers. Cancer subjects scatter to a
great area.

Fig. 2.24 Three scatter plots
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2.6.1.3 Analysis of Transpose New data

We transpose the new data with 102 subjects and 179 RipDSs and analyze the trans-
posed new data. Figure 2.25 is three plots of PCA. Factor loading plot shows 50
normal subjects in class1 locate in the second and third quadrants, and 52 cancer
cases (variables) locate in the first and fourth quadrants. The variable name with the
suffix “N” shows the normal subjects in class1, and other variable names with “C”
show the cancer subjects in class2. Scatter plot shows most RipDSs are on the line
of 45° with Prin1. The 179th, 178th, 175th, and other several RipDSs are outliers
those may be different types of malignancy indicators.

Fig. 2.25 Three plots of PCA

Figure 2.26 is three scatter plots of PCA. The x-axis is the Prin1. Y-axes are Prin2,
Prin3, and Prin4. There are more outliers than other microarrays. Especially, there
is one large cluster of outliers. This consideration is the future work. If Singh et al.
validate our results and confirm our claim, they can prove their research was right.

Fig. 2.26 Three scatter plots of PCA
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2.6.2 Golub Microarray

2.6.2.1 Outlook

We analyze the Golub microarray that consists of two classes, such as 25 acute
myeloid leukemia (AML, class1) and 47 acute lymphoblastic leukemia (ALL,
class2) with 7,129 genes. LINGO Program3 finds 69 SMs that include 1,238 genes.
Because other 5,891 gene subspaces are not linearly separable and noise, we omit
these 5,891 genes from our analysis. In other words, we choose the only signal. The
ratio of signal (RatioS) is 17.36% (=1,238/7,129 * 100), and the portion of noise
is 82.64%. At first, we analyze 69 SMs by standard statistical methods. Because 69
NMs of logistic regression are zero, only logistic regression can find that 64 SMs
are linearly separable. The 16 NMs of QDF and one NM of both Fisher’s LDFs are
zero. Other standard statistical methods cannot show linear separable fact. Because
we are not the specialists of the cancer gene, we cannot conclude the useful meaning
of these results without linear separable fact. However, if we analyze 69 RipDSs
new data, we find surprising results. Ward cluster analysis and PCA can separate
two classes correctly. The range of 69 RatioSVs of RIP is [0.004, 15.69%]. Ninth
RIP (RIP9) of SM9 has the maximum value of 15.69%. Thus, RIP9 can discriminate
new validation samples very easy. If we supposed RatioSV with over 5% is useful
for cancer gene diagnosis, 28 RIPs become different cancer malignancy indicators.
Moreover, both ranges of the 25 cases in class1 and 47 cases in class2 on the Prin1
are [−11.72, −4.66] and [−1.66, 23.16], respectively. There is 3 (=4.66 − 1.66)
window width between two classes. RatioSV of PCA is 8.6% (=3 * 100/(11.72 +
23.16)� 300/34.88 � 30.4). Because RatioSV of RIP9 is 15.69%, RatioSV of Prin1
is 7.69% less than RatioSV of RIP9. This result is different from Alon and Singh
results that are two-class discriminations between cancer subjects versus normal
subjects. Although RatioSV on Prin1 is the total characteristic value of 69RIPs,
Prin1 does not reflect the merit of PCA. By analyzing 69 RipDSs, we find surprising
results for cancer gene diagnosis. If medical experts will validate our results and
confirm our claim, we can open a new frontier of cancer gene diagnosis.

2.6.2.2 Malignancy Indexes

Figure 2.27 is three plots of PCA. Left eigenvalue shows the eigenvalue of Prin1 is
45.02 and the contribution ratio is 65.246%. Because two classes are two different
types of cancer, both classes do not locate on Prin1 as same as Alon and Singh’s
microarrays. The first eigenvalue is very large. Scatter plot shows two classes are
completely separable. The 25 AML cases locate on negative Prin1. The 47 ALL
cases scatter on the first and fourth quadrants. Factor loading plot scatters on the first
and fourth quadrants. However, some RipDSs have small correlations with Prin1 and
Prin2.
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Fig. 2.27 Three plots of PCA

Figure 2.28 is three scatter plots. Left small 95% ellipse is AML. Because the
right 95% ellipse is larger than AML ellipse, we guess ALL is more variance than
AML andmay be severe cancer. The 30th, 62nd, and 65th cases in class2 are outliers.
We expect some member of Golub et al. explain the reason why these ALL subjects
are outliers.

Fig. 2.28 Three scatter plots (x-axis: Prin1, y-axis: Prin2, Prin3, Prin4)

2.6.2.3 Analysis of Transpose New data

Figure 2.29 is three plots of PCA using transpose new data with 69 RipDSs and 72
subjects. Factor loading plot shows 25 AML subjects with prefix N located in the
second and third quadrant. However, this class may be categorized into three groups.
Those are two high negative correlations with Prin1 or Prin2, and low negative
correlations with Prin1 and Prin2. The 47 ALL subjects with prefix C located in
the first and fourth quadrants. However, this class may be categorized into three
groups. Those are two high positive correlations with Prin1 or Prin2, and low positive
correlations with Prin1 and Prin2. Scatter plot shows most RipDSs are nearby the
origin. Two large outliers discriminate two ALL groups having two different types
of high positive correlations.
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Furthermore, although PCA result of Fig. 2.27 is almost the same as the other
five results, Fig. 2.29 is quite different from others. The reason why the results of
the transposed matrix greatly differ is the future research topic.

Fig. 2.29 Three plots of PCA using transpose new data

Figure 2.30 is three plots of PCA. The x-axis is Prin1. Y-axes are the Prin2, Prin3,
and Prin4. The RIP30, RIP62, RIP65, and other RipDSs may be outliers. If Golub
et al. validate our results and confirm our claim, they can prove their research was
right.

Fig. 2.30 Three plots of PCA

2.6.3 Tian’s Microarray

2.6.3.1 Outlook

Tian’s microarray consists of two classes, such as 36 cases (false, class1) and 137
cases (true, class2) with 12,625 genes. LINGO Program3 finds 159 SMs that include
7,221 genes and other 5,404 genes are noise. We omit these noises from our analysis.
The ratio of signal (RatioS) is 57.2%, and the portion of noise is 42.8%. At first,
we analyze 159 SMs by standard statistical methods and cannot obtain success.
Because 159 NMs of logistic regression are zero, 159 SMs are linearly separable.
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Because 158 NMs of QDF are zero, two classes may be fairly separated. Other
standard statistical methods cannot show linear separable fact. Because we are not
the specialists of the cancer gene, we cannot conclude the useful meaning of these
results without linear separable fact. However, if we analyze 159 RipDSs new data,
we find surprising results for cancer gene analysis. Ward cluster analysis and PCA
can separate two classes correctly. The range of RatioSVs is [0.63, 19.13%]. The
21st RIP (RIP21) has the maximum value of 19.13%. Thus, RIP21 can discriminate
new validation samples very easily and may indicate a cancer malignancy indicator
for cancer gene diagnosis. If we supposed RatioSV with over 5% is useful for cancer
gene analysis, 27 RIPs become different cancer malignancy indicators. Moreover,
both ranges of the 36 cases in class1 and 137 cases in class2 on the Prin1 are [−17.68,
−11.94] and [−4.09, 15.07], respectively. There is 7.85 (=11.94 − 4.09) window
width between two classes. RatioSV of PCA is 24% (=7.85 * 100/(17.68 + 15.07) �
785/32.75). Because RatioSV of RIP21 is 19.13%, RatioSV of PCA is 4.87% greater
than RatioSV of RIP21. If medical doctors validate and confirm our results, we can
open a new frontier of cancer gene diagnosis by 63 RIPs and Prin1.

2.6.3.2 Malignancy Indexes

Figure 2.31 is three plots of PCA. The eigenvalue of Prin1 is 62.73 and larger than
other eigenvalues. Its contribution ratio is 39.339%. Scatter plot shows two classes
are completely separable. Factor loading plot locates on the first and fourth quad-
rants. However, 159 correlations of Prin1 with 159 RipDSs are smaller than other
microarrays. We cannot explain this reason now.

Fig. 2.31 Three plots of PCA

2.6.3.3 Analysis of Transpose New Data

We transpose the new data and analyze it that consists of 159 RipDSs and 173
subjects. Figure 2.32 is three plots of PCA. Factor loading plot shows FALSE class1
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cases locate in the second and third quadrants, and TRUE class2 cases locate in the
first and fourth quadrants. Scatter plot indicates that it fluctuates largely in a trumpet
or fan shape as it goes from left to right. Approximately ten RIPs widely spread from
the first quadrant to fourth quadrants like the top of a fan. These outliers are thought
to represent different information with other RIP and cancer diagnosis.

Fig. 2.32 Three Plots of PCA

Figure 2.33 is three scatter plots of PCA. The x-axis is Prin1. Y-axes are Prin2,
Prin3, and Prin4. We indicate about ten outliers. This consideration is the future
work. If Tian et al. validate our results and confirm our claim, they can prove their
research was right.

Fig. 2.33 Three scatter plots of transposed new data

2.6.4 Chiaretti Microarray

2.6.4.1 Outlook

Chiaretti microarray consists of two classes, such as 95 subjects (B-cell, class1) and
33 subjects (T-cell, class2) with 7,129 genes. LINGO Program3 finds 95 SMs with
5,163 genes, and other 1,956 genes are noise. We omit these genes from our analysis.
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Ratio of signal is 72.36% (=5,160/7,129 * 100%). At first, we analyze 95 SMs by
standard statistical methods and cannot obtain success. Because 95 NMs of logistic
regression and QDF are zero, logistic regression and QDF confirms all SMs are
linearly separable. The 92 NMs of LDF2 and 94 NMs of LDF1 are zero. Thus, two
classes are the most separated among six microarrays. Because we are not the cancer
gene specialists, we cannot find the useful meaning of these results without linear
separable fact. However, if we analyze 95 RipDSs new data, we find surprising
results for cancer gene analysis. Ward cluster analysis and PCA can separate two
classes correctly. The range of RatioSVs is [10.73, 38.93%]. The 23rd RIP (RIP23)
of SM23 has the maximum value of 38.93%. RIP23 can discriminate new validation
samples very easily andmay indicate the cancermalignancy indicator for cancer gene
diagnosis. If we supposed RatioSV with over 5% is useful for cancer gene analysis,
95 RIPs become different cancer malignancy indicators. Moreover, both ranges of
the 95 cases in class1 and 33 cases in class2 on the Prin1 are [−11.4, −1.71] and
[12.73, 16.66], respectively. There is 14.44 (=12.73 + 1.71) window width between
two classes. RatioSV of PCA is 51.46% (=(12.73 + 1.71) * 100/(16.66 + 11.4) �
14.44/28.06). Because RatioSV of RIP23 is 38.98%, RatioSV of PCA is 12.48%
greater than RatioSV of RIP23. If medical gene specialists validate and confirm our
results, we can open a new frontier of cancer gene diagnosis by 95 RIPs and Prin1.

2.6.4.2 Malignancy Indexes

Figure 2.34 is three plots of PCA. Three eigenvalues are greater than one. The
eigenvalue of Prin1 is 72.243, and contribution ratio is 76.046%. Scatter plot shows
two classes are completely separable. The 95 subjects in class1 locate on negative
first principal axis. The 33 subjects in class2 scatter on the positive first axis. Factor
loading plot locates on the first and fourth quadrants. The 95 correlations of Prin1
with 95 RipDSs are approximately over 0.8.

Fig. 2.34 Three plots of PCA
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Figure 2.35 is three scatter plots. The x-axis is Prin1. Y-axes are Prin2, Prin3, and
Prin4, respectively. Left ones are B-cell classes. Right ones are T-cell classes.

Fig. 2.35 Three scatter plots

2.6.4.3 Analysis of Transpose New Data

We transpose the new data and analyze it that consists of 95 RipDSs and 128 subjects.
Figure 2.36 is three plots of PCA. Factor loading plot shows T-cell in class2 locates
in the second and third quadrants and B-cell in class1 locates in the first and fourth
quadrants. Scatter plot shows most RipDSs are nearby the origin. The 3rd, 4th, 41st,
46th, and 95th RipDSs are outliers. These five RIPs are considered to show different
diagnostic results from the other 90 RIPs.

Fig. 2.36 Three plots of PCA

Figure 2.37 is three scatter plots of PCA. The x-axis is Prin1. Y-axes are Prin2,
Prin3, and Prin4. We indicate the outliers. This consideration is the future work. The
3rd, 4th, 41th, 46th, and 95th RipDSs may be outliers. Thus, these outliers indicate
the different roles from other RIP. If Chieretti et al. validate our results and confirm
our claim, they can prove their research was right.
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Fig. 2.37 Three scatter plots of PCA

2.6.5 Shipp Microarray

2.6.5.1 Outlook

Shipp microarray consists of two classes, such as 19 cases (follicular lymphoma,
class1) and 58 cases (DLBCL, class2) with 7,129 genes. LINGO Program3 finds
239 SMs with 4,716 genes. Because it is hard work to analyze 239 SMs manually,
we focus on 130 SMs with 3,827 genes in this book. In other words, we choose only
signal by removing noise and 109 SMs. Because all researchers analyze microarray
with noise, they could not find the significant facts from 1970. At first, we ana-
lyze 130 SMs by standard statistical methods and cannot obtain success. Because
130 NMs of logistic regression are zero, only logistic regression can find 130 SMs
are linearly separable. QDF, LDF2, and LDF1 can discriminate 121, 46, and 53
SMs correctly. Other standard statistical methods cannot show linear separable fact.
Because we are not the cancer gene specialists, we cannot find the useful meaning of
these results without linear separable fact. However, if we analyze 130 RipDSs, we
find surprising results for cancer gene analysis. Ward cluster analysis and PCA can
separate two classes correctly. The range of 130 RatioSVs is [4.99, 30.67%]. The
11th RIP (RIP11) of SM11 discriminates two classes by SV completely. Although
SV distance is two, the ratio of this distance is 30.67% of the RIP11 DS range.
Thus, RIP11 can discriminate new validation samples very easily and may indicate
the cancer malignancy indicator for cancer gene diagnosis. If we suppose RatioSV
with over 5% is useful for cancer gene diagnosis, 129 RIPs become different cancer
malignancy indicators. Moreover, both ranges of the class1 and class2 on the Prin1
are [−18.98, −12.56] and [−2.23, 13.62], respectively. There is 10.33 (=12.56 −
2.23) window width between the two classes. RatioSV of PCA is 31.69% (=10.33 *
100/(13.62 + 18.98) � 1033/32.6 � 31.69). Because RatioSV of RIP11 is 30.67%,
RatioSV of PCA is 1.02% greater than RatioSV of RIP11 because RatioSV of PCA
is the total characteristic value of 130 RIPs. If medical doctors validate and confirm
our results, we can open a new frontier of cancer gene diagnosis by 129 RIPs and
Prin1.
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2.6.5.2 Malignancy Indexes

Figure 2.38 is three PCA plots using a correlation matrix. Left plot is an eigenvalue.
Twelve principal components from Prin1 to Prin12 are greater than one. The cumu-
lative contribution ratio is 60.82%. The central plot is a scatter plot. Two classes are
separable. The 19 subjects in class1 distribute on negative Prin1. The 58 subjects
in class2 distribute the first and fourth quadrants that separate three groups. The
first group consists of ID � 14, 40, and 54 DLBCL subjects in the first quadrant.
The second group distributes on positive Prin1. The third group consists of over
13 subjects such as ID � 4, 27, 32, 39, 44, 55–58, and other subjects in the fourth
quadrants. The right figure is the factor loading plot. Moreover, both ranges of the
19 cases in class1 and 58 cases in class2 on Prin1 are [−18.98, −12.56] and [−2.23,
13.62], respectively. There is 10.33 (=12.56 − 2.23) window width between the two
classes. RatioSV of PCA is 31.69% (=10.33 * 100/(13.62 + 18.98) � 1033/32.6 �
31.69). Because RatioSV of RIP11 is 30.67%, RatioSV of PCA is 1.02% greater
than RatioSV of RIP11 because RatioSV of PCA is the total characteristic value of
130 RIPs. If medical doctors validate and confirm our results, we can open a new
frontier of cancer gene diagnosis by 129 RIPs and Prin1.

Fig. 2.38 PCA plots (eigenvalue, scatter plot, and factor loading)

Figure 2.39 is three scatter plots. The x-axis is Prin1. The y-axes are Prin2, Prin3,
and Pin4. The left small cluster is 58 class1 cases. The right large cluster is 58DLBCL
class2 those include many outliers.

Fig. 2.39 Three scatter plots
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2.6.5.3 Analysis of Transpose New Data

We transpose the new data and analyze the transpose new data that consists of 130
RipDSs and 77 subjects (77 variables). Figure 2.40 is three plots of PCA using a
correlation matrix. Factor loading plot shows all patients locate only in the first and
fourth quadrants. Scatter plot shows most RipDSs are nearby the origin. Outliers are
located in the first and fourth quadrants.

Fig. 2.40 Three plots of PCA

Figure 2.41 is three scatter plots of PCA using variance–covariance matrixes. The
x-axis is the Prin1. Y-axes are Prin2, Prin3, and Prin4. We indicate the outliers. This
consideration is the future work. There are many outliers those indicate the different
roles from other RIPs. If Shipp et al. validate our results and confirm our claim, they
can prove their research was right.

Fig. 2.41 Three scatter plots of PCA
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2.7 Conclusion

After establishing theory and solving cancer gene analysis, our next research
theme was to obtain all BGSs of microarrays at first. However, because LINGO
Program4 to find all BGSs needed much computational time, we changed to find
each BGS step by step. Because finding 130 BGSs of Alon’s microarray took over
one week, we compared 130 BGSs with 64 SMs of Alon’s microarray. RatioSV
of 63 SMs among 64 SMs is over 5%. On the other hand, 130 RatioSVs of 130
BGSs are less than 0.9%. Thus, we judged BGS is useless for cancer gene diagnosis.
Moreover, we changed to analyze all SMs of microarrays. Even though two classes
are completely separable in all SMs, all standard statisticalmethods except for logistic
regression cannot show linear separable fact. Thus, wemade newdata havingRipDSs
as variables. Cluster analysis and PCA separate two classes completely. Especially,
the Prin1 of PCA illustrates malignancy indicators very well. Next, the scatter plot
of transposed new data shows many RipDSs become outliers. These outliers may
be expected unknown subclass of cancer pointed out by Golub et al. We confirmed
the other five microarrays are almost the same results. Table 2.8 is the summary of
this chapter. RatioS is the ratio of (the number of genes included in all SMs/total
genes). “ >=5%” is the number of SMs, RatioSVs of those are over than 5%. The
ratio of RatioSV over 5% are 98.4%, 18.8%, 99.2%, 21.2%, 16.9%, and 100%,
respectively. Alon, Shipp, and Chiaretti microarrays are 98.4% over. RatioSV of
PCA is slightly different about this trend. Last three columns are the number of
linearly separable SMs by QDF, LDF1, and LDF2. These numbers indicate two
classes are well separable in all SMs as same as the trend of “ >=5%.”

So far, we think the genes included in SM or BGS are oncogenes, and they are
signals.However,we could not obtain the right results by standard statisticalmethods.
That is, the discriminant score obtained by the genes included in SM and BGS may
be as a signal. In 2017, we obtain two kinds of SMs from the RIP and Revised
LP-OLDF. In Chaps. 4−9, we compared two results of new data and transposed
new data made by RipDSs, LpDSs, and HsvmDSs. Furthermore, by comparing the
signal subspace that is the union of all SMs, we explain the reason why the standard
statistical methods cannot find the linear separable fact in SM.
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Chapter 3
Cancer Gene Diagnosis of Alon’s
microarray by RIP and Revised
LP-OLDF

Abstract This chapter discusses the following three points. (1) We have introduced
only SMsobtainedwith theRIP inChap. 2. RIP analyzedSMsbyProgram3’ arbitrary
iteration number. In 2017, we increase the number of iterations successively from 1
and select the iteration number that the number of SM obtained is constant. More-
over, we compare two types of SMs obtained by the RIP and Revised LP-OLDF and
evaluate the eight LDFs and QDF by RatioSV and the number of misclassifications
(NMs). (2) The microarrays are linearly separable data (LSD). However, because
the statistical discriminant functions cannot discriminate LSD theoretically, many
researchers could not solve the cancer gene analysis completely from 1970 (Prob-
lem5). Moreover, the Matryoshka feature selection method (Method2) and LINGO
Program3 can decompose the microarray into many SMs those are LSD. Although
all SMs are small samples, many statistical methods cannot find the linear separa-
ble facts. However, RIP, Revised LP-OLDF, and H-SVM can discriminate all SMs
correctly. We realized the three data made by three LDFs are signal data and reduce
the high-dimensional microarray to low-dimensional signal data. (3) We propose
the standard procedure for how to analyze all SMs. Specialists of gene analysis can
solve the cancer gene analysis and approach the cancer gene diagnosis from the new
aspect. On the other hand, statisticians recognize the difficulties of cancer gene anal-
ysis and understand the easiness of the cancer gene diagnosis by statistical methods.
Statistical users can analyze many SMs those are a gift from high-dimensional data
and skill-up their statistical ability to solve practical applications.

Keywords Cancer gene diagnosis · Malignancy indicators · Small Matryoshka
(SM) · Revised IP-OLDF (RIP) · Revised LP-OLDF · Hard-margin SVM
(H-SVM) · Signal data made by discriminant scores

3.1 Introduction

Chapter 1 outlined the new theory of discriminant analysis after R. A. Fisher and
explained the successful example of cancer gene analysis (Theory). Chapter 2
described the cancer gene diagnosis and malignancy indicators. LINGO Program3

© Springer Nature Singapore Pte Ltd. 2019
S. Shinmura, High-dimensional Microarray Data Analysis,
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and LINGO Program4 of Revised IP-OLDF (RIP) found 64 Small Matryoshkas
(SMs) and 130 basic gene sets (BGSs) of Alon’s microarray. Although 63 RatioSVs
among 64 SMs are higher than 5%, all RatioSVs of 130 BGSs were less than 1%.
These facts showed us BGSs were useless for the cancer gene diagnosis. Thus, we
decided not to look for BGSs of other fivemicroarrays anymore.Aftermany trials, we
realized RIP discriminant scores (RipDSs) become propermalignancy indicators and
containsmuch information. Thus,wemade the signal datamade byRipDSs.With this
breakthrough, we can propose the cancer gene diagnosis by malignancy indicators.

This chapter discusses the following three points.

(1) We have introduced only SMs obtained with the RIP in Chap. 2. RIP analyzed
SMs by Program3’ arbitrary iteration number. In 2017, we increase the number
of iterations successively from 1 and select the iteration number that the number
of SM obtained is constant. Moreover, we compare two types of SMs obtained
by the RIP and Revised LP-OLDF and evaluate the eight LDFs and QDF by
RatioSV and the number of misclassifications (NMs).

(2) The microarrays are linearly separable data (LSD). However, because the sta-
tistical discriminant functions cannot discriminate LSD theoretically, many
researchers could not solve the cancer gene analysis completely from 1970
(Problem5). Moreover, the Matryoshka feature selection method (Method2)
and LINGO Program3 can decompose the microarray into many SMs those
are LSD. Although all SMs are small samples, many statistical methods cannot
find the linear separable facts easily. However, RIP, Revised LP-OLDF, and
H-SVM can discriminate all SMs correctly. We realized the three data made
by three LDFs are signal data and reduce the high-dimensional microarray to
low-dimensional signal data.

(3) We propose the standard procedure for how to analyze all SMs. Specialists of
gene analysis can solve the cancer gene analysis and approach the cancer gene
diagnosis from the new aspect. On the other hand, statisticians recognize the
difficulties of cancer gene analysis and understand the easiness of the cancer
gene diagnosis by statisticalmethods. Statistical users can analyze plenty of SMs
that is a gift from high-dimensional data and skill-up their statistical ability to
solve practical applications.

This chapter considers the following two points because we have only studied
SM obtained with the RIP in Chap. 2. (1) In this chapter, we compare two types
of SMs obtained by the RIP and Revised LP-OLDF. (2) So far, we have chosen
SMs by Program3’ arbitrary iteration number. For this time, we decided to increase
the number of iterations successively from 1 and use the number of times that the
number of SM obtained is constant. In Chaps. 3 to 9, we examined with the two
sets of SMs obtained by the RIP and Revised LP-OLDF. Section 3.2 examines the
iteration option of LINGO Program3 and chooses the 39 SMs by Revised LP-OLDF
and the 56 SMs by the RIP. Also, Revised LP-OLDF chooses 36 SMs by fixing
“IT � 3.” We compare three different SMs by RatioSVs and NMs. Sections 3.4 and
3.5 introduce the cancer gene diagnosis of 39 SMs and 56 SMs. Section 3.6 is the
conclusion.
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3.2 Outlook of This Chapter

Alon’s microarray consists of the 62 cases (the 22 Normal subjects and the 40 Tumor
cancer patients) with 2,000 genes. This chapter introduces the third time discrimi-
nation of Alon’s microarray in 2017 and evaluates the results from a new point by
LINGO ver.17. RIP finds the 56 SMs (1,999 genes), and Revised LP-OLDF find 39
SMs (992 genes). Until now, although we used an arbitrary iteration option value of
LINGO Program3, we decide a proper option by changing the value this time. RIP
and Revised LP-OLDF choose the different combinations of SMs. Because Revised
LP-OLDF are faster than RIP and choose a small number of SMs, it is convenient
for many researchers to use Revised LP-OLDF’s SMs if there are no problems with
SMs found by Revised LP-OLDF. Thus, we validate two different combinations of
SMs by several points.

3.2.1 Alon’s microarray

Alon et al. (1999)1 published a paper entitled “Broad patterns of gene expression
revealedby clustering analysis ofTumor andNormal colon tissues probedbyoligonu-
cleotide arrays.” They explained their research purpose in their abstract as follows:
“Oligonucleotide arrays can provide a broad picture of the state of the cell, by mon-
itoring the expression level of thousands of genes at the same time. It is of interest
to develop techniques for extracting useful information from the resulting microar-
rays. Here we report the application of a two-way clustering method for analyz-
ing a microarray consisting of the expression patterns of different cell types. Gene
expression in 40 tumors and 22 normal colon tissue samples were analyzed with an
Affymetrix oligonucleotide array complementary to more than 6,500 human genes.
An efficient two-way clustering algorithm was applied to both the genes and the
tissues, revealing broad coherent patterns that suggest a high degree of organization
underlying gene expression in these tissues. Coregulated families of genes clus-
tered together, as demonstrated for the ribosomal proteins. Clustering also separated
cancerous from non-cancerous tissue and cell lines from in vivo tissues by subtle
distributed patterns of genes even when expression of individual genes varied only
slightly between the tissues. Two-way clustering thus may be of use both in classi-
fying genes into functional groups.”

WhenRIPdiscriminatedAlon’smicroarray byLINGOProgram3, it found66SMs
(1,131 genes) in 2015 by LINGO ver.15 (Schrage 2006). Shinmura (2015) showed
all the SMs gene name. In 2016, RIP found 64 SMs (1,999 genes) by the different
iteration option value by LINGO ver.16. Moreover, RIP found 130 BGSs (1,995
genes) by LINGO Program4 and manual cooperation. We are stuck in the defect of
SMwhich selects different combinations of SMbydifferent iteration option value and
LINGO yearly version up. Although many papers said that high-dimensional noise
embeds the signal, Alon’s microarray has few noises. In position book (Shinmura
2017) and Chap. 2, we evaluate the 64 SMs and 130 BGSs by RatioSVs. The range

1Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ.
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of 64 RatioSVs and 130 BGSs are [2.35%, 26.76%] and [0.00%, 0.9%], respectively.
Thus, we concluded BGSs were useless for cancer gene diagnosis and stopped to
search other five BGSs. Although they specified 2,000 genes by two-way clustering
(SOM: Self-Organizing Map) from the knowledge of cancer gene, our different
approaches decomposed 2,000 genes to almost the same 64 SMs and 130 BGSs.
Alon’s research confirms our results. Several statistical papers pointed out it was
difficult for statisticians to separate signal and noise (one of the difficulties).However,
Alon’smicroarray is considered to be almost the signal.We cannot judgewhether this
fact is by chance or SOM is helpful for gene analysis in addition to RIP. Because we
have no experience for SOMand it requests the proper clustering number k,weuse the
hierarchical cluster analysis in our research. Furthermore, because two SMs in 2015
and2016 are different,wediscuss deciding the proper iteration number in this chapter.

3.2.2 Examination of the Iteration Option of LINGO
Program3

Table 3.1 shows how to determine the proper iteration values for the Revised LP-
OLDF and RIP.

If we find the same number of SMs consecutively, choose the first IT value. “CPU”
is the computation time (minute: second). “SM” is the number of SMs found by the
specified IT. “Gene” is total number included in SMs. “Gene/SM” is the average
gene number per SM. Revised LP-OLDF chooses “IT � 5” because six IT values
from five to ten choose 39 SMs. Thus, we evaluate 39 SMs of Revised LP-OLDF
in this chapter. Until now, we ignored the SMs except for RIP and chosen the IT by
an arbitrary constant value. Revised LP-OLDF chooses the signal (992 gens) and
separates 1,008 genes as the noise. Moreover, it decomposes the signal to 39 SMs.
RIP chooses “IT � 3” because three IT values from three to five choose 56 SMs.
Thus, we evaluate 56 SMs of RIP in this chapter. RIP chooses the signal (1,999 gens)
and separates one gene as the noise. Moreover, it decomposes the signal to 56 SMs.
Nevertheless, RIP found 64 SMs (1,999 genes) in 2016.

Table 3.1 Proper iteration values of revised LP-OLDF and RIP

IT LP RIP

CPU SM Gene Gene/SM CPU SM Gene Gene/SM

1 10 24 1063 44 44 36 1989 55

2 29 36 1042 29 1:19 55 1965 36

3 36 37 1003 27 1:48 56 1999 36

4 47 38 988 26 2:16 56 1999 36

5 56 39 992 25 2:47 56 1999 36

6 1:08 39 992 25

7 1:47 39 992 25

10 1:47 39 992 25
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3.3 Comparison of 39 SMs by Revised LP-OLDF and 56
SMs by RIP

In Sect. 3.3, we compare three different SMs found by Revised LP-OLDF and RIP.
We evaluate these three different SMs by six MP-based LDFs such as RIP, Revised
LP-OLDF (LP), Revised IPLP-OLDF (IPLP), hard-margin SVM (H-SVM), SVM4
(penalty c � 10ˆ4) and SVM1 (penalty c � 1) using RatioSV.

3.3.1 Result of 39 SMs by Revised LP-OLDF

3.3.1.1 Pre-survey of 36 SMs by “IT � 2”

Before examination of 39 SMs obtained by “IT � 5”, we survey 36 SMs of
“IT � 2” in Table 3.2. “SM” is the sequential number of 36 SMs. “Gene” is the
total gene numbers included in each SM. Six columns are RatioSVs of six MP-based
LDFs. “Max and Min” are maximum and minimum values of four RatioSVs except
for SVM4 and SVM1. Last four columns are four NMs of SVM4, SVM1, and LDF22

and QDF. Although RatioSV is the proper statistic for LSD-discrimination, its values
become large for “NM >� 1” and are not reliable. Last five rows are five elementary
statistics. “SUM” is the total number of genes included in 36 SMs. “Max RatioSV” is
the total number of SMs having amaximum value of four RatioSVs except for SVM4
and SVM1. Although the values of three OLDFs are ten, 16 RatioSVs of H-SVM
are the maximum values among the four MP-based LDFs. We think the maximiza-
tion of SV criterion causes this good result for H-SVM. Four ranges of RatioSV
by “RIP, LP, IPLP, and HSVM” are [0.19, 36.06], [0.19, 37.44], [0.19, 37.44] and
[0.19, 37.98], respectively. Thus, RatioSV of H-SVM is better than three OLDFs.
Last four ranges of NMs are [0, 1], [0, 6], [0, 8] and [0, 0], respectively. QDF is better
than SVM4, SVM1, and LDF2. In Alon’s microarray, only logistic regression and
QDF can discriminate 36 SMs correctly in addition to three OLDFs and H-SVM.
Although four NMs are fairly small NMs, other five microarrays have larger NMs
than Alon. However, because we focus on the linear separable facts, we count the
number of SM with NM � 0. Those are 35, 22, 19, and 36, respectively. The only
QDF discriminate 36 SMs correctly. These facts conclude SVM4, SVM1, (LDF1),
and LDF2 are useless for cancer gene diagnosis.

2Prior probability is proportional to the number of patients.
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Table 3.2 Result of 36 SMs

SM Gene RIP LP IPLP HSVM SVM4 SVM1 Max Min SVM4 SVM1 LDF2 QDF

1 24 25.92 15.99 15.99 28.50 28.48 28.50 28.50 15.99 0 0 0 0

2 24 31.69 32.88 32.88 34.00 34.00 34.00 34.00 31.69 0 0 0 0

3 25 36.06 37.44 37.44 36.04 36.04 36.04 37.44 36.04 0 0 0 0

4 29 35.69 33.82 33.82 37.98 38.00 37.98 38.00 33.82 0 0 0 0

5 25 28.41 27.48 27.48 32.83 32.81 32.83 32.83 27.48 0 0 0 0

6 27 30.74 30.75 30.75 27.06 27.06 27.06 30.75 27.06 0 0 0 0

7 30 27.78 36.39 36.39 32.20 32.21 32.21 36.39 27.78 0 0 0 0

8 29 26.10 25.82 25.82 29.05 29.05 29.05 29.05 25.82 0 0 0 0

9 29 20.30 24.58 24.58 31.37 31.37 31.37 31.37 20.30 0 0 0 0

10 27 31.27 34.32 34.32 36.41 36.41 36.42 36.42 31.27 0 0 0 0

11 31 34.75 30.52 30.52 28.66 28.65 28.66 34.75 28.65 0 0 0 0

12 30 27.40 34.93 34.93 32.12 32.16 32.12 34.93 27.40 0 0 0 0

13 26 31.31 33.92 33.92 32.46 32.46 33.86 33.92 31.31 0 0 0 0

14 26 23.39 22.21 22.21 21.34 21.34 24.06 24.06 21.34 0 0 0 0

15 25 17.31 22.29 22.29 20.79 20.79 22.76 22.76 17.31 0 0 0 0

16 30 19.71 22.71 22.71 23.59 23.59 26.64 26.64 19.71 0 0 1 0

17 30 26.64 36.66 36.66 31.85 31.85 32.49 36.66 26.64 0 0 0 0

18 25 19.57 22.50 22.50 23.04 23.04 25.83 25.83 19.57 0 0 1 0

19 26 19.31 19.23 19.23 18.21 18.21 22.29 22.29 18.21 0 0 3 0

20 28 18.92 18.64 18.64 21.18 21.18 25.29 25.29 18.64 0 0 1 0

21 28 21.56 18.79 18.79 22.75 22.74 24.21 24.21 18.79 0 0 1 0

22 27 25.15 24.53 24.53 28.38 28.38 31.20 31.20 24.53 0 0 0 0

23 29 25.00 30.19 30.19 24.94 24.94 37.75 37.75 24.94 0 1 1 0

24 28 24.43 27.08 27.08 25.74 25.74 38.37 38.37 24.43 0 2 0 0

25 28 17.32 20.18 20.18 21.17 21.17 32.56 32.56 17.32 0 3 0 0

26 29 21.95 17.10 17.10 20.86 20.86 39.66 39.66 17.10 0 4 2 0

27 29 16.01 14.54 14.54 15.68 15.68 30.50 30.50 14.54 0 4 2 0

28 28 16.83 14.41 14.41 16.58 16.58 29.16 29.16 14.41 0 3 5 0

29 32 13.71 16.81 16.81 17.08 17.08 38.72 38.72 13.71 0 5 3 0

30 30 7.05 7.43 7.43 8.24 8.24 27.27 27.27 7.05 0 5 6 0

31 31 13.97 7.89 7.89 13.69 13.69 32.34 32.34 7.89 0 5 4 0

32 29 9.43 9.30 9.30 10.16 10.16 43.98 43.98 9.30 0 5 4 0

33 36 18.67 9.54 9.54 15.64 15.64 35.94 35.94 9.54 0 5 3 0

34 33 7.33 6.28 6.28 7.29 7.29 49.24 49.24 6.28 0 5 6 0

35 35 6.19 5.94 5.94 6.19 6.19 39.80 39.80 5.94 0 6 8 0

36 44 0.19 0.19 0.19 0.19 2.55 41.06 41.06 0.19 1 5 6 0

Max RatioSV 10 10 10 16

MAX 44 36.06 37.44 37.44 37.98 38.00 49.24 49.24 36.04 1 6 8 0

MIN 24 0.19 0.19 0.19 0.19 2.55 22.29 22.29 0.19 0 0 0 0

Mean 28.9 21.585 22.036 22.036 23.146 23.213 32.533 33.157 20.056 0 2 2 0

SUM 1042
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3.3.1.2 Examination of 39 SMs

Table 3.3 shows the result of 39 SMs. Last three columns are three NMs of SVM1,
LDF2, and QDF. Because all NMs of logistic regression and SVM4 are zero, those
are omitted from the table. “Max RatioSV” row is the total number of SMs having
a maximum value of four RatioSVs. Four values of three OLDFs and H-SVM are
13, 12, 10, and 17. The maximization of SV causes this good result for H-SVM.
Five ranges of “gene, RIP, LP, IPLP, and HSVM” are [18, 35], [0.78, 40.59], [0.74,
45.14], [0.74, 45.14], and [0.78, 43.95], respectively. Thus, Revised LP-OLDF and
Revised IPLP-OLDF can separate two classes more than RIP and H-SVM. Last
three ranges are [0, 9], [0, 8], and [0, 0], respectively. QDF, SVM4, and logistic
regression can discriminate 39 SMs correctly. SVM1 and LDF2 cannot discriminate
17 SMs and 19 SMs. There are 1,042 and 1,002 genes in 34 SMs and 39 SMs, but 39
SMs contain genes smaller than 40 genes. By increasing repetition, we obtain many
SMs with fewer genes, so choose 39 SMs. These facts indicate we choose the proper
iteration value at this time. However, because we focus on the linear separable facts,
we count the number of SM with NM � 0. The SVM1 and LDF2 discriminate 22
and 20 SMs correctly. The SVM4 and QDF discriminate all SMs correctly. These
facts conclude SVM1, (LDF1), and LDF2 are useless for cancer gene diagnosis.

Table 3.3 Result of 39 SMs

SM IT Gene RIP LP IPLP HSVM SVM4 SVM1 Max Min SVM1 LDF2 QDF

1 6 20 28.01 26.83 26.83 27.21 27.20 27.21 28.01 26.83 0 0 0

2 6 24 36.05 26.98 26.98 37.17 37.18 37.17 37.18 26.98 0 0 0

3 6 19 36.04 41.06 41.06 38.37 38.36 38.37 41.06 36.04 0 0 0

4 6 23 31.52 36.85 36.85 35.31 35.31 35.31 36.85 31.52 0 0 0

5 6 28 29.83 30.32 30.32 38.13 38.14 38.13 38.14 29.83 0 0 0

6 6 24 27.26 27.61 27.61 28.60 28.59 28.60 28.60 27.26 0 0 0

7 6 24 40.59 36.92 36.92 43.95 43.95 43.95 43.95 36.92 0 1 0

8 6 28 35.98 45.14 45.14 41.83 41.83 41.83 45.14 35.98 0 0 0

9 6 28 29.45 37.50 37.50 35.04 35.04 35.04 37.50 29.45 0 0 0

10 6 25 21.40 23.27 23.27 32.63 32.63 32.63 32.63 21.40 0 0 0

11 6 29 23.30 23.76 23.76 28.65 28.64 29.02 29.02 23.30 0 0 0

12 6 25 26.24 29.76 29.76 28.92 28.92 28.92 29.76 26.24 0 0 0

13 6 27 24.83 22.39 22.39 22.58 22.58 25.11 25.11 22.39 0 0 0

14 6 18 24.83 22.39 22.39 22.58 22.58 25.11 25.11 22.39 0 0 0

15 6 27 35.93 34.43 34.43 34.97 34.95 35.20 35.93 34.43 0 0 0

16 6 26 23.34 22.12 22.12 26.95 26.96 28.38 28.38 22.12 0 1 0

17 6 23 19.54 18.38 18.38 19.40 19.40 21.31 21.31 18.38 0 0 0

18 6 27 24.83 28.60 28.60 29.54 29.54 30.50 30.50 24.82 0 0 0

(continued)
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Table 3.3 (continued)

SM IT Gene RIP LP IPLP HSVM SVM4 SVM1 Max Min SVM1 LDF2 QDF

19 6 28 23.09 26.45 26.45 23.72 23.72 27.14 27.14 23.09 0 1 0

20 6 25 33.11 23.68 23.68 32.76 32.74 37.87 37.87 23.68 0 0 0

21 6 28 17.76 21.79 21.79 21.64 21.64 26.20 26.20 17.76 0 0 0

22 6 26 25.31 28.27 28.27 27.60 27.60 29.16 29.16 25.31 0 0 0

23 6 23 21.39 19.04 19.04 20.86 20.86 31.35 31.35 19.04 2 1 0

24 6 23 19.26 16.90 16.90 18.87 18.87 27.76 27.76 16.90 2 1 0

25 6 26 20.59 19.01 19.01 20.51 20.51 23.90 23.90 19.01 3 0 0

26 6 25 19.20 18.32 18.32 18.95 18.95 26.99 26.99 18.31 2 3 0

27 6 21 19.23 19.74 19.74 19.81 19.81 37.19 37.19 19.23 4 1 0

28 6 26 11.66 13.10 13.10 14.00 14.00 26.36 26.36 11.66 6 5 0

29 6 23 9.63 12.61 12.61 13.23 13.22 25.43 25.43 9.63 3 4 0

30 6 21 9.19 10.71 10.71 10.71 10.71 35.90 35.90 9.19 6 3 0

31 6 28 20.77 20.78 20.78 21.29 21.29 37.17 37.17 20.77 5 1 0

32 6 27 10.16 11.22 11.22 11.38 11.38 31.63 31.63 10.16 5 3 0

33 6 26 7.70 8.07 8.07 9.98 9.98 30.55 30.55 7.70 6 3 0

34 6 27 7.88 8.85 8.85 9.34 9.34 35.62 35.62 7.88 6 4 0

35 6 28 7.43 7.43 7.43 7.26 7.26 30.59 30.59 7.26 4 8 0

36 6 32 8.11 10.15 10.15 9.08 9.08 34.03 34.03 8.11 5 5 0

37 6 26 3.03 3.17 3.17 3.57 3.57 37.16 37.16 3.03 9 6 0

38 6 33 3.03 2.64 2.64 3.01 3.01 37.11 37.11 2.64 5 6 0

39 6 25 0.78 0.74 0.74 0.78 0.78 34.68 34.68 0.74 5 6 0

MaxRatioSV 13 12 10 17

Max 35 40.59 45.14 45.14 43.95 43.95 43.95 45.14 36.92 9 8 0

Min 18 0.78 0.74 0.74 0.78 0.78 21.31 21.31 0.74 0 0 0

Mean 26 20.96 21.46 21.46 22.82 22.82 31.94 32.26 19.93 2 2 0

Sum 992

3.3.2 Result of 56 SMs by RIP

Table 3.4 shows the result of 56 SMs found by RIP. Last three columns are three
NMs of SVM1, LDF2, and QDF. Because NMs of logistic regression and SVM4 are
zero, we omit two columns. RatioSV is the proper statistic for LSD-Discrimination.
However, its values become large for “NM >� 1” and are not reliable. Last five rows
are five elementary statistics. “Max RatioSV” is the total number of SMs having a
maximum value of four RatioSVs. Four values of MP-based LDFs are 7, 6, 6, and
43. The maximization of SV causes this good result for H-SVM. Five ranges of
“gene, RIP, LP, IPLP, and HSVM” are [29, 45], [2.98, 25.25], [4.72, 25.94], [4.72,
25.94], and [5.76, 32.58], respectively. Thus, H-SVM can discriminate two classes
better than other LDFs. Last three ranges are [0, 5], [0, 7], and [0, 0], respectively.
QDF, SVM4, and logistic regression discriminate two classes correctly. Because 56
SMs include 1,999 genes, 56 SMs include lager genes than two SMs by Revised
LP-OLDF. The SVM4 and QDF discriminate 56 SMs correctly. Although SVM1
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can discriminate 31 SMs and LDF2 can discriminate 23 SMs correctly, these
discriminant functions are useless for cancer gene diagnosis.

Table 3.4 Result of 56 SMs by RIP

SM IT Gene RIP LP IPLP HSVM SVM4 SVM1 Max Min SVM1 LDF2 QDF

1 6 35 7.19 12.77 12.77 19.98 19.98 19.98 19.98 7.19 0 1 0

2 6 34 11.06 12.11 12.11 16.90 16.90 16.90 16.90 11.06 0 1 0

3 6 29 14.42 7.52 7.52 19.46 19.46 19.46 19.46 7.52 0 2 0

4 6 44 18.01 14.76 14.76 23.36 23.36 23.36 23.36 14.76 0 0 0

5 6 35 21.55 25.94 25.94 32.58 32.58 32.58 32.58 21.55 0 0 0

6 6 36 17.71 23.41 23.41 23.47 23.47 23.47 23.47 17.71 0 2 0

7 6 37 11.57 12.32 12.32 19.29 19.29 19.29 19.29 11.57 0 1 0

8 6 37 25.25 24.14 24.14 23.54 23.55 23.54 25.25 23.54 0 0 0

9 6 35 14.20 12.03 12.03 21.82 21.81 21.82 21.82 12.03 0 2 0

10 6 31 18.18 14.14 14.14 18.36 18.36 18.36 18.36 14.14 0 1 0

11 6 35 14.69 12.04 12.04 19.64 19.64 19.64 19.64 12.04 0 0 0

12 6 35 15.16 23.16 23.16 26.05 26.05 26.05 26.05 15.16 0 0 0

13 6 34 22.56 19.45 19.45 25.84 25.84 25.84 25.84 19.45 0 0 0

14 6 35 22.96 22.65 22.65 25.98 25.98 25.98 25.98 22.65 0 0 0

15 6 34 18.33 20.93 20.93 25.08 25.08 25.08 25.08 18.33 0 1 0

16 6 36 22.08 16.18 16.18 28.84 28.84 28.84 28.84 16.18 0 1 0

17 6 33 15.45 17.47 17.47 19.76 19.76 19.76 19.76 15.45 0 2 0

18 6 36 19.53 17.17 17.17 24.76 24.75 24.76 24.76 17.17 0 0 0

19 6 32 17.35 16.96 16.96 21.13 21.13 23.78 23.78 16.96 1 0 0

20 6 41 17.31 18.37 18.37 22.79 22.79 28.25 28.25 17.31 1 0 0

21 6 32 12.38 17.68 17.68 17.13 17.13 18.74 18.74 12.38 0 2 0

22 6 34 18.39 20.16 20.16 18.96 18.96 18.96 20.16 18.39 0 0 0

23 6 34 15.73 12.36 12.36 19.45 19.45 21.53 21.53 12.36 0 1 0

24 6 33 17.26 13.93 13.93 17.19 17.19 19.08 19.08 13.93 0 0 0

25 6 37 10.90 15.90 15.90 19.66 19.66 19.66 19.66 10.90 0 2 0

26 6 31 11.25 14.45 14.45 17.69 17.69 21.13 21.13 11.25 0 1 0

27 6 32 10.50 4.94 4.94 15.27 15.28 30.28 30.28 4.94 1 1 0

28 6 33 12.82 14.68 14.68 19.18 19.18 20.81 20.81 12.82 0 2 0

29 6 36 12.38 10.83 10.83 18.47 18.47 22.20 22.20 10.83 1 1 0

30 6 36 17.69 21.65 21.65 21.58 21.58 22.55 22.55 17.69 0 0 0

31 6 32 17.41 10.79 10.79 16.81 16.81 18.93 18.93 10.79 1 1 0

32 6 34 23.04 16.92 16.92 24.63 24.63 24.63 24.63 16.92 0 0 0

33 6 39 17.78 15.20 15.20 18.52 18.52 26.27 26.27 15.20 2 2 0

34 6 34 15.71 15.62 15.62 20.82 20.81 22.76 22.76 15.62 0 2 0

35 6 38 18.95 15.65 15.65 15.23 15.23 23.59 23.59 15.23 2 2 0

36 6 32 13.48 11.56 11.56 17.89 17.89 32.52 32.52 11.56 2 2 0

(continued)
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Table 3.4 (continued)

SM IT Gene RIP LP IPLP HSVM SVM4 SVM1 Max Min SVM1 LDF2 QDF

37 6 42 20.12 20.82 20.82 28.65 28.65 28.65 28.65 20.12 0 0 0

38 6 37 14.95 8.33 8.33 17.69 17.69 36.37 36.37 8.33 3 2 0

39 6 31 13.24 9.65 9.65 18.63 18.63 20.65 20.65 9.65 0 1 0

40 6 36 10.23 11.10 11.10 15.12 15.12 25.93 25.93 10.23 3 4 0

41 6 35 12.77 15.46 15.46 21.12 21.12 25.38 25.38 12.77 0 0 0

42 6 38 13.32 9.96 9.96 18.05 18.05 23.64 23.64 9.96 1 2 0

43 6 34 13.63 9.65 9.65 12.10 12.10 23.59 23.59 9.65 2 2 0

44 6 35 5.89 11.42 11.42 12.90 12.90 20.71 20.71 5.89 4 5 0

45 6 37 13.40 9.43 9.43 12.43 12.43 23.93 23.93 9.43 4 2 0

46 6 35 9.48 8.32 8.32 13.10 13.10 24.00 24.00 8.32 2 2 0

47 6 35 9.38 8.01 8.01 8.77 8.77 25.72 25.72 8.01 3 2 0

48 6 36 8.30 6.83 6.83 14.77 14.77 24.81 24.81 6.83 5 3 0

49 6 43 12.12 12.74 12.74 18.11 18.11 25.74 25.74 12.12 3 2 0

50 6 33 5.92 8.81 8.81 8.34 8.34 28.74 28.74 5.92 4 4 0

51 6 42 12.30 10.12 10.12 15.71 15.70 32.80 32.80 10.12 5 3 0

52 6 32 9.29 10.46 10.46 9.65 9.65 37.33 37.33 9.29 4 5 0

53 6 39 8.48 8.12 8.12 10.48 10.48 31.30 31.30 8.12 4 7 0

54 6 41 11.79 6.75 6.75 17.19 17.19 36.85 36.85 6.75 4 3 0

55 6 42 2.98 4.72 4.72 5.76 5.76 36.18 36.18 2.98 5 5 0

56 6 45 9.29 10.46 10.46 9.65 9.65 37.33 37.33 9.29 4 6 0

Max RatioSV 7 6 6 43

Max 45 25.25 25.94 25.94 32.58 32.58 37.33 37.33 23.54 5 7 0

Min 29 2.98 4.72 4.72 5.76 5.76 16.90 16.90 2.98 0 0 0

Mean 36 14.41 13.88 13.88 18.67 18.67 25.00 25.05 12.61 1 2 0

Sum 1999

3.3.3 Comparison of Three Results

Table 3.5 summarizes the three results. “SM” column shows three different SMs.
“Gene” column shows the total genes included in all SMs. The 56 SMs by RIP
include 1,999 genes and is double of others. Three “Best Range of RatioSV (By
LDF column)” are the ranges of H-SVM. In the 39 SMs by LP, the number of genes
involved is small, and the maximum value of RatioSV is the largest. On the other
hand, the 56 SMs by RIP have a sizeable minimum value of RatioSV over 5.78. From
these results, the result of 56 SMs may be better than 36 SMs and 39 SMs.

Table 3.5 Summary of three
results

SM Gene Best range of
RatioSV

By LDF

36 SMs by LP 1,042 [0.19, 37.98] H-SVM

39 SMs by LP 992 [0.78, 43.95] H-SVM

56 SMs by RIP 1,999 [5.78, 32.58] H-SVM
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3.4 Three Signal Data Using 39 SMs Found by Revised
LP-OLDF

Although standard statistical methods analyze all 39 SMs found by Revised LP-
OLDF, the results are almost the same useless results explained in Chap. 2. Thus, we
omit these results. Section 3.4 introduces only results of cluster analysis and PCA.
RIP, Revised LP-OLDF, and H-SVM discriminated all 39 SMs obtained by Revised
LP-OLDF and made three signal data by RipDSs, Revised LP-OLDF DSs (LpDSs)
and H-SVM DSs (HsvmDSs). Ward cluster and PCA explain three results. Because
JMP supports six hierarchical cluster methods, we get the 18 different analyses
and survey the various aspects of SMs. However, it is difficult for non-specialists
of oncogenes to study the cluster analysis. Thus, we propose a useful procedure on
how to use the cluster analysis. On the other hand, non-specialists can understand the
results of PCA and the Prin1 becomes important malignancy indicators in addition to
39 individual RipDSs, LpDSs, and HsvmDSs. Moreover, we expect several outliers
are candidates of the new subclass of cancer pointed out by Golub et al. We expect
our approach by cluster analysis and PCAwill assist many researchers. We sincerely
hope some researchers validate our claim and will write a paper.

3.4.1 Signal Data Made by 39 RipDSs Using 39 SMs Found
by Revised LP-OLDF

(1) The combination of cluster analysis and PCA

Figure 3.1 is the result of RipDS signal data using 39 SMs found by Revised LP-
OLDF. Although Ward cluster cannot separate 39 SMs into two classes clearly, it
can divide the signal data into two clusters.

We introduce the output of cluster analysis. The left part is the case number with
symbols. Next large square is the color (or heat) map that consists of 62 cases (rows)
and 39 RipDSs (columns). Each row corresponds to case that includes 39 variables
(39 RipDSs). Upper green part is 22 normal cases, and lower white, and red part is 40
tumor patients. The tone of green → white → red corresponds to the magnitude of
the value corresponding to (case and variable). A red pixel indicates that the value of
the (case and variable) is large. Thus, the color map shows the 62 cases are entirely
separable into two clusters such as the 22 normal class and 40 tumor cases. Right
plot is the dendrogram of 22 normal subjects and 40 tumor patients. Move the upper
right diamond left or right to divide 62 cases into the desired number of clusters. We
can interactively obtain different clusters by a simple operation. On the other hand,
SOM and k-means is generally difficult to use because it is necessary to determine
the number of clusters in advance. We have designated five clusters here, and Ward
cluster divides the tumor into four clusters. Five clusters can be identified by color
and left symbol.
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Below figures of the color plot are the dendrogram of variable and the scree plot. If
we divide four clusters, those consist of 22, 9, 5, and 3 RipDSs, respectively. Because
RIP9 and RIP10 become the first cluster, the correlation of RipDS9 and RipDS10
may be close to 1 and compatible. RIP32 and RIP33 become the second cluster.

Fig. 3.1 Result of RipDSs signal data using 39 SMs of Revised LP-OLDF
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Figure 3.2 shows the above two-pair correlations are one. That is, the correlation
is often 1 in pairs that are clustered quickly in cluster analysis.

Fig. 3.2 Pairs correlations

Aswemove the diamond to the left, the clustered distance is small, and it becomes
62 clusters. As we slide to the right, the distance to be clustered increases, the cases
are sequentially assembled and finally become one cluster. If we regard the scree
plot as a cliff, rolling stone from above will stop at the flat hem. So, we decide the
number of clusters. In this figure, we choose five clusters. We chose the five clusters
of the case by diamond mark and scree plot. However, we choose the four clusters
of the variable by our judgment.

After cluster analysis with mark and color, we recommend PCA in Fig. 3.3.
Cluster analysis is difficult without data expertise. Furthermore, it is not generally
definitive. However, because the discriminant analysis is not useful at all in medical
gene research, medical researchers use cluster analysis. We think this is because it
is easy to find out what represents the results of medical care among many cluster
results. Non-experts like us advance combinations with PCA. The analysis results
of the five clusters are represented by colors and marks in the middle scatter plot.
Especially, 20 normal cases located on the negative Prin1 axis are less than−4, and 42
tumor patients look like a fan that consists of four clusters. The green cluster is a mild
tumor. Brown and blue are divided into nearly the first and fourth quadrants and are
severe. These results correspond to the RipDSs in the first and the fourth quadrants of
the right factor loading amount. The 47th tumor case is an outlier, corresponding to
RIP39 from factor loading. This result corresponds to the red pixel in the lower right
corner of Fig. 3.1. Furthermore, it is meaningful to examine whether 38 RipDSs
without RIP39 become two groups in the first and fourth quadrants. Golub et al.
narrow down genetic candidates by signal/noise ratio, further select by weighted
vote method, and predict new subclass of cancer with SOM. This operation involves
much work as the definition of the signal is incorrect. However, if we admit signal
data is signal space, the analysis is easy. However, our result needs to be verified and
confirmed by the doctors.
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Fig. 3.3 PCA reflecting the results of cluster analysis

(2) How to validate PCA result

The first and second columns of Table 3.6 correspond to a malignancy indicator
on the Prin1 in Fig. 3.3. The following remaining four columns are for Figs. 3.8
and 3.13. The numbers below the third row in the first column are the identification
number (SM) for normal and cancer patients. The second column is the value of
Prin1, which is sorted in ascending order from a small value. Because the minimum
value of normal subjects is −8.24 (SN � 4) and the maximum value is −5.67 (SN �
20), its range is [−8.24,−5.67]. On the other hand, the range of 40 cancer patients is
[0.28, 7.38]. Thus, the SV separates two classes by large SV window (−5.67, 0.28)
completely. Because the range of RipDS is [−8.24, 7.38] on Prin1, RatioSV of PCA
is 38.1027% (=(5.67 + 0.28)/(8.24 + 7.38) * 100). Because this is a comprehensive
of RatioSV of 39 RIPs, it becomes a large value. That is, Prin1 can be considered
as a malignancy indicator and illustrates an idea of malignancy indicator very well.
Although we cannot understand the relation of 39 RipDSs, PCA shows most RipDSs
have almost the same axes. This scatter plot shows that 992 genes included in 39
SMs reduce to the 39-dimensional signal space. A large window of 38.10% opens.
Assuming that it is about 40%, it means that normal and cancer subjects share in the
remaining 60% of RipDS range. Such easy discrimination is not in past research.
However, it is as a new research field of statistics, and it was impossible to solve
until now. We solved this new problem (Problem6). Only green and blue clusters of
Fig. 3.3 correspond to G and B in Table 3.6. RIP62 has the maximum discriminant
score of 2.59 in the green cluster. RIP27 has the minimum discrimination score of
2.56 in the blue cluster, and RIP48 has the maximum discriminant score of 7.38 in
the blue cluster. RIP47 has the discriminant score of 6.63 and is the outlier.



3.4 Three Signal Data Using 39 SMs Found by Revised LP-OLDF 109

Table 3.6 Three malignancy indices

RatioSV 38.10 35.52 36.22

SN RIPPrin1 SN LPPrin1 SN HSVMPrin1

4 −8.24 4 −8.52 4 −8.90

21 −7.96 10 −8.02 10 −8.32

10 −7.90 21 −7.96 21 −8.04

9 −7.71 9 −7.90 9 −7.68

5 −7.23 11 −7.32 11 −7.31

7 −7.16 5 −6.99 7 −7.05

11 −7.02 7 −6.90 3 −7.03

12 −6.84 12 −6.89 12 −6.90

1 −6.78 3 −6.77 5 −6.89

3 −6.68 1 −6.73 1 −6.77

6 −6.54 19 −6.43 19 −6.50

17 −6.49 6 −6.41 2 −6.48

16 −6.44 17 −6.28 13 −6.37

19 −6.27 13 −6.28 17 −6.35

2 −5.95 16 −6.17 15 −6.29

15 −5.94 15 −6.17 6 −6.26

8 −5.92 2 −6.06 16 −6.23

22 −5.91 22 −6.06 14 −6.21

13 −5.86 14 −6.04 22 −6.08

14 −5.82 8 −5.92 8 −6.05

18 −5.72 20 −5.67 20 −5.86

20 −5.67 18 −5.65 18 −5.85

58 G (green) 0.28 52 0.17 55 0.27

55 G (green) 0.30 55 0.20 52 0.28

52 G (green) 0.36 59 0.28 58 0.32

59 G (green) 0.60 58 0.32 59 0.33

30 G (green) 0.70 30 0.53 30 0.58

34 G (green) 0.97 57 0.72 34 0.88

57 G (green) 1.11 34 0.92 57 1.00

23 G (green) 1.19 23 1.28 24 1.32

24 G (green) 1.26 50 1.32 23 1.32

33 G (green) 1.49 24 1.49 56 1.48

26 G (green) 1.68 29 1.53 50 1.49

29 G (green) 1.74 33 1.61 29 1.58

50 G (green) 1.74 56 1.74 33 1.78

25 G (green) 1.91 26 2.09 25 2.17

56 G (green) 1.96 25 2.14 26 2.25

(continued)
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Table 3.6 (continued)

RatioSV 38.10 35.52 36.22

SN RIPPrin1 SN LPPrin1 SN HSVMPrin1

31 G (green) 2.25 31 2.31 62 2.40

27 B (blue) 2.56 62 2.39 27 2.43

62 G (green) 2.59 27 2.57 31 2.51

45 B (blue) 3.70 32 3.55 32 3.68

32 3.70 45 3.67 45 3.82

35 3.77 42 3.84 42 3.99

42 3.84 35 4.09 35 4.22

41 4.14 41 4.27 41 4.29

37 4.35 44 4.39 37 4.73

54 B (blue) 4.47 37 4.64 61 4.81

44 4.52 54 4.68 54 4.97

61 4.88 61 5.23 44 5.02

28 B (blue) 5.00 28 5.43 28 5.27

51 B (blue) 5.54 51 5.57 60 5.42

53 B (blue) 5.68 60 5.63 51 5.84

60 5.86 53 5.76 53 5.90

40 6.29 40 5.97 40 5.97

47 (outlier) 6.63 49 6.66 49 6.28

39 6.73 47 6.71 47 6.50

43 6.80 46 6.75 43 6.68

36 6.86 43 6.92 46 6.96

49 6.90 39 7.04 39 7.33

46 B (blue) 6.95 36 7.21 36 7.36

38 7.36 48 7.66 38 7.99

48 B (blue) 7.38 38 7.87 48 8.00

(3) Analysis of Transposed Data of 39 RipDSs using 39 SMs

We transpose signal data made by 39 RipDSs using 39 SMs and analyze it by Ward
cluster in Fig. 3.4. We choose the nine clusters of 39 RIPs. Upper 27 RipDSs become
one cluster. Other 12 RipDSs become eight clusters such as two green RipDSs
(RIP21, RIP28), four blue RipDSs (RIP32, RIP33, RIP35, RIP36), and six one
clusters such as (RIP29), (RIP34), (RIP30), (RIP37), (RIP38) and (RIP39). Other
12 RIPs may relate to the outliers. All transposed analyses indicate many outliers
that offer many candidates of new subclasses of cancer.
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Fig. 3.4 Ward cluster of transpose signal data made by 39 RipDSs using 39 SMs

The variable dendrogram consists of eight clusters. The first cluster includes five
normal cases and seven tumor cases. The second cluster includes three normal cases.
The third cluster consists of three tumor cases. The fourth cluster consists of five
normal cases. The fifth cluster consists of nine normal cases and three tumor cases.
The sixth cluster includes 11 tumor cases. The seventh cluster consists of seven tumor
cases. The eighth cluster consists of nine tumor cases.

Figure 3.5 is the result of transposed data of 39 RipDSs signal data by PCA.
Scatter plot shows six RipDSs of Fig. 3.4 are six one cluster outliers. Factor loading
plot indicates two features. Tumor cases are in the first and fourth quadrants, and
normal cases are in the second and third quadrants. The second feature is divided
into patients centered at the origin and patients group having a radius close to 1.
The principles of interpretation of PCA’s score plot and factor loading plot are the
same. In each quadrant, we can judge that clusters making clumps have the same
properties. Therefore, if those aremaking lumps across quadrants,we should consider
them separately. Since we cannot consider in the high dimensional quadrant, we will
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limit it to Prin1 and Prin2 as a simple method. The factor loading plot in Fig. 3.5
is difficult to understand. Therefore, as shown in Fig. 3.6, a scatter diagram of a
factor load amount is separately made. There are cases surrounding the origin of
radius 0.25. Think of them as four clusters, or because they are close to the origin,
ignoring the quadrant difference, it can be considered to be a cluster of relatively
mild cancer patients and healthy cases close to cancer patients. For cases scattered in
the other four quadrants, we can consider two cancer patient clusters in the first and
fourth quadrants and two clusters of healthy cases in the second and third quadrants.
Cancer patients in first quadrant are divided into two more clusters, but whether it is
meaningful or not is what the medical expert should judge. In this way, clusters that
can be classified by PCA provide different information from discriminant analysis
and cluster analysis. Although Golub et al. tried to find a new subclass of cancer
by different methods, our approach is more straightforward because we analyze the
signal subspace. These verifications are areas of specialists.

Fig. 3.5 Transposed data of RipDSs signal data by PCA

Fig. 3.6 Factor loading plot of transposed data of RipDSs using 39 SMs
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3.4.2 Signal Data Made by 39 LpDSs Using 39 SMs Found
by Revised LP-OLDF

(1) Ward Cluster

Figure 3.7 is the result of LpDS signal data using 39 SMs found by Revised LP-
OLDF. Although Ward cluster cannot separate 39 SMs into two classes clearly, it
can divide the signal data into two clusters.

Upper green part is 22 normal cases, and lower white and red part is 40 tumor
patients. We have designated five clusters here, and Ward cluster divides the tumor
into four clusters. The color and left symbol identify five clusters.
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Fig. 3.7 Ward cluster result of signal data made by 39 LpDSs using SMs

If we divide the variable dendrogram into five clusters, those consist of 13, 14, 7, 2,
and 3 LpDSs, respectively. Because LP9 and LIP10 become the first cluster and its
correlation is 1, those are compatible. The correlation of LP32 and LP33 is one, also.
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(2) PCA

Figure 3.8 is the result of PCA with colors and marks. The scatter plot shows 20
normal cases locate on the negative Prin1 axis, and 42 tumor patients look like a fan
that consists of four clusters. The green cluster is a mild tumor. Brown patients are
in the first and fourth quadrants. Pale green patients in the first quadrant are outliers
and severe cancer. The factor loading plot shows the LP30 is a clear outlier. The
third and fourth columns of Table 3.6 are the identification number (SN) and the
Prin1 value. We sincerely hope researchers of Alon project validate whether Table
3.6 corresponds to severity of cancer patients.

Fig. 3.8 Result of PCA with colors and marks

(3) Analysis of Transposed Signal data

Figure 3.9 is the Ward cluster of transposed signal data made by 39 LpDSs using 39
SMs. If we choose five clusters, the 35 LpDSs become one large cluster and other
four one clusters those are LP34, LP37, LP38, and LP39.
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Fig. 3.9 Ward cluster of transposed signal data made by 39 LpDSs using 39 SMs

Figure 3.10 is the PCA result. Scatter plot shows the four outliers among 39 LPs.
The factor loading plot shows that the 40 tumor cases are in the first and fourth
quadrants, and the 22 normal cases are in the second and third quadrants.

Fig. 3.10 PCA result of signal data made by LpDSs using 39 SMs
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Figure 3.11 is the factor loading plot of transposed data of LpDSs signal data.
However, several cancer patients overlapped with normal subjects in the left area.
This plot shows the unclear feature compared with Fig. 3.6. Although we analyze
the 39 SMs found by Revised LP-OLDF, we conclude the signal data made by 39
LpDSs is not better than the signal data by RipDSs.

Fig. 3.11 Factor loading plot of transposed data of LpDSs

3.4.3 Signal Data Made by 39 HsvmDSs Using 39 SMs
Found by Revised LP-OLDF

(1) Ward Cluster

Figure 3.12 is the result of HsvmDSs signal data using 39 SMs found by Revised
LP-OLDF. Although Ward cluster cannot separate 39 SMs into two classes clearly,
H-SVMcan divide the signal data into two clusters. The upper green part is 22 normal
cases, and lower white and red part is 40 tumor patients. We have designated five
clusters here, and Ward cluster divides the tumor into four clusters. Five clusters can
be identified by color and left symbol.
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Fig. 3.12 Ward cluster result of signal data made by 39 HsvmDSs using SMs
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If we divide the variable dendrogram into five clusters, those consist of 24, 4, 7,
1 and 3 HsvmDSs, respectively. Because one cluster consists of 24 HsvmDSs, the
valance of five clusters is terrible. Because LP9 and LIP10 become the first cluster
and its correlationis 1, those are compatible. The correlation of LP32 and LP33 is
one, also.

(2) PCA Results

Figure 3.13 is the result of PCA with colors and marks. The scatter plot shows 20
normal cases locate on the negative Prin1 axis, and 42 tumor patients look like a fan
that consists of four clusters in the first and fourth quadrants. The green cluster is a
mild tumor. Blue patients are in the first and fourth quadrants. Pale green patients
in the first quadrant are outliers and severe tumor. The factor loading plot shows
the HSVM39 is a clear outlier. The fifth and sixth columns of Table 3.6 are the
identification number (SN) and the Prin1 value.

Fig. 3.13 Result of PCA with colors and marks
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(3) Analysis of Transposed Signal data

Figure 3.14 is the Ward cluster of transposed signal data made by 39 HsvmDSs
using 39 SMs. If we choose five clusters, the 28 HsvmDSs become one large cluster,
and other four clusters those consist of eight HSVMs and three one cluster such as
HSVM37, HSVM38, and HSVM39. Five clusters are slightly unbalance as same as
39 LpDSs.

Fig. 3.14 Ward cluster of transposed signal data made by 39 HsvmDSs using 39 SMs
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Figure 3.15 is the PCA result of transposed data. Scatter plot shows the four
outliers among 39 HSVMs. Factor loading plot shows the 40 tumor cases are in
the first and fourth quadrants, and the 22 normal cases are in the second and third
quadrants.

Fig. 3.15 PCA plots of transposed data

Figure 3.16 is the factor loading plot of transposed data of HsvmDSs signal data.
However, several cancer patients overlapped with normal subjects in the center area
including the origin. This plot shows the unclear feature compared with Fig. 3.6.
Although we analyze the 39 SMs found by Revised LP-OLDF, we conclude the
signal data made by 39 HsvmDSs is not better than the signal data by RipDSs.

Fig. 3.16 Factor loading plot of transposed data of HsvmDSs
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3.5 Analysis of Three Signal Data Using 56 SMs Found
by RIP

Although standard statistical methods analyze all 56 SMs of RIP, the results are
almost the same results explained in Chap. 2. Thus, we omit these results, also. In
this Section, RIP, Revised LP-OLDF, and H-SVM discriminate all 56 SMs found by
the RIP and made three signal data such as RipDSs, LpDSs, and HsvmDSs signal
data. Ward cluster and PCA explain three results. Especially, Prin1 becomes proper
malignancy indicators in addition to 56DSs by RIP, Revised LP-OLDF, andH-SVM.

3.5.1 Signal Data Made by 56 RipDSs Using 56 SMs Found
by RIP

(1) Ward Cluster

Figure 3.17 is the result of RipDSs signal data using 56 SMs discovered by RIP.
Although Ward cluster cannot separate 56 SMs into two classes clearly, RIP can
divide the signal data into two clusters. The upper green part is 22 normal cases, and
lower white and red part is 40 tumor patients. We have designated five clusters here,
and Ward cluster divides the tumor into four clusters. Five clusters can be identified
by color and left symbol. However, two clusters consist of only two tumor patients
such as (46, 48) and (51, 53). These clusters may be outliers.

If we divide the variable dendrogram into eight clusters, those consist of 5, 10, 4,
3, 17, 7, 2, and 9 RipDSs, respectively. It is necessary to categorize a large number
of found SMs according to some criteria and to study their roles in the future. The
result of this variable dendrogram is likely to be useful for future research. Because
RIP26 and RIP28 become the first cluster, its correlation is 0.828 and the maximum
value. Thus, there are no pairs with r � 1.
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Fig. 3.17 Ward cluster result of signal data made by 56 RipDSs using SMs

(2) PCA Results

Figure 3.18 is the result of PCA with colors and marks. The scatter plot shows 22
normal cases locate on the negative Prin1 axis, and 40 tumor patients look like a
fan that consists of four clusters in the first and fourth quadrants. The green cluster
is a mild tumor. Blue patients are in the first and fourth quadrants. Two pale green
patients are in the first quadrant, and two tawny patients are in the fourth quadrant.
They are the outliers in Fig. 3.17. The factor loading plot shows the three RIPs are
clear outlier and effect for C29 and C31.
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Fig. 3.18 Result of PCA with colors and marks

The first and second columns of Table 3.7 correspond to a malignancy indicator
in Fig. 3.18. The numbers below three rows in the first column are the SN values
for healthy and cancer patients. The second column is the value of Prin1, which is
sorted in ascending order from a small value. Because the minimum value of nor-
mal subjects is −9.54 (N10) and the maximum value is −5.39 (N20), its range is
[−9.542,−5.391].On the other hand, the range of 40 cancer patients is [0.269, 8.979].
Thus, the SV separates two classes by large SVwindow (−5.391, 0.269) completely.
Because the range of RipDS is [−9.542, 8.979] on Prin1, RatioSV of PCA is
30.557% (=(0.269 + 5.39)/(9.542 + 8.979) * 100). Because this is a comprehensive
of RatioSV of 64 RIPs, it becomes a large value. That is, Prin1 can be considered
as a malignancy indicator and illustrates an idea of malignancy indicator very well.
A large window of 30.557% opens. Assuming that it is about 31%, it means that
health and cancer subjects are placed in the remaining 69% of DS.
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Table 3.7 Three malignancy indices

RatioSV 30.557 26.683 31.390

Class RIPScore Class LPScore Class HSVMScore

N10 −9.542 N4 −10.183 N4 −10.369

N21 −8.881 N10 −8.902 N9 −9.952

N4 −8.634 N9 −8.809 N10 −9.440

N9 −8.496 N21 −8.554 N21 −9.159

N1 −7.890 N11 −8.299 N7 −8.766

N5 −7.769 N17 −7.993 N11 −8.603

N15 −7.735 N13 −7.966 N3 −8.554

N11 −7.581 N5 −7.947 N5 −8.471

N16 −7.415 N7 −7.667 N17 −8.238

N12 −7.333 N12 −7.549 N1 −8.142

N13 −7.286 N1 −7.507 N16 −7.921

N7 −7.107 N14 −7.484 N13 −7.850

N3 −7.055 N16 −7.352 N19 −7.850

N17 −6.964 N3 −7.321 N14 −7.823

N22 −6.941 N15 −7.164 N15 −7.722

N19 −6.918 N19 −7.135 N12 −7.693

N14 −6.918 N6 −7.030 N6 −7.194

N8 −6.589 N22 −6.412 N8 −6.984

N6 −6.530 N8 −6.093 N22 −6.961

N2 −5.738 N2 −5.722 N2 −6.688

N18 −5.570 N18 −5.477 N18 −6.415

N20 −5.391 N20 −5.377 N20 −6.318

C30 0.269 C36 −0.305 C30 −0.070

C36 0.389 C30 −0.125 C33 −0.070

C33 0.599 C33 −0.088 C36 −0.045

C2 0.717 C2 0.275 C2 0.595

C8 1.177 C12 1.011 C37 0.652

C37 1.701 C37 1.090 C8 0.714

C28 1.982 C8 1.340 C12 1.439

C12 2.079 C1 1.390 C35 1.629

C35 2.089 C35 1.862 C1 1.949

C11 2.168 C3 2.404 C3 2.346

C1 2.211 C34 2.432 C28 2.404

C5 2.388 C28 2.902 C34 2.488

C3 2.724 C11 2.908 C11 2.627

C7 2.856 C7 2.916 C7 2.699

(continued)
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Table 3.7 (continued)

RatioSV 30.557 26.683 31.390

Class RIPScore Class LPScore Class HSVMScore

C4 2.918 C39 3.002 C9 3.201

C40 2.941 C9 3.181 C39 3.391

C9 3.062 C13 3.193 C13 3.536

C19 3.202 C5 3.310 C40 3.602

C13 3.405 C4 3.343 C4 3.668

C34 3.489 C10 3.390 C5 3.797

C10 3.530 C19 3.469 C10 4.113

C39 4.109 C40 4.068 C19 4.594

C38 4.135 C27 4.430 C32 4.933

C20 4.282 C20 4.655 C20 5.433

C22 4.550 C6 5.056 C22 5.600

C23 4.824 C25 5.445 C23 5.671

C27 4.979 C38 5.451 C27 5.874

C18 5.111 C32 5.655 C38 5.910

C25 5.254 C22 5.735 C6 5.982

C32 5.503 C23 5.800 C25 6.047

C6 6.121 C15 6.194 C29 6.779

C15 6.136 C29 6.884 C15 7.049

C17 6.358 C21 6.936 C18 7.702

C14 6.430 C18 7.172 C21 7.811

C21 6.526 C14 7.565 C16 8.190

C16 6.645 C31 7.655 C31 8.244

C26 7.922 C16 7.724 C26 8.943

C29 8.149 C26 7.883 C14 9.017

C31 8.372 C17 7.911 C17 9.133

C24 8.979 C24 8.825 C24 9.535

(3) Analysis of Transposed Signal data

Figure 3.19 is the Ward cluster of transposed signal data made by 56 RipDSs using
56 SMs. If we choose five clusters, the 52 RipDSs become one large cluster, and
other four one clusters consist of (RIP52), (RIP55), (RIP50), (RIP56). Five clusters
are slightly unbalanced.
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Fig. 3.19 Ward cluster of transposed signal data made by 56 RipDSs using 56 SMs

Figure 3.20 is the PCA result of transposed data. Scatter plot shows the four
outliers among 56 RIPs. The factor loading plot shows that the 40 tumor cases are
almost in the first quadrant, and the 22 normal cases are almost in the third quadrant.
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Fig. 3.20 PCA plots of Transposed data

Table 3.8 shows factor loading plots. The row shows 22 normal subjects from
N1 to N22 and 40 cancer patients from C1 to C40. Prin1 and Prin2 are the first and
second factor loading values which are correlations of 62 patients with Prin1 and
Prin2. “Mark” is a marker corresponding to five groups of 62 patients corresponding
to Fig. 3.21.

Table 3.8 Factor loading plot

Row Prin1 Prin2 Mark

N1 0.097 0.031 0

N2 0.048 0.022 0

N3 0.032 −0.549 −2

N4 −0.994 0.070 −1

N5 −0.989 0.085 −1

N6 0.060 0.019 0

N7 −0.995 0.040 −1

N8 0.042 0.017 0

N9 −0.981 0.097 −1

N10 −0.032 −0.428 −2

N11 0.071 0.120 0

N12 0.086 0.115 0

N13 −0.994 0.076 −1

N14 0.054 −0.037 0

N15 0.076 0.132 0

N16 0.073 −0.250 −2

N17 0.018 −0.272 −2

(continued)
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Table 3.8 (continued)

Row Prin1 Prin2 Mark

N18 −0.007 −0.804 −2

N19 −0.836 −0.303

N20 0.016 0.078 0

N21 0.091 0.041 0

N22 0.032 −0.108 0

C1 −0.073 0.188 0

C2 −0.048 0.205 0

C3 −0.070 −0.065 0

C4 −0.103 −0.027 0

C5 0.010 0.749 2

C6 −0.041 0.669 2

C7 −0.098 −0.011 0

C8 −0.052 0.068 0

C9 −0.090 −0.172 0

C10 −0.101 −0.107 0

C11 0.014 0.789 2

C12 −0.028 0.076 0

C13 −0.089 0.078 0

C14 −0.068 0.559 2

C15 0.892 0.217

C16 −0.107 0.380 2

C17 −0.085 0.371 2

C18 −0.055 0.507 2

C19 0.677 0.197

C20 −0.062 0.581 2

C21 0.995 −0.034 1

C22 −0.100 0.085 0

C23 0.570 0.588

C24 0.991 −0.003 1

C25 −0.034 0.437 2

C26 −0.052 0.657 2

C27 −0.095 −0.070 0

C28 −0.053 −0.104 0

(continued)
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Table 3.8 (continued)

Row Prin1 Prin2 Mark

C29 0.981 0.002 1

C30 −0.034 −0.032 0

C31 0.995 −0.072 1

C32 −0.043 0.421 2

C33 −0.042 0.040 0

C34 0.982 −0.111 1

C35 0.994 −0.067 1

C36 0.036 0.766 2

C37 −0.053 −0.128 0

C38 −0.106 0.182 0

C39 −0.082 0.071 0

C40 0.991 −0.041 1

Mark “1” (Prin1> 0.97, −0.2< Prin2< 0) corresponds to the right rectangle con-
taining seven cancer patients such as c21 c24, c29, c31, c34, c35, and c40. Those
correspond to RIP56 in scatter plot. RIP56 is considered to be the outliers associated
with these seven cancer patients. On the other hand, “−1” (Prin1< −0.97, |Prin2|<
0.2) corresponds to a left rectangle containing five normal subjects such as N4, N5,
N7, N9, and N13. These five patients are probably patients to contrast with seven
cancer patients corresponding to RIP56 in scatter plot. Mark “2” ( |Prin1| < 0.2,
0.35 <Prin2) corresponds to the upper rectangle containing 12 cancer patients such
as c5, c6, c11, c14, c16–c18, c20, c25, c26, c32, and c36. These 12 cancer patients
correspond to RIP 50 and RIP52 in the scatter plot. Both RIPs are considered to be
outliers in these 12 cancer patients. On the other hand, “−2” (0 < Prin1 < 0.2, Prin2
< − 0.2) corresponds to a bottom rectangle containing five normal subjects such as
N3, N10, N16–N18. They are probably patients to contrast with 12 cancer patients
corresponding to RIP50 and RIP52 in scatter plot. Mark “0” ( |Prin1| < 0.2, |Prin2| <
0.2) corresponds to the mid-rectangle containing 11 normal subjects and 17 cancer
patients. Although Prin2 is less variance than Prin1, Prin2 explainsmore patients than
Prin1. Thus, we expect medical specialists will evaluate these results because our
results suggest there are two different types of outliers. Although Golub et al. found
new subclasses of cancer by SOM, they changed the number of clusters from two and
looked for the proper number of clusters. Because they did not know that microarray
is LSD, they seem to have made a great effort. If we do not know the proper number
of clusters, we must try several trials. We think DSs obtained by all SMs include
much information. Moreover, our procedure is straightforward and offers precise
results. Thus, we expect medical specialists to challenge our approaches in addition
to their approach.
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Fig. 3.21 Five groups of 62 patients

3.5.2 Signal Data Made by 56 LpDSs Using 56 SMs Found
by RIP

(1) Ward Cluster

Figure 3.22 is the result of LpDSs signal data using 56 SMs found by RIP. Although
Ward cluster cannot separate 56 SMs into two classes clearly, Revised LP-OLDF can
separate the signal data into two clusters. The upper green part is 22 normal cases,
and lower white and red part is 40 tumor patients. We have designated five clusters
here, andWard cluster divides the tumor into four clusters. The color and left symbol
identify five clusters. The fourth and fifth clusters consist of six and two LpDSs may
be the different outliers.



132 3 Cancer Gene Diagnosis of Alon’s microarray …

Fig. 3.22 Ward cluster result of signal data made by 56 LpDs using 56 SMs

If we divide the variable dendrogram into eight clusters, those consist of 5, 3,
8, 6, 7, 9, 13, and 5 LpDSs, respectively. These segmentations will be helpful for
the researchers to divide 56 pairs of genes into compatible groups. LP16 and LIP26
become the first cluster and its correlation 0.8542. Thus, there is no correlation with
r � 1.
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(2) PCA Results

Figure 3.23 is the result of subjects with colors and marks. The scatter plot shows 22
normal cases locate on the negative Prin1 axis, and 40 tumor patients look like a fan
that consists of four clusters in the first and fourth quadrants. The green patients are
in the first and fourth quadrants and mild tumor. Tawny and blue patients overlap and
are severe tumor patients. The factor loading plot shows the LP56 is a clear outlier.
The third and fourth columns of Table 3.7 are the identification number (Class) and
the Prin1 value.

Fig. 3.23 Result of subjects with colors and marks

(3) Analysis of Transposed Signal data

Figure 3.24 is the Ward cluster of transposed signal data made by 56 LpDSs using
56 SMs. If we choose six clusters, the 44 LpDSs become one large cluster, and other
five clusters consist of eight LPs and four one cluster such as LP69, LP63, LP11,
and LP12. It is difficult for us to judge whether six clusters are unbalancing or other
four clusters are clear outliers.
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Fig. 3.24 Ward cluster of transposed signal data made by 56 LpDSs using 56 SMs

Figure 3.25 is the PCA result of transposed data. Scatter plot shows the four
outliers among 56 LPs. The 40 tumor cases are almost in the first quadrant, and the
22 normal cases are in the third quadrant.
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Fig. 3.25 PCA plots of transposed data

Table 3.9 shows the factor loading plot. The “Row” shows 22 normal subjects from
N1 to N22 and 40 cancer patients from C1 to C40. “Prin1 and Prin2” are the first and
second factor loading values which are correlations of 62 patients with Prin1 and
Prin2. “Mark” is a marker corresponding to five groups of 62 patients corresponding
to Fig. 3.26.

Table 3.9 Factor loading plot

Row Prin1 Prin2 Mark

N1 0.104 −0.388 −2

N2 0.030 −0.372 −2

N3 0.103 −0.017 0

N4 −0.995 0.024 −1

N5 −0.988 0.031 −1

N6 0.084 0.122 0

N7 −0.994 0.010 −1

N8 0.050 0.065 0

N9 −0.978 0.027 −1

N10 0.001 −0.397 −2

N11 0.094 −0.543 −2

N12 0.078 0.069 0

N13 −0.990 −0.014 −1

N14 0.044 −0.052 0

N15 0.054 −0.173 −2

N16 0.094 −0.622 −2

N17 0.061 −0.335 −2

(continued)
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Table 3.9 (continued)

Row Prin1 Prin2 Mark

N18 0.028 0.043 0

N19 −0.864 0.013 −1

N20 0.031 −0.076 0

N21 0.097 0.170 0

N22 0.068 −0.250 −2

C1 −0.061 −0.021 0

C2 −0.066 −0.004 0

C3 −0.060 0.573 2

C4 −0.074 0.693 2

C5 −0.071 0.038 0

C6 −0.106 0.247 0

C7 −0.108 0.095 0

C8 −0.074 0.347 2

C9 −0.098 0.096 0

C10 −0.078 −0.014 0

C11 −0.081 0.047 0

C12 −0.058 −0.036 0

C13 −0.091 0.365 2

C14 −0.093 0.710 2

C15 0.875 0.252

C16 −0.219 −0.287

C17 −0.114 0.753 2

C18 −0.104 0.634 2

C19 0.762 0.310

C20 −0.068 0.682 2

C21 0.995 0.030 1

C22 −0.157 0.027 0

C23 0.509 0.560

C24 0.984 0.016 1

C25 −0.100 0.641 2

C26 −0.125 0.169 0

C27 −0.080 0.752 2

C28 −0.104 −0.061 0

(continued)
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Table 3.9 (continued)

Row Prin1 Prin2 Mark

C29 0.990 0.032 1

C30 −0.024 0.251 0

C31 0.996 −0.004 1

C32 −0.123 0.094 0

C33 −0.052 −0.052 0

C34 0.990 0.006 1

C35 0.996 −0.021 1

C36 0.000 0.000 0

C37 −0.063 0.218 0

C38 −0.176 −0.072 0

C39 −0.078 −0.048 0

C40 0.983 0.013

Mark “1” (Prin1> 0.98, |Prin2|< 0.03) corresponds to the right rectangle contain-
ing six cancer patients such as c21 c24, c29, c31, c34, and c35. They correspond to
LP56 in scatter plot. LP56 is considered to be outliers in these six cancer patients.
On the other hand, “−1” (Prin1< −0.97, |Prin2|< 0.03) corresponds to a left rect-
angle containing six normal subjects such as N4, N5, N7, N9, N13, and N19. They
are probably patients to contrast with six cancer patients corresponding to LP56 in
scatter plot. Mark “2” ( |Prin1| < 0.2, Prin2 > 0.3) corresponds to the upper rectangle
containing 12 cancer patients such as c3, c4, c8, c13, c14, c17, c18, c20, c25, c27, c30,
and c37. Those correspond to LP55 and Lp27 in scatter plot. Both LpDSs are consid-
ered to be outliers in these 12 cancer patients. On the other hand, “−2” (|Prin1| < 0.2,
Prin2 < − 0.2) corresponds to a bottom rectangle containing eight normal subjects
such as N1, N2, N10, N11, N15, N16, N17, and N22. They are probably patients
to contrast with 12 cancer patients corresponding to both LpDSs in scatter plot.
Mark “0” ( |Prin1| < 0.2, |Prin2| < 0.6) corresponds to the mid-rectangle containing
eight normal subjects and 19 cancer patients.

Thus, we expect medical specialists will evaluate these results because our results
suggest there are two different types of outliers very easy. Now, it is difficult for us
to explain the role of c15, c19, c23, and c16.
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Fig. 3.26 Five groups of 62 patients

3.5.3 Signal Data Made by 56 HsvmDSs Using 56 SMs
Found by RIP

(1) Ward Cluster

Figure 3.27 is the result of HsvmDSs signal data using 56 SMs discovered by RIP.
Although Ward cluster cannot separate 56 SMs into two classes clearly, H-SVM can
divide the signal data into two clusters. The upper green part is 22 normal cases, and
lower white and red part is 40 tumor patients. We have designated five clusters here,
and Ward cluster divides the tumor into four clusters. The color and symbol separate
five clusters.

If we divide the variable dendrogram into nine clusters, those consist of 11, 12,
13, 2, 1, 8, 1, 7, and 1 HsvmDSs, respectively. Because HSVM22 and HSVM23
become the first cluster, its correlation is r � 0.9035.
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Fig. 3.27 Ward cluster result of signal data made by 56 HsvmDSs using SMs

(2) PCA Results

Figure 3.28 is the result of subjects with colors and marks. The scatter plot shows
22 normal cases locate on the negative Prin1 axis, and 40 tumor patients look like
a fan that consists of four clusters in the first quadrant. The green cluster is a mild
tumor. Blue patients are in the first and fourth quadrants. Pale green patients in the
first quadrant are the severe tumor. The factor loading plot shows the HSVM56 is a
clear outlier. The fifth and sixth columns of Table 3.7 are the identification number
(Class) and the Prin1 value.
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Fig. 3.28 Result of PCA with colors and marks

(3) Analysis of Transposed Signal data

Figure 3.29 is theWard cluster of transposed signal data made by 56 HsvmDSs using
56 SMs. If we choose six clusters, the 47 HSVMs are one large cluster. Next, after
five HSVMs become one cluster, it becomes one cluster with the first 45 HSVMs.
Finally, the four HSVMs of HSVM15, HSVM18, HSVM20, and HSVM 24 are
merged sequentially into one cluster. Regardless of theWard method, it has the same
characteristics as the nearest neighbor method.
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Fig. 3.29 Ward cluster of transposed signal data made by 56 HsvmDSs using 56 SMs

Figure 3.30 is the PCA result of transposed data. Scatter plot shows the four
outliers among 56 HSVMs. The factor loading plot shows that the 40 tumor cases
are in the first and fourth quadrants, and the 22 normal cases are in the second and
third quadrants.
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Fig. 3.30 PCA plots of transposed data

Table 3.10 shows the factor loading plot. The “row” shows 22 normal subjects
from N1 to N22 and 40 cancer patients from C1 to C40. “Prin1 and Prin2” are the
first- and second-factor loading values which are correlations of 62 patients with
Prin1 and Prin2. “Mark” is a marker corresponding to five groups of 62 patients
corresponding to Fig. 3.31.

Table 3.10 Factor loading plot

Row Prin1 Prin2 Mark

N1 0.133 −0.309 −2

N2 0.093 −0.444 −2

N3 0.135 −0.251 −2

N4 −0.994 −0.075 −1

N5 −0.993 −0.057 −1

N6 0.055 0.094 0

N7 −0.987 −0.092 −1

N8 0.058 0.025 0

N9 −0.923 −0.113 −1

N10 −0.986 −0.111 −1

N11 0.092 0.033 0

N12 0.056 0.135 0

N13 −0.996 −0.048 −1

N14 0.071 0.159 0

N15 0.085 0.125 0

N16 0.096 −0.221 −2

N17 0.081 −0.301 −2

(continued)
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Table 3.10 (continued)

Row Prin1 Prin2 Mark

N18 0.026 0.040 0

N19 −0.937 −0.153 −1

N20 0.022 0.018 0

N21 0.106 −0.006 0

N22 0.056 −0.072 0

C1 −0.118 0.626 2

C2 −0.083 0.407 2

C3 −0.088 0.292 2

C4 −0.114 0.359 2

C5 −0.109 0.428 2

C6 −0.169 0.533 2

C7 −0.119 0.028 0

C8 −0.058 0.100 0

C9 −0.102 −0.151 −2

C10 −0.119 −0.274 −2

C11 −0.125 0.665 2

C12 −0.067 −0.099 0

C13 −0.128 0.157 0

C14 −0.163 0.418 2

C15 0.938 0.164 1

C16 −0.234 0.500 2

C17 −0.199 0.739 2

C18 −0.170 0.395 2

C19 0.283 0.187 0

C20 −0.176 0.440 2

C21 0.995 0.074 1

C22 −0.164 0.311 2

C23 0.980 0.172 1

C24 0.991 0.090 1

C25 −0.132 0.599 2

C26 −0.184 0.590 2

C27 −0.125 −0.006 0

C28 −0.102 −0.038 0

C29 0.990 0.105 1

C30 0.365 −0.407 −2

C31 0.997 0.053 1

C32 −0.157 0.467 2

(continued)
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Table 3.10 (continued)

Row Prin1 Prin2 Mark

C33 −0.056 0.520 2

C34 0.988 0.036 1

C35 0.995 0.069 1

C36 −0.001 −0.150 −2

C37 −0.039 −0.232 −2

C38 −0.183 0.203 0

C39 −0.125 0.312 2

C40 0.986 0.099 1

Mark “1” (Prin1> 0.92, 0< Prin2< 0.02) corresponds to the right rectangle
containing nine cancer patients such as c15, c21, c23 c24, c29, c31, c34, c35,
and c40. They correspond to HSVM224 (HsvmDS224) in Fig. 3.30. It affects
these nine cancer patients. On the other hand, “−1” (Prin1< −0.92, −0.12<
Prin2 < −0.04) corresponds to a left rectangle containing seven normal subjects
such as N4, N5, N7, N9, N10, N13, and N19. They are probably patients to
contrast with nine cancer patients corresponding to HsvmDS224 in Fig. 3.30. Mark
“2” ( −0.25 < Prin1 < −0.05, Prin2 > 0.3) corresponds to the upper rectangle con-
taining 18 cancer patients such as c1–c6, c11, c14, c16-c18, c20, c22, c25, c26, c32,
c33 and c39. HSVM220, HSVM218 and HSVM215 may affect these 18 patients.
On the other hand, “−2” (|Prin1| < 0.36, −0.45 < Prin2 < −0.1) corresponds to
a bottom rectangle containing six normal subjects such as N1–N3, N16, N17 and
N22 in addition to seven cancer patients such as c9, c10, c12, c30, c36, and c37.
They are probably patients to contrast with 18 cancer patients corresponding to three
HsvmDSs in scatter plot. Mark “0” ( |Prin1| < 0.3, |Prin2| < 0.2) corresponds to the
mid-rectangle containing nine normal subjects and seven cancer patients. Thus, we
expect a medical expert will evaluate these results because our results suggest there
are two different types of outliers.
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Fig. 3.31 Five groups of 62 patients

3.6 Conclusion

In this chapter, we try innovations beyond Chaps. 1 and 2.
Early 2016, we found Revised LP-OLDF of LINGO Program3 could decompose

sixmicroarrays intomany SMs as same as RIP, and three SVMs could not decompose
the microarrays into SMs. However, we did not survey the cancer gene analysis and
diagnosis of Revised LP-OLDF until now for the following reasons:

(1) Revised LP-OLDF is weak for Problem1 and tends to collect several cases on
the discriminant hyperplane. We do not trust the NM of Revised LP-OLDF as
same as other discriminant functions.

(2) Now, we find Revised LP-OLDF can discover many SMs because LP finds one
of the endpoints (vertexes) made by at most n constraints of feasible region of
microarrays. Thus, we evaluate 39 SMs obtained by Revised LP-OLDF as same
as 56 SMs obtained by a RIP in this Chapter.

Next, we propose how to choose the proper numbers of SM and obtain different
combinations of SMs found by the RIP and Revised LP-OLDF.

Third, because two classes are separable in each SM, we misunderstand genes
included in each SM is the cancer genes and signal. However, statistical methods
could not find the linear separable facts at all, except for three LDFs such as RIP,
Revised LP-OLDF, and H-SVM. Thus, we reconsider signal data made by three
LDFs are signal.

Fourth, we develop how to analyze all signal data by the PCA and the hierarchical
cluster analysis and propose the cancer gene diagnosis.
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Although the medical specialists must evaluate these results, our research is a
milestone to open the cancer gene diagnosis using microarrays. The statistical dis-
criminant functions are useless for cancer gene analysis. On the other hand, the
proper discriminant functions easily open the new frontier for a human being.
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Chapter 4
Further Examinations of SMs—Defect
of Revised LP-OLDF and Correlations
of Genes

Abstract In this chapter, we analyze Alon’s microarray in 2018 and obtain two
SMs from the RIP and Revised LP-OLDF. In Sect. 4.2, RIP separates the microarray
into a union of 62 SMs (1,968 genes). Six MP-based LDFs find this subspace is
LSD and a noise subspace (32 genes) is not LSD. In Sect. 4.3, Revised LP-OLDF
separates the microarray into a union of 32 SMs (1,005 genes) and a noise subspace
(995 genes). Six MP-based LDFs find both subspaces are LSD. This fact suggests
us that a noise subspace includes other SMs in it. We find Revised LP-OLDF cannot
find all SMs from the microarray correctly. We guess Problem1 causes the defect of
Revised LP-OLDF. Namely, Revised LP-OLDF cannot find other SMs from noise
subspace. Section 4.4 analyzes 62 SMs found by the RIP and evaluates 62 SMs by
RatioSV and NM. Moreover, the 1,891 correlations of 62 RIP discriminant scores
(RipDSs) are computed. At first, we consider each gene set included in SM is cancer
genes and a signal subspace. However, standard statistical methods cannot show the
linear separable facts. Thus, we conclude that the gene sets included in all SMs are
not signals. We recognize the data made by RipDSs is signal data. Two signal data
of SM13 with maximum RatioSV and SM62 with minimum RatioSV are validated.
Section 4.5 analyzes two signal data made by RipDSs and HsvmDSs obtained by
62 SMs of the RIP. The results are almost the same in Chaps. 2 and 3. However,
these findings can open a new field of cancer gene diagnosis only after verification
of the subjects used in the study of Alon et al. (Proc Natl Acad Sci USA, 96(1.1):
6745–6750 1999). Section 4.6 explains the reason why standard statistical methods
could not find the linear separable facts. Section 4.9 is the conclusion.

Keywords Alon’s microarray · Small matryoshka (SM) · Defect of SMs by
Revised LP-OLDF · RIP discriminant scores (RipDSs) · Signal data · T-test of two
classes · Correlations of genes · Structure of cancer genes
4.1 Introduction

Chapter 1 outlined the new theory of discriminant analysis after R. Fisher
(the Theory) and explained the first success of cancer gene analysis (Shinmura 2016).
Also, we explained why Revised IP-OLDF (RIP) and Revised LP-OLDF solved
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unresolved cancer gene analysis (Problem5).We explain the reason why only the lin-
ear programming (LP) and the integer programming (IP) could decompose microar-
rays intomanySMs (signal). However, theH-SVMcould not find SmallMatryoshkas
(SMs) because the quadratic programming (QP) find only one optimal solution for
the whole region. Moreover, we explain the reason why many researchers could not
solve Problem5 because other statistical discriminant functions such as Fisher’s LDF
(Fisher 1956) and the quadratic discriminant function (QDF) were useless for cancer
gene analysis at all from 1970. Chapter 2 outlined the cancer gene diagnosis using
all SMs of six microarrays found by the RIP in 2016. Chapter 3 outlined that RIP
and Revised LP-OLDF discriminate Alon’s microarray by changing the iteration
number of LINGO Program3 from one to 20. Revised LP-OLDF chooses 39 SMs
(992 genes) and RIP chooses 56 SMs (1,999 genes) in 2017. We evaluate both SMs
and describe how to analyze all SMs by the combination of the cluster analysis and
PCA.

In this chapter, we analyze Alon’s microarray in 2018 and obtain two different
sets of SMs from the RIP and Revised LP-OLDF. In Sect. 4.2, RIP finds a union of
62 SMs (1,968 genes). Six MP-based LDFs find this subspace is LSD and a noise
subspace (32 genes) is not LSD.H-SVMcauses a computational error because a noise
subspace is not LSD. Other five NMs of the noise subspace are over one. In Sect. 4.3,
Revised LP-OLDF separates the microarray into a union of 32 SMs (1,005 genes)
and a noise subspace (995 genes). Six MP-based LDFs find both subspaces are LSD.
This fact suggests to us that a noise subspace is LSD and includes other SMs in it. We
guess Problem1 causes the defect of Revised LP-OLDF. Namely, Revised LP-OLDF
cannot find other SMs from the noise subspace. Section 4.4 analyzes 62 SMs found by
the RIP and evaluates 62 SMs by RatioSV and NM.Moreover, the 1,891 correlations
of 62RIP discriminant scores (RipDSs) are computed. At first, we consider each gene
set included inSMis cancer genes and a signal subspace.However, standard statistical
methods cannot show the linear separable facts. Thus, we conclude that the new data
made by RipDSs are signals themselves. Two signal data of SM13 with maximum
RatioSV and SM62 with minimum RatioSV are validated. Section 4.5 analyzes two
signal data made by RipDSs and HsvmDSs using 62 SMs of the RIP. The results are
almost the same in Chaps. 2 and 3. However, these findings can open a new field of
cancer gene diagnosis only after verification of the subjects used in the study of Alon
et al. Sect. 4.6 explains the reason why standard statistical methods could not find the
linear separable facts. Because the fluctuation of RipDS is embedded in the scatter
plot made by the Prin1 and Prin2, we can understand our claim visually. Section 4.9
is the conclusion.
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4.2 Detail Survey of Signal and Noise Subspaces Found
by RIP

Method2 and RIP can decompose the Alon’s microarray (1999) into many SM and
noise subspace. In addition to RIP, Revised LP-OLDF and H-SVM, logistic regres-
sion confirmed that all SMs were LSD. However, we ignored to examine the noise
subspace and did not confirm that the MNM of the noise subspace is greater than
zero. In this section, MNM and RatioSV evaluate the signal subspace (the union of
all SMs) and the noise subspace.

4.2.1 Confirmation of Signal and Noise Subspaces Found
by RIP

LINDO Systems Inc. releases LINGO ver.18 in 2018 that enhances the algorithm
of IP (Schrage 2006). RIP of LINGO Program3 (ver.18) separates the microarray
into a signal subspace (1,968 genes) and noise subspace (32 genes). Table 4.1 shows
the discriminant results of six MP-based LDFs in the microarray dataset, signal,
and noise subspaces. Three values are as follows: (1) “yi * f(xi) > 0” is the number
of correctly classified subjects. (2) “yi * f(xi) � 0” is the number of subjects on the
discriminant hyperplane. (3) “yi * f(xi) < 0” is the number ofmisclassifications (NM).
Because the microarray and signal spaces are LSD (MNM� 0), six MP-based LDFs
can discriminate two classes correctly. On the other hand, because noise subspace is
not LSD, H-SVM cannot discriminate noise subspace because of computation error.
Moreover, five NMs of each LDF are over one shown in the column “yi * f(xi) <
0.” Until now, because we believed LINGO Program3 worked correctly, we never
confirmed these facts. We must be aware of the NMs of noise subspace with 32
genes. The NM of SVM1 is 7. The NMs of Revised IPLP-OLDF and SVM4 are 4.
The NMs of RIP and Revised IPLP-OLDF are 1.
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4.2.2 Detail Survey of Signal and Noise Subspaces Found
by RIP

By analyzing 62 SMs by RIP, we propose the 62 malignant indicators by RipDSs and
make the new data that consists of 62 subjects (cases) and 62 RipDSs (variables).
In this section, we survey the detail of six DSs of the microarrays, signal and noise
subspaces. Table 4.2 is a survey using six MP-based LDFs. The first column shows
the sequential number of subjects. The 22 normal subjects are from 1 to 22, and 40
cancer subjects are from 23 to 62. First six columns from the second column to the
seventh column are six DSs (yi * f(xi)) for the microarray. The second six columns
from the eighth column to 13th column are six DSs (yi * f(xi)) for a signal subspace.
The last five columns from 14th column to 18th column are five DSs (yi * f(xi)) for
noise subspace. The third row is 17 RatioSVs of six LDFs for the microarray, signal
and noise subspaces. In the fourth row, we propose the new statistics (Out/NM) as
follows. The subjects on the SVs are closest to each other with a distance of 2 and are
the central existence of the two classes. On the other hand, we think other subjects
are outliers and have different personality features. In other words, in the high-
dimensional gene space, the cores of the two groups that have only small variations
are fixed to two SVs, and the typical cases are considered to be outliers. If physicians
examine the difference, we expect they find the new facts. In row “Out/NM,” the
first 12 columns show the 12 outliers and the last five columns show 5 NMs of noise
subspace. We explain the meaning of RIP’s outlier “0/1” by the signal columns. That
implies the 22 normal subjects lie on SV � −1 and 39 cancer subjects lie on SV �
1. Thus, the 32nd cancer patient is an outlier. Its RipDS is 3.2. Signal fluctuation is
much smaller than noise. In the signal space, the value of 3.2 seems to be large, but it
is a small change in the fluctuation of the microarray. PCA or cluster analysis cannot
successfully detect small differences in signal space. When the RIP discriminates
signal subspace, the 20 normal subjects take the values −1, 39 tumor patients take
the values 1 and one tumor patient is the value 3.2. The range becomes [−1, 3.2]. In
the row “Out/NM” of the signal, RIP column shows “0/1.” It seems that the “0/1” of
RipDS is abnormal if we consider RIP’s result alone. However, the other five outliers
are 5/11, 6/15, 3/20, 5/37 and 4/24. To catch several cases on two SVs cause these
different results. In the five columns of the noise subspace, the status “1 and 0” of
RIP means the only 18th normal subject is misclassified, and all cancer subjects are
classified. Thus, five NMs are 1 (0 and 1), 4 (1 and 3), 1 (1 and 0), 4 (1 and 3) and 7
(3 and 4), respectively.

Future Works: By examination of the outlier in the signal subspace, physicians
may find new facts. Moreover, this table shows the reason why standard statistical
methods cannot show the linear separable facts. Only six LDFs can separate two
classes. However, because the ranges of DSs are a minute variation compared to
the variation of the data in the microarray, PCA and cluster analysis cannot find the
linear separable fact.
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4.2.3 Basic Structure of Six Microarrays

Table 4.2 tells us the basic structure of six microarrays. Subjects of two classes
are separate in the microarray (2,000 genes) and a signal subspace (1,986 genes)
entirely. RIP gathers all normal subjects on SV � −1 and 39 cancer subjects on
SV � 1. Aoshima and Yata (2017) pointed out two classes locate on two balls in
high-dimensional gene space, also.We guess their balls correspond to two SVs. If so,
two different approaches found the same results that microarrays are LSD.Moreover,
the first eigenvalue is large because two classes are almost on the Prin1 and two balls
are on the Prin1. Because they found their results using high-dimensional PCA, they
cannot find that one cancer subject is an outlier. Moreover, their approach does not
decompose the microarrays into many SMs and the noise subspace. SM is more
valuable than the microarrays for cancer gene diagnosis.

4.3 Detail Survey of Signal and Noise Subspaces Found
by Revised LP-OLDF

RIP can decompose the microarray into many SMs and noise subspace. Revised
LP-OLDF can decompose the microarray into signal and noise subspaces as same
as RIP, also. However, because Revised LP-OLDF often gathered subjects on the
discriminant hyperplane by the discrimination of overlapping data, and NM is not
reliable (Problem1), we have analyzed only SM of RIP until now. In this chapter,
we investigate the possibility of SMs obtained by Revised LP-OLDF in addition to
RIP’s SMs.

4.3.1 Confirmation of Signal and Noise Subspaces Found
by Revised LP-OLDF

Revised LP-OLDF of LINGO Program3 can separate Alon’s microarray into the
union of 32 SMs (1,005 genes) and noise subspace (995 genes). Table 4.3 shows
three results of six MP-based LDFs in the microarray, signal and noise subspaces.
Because the microarray and signal subspaces are LSD, six LDFs can discriminate
those correctly. However, noise subspace is LSD, also. These results indicate Revised
LP-OLDF cannot find other SMs included in the noise subspace.We guess Problem1
causes this defect. Because H-SVM discriminates the noise subspace correctly, this
fact shows the noise subspace is LSD, also.
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4.3.2 Detail Survey of Signal and Noise Subspaces Separated
by Revised LP-OLDF

Table 4.4 shows results using sixLDFs. Thefirst column shows the sequential number
of 62 subjects. The third row is 18 RatioSVs by six LDFs for the microarray, signal
and noise subspaces. Row “Outlier” shows the status of 18 outliers because the noise
subspace is LSD. The “RatioSV andOutlier” of RIP in the signal subspace are 14.1%
and 8/27. RIP becomes almost the same results of other five LDFs. On the other hand,
those in Table 4.2 are 47.8% and 0/1. Thus, two signals of RIP andRevised LP-OLDF
may have different characteristics.
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4.4 Analysis of 62 SMs Found by RIP

4.4.1 Examination of RatioSV and NM

Table 4.5 shows the result of 62 SMs. “SM and Gene” columns are the sequential
number of 62 SMs and the number of genes included in each SM. Last four rows are
elementary statistics. The largest SM contains 44 genes, and minimum SM contains
24 genes. The average is about 32 genes. It is an important fact that the maximum
gene is less than the case number (62) because Method2 find the number of nonzero
coefficients less than 62 at the first step. That is, RIP and Revised LP-OLDF are
irrelevant to the curse of dimensionality. Moreover, those can separate the signal and
noise subspaces naturally. Next six columns are RatioSVs of six MP-based LDFs.
RatioSV is the proper statistic for LSD-discrimination, and its values become large
for overlapping data and are not reliable. In this book, we calculate the RatioSVs of
SVM4 and SVM1. There are 36 underlined RatioSVs of SVM1 those are over the
maximum values because those SVM1 sometimes cannot discriminate these SMs
correctly. “Max and Min” columns are the maximum and minimum RatioSV of RIP,
LP, IPLP, and H-SVM because SVM4 and SVM1 are often overlapping. Because
H-SVMmaximizes the SV distance, it takes themaximum value 47 among six LDFs.
“Max and Min” columns are the maximum and minimum values of four LDFs. The
ranges of “Max and Min” columns are [3.81, 31.22] and [3.3, 21.74], respectively.
Notably, 61 maximum values are over 8.01%. This truth means the discrimina-
tion of the two classes is apparent in 61 SMs. Last two columns are two NMs of
SVM1 and Fisher’s LDF (LDF2). SVM1 discriminates 25 SMs, and LDF2 discrimi-
nates 22 SMs correctly. Because all NMs of logistic regression, SVM4 and QDF are
zero, we omit three columns from the table. These truths are very critical. RIP and
H-SVM discriminate six microarrays and all SMs theoretically. Revised LP-OLDF
and Revised IPLP-OLDF discriminate six microarrays and all SMs empirically.
Logistic regression discriminates all SMs empirically. SVM4andQDFoften discrim-
inate many SMs empirically. However, cluster analysis, PCA, one-way ANOVA and
t-tests cannot show the linearly separable facts of all SMs. Thus, although statistical
discriminant functions are useless for Problem5, those are better than other statistical
methods. Furthermore, only RIP can decompose microarrays and other ordinary data
into SMs and BGSs correctly. Although Revised LP-OLDF decompose microarrays
into SMs, it cannot find all SMs correctly. SVMs cannot decompose microarrays
into SMs. However, statistical methods are useful for cancer gene diagnosis if those
analyze signal data such as RipDSs, LpDSs and HsvmDS using SMs found by RIP.
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Table 4.5 RatioSVs and NMs of 62 SMs

SM Gene RIP LP IPLP HSVM SVM4 SVM1 Max Min SVM1 LDF2

1 28 22.53 22.24 20.99 26.1 25.92 26.1 26.1 20.99 0 0

2 31 27.08 23.05 14.93 25.42 24.13 25.42 27.08 14.93 0 1

3 30 17.13 19.23 17.15 20.89 20.81 20.89 20.89 17.13 0 0

4 25 11.85 14.33 16.09 18.87 18.88 23.98 18.87 11.85 1 2

5 29 24.68 25.87 17.05 27.47 26.63 27.47 27.47 17.05 0 0

6 35 20.52 11.46 12.26 18.91 18.58 18.91 20.52 11.46 0 1

7 31 21.74 22.66 23.06 25.33 24.75 25.33 25.33 21.74 0 0

8 31 17.36 20.1 10.48 18.93 18.88 18.93 20.1 10.48 0 0

9 31 14.61 16.29 7.18 17.37 17.4 19.65 17.37 7.18 0 0

10 29 22.82 27.38 12.02 23.7 23.64 23.7 27.38 12.02 0 0

11 31 16.78 20.06 17.62 23.9 23.78 23.9 23.9 16.78 0 0

12 26 16.2 15.28 15.03 22.77 22.72 22.77 22.77 15.03 0 0

13 37 29.03 21.98 21.15 31.22 30.03 31.22 31.22 21.15 0 0

14 27 11.47 12.31 9.16 12.98 12.88 21.55 12.98 9.16 1 3

15 27 27.63 11.91 15.78 17.32 17.2 22.82 27.63 11.91 1 0

16 25 14.16 14.1 15 16.59 16.59 16.56 16.59 14.1 1 1

17 35 23.98 21.21 13.63 23.78 23.77 23.78 23.98 13.63 0 0

18 24 9.45 15.95 15.2 16.8 16.74 21.53 16.8 9.45 1 2

19 32 12.5 13.14 15.74 17.12 17.11 20.47 17.12 12.5 1 2

20 37 24.68 21.33 13.9 28.85 28.43 28.85 28.85 13.9 0 0

21 27 14.71 15.45 12.27 15.04 14.98 18.94 15.45 12.27 0 2

22 31 18.57 16.57 13.12 19.93 19.91 26.45 19.93 13.12 0 2

23 29 18.56 16.53 21.01 18.29 18.31 22.27 21.01 16.53 0 1

24 26 19.1 18.52 15.96 18.55 18.55 20.46 19.1 15.96 0 2

25 31 21.75 20.81 21.68 24.58 24.7 25.71 24.58 20.81 0 0

26 25 13.67 13.83 12.97 14.79 14.76 24.18 14.79 12.97 1 2

27 29 22.02 10.74 16.02 26.04 26.1 32.88 26.04 10.74 0 0

28 33 18.61 17.28 14.62 21.88 21.7 29.19 21.88 14.62 1 0

29 29 23.29 17.43 25.38 26.98 26.58 26.86 26.98 17.43 0 0

30 36 22.07 18.24 20.58 25.98 26.27 25.99 25.98 18.24 1 0

31 31 12.21 12.98 13.29 17.5 17.57 23.18 17.5 12.21 1 2

32 30 12.12 17.34 12.41 15.31 15.26 23.24 17.34 12.12 2 3

33 31 15.7 15.48 6.3 17.4 17.4 24.05 17.4 6.3 1 2

34 38 24.37 21.26 22.46 29.6 29.6 29.83 29.6 21.26 0 0

(continued)
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Table 4.5 (continued)

35 31 22.04 19.33 21.67 20.25 20.19 24.23 22.04 19.33 1 0

36 31 16.95 10.7 10.75 17.01 16.98 20.04 17.01 10.7 0 2

37 31 11.52 9.52 12.61 15.2 15.32 29.3 15.2 9.52 2 2

38 28 12.44 15.44 9.29 20.38 20.25 27 20.38 9.29 3 1

39 29 11.66 14.87 15.76 20.67 20.68 28 20.67 11.66 3 3

40 27 17.52 16.38 16.07 19.69 19.68 25.68 19.69 16.07 1 1

41 32 11.93 9.77 10.57 14.03 14.03 22.25 14.03 9.77 2 5

42 32 18.98 19.06 13.19 25.31 25.26 29.2 25.31 13.19 1 0

43 32 14.24 17.42 12.93 18.56 18.48 19.77 18.56 12.93 1 1

44 28 18.76 16.13 9.48 19.06 19.01 21.45 19.06 9.48 1 1

45 32 9.48 11.03 8.27 12.16 12.12 19.91 12.16 8.27 3 3

46 32 13.89 12.48 11.64 18.65 18.63 26.57 18.65 11.64 2 2

47 30 14.83 14.78 10.17 19.63 19.52 24.94 19.63 10.17 0 2

48 32 11.78 10.76 9.66 13.46 13.47 18.76 13.46 9.66 2 2

49 40 20.95 19.57 15.64 23.73 23.51 24.35 23.73 15.64 0 0

50 38 18.32 11.09 14.26 21.47 21.47 28.3 21.47 11.09 2 0

51 38 12.27 6.51 11.08 13.08 13.08 26.69 13.08 6.51 4 3

52 33 11.36 12.45 11.59 11.85 11.84 21.72 12.45 11.36 3 1

53 31 6.74 6.31 7.53 8.35 8.35 25.05 8.35 6.31 4 6

54 36 17.1 15.57 15.53 16.44 16.47 35.18 17.1 15.53 4 2

55 38 13.02 11.2 12.98 14.58 14.55 28.17 14.58 11.2 3 4

56 31 4.43 3.99 3.53 4.66 4.66 25.29 4.66 3.53 5 6

57 35 6.78 6.76 5.52 6.34 6.34 32.29 6.78 5.52 5 4

58 36 7.03 7.26 4.87 9.66 9.67 34.6 9.66 4.87 5 6

59 37 6.41 5.38 6.69 6.83 6.83 38.48 6.83 5.38 4 4

60 39 6.83 9.76 7.5 8.55 8.53 36.14 9.76 6.83 6 5

61 44 6.93 4.5 7.87 8.01 8.01 44.51 8.01 4.5 6 4

62 38 3.3 3.62 3.44 3.81 3.81 36.92 3.81 3.3 5 5

MAX 44 29.03 27.38 25.38 31.22 30.03 44.51 31.22 21.74 6 6

MIN 24 3.3 3.62 3.44 3.81 3.81 16.56 3.81 3.3 0 0

Mean 31.74 15.97 14.90 13.41 18.35 18.25 25.68 18.82 12.26 1.47 1.66 

SUM 1968

SM Gene RIP LP IPLP HSVM SVM4 SVM1 Max Min SVM1 LDF2
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4.4.2 Correlations of 62 RipDSs

Table 4.6 shows 1,891 pairs of correlations (abbreviate R) of 62 RipDSs sorted in
descending order by R. The top ten pairs are high correlations, and the lower ten pairs
are lower correlations. Of the ten pairs taking values of R � 0.841 to R � 0.865,
five pairs of RIP13 and (RIP30, RIP17, RIP33, RIP7, RIP34) are 0.845 or more.
Because these five pairs are expected to be the core of the discrimination between
two classes, we analyze mainly these pairs in this study. On the other hand, the ten
lower pairs have correlations of 0.332~0.389, and the six pairs of RIP61 and (RIP21,
RIP48, RIP28, RIP62, RIP55, RIP60) have low correlation with each other.

Golub et al. (1999) said they were studying class prediction to discover new
cancer classes and assign tumors to known classes from 1970. Because it is difficult
to rely on traditional biological insights to classify cancers in a non-systematic and
biased approach, they tried to classify cancers by co-expression levels of thousands of
genes using microarrays. They developed a more systematic approach to cancer and
began to discover cancer variants. After the weighted voting method selects genes
as candidates, SOM divides two classes, and LOO evaluates the predicted results.
However, by examining six pairs with 62 RipDSs with correlations as small as 0.389
or less, it is possible to expect the possibility of finding subspecies in addition to
outliers found by PCA analysis of new data.

Table 4.6 1,891 pairs of correlations of 62 RIPs DSs (RIP13 is an abbreviation of 13th RipDS)

Variable Versus
variable

Correlation Frequency Lower
95%

Upper
95%

p-value

1 RIP7 RIP2 0.865 62 0.784 0.917 1.34E−19

2 RIP30 RIP13 0.853 62 0.767 0.909 1.31E−18

3 RIP17 RIP13 0.850 62 0.762 0.907 2.52E−18

4 RIP26 RIP23 0.847 62 0.758 0.906 3.81E−18

5 RIP33 RIP13 0.845 62 0.755 0.904 5.54E−18

6 RIP13 RIP7 0.845 62 0.755 0.904 5.59E−18

7 RIP29 RIP4 0.845 62 0.755 0.904 5.67E−18

8 RIP34 RIP13 0.845 62 0.754 0.904 5.94E−18

9 RIP15 RIP1 0.844 62 0.753 0.903 6.79E−18

10 RIP38 RIP23 0.841 62 0.748 0.901 1.26E−17

– – – – – – – –

1882 RIP61 RIP21 0.389 62 0.154 0.582 0.001785

(continued)
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Table 4.6 (continued)

Variable Versus
variable

Correlation Frequency Lower
95%

Upper
95%

p-value

1883 RIP61 RIP48 0.387 62 0.152 0.581 0.001893

1884 RIP60 RIP43 0.375 62 0.138 0.571 0.002689

1885 RIP61 RIP28 0.375 62 0.138 0.571 0.002691

1886 RIP57 RIP55 0.374 62 0.137 0.571 0.002725

1887 RIP62 RIP11 0.362 62 0.124 0.561 0.003796

1888 RIP62 RIP61 0.347 62 0.106 0.549 0.005784

1889 RIP61 RIP55 0.340 62 0.099 0.544 0.00678

1890 RIP61 RIP60 0.334 62 0.092 0.539 0.007998

1891 RIP62 RIP56 0.332 62 0.089 0.537 0.008464

Figure 4.1 shows the correlation matrix of the six RipDSs. RIP13 has a high
correlation with (RIP30, RIP17, RIP61) and has a low correlation with (RIP55,
RIP60). All discriminant scores are SV ≤ −1 or SV ≥ 1. The scatter plot does not
explain the useful facts.

Fig. 4.1 Correlation matrix of 62 RipDSs (RIP13 is an abbreviation for 13th RipDS)
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Figure 4.2 shows the distribution of 1,891 correlations of 62 RipDSs. The corre-
lations widely vary from 0.331 to 0.864 and are a monomodal distribution with the
lower long skirt. Due to the diversity of cancer, the method of determining which
SM group is complementary to each other or a group representing different cancer
variants is a future research topic. From this distribution, all correlations are positive,
and the 75% point is r� 0.72531. That is, the correlations of 75% are 0.725 or more,
and there is no negative correlation. On the other hand, correlations of genes included
in SM take the positive, almost zero and negative values. Thus, we conclude the sig-
nal data is true signal and SM is not signal. From these results, the particular data
structure where positive correlations occupy a majority may have much influence on
cancer gene analysis.

Fig. 4.2 Distribution of
1,891 correlations of 62
RipDSs
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4.5 Validation of SM13 and SM62

4.5.1 RatioSVs and Outliers of SM13 and SM62

Table 4.7 focuses on SM13 and SM62 as a representative of all 62 SMs because two
SMs take the maximum and minimum RatioSVs. We compare the RatioSVs and the
number of outliers by the six LDFs. In the signal subspace of Table 4.2, there are
many cases on the SV.However, the proportion of cases on SVdramatically decreases
in SMs those are ordinary small samples. That is, this comparison indicates the
difference of discrimination in high-dimensional space and small samples in our
research.

The RatioSVs of the H-SVM take the maximum value among the four LDFs.
However, H-SVMs have many outliers and those fluctuate within a narrow range of
H-SVM. Aoshima and Yata indicate two classes distribute balls in high-dimensional
gene space. We consider two balls correspond to two SVs. Moreover, Method2
decomposes the microarrays into 62 SMs. All 62 SMs show genetic diversity. Fur-
thermore, it is consistent with common sense that the tumor subjects change mainly
than normal subjects. On the other hand, in SM62, five RatioSVs except for SVM1
are smaller than SM13. Although SVM1 discriminate SM13 correctly, SVM1 mis-
classifies five cases of SM62. Thus, RatioSV of SVM1 becomes 36.92 in SM62. The
reason why nobody recognizes such apparent results is as follows.

(1) Many researchers cannot find the fact that themicroarray is LSD (Fact3) because
the statistical discriminant functions cannot discriminate LSD (or MNM � 0)
correctly. In the microarrays, MNM of the signal subspace is zero and MNM of
the noise subspace is over one. This fact is totally unexpected and innovative.

(2) RIP and Revised LP-OLDF can decompose the microarray into many SMs
and H-SVM cannot find SMs (Fact4). Although statistical methods cannot sep-
arate two classes included in SM, RIP and Revised LP-OLDF can separate
two classes. Although many methods have been proposed to find oncogenes in
many studies, the evidence that they are oncogenes is ambiguous compared to
our results.

(3) The maximum value of RatioSVs for six microarrays exceeds 30%. The reason
why nobodyfinds such an obvious fact is thatwhen normal subjects become can-
cer, it completely separates from the normal class, but its variation is too small.
Because statistics assume that large variance is more meaningful than the
small variance, standard statistical methods could not detect small varia-
tion. Furthermore, microarrays have a particular structure having all positive
correlations. We explain our claim in later.

Check Subjects on SVs by RIP and H-SVM for SM13: RIP and H-SVM find the
eight normal subjects (1, 4, 6, 10, 15, 18, 20, 22) and 10 cancer subjects (24, 31,
33, 37, 47, 52, 55, 56, 57, 61) locate on SVs. If physicians examine the difference
between SV’s subjects and outliers, they may be able to find new facts for cancer
gene diagnosis.
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4.5.2 T-Tests of Mean’s Difference Between the Tumor
and Normal Subjects in SM13 and SM62

Table 4.8 shows t-tests of the difference of two means between the tumor and normal
subjects in SM13 andSM63. Some studieswere looking for geneswith larger t-values
as oncogenes. However, their approaches are mistakes. In SM13, we confirm the 5%
significance level if the t-value is 2.04 or the p-value is 0.0459. If we categorize 37
genes by t-values, we judge that the cancer averages of the top six genes are more
significant than the normal averages, and the cancer averages of the bottom seven
genes are smaller than normal averages. Both means of middle 24 genes are the
same by a 5% significance level. In SM62, the cancer averages of the top three genes
are more significant than the normal average, and the cancer averages of the bottom
two genes are smaller than normal. Both means of middle 33 genes are the same
by a 5% significance level. Each several genes of the upper six and three genes
with positive t-values are oncogenes. Each several genes of lower three and two
genes with negative t-values may be suppressor genes. Many researchers consider
the middle genes are irrelevant to the oncogenes because of no difference between
the two group’s mean. However, if we drop these genes, the remaining genes cannot
separate two classes. Thus, we conclude the following fact.

Fact5: The three categories of genes are necessary for cancer gene diagnosis, and the
t-test or Welch test is not useful for identifying oncogenes. Many SMs show almost
the same results.

Table 4.8 T-test of 37 genes
of SM13 and 38 genes of
SMS63

SM13 (37genes) SM62 (38gene)

Y Difference t-value Y Difference t-value

X1060 0.893 5.375 X447 0.386 2.816

X1473 1.177 4.200 X397 0.509 2.422

X1808 0.819 3.224 X940 0.399 2.252

s13X23 0.409 3.143 X1156 0.383 1.951

X1048 0.720 2.803 X635 0.210 1.442

X329 0.519 2.482 X433 0.267 1.422

X733 0.373 1.863 X1195 0.173 1.375

X1123 0.330 1.709 X431 0.154 1.280

X252 0.241 1.453 X729 0.096 0.833

X223 0.189 0.846 X594 0.096 0.700

X171 0.089 0.608 X755 0.066 0.554

X263 0.058 0.199 X623 0.036 0.303

X1318 0.016 0.055 X891 0.023 0.192

X152 −0.003 −0.016 X598 0.013 0.130

X1755 −0.005 −0.021 X162 0.013 0.112

(continued)
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Table 4.8 (continued)
SM13 (37genes) SM62 (38gene)

Y Difference t-value Y Difference t-value

X1749 −0.033 −0.184 X333 0.013 0.102

X497 −0.045 −0.233 X750 0.010 0.081

X966 −0.046 −0.325 X455 0.011 0.075

X1434 −0.068 −0.335 X335 0.000 −0.004

X1214 −0.060 −0.393 X646 −0.015 −0.091

X439 −0.087 −0.479 X1045 −0.019 −0.116

X757 −0.167 −0.686 X637 −0.019 −0.182

X933 −0.181 −0.794 X1019 −0.033 −0.225

X1818 −0.167 −0.808 X605 −0.054 −0.329

X1291 −0.184 −0.954 X675 −0.049 −0.356

X1185 −0.202 −1.082 X673 −0.115 −0.512

X217 −0.197 −1.169 X530 −0.107 −0.529

X1819 −0.337 −1.463 X944 −0.103 −0.699

X404 −0.251 −1.738 X720 −0.111 −0.781

X883 −0.389 −1.910 X1037 −0.160 −0.966

X202 −0.359 −2.048 X641 −0.134 −1.074

X1246 −0.336 −2.105 X1595 −0.181 −1.223

X44 −0.324 −2.141 X445 −0.265 −1.286

X293 −0.423 −3.019 X811 −0.174 −1.295

X1394 −0.468 −3.065 X569 −0.198 −1.500

X617 −0.728 −3.078 X608 −0.186 −1.598

X1258 −1.208 −4.040 X645 −0.305 −2.335

X772 −0.272 −2.406

Figure 4.3 is a four box–whisker plot of the four genes of SM13. “−1” of X2001
is normal and “1” corresponds to the tumor. The mean of the tumor class is larger
than the normal class in x23. Next, the mean of the tumor class is smaller than the
normal class in x44. Last two plots show the averages of the two genes are almost
the same. Although not shown here, it is difficult to interpret the t-value of the two
classes when there are significant outliers. We had better checked the Box-whisker
plot for t-test.
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Fig. 4.3 Four box–whisker plots of the four genes of SM13 (X2001 � −1: Normal, X2001 � 1:
Cancer)
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4.5.3 PCA and Cluster Analysis of SM13 and SM62

4.5.3.1 PCA of SM13 and SM62

Figure 4.4 shows eigenvalue, scatter plot, and factor loading plots of PCA in SM13.
“0” are 22 normal subjects and “1” are 40 cancer subjects. Although the two groups
are separable entirely in SM13 and RatioSV of RipDS is about 30%, two classes
in the SM13 overlap. Although the Prin1 and Prin2 can express large variations of
data, it cannot indicate linear separable fact because two groups may have less data
fluctuation. At the time of 2015, we thought that if the specialist considered the result
of PCA, we expected they found something useful knowledge, but now we conclude
that they cannot get anything.

Fig. 4.4 Eigenvalue, scatter plot, and factor loading plots of SM13

Caution: In cancer gene diagnosis, never examine the results that do not show the
linear separable facts.

Figure 4.5 shows three plots for SM62. It is almost the same as SM13, and every
plot of all SMs shows the same results.

Fig. 4.5 Eigenvalues, scatter plots, and factor loadings
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4.5.3.2 Hierarchical Cluster Analysis of SM13

Six research groups rarely used discriminant analysis, and used cluster analysis
typified by SOM. Figure 4.6 shows the results of SM13 by the nearest neighbor
method used in several studies of gene analysis. The cases painted black on the left
are 22 normal cases, and the other cases are 40 tumor cases. The two classes become
22 groups from top to bottom alternately. The bottom left cell corresponds the 59th
patient and x23. This cell becomes one cluster on both dendrograms of the subject
and gene finally. This figure tells us the cluster analysis of SMs is useless as same
as PCA. However, the 11 normal groups and the 11 tumor groups may be helpful to
discover new subclasses of cancer. The square color map in the middle is the mesh
of cases and genes. The red-colored mesh indicates that the relationship between
the case and the gene is strong, and the blue color is weak in the color hierarchy.
The right is the dendrogram of the case. The nearest neighbor method is clustered
sequentially from the closest distance cases. Thus, we do not recommend thismethod
in general. The bottom dendrogram is a variable dendrogram of 37 genes. The X23 at
the left end is clustered at the last after the other 36 genes are sequentially clustered.
The 59th patient in the bottom is classified at the last after the other 61 cases are
sequentially clusters. In general, although we do not recommend this method, some
Japanese gene researchers used this method.
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Fig. 4.6 Nearest neighbor method of SM13
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Figure 4.7 is Ward cluster analysis of SM13. There are the 13 normal groups and
the 13 tumor groups as same as the nearest neighbor method, but the tendency of
both dendrograms are different. In the recent gene analysis, many kinds of research
use the cluster analysis. Although statistical discriminant functions are useless at
all, the cluster analysis offers various results by the combination of different cluster
methods and distances used for clustering. If medical researchers can explain their
medical conclusions well as a result of cluster analysis, there will be no problem.

Fig. 4.7 Ward cluster of SM13
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In particular, Alon et al. examined 6,500 genes by SOC and judged 2,000 genes as
cancer genes. Method2 and RIP decompose the 2,000 genes into 62 SMs containing
1,968 genes using the Method2 by us, although we are not specialists for gene
analysis of cancer at all. The number of genes included in the noise is only 32 genes.
Thus, because two different research approaches are almost the same, we consider
both approaches validate each other. Moreover, LINGO Program4 decomposes the
2,000 genes into 130 BGS, and we omit only five genes as noise in Chap. 2. Because
LINGO Program4 finds 130 BGSs by the combination with manual work, these five
genes may be the operation miss. The critical point is that 2,000 genes medically
discovered could bedivided into 130BGSs.We think that this result canbe considered
to guarantee to some extent the validity of both approaches by Alon and us in 2017.

4.5.4 Examination of Correlation of 37 Genes Included
in SM13

We examine the 666 correlations of 37 genes included in SM13. Other 61 SMs are
almost the same results. Table 4.9 shows the 666 correlation coefficients were sorted
by descending order. There were 83 positive correlations from SN1� 1 to SN1� 83
at 1% significant level. There were 53 negative correlations from SN1 � 614 to SN1
� 666 at 1% significant level. The 530 correlations are uncorrelated. That is, unlike
the correlation between RipDSs and HsvmDSs, about 80% of the genes contained
in SM are uncorrelated, and the rest 20% are positive and negative correlations. This
result is one of the facts that RipDSs and HsvmDSs are valid signals. In other words,
it does not become a signal with the gene alone, but when RIP, Revised LP-OLDF,
and H-SVM discriminate these genes, it becomes a signal.

Table 4.9 666 correlations of 37 genes included in SM13

SN1 SN2 Var1 Versus
Var2

Corr. 2.5% 97.5% p-value

1 1 X733 X223 0.757 0.626 0.847 0.000

2 2 X757 X223 0.717 0.569 0.820 0.000

3 3 X757 X733 0.714 0.565 0.818 0.000

4 4 X1473 X1123 0.681 0.520 0.796 0.000

5 5 X1473 X329 0.629 0.450 0.759 0.000

6 6 X1818 X1214 0.622 0.441 0.754 0.000

7 7 X1060 X252 0.608 0.422 0.745 0.000

8 8 X1394 X1185 0.598 0.409 0.737 0.000

(continued)
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Table 4.9 (continued)

SN1 SN2 Var1 Versus
Var2

Corr. 2.5% 97.5% p-value

9 9 X733 X252 0.597 0.408 0.737 0.000

10 10 X152 X44 0.585 0.392 0.728 0.000

11 11 X966 X152 0.565 0.367 0.714 0.000

12 12 X439 X44 0.563 0.365 0.713 0.000

13 13 X1318 X1258 0.563 0.364 0.713 0.000

14 14 X1048 X202 0.557 0.357 0.708 0.000

15 15 X1808 X252 0.557 0.356 0.708 0.000

16 16 X933 X152 0.554 0.354 0.706 0.000

17 17 X1808 X733 0.551 0.349 0.704 0.000

18 18 X1755 X252 0.548 0.345 0.702 0.000

19 19 X439 X329 0.547 0.345 0.701 0.000

20 20 X1394 X617 0.536 0.331 0.693 0.000

21 21 X1291 X404 0.532 0.325 0.690 0.000

22 22 X1808 X1060 0.527 0.319 0.687 0.000

23 23 X1291 X44 0.521 0.312 0.682 0.000

24 24 X1434 X293 0.521 0.312 0.682 0.000

25 25 X1291 X966 0.520 0.311 0.681 0.000

26 26 X1808 X223 0.514 0.303 0.677 0.000

27 27 X1291 X329 0.501 0.287 0.667 0.000

28 28 X966 X44 0.491 0.275 0.660 0.000

29 29 X1291 X439 0.490 0.274 0.659 0.000

30 30 X1185 X217 0.482 0.264 0.653 0.000

31 31 X1123 X329 0.478 0.259 0.650 0.000

32 32 X1394 X217 0.478 0.259 0.650 0.000

33 33 X1755 X1060 0.478 0.259 0.650 0.000

34 34 X966 X404 0.478 0.259 0.650 0.000

35 35 X404 X44 0.464 0.242 0.640 0.000

36 36 X1123 X152 0.453 0.230 0.632 0.000

37 37 X1123 X44 0.444 0.218 0.624 0.000

38 38 X1819 X329 0.443 0.218 0.624 0.000

39 39 X1749 X1434 0.440 0.214 0.622 0.000

40 40 X404 X152 0.440 0.214 0.621 0.000

41 41 X1473 X966 0.439 0.213 0.621 0.000

42 42 X252 X223 0.437 0.210 0.619 0.000

43 43 X1060 X733 0.433 0.206 0.616 0.000

44 44 X497 X202 0.427 0.198 0.612 0.001

(continued)
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Table 4.9 (continued)

SN1 SN2 Var1 Versus
Var2

Corr. 2.5% 97.5% p-value

45 45 X1755 X1185 0.427 0.198 0.611 0.001

46 46 X329 X44 0.423 0.193 0.608 0.001

47 47 X1291 X152 0.418 0.187 0.604 0.001

48 48 X1819 X1291 0.404 0.172 0.594 0.001

49 49 X617 X404 0.402 0.169 0.592 0.001

50 50 X1185 X171 0.394 0.160 0.586 0.002

51 51 X757 X617 0.385 0.150 0.579 0.002

52 52 X1819 X439 0.385 0.149 0.579 0.002

53 53 X757 X217 0.382 0.146 0.577 0.002

54 54 X1755 X1394 0.380 0.144 0.575 0.002

55 55 X252 X217 0.379 0.143 0.575 0.002

56 56 X1060 X171 0.378 0.142 0.574 0.002

57 57 X217 X171 0.368 0.130 0.566 0.003

58 58 X1214 X293 0.366 0.128 0.565 0.003

59 59 X1123 X966 0.366 0.128 0.564 0.003

60 60 X1394 X757 0.363 0.125 0.562 0.004

61 61 X1819 X883 0.362 0.123 0.561 0.004

62 62 X1258 X1185 0.360 0.121 0.559 0.004

63 63 X757 X252 0.359 0.120 0.559 0.004

64 64 X1394 X1258 0.359 0.120 0.559 0.004

65 65 X883 X404 0.354 0.114 0.554 0.005

66 66 X966 X329 0.350 0.109 0.551 0.005

67 67 X733 X217 0.349 0.109 0.551 0.005

68 68 X223 X217 0.348 0.107 0.550 0.006

69 69 X1291 X883 0.344 0.103 0.547 0.006

70 70 X1394 X171 0.343 0.102 0.546 0.006

71 71 X1258 X217 0.341 0.099 0.544 0.007

72 72 X1291 X263 0.339 0.098 0.543 0.007

73 73 X1258 X293 0.339 0.097 0.543 0.007

74 74 X1755 X733 0.339 0.097 0.543 0.007

75 75 X1434 X1318 0.336 0.094 0.541 0.008

76 76 X1749 X1048 0.336 0.094 0.540 0.008

77 77 X1185 X617 0.332 0.090 0.537 0.008

78 78 X1060 X223 0.332 0.089 0.537 0.008

79 79 X1808 X1755 0.331 0.089 0.537 0.009

80 80 X1755 X757 0.328 0.085 0.534 0.009

(continued)
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Table 4.9 (continued)

SN1 SN2 Var1 Versus
Var2

Corr. 2.5% 97.5% p-value

81 81 X1818 X617 0.325 0.082 0.532 0.010

82 82 X1258 X171 0.324 0.080 0.531 0.010

83

84

– – – – – – – –

83 X1123 X439 0.323 0.080 0.530 0.010

84 X883 X439 0.320 0.076 0.527 0.011

613 169 X1818 X1048 0.322 0.529 0.078 0.011

614 170 X1048 X404 − 0.323 − 0.530 − 0.080 0.010

615 171 X329 X217 − 0.331 − 0.536 − 0.088 0.009

616 172 X1123 X252 − 0.333 − 0.538 − 0.091 0.008

617 173 X1749 X223 − 0.333 − 0.538 − 0.091 0.008

618 174 X966 X202 − 0.338 − 0.542 − 0.096 0.007

619 175 X1246 s13X23 − 0.339 − 0.543 − 0.098 0.007

620 176 X1060 X404 − 0.339 − 0.543 − 0.098 0.007

621 177 X1394 X1123 − 0.343 − 0.546 − 0.103 0.006

622 178 X966 X171 − 0.348 − 0.550 − 0.107 0.006

623 179 X1749 X757 − 0.349 − 0.551 − 0.109 0.005

624 180 X1060 X152 − 0.351 − 0.552 − 0.111 0.005

625 181 X171 X152 − 0.351 − 0.553 − 0.111 0.005

626 182 X1819 X1246 − 0.354 − 0.555 − 0.114 0.005

627 183 X1394 s13X23 − 0.357 − 0.557 − 0.118 0.004

628 184 X1060 X439 − 0.362 − 0.561 − 0.124 0.004

629 185 X1473 X1434 − 0.363 − 0.562 − 0.125 0.004

630 186 X1214 X1048 − 0.367 − 0.565 − 0.129 0.003

631 187 X1755 X44 − 0.367 − 0.565 − 0.129 0.003

632 188 X1060 X933 − 0.368 − 0.566 − 0.131 0.003

633 189 X202 X152 − 0.369 − 0.566 − 0.131 0.003

634 190 X1318 X497 − 0.370 − 0.567 − 0.133 0.003

635 191 X439 X252 − 0.371 − 0.568 − 0.134 0.003

636 192 X1749 X1394 − 0.375 − 0.571 − 0.138 0.003

637 193 X1318 X329 − 0.377 − 0.573 − 0.141 0.002

638 194 X404 X252 − 0.387 − 0.581 − 0.152 0.002

639 195 X217 s13X23 − 0.392 − 0.584 − 0.158 0.002

640 196 X293 X223 − 0.394 − 0.586 − 0.160 0.002

641 197 X1749 X733 − 0.398 − 0.589 − 0.164 0.001

642 198 X1123 X202 − 0.399 − 0.590 − 0.166 0.001

643 199 X1291 X202 − 0.399 − 0.590 − 0.166 0.001

644 200 X1060 X293 − 0.400 − 0.591 − 0.167 0.001

(continued)
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Table 4.9 (continued)

SN1 SN2 Var1 Versus
Var2

Corr. 2.5% 97.5% p-value

645 201 X1473 X293 − 0.404 − 0.594 − 0.172 0.001

646 202 X252 X152 − 0.409 − 0.598 − 0.177 0.001

647 203 X1434 X617 − 0.414 − 0.602 − 0.184 0.001

648 204 X1060 X44 − 0.419 − 0.605 − 0.189 0.001

649 205 X1258 X329 − 0.430 − 0.613 − 0.201 0.000

650 206 X1818 X439 − 0.430 − 0.613 − 0.201 0.000

651 207 X1473 X1258 − 0.431 − 0.615 − 0.203 0.000

652 208 X439 X217 − 0.436 − 0.618 − 0.209 0.000

653 209 X733 X293 − 0.444 − 0.624 − 0.218 0.000

654 210 X1473 X1185 − 0.446 − 0.626 − 0.221 0.000

655 211 X1819 X1318 − 0.457 − 0.634 − 0.234 0.000

656 212 X252 X44 − 0.465 − 0.640 − 0.243 0.000

657 213 X439 X223 − 0.470 − 0.644 − 0.249 0.000

658 214 X1473 X1394 − 0.475 − 0.648 − 0.256 0.000

659 215 X1808 X293 − 0.516 − 0.679 − 0.306 0.000

660 216 X1749 X617 − 0.519 − 0.681 − 0.310 0.000

661 217 X1808 X439 − 0.524 − 0.684 − 0.315 0.000

662 218 X404 X171 − 0.529 − 0.688 − 0.321 0.000

663 219 X1434 X757 − 0.531 − 0.690 − 0.325 0.000

664 220 X1434 X733 − 0.565 − 0.714 − 0.367 0.000

665 221 X1434 X223 − 0.593 − 0.734 − 0.403 0.000

666 222 X1048 X617 − 0.647 − 0.772 − 0.474 0.000

4.6 The Reason Why Standard Statistical Methods Could
not Find Fact6

Because Alon’s microarray consists of only 2,000 genes and the smallest among
six microarrays, we analyze it by every version up of LINGO. In 2016, RIP finds
64 SMs (1,999 genes), and Chap. 2 introduces the results. In 2017, RIP finds 56
SMs (1,999 genes), and Chap. 3 introduces the results. In 2018, RIP finds 62 SMs
(1,968 genes), and this chapter introduces the results by the different approaches.
Thus, the RatioSV of PCA summarizes the malignant indicators of the 62 RatioSVs.
In this section, because statistical methods could not obtain useful results from SM
analysis, we make three signal data made by RipDSs, LpDSs and HsvmDSs those
consist of 62 cases (subjects) and 62 DSs as variables. After that, Ward cluster and
PCA analyze the signal data and those transposed data. We obtain almost the same
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results as Chap. 3. Thus, we discuss the reason why standard statistical methods
could not find Fact6 and statistical discriminant functions could not find Fact3.

Fact6: Statistical methods cannot find the linear separable facts by all SMs. However,
when we created new data with DS discriminated by RIP, Revised LP-OLDF and
H-SVM, we obtained a remarkably good result, so we decided to call this data as
signal data. We need to discuss the big problem of cancer gene analysis. Statistical
methods, except for logistic regression, could not find the linear separable facts. We
already had the clues of above reason using the common data. PCA analysis of the
modified linear separable CPD data using 19 variables shows that the scatter plot
on the Prin1 and the Prin2 cannot separate the two classes. The t-value of the Prin8
was the maximum value that means two classes have the most massive difference
between the average. This fact means “Prin1 and Prin2 show a large variance of data,
but irrelevant to linearly separable fact.”

Figure 4.8 is two scatter plots of SM18 on such as (Prin1 vs. Prin2) and (Prin1
vs. Prin3). Both plots show two classes overlap. The line segment represents the
RipDS13. Among the data variations, the variation in RipDS18 is small. PCA cannot
find the critical information of LSD because its fluctuation is small. The DS that
divides the two groups offers more useful information than PCA. Four figures from
Figs. 4.4. 4.5, 4.6 and 4.7 show the obscure reason. Figure 4.8 is the direct explanation
for this problem. Statisticians and statistical users should abandon the expectation
that the variation of data can catch the LSD phenomena. If we analyze with high-
dimensional PCA, the line segment of DS will be smaller than Fig. 4.8.

Fig. 4.8 Two scatter plots of SM such as (Prin1 vs. Prin2) and (Prin1 vs. Prin3)
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4.7 Another Problem Suggested by Linus Schrage

(1) An Important Advice by Linus Schrage about Fact3
Whenwe toldLinusSchrage about Fact3, he gave us advice onhigh-dimensional
data (small n and large p). He is the Emeritus professor of Chicago Booth
and the founder of LINDO Systems Inc. Most MP-researchers know the high-
dimensional linear hyperplane discriminates two classes of the random number
data (small n and large p data) instead of themicroarray.Although the probability
is few, we must be aware of this fact. About this problem, his mail is as follow:

With 2,000 explanatory variables but only 62 observations, there should be many
separating hyperplanes. We have not derived the relevant probabilities, but if we have a
lotmore variables than observations, then there should bemany separating hyperplanes,
even if the explanatory variables are simply random numbers with no relationship to
the dependent variable (e.g., have cancer or do not have cancer). So, a hyperplane that
uses only one or two variables and misclassifies one or two observations is more likely
to be the correct conclusion than a hyperplane that uses more than 62 variables and
has no misclassifications, i.e., completely separates the data.

This advice is general knowledge of MP society. Keep this advice in mind; we
have been looking for many facts to clear up his doubt. This section introduces
our following findings:

(1) RIP, Revised LP-OLDF and H-SVM discriminate two classes by SVs.
These SVs fix many cases on these SVs shown in Tables 4.2 and 4.4.
However, when divided into many SMs, the proportion of cases on SV
became small, and the cases spreadwidely inDS.We conclude these results
show the specific feature of the microarrays. That is, it is not possible to
divide the random number data into meaningful SMs and obtain the same
result.

(2) Even if we can distinguish two groupswith high-dimensional randomnum-
ber data,we cannot create randomnumber datawith a unique structure simi-
lar to the microarray described in (1). That is, even if the high-dimensional
random number data is MNM � 0, it cannot split into many SMs of n
dimension or less. Moreover, they cannot show almost the same result.

(2) First Advice for OLDF by Linus Schrage
When we started the research of three OLDFs in 1997, Linus sent us a list
of papers about MP-based discriminant functions because we did not survey
previous research. We were shocked by Stam (1997). He summarized about
200 papers and confessed honestly “Why have statisticians rarely used Lp-
norm methods?” in his paper. We realized Linus suggested us Stam’s paper
declared the end of our research theme. “Lp-norm” is an attractive study that
comprehensively thinks various regression and discriminant models. However,
there are five problems in discriminant analysis, and NM is useless. To solve
five problems and develop MNM instead of NM is more important than other
models proposed by 200 types of research. Thus, RIP and Revised LP-OLDF
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can find SMs that opens the new frontier of cancer gene diagnosis. Moreover,
in cancer gene analysis (Problem5), it is most important that the microarrays
are LSD (Fact3). However, Japanese famous gene researchers told us that NIH
decided to terminate the oncogene research using microarray after publishing
six papers and advised us we had better terminated our research in 2016. Thus,
the medical specialists in Japan do not pay their attention to our research.

(3) Second Advice
In 2012, I presentedmy paper entitled “Beyond Fisher’s Discriminant Analysis”
at the Informs held in Chicago. In the presentation, I said “I found a new conti-
nent like Columbus,” but no one laughed. After the presentation, he advised me
not to use such the radical title.
Linus, thank you for many pieces of advice.

4.8 Comparison of Our Research with iPS Cell Research
and Problem6

In this book, we do not consider the relationship between SM and BGS in detail.
In Chap. 2, we evaluated 64 SMs and 130 BGSs by RatioSV. Moreover, the maxi-
mum RatioSV of BGS was less than 1%, and we concluded that BGSs were useless
for cancer gene diagnosis. It is necessary to confirm this fact with the remaining
five microarrays. Although Method2 finds many SMs and BGS, we must classify
these into medically meaningful groups and think about ways useful for cancer gene
diagnosis. We want to collaborate on these issues with medical researchers in the
future.

In this section, we compare our research and iPS research. Professor Yamanaka
selected 100 genes among 30,000 human genes that are activated only in mouse ES
cells. Also, he narrowed it to 24 genes. Moreover, he instructed Dr. Takahashi to find
a set of genes to make iPS cells. Unlike common sense in genetics, Dr. Takahashi
made iPS cells using 24 genes. Dr. Yamanaka thought that his experiment was wrong
because he graduated from the Faculty of Engineering and was lacking a common
biological sense. However, it turned out that there was nomistake. Next, he narrowed
down beneficial genes from 24. He also proposed a method beyond common sense.
It is a method that performs a backward selection method from 24 genes. If he cannot
make iPS cells by 23 genes without one gene, that gene is necessary to generate iPS
cells. After several cell cultures, he found four genes, and Yamanaka team opened
the door to iPS cell research.

(1) His approach is an application of the backward variable selectionmethod, which
is the same as our method of finding BGS (LINGO Program4). The stepwise
selection methods use the increase/decrease of the deviation sum of squares. In
our study, we have 1/0 criteria that gene subspace is LSD or not. The iPS cell
research depends on 1/0 criterion whether iPS cell masses are formed or not.
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(2) Three genes dropping one gene from 4 genes will not create iPS cells. In our
research, we call it the smallest SM (basic gene set, BGS), 24 genes are one of
the SMs because they make iPS cells.

(3) The four genes contain the oncogene C-Myc, and many researchers surprised.
However, it was found to be useful for the proliferation of iPS cells. Dr. Naka-
gawa struggled to replace it with L-Myc. The existence of L-Myc suggests that
there is a possibility that there is another BGS that consists of other genes with
L-Myc.

(4) In our study, there are several SM and BGS. Remove four genes containing
C-Myc from 24 genes. With these 20 genes, for example, other iPS genes con-
taining or not containing L-Myc may be found.

A doctor at Harvard University was able to find the human iPS gene first by adding
one gene to four genes including C-Myc. He found SM to produce iPS cell. Even if
we add an arbitrary gene to the BGS, our research guarantees the new SM is LSD.
However, it is self-evident that even if we add any genes to 24 genes, not all can make
iPS cells. There is no doubt that there are limit that iPS cells can be made, perhaps
between 24 and 100. This point is different from our research.

4.9 Conclusion

This chapter performs the following innovative verifications, and good results were
obtained.

(1) The defect of SM found by Revised LP-OLDF
RIP finds microarrays are LSD and can decompose microarray into many SMs.
Then, we developed Method2 and created LINGO Program3. We extend Pro-
gram3 for other five kinds of LDFs. Because Revised LP-OLDF finds SM like
RIP and computing time is shorter than IP, it is useful for many researchers.
Moreover, we evaluate the signal subspaces of the union of all SMs and the
noise subspaces found by the RIP and Revised LP-OLDF. However, we find
that Revised LP-OLDF left SM in the noise subspace in Table 4.3. We think
that this is an influence of Problem1.

(2) Subjects on SVs and Outliers
Table 4.2 shows the all 22 normal subjects on SVs and 39 cancer subjects
on SVs. Only one cancer patient’ DS is 3.2. We denote the “Outlier � 0/1”
in Table 4.2. When RIP discriminates two classes in 1968 genes included in
62 SMs, all normal subjects locate on SV � −1, and the 39 cancer patients
locate on SV � 1. Only one cancer subject becomes an outlier. We tried to find
answers to Linus’s advice. Two outliers of SM13 with 37 genes and SM62 with
38 genes are “7/18 and 7/17,” respectively. These facts show: (1) For SM13,
the 15 normal subjects locate on SV � −1 and the 22 cancer patients locate
on SV � 1. (2) For SM62, the 15 normal subjects locate on SV � −1, and the
23 cancer patients locate on SV � 1. Moreover, MP-based LDFs and logistic
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regression can discriminate 62 SMs correctly. On the other hand, these LDFs
cannot discriminate between two classes made by random numbers correctly.
Many statisticians have studiedmicroarray data as a newfield of “big data analy-
sis or high-dimensional data analysis.”AoshimaandYata found thatmicroarrays
analyzed by us distributed on two different spheres in gene space. Each distri-
bution is a chi-square distribution from the center of the sphere. Their results
are probably the same as our results in Table 4.2. We think that the mode of the
chi-square distribution corresponds to the two SVs, and the outlier corresponds
to the tail of the distribution.

(3) Table 4.8 shows t-tests of mean’s difference between the tumor and normal
subjects in SM13 and SM63. Because the gene sets included in 63 SMs can
discriminate two classes correctly, these 63 gene sets are the oncogenes. We
showed both t-value ranges of SM13 and SM63 are from negative values, almost
zero and positive values. The genes with negative values are the suppressor of
cancer. The genes having values of almost zero are thought to be involved in
canceration of patients in combination with other genes. Medically about 100
representative oncogenes have been found, but these serve as the core role of
any of the 63 SMs, but they alone cannot distinguish the two groups correctly.
That is, SMs that do not contain 100 oncogenes at all may be an oncogene that
has not been discussed yet, for example, may be related to metabolism. This
argument is a future research teme which should be considered in BGS.
Future Research: We must examine the different roles of all BGSs that are one
of Problem6.

(4) Table 4.6 shows 1,891 pairs of correlations of 62 RipDSs. The range of corre-
lations is [0.332, 0.865]. The fact that all correlations are positive is a feature
of signal space.

(5) Why could not researchers solve the cancer gene analysis from 1970? There are
many reasons as follows.

• Because statistical discriminant functions cannot discriminate LSD theoreti-
cally, these discriminant functions cannot find microarrays are LSD.

• Although only H-SVM and RIP can discriminate LSD theoretically, H-SVM
cannot decompose microarrays into many SMs.

• The fluctuation of two classes is too small compared with the variation of
microarray data that is noise.

Future Work: Above fact explains the reason why researchers could not find
microarrays were LSD since 1970.

Caution: In cancer gene diagnosis, never examine the results that do not show
the linear separable facts.

New Fact: Although we could not find meaningful results by analyzing SM,
the signal data created by RDSs, LpDSs, and HsvmDSs as variables brings the
surprising results. The transposed data indicates many outliers that may be the
new subclasses of cancer pointed by Golub.
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Chapter 5
Cancer Gene Diagnosis of Golub et al.
Microarray

Abstract Golub microarray consists of 72 patients and 7,129 genes. They analyzed
the microarray by various statistical methods. For example, they analyzed “marker”
genes having the highest correlation with the target class-by-class separation statis-
tics (signal-to-noise ratio), weighted votes, and SOM. Mainly, discriminant analysis
is the most proper method to identify oncogenes. However, because the statistical
discriminant analysis was useless at all, medical researchers had developed many
methods. Our theory shows that six microarrays are LSD (MNM � 0). Method2
can decompose the microarray into many Small Matryoshka (SM) those are LSD.
Then, by analyzing SM, we achieved cancer gene diagnosis by malignancy indexes.
If Golub et al. validate our results, cancer gene diagnosis will be more improved.
Method2 already obtained the different sets of SM in Chap. 2. In 2018, we change
the number of iterations of RIP and Revised LP-OLDF in Method2 and decided the
proper number of iterations as same as Alon’s microarray in Chap. 4. We obtained
SM by those iteration numbers. We examined the signal data made by RIP discrim-
inant scores (RipDSs). We confirm the Revised LP-OLDF cannot find all SMs as
same as Alon’s microarray. Thus, we analyze only 179 SMs obtained by the RIP
and examine the correlation coefficient of 179 RipDSs. We compare RatioSV of
six MP-based LDFs and NM of statistical discriminant function. Then, the cluster
analysis and PCA analyze signal data made by RIP and H-SVM. We propose the
possibility of cancer gene diagnosis such as malignancy indexes. We propose how
to find new subclasses of cancer pointed out by Golub et al. (Science 286(5439):
531–537, 1999).

Keywords Golub microarray · Cancer gene diagnosis · Malignancy indicators ·
Small Matryoshka (SM) · RatioSV · RipDSs · LpDSs · HsvmDSs · Signal data
Thanks to Golub et al.
Golub microarray (7,129 genes) consists of 25 acute myeloid leukemia (AML)
patients (class1) and 47 acute lymphoblastic leukemia (ALL) patients (class2). Golub
et al. (1999) analyzed 72 cases by various statistical methods. They analyzed “mark-
er” genes with the highest correlation with the target class-by-class separation statis-
tics (signal-to-noise ratio), weighted votes, and self-organizing map (SOM). Shipp
et al. (2002) used these methods, also. Shipp used SVM (Vapnik 1995). Mainly,
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discriminant analysis is the most appropriate method to identify oncogenes from
the microarray. However, because the statistical discriminant analysis was useless at
all, medical researchers had no choice but to develop many methods for cancer gene
analysis. Our theory shows that six microarrays are the linearly separable data (LSD)
and the minimum number of misclassifications (MNMs) � 0. The Matryoshka fea-
ture selection method (Method2) can decompose microarray into many sets of Small
Matryoshka (SM). Then, by analyzing SM, cancer gene diagnosis typified by malig-
nancy indicators was proposed. If Golub and other researchers validate our results,
cancer gene diagnosis will bemore improved. They used leave-one-out (LOO)which
was developed in the age of poor computing environment to verify their outcome
(Lachenbruch and Mickey 1968). Shinmura (2010) proposed the 100-fold cross-
validation for the small sample (Method1). If Golub and others used RIP or the hard
margin SVM (H-SVM), they could find their microarray was LSD, and the num-
ber of misclassifications (NM) is 0. It is extraordinary why there are no researches
that the two classes are completely separable in the high-dimensional microarray. If
researchers manage two classes well, probably the other microarrays may be LSD,
also. This fact (MNM�0) is themost important in the cancer gene analysis (Fact3). In
our research, we consider that gene subspace withMNM� 0 defines signal subspace
andgene subspacewithMNM>=1defines noise subspace at first.However, they eval-
uate variousmethodswith a 2 * 2 contingency table. For example, inweighted voting,
six patients out of ALL patients with moderate malignancy are incorrectly identified
as low-grade AML. Also, they are examining the survival rate of Kaplan–Meier.
From these facts, historically, because the discriminant functions based on the vari-
ance–covariance matrix were useless for cancer gene analysis, we believe that they
originally developed the several methods. However, if they discriminate the microar-
ray by RIP or H-SVM, they find it is LSD and obtain other simple results.

We thank Golub for providing excellent data. Below, we will quote their abstract:

Although cancer classification has improved over the past 30 years, there has been no gen-
eral approach for identifying new cancer classes (class discovery) or for assigning tumors to
known classes (class prediction) Here, a generic approach to cancer classification based on
gene expression monitoring by DNA microarrays is described and applied to human acute
leukemias as a test case. A class discovery procedure automatically discovered the distinc-
tion between AML and ALL without previous knowledge of these classes. An automatically
derived class predictor was able to determine the class of new leukemia cases. The results
demonstrate the feasibility of cancer classification based solely on gene expression moni-
toring and suggest a general strategy for discovering and predicting cancer classes for other
types of cancer, independent of previous biological knowledge.

5.1 Introduction

Chapter 1 outlined the New Theory of Discriminant Analysis After R. Fisher (the
theory) and explained the success of cancer gene analysis (Shinmura 2016a, b). Also,
we explainedwhyRevised IP-OLDF (RIP) andRevisedLP-OLDF solved unresolved
cancer gene analysis (Problem5). Chapter 2 outlined the cancer gene diagnosis using
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all SMs of six microarrays found by the RIP in 2016. Chapter 3 outlined RIP and
Revised LP-OLDF discriminant Alon’s microarray (1999) by changing the itera-
tion number of LINGO Program3 (Schrage 2006). Chapter 4 discriminates Alon’s
microarray in 2018 and obtains two SMs by the RIP and Revised LP-OLDF. We
challenge three new research themes.

This chapter confirms three research themes proposed in Chap. 4 using Golub
microarray. Section “Thanks to Golub et al.” introduces Golub et al. research and
microarray. Section 5.1 introduces the overviews fromChap. 1 toChap. 5. Section 5.2
validates two different types of SMs found by the RIP and Revised LP-OLDF. These
SMs are obtained by searching the proper number of iterations of both OLDFs.
We discriminate the signal and noise subspaces obtained by Revised LP-OLDF and
RIP.We confirm the same defect of Revised LP-OLDF that cannot choose all SMs as
signal subspace. Section 5.3 analyzes 179 SMs byRIP. After we evaluate 179 SMs by
six MP-based LDFs and discriminant functions, we examine the 15,931 correlations
of 179 RipDSs. Section 5.4 verifies SM3 with the maximum RatioSV and SM179
with the minimum RatioSV. Moreover, SM3 and SM179 are evaluated by RatioSV,
NMs, and t-test. Section 5.4.3 introduces the relation of BGS and Yamanaka’s Four
Genes of iPS research. Section 5.5 examines the signal data made by 179 RipDSs
and discusses the reason why standard statistical methods could not find the linear
separable facts proposed in Chap. 4. LINGO (Schrage 2006) decomposes Golub
microarray into many SMs and opens a new frontier of cancer gene analysis. JMP
(Sall et al. 2004) analyzes all SMs andoffers cancer gene diagnosis. Shinmura (2016a,
2017, 2018a, b) relate to this Chapter.

5.2 Validation of SM Found by the RIP and Revised
LP-OLDF

In Chap. 3, we increase the number of iterations from 1 and decide to select the one
that can obtain the same number of SMs consecutively. After Chap. 5 to Chap. 9,
we choose all SMs by this approach and confirm that the results are almost the same
as the results in Chap. 2. Although we develop LINGO Program3 for a RIP at first,
Revised LP-OLDF can decompose microarray into smaller SMs and the calculation
time is faster than RIP. Thus, we consider replacing the SMs obtained by RIP to
those of Revised LP-OLDF. However, we find the defect of Revised LP-OLDF that
cannot find all SMs from the microarray in Chap. 4. Thus, we introduce the results
of SMs found by the RIP in Chaps. 5, 6, and 7. In Chaps. 8 and 9, we introduce
the results of SMs found by Revised LP-OLDF because RIP finds many SMs than
Revised LP-OLDF.
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5.2.1 Verification of the Number of Iterations of Revised
LP-OLDF and RIP

Table 5.1 shows the result of verification by changing the number of iterations from
1 to 7 of the repeat option (IT) of LINGO Program3 in Chap. 1. In the Revised
LP-OLDF (abbreviated as LP in the table), “IT � 5” chooses 46 SMs that contain
1,134 genes, and an average is 24.7 genes. When it is “IT � 5 or more,” it becomes a
steady state including 1,134 in 46 SMs with 24.7 genes on average. Thus, we choose
the 46 SMs by Revised LP-OLDF. In contrast, RIP chooses 5,990 genes in 179 SMs
with IT � 3, the average is 33.46, and the noise subspace contains 1,139 genes. We
evaluate the signal and noise subspaces by six MP-LDFs in Sects. 5.2.2 and 5.2.3.

Table 5.1 Result of the number of iterations by LINGO Program3

LP RIP

IT CPU SM Gene Gene/SM CPU SM Gene Gene/SM

1 55 26 1142 43.9 2m46 89 6176 69.39

2 2:05 42 1173 27.9 7m28 166 6079 36.62

3 2:44 40 1070 26.8 9m47 179 5990 33.46

4 3:36 43 1087 25.3 11m53 179 5990 33.46

5 4:30 46 1134 24.7 12m50 179 5990 33.46

6 5:15 46 1134 24.7 14m38 179 5990 33.46

7 6:02 46 1134 24.7 16m33 179 5990 33.46

5.2.2 Analysis of Signal Subspace and Noise Subspace
Obtained by Revised LP-OLDF

We develop LINGO Program3 of Method2 for the RIP at first. However, we confirm
Revised LP-OLDF, and Revised IPLP-OLDF can decompose six microarrays into
many SMs also. Because the calculation time of Revised LP-OLDF is faster than
RIP, and the number of SMs obtained is smaller than RIP, we consider replacing the
analysis of SM obtained by RIP to Revised LP-OLDF. However, we did not evaluate
signal and noise subspaces obtained by the RIP and Revised LP-OLDF before 2017.
Thus, we evaluate the microarray, signal subspace of union of all SMS, and the
noise subspace as same as Alon’s microarray in Chap. 4. Because the result of the
microarray is as same as signal subspace, we omit it from Table 5.2. Up to now, the
Revised LP-OLDF seems to be preferable because it separates it into the small size
of signal subspace and the large size of noise subspace with many genes, so the total
analysis work becomes shorter than RIP.
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The left six columns of Table 5.2 show the signal subspace with 1,134 genes
included in 46 SMs, and the right six columns show the results of the noise subspace
with 5,995 genes. The first column under the fourth row shows the sequential number
(SN). SNs from 1 to 25 are 25 AML patients, and SNs from 26 to 72 are 47 ALL
patients. Second row “6 LDFs” shows the sixMP-based LDFs. Third row “RatioSV”
indicates RatioSVs of six LDFs for the signal subspace and noise subspace. The DSs
of 25 cases (class1) and 47 cases (class2) are shown in the fifth line or less. In the
signal subspace, six RatioSVs are 100%, 16.06%, 11.97%, 34.71%, 34.36%, and
34.61%, respectively. Because 25 class1 patients are on “SV � −1” and 47 class2
patients are on “SV� 1” RatioSV of RIP is 100%. In this study, we define that outlier
patients belonging to class1 are less than −1 and outlier patients belonging to class2
are greater than 1. That is, in the signal space, we found that all patients are on two
SVs of the RIP. We summarize six RatioSVs as follows:

(1) RIP discovered a relationship where 25 and 47 patients lie on two parallel
hyperplanes represented by two 1,134-dimensional SVs. The surprising result
is accepted by three facts as follows: (a) Because the other five RatioSVs are
35% or less, this result shows RIP finds the real relation in the high-dimensional
gene space. That is, MNM is an optimization criterion that finds hidden features
of data. For this reason, the range of RipDS is [−2, 2], whereas the range
of LpDS is largely [−6.75, 9.95]. Even with the same data, the difference in
subjects of binding to SV causes about four times range’s difference. Because
the SV distance is fixed to 2, we do not think that the actual distance of six
ranges is very different. Namely, data fluctuation is considered to be small. In
the future, if we can visualize two groups in a high-dimensional space, it will be
clear. (b) RIP decomposes 1,134 signal subspaces into 179 SMs, and the range
of 179 RatioSVs in Table 5.7 is [0.52, 28.8]. This fact is the first case showing
the specific examples of the SV in a high-dimensional signal subspaces such
as “RatioSV=100” and the 179 SVs of 179 SMs. (c) Because the RatioSV of
Alon’s signal subspace is 14.1% in Table 4.4, this value indicates that Golub
data structure causes the surprising figure of Golub signal subspace.

(2) Because three SVMs maximize the distance between the SVs, and two SVs
fix some patients on two 1,134-dimensional hyperplanes, those do not show an
extreme value like the RIP. Three RatioSVs are about 34%.

(3) RatioSV of Revised LP-OLDF seems to be smaller than SVMs because it does
not fix subjects to SVs.

Because the noise subspace is LSD, H-SVMworks correctly. Row “Outlier/NM”
shows the number of outliers (Outlier) for a signal subspace, and six NMs for the
noise subspace. These facts tell us the noise subspace is LSD and includes several
SMs in it.
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Table 5.3 shows the discriminant results by six MP-LDFs. If each LDF cor-
rectly discriminates patients, the “ >0” column shows the classified patient number.
The “0” column means the number of patients on the discriminant hyperplane, and
“ <0” column means the number of misclassified patients. As a result, six MP-LDFs
classified all patients correctly for the microarray, the signal, and noise spaces. This
fact indicates the noise subspace is LSD. Thus, we conclude we do not analyze 46
SMs obtained by Revised LP-OLDF in this chapter.

Table 5.3 Discriminant
results by six MP-LDFs of 46
SMs obtained by Revised
LP-OLDF

Golub (7,129
genes)

Signal (1,134
genes)

Noise (5,995
genes)

<0 0 >0 <0 0 >0 <0 0 >0

RIP 0 0 77 0 0 77 0 0 77

LP 0 0 77 0 0 77 0 0 77

IPLP 0 0 77 0 0 77 0 0 77

HSVM 0 0 77 0 0 77 0 0 77

SVM4 0 0 77 0 0 77 0 0 77

SVM1 0 0 77 0 0 77 0 0 77

5.2.3 Analysis of Signal Subspace and Noise Subspace
Obtained by RIP

Table 5.4 shows the discriminant results of 179 SMs by six MP-LDFs. Six MP-
LDFs can discriminate signal subspace correctly. H-SVM cannot discriminate the
noise subspace. Other five NMs are 1, 1, 1, 1, and 15, respectively. Moreover, SVM1
is worse than the other four LDFs. We recommended the penalty c � 1000 or 10000
instead of c � 1. Thus, we can confirm RIP can separate the microarray into signal
and noise subspaces correctly.

Table 5.4 Discriminant
results by six MP-LDFs of
179 SMs obtained by RIP

Signal (5,999 genes,
179 SMs)

Noise (1,139 genes)

<0 0 >0 <0 0 >0

RIP 0 0 72 1 0 71

IPLP 0 0 72 1 0 71

LP 0 0 72 1 0 71

HSVM 0 0 72 – – –

SVM4 0 0 72 1 0 71

SVM1 0 0 72 15 0 57



5.2 Validation of SM Found by the RIP and Revised LP-OLDF 201

Table 5.5 is the analysis of signal subspace and noise subspaces obtained by RIP.
The left six columns show the signal subspace with 5,990 genes included in 179
SMs, and the right six columns show the results of the noise subspace. Because the
microarray is as same as the signal subspace, we omit it from the table. In the signal
subspace, six RatioSVs are 100%, 18.59%, 0.362%, 61.88%, 55.71%, and 59.67%,
respectively. Because 25 class1 patients are on “SV� −1” and 47 class2 patients are
on “SV � 1,” RatioSV of RIP is 100%. However, the RatioSV of IPLP is 0.362%.
Revised IPLP-OLDF is a mixed model of Revised LP-OLDF and RIP. One subject
of AML class is outlier −161.5. Of the 47 subjects of ALL, only 8 are outliers,
and the maximum value of DS is 391.1. Following the RIP, there are as many as
63 subjects on the SV. However, nine subjects have large outliers, and RatioSV is
the smallest. This point is a disadvantage of RatioSV, which indicates that we must
interpret carefully. Although the magnitude of the actual fluctuation is small, the DSs
may become extremely different due to the influence of outliers. Because the noise
subspace is not LSD, H-SVM outputs the error. We consider that the RatioSVs are
useless for the overlapping data. Row “Outlier/NM” shows the numbers of outliers
are 0/0, 15/28, 1/8, 8/26, 25/47, and 12/47, respectively. Five NMs for the noise
subspace are 1, 1, 1, 1, and 15, respectively. The 15 positive bold figures of 25 AML
patients show the misclassified patients.
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Table 5.6 shows the coefficients of six MP-based LDFs for the signal subspace in
Table 5.5. Column “SN1” shows the sequential number of 7,129 genes corresponding
to the last column “Gene” that indicates gene name downloaded from Higgins HP.
Six figures of the second row show the nonzero number of six MP-based LDFs.
The 71 RIP coefficients are nonzero coefficients and displayed in the table. The
1,134 coefficients of three SVMs are not zero, and other 5,995 coefficients are zero
naturally. Column “SN2” shows only 71 nonzero coefficients of the RIP. We hide
7,058 rows with zero coefficients of the RIP. This column indicates the exciting
information as follows:

(1) Although nonzero coefficients of Revised IPLP-OLDF and Revised LP-OLDF
are 41 and 33,most nonzero coefficients are different from those of RIP. Because
LP defines Revised LP-OLDF and Revised IPLP-OLDF, both OLDFs can find
another vertex of the feasible region, the dimension of which is less than or
equal to the patient number 72.

(2) The 5,995 coefficients of three SVMs become zero naturally. This fact suggests
us we need not construct the complex theory such as LASSO. Even though
SVMs make many coefficients to zero, these SVMs are useless for the cancer
gene diagnosis because those cannot decompose Golub microarray into many
SMs.

Table 5.6 Coefficients of six MP-based LDFs for the signal subspace

SN1 SN2 RIP IPLP LP HSVM SVM4 SVM1 Gene

71 41 33 1134 1134 1134

127 1 − 0.188 − 0.279 0 0.002 0.003 0.002 X1868

134 2 − 0.116 0 0 0.002 0.002 0.002 X4505

149 3 0.183 0 0 0.002 0.002 0.002 X3214

153 4 0.865 0 0 0.004 0.005 0.004 X3617

199 5 0.008 0 0 0.000 0.000 0.000 X3868

204 6 0.911 0 0 − 0.001 − 0.001 − 0.001 X5259

214 7 − 0.475 0 0 0.008 0.008 0.008 X490

228 8 0.124 0 0 − 0.001 − 0.001 − 0.001 X5711

235 9 0.359 0 0 0.010 0.010 0.010 X668

246 10 1.227 0 0 0.012 0.012 0.012 X4399

252 11 0.268 0 0 0.007 0.007 0.007 X6340

254 12 0.630 0 0 0.010 0.010 0.010 X7073

258 13 − 0.348 0 0 0.004 0.004 0.004 X1350

285 14 0.472 0 0 0.005 0.005 0.005 X2942

286 15 − 0.324 0 0 0.004 0.004 0.004 X3070

(continued)
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Table 5.6 (continued)

SN1 SN2 RIP IPLP LP HSVM SVM4 SVM1 Gene

289 16 0.000 0 0 − 0.002 − 0.002 − 0.002 X3661

290 17 − 0.144 0 0 0.000 0.001 0.000 X4463

296 18 0.320 0 0 0.004 0.004 0.004 X5602

302 19 − 0.035 0 0 0.001 0.002 0.001 X469

310 20 − 0.388 0 0 0.001 0.002 0.001 X1694

313 21 − 0.586 0 0 0.005 0.005 0.005 X3824

329 22 0.392 0 0 0.004 0.004 0.004 X2045

332 23 0.505 0 0 0.006 0.006 0.006 X2241

341 24 0.892 0 0 0.002 0.002 0.002 X4621

343 25 0.069 0 0 0.002 0.002 0.002 X5006

347 26 0.010 0.2012 0 − 0.003 − 0.004 − 0.004 X6734

357 27 0.690 0 0 0.005 0.005 0.005 X1520

368 28 0.156 0 0 0.007 0.007 0.007 X5300

369 29 − 0.525 0 0 0.004 0.004 0.004 X5460

375 30 0.279 0 0 0.000 0.000 0.000 X695

380 31 0.139 0 0 0.003 0.003 0.003 X2685

382 32 − 0.643 0 0 0.005 0.005 0.005 X2995

390 33 0.080 0 0 − 0.004 − 0.003 − 0.004 X5088

391 34 − 0.132 0 0 0.000 0.000 0.000 X5356

401 35 0.106 0 0 0.008 0.008 0.008 X3494

412 36 0.174 0 0 0.005 0.005 0.005 X5335

413 37 − 0.466 0 0 0.003 0.002 0.002 X5739

424 38 − 0.046 0 0 0.004 0.003 0.004 X1354

425 39 − 0.149 0 0 0.006 0.005 0.006 X1365

427 40 − 0.356 0 0 0.004 0.004 0.004 X2855

432 41 0.192 0 0 0.006 0.006 0.006 X4307

440 42 0.125 0 0 0.000 0.001 0.001 X54

447 43 − 0.028 0 0 − 0.002 − 0.001 − 0.002 X1120

476 44 − 0.440 0 0 0.003 0.003 0.003 X3344

482 45 2.046 0 0 0.003 0.003 0.003 X5390

485 46 − 0.849 0 0 0.005 0.005 0.005 X6725

507 47 0.186 0 0 0.005 0.005 0.005 X6744

509 48 − 0.877 0 0 − 0.001 − 0.001 − 0.001 X815

521 49 − 0.084 0 0 − 0.004 − 0.004 − 0.004 X4104

568 50 0.137 0 0 0.001 0.002 0.001 X3688

642 51 − 0.099 0 0 − 0.004 − 0.004 − 0.004 X2463

670 52 1.434 0 0 0.002 0.002 0.002 X2278

(continued)
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Table 5.6 (continued)

SN1 SN2 RIP IPLP LP HSVM SVM4 SVM1 Gene

672 53 − 0.918 0 0 − 0.001 0.000 − 0.001 X2372

683 54 0.821 0 0 0.002 0.002 0.002 X6935

694 55 0.055 0 0 − 0.008 − 0.008 − 0.008 X2379

707 56 − 0.122 0 0 0.002 0.003 0.002 X6801

713 57 − 0.899 0 0 − 0.003 − 0.003 − 0.003 X1277

720 58 − 0.131 0 0 − 0.003 − 0.003 − 0.003 X2761

726 59 − 0.580 0 0 − 0.005 − 0.006 − 0.006 X5465

729 60 − 0.416 0 0 0.000 0.000 0.000 X5639

802 61 0.377 0 0 − 0.009 − 0.008 − 0.009 X5715

844 62 − 0.134 0 0 0.002 0.002 0.002 X2715

879 63 0.335 0 0 − 0.007 − 0.008 − 0.007 X4812

944 64 − 0.377 0 0 − 0.003 − 0.002 − 0.002 X6629

962 65 − 0.434 0 0 − 0.005 − 0.005 − 0.005 X3969

974 66 − 0.156 0 0 − 0.010 − 0.009 − 0.010 X6839

976 67 0.029 0.0208 0 − 0.015 − 0.014 − 0.014 X618

981 68 0.102 0 0 − 0.003 − 0.003 − 0.003 X1828

983 69 − 0.257 0 0 − 0.004 − 0.004 − 0.004 X2164

1036 70 − 0.239 − 0.111 0 − 0.002 − 0.002 − 0.002 X5506

1082 71 0.477 0 0 − 0.001 − 0.001 − 0.001 X990

C 6 − 19.869 0 0 − 23.693 − 23.900 − 23.751 X7130

5.3 Analysis of 179 SMs of Golub et al. Microarray (2018)

In 2015, LINGO Program3 decomposed the microarray into 67 SMs with 1,203
genes. However, when RIP of LINGO Program3 decomposes the microarray again
in 2018, it finds 179 SMs with 5,990 genes. We obtain more SMs and genes in 2018.
A yearly update of LINGO or the different iteration numbers cause these differences.
We consider 179 SMs are signals, and 1,134 gene subspaces are noise. Program3
can separate signals and noise very quickly. We need not develop a filtering method.
Althoughwe can analyze 179 SMs by the standard statisticalmethods, we cannot find
linear separable facts that two classes are entirely separable in each SM.Only logistic
regression can discriminate all SMs correctly (Cox 1958; Firth 1993). Because the
179 MNMs of SMs are zero, we can specify 179 pairs of genes included in 179
SMs as the cancer genes. We hope the medical specialists examine these SMs as the
cancer genes. However, there is also the idea that SM is not a signal representing
cancer genes. In other words, we recognize the signal data created by DS as the true
signal instead of genes included in SM.
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5.3.1 Validation of 179 SMs by Six MP-Based LDFs
and Discriminant Functions

Table 5.7 shows the 179 SMs from SM � 1 to SM � 179 found by RIP. Although
Revised LP-OLDF can decompose the microarray into 46 SMs, we explain those
results in Sect. 5.2. On the other hand, H-SVM can discriminate microarrays cor-
rectly. However, H-SVM could not decompose microarrays explained in Chap. 1.
The “Gene” column is the number of genes of each SM. The range of genes included
in the 179 SMs is [11, 54]. The average is 33.5. Row “Total” indicates 179 SMs
contain 5,990 genes.

Three RatioSVs of 179 SMs are shown from RIP column to H-SVM column.
Three ranges of RatioSV are [0.52, 28.80], [0.72, 25.1], and [1, 33.34], respectively.
Three averages of RatioSVs are 13.66%, 13.05%, and 16.68%, respectively. Row
“Max” indicates the number of the maximum RatioSVs among 179 SMs those are
28, 18, and 133, respectively. To summarize these results, the range, average, and
maximum number of H-SVM are better than RIP because the maximization SV of
H-SVM works well for LSD. Moreover, two RatioSVs of LP and IPLP are bigger
than those of the signal in Table 5.5. Two columns “Max andMin” are the maximum
and minimum values of three LDFs except for IPLP, SVM4 and SVM1.

Because all NMs of logistic regression and SVM4 are zero and 179 SMs are
linearly separable, we omit these columns from the table. Three columns “SVM1,
LDF2, and QDF” show the NM (Sall et al. 2004). Three ranges are [0, 23], [0, 9],
and [0, 30], respectively. The averages are 2.12, 1.53, and 2.54, respectively. Three
numbers of misclassified SMs are 68, 112, and 59, respectively. SVM1 cannot dis-
criminate 68 SMs correctly, and NMs may increase according to decreased RatioSV.
SVM1,LDF2, andQDFcannot discriminate 68SMs, 112SMs, and 59SMs correctly.

Table 5.7 Evaluation of 179 SMs by RatioSVs and NMs

SM Gene RIP LP HSVM Max Min SVM1 LDF2 QDF

1 18 15.91 14.58 18.03 18.03 14.58 0 2 0

2 30 17.38 17.58 17.33 17.58 17.33 0 0 0

3 17 4.74 5.19 5.18 5.19 4.74 2 5 21

4 26 15.32 15.65 14.95 15.65 14.95 0 2 0

5 19 19.38 19.86 20.36 20.36 19.38 0 1 1

6 29 18.53 13.25 25.37 25.37 13.25 0 0 0

7 22 21.19 21.94 22.37 22.37 21.19 0 0 0

8 20 8.73 21.27 22.22 22.22 8.73 0 0 0

9 26 17.17 19.24 19.99 19.99 17.17 0 3 11

10 25 23.09 25.10 26.38 26.38 23.09 0 0 0

11 29 17.78 20.20 21.83 21.83 17.78 0 0 0

(continued)
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Table 5.7 (continued)

SM Gene RIP LP HSVM Max Min SVM1 LDF2 QDF

12 28 14.72 17.69 18.94 18.94 14.72 0 1 0

13 16 19.01 15.94 12.69 19.01 12.69 0 1 0

14 32 16.63 17.92 20.68 20.68 16.63 0 1 0

15 21 15.84 17.28 21.94 21.94 15.84 0 2 0

16 12 9.82 9.99 10.09 10.09 9.82 0 3 0

17 28 18.14 20.21 27.61 27.61 18.14 0 0 0

18 27 25.28 22.16 23.12 25.28 22.16 0 1 0

19 16 13.10 14.02 17.44 17.44 13.10 0 2 0

20 37 14.46 12.93 21.22 21.22 12.93 0 1 0

21 20 19.65 18.89 19.14 19.65 18.89 0 0 0

22 28 19.62 16.21 18.48 19.62 16.21 0 0 5

23 48 27.21 13.54 23.80 27.21 13.54 0 0 0

24 37 23.46 22.57 30.64 30.64 22.57 0 0 0

25 45 21.71 17.11 23.11 23.11 17.11 0 0 0

26 39 23.23 16.02 22.37 23.23 16.02 0 0 0

27 38 22.46 19.09 25.04 25.04 19.09 0 0 0

28 45 9.15 12.48 24.68 24.68 9.15 0 0 0

29 36 27.18 24.47 26.48 27.18 24.47 0 0 0

30 26 20.61 22.69 21.56 22.69 20.61 0 0 0

31 26 18.76 18.91 16.94 18.91 16.94 0 0 0

32 29 28.80 16.86 19.82 28.80 16.86 0 0 0

33 27 20.79 17.83 24.32 24.32 17.83 0 0 0

34 20 15.02 14.52 15.49 15.49 14.52 0 2 0

35 24 8.27 12.46 13.01 13.01 8.27 0 1 0

36 22 23.46 22.72 24.64 24.64 22.72 0 0 0

37 16 9.61 8.00 10.34 10.34 8.00 0 4 3

38 18 8.55 10.45 9.61 10.45 8.55 0 4 19

39 28 10.76 20.81 17.82 20.81 10.76 0 2 0

40 31 10.13 17.46 20.90 20.90 10.13 0 0 3

41 26 19.77 13.18 15.21 19.77 13.18 0 0 0

42 29 18.83 24.32 29.34 29.34 18.83 0 1 0

43 17 9.76 11.97 11.48 11.97 9.76 0 1 0

44 54 13.91 18.17 30.04 30.04 13.91 0 1 0

45 28 20.46 19.23 20.66 20.66 19.23 0 0 0

46 39 13.25 9.69 14.77 14.77 9.69 0 1 0

47 28 22.99 21.28 23.38 23.38 21.28 0 0 0

48 34 13.07 11.16 14.40 14.40 11.16 0 2 0

49 20 10.72 16.58 16.59 16.59 10.72 0 0 0

50 34 12.74 13.98 16.25 16.25 12.74 0 2 0

(continued)
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Table 5.7 (continued)

SM Gene RIP LP HSVM Max Min SVM1 LDF2 QDF

51 26 11.71 14.14 13.20 14.14 11.71 0 2 0

52 13 10.79 11.02 11.11 11.11 10.79 0 1 11

53 46 17.86 16.48 20.23 20.23 16.48 0 1 0

54 22 14.80 18.74 17.20 18.74 14.80 0 1 0

55 34 11.31 19.32 23.16 23.16 11.31 0 1 1

56 43 15.71 11.81 21.76 21.76 11.81 0 0 0

57 26 15.70 16.83 15.50 16.83 15.50 0 1 0

58 33 20.78 24.13 25.36 25.36 20.78 0 0 0

59 31 20.59 13.03 27.08 27.08 13.03 0 1 0

60 32 12.45 14.30 19.03 19.03 12.45 0 0 0

61 21 13.30 12.32 12.89 13.30 12.32 0 4 4

62 37 22.05 18.98 18.61 22.05 18.61 0 1 0

63 37 22.96 17.02 27.83 27.83 17.02 0 0 0

64 24 14.27 15.72 17.87 17.87 14.27 0 0 0

65 29 15.12 10.87 20.11 20.11 10.87 0 2 0

66 23 18.65 22.06 20.70 22.06 18.65 0 1 0

67 23 7.15 13.88 12.37 13.88 7.15 0 2 0

68 34 11.95 13.82 16.50 16.50 11.95 0 2 0

69 28 16.55 18.64 21.50 21.50 16.55 0 0 0

70 30 14.55 16.74 23.61 23.61 14.55 0 0 0

71 44 23.47 20.37 29.53 29.53 20.37 0 0 0

72 25 20.89 19.75 21.63 21.63 19.75 0 1 0

73 28 19.44 13.61 19.86 19.86 13.61 1 1 9

74 44 19.45 18.30 20.55 20.55 18.30 0 0 1

75 11 4.27 4.23 4.83 4.83 4.23 1 1 0

76 42 13.54 15.29 20.64 20.64 13.54 0 1 0

77 43 15.10 11.68 22.68 22.68 11.68 0 0 0

78 23 4.17 14.44 16.54 16.54 4.17 1 1 0

79 35 11.86 13.77 18.55 18.55 11.86 0 0 0

80 21 17.78 17.23 17.58 17.78 17.23 0 1 0

81 34 14.84 13.12 16.29 16.29 13.12 0 0 3

82 39 16.03 10.00 17.75 17.75 10.00 0 2 0

83 40 27.29 20.35 23.38 27.29 20.35 0 0 0

84 41 15.05 14.22 25.70 25.70 14.22 0 0 0

85 30 7.03 11.73 13.91 13.91 7.03 0 3 0

86 44 12.66 11.17 18.40 18.40 11.17 0 1 0

87 39 12.73 13.49 17.95 17.95 12.73 0 1 2

88 32 21.98 22.81 20.25 22.81 20.25 0 0 0

(continued)
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Table 5.7 (continued)

SM Gene RIP LP HSVM Max Min SVM1 LDF2 QDF

89 34 16.30 16.18 24.38 24.38 16.18 0 0 1

90 23 13.81 14.49 17.90 17.90 13.81 0 1 0

91 47 20.65 14.02 33.34 33.34 14.02 0 0 0

92 30 20.28 18.79 21.45 21.45 18.79 0 0 0

93 40 17.80 18.55 23.04 23.04 17.80 0 0 0

94 32 16.59 13.42 20.66 20.66 13.42 0 0 0

95 17 15.73 16.71 19.43 19.43 15.73 0 0 0

96 38 11.86 9.94 15.43 15.43 9.94 0 1 0

97 30 15.04 13.43 15.41 15.41 13.43 0 0 0

98 29 14.27 13.15 14.82 14.82 13.15 0 2 0

99 43 11.97 10.48 11.95 11.97 10.48 0 1 0

100 31 15.21 11.63 16.66 16.66 11.63 0 0 0

101 38 11.93 11.28 15.59 15.59 11.28 2 1 1

102 36 8.40 9.44 11.33 11.33 8.40 5 5 3

103 32 10.18 9.75 13.79 13.79 9.75 1 2 0

104 44 8.43 12.56 19.91 19.91 8.43 0 0 0

105 25 15.39 12.76 13.71 15.39 12.76 0 2 0

106 35 17.41 17.05 17.53 17.53 17.05 2 1 4

107 39 12.39 11.36 16.71 16.71 11.36 0 1 3

108 35 5.12 7.65 13.92 13.92 5.12 0 2 1

109 34 26.38 23.82 25.91 26.38 23.82 0 0 0

110 33 10.05 12.82 14.09 14.09 10.05 0 1 1

111 27 9.34 11.48 14.27 14.27 9.34 1 3 0

112 36 20.27 11.46 22.38 22.38 11.46 0 0 0

113 34 15.07 10.56 13.83 15.07 10.56 1 4 0

114 38 15.62 18.36 19.85 19.85 15.62 0 1 3

115 39 14.58 10.53 17.25 17.25 10.53 2 1 0

116 37 12.03 7.21 19.45 19.45 7.21 1 0 0

117 42 15.02 16.49 16.78 16.78 15.02 0 1 0

118 37 15.49 11.37 13.89 15.49 11.37 3 3 0

119 41 13.61 15.25 21.32 21.32 13.61 0 0 0

120 34 14.39 9.24 15.25 15.25 9.24 0 3 3

121 32 13.06 11.51 15.86 15.86 11.51 0 2 0

122 31 8.95 20.25 18.87 20.25 8.95 1 1 0

123 43 14.31 15.34 27.17 27.17 14.31 0 0 0

124 28 9.66 8.63 9.78 9.78 8.63 2 3 0

125 35 12.41 9.49 11.44 12.41 9.49 2 1 2

126 45 10.55 15.99 14.61 15.99 10.55 3 0 0

127 54 24.40 14.33 23.86 24.40 14.33 0 1 0

128 31 7.82 11.15 10.44 11.15 7.82 2 2 0

(continued)
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Table 5.7 (continued)

SM Gene RIP LP HSVM Max Min SVM1 LDF2 QDF

129 30 6.31 5.65 5.91 6.31 5.65 2 8 2

130 44 11.67 10.51 13.64 13.64 10.51 2 3 1

131 41 14.64 10.65 17.32 17.32 10.65 1 0 0

132 46 25.52 14.96 25.44 25.52 14.96 0 0 0

133 28 9.64 8.90 10.42 10.42 8.90 2 5 14

134 34 11.63 11.17 13.85 13.85 11.17 1 2 0

135 36 10.60 9.60 11.53 11.53 9.60 2 4 0

136 33 6.97 8.82 8.90 8.90 6.97 1 3 4

137 34 7.54 11.92 11.31 11.92 7.54 5 2 0

138 38 8.68 11.18 16.75 16.75 8.68 2 1 8

139 33 13.42 11.23 16.90 16.90 11.23 1 0 0

140 25 10.35 10.21 11.42 11.42 10.21 1 0 0

141 29 10.60 13.24 15.12 15.12 10.60 2 0 13

142 34 13.36 14.49 18.19 18.19 13.36 2 0 13

143 32 14.51 11.05 17.75 17.75 11.05 2 0 13

144 40 6.13 7.62 13.63 13.63 6.13 7 0 2

145 39 11.81 7.39 12.83 12.83 7.39 3 0 13

146 36 17.81 13.31 22.72 22.72 13.31 1 0 10

147 37 4.03 6.34 9.71 9.71 4.03 5 2 16

148 31 13.57 13.64 13.91 13.91 13.57 4 1 2

149 35 16.91 11.52 14.79 16.91 11.52 1 1 2

150 32 6.85 6.33 7.99 7.99 6.33 5 3 1

151 35 4.60 4.19 8.79 8.79 4.19 7 3 22

152 40 5.26 3.90 7.84 7.84 3.90 5 4 0

153 48 15.12 14.24 26.13 26.13 14.24 1 1 6

154 35 12.28 10.77 13.11 13.11 10.77 6 2 1

155 52 9.19 6.72 13.93 13.93 6.72 6 0 0

156 27 12.09 9.68 11.18 12.09 9.68 4 3 1

157 42 3.97 4.93 5.35 5.35 3.97 5 5 9

158 36 9.16 8.27 14.58 14.58 8.27 4 1 6

159 37 7.27 5.72 12.26 12.26 5.72 6 4 0

160 37 9.98 7.73 9.55 9.98 7.73 6 5 0

161 48 9.46 3.26 7.21 9.46 3.26 8 5 8

162 32 6.80 4.98 7.29 7.29 4.98 6 8 2

163 49 5.22 5.71 8.17 8.17 5.22 6 3 22

164 46 7.40 3.98 10.86 10.86 3.98 6 5 0

165 49 7.62 8.21 15.05 15.05 7.62 5 3 7

(continued)
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Table 5.7 (continued)

SM Gene RIP LP HSVM Max Min SVM1 LDF2 QDF

166 44 9.79 9.50 11.86 11.86 9.50 5 2 1

167 45 4.25 2.51 6.66 6.66 2.51 12 6 6

168 49 9.08 1.84 9.56 9.56 1.84 7 3 6

169 46 6.81 2.75 7.90 7.90 2.75 10 2 0

170 49 2.76 3.57 4.17 4.17 2.76 12 7 0

171 43 5.32 3.03 4.22 5.32 3.03 17 3 0

172 40 3.99 4.01 5.53 5.53 3.99 16 5 13

173 41 2.65 1.53 3.17 3.17 1.53 11 9 0

174 45 7.46 4.84 9.12 9.12 4.84 15 4 10

175 43 4.34 1.52 4.82 4.82 1.52 21 3 4

176 42 6.71 2.79 5.26 6.71 2.79 23 3 30

177 39 0.63 0.72 1.00 1.00 0.63 23 9 28

178 32 0.52 1.52 2.30 2.30 0.52 21 4 17

179 46 5.41 5.08 5.83 5.83 5.08 21 2 25

Max 54 28.80 25.10 33.34 33.34 24.47 23 9 30

Min 11 0.52 0.72 1.00 1.00 0.52 0 0 0

Average 33.4637 13.66 13.05 16.68 17.09 11.89 2.1229 1.5307 2.5363

Max SMs 28 18 133 Misclassified 68 112 59

Total 5,990 SMs

5.3.2 Correlation Coefficient of Discriminant Score of 179
RIPs

Figure 5.1 shows the distribution of correlation coefficients of 179 RipDSs. The
correlation coefficient varies widely in the range of 0.07–0.88, and it is a unimodal
distribution in which the skirt spreads to the lower value side. Due to the diversity of
cancer, it is necessary to determine which RipDS group having high correlation coef-
ficients are complementary to each other, or which RipDS having small correlations
represent different kinds of cancer; it is a future research topic.
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Fig. 5.1 Distribution of 179
RipDSs correlations

Table 5.8 shows correlation coefficient pairs of 179 RipDSs arranged in descend-
ing order by correlation coefficient values. The table shows only the top ten sets
with high correlation coefficient and the ten lower groups with lower correlation
coefficient. Of the ten pairs taking values from 0.86 to 0.88, five sets of RIP21 and
(RIP54, RIP36, RIP1, RIP18, RIP45) have a correlation coefficient of RIP21 and
0.86 or more. These five pairs are expected to be the core of discrimination between
AML and ALL. On the other hand, the lower ten sets have correlation coefficients
of 0.07–0.1, and the eight pairs of RIP178 and (RIP177, RIP56, RIP133, RIP163,
RIP128, RIP150, RIP172, RIP170) have low correlation with each other. Golub et al.
have said they are studying class prediction to discover new cancer classes and assign
tumors to known classes from 1970. Because the conventional biological insights
are difficult to classify cancer with a systematic and unbiased approach, they used
microarray to classify cancer by the co-expression of thousands of genes. They said
that they developed a more systematic approach to cancer and started to discover
variants of cancer. Then, SOC is divided into two classes, and they evaluate two
clusters by the weighted voting method with LOO. However, our analysis indicates
ten pairs of DS with a small correlation coefficient of 0.1 or less are different DSs
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with no correlation with each other. We think that it is meaningful to study these
medically. Chapter 4 indicates the correlations of genes included in each SM take
the positive, almost zero, and negative values, and all correlations of 179 RipDSs are
positive values. Thus, we have considered signal data is a reliable signal.

Table 5.8 Correlation coefficient pairs of 179 RipDSs

Var. Versus
var.

Correlation Frequency Lower
95%

Upper
95%

p-value

1 RIP54 RIP21 0.88 72 0.81 0.92 0.00

2 RIP36 RIP21 0.88 72 0.81 0.92 0.00

3 RIP21 RIP1 0.87 72 0.80 0.92 0.00

4 RIP21 RIP18 0.87 72 0.80 0.92 0.00

5 RIP24 RIP5 0.87 72 0.80 0.92 0.00

6 RIP95 RIP23 0.87 72 0.80 0.92 0.00

7 RIP36 RIP1 0.87 72 0.80 0.92 0.00

8 RIP45 RIP21 0.86 72 0.79 0.91 0.00

9 RIP58 RIP18 0.86 72 0.79 0.91 0.00

10 RIP36 RIP31 0.86 72 0.79 0.91 0.00

– – – – – – – –

15922 RIP178 RIP177 0.10 72 −0.14 0.32 0.41

15923 RIP170 RIP102 0.10 72 −0.14 0.32 0.42

15924 RIP178 RIP56 0.09 72 −0.14 0.32 0.43

15925 RIP178 RIP133 0.09 72 −0.14 0.32 0.44

15926 RIP178 RIP163 0.09 72 −0.14 0.32 0.44

15927 RIP178 RIP128 0.09 72 −0.15 0.31 0.46

15928 RIP178 RIP150 0.08 72 −0.16 0.31 0.51

15929 RIP177 RIP167 0.08 72 −0.16 0.30 0.53

15930 RIP178 RIP172 0.07 72 −0.16 0.30 0.55

15931 RIP178 RIP170 0.07 72 −0.16 0.30 0.56

Figure 5.2 is a correlation matrix of pairs of RIP36 and RIP54 highly correlated
with RIP21 and a combination of RIP170 and RIP172 having a low correlation
with RIP178. There are no correlations between scatter plots of low correlation
pairs. Moreover, there are many patients on SV � −1 or 1. Scatter plots between
(RIP21, RIP36, RIP54) and (RIP170, RIP172, RIP178) indicate the surprising fact.
If we ignore the outliers of (RIP170, RIP172, RIP178), the variations of these three
variables are smaller than (RIP21, RIP36, RIP54). If this is a general trend, in addition
to choosing RipDSs with large RatioSV values, it is conceivable to use the high
correlations pairs of RipDSs.

Future research topic: We must confirm the above fact in the future theme.
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Fig. 5.2 Correlation matrix
of six variables

5.4 Verification of SM3 and SM179

5.4.1 RatioSV of SM3 and SM179

Table 5.9 is the comparison of SM3 and SM179 because all results of 179 SMs take
many pages. Although RIP chooses SM3 early, RatioSV of RIP is small as 4.745%.
Although SM179 was the last selected, RatioSV of RIP is fairly large 5.41%. The
numbers of RIP’s outliers are larger than Table 5.5. This indicates RIP find the special
data structure of RatioSV � 100%. Importantly, when judging the signal space of
179 SMs in Table 5.5, all patients locate on SV. However, if microarray is divided
into 179 SMs, the “RatioSV and Outlier” of RipDSs are the same as for other LDFs.
We want to explain this fact more clearly in the future.
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5.4.2 T-Test of RIP3 and RIP179

Table 5.10 is a t-test inwhich the variance of the difference between the average values
of ALL and AML of 17 genes included in SM3 and 46 genes included in SM179 is
different. In some studies, there are things like looking for ones with large t-values as
oncogenes. However, this is amistake. In the SM3, there are six genes having t-values
higher than 1 and four genes for t-values less than −2. Other seven genes are from
−0.743 to 1. In SM179, twelve t-values are higher than 1, and two t-values are less
than−1. Other 32 genes are from−1 to 1. In both cases, the genes that are thought to
have no difference in the average value of the expression levels of AML and ALL are
the most frequent. Although these genes may not be distinguished by themselves,
we consider that these genes are essential for discrimination in combination with
other genes. Moreover, those that become positive are probably cancer genes, while
those that become negative are suppression genes. However, those genes that have no
differences in mean on t-test are considered to be necessary for the discrimination,
also. That is, it is impossible to identify cancer genes by t-test.

Table 5.10 T-test with 17 genes in SM3 and 46 genes in SM179

RIP3 RIP179

X Y Difference T-value X Y Difference T-value

X7130 X4375 1.625 4.977 X7130 X3186 0.034 2.156

X7130 X4621 0.978 2.971 X7130 X2709 0.041 1.978

X7130 X4677 0.731 2.839 X7130 X6503 0.059 1.944

X7130 X5088 1.175 2.677 X7130 X3173 0.025 1.768

X7130 X4625 0.498 1.855 X7130 X1754 0.019 1.654

X7130 X4566 0.212 1.381 X7130 X5203 0.015 1.415

X7130 X7127 0.004 1.000 X7130 X6235 0.025 1.318

X7130 X4045 0.191 0.969 X7130 X1556 0.018 1.235

X7130 s3X3762 0.123 0.560 X7130 X1237 0.008 1.122

X7130 X5081 0.051 0.114 X7130 X2535 0.031 1.050

X7130 X4062 −0.066 −0.176 X7130 X3589 0.029 1.046

X7130 X4619 −0.253 −0.593 X7130 X5000 0.025 1.038

X7130 X6171 −0.161 −0.743 X7130 X6085 0.003 1.000

X7130 X6196 −0.945 −2.394 X7130 X2747 0.005 1.000

X7130 X5987 −0.792 −2.461 X7130 X4080 0.005 1.000

X7130 X6218 −2.966 −5.867 X7130 s179X5 0.004 1.000

X7130 X6201 −3.537 −6.240 X7130 X3001 0.007 1.000

(continued)
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Table 5.10 (continued)

RIP3 RIP179

X Y Difference T-value X Y Difference T-value

X7130 X2466 0.009 1.000

X7130 X888 0.013 1.000

X7130 X1148 0.018 1.000

X7130 X320 0.014 0.869

X7130 X2465 0.009 0.838

X7130 X3470 0.031 0.674

X7130 X3610 0.008 0.388

X7130 X1841 0.004 0.276

X7130 X5616 0.002 0.024

X7130 X5961 −0.002 −0.067

X7130 X4009 −0.002 −0.108

X7130 X2790 −0.005 −0.151

X7130 X1489 −0.005 −0.246

X7130 X3212 −0.023 −0.538

X7130 X1388 −0.019 −0.555

X7130 X5724 −0.018 −0.628

X7130 X5222 −0.050 −0.733

X7130 X2192 −0.095 −0.786

X7130 X6718 −0.055 −0.827

X7130 X1637 −0.002 −0.857

X7130 X3143 −0.014 −0.875

X7130 X4603 −0.083 −0.921

X7130 X5038 −0.013 −1.000

X7130 X1783 −0.038 −1.000

X7130 X3976 −0.042 −1.000

X7130 X6541 −0.082 −1.000

X7130 X4338 −0.089 −1.000

X7130 X2310 −0.038 −1.016

X7130 X1707 −0.086 −1.289
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5.4.3 BGS and Yamanaka’s Four Genes of IPS Research

LINGO Program4 is a program that directly finds BGS. We will explain it with
Alon’s microarray having 2,000 genes. Six microarrays are LSD (Fact3). If we omit
the first gene and a set having 1,999 genes is LSD, Program4 omits the first gene.
If the set having 1,999 genes is not LSD, the first gene is the necessary gene to be
LSD, so restore it. Program4 repeats this simple operation until the 2,000th gene. In
this way, Program4 obtains the first BGS (BGS1). This procedure is the same as the
way Dr. Yamanaka’s group found four genes from 24 genes in iPS research. That
is, Yamanaka’s four genes are the same as BGS. In our study, we have searched for
BGS1 in 2,000 genes instead of 24 genes, so it took about 30 min to compute. We
stopped here and omitted BGS1 from 2,000 genes. Next, we found the second BGS
(BGS2). By repeating this operation, we found 130 pairs of BGS in about one week.
We regret not to notice the relationship with iPS research sooner. The four genes
contain carcinogenic c-myc. Instead, they took many efforts to find a L-myc without
carcinogens. If our research is applicable, we omit the first four genes from 24 genes
and find something equivalent to BGS2 that may include L-myc; we believe we could
contribute to iPS cell research. However, even if we add another gene to the gene of
LSD, it is LSD. On the other hand, in iPS cell research, it is decisively different in
that adding other genes to the set of 24 genes has a limit not to become iPS cells.

If Program4 analyzes SM3 having 17 genes, we can see that a set of 10 bold genes
in Table 5.10 is BGS in a short time. If we omit either of X5081 or X6171, those
NMs are three.

In addition, when we discriminate 5668 subjects (1864 cancer and 3804 healthy)
by 47 oncogenes found medically, the error rate is 22.6182%. Although it is clinical
center data including many patients who have received treatment such as surgery
and have a poor prognosis, we believe we cannot discriminate even strictly managed
data by oncogenes alone. Only SMs are useful for cancer gene diagnosis.

This claim realizes the dream of Golub et al. That is, since oncogenes found by
conventional medical approach is insufficient for medical diagnosis, they wished to
establish a method to systematically analyze information possessed by microarray.
Perhaps we think our method is useful for achieving their purpose after they will
examine and validate our results.

5.4.4 PCA and Cluster Analysis

Figure 5.3 shows eigenvalues, scatter plot, and factor loading plot of SM3. Although
the three RatioSVs of three OLDFs are about 5%, they overlap perfectly. The figures
displayed in the scatter plot are SNs. The 25 AML patients are SN � 1,…, 25, and
the 47 ALL patients are SN� 26,…, 72.We can recognize that both classes overlap.
We cannot find the linear separable facts of AML and ALL on the scatter plot of
Prin1 and the Prin2 that can show the large data variations. This fact indicates that to
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find the LSD is irrelevant to large data variations. There is a possibility that it may be
possible to capture signs of linear separation with high-order principal components
having less data fluctuation. However, three OLDFs can easily catch the linear sepa-
rability. At the time of 2015, we thought that the standard statistical methods offer the
critical meaning of cancer gene analysis. However, we conclude that those methods,
except for logistic regression, are utterly meaningless now. Therefore, initially we
considered SM as a signal, but we reconsidered the signal data as a signal.

Fig. 5.3 Eigenvalues, scatter plot, and factor loading plot of SM3

Figure 5.4 is Ward cluster analysis of SM3. The left black cases are 25 AML
patients, and thewhite color cases are 47ALL patients. Althoughwe tried to interpret
of this result, it came to think that it had no meaning as same as PCA in Fig. 5.3.
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Fig. 5.4 Ward cluster
analysis of SM3

5.5 Analysis of Signal Data Made by 179 RipDSs

When logistic regression discriminates 179 SMs, all NMs become 0. As Table 5.7
shows, SVM1, LDF2, and QDF cannot discriminate 23, 9, and 30 cases, respectively.
Also, all NMs of SVM4are 0, butmanyNMsof SVM1are not 0. There are no signs of
linear separation in PCA or cluster analysis. Thus, cluster analysis and PCA analyze
the signal data made by RIP, LP, HSVM. The 64 SMs obtained by LP get almost the
same result, but we omit the results.
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5.5.1 Cluster Analysis and PCA of RipDSs Signal Data

(1) Ward Cluster

Figure 5.5 is a cluster analysis of RipDS signal data. The upper blue part is 25 cases
of AML, and the red part is 47 cases of ALL. If we choose five clusters, AML
becomes one cluster and ALL consists of four clusters. RIP66 (Brawn) and RIP65
(Pale green) of bottom two DSs become two different clusters.

Fig. 5.5 Cluster analysis of RipDSs signal data

(2) PCA

Figure 5.6 shows the result of RipDS signal data by PCA. From the left eigenvalue,
the eigenvalue of the Prin1 is larger than the others. The first eigenvalue is 109.327,
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and the contribution rate is 61.077%.The second eigenvalue is 4.756, the contribution
rate is 2.65%, and the cumulative contribution rate is 63.734%. That is, the Prin1
presents 179 RipDS signal data. From the scatter plot in the middle, because the
second eigenvalue is a small value and the variance is small, AML cases are almost
placed on the Prin1 axis of −7 or less. It is as same as the healthy subjects in Alon
and Singh’s microarrays. The range of ALL is [2.556, 16.713], and the variation of
the Prin2 becomes slightly large as it departs from AML. This result is similar to
the result of Alon and Singh between cancer and healthy subjects. The case of ALL
with SN � 65 is a clear outlier. The Prin1 becomes a malignancy indicator as well
as individual RipDS.

Fig. 5.6 Result of RipDS signal data by PCA

(3) RIP, LP, and H-SVM Prin1 Values and RatioSV

Third rows or less of the first column of Table 5.11 indicates the value of SN. The
second column is the value of the Prin1, and we sort this value in ascending order
from a small value. In Fig. 5.6, the left end is the SN � 25 belonging to AML, and
the value of the Prin1 is −17.071. The SN � 11 of AML has a value of −9.986,
which is closest to ALL class, and the range of AML is [−17.071, −9.986].

On the other hand, the SN � 42 of ALL class is closest to AML and is 2.556. The
SN� 65 of ALL class is 16.713, and the range of ALL is [2.556, 16.713]. A window
is open in the interval (−9.986, 2.556), and when RatioSV of PCA is calculated for
the range [−17.071, 16.713] on the Prin1, a large window of 37.122% opens. AML
and ALL locate on two separate ranges those are in 63% remaining. Because it is
comprehensive of 179 RipDSs, it is 8.3% larger than the maximum value of 179
RipDSs, which is 28.799%. That is, the Prin1 axis of PCA becomes a malignancy
indicator.
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Table 5.11 RIP, LP, and HSVM Prin1 values and RatioSV

RatioSV 37.122 30.806 31.100

SN RIPprin1 SN LPprin1 SN HSVMprin1

25 −17.071 25 −17.518 17 −19.364

18 −16.640 17 −17.160 25 −18.822

22 −16.577 18 −16.923 18 −18.272

17 −16.504 22 −16.547 22 −17.949

3 −16.223 1 −15.767 1 −17.217

1 −15.709 4 −15.660 3 −16.681

12 −15.618 3 −15.564 12 −16.590

13 −15.403 12 −15.058 4 −16.430

4 −15.119 13 −14.376 14 −15.039

7 −14.461 15 −14.273 7 −14.997

14 −13.985 7 −14.222 13 −14.969

15 −13.822 14 −14.147 15 −14.958

23 −12.949 2 −13.934 2 −14.220

21 −12.580 19 −13.217 23 −13.976

5 −12.563 23 −13.016 5 −13.754

8 −12.542 6 −12.759 19 −13.683

2 −12.438 5 −12.726 21 −13.575

9 −12.380 21 −12.659 6 −13.086

6 −12.361 10 −12.225 8 −12.982

19 −12.242 8 −12.177 10 −12.807

16 −11.985 16 −11.888 20 −12.608

20 −11.927 20 −11.862 16 −12.429

24 −11.395 9 −11.459 9 −12.010

10 −11.392 24 −11.231 24 −11.770

11 −9.986 11 −9.826 11 −10.381

42 2.556 57 1.236 57 1.884

57 2.724 42 1.820 42 1.918

27 3.261 27 2.849 43 2.957

43 3.277 43 2.857 27 3.326

62 4.121 63 3.683 70 4.350

70 4.235 70 4.071 47 4.563

52 4.405 37 4.431 63 4.751

63 4.720 52 4.457 52 4.820

55 4.743 55 4.576 28 4.875

28 4.802 28 4.631 55 4.901

33 4.950 67 4.769 62 5.130

51 5.374 47 4.934 37 5.230

(continued)
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Table 5.11 (continued)

RatioSV 37.122 30.806 31.100

SN RIPprin1 SN LPprin1 SN HSVMprin1

47 5.399 38 5.048 33 5.267

37 5.421 72 5.155 38 5.423

44 5.636 51 5.392 72 5.586

67 5.670 44 5.736 29 5.606

72 5.725 29 5.780 67 5.814

38 5.927 33 5.781 44 6.006

31 5.961 62 5.916 51 6.252

29 5.971 53 6.209 45 6.363

45 6.090 31 6.286 31 6.368

53 6.378 59 6.561 53 6.563

39 6.496 45 6.596 59 7.030

49 6.766 26 6.727 68 7.102

64 6.808 64 6.828 39 7.269

59 6.976 39 6.853 56 7.527

71 7.023 71 7.015 49 7.611

68 7.189 68 7.064 71 7.719

56 7.507 49 7.193 26 7.782

26 7.995 36 7.225 64 7.797

54 8.185 56 7.298 36 9.090

46 8.598 35 8.262 54 9.128

50 8.748 50 9.062 48 9.430

48 8.990 66 9.253 46 9.502

69 9.090 61 9.503 35 9.842

36 9.318 54 9.596 61 10.098

61 9.394 46 9.735 50 10.307

35 9.947 32 9.845 32 10.501

41 9.998 48 9.869 69 10.595

32 10.298 34 10.245 41 11.142

66 10.337 41 10.636 34 11.333

34 10.572 69 10.931 66 11.426

40 10.951 40 11.034 40 12.174

30 11.335 30 14.306 30 14.108

58 13.363 60 14.670 60 15.586

60 13.930 58 15.876 58 16.443

65 16.713 65 18.391 65 20.074
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5.5.2 Cluster Analysis and PCA of HsvmDSs Signal Data

(1) Ward Cluster

Figure 5.7 is a cluster analysis of HsvmDS signal data. The upper blue part is 25 cases
ofAML, and the red part is 47 cases ofALL. Ifwe choose five clusters,AMLbecomes
two clusters and ALL consists of three clusters. HSVM65 (Pale green) becomes one
cluster. In Sect. 5.5.1, AML is mild cancer compared with ALL, showing a tendency
similar to the normal class of Alon and Singh. However, in the signal data made
by H-SVM, it was divided into two clusters. It is easy to obtain different clusters
by changing the number of clusters in three signal data by five hierarchical cluster
analyses. That is, it may be suitable for exploring new cancer subclasses pointed by
Golub et al.

Fig. 5.7 Ward cluster analysis of HsvmDSs signal data
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Figure 5.8 shows the result of HsvmDS signal data by PCA. The eigenvalues of
the Prin1 are larger than others. The first eigenvalue is 128.23, and the contribution
rate is 71.64%. The second eigenvalue is 4.496, the contribution rate is 2.51%, and
the cumulative contribution rate is 74.15%. That is, the Prin1 presents 179 HsvmDSs
signal data. From the scatter plot, because the second eigenvalue is small and the
variance is small, AML cases are almost placed on the Prin1 axis of−10 or less. The
ALL patients are in the range [1.88, 20.07], and the variation of the Prin2 becomes
large as it departs fromAML class. In other words, the Prin1 becomes an indicator of
malignancy indicator as well as individual HsvmDS. The fifth column in Table 5.11
is SN value, and the sixth column is the value of the Prin1 of the HsvmDS signal data,
which was sorted in ascending order. The leftmost point is the SN� 17, and the value
of the Prin1 is −19.36. The SN � 11 takes a value of −10.381, closest to ALL. The
range of AML is [−19.36, −10.38]. On the other hand, the SN � 57 of ALL class
is closest to AML and is 1.884. Moreover, the SN � 65 of ALL class is 20.074. The
range of ALL class is [1.88, 20.07]. The window (−10.38, 1.88) opens, and when
RatioSVofPCA is calculated for the range [−19.36, 20.07], awindowof 31.1%open,
which is smaller than 33.34% of the maximum value of RatioSV of HsvmDSs. In
other words, rather than considering the Prin1 axis of PCA as amalignancy indicator,
individual HsvmDSs are more useful for malignancy indicators. However, RatioSV
of PCA is superior to visual explanation.

Fig. 5.8 HsvmDS signal data by PCA

5.5.3 Analysis of Transposed Data

Figure 5.9 shows the result of transposed signal data. RIP151, RIP3, RIP75, RIP78,
and RIP178 are large outliers. TheseDSs probably indicate cancer diversity.We hope
specialists verify this result. We can identify more outliers by the transposed data.
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Fig. 5.9 Transposed data of RipDS signal data

Figure 5.10 shows the result obtained by transposed signal data of HsvmDS signal
data. HSVM178, HSVM3, HSVM75, and HSVM177 have large outliers. These
DSs are presumably indicative of cancer diversity. These validations are areas of
specialists.

Fig. 5.10 Transposed data of HsvmDSs

5.6 Conclusions

Golub and colleagues used a non-hierarchical cluster analysis called SOP as a new
class finding of cancers and verified candidates for newly discovered cancer variants
with theweighted votingmethod andLOO.Many studieswidely used cluster analysis
because the statistical discriminant analysis was useless at all. The main reason is
the following:
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(1) Statistical discriminant functions assume that the two groups are normal distri-
butions based on the variance–covariance matrix, and maximize the correlation
ratio. For this reason, the medical researchers never knew that the two groups
were LSDs in high-dimensional gene space.

(2) If researchers used RIP or H-SVM, they could find that six microarrays were
NM � 0, but there is no paper pointed out this fact. Some studies use S-SVM.
However, because NM may or may not become 0 by a set of genes obtained by
medical consideration, it seems that the essential structure that gene space isLSD
was not known. We do not know why H-SVM could not find the microarrays
are LSD. Instead of the discriminant analysis, many medical researchers trusted
the cluster analysis. Thus, they could not obtain the definitive results.

However, only three OLDFs could find six microarrays are LSD and many SMs.
Because we had already established LSD-discrimination using common data, it was
easy to obtain the same results. However, we found that the LSD has a Matryoshka
structure and could decompose microarrays into many SMs and BGSs. Although all
SMs and BGSs are small samples, the standard statistical methods, except for logistic
regression, could not find the linear separable facts. Thus, we made signal data by
RipDSs, LpDSs, and HsvmDSs. PCA and cluster analysis showed clear indications
of linear separability. Moreover, we find new facts as follows:

(1) We confirm Revised LP-OLDF cannot find the correct sets of SMs as same as
Alon’s microarray in Chap. 4.

(2) Although the RatioSV of RIP usingmicroarray and signal subspace is 100%,we
can explain the reason and find the new fact of two classes in signal subspace.
This fact answers the reason why no researchers could not find that microarrays
and SMs were LSD from 1970. Although two classes are entirely separable in
microarrays and SMs, the ranges ofDSs are too small comparedwithmicroarray
data variation. Thus, only three OLDFs can find these tiny variations. PCA and
cluster analysis could not find the linear separable facts.

(3) The RatioSV value of the SM found earlier in Method2 is generally larger than
theRatioSVof the SM found later, so SMwith a largeRatioSVmay be useful for
cancer gene diagnosis. Moreover, RipDSs having high correlations may offer
useful clues of cancer gene diagnosis.
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Chapter 6
Cancer Gene Diagnosis of Shipp et al.
Microarray

Abstract Shipp microarray consists of 77 patients and 7,129 genes. They analyzed
themicroarray by various statistical methods and uploaded a supplemental document
with 67 pages. They used almost the same methods as Golub et al. except for SVM
and nearest neighbor cluster. Mainly, discriminant analysis is the most appropriate
method to identify oncogenes from the microarray. However, because the statistical
discriminant analysis was useless at all, medical researchers had developed many
methods for cancer gene analysis. Our theory shows that six microarrays are LSD
(Fact3). Method2 decomposes the microarrays into many SMs (Fact4). Then, by
analyzing SM, we propose cancer gene diagnosis and malignancy indexes. If Shipp
et al. validate our research results, we will improve cancer gene diagnosis. Method2
already obtained SM twice in Chap. 2. In this research, we change the number of
iterations of RIP and Revised LP-OLDF in Method2 and decided the proper number
of iterations. We obtain SMs by those iteration numbers in 2018. We examined the
signal subspace made by all SMs and the noise space. However, Revised LP-OLDF
cannot correctly find all SMs from Shipp microarray as same as Chap. 4. Thus, we
analyze only 237 SMs obtained by the RIP and examine the correlation coefficient of
RipDSs. RatioSVs evaluate RIP, Revised LP-OLDF, and H-SVM. Then, we analyze
two signal data and transposed data made by RIP and H-SVM. By the hierarchical
cluster analysis and PCA, we can propose the possibility of cancer gene diagnoses
such as malignancy indexes.

Keywords Shipp microarray · Cancer gene diagnosis · Malignancy indexes ·
Defect of signal found by Revised LP-OLDF · Small Matryoshka (SM) · RatioSV
of PCA · RipDSs · LpDSs · HsvmDSs
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“Diffuse large B-cell lymphoma (DLBCL), the most common lymphoid malig-
nancy in adults, is curable in less than 50% of patients. Prognostic models based on
pre-treatment characteristics, such as the International Prognostic Index (IPI), are
currently used to predict outcome in DLBCL. However, clinical outcome models
identify neither the molecular basis of clinical heterogeneity nor specific therapeutic
targets. We analyzed the expression of 6,817 genes in diagnostic tumor specimens
fromDLBCL patients who received cyclophosphamide, adriamycin, vincristine, and
prednisone (CHOP)-based chemotherapy, and applied a supervised learning predic-
tion method to identify cured versus fatal or refractory disease. The algorithm clas-
sified two categories of patients with very different five-year overall survival rates
(70% vs. 12%). Themodel also effectively delineated patients within specific IPI risk
categories who were likely to be cured or to die of their disease. Genes implicated in
DLBCL outcome included some that regulate responses to B-cell-receptor signaling,
critical serine/threonine phosphorylation pathways, and apoptosis. Our data indicate
that supervised learning classification techniques can predict outcome in DLBCL
and identify rational targets for intervention.”

Shippmicroarray consists of 58 diffuse largeB-cell lymphomas (DLBCL) patients
(class1) and 19 follicular lymphomas (FL) patients (class2). They analyzed 77 cases
by various statistical methods using 7,129 genes. Those methods are almost the
same as Golub et al. (1999), and they announced a supplemental document with
67 pages. For example, they analyzed “marker” genes with the highest correlation
with the target class-by-class separation statistics (signal-to-noise ratio), weighted
votes, nearest neighbor cluster, and SVM (Vapnik 1995). These methods are used
in Golub et al. except for SVM. Mainly, discriminant analysis is the most appro-
priate method to identify oncogenes from the microarray. However, because the
statistical discriminant analysis was not useful at all, medical researchers had no
choice but to develop many methods for cancer gene analysis. On the other hand,
our theory shows that six microarrays are LSD (Fact3) and Method2 can decom-
pose the microarrays into many SMs (Fact4). Then, by analyzing SM, cancer gene
diagnosis and malignancy indexes are proposed. If Shipp and others validate our
research results, cancer gene diagnosis will be more improved. They used leave-
one-out (LOO), which was developed in the age of poor computing environment to
verify their outcome (Lachenbruch and Mickey 1968). On the other hand, Shinmura
(2010) proposed 100-fold cross-validation for the small sample (Method1). Although
they used the hard-margin SVM (H-SVM), they could not find their microarray was
LSD, and the number of misclassifications (NM) was 0. It is extraordinary why
there are no researches that the two classes are completely separable in the high-
dimensional microarray. If physicians manage two classes severe, probably the other
microarrays are considered to be completely separable also. This fact is the most
important in the cancer gene analysis. In our research, genes subspace with MNM �
0 defines signal and genes subspace with MNM >� 1 defines noise at first. On the
other hand, they evaluate their results by various methods such as a 2 * 2 con-
tingency table. For example, they say, in weighted voting, six DLBCL patients
with moderate malignancy are incorrectly identified as low-grade FL patients.
Also, they are examining the survival rate of Kaplan–Meier. From these facts,
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historically, because the discriminant functions based on the variance–covariance
matrix were useless for cancer gene analysis, they develop several methods. They
used SVM and nearest neighbor cluster, but there was no discrimination using 7,129
genes.

6.1 Introduction

Chapter 1 outlined the New Theory of Discriminant Analysis After R. Fisher
(Theory) and explained a success of cancer gene analysis (Shinmura 2016a).
Chapter 2 outlined the cancer gene diagnosis using all SMs of six microarrays found
by the RIP in 2016. Chapter 3 outlined that RIP and Revised LP-OLDF discriminate
Alon’s microarray by changing the iteration number of LINGOProgram 3. Chapter 4
explains about two SMs obtained by the RIP and Revised LP-OLDF using Alon’s
microarray in 2018. We challenge three new research themes as follows: (1) We
evaluate two signal subspaces by the RIP and Revised LP-OLDF and find Revised
LP-OLDF cannot find all SMs from Alon’s microarray correctly. (2) After RatioSV
and NM evaluate the 62 SMs found by RIP, we compute the 1,891 correlations
of 62 RipDSs and find that all correlations are positive correlations. (3) Because
standard statistical methods cannot find the linear separable facts from all SMs, we
reconsider that RipDSs are signals themselves or the signal data made by RipDSs
and HsvmDSs are signal instead of SMs themselves. (4) We try to explain the reason
why statistical discriminant functions could not discriminate six microarrays and
all SMs (Problem 6). Because the fluctuation of RipDS is small, we cannot observe
the linear separable fact on the scatter plot made by the Prin1 and Prin2. In Chap. 6,
we confirm the above research themes proposed in Chap. 4. LINGO (Schrage 2006)
decomposes Shipp microarray into 237 SMs and opens a new frontier of cancer gene
analysis. JMP (Sall et al. 2004) analyzes all SMs and offers cancer gene diagnosis.
Shinmura (2016, 2017, 2018a, b) relate to this Chapter.

6.2 Validation of SM Found by the RIP and Revised
LP-OLDF

In Chap. 6, we increase the number of iterations from 1 to 11 and choose SMs by the
RIP and Revised LP-OLDF. However, we find the defect of Revised LP-OLDF that
cannot find all SMs from the microarray in Chap. 4. Thus, we introduce the results
of SMs found by the RIP in Chaps. 5 and 6.

6.2.1 Verification of the Number of Iterations of Revised
LP-OLDF and RIP

Table 6.1 shows the results by changing the iteration number (IT) from 1 to 11 of
LINGO Program 3 (Schrage 2006). In the Revised LP-OLDF (abbreviated as LP in

https://doi.org/10.1007/978-981-13-5998-9_6
https://doi.org/10.1007/978-981-13-5998-9_6
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the table), “IT � 3” chooses 89 SMs (2,784 genes), and an average is 31.28 genes.
The selection of “IT� 5 or more” becomes a steady state that includes 96 SM (2,789
genes) with 29.05 genes on average. Thus, we decide that Revised LP-OLDF chooses
96 SM. On the other hand, RIP chooses 237 SMs (7,109 genes and 30 average) with
IT � 10. Moreover, we evaluate the microarray, signal subspace (the union of SMs),
and noise subspace with six MP-LDFs as same as Golub microarray. In the Revised
LP-OLD, we consider the union of 96 SMs as signal subspace and the remaining
4,340 genes as noise subspace. On the other hand, in RIP, the union of 237 SMs
is considered as signal subspace, and the remaining 20 genes are considered noise
subspace. In this study, we compare Shippmicroarray (omitted from the table), signal
subspace, and noise subspace with RatioSV, MNM, or NM.

Table 6.1 Result of the number of iterations by LINGO Program 3

LP RIP

IT CPU SM Gene Gene/SM CPU SM Gene Gene/SM

3 3:55 89 2784 31.28 4:56 223 7123 31.94

4 5:09 95 2816 29.64

5 6:12 96 2789 29.05 21:05 243 7118 29.29

8 8:59 96 2789 29.05 25:21 238 7089 29.79

9 9:54 96 2789 29.05

10 11:26 96 2789 29.05 29:33 237 7109 30.00

11 33:35 237 7109 30.00

6.2.2 Analysis of Signal and Noise Subspaces Obtained
by Revised LP-OLDF

Until now, because the Revised LP-OLDF divides microarray into a signal subspace
of fewer SMs and genes, we consider analyzing SMs found by the Revised LP-OLDF
instead of RIP. Moreover, calculation time is shorter than RIP. The left six columns
of Table 6.2 show the signal subspace, and the right six columns show the noise
subspace. Row “Ratio” indicates six RatioSVs of MP-LDFs. The DSs of 58 cases
(class1) and 19 cases (class2) are in the fourth line or less. Row “Outlier” shows the
number of cases not on SVs of two classes. For example, “35/12 of RIP” indicates 35
DLBCL patients are higher than 1, and 23 patients are on SV� 1. On the other hand,
12 FL patients are less than −1, and seven patients are on SV � −1. Because the
RatioSV of RIP is 2.83%, it is the minimum value among the six MP-based LDFs.
This result is very different from the result of Golub in Table 5.2, the RatioSV of
which is 100%. In a high-dimensional space, unless we study these results compared
to the visual representation of two classes subjects, it is difficult for us to understand
this situation clearly.
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Table 6.3 shows the discriminant results by six MP-LDFs. If each LDF correctly
discriminates patients, “>0” column shows it. “0” column means the number of
patients on the discriminant hyperplane, and “<0” column means the number of
misclassified patients. As a result, all NMs are 0 in 6 MP-LDFs in the noise space,
so H-SVM in the eleventh column of Table 6.2 discriminates all patients correctly.
This fact means the noise subspace found by Revised LP-OLDF is LSD. Thus, we
do not analyze SMs found by Revised LP-OLDF in this chapter.

Table 6.3 The discriminant
results by six MP-LDFs of 96
SMs obtained by Revised
LP-OLDF

Shipp Signal Noise

<0 0 >0 <0 0 >0 <0 0 >0

RIP 0 0 77 0 0 77 0 0 77

LP 0 0 77 0 0 77 0 0 77

IPLP 0 0 77 0 0 77 0 0 77

HSVM 0 0 77 0 0 77 0 0 77

SVM4 0 0 77 0 0 77 0 0 77

SVM1 0 0 77 0 0 77 0 0 77

6.2.3 Analysis of 237 SMs and Noise Spaces Obtained by RIP

Table 6.4 shows the discriminant results by six MP-LDFs. Unlike Table 6.3, H-SVM
is in error in the noise subspace, and the five NMs are 6–19 for the rest. Because RIP
finds all SMs correctly, we analyze only 237 SMs obtained by the RIP.

Table 6.4 The discriminant
results by six MP-LDFs of
237 SMs obtained by RIP in
2018

Shipp Signal Noise

<0 0 >0 <0 0 >0 <0 0 >0

RIP 0 0 77 0 0 77 6 0 71

LP 0 0 77 0 0 77 12 0 65

IPLP 0 0 77 0 0 77 6 0 71

HSVM 0 0 77 0 0 77 – – –

SVM4 0 0 77 0 0 77 12 0 65

SVM1 0 0 77 0 0 77 19 0 58
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Table 6.5 shows the evaluation of the signal and noise subspaces obtained by RIP.
Because the H-SVM cannot discriminate the noise subspace, we omit it from the
table. Row “Outlier/NM” means the figures of noise subspace show NM instead of
outliers. Because the difference between microarray and the signal is only 20 genes,
both results are almost the same. The RatioSV of H-SVM is the maximum value of
48.41. Because the “RatioSV and Outlier” of RIP are 5.66% and “26/11,” this result
is very different from the result of Golub in Table 5.2. In the Golub microarray, RIP
finds a unique data structure that all cases of two classes are on the two parallel
hyperplanes.
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6.3 Analysis of 237 SMs of Shipp et al. Microarray (2018)

In 2015, RIP of LINGO Program3 decomposed Shipp microarray into 214 SMs
(3,040 genes) and noise gene subspace (4,089 genes). However, when LINGO Pro-
gram3 decomposes the microarray again in 2018, 237 SMs (7,109 genes) are found.
We obtain more SMs and genes in 2018. A yearly update of LINGO and choosing
different iteration number cause these differences. We consider 237 SMs are signals,
and 20 gene subspace is noise at first. However, we cannot find linear separable facts
of 237 SMs by the standard statistical methods (Problem 6). Moreover, statistical
discriminant functions cannot find six microarrays are LSD (Fact3). We believe the
two reasons are the same. Although the actual separation distance between the two
classes is small compared to the variation of the microarray, many RatioSVs seem
to be large because the MP-based LDF fixes the SV width to 2. It is noted that this
value is the ratio of signal space with small variations. RIP, Revised LP-OLDF, and
H-SVM can find all SMs are LSD. Because we find LSD is the true signal, we claim
that signal data created from the DSs made by RIP, Revised LP-OLDF, and H-SVM
is a true signal.

6.3.1 Validation of 237 SMs by Six MP-Based LDFs
and Discriminant Functions

Table 6.6 shows the 237 SMs from SM � 1 to SM � 237. Although Revised LP-
OLDF finds 96 SMs, we omit those results because of the defect of Revised LP-
OLDF. Program3 determines the order of SMs from SM � 1 to SM � 237. The
“gene” column is the number of genes of each SM. The range of genes included
in the 237 SMs is [15, 62]. The average is 30 genes. Row “SUM” indicates 237
SMs contain 7,109 genes. Columns from RIP to H-SVM show four RatioSVs of 237
SMs by RIP, Revised LP-OLDF, Revised IPLP-OLDF, and H-SVM. Four ranges of
RatioSVs are [0.52, 29.8], [0.72, 25.1], [0.72, 25.1], and [1, 33.34], respectively. Four
averages of RatioSVs are 13.66%, 13.05%, 13.05%, and 16.68%, respectively. Row
“SUM/Max” indicates 237 SMs includes 7,109 genes. RIP, LP, IPLP, and HSVM
have 59, 30, 16, and 132 SMs having the maximum RatioSVs. “183, 146 and 10”
indicate the number of SMs those are not LSD by SVM1, LDF2, and QDF. To
summarize these results, the range, average, and maximum number of H-SVM are
slightly better than RIP because the maximization SV of H-SVM works well. Two
columns “Max and Min” are the maximum and minimum RatioSV values of four
LDFs. Because all NMs of logistic regression and SVM4 are zero, we omit these
columns from the table. Three columns “SVM1, LDF2, and QDF” show the NM.
The ranges are [0, 18], [0, 9], and [0, 1], respectively. The averages are 2.12, 1.53,
and 2.54, respectively. Moreover, SVM1, LDF2, and QDF cannot discriminate 182
SMs, 156 SMs, and 12 SMs correctly.

https://doi.org/10.1007/978-981-13-5998-9_6
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Table 6.6 Summary of RatioSVs of fourMP-based LDFs andNMs of other discriminant functions

SM Gene RIP LP IPLP HSVM Max Min SVM1 LDF2 QDF

1 28 22.19 23.52 10.22 20.9 23.52 10.22 0 0 0

2 28 31.97 18.77 7.5 26.66 31.97 7.5 0 0 0

3 27 19.68 18.4 18.54 23.74 23.74 18.4 0 0 0

4 27 27.85 20.69 17.42 20.72 27.85 17.42 0 0 0

5 23 18.59 22.26 15.46 17.04 22.26 15.46 1 1 0

6 31 21.88 17.39 19.42 23.47 23.47 17.39 0 0 0

7 26 23.41 15.85 21.02 21.8 23.41 15.85 0 0 0

8 21 16.92 15.06 14.28 17.74 17.74 14.28 2 1 0

9 15 9.23 8.26 7.84 9.4 9.4 7.84 2 2 0

10 25 15.75 18.66 15.55 21.17 21.17 15.55 0 0 0

11 26 21.85 12.15 21.95 18.73 21.95 12.15 0 0 0

12 26 19.28 21.65 17.26 16.89 21.65 16.89 1 0 0

13 29 17.72 23.37 27.48 17.75 27.48 17.72 1 0 0

14 27 14.29 10.15 17.91 21.06 21.06 10.15 2 0 0

15 15 16 14.4 15.78 16.02 16.02 14.4 1 1 0

16 25 18.45 18.94 18.86 18.25 18.94 18.25 0 0 0

17 34 24.3 14.2 25.51 29.94 29.94 14.2 0 0 0

18 27 22.84 22.07 16.25 21.2 22.84 16.25 1 1 0

19 23 12.69 8.14 11.79 14.01 14.01 8.14 1 1 0

20 24 21.22 20.49 9.85 19.56 21.22 9.85 0 0 0

21 31 25.25 20.28 15.65 29.86 29.86 15.65 0 0 1

22 31 24.9 13.72 21.22 23.13 24.9 13.72 1 0 0

23 21 9.55 10.42 9.91 11.76 11.76 9.55 1 1 0

24 20 14.48 10.43 10.13 15.82 15.82 10.13 0 0 0

25 25 18.08 13.6 14.94 18.06 18.08 13.6 1 0 0

26 30 16.21 11.35 13.66 19.12 19.12 11.35 1 1 0

27 24 29.22 29.22 11.29 27.37 29.22 11.29 1 0 0

28 23 18.82 14.29 12.84 19.33 19.33 12.84 0 0 0

29 21 9.54 13.32 17.54 15.83 17.54 9.54 0 1 0

30 30 18.45 25.01 18.27 25.32 25.32 18.27 1 0 0

31 29 27.77 14.58 17.22 26.28 27.77 14.58 0 0 0

32 23 21.86 18.69 16.96 20.64 21.86 16.96 1 0 0

33 21 24.31 19.42 12.76 25.63 25.63 12.76 0 0 0

34 37 25.27 14.59 18.03 22.95 25.27 14.59 0 0 0

35 26 15.01 18.99 15.84 19.4 19.4 15.01 0 1 0

(continued)
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Table 6.6 (continued)

SM Gene RIP LP IPLP HSVM Max Min SVM1 LDF2 QDF

36 21 9.28 9.5 8.53 11.86 11.86 8.53 1 1 0

37 25 23.08 15.85 19.34 18.56 23.08 15.85 1 1 0

38 20 19.75 16.66 17.81 21.61 21.61 16.66 0 0 0

39 17 18.78 16.12 16.98 15.2 18.78 15.2 0 0 0

40 23 17.29 17.99 19.58 23.4 23.4 17.29 0 0 0

41 30 17.29 17.99 19.58 23.4 23.4 17.29 1 0 0

42 29 23.59 15.6 12.65 21.92 23.59 12.65 0 0 0

43 28 20.27 13.34 19.97 16.12 20.27 13.34 2 1 0

44 25 15.05 17.96 11.73 19.84 19.84 11.73 0 1 0

45 25 22.99 23.99 15.82 22.96 23.99 15.82 0 0 0

46 20 19.81 18.49 17.88 21.23 21.23 17.88 0 0 0

47 25 18.91 19.89 19.43 22.02 22.02 18.91 0 0 0

48 32 18.42 11.14 22.26 19.74 22.26 11.14 0 1 0

49 32 16.61 15.86 15.78 19.07 19.07 15.78 0 0 0

50 28 25.74 17.64 14.88 22.25 25.74 14.88 1 0 0

51 28 22.66 21.01 16.02 21.61 22.66 16.02 0 0 0

52 28 19.91 16.28 14.5 21.21 21.21 14.5 2 1 0

53 30 10.78 18.71 14.93 16.62 18.71 10.78 1 1 0

54 21 8.88 9.78 12.33 11.54 12.33 8.88 0 2 0

55 32 21.43 22.93 18.17 22.35 22.93 18.17 3 1 0

56 25 22.22 13.41 16.69 22.11 22.22 13.41 1 1 0

57 35 27.71 16.35 17.62 30.43 30.43 16.35 0 0 0

58 21 13.76 15.71 13.84 14.33 15.71 13.76 2 2 0

59 26 9.47 11.5 11.97 11.52 11.97 9.47 2 3 0

60 25 18.25 16.45 13.42 18.54 18.54 13.42 0 1 0

61 27 16.81 16.6 13.4 20.72 20.72 13.4 1 0 0

62 28 24.08 19.69 17.74 22.39 24.08 17.74 1 0 0

63 29 17.53 16.79 12.29 17.77 17.77 12.29 2 2 0

64 21 16.59 16.63 16.97 16.9 16.97 16.59 1 0 1

65 25 16.81 15.02 13.35 15.33 16.81 13.35 1 1 0

66 31 16.93 9.8 8.03 16.16 16.93 8.03 1 0 0

67 23 17.34 8.82 12.8 14.64 17.34 8.82 2 1 0

68 19 19.67 20.71 16.12 18.56 20.71 16.12 1 1 0

69 27 25.87 15.28 16.81 24.29 25.87 15.28 2 0 0

70 19 15.8 18.99 16.21 16.34 18.99 15.8 0 3 0

71 23 23.61 21.01 20.21 22.42 23.61 20.21 0 0 0

72 30 29.77 23.6 16.12 28.25 29.77 16.12 0 0 0

(continued)
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Table 6.6 (continued)

SM Gene RIP LP IPLP HSVM Max Min SVM1 LDF2 QDF

73 31 16.97 22.86 15.02 24.32 24.32 15.02 1 0 0

74 28 17.91 15.44 11.15 19.21 19.21 11.15 1 1 0

75 28 15.25 11.28 13.84 18.47 18.47 11.28 1 1 0

76 28 15.51 11.75 7.83 17.88 17.88 7.83 2 1 0

77 26 12.25 10.57 10.05 12.9 12.9 10.05 3 1 0

78 28 17.55 19.61 16.8 18.34 19.61 16.8 2 1 0

79 21 18.63 8.8 14.02 18.67 18.67 8.8 1 1 0

80 24 11.8 12.93 14.38 14.89 14.89 11.8 4 2 0

81 27 19.4 15.55 16.24 20.01 20.01 15.55 0 0 1

82 24 20.01 22.38 17.99 21.73 22.38 17.99 1 0 0

83 27 17.47 18.66 16.46 17.05 18.66 16.46 1 1 0

84 24 15.88 12.44 18.33 16.53 18.33 12.44 2 1 0

85 27 8.25 9.82 5.65 11.43 11.43 5.65 2 2 0

86 25 15.95 21.45 19.91 24.06 24.06 15.95 0 0 0

87 25 22.69 23.98 15.55 18.47 23.98 15.55 0 0 0

88 27 12.62 11.88 8.01 15.69 15.69 8.01 0 1 0

89 23 15.54 15.38 11.87 15.29 15.54 11.87 0 1 0

90 25 16.01 13.32 8.72 17.6 17.6 8.72 1 0 0

91 30 12.95 12.94 8.74 15.96 15.96 8.74 1 1 0

92 27 10 12.81 10.68 12.44 12.81 10 0 2 0

93 28 8.4 14.66 16.7 18.43 18.43 8.4 0 2 0

94 23 12.3 14.05 11.78 12.63 14.05 11.78 2 2 0

95 25 15.54 17.85 13.89 18.65 18.65 13.89 1 1 0

96 24 22.57 22.87 22.66 24.37 24.37 22.57 0 1 0

97 31 11.55 12.73 7.11 11.34 12.73 7.11 3 4 0

98 27 17.62 17.66 12.35 15.77 17.66 12.35 1 2 0

99 22 14.61 16.28 11.47 15.4 16.28 11.47 3 0 0

1 18 5.64 7.78 7.2 8.75 8.75 5.64 3 2 0

101 30 14.23 11.79 7.52 15.33 15.33 7.52 6 1 0

102 33 17.99 15.75 13.5 19.48 19.48 13.5 1 2 0

103 20 11.11 8.13 9.61 12.47 12.47 8.13 1 3 0

104 24 9.25 16.86 16.68 21.33 21.33 9.25 1 3 0

105 34 14.35 10.58 18.46 19.62 19.62 10.58 1 2 0

106 29 15.75 11.35 14.76 18.15 18.15 11.35 1 0 0

107 33 18.3 14.36 18.75 22.91 22.91 14.36 2 0 1

108 33 21.02 19.58 7.29 21.41 21.41 7.29 2 0 0

109 33 22.68 6.94 11.46 21.1 22.68 6.94 0 1 0

(continued)
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Table 6.6 (continued)

SM Gene RIP LP IPLP HSVM Max Min SVM1 LDF2 QDF

110 24 12.07 13.42 13.47 16.92 16.92 12.07 3 1 0

111 34 26.72 15.7 14.53 25.11 26.72 14.53 0 0 0

112 24 10.65 11.52 7.45 11.42 11.52 7.45 4 1 0

113 33 14.53 9.76 11.97 14.79 14.79 9.76 3 2 0

114 26 12.82 10.89 6.66 16.11 16.11 6.66 2 2 0

115 26 17.97 15 16.02 15.89 17.97 15 1 0 0

116 28 19.93 20.46 8.28 21.58 21.58 8.28 2 1 0

117 30 16.84 18.37 13.3 16.14 18.37 13.3 0 0 0

118 20 12.06 13.57 12.63 17.91 17.91 12.06 3 1 0

119 23 23.84 22.16 20.8 25.72 25.72 20.8 0 0 0

120 18 16.25 16.21 15.92 22.35 22.35 15.92 1 1 0

121 30 22.28 25.79 19.98 24.94 25.79 19.98 2 0 0

122 26 13.99 11.83 12.64 15.5 15.5 11.83 1 2 0

123 36 13.46 8.38 9.72 13.35 13.46 8.38 5 1 0

124 28 17.15 16.11 14.18 17.56 17.56 14.18 1 2 0

125 19 5.95 9.8 10.51 9.91 10.51 5.95 3 3 0

126 35 17.13 20.16 12.52 19.16 20.16 12.52 2 1 0

127 25 13.55 9.16 12.99 13.88 13.88 9.16 1 0 0

128 25 13.99 9.87 16.71 20.58 20.58 9.87 1 0 0

129 28 19.53 14.53 10.84 18.4 19.53 10.84 3 2 0

130 30 18.91 10.07 12.74 21.94 21.94 10.07 0 0 0

131 30 22.05 24 11.21 24.3 24.3 11.21 1 1 0

132 35 11.49 10.3 11.31 16.24 16.24 10.3 2 2 0

133 32 22.31 15.92 12.77 25.02 25.02 12.77 0 1 0

134 33 20.99 15.76 10.62 23.88 23.88 10.62 2 0 0

135 23 16.59 12.34 11.71 16.09 16.59 11.71 1 0 0

136 26 11.89 15.87 11.86 19.55 19.55 11.86 1 0 0

137 33 30.92 24.97 18.74 31.12 31.12 18.74 0 0 0

138 28 23.44 20.14 15.92 26.91 26.91 15.92 1 0 0

139 28 17.44 18.02 14.91 17.92 18.02 14.91 7 2 0

140 29 10.16 12.93 10.16 21.56 21.56 10.16 3 0 0

141 33 12.48 9.41 13.13 17.42 17.42 9.41 5 0 0

142 25 13.69 17.81 12.99 21.28 21.28 12.99 0 0 0

143 26 16.99 10.56 15.66 16.74 16.99 10.56 1 0 0

144 29 7.12 10.75 8.43 12.49 12.49 7.12 3 1 0

145 33 10.33 12.46 11.53 14.86 14.86 10.33 2 1 0

146 27 10.72 13.03 11.07 11.95 13.03 10.72 3 3 0

(continued)
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Table 6.6 (continued)

SM Gene RIP LP IPLP HSVM Max Min SVM1 LDF2 QDF

147 30 16.38 10.42 10.61 16.74 16.74 10.42 1 1 1

148 24 16.97 20.37 7.96 23.71 23.71 7.96 0 0 0

149 35 13.88 6.53 9.51 20.77 20.77 6.53 0 0 0

150 30 12.22 23 11.83 23.22 23.22 11.83 1 0 0

151 31 22.09 17.27 14.72 23.65 23.65 14.72 2 1 0

152 29 6.91 7.27 8.56 10.86 10.86 6.91 5 3 0

153 33 20.2 17.42 16.37 20.65 20.65 16.37 5 1 0

154 28 16.16 7.8 9.52 14.82 16.16 7.8 1 1 0

155 33 9.42 10.09 10.29 16.85 16.85 9.42 5 2 0

156 36 15.02 17.41 13.28 18.43 18.43 13.28 3 1 0

157 27 19.36 19.14 23.24 25.18 25.18 19.14 0 0 0

158 25 20.24 19.76 20.04 18.45 20.24 18.45 2 0 0

159 27 11.5 9.72 12.22 12.04 12.22 9.72 4 3 1

160 37 17.33 15.1 12.21 15.75 17.33 12.21 1 1 0

161 29 13.69 13.43 14.39 12.19 14.39 12.19 4 3 0

162 35 13.44 12.85 9.66 14.95 14.95 9.66 3 1 0

163 30 7.76 5.86 6.53 9.14 9.14 5.86 10 2 0

164 28 10.62 7.48 10.79 12.58 12.58 7.48 5 2 0

165 39 17.19 18.83 13.53 21.06 21.06 13.53 4 2 0

166 33 28 21.48 21.32 25.36 28 21.32 3 0 0

167 38 8.23 5.69 4.36 9.34 9.34 4.36 8 6 0

168 40 28.04 14.96 19.22 28.98 28.98 14.96 4 0 0

169 32 12.25 15.55 10.22 14.7 15.55 10.22 3 2 0

170 35 16.51 9.06 10.68 13.46 16.51 9.06 4 3 0

171 46 12.93 11.78 7.67 21.64 21.64 7.67 3 0 0

172 26 5.75 7.32 7.22 8.06 8.06 5.75 5 4 0

173 24 6.09 5.49 6.86 6.78 6.86 5.49 4 4 0

174 45 22.95 18.74 5.87 15.23 22.95 5.87 4 2 1

175 34 23.07 12.85 13.81 20.22 23.07 12.85 4 0 1

176 34 16.34 11.16 11.6 15.67 16.34 11.16 4 3 0

177 38 11.67 12.2 10.55 18.24 18.24 10.55 5 1 0

178 37 13.29 9.9 13.41 13.6 13.6 9.9 5 2 0

179 29 19.71 12.87 14.72 20.2 20.2 12.87 4 0 0

180 28 12.01 11.22 13.76 15.45 15.45 11.22 3 1 0

181 33 2.23 3.34 4.75 1.23 4.75 1.23 5 1 0

182 29 10.04 6.94 7.14 11 11 6.94 3 4 0

183 31 19.55 22.98 7.2 23.65 23.65 7.2 3 1 1

(continued)
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Table 6.6 (continued)

SM Gene RIP LP IPLP HSVM Max Min SVM1 LDF2 QDF

184 25 15.17 11.26 9.52 23.05 23.05 9.52 4 1 0

185 28 10.05 7.68 8.42 10.29 10.29 7.68 5 3 1

186 24 7.69 9.42 9.38 9.28 9.42 7.69 6 5 0

187 37 12.04 11.44 7.11 11.14 12.04 7.11 11 3 0

188 38 13.59 14.42 10.23 16.56 16.56 10.23 6 2 0

189 37 15.23 12.79 17.6 19.82 19.82 12.79 8 0 0

190 38 17.2 13.94 7.61 14.83 17.2 7.61 4 0 0

191 30 6.85 9.9 6.8 10.72 10.72 6.8 5 3 0

192 35 7.08 7.52 5.26 11.16 11.16 5.26 10 5 0

193 33 22.28 17.3 9.87 22.09 22.28 9.87 5 2 0

194 29 15.88 9.53 11.1 15.94 15.94 9.53 7 2 0

195 30 3.28 6.67 7.97 1.55 7.97 1.55 7 0 0

196 28 9.6 9.22 3.91 9.85 9.85 3.91 6 4 0

197 36 13.95 13.3 10.71 14.06 14.06 10.71 8 0 0

198 28 10.95 11.12 9.27 12.13 12.13 9.27 7 2 0

199 38 11.75 10.61 8.65 11.71 11.75 8.65 7 3 1

200 31 13.34 9.69 10.15 15.5 15.5 9.69 5 1 0

201 38 16.67 7.41 16.32 20.36 20.36 7.41 13 2 0

202 30 9.17 7.62 8.58 8.97 9.17 7.62 10 7 0

203 38 12.72 11.02 8.43 11.86 12.72 8.43 10 2 0

204 31 14.16 12.58 13.18 13.86 14.16 12.58 5 3 0

205 30 18.03 17.03 16.05 19.91 19.91 16.05 5 1 0

206 32 16.59 12.78 17.28 23.04 23.04 12.78 1 4 0

207 37 16.51 16.68 13.56 19.62 19.62 13.56 3 3 0

208 27 17.6 13.08 16.6 16.2 17.6 13.08 7 0 0

209 34 17.03 18.86 22.59 17.11 22.59 17.03 9 2 0

210 31 17.6 13.08 16.6 16.2 17.6 13.08 7 0 1

211 37 17.03 18.86 22.59 17.11 22.59 17.03 9 2 0

212 36 11.43 8.86 10.14 14.2 14.2 8.86 7 3 0

213 36 13.43 13.35 12.39 14.02 14.02 12.39 12 4 0

214 38 13.42 11.39 9.61 18.35 18.35 9.61 3 0 0

215 38 17.71 17.75 11.49 18.49 18.49 11.49 10 1 0

216 40 16.21 17.53 14.64 26.76 26.76 14.64 9 0 0

217 33 7.88 11.62 11.74 13.1 13.1 7.88 12 2 0

218 32 16.08 13.24 13.77 13.72 16.08 13.24 9 2 0

219 32 18 7.25 15.11 14.29 18 7.25 11 0 0

220 41 14.13 17.82 11.78 18.9 18.9 11.78 9 1 0

(continued)
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Table 6.6 (continued)

SM Gene RIP LP IPLP HSVM Max Min SVM1 LDF2 QDF

221 34 3.28 6.67 7.97 1.55 7.97 1.55 10 2 0

222 37 14.13 7.05 7.83 12.42 14.13 7.05 14 5 0

223 41 8.23 12.78 4.9 10.49 12.78 4.9 12 6 0

224 47 15.99 29.93 15.82 24.72 29.93 15.82 12 1 0

225 47 9.21 15.09 11.52 20.82 20.82 9.21 11 0 0

226 43 7.21 6.45 7.27 8.45 8.45 6.45 11 4 0

227 41 11.23 8.89 7.96 10.28 11.23 7.96 16 6 0

228 43 13.45 10.44 5.37 10.3 13.45 5.37 13 6 0

229 42 13 10.31 10.47 11.36 13 10.31 12 5 0

230 50 7.6 10.51 8.11 10.78 10.78 7.6 11 6 0

231 42 8.11 9.12 5.75 14.04 14.04 5.75 17 3 0

232 46 11.97 10.09 11.24 15.68 15.68 10.09 14 3 0

233 52 16.45 5.79 15.37 15.65 16.45 5.79 18 5 0

234 56 5.45 5.99 4.12 6.74 6.74 4.12 15 7 0

235 54 7.34 9.33 6.28 11.63 11.63 6.28 18 6 0

236 62 5.26 5.02 4.83 9.89 9.89 4.83 16 8 0

237 56 6.08 7.21 6.14 6.55 7.21 6.08 15 9 0

Max 62 28.8 25.1 25.1 33.34 33.34 24.47 18 9 1

Min 15 0.52 0.72 0.72 1 1 0.52 0 0 0

Average 30 13.66 13.05 13.05 16.68 17.09 11.89 2.12 1.53 2.54

SUM/Max 7109 59 30 16 132 183 146 10
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6.3.2 Correlation Coefficients of 237 RipDSs

AlthoughMethod2 and RIP find 237 SMswhich are LSD, statistical methods, except
for logistic regression, cannot find the linear separable facts. However, RIP, Revised
LP-OLDF, Revised IPLP-OLDF, and H-SVM can separate two classes in each SM
entirely. Thus, we consider RIP discriminant score (RipDS) as malignant indicator
and signal. We make a signal data made by 237 RipDSs instead of 7,129 genes. The
hierarchical cluster methods divide two classes into several definitive clusters which
may be new subclasses of cancer. The Prin1 of PCA shows the linear separability of
two classes and becomes comprehensible malignancy indicator to summarize 237
indicators. Several definitive clusters suggest us new subclasses of cancer, also. The
transposed data gives us other useful information. However, we cannot categorize
the 237 RipDSs and explain the role for cancer gene diagnosis (Problem 7). Thus,
we try to analyze 237 RipDSs by correlation analysis.

Problem 7 From the standpoint of genetic diagnosis of cancer, it is necessary to
divide SM and BGS into several categories and clarify their roles.

Figure 6.1 shows the histogram of the 27,966 correlation coefficients (correla-
tions, abbreviate r) obtained with 237 RIP discriminant scores (RipDSs) by JMP
(Sall et al. 2004). The correlations differ from 0.085 to 1, but all correlations are
positive values. The 237 RipDSs are malignancy indicators which separate two
groups completely. If they are about the same role, the correlation should be high.
Small correlations mean the diversity of cancer. From Q1 and Q3, a beard with
a length 1.5 times of the interquartile range 0.132 is drawn, many outliers below
0.346, and three outliers (R � 1) above 0.878. The average value is 0.606, and
the median value is 0.617, which is a unimodal distribution. SMs with r � 1 are
considered to be complementary to each other. Whether SMs with small correla-
tions represent subclasses of different cancers is a future research topic. However,
because medical verification is necessary for our claim, we will be willing to pro-
vide necessary information if requested by researchers who can access patients of
Shipp et al. Because the median value is 0.617, the half of correlations are over
0.617. We consider that this fact indicates a unique feature of microarrays. That
is, the main feature of the microarray used for cancer gene analysis is that all cor-
relations are positive values and half of the total correlates are very high. Due to
this feature, we consider that the signal is not a gene contained in 237 SMs but
DS which separates the two classes. That is, in the statistics, the discriminant axis
has not been considered important so far, but it is an optimal means to represent
LSD.
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Fig. 6.1 The 27,966
correlations by 237 SMs

Table 6.7 is “27,966 correlations of RIPi and RIPj (i < j).” The RIPi denotes the
individual RipDS. Those are classified by sorting from RIP1 to RIP236 in ascending
order with the smaller suffix of RIPi as the sort key. The “n” column indicates the
number of RIPj paired with each RIPi. It decreases from 236 to 1. The 100%, 50%,
and 0% are the maximum, median, and minimum values. Row “RIP � 1” means
the 236 correlations of RIP1 and RIPj (j � 2, …, 237). Three percentiles are r �
0.811, 0.669, and 0.371. Last row “RIP � 236” means the one correlation of RIP236
and RIP237 is r � 0.088. The last four rows are the maximum, the minimum, the
average, and the median of 236 three percentiles. The range of the 236 maximum
values is [0.088, 1], the median values are [0.088, 0.723], and the minimum values is
[0.085, 0.391]. In the last row “50%”, three columns such as “100, 50, and 0%” are
0.772, 0.599, and 0.257. The 118 correlations of maximum, median, and minimum
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values are over r � 0.772, 0.599, and 0.257. That is, half of the maximum, median,
and minimum values are correlated 0.772, 0.599, and 0.257 over. Although Table
6.7 shows only the correlation between the two RipDSs, they expect to be a foothold
for the solution of Problem7 in the future. Three correlations of (RIP195 and 196),
(RIP � 208 and 210) and (RIP � 209 and 211) are one, and three pairs are sure to
be mutually compatible.

Table 6.7 Maximum,
median, and minimum of
27,966 correlation
coefficients

RIP 100% 50% 0% n

1 0.811 0.669 0.371 236

2 0.873 0.723 0.272 235

3 0.776 0.641 0.283 234

4 0.857 0.702 0.323 233

5 0.822 0.670 0.197 232

6 0.818 0.660 0.260 231

7 0.810 0.667 0.220 230

8 0.821 0.648 0.356 229

9 0.791 0.618 0.249 228

10 0.825 0.652 0.297 227

11 0.789 0.665 0.334 226

12 0.784 0.575 0.232 225

13 0.750 0.592 0.235 224

14 0.794 0.614 0.301 223

15 0.840 0.661 0.247 222

16 0.814 0.682 0.285 221

17 0.799 0.615 0.352 220

18 0.835 0.647 0.289 219

19 0.833 0.605 0.321 218

20 0.847 0.684 0.182 217

21 0.844 0.663 0.261 216

22 0.831 0.679 0.334 215

23 0.776 0.632 0.308 214

24 0.797 0.655 0.283 213

25 0.816 0.660 0.274 212

26 0.785 0.651 0.225 211

27 0.823 0.662 0.278 210

28 0.834 0.654 0.253 209

29 0.800 0.644 0.193 208

(continued)
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Table 6.7 (continued) RIP 100% 50% 0% n

30 0.775 0.635 0.215 207

31 0.820 0.677 0.264 206

32 0.861 0.701 0.243 205

33 0.842 0.680 0.389 204

34 0.790 0.648 0.276 203

35 0.783 0.608 0.209 202

36 0.823 0.608 0.224 201

37 0.811 0.638 0.340 200

38 0.835 0.651 0.208 199

39 0.863 0.673 0.299 198

40 0.792 0.645 0.236 197

41 0.801 0.646 0.223 196

42 0.856 0.689 0.298 195

43 0.768 0.634 0.229 194

44 0.826 0.616 0.353 193

45 0.827 0.654 0.322 192

46 0.842 0.665 0.314 191

47 0.764 0.608 0.269 190

48 0.780 0.608 0.259 189

49 0.792 0.637 0.281 188

50 0.807 0.662 0.261 187

51 0.864 0.691 0.284 186

52 0.841 0.659 0.364 185

53 0.701 0.551 0.302 184

54 0.789 0.628 0.284 183

55 0.777 0.617 0.315 182

56 0.812 0.636 0.163 181

57 0.840 0.668 0.334 180

58 0.782 0.638 0.284 179

59 0.729 0.548 0.328 178

60 0.794 0.648 0.299 177

61 0.801 0.633 0.304 176

62 0.824 0.664 0.292 175

63 0.815 0.669 0.309 174

64 0.763 0.605 0.245 173

65 0.809 0.598 0.270 172

66 0.760 0.594 0.276 171

67 0.804 0.641 0.298 170

(continued)
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Table 6.7 (continued) RIP 100% 50% 0% n

68 0.862 0.680 0.292 169

69 0.816 0.644 0.306 168

70 0.823 0.648 0.213 167

71 0.832 0.689 0.352 166

72 0.811 0.666 0.303 165

73 0.807 0.639 0.306 164

74 0.805 0.645 0.345 163

75 0.751 0.596 0.272 162

76 0.780 0.613 0.320 161

77 0.747 0.582 0.186 160

78 0.778 0.604 0.215 159

79 0.817 0.649 0.320 158

80 0.738 0.564 0.234 157

81 0.774 0.627 0.215 156

82 0.843 0.654 0.314 155

83 0.797 0.623 0.344 154

84 0.782 0.594 0.260 153

85 0.703 0.508 0.150 152

86 0.752 0.616 0.279 151

87 0.834 0.670 0.300 150

88 0.810 0.613 0.239 149

89 0.831 0.644 0.318 148

90 0.789 0.631 0.255 147

91 0.766 0.573 0.233 146

92 0.717 0.558 0.252 145

93 0.664 0.498 0.238 144

94 0.744 0.532 0.204 143

95 0.760 0.620 0.322 142

96 0.872 0.682 0.302 141

97 0.760 0.567 0.232 140

98 0.776 0.647 0.307 139

99 0.759 0.618 0.201 138

100 0.828 0.614 0.323 137

101 0.735 0.552 0.181 136

102 0.840 0.599 0.206 135

103 0.758 0.608 0.180 134

104 0.748 0.585 0.237 133

105 0.704 0.512 0.216 132

106 0.811 0.630 0.291 131

(continued)



264 6 Cancer Gene Diagnosis of Shipp et al. Microarray

Table 6.7 (continued) RIP 100% 50% 0% n

107 0.814 0.639 0.321 130

108 0.740 0.547 0.236 129

109 0.813 0.611 0.221 128

110 0.831 0.634 0.242 127

111 0.785 0.623 0.203 126

112 0.733 0.575 0.214 125

113 0.799 0.606 0.201 124

114 0.747 0.609 0.234 123

115 0.795 0.596 0.251 122

116 0.825 0.629 0.208 121

117 0.824 0.652 0.255 120

118 0.765 0.611 0.311 119

119 0.789 0.584 0.205 118

120 0.791 0.608 0.240 117

121 0.750 0.609 0.335 116

122 0.803 0.616 0.261 115

123 0.703 0.550 0.217 114

124 0.794 0.595 0.222 113

125 0.781 0.588 0.330 112

126 0.709 0.508 0.223 111

127 0.779 0.568 0.250 110

128 0.793 0.582 0.294 109

129 0.800 0.617 0.221 108

130 0.825 0.626 0.346 107

131 0.809 0.644 0.353 106

132 0.746 0.537 0.184 105

133 0.741 0.591 0.264 104

134 0.821 0.613 0.265 103

135 0.861 0.636 0.283 102

136 0.750 0.563 0.221 101

137 0.818 0.675 0.270 1

138 0.806 0.641 0.384 99

139 0.771 0.617 0.342 98

140 0.655 0.521 0.243 97

141 0.703 0.511 0.292 96

142 0.724 0.596 0.313 95

143 0.786 0.602 0.232 94

144 0.606 0.438 0.182 93

145 0.684 0.522 0.280 92

(continued)
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Table 6.7 (continued) RIP 100% 50% 0% n

146 0.723 0.525 0.240 91

147 0.803 0.649 0.222 90

148 0.759 0.567 0.247 89

149 0.689 0.525 0.202 88

150 0.758 0.593 0.263 87

151 0.782 0.609 0.242 86

152 0.758 0.532 0.199 85

153 0.724 0.600 0.287 84

154 0.769 0.596 0.263 83

155 0.704 0.522 0.185 82

156 0.723 0.573 0.231 81

157 0.731 0.559 0.263 80

158 0.780 0.611 0.316 79

159 0.757 0.570 0.177 78

160 0.717 0.560 0.138 77

161 0.781 0.612 0.290 76

162 0.683 0.561 0.298 75

163 0.708 0.546 0.317 74

164 0.623 0.472 0.217 73

165 0.713 0.547 0.261 72

166 0.772 0.640 0.238 71

167 0.749 0.459 0.106 70

168 0.720 0.579 0.272 69

169 0.735 0.565 0.260 68

170 0.727 0.535 0.300 67

171 0.742 0.532 0.233 66

172 0.649 0.484 0.163 65

173 0.733 0.507 0.217 64

174 0.672 0.520 0.181 63

175 0.736 0.611 0.260 62

176 0.709 0.601 0.186 61

177 0.649 0.495 0.303 60

178 0.691 0.519 0.234 59

179 0.785 0.608 0.317 58

180 0.688 0.510 0.287 57

181 0.764 0.535 0.228 56

182 0.729 0.576 0.302 55

183 0.728 0.564 0.357 54

184 0.775 0.607 0.321 53

(continued)
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Table 6.7 (continued) RIP 100% 50% 0% n

185 0.697 0.513 0.127 52

186 0.716 0.597 0.168 51

187 0.772 0.548 0.286 50

188 0.725 0.530 0.235 49

189 0.705 0.498 0.148 48

190 0.683 0.582 0.303 47

191 0.696 0.519 0.171 46

192 0.604 0.481 0.257 45

193 0.741 0.545 0.288 44

194 0.723 0.608 0.350 43

195 1.000 0.558 0.231 42

196 0.715 0.556 0.231 41

197 0.705 0.516 0.263 40

198 0.730 0.515 0.147 39

199 0.796 0.524 0.243 38

200 0.721 0.566 0.374 37

201 0.625 0.456 0.148 36

202 0.711 0.489 0.232 35

203 0.658 0.458 0.254 34

204 0.686 0.567 0.360 33

205 0.772 0.594 0.292 32

206 0.691 0.519 0.217 31

207 0.678 0.486 0.350 30

208 1.000 0.493 0.233 29

209 1.000 0.530 0.218 28

210 0.632 0.486 0.233 27

211 0.735 0.524 0.218 26

212 0.553 0.407 0.226 25

213 0.663 0.554 0.203 24

214 0.765 0.548 0.229 23

215 0.655 0.519 0.268 22

216 0.628 0.453 0.203 21

217 0.652 0.499 0.172 20

218 0.702 0.581 0.391 19

219 0.624 0.514 0.275 18

220 0.586 0.416 0.253 17

(continued)
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Table 6.7 (continued) RIP 100% 50% 0% n

221 0.638 0.471 0.260 16

222 0.591 0.496 0.248 15

223 0.635 0.421 0.251 14

224 0.585 0.421 0.257 13

225 0.492 0.420 0.197 12

226 0.650 0.380 0.161 11

227 0.663 0.432 0.290 10

228 0.498 0.386 0.243 9

229 0.618 0.458 0.190 8

230 0.498 0.321 0.138 7

231 0.584 0.369 0.233 6

232 0.533 0.429 0.216 5

233 0.469 0.287 0.165 4

234 0.175 0.096 0.085 3

235 0.448 0.352 0.256 2

236 0.088 0.088 0.088 1

Max 1.0 0.723 0.391

Min 0.088 0.088 0.085

Mean 0.750 0.578 0.258

50% 0.772 0.599 0.257

Table 6.8 shows the ratio at which the correlation R becomes 0.6 or more in 236
groups in Table 6.7. “RIPi” represents a set of correlations of RIPi and RIPj (j > i),
which is the stratified group name. As in Table 6.7, it decreases from 236 pairs to
one pair such as (RIP236, RIP237). Within the stratum, column “RIPj” shows the
suffix of RIPj having the maximum r. “Ratio” is the ratio of correlations over 0.6.
For example, the RIP1 row is the summary of 236 correlations from RIP2 to RIP237,
but when it is arranged in descending order by correlation, the correlation 0.811 with
RIP4 becomes the maximum. After that, “r > � 0.6” column indicates that there are
189 pairs having “r >� 0.6” and that the ratio is 0.8 with respect to 236 pairs.

The three ratios of (RIP195, RIP196), (RIP208, RIP210), and (RIP209, RIP211)
are 0.21, 0.17, and 0.29, respectively. Because these three pairs have “r � 1,” we
focus on three pairs in this chapter.



268 6 Cancer Gene Diagnosis of Shipp et al. Microarray

Table 6.8 Ratio at which the R is 0.6 or more in 236 groups of Table 6.7

RIPi R RIPj R >� 0.6 Ratio

1 0.811 4 189 0.801

2 0.873 22 210 0.894

3 0.776 79 150 0.641

4 0.857 73 205 0.880

5 0.822 166 179 0.772

6 0.818 9 174 0.753

7 0.810 31 108 0.470

8 0.821 49 167 0.729

9 0.791 45 140 0.614

10 0.825 44 165 0.727

11 0.789 30 191 0.845

12 0.784 87 99 0.440

13 0.750 184 108 0.482

14 0.794 25 136 0.610

15 0.840 22 174 0.784

16 0.814 154 185 0.837

17 0.799 22 138 0.627

18 0.835 65 156 0.712

19 0.833 60 119 0.546

20 0.847 32 183 0.843

21 0.844 28 162 0.750

22 0.831 130 165 0.767

23 0.776 143 148 0.692

24 0.797 71 153 0.718

25 0.816 45 159 0.750

26 0.785 109 170 0.806

27 0.823 72 166 0.790

28 0.834 45 148 0.708

29 0.800 32 145 0.697

30 0.775 117 144 0.696

31 0.820 41 160 0.777

32 0.861 72 184 0.898

33 0.842 72 162 0.794

34 0.790 41 150 0.739

35 0.783 71 121 0.599

(continued)
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Table 6.8 (continued)

RIPi R RIPj R >� 0.6 Ratio

36 0.823 142 112 0.557

37 0.811 72 145 0.725

38 0.835 179 149 0.749

39 0.863 46 153 0.773

40 0.792 51 139 0.706

41 0.801 82 140 0.714

42 0.856 57 162 0.831

43 0.768 168 133 0.686

44 0.826 72 114 0.591

45 0.827 82 143 0.745

46 0.842 72 147 0.770

47 0.764 137 107 0.563

48 0.780 127 105 0.556

49 0.792 72 130 0.691

50 0.807 137 152 0.813

51 0.864 137 160 0.860

52 0.841 117 144 0.778

53 0.701 83 56 0.304

54 0.789 68 117 0.639

55 0.777 89 109 0.599

56 0.812 87 124 0.685

57 0.840 179 143 0.794

58 0.782 71 131 0.732

59 0.729 60 53 0.298

60 0.794 166 138 0.780

61 0.801 138 128 0.727

62 0.824 138 143 0.817

63 0.815 147 135 0.776

64 0.763 71 95 0.549

65 0.809 68 92 0.535

66 0.760 71 84 0.491

67 0.804 166 113 0.665

68 0.862 107 139 0.822

69 0.816 71 129 0.768

70 0.823 122 124 0.743

71 0.832 87 143 0.861

72 0.811 82 134 0.812

(continued)
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Table 6.8 (continued)

RIPi R RIPj R >� 0.6 Ratio

73 0.807 99 107 0.652

74 0.805 98 124 0.761

75 0.751 89 82 0.506

76 0.780 138 90 0.559

77 0.747 219 69 0.431

78 0.778 143 91 0.572

79 0.817 135 115 0.728

80 0.738 166 55 0.350

81 0.774 96 106 0.679

82 0.843 117 114 0.735

83 0.797 98 104 0.675

84 0.782 138 76 0.497

85 0.703 127 13 0.086

86 0.752 87 91 0.603

87 0.834 117 123 0.820

88 0.810 137 88 0.591

89 0.831 111 101 0.682

90 0.789 129 104 0.707

91 0.766 109 58 0.397

92 0.717 114 47 0.324

93 0.664 138 9 0.063

94 0.744 204 36 0.252

95 0.760 142 88 0.620

96 0.872 120 118 0.837

97 0.760 109 50 0.357

98 0.776 138 97 0.698

99 0.759 114 78 0.565

100 0.828 159 79 0.577

101 0.735 168 29 0.213

102 0.840 196 70 0.519

103 0.758 147 78 0.582

104 0.748 165 59 0.444

105 0.704 164 24 0.182

106 0.811 120 89 0.679

107 0.814 147 90 0.692

108 0.740 157 39 0.302

109 0.813 166 74 0.578

(continued)
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Table 6.8 (continued)

RIPi R RIPj R >� 0.6 Ratio

110 0.831 134 82 0.646

111 0.785 137 81 0.643

112 0.733 169 55 0.440

113 0.799 179 76 0.613

114 0.747 147 70 0.569

115 0.795 138 61 0.500

116 0.825 151 83 0.686

117 0.824 138 86 0.717

118 0.765 130 70 0.588

119 0.789 157 51 0.432

120 0.791 168 64 0.547

121 0.750 184 73 0.629

122 0.803 137 67 0.583

123 0.703 187 32 0.281

124 0.794 205 56 0.496

125 0.781 138 51 0.455

126 0.709 134 18 0.162

127 0.779 161 47 0.427

128 0.793 138 46 0.422

129 0.800 135 63 0.583

130 0.825 183 67 0.626

131 0.809 138 76 0.717

132 0.746 153 29 0.276

133 0.741 204 49 0.471

134 0.821 166 61 0.592

135 0.861 153 71 0.696

136 0.750 168 34 0.337

137 0.818 150 82 0.820

138 0.806 184 67 0.677

139 0.771 179 61 0.622

140 0.655 168 12 0.124

141 0.703 158 18 0.188

142 0.724 165 48 0.505

143 0.786 205 50 0.532

144 0.606 175 2 0.022

145 0.684 154 13 0.141

146 0.723 157 17 0.187

(continued)
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Table 6.8 (continued)

RIPi R RIPj R >� 0.6 Ratio

147 0.803 191 66 0.733

148 0.759 179 39 0.438

149 0.689 177 24 0.273

150 0.758 198 42 0.483

151 0.782 166 46 0.535

152 0.758 191 24 0.282

153 0.724 182 45 0.536

154 0.769 168 42 0.506

155 0.704 220 14 0.171

156 0.723 198 34 0.420

157 0.731 181 29 0.363

158 0.780 207 46 0.582

159 0.757 160 33 0.423

160 0.717 183 25 0.325

161 0.781 179 46 0.605

162 0.683 211 22 0.293

163 0.708 166 17 0.230

164 0.623 166 3 0.041

165 0.713 178 18 0.250

166 0.772 205 53 0.746

167 0.749 196 8 0.114

168 0.720 210 29 0.420

169 0.735 176 23 0.338

170 0.727 193 15 0.224

171 0.742 211 16 0.242

172 0.649 194 10 0.154

173 0.733 204 18 0.281

174 0.672 216 12 0.190

175 0.736 179 37 0.597

176 0.709 179 36 0.590

177 0.649 183 8 0.133

178 0.691 219 10 0.169

179 0.785 207 32 0.552

180 0.688 204 12 0.211

181 0.764 193 16 0.286

182 0.729 191 26 0.473

183 0.728 204 23 0.426

(continued)
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Table 6.8 (continued)

RIPi R RIPj R >� 0.6 Ratio

184 0.775 200 30 0.566

185 0.697 194 12 0.231

186 0.716 200 26 0.510

187 0.772 204 16 0.320

188 0.725 209 12 0.245

189 0.705 213 6 0.125

190 0.683 205 19 0.404

191 0.696 204 16 0.348

192 0.604 218 1 0.022

193 0.741 201 15 0.341

194 0.723 221 23 0.535

195 1.000 196 9 0.214

196 0.715 200 8 0.195

197 0.705 213 12 0.300

198 0.730 219 10 0.256

199 0.796 205 12 0.316

200 0.721 218 13 0.351

201 0.625 206 1 0.028

202 0.711 209 4 0.114

203 0.658 206 5 0.147

204 0.686 218 16 0.485

205 0.772 213 13 0.406

206 0.691 218 6 0.194

207 0.678 215 7 0.233

208 1.000 210 5 0.172

209 1.000 211 8 0.286

210 0.632 216 3 0.111

211 0.735 213 7 0.269

212 0.553 227 0 0.000

213 0.663 225 6 0.250

214 0.765 232 7 0.304

215 0.655 223 3 0.136

216 0.628 220 1 0.048

217 0.652 219 3 0.150

218 0.702 219 6 0.316

219 0.624 220 2 0.111

220 0.586 229 0 0.000

(continued)
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Table 6.8 (continued)

RIPi R RIPj R >� 0.6 Ratio

221 0.638 228 1 0.063

222 0.591 224 0 0.000

223 0.635 227 1 0.071

224 0.585 235 0 0.000

225 0.492 226 1 0.083

226 0.650 232 1 0.091

227 0.663 231 1 0.100

228 0.498 235 0 0.000

229 0.618 232 1 0.125

230 0.498 233 0 0.000

231 0.584 237 0 0.000

232 0.533 237 0 0.000

233 0.469 237 0 0.000

234 0.175 235 0 0.000

235 0.448 237 0 0.000

236 0.088 237 0 0.000

Max 210 0.900

Min 0 0.000

Sum 16380 111.320

Mean 69.41 0.470

6.3.3 Examination of Three RipDSs with a Correlation of 1

We examine three pairs of (RIP195, RIP196), (RIP208, RIP210), and (RIP209,
RIP211) having r� 1 in Table 6.8. Figure 6.2 shows PCA plots of these six variables.
The left plot is the eigenvalue. The first eigenvalue is 4.24, and the contribution rate is
large at 70.67. The second eigenvalue is 0.8978, and the contribution rate is 14.96%,
and the cumulative rate is 85.635%. The score plot in the middle also shows the
same characteristics described in other microarrays. The plot on the right is a factor
loading plot. The six RipDSs locate in the first quadrant and fourth quadrants.
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Fig. 6.2 Three plots of PCA

Table 6.9 shows the details of the factor loading plot in Fig. 6.2. The row directions
from the Prin1 to the Prin6 are the factor loading amount of six variables. The factor
loading amounts of Prin1 and Prin2 correspond to the right-side plot of Fig. 6.2.
Because two correlations between (RIP195 vs. RIP196) and (RIP208 vs. RIP210)
are 1, and the factor loading amounts of the two principal components are the same,
these four RipDSs are the same in the fourth quadrant of the factor loading plot. The
factor loading amounts show that the correlations between four RipDSs and Prin1
are 0.843, and the correlations with Prin2 are −0.274. Thus, these four RipDSs
have the same role. RIP209 and RIP211 have a correlation coefficient of 1, and the
factor loading amount is in the first quadrant. These two RipDSs are considered to
replace each other at all. Because they have high correlations with other RIPs, we
are expecting that they correspond to the new class pointed by Golub et al. that is a
subclass of cancer. Verification by a specialist is necessary.

Table 6.9 Details of factor loading plots up to the six principal component

PCA/Var. RIP195 RIP196 RIP208 RIP210 RIP209 RIP211

Prin1 0.843 0.843 0.843 0.843 0.836 0.836

Prin2 −0.274 −0.274 −0.270 −0.270 0.549 0.549

Prin3 0.463 0.463 −0.465 −0.465 0.002 0.002

Prin4 0.166 0.166 0.144 0.144 0.874 0.874

Prin5 −0.619 −0.619 −0.974 −0.974 −0.729 −0.729

Prin6 0.482 0.482 −0.330 −0.330 0.413 0.413
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6.4 Analysis of 30 RipDSs of 30 SMs and 18 HsvmDSs of 18
SMs

In this section, we select 30 SMs and 18 SMs from 237 SMs and discrim-
inate those by RIP and H-SVM. RIPi indicates the DS of SMi discrimi-
nated by RIP. The 30 RIPs consist from RIP1 to RIP18, six RIPs having
R � 1, and last six RIPs from RIP232 to RIP237. On the other hand, the 18 HSVMs
consist six HSVMs from HSVM1 to HSVM6, six HSVMs having R � 1, and last
six HSVMs from HSVM232 to HSVM237. By examining these two sets of SMs,
we aimed to validate no difference of results. RIP and H-SVM discriminate between
two types of SMs, and we make two signal data. The cluster analysis and PCA show
two classes are entirely separable as same as 234 RIPs. After that, we analyze the
transposed new data by cluster analysis and PCA. Most results are the same as Alon
and Golub et al.

6.4.1 Cluster Analysis

Figure 6.3 is Ward cluster analysis of 30 RipDSs new data of 30 SMs. It consists
of 77 cases (patients) and 30 variables (RIPs). The color map with 77 rows and 30
columns is entirely separated in the upper 58 rows of DLBCL and lower 19 rows
of FL. Furthermore, 58 DLSCL becomes seven clusters. The lower dendrogram is a
dendrogram of these 30 RIPs. At first, RIP195 and RIP196 become the first cluster.
Next, RIP208 and RIP210 become the second cluster. Third, RIP209 and RIP211
become the third cluster. The correlations of these three pairs are 1.

We had better specified the cluster number by moving right top marker diamond
shape. Now, we choose eight clusters and identify by the same color and symbols.
Thus, the case dendrogram on the right consists seven clusters of 58 DLBCL cases
showed by seven colors. Below that, 19 FL cases become one green cluster. On the
left side, the different markers identify the corresponding eight colors. The top red©
mark is the first cluster of 29 DLBCL cases. Thereafter, there are the second cluster
of six cases of green + signs, the third cluster of three cases of blue ◇ marks, the
fourth cluster of 12 cases of orange × marks, the fifth cluster of two cases of light
blue � marks, the sixth cluster of four cases of purple marks, and the seventh yellow
cluster of two cases. There is the one cluster of 19 cases of green FL cases after that. It
is essential that DCBCL and FL are divided into two classes cleanly. The same result
can be obtained by using 237 DSs. It seems that seven clusters of DCBCL also have
medical implications. In the middle color map, the values of each case and variable
are hierarchized with green → white → red. Because the green pixel is the smallest
and the red is large, it can be understood that the FL class is a mild cancer class
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compared to DLBCL without medical knowledge. Also, the seventh yellow cluster
having two cases is strongly related to three RipDSs (RIP195, RIP196, RIP235)
because the six cells made by two cases and three RipDSs are red. On the other hand,
all FL cases seem to have a weak relationship with RipDSs because most of the cells
are green.

Fig. 6.3 Ward cluster analysis of 30 RipDSs data
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Figure 6.4 is a cluster analysis of 18 HsvmDSs signal data. The DLBCL has seven
clusters as follows: 1: 29 red © marks, 2: 4 green + marks, 3: 8 blue ◇ marks, 4: 8
orange × marks, 5: 5 green � marks, 6: 3 purple Y marks 7: one yellow ▼ marks.
The 19 FL cases are one cluster. Because we cannot discuss the medical meaning of
cluster analysis, we expect the medical specialists to examine our cluster analysis.
However, FL has few cases, but because DLBCL is divided into seven clusters, it
can be judged that it is mild compared to DLBCL without medical knowledge. This
proves that signal data correctly represents signal information. Furthermore, wemust
be aware cluster analysis does not show the information of R � 1 well. Fig. 6.3 and
Fig. 6.4 tells us this remark because the merged distances of three pairs are different.
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Fig. 6.4 Ward cluster analysis of 18HsvmDSs data



280 6 Cancer Gene Diagnosis of Shipp et al. Microarray

6.4.2 Principal Component Analysis (PCA)

Figure 6.5 is the PCA plots of RipDSs signal data. From the left eigenvalue, the
first eigenvalue is 17.97, and the contribution rate is 59.9%. The second eigenvalue
is 1.588, the contribution rate is 5.295%, and the cumulative contribution rate is
65.195%. That is, the Prin1 almost represents 30 RipDSs. From the score plot in the
middle, because the second eigenvalue is small and the fluctuation is small, it can
be seen that the FL case is almost placed on the axis of −4.47 or less of the Prin1.
DLBCL cases are in the range of approximately −1 to 7. As the distance from FL
increases, the dispersion of the Prin2 becomes large. This result is relatively similar to
the results of Alon and Singh which consist of cancer and healthy patients. However,
it is a slightly different point that FL cases are in the fan shape. In Fig. 6.3, 29 cases
of red © are apart from FL, but in PCA it is found that it is closest to the FL case.
We must be aware of this fact that the cluster analysis does not represent the spatial
location information of each patient well. Six cases of green + signs are adjacent to
it. Four cases of purple Y signs are outliers. Shipp et al. can verify whether these are
subspecies of DLBCL.

Fig. 6.5 PCA three plots of 18 RipDSs

The first two columns of Table 6.10 are the details of RipDSs corresponding to
Fig. 6.5. The number of three lines or less in the first column is SN. The second
column is the value of the Prin1, and it is rearranged in descending order from a
large value. The leftmost one in Fig. 6.5 is the FL patient, which is −6.209 of SN �
76. In FL patients closest to DLBCL, SN � 77 is −4.377, and FL range is [−6.209,
−4.377]. On the other hand, the DLBCL range is [−0.744, 6.176]. SV opens the
window of (−4.377, −0.744). RatioSV is 29.328% for the range [−6.209, 6.176] on
the Prin1. Assuming that it is about 30%, FL and DLBCL are separated and placed
in the remaining 70%. Because this is a comprehensive of 30 RIPs, it is 0.5% larger
than 28.80% of the maximum value of 237 RatioSVs discussed in Table 6.6. With
this degree of improvement, it is necessary to examine many genes and cannot be
used for cancer gene diagnosis. It can be thought of simply as a conceptual diagram
representing a malignancy indicator. For the new class discovery pointed out by
Golub, they use the SOP of the K-means method and clusters that are considered
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to be a new class and are identified by fixing the number of clusters to two at first.
After that, it is verified by the class prediction method such as the voting method. In
the second step, they survey the three clusters and so on. On the other hand, in this
research, we propose to find the outliers of RipDSs signal data by cluster analysis
and PCAwithout fixing the assumed number of clusters. This is possible because the
signal data omit the noise. However, even if SM is clustered merely, such an obvious
result cannot be obtained, and RIP, Revised LP-OLDF, and H-SVM are considered
to have a significant effect. Because we use a DS that best discriminates between FL
and DLBCL, we believe that outlier cases are more likely to be new classes.

Table 6.10 RIP and HSVM
Prin1 values sort by RatioSV

RatioSV 29.328 RatioSV 24.535

SN Prin1 by
RIP

SN Prin1 by HSVM

4 6.176 4 7.48

32 5.443 39 6.64

39 5.143 32 5.60

55 4.665 56 5.49

49 3.297 55 5.21

34 3.140 2 4.22

58 2.971 27 3.45

56 2.936 34 3.40

45 2.765 45 3.12

40 2.762 44 3.00

54 2.693 49 2.98

23 2.552 58 2.95

48 2.528 12 2.77

43 2.359 31 2.45

27 2.307 48 2.41

46 2.269 54 2.36

16 2.261 23 2.32

5 2.209 57 2.28

21 2.143 5 2.24

57 2.041 16 2.20

44 2.026 40 2.04

31 1.923 21 1.84

42 1.918 42 1.80

24 1.817 43 1.74

(continued)
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Table 6.10 (continued) RatioSV 29.328 RatioSV 24.535

SN Prin1 by
RIP

SN Prin1 by HSVM

30 1.676 30 1.74

47 1.640 47 1.62

35 1.625 35 1.54

18 1.527 26 1.40

8 1.383 18 1.38

17 1.357 10 1.33

6 1.343 1 1.20

10 1.296 33 1.05

26 1.175 37 1.05

9 1.131 24 1.05

1 1.079 6 1.05

3 1.031 8 1.05

37 0.956 50 0.92

53 0.910 46 0.83

50 0.893 3 0.82

12 0.888 25 0.66

33 0.834 17 0.58

2 0.826 11 0.53

52 0.766 20 0.35

20 0.740 9 0.32

19 0.717 36 0.29

11 0.675 28 0.22

13 0.581 19 0.05

28 0.564 38 0.01

25 0.561 41 0.00

41 0.490 52 −0.05

36 0.438 53 −0.08

15 0.348 14 −0.14

38 0.034 15 −0.21

14 −0.019 13 −0.22

29 −0.058 29 −0.30

7 −0.131 7 −0.38

51 −0.499 51 −0.48

22 −0.744 22 −1.02

77 −4.377 61 −4.47

60 −4.401 77 −4.48

59 −4.413 59 −4.50

66 −4.554 66 −4.62

(continued)
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Table 6.10 (continued) RatioSV 29.328 RatioSV 24.535

SN Prin1 by
RIP

SN Prin1 by HSVM

74 −4.585 63 −4.64

67 −4.624 62 −4.75

63 −4.644 74 −4.85

62 −4.686 67 −4.88

68 −4.973 60 −4.90

61 −4.995 75 −5.05

73 −5.003 68 −5.09

64 −5.142 64 −5.17

71 −5.295 73 −5.57

65 −5.314 65 −5.59

75 −5.407 72 −5.64

72 −5.829 76 −5.67

70 −5.953 70 −5.76

69 −5.970 69 −5.97

76 −6.209 71 −6.59

Figure 6.6 shows the result of 18 HsvmDSs signal data by PCA. From the eigen-
values, it can be seen that the eigenvalue of the Prin1 is larger than others. The first
eigenvalue is 11.382, and the contribution rate is 63.2%. The second eigenvalue is
1.299, the contribution rate is 7.22%, and the cumulative contribution rate is 70.42%
which is the same as RIP. That is, the Prin1 almost represents 18 HsvmDSs signal
data. From the middle score plot, the second eigenvalue is small, and the fluctuation
is small, so it can be seen that the FL cases are almost on the Prin1 axis of −4.47
or less. The DLBCL cases are in the range of approximately −1.02 to 7.48, and the
variation of the Prin2 becomes large as it leaves the FL. That is, the Prin1 can be used
as a conceptual diagram of cancer malignancy index as well as individual RipDS. If
the priority of the DS used for diagnosing the malignancy of cancer is established,
the diagnosis can be carried out by inspecting fewer genes. Therefore, the use of
PCA decreases.
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Fig. 6.6 Analysis result of discriminant score data of HSVM by PCA

The numbers of three rows or less of the third and fourth columns in Table 6.10
are the values of the HsvmDSs data. The fourth column is the value of the Prin1 by
the PCA, and it is rearranged in descending order. The range of FL is [−6.59,−4.47].
The range of DLBCL is [−1.02, 7.48]. Because the range of SV is (−4.47, −1.02)
and the range of HsvmDSs is [−6.59, 7.48], RatioSV is 24.535%. Assuming that it is
about 25%, FL and DLBCL patients are separated and placed in the remaining 75%.
Although this is a comprehensive of 18 RIPs, it is 9% smaller than the 33.34% of the
maximum value of 237 RatioSVs discussed in Table 6.6. RatioSV has drawbacks
depending on the minimum and maximum values, but we do not know if there is
another reason why RatioSV of PCA is small.

6.5 Analysis of Transposed Data

Figure 6.7 shows the results of cluster analysis by transposed data of RipDSs signal
data. The row corresponds to 237 RipDSs, and the variable in the column direction
corresponds to the 58 cases of DLBCL and the red 19 cases of FL. Because it is
a transposed data, the variable dendrogram separates both patients with DLBCL
and FL into two clusters. On the other hand, the case dendrogram categorizes 237
RipDSs into the 20 clusters such as the 92 red RipDSs, the 91 green RipDSs, and
the miscellaneous RipDSs. It seems better to divide it into three DSs. Unlike the
previous two clusters, the last 54 RIPs become the clustering by the large distances.
It is different from the previous 183 RIPs. The 54 RIPs are considered to be affected
by specific patients.We think that a new class finding should be studied by contrasting
these 54 with the previous 183. However, exploratory cluster analysis often results
in different results when changing the method of analysis, the definition of distance,
changing the number of cases, and variables analyzed. Which results to adopt should
be done with medical knowledge. Here, we will focus on 54 cases.
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Fig. 6.7 Cluster analysis of transposed signal data by 237 RipDSs

In Fig. 6.8, cluster analysis was performed using the 54 RipDSs explained in
Fig. 6.7. By omitting 183 cases, the shape of the dendrogram changed, but this
should be judged based on whether the medically useful explanation is possible or
not. The 24 © marks are clusters that are away from each other, and the 19 green
marks with shorter distances are sequentially clustering. The last 11 cases become
four clusters of seven cases, one case, one case, and two cases at vast distances.
We need to compare this result by case studies of patients. The cluster analysis is
ambiguous and cumbersome because statistician obtain various results. However, it
provides a variety of different perspectives, so physicians can carefully choose what
suits their specific knowledge.
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Fig. 6.8 Cluster analysis using the 54 RipDSs signal data

Figure 6.9 shows the results of PCA corresponding to Fig. 6.8. In cluster analysis,
the positioning in the data space of each case is ambiguous. However, even if we
lack medical knowledge, we do not make a big mistake to interpret the results of
PCA. Because 19 green RipDSs include the origin, these cases are our understanding
base. Moreover, the 24 red cases (©) in the first and fourth quadrants surround the
green cases. Cases in first quadrant of the factor loading plot are closely related to
RipDSs in first quadrant of the score plot. That is, the principle that the association
between (RipDS and case) in each quadrant of (score plot and factor plot) is large is
essential for PCA interpretation. Moreover, 11 cases are outliers, but because they
are separated by a considerable distance, respectively, it turns out that interpretation
of these clusters by cluster analysis is difficult. However, score plot indicates these
are outliers in the first and fourth quadrants. This shows the appropriateness of the
method of interpreting the cluster indicated by cluster analysis with PCA. In the
research of gene analysis, it is regretful that cluster analysis was taken and PCA was
not used.



6.5 Analysis of Transposed Data 287

Fig. 6.9 PCA result of 54 RipDSs signal data

Figure 6.10 shows the result of transposed data of the 237 HsvmDSs signal data.
Green HSVM234 separates upper red cluster and lower blue cluster. Under them,
five clusters appear. However, in the variable dendrogram, only one red FL case of
SN � 62 is separated from the remaining 18 FL cases and shows no sign of linear
separation of two classes. Physicians should consider why this patient is clustered to
DLBCL patients.

Fig. 6.10 Cluster analysis transposed signal data by 237 HsvmDSs
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Figure 6.11 shows the result of transposed signal data by PCA. The red cluster in
Fig. 6.10 contains the origin and is the core of our study. Moreover, blue clusters are
predominantly in the first quadrant; other clusters are in the first and fourth quadrants,
overlapping blue. Several HsvmDSs are outliers in the first and second quadrants.
Verification of the medical meaning of 237 HsvmDSs should take priority on what
is included in the red cluster, but it may be easier to verify specific outliers. The FL
patient with SN � 62 in Fig. 6.10 is close to 0.3 on Prin2 axis and is separate from
other FL patients. Moreover, it is clear that it is close to the patients with DLBCL
in the first quadrant. Clear outliers indicate the possibility of new subspecies, but
because there is no medical knowledge, we point out only the possibilities.

Fig. 6.11 PCA result of transposed data of 237 HsvmDSs

6.6 Conclusions

In this chapter unlike previous analyses of Alon and Golub, we focus on 30 RipDSs
and 18 HsvmDSs chosen from 237 SMs. We analyzed in detail only two sets of
different SMs. This comparison allowed us to examine cluster analysis and PCA
results in detail. The most significant result will be the method of discovering new
subclasses of cancer proposed by Golub et al. Because RIP and HSVM can predict
cancer classes, both LDFs offer a simple approach. We hope that this approach will
contribute to the diagnosis of cancer malignancy.
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Chapter 7
Cancer Gene Diagnosis of Singh et al.
Microarray

Abstract Chapter 1 explained the new theory of discriminant analysis after R. A.
Fisher (Theory). The theory solved five problems completely. Especially, Revised
IP-OLDF (RIP) andMethod2 firstly succeeded in the cancer gene analysis. RIP could
find six microarrays were LSD (Fact3). LINGO Program3 ofMethod2 could decom-
pose the microarray into many SMs and another noise subspace (Fact4). In Chap. 2,
we make signal data made by RIP discriminant scores (RipDSs). Our breakthrough
opens the new frontier of cancer gene diagnosis and malignancy indexes. We find the
new problem (Problem6): “Why could no researchers find the linear separable facts
in microarrays and SM from 1970?” In this book, we explain the several answers
of Problem6. In this chapter, we survey how to make different RipDSs from many
SMs. It explains why microarray consists of many SMs and the different RipDSs. By
these results, we wish to classify SMs into several categories of malignancy indexes
in the future.

Keywords Singh’s microarray · Cancer gene diagnosis · Malignancy indexes and
RatioSV · RIP discriminant scores (RipDSs) · Signal data made by RipDSs ·
Correlations of RipDSs

Thanks to Singh et al.
We thank Singh et al.1 (2002) for providing their microarray that consists of 102
subjects (50 normal subjects and 52 tumor prostate patients) and 12,625 genes. We
will quote their “Abstract” for the reader.

Prostate tumors are among the most heterogeneous of cancers, both histologically and clin-
ically. Microarray expression analysis was used to determine whether global biological
differences underlie common pathological features of prostate cancer and to identify genes
that might anticipate the clinical behavior of this disease. While no expression correlates of
age, serum prostate-specific antigen (PSA), and measures of the local invasion were found,
a set of genes was identified that strongly correlated with the state of tumor differentiation as
measured by Gleason score. Moreover, a model using gene expression data alone accurately

1Dinesh Singh, Phillip G. Febbo, Kenneth Ross, Donald G. Jackson, Judith Manola, Christine
Ladd, Pablo Tamayo, Andrew A. Renshaw, Anthony V. D’Amico, Jerome P. Richie, Eric S. Lander,
Massimo Loda, Philip W. Kantoff, Todd R. Golub, and William R. Sellers.
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predicted patient outcome following prostatectomy. These results support the notion that the
clinical behavior of prostate cancer is linked to underlying gene expression differences that
are detectable at the time of diagnosis.

7.1 Introduction

Chapter 1 explained the new theory of discriminant analysis after R. A. Fisher (The-
ory) that solves five problems completely. Especially, Revised IP-OLDF (RIP) based
on the MNM criterion and Matryoshka feature selection method (Method2) firstly
succeeded in the cancer gene analysis. RIP finds six microarrays are LSD and MNM
� 0 (Fact3). LINGO Program3 of RIP can decompose the microarray into the many
SMs (MNMs � 0) and another noise gene subspace (MNM >� 1) that is Fact4. In
Chap. 2, although all SMs are small samples, the standard statistical methods cannot
find the linear separable facts. Thus, we make signal data made by RIP discriminant
scores (RipDSs) in 2016. Our breakthrough opens the new frontier of cancer gene
diagnosis and many malignancy indexes using all SMs of six microarrays in 2016.
Furthermore, the 64 SMs and 130 BGSs of Alon are compared by RatioSVs in 2017.
We judge that BGSs are useless for cancer gene diagnosis because all RatioSVs are
less than 1%. In Chap. 3, we develop the method of choosing the proper SMs, and
we compare two sets of SMs chosen by the RIP and Revised LP-OLDF. In Chap. 4,
we find two critical facts. The first fact is the defect of Revised LP-OLDF that cannot
find all SMs from the microarray. The second fact is the reason why researchers
cannot find the linear separable facts in microarray and SM from 1970 (Problem6).
After Chap. 5, the above themes are intensely surveyed using the other five microar-
rays. In this chapter, we survey how to make different RipDSs from many SMs. It
explains why microarray consists of many SMs and different RipDSs using SMs.
By these results, we classify SMs into several categories of malignancy indexes for
cancer gene diagnosis in the future (Problem7). LINGO (Schrage 2006) decomposes
Singh’s microarray into 139 SMs and opens a new frontier of cancer gene analysis.
JMP (Sall et al. 2004) analyzes all SMs and offers cancer gene diagnosis. Shinmura
(2016, 2017, 2018a, b) relate to this Chapter.

7.2 Problem6 of Cancer Gene Analysis

RIP and Method2 decompose Singh’s microarray into 139 SMs (4,046 genes). We
analyze 139 SMs by the standard statistical methods such as one-way ANOVA,
t-test, Ward cluster analysis, principal component analysis (PCA), logistic regres-
sion, Fisher’s LDF, and quadratic discriminant analysis (QDA). Although we expect
those methods are useful for cancer gene diagnosis, only logistic regression can
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discriminate all SMs correctly, and other methods do not show the linear separable
facts. On the other hand, because RIP discriminates 139 SMs, and the range of 139
RatioSVs is [1.04, 29.11%], we make signal data that consists of 102 subjects and
139 RipDSs instead of 12,625 genes. By this breakthrough, cluster analysis can sep-
arate two classes as two clusters. In addition to this result, the Prin1 of PCA indicates
malignancy indexes of three signal data as same as 139 malignancy indexes by RIP,
Revised LP-OLDF, and H-SVM. Moreover, we expect that several outliers by the
scatter plot of the transposed signal data may be new subclasses of cancer pointed out
by Golub et al. (1999). We hope to cooperate with Singh and other medical experts
to validate our results of their microarray. If they examine and confirm our malig-
nancy indexes, wewill open the new frontier of cancer gene diagnosis bymicroarrays
through our cooperation. They will be able to accomplish their research completely.

On the other hand, we explain the reason why researchers cannot find the linear
separable facts in microarrays and SMs from 1970 (Problem6) in Chap. 4. Although
two SVs can separate two classes of microarray or each SM, the variation of the two
classes is tiny, and the signal is buried in noise. In this chapter, we explain how to
make 139 RipDSs.

7.3 Examination of RipDSs and SMs

At first, we considered all SMs (or BGSs) were signals. Now, we consider the signal
data made by RipDSs, LpDSs, and HsvmDSs are valid signals. The correlation
analysis and PCA analyze the signal data and show several results.

7.3.1 Correlations of 139 RipDSs

Figure 7.1 is the histogram of 9,591 correlations (abbreviated R) by 139 RipDSs. The
range of correlations is [0.417, 1]. R � 1 is an outlier, and nine Rs are over 0.912.
The range of Shipp is [0.0697, 1], also. In the cancer gene diagnosis, we expect the
two SMs with R� 1 are complementary. We think that medical experts shall validate
this claim.
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Fig. 7.1 Histogram of 9,591
correlations of 139 RipDSs

Table 7.1 is the list of 9,591 correlations sorted by descending order of R. The
[2.5, 97.5%] is the 95% confidence interval of R. Because all p-values are 0.000 (p <
0.0005), 9,591 correlations have the positive values. We claim this fact indicates the
139 RipDSs are signals instead of 139 SMs. Thus, everybody can quickly analyze
the 139-dimensional signal subspace that consists of 102 subjects and 139 RipDSs.
That is, RipDSs with high correlation have the same effect, and small ones have
different effects for diagnosis.
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Table 7.1 List of 9,591 correlations sorted by descending order of R

Var1 Versus Var2 R n 2.5% 97.5% p-value

RIP101 RIP100 1.000 102 0.000

RIP3 RIP2 0.928 102 0.895 0.951 0.000

RIP5 RIP1 0.928 102 0.895 0.951 0.000

RIP15 RIP2 0.925 102 0.890 0.949 0.000

RIP59 RIP35 0.922 102 0.887 0.947 0.000

RIP33 RIP22 0.914 102 0.875 0.941 0.000

RIP12 RIP2 0.913 102 0.873 0.940 0.000

RIP15 RIP3 0.913 102 0.873 0.940 0.000

– – – – – – –

RIP139 RIP49 0.439 102 0.267 0.583 0.000

RIP138 RIP54 0.438 102 0.266 0.583 0.000

RIP139 RIP68 0.436 102 0.263 0.581 0.000

RIP134 RIP114 0.433 102 0.261 0.579 0.000

RIP138 RIP57 0.433 102 0.260 0.579 0.000

RIP139 RIP19 0.431 102 0.258 0.577 0.000

RIP139 RIP27 0.427 102 0.253 0.574 0.000

RIP139 RIP83 0.417 102 0.242 0.566 0.000

The correlation between RIP100 and RIP101 is 1. Although SM100 has 22 genes
and SM101 has 27 genes, we guess two basic gene sets (BGSs) included in SM100
and SM101 have the same effects for cancer gene diagnosis. This survey is in future
research (Problem7). Figure 7.2 shows the three scatter plots. The x-axis is RIP100,
and three y-axes are RIP101, RIP98, and RIP139. Three straight lines are the simple
regression lines. Three plots suggest us 100th RipDS (Rip100) and 101th RipDS
(RIP101) have the same role in cancer gene diagnosis.

Fig. 7.2 Three scatter plots
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Table 7.2 is four RipDSs such as RipDS1 (abbreviated RIP1), RIP83, RIP94,
and RIP139 corresponding to SM1, SM83, SM94, and SM139. The second column
(SM1) shows the case number sorted by the third column score (RIP1 DS). The
40th case and 51st case have the minimum DS (−3.253) and maximum DS (5.705).
The range and RatioSV are 8.958 and 22.326. The 102 subjects are sorted in the
ascending order. The minimum DS is−3.253. This table means that the 40th normal
subject is the minimum value and all 50 normal subjects are less than equal −1 in
SM1. The ten subjects are on the SV � −1, and the 40 subjects are outliers. The
range of the normal class is [−3.253, −1]. On the other hand, the range of tumor
class is [1, 5.705]. The 13 tumor patients are on SV � 1, and the 39 tumor patients
are outliers. The 51st patient of tumor class has the maximum value. The range of
102 subjects is [−3.253, 5.705] and its width is 8.958. Thus, RatioSV of RIP1 is
22.326%. We choose the intermediate RIP 83 and RIP 94, RatioSVs of those are
6.356% and 4.889%. Although the RIP139 has few outliers, it has the minimum
RatioSV (1.042%) because the range 191.944 is large. The ranges of normal and
tumor classes are [−81.925, −1] and [1, 110.02], respectively. For the normal class,
the 14 subjects are outliers, and the 36 subjects are on SV� −1. For tumor class, the
21 patients are outliers, and the 31 patients lie on SV � 1. This table shows that RIP
fixes many subjects on two SVs and finds the linear separable facts of two classes. In
general, SM with many subjects on SV enlarges the RatioSVs shown in Table 5.2,
and SM with many outliers may reduce RatioSV.

Table 7.2 Four RipDSs

SM1 RIP1 SM83 RIP83 SM94 RIP94 SM139 RIP139

Min/Range 40 8.958 39 31.467 49 40.981 25 191.944

Max/Ratio 51 22.326 57 6.356 54 4.880 57 1.042

1 40 −3.253 39 −14.514 49 −8.936 25 −81.925

2 34 −3.005 20 −11.274 12 −7.508 36 −72.163

3 24 −2.760 38 −9.089 24 −7.313 35 −66.073

4 44 −2.739 8 −9.042 25 −7.290 12 −44.026

5 1 −2.651 16 −8.609 9 −7.037 41 −18.500

6 37 −2.570 26 −8.181 15 −5.503 37 −16.822

7 49 −2.567 6 −7.817 36 −5.299 5 −15.080

8 41 −2.473 43 −7.752 30 −5.297 44 −14.581

9 39 −2.425 19 −6.868 14 −4.573 31 −11.841

10 2 −2.348 23 −6.543 44 −4.264 39 −4.911

11 35 −2.240 40 −6.233 8 −3.943 43 −3.629

12 25 −2.221 33 −6.116 26 −3.853 24 −2.881

13 31 −2.123 46 −5.737 31 −3.765 50 −2.502

(continued)
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Table 7.2 (continued)

SM1 RIP1 SM83 RIP83 SM94 RIP94 SM139 RIP139

14 50 −2.108 41 −4.956 21 −3.575 18 −2.161

15 12 −2.067 24 −4.842 3 −3.555 1 −1

16 13 −2.035 27 −4.800 20 −3.477 2 −1

17 43 −2.024 2 −4.044 22 −3.468 3 −1

18 23 −1.979 22 −3.561 40 −3.138 4 −1

19 5 −1.767 37 −3.075 37 −2.894 6 −1

20 22 −1.743 21 −2.845 39 −2.105 7 −1

21 30 −1.733 12 −2.804 43 −2.097 8 −1

22 21 −1.672 4 −2.476 35 −2.043 9 −1

23 9 −1.667 15 −2.384 17 −1.981 10 −1

24 38 −1.666 5 −2.301 28 −1.966 11 −1

25 33 −1.654 25 −2.273 11 −1.884 13 −1

26 15 −1.623 50 −1.861 32 −1.861 14 −1

27 17 −1.610 17 −1.811 41 −1.808 15 −1

28 11 −1.591 36 −1.540 7 −1.750 16 −1

29 46 −1.579 45 −1.536 27 −1.703 17 −1

30 16 −1.530 30 −1.496 19 −1.691 19 −1

31 42 −1.520 47 −1.473 23 −1.351 20 −1

32 4 −1.510 31 −1.419 2 −1.281 21 −1

33 36 −1.461 1 −1.191 6 −1.208 22 −1

34 20 −1.449 18 −1.156 1 −1.171 23 −1

35 26 −1.360 42 −1.137 48 −1.008 26 −1

36 48 −1.348 7 −1.082 4 −1 27 −1

37 7 −1.235 3 −1 5 −1 28 −1

38 6 −1.218 9 −1 10 −1 29 −1

39 3 −1.194 10 −1 13 −1 30 −1

40 28 −1.117 11 −1 16 −1 32 −1

41 8 −1 13 −1 18 −1 33 −1

42 10 −1 14 −1 29 −1 34 −1

43 14 −1 28 −1 33 −1 38 −1

44 18 −1 29 −1 34 −1 40 −1

45 19 −1 32 −1 38 −1 42 −1

46 27 −1 34 −1 42 −1 45 −1

47 29 −1 35 −1 45 −1 46 −1

48 32 −1 44 −1 46 −1 47 −1

(continued)
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Table 7.2 (continued)

SM1 RIP1 SM83 RIP83 SM94 RIP94 SM139 RIP139

49 45 −1 48 −1 47 −1 48 −1

50 47 −1 49 −1 50 −1 49 −1

51 52 1 54 1 56 1 51 1

52 53 1 73 1 58 1 56 1

53 60 1 82 1 67 1 58 1

54 61 1 84 1 71 1 60 1

55 67 1 86 1 74 1 61 1

56 69 1 87 1 75 1 63 1

57 80 1 89 1 84 1 65 1

58 84 1 92 1 85 1 66 1

59 92 1 95 1 87 1 67 1

60 95 1 61 1.104 89 1 68 1

61 96 1 74 1.109 91 1 69 1

62 98 1 71 1.453 92 1 71 1

63 99 1 69 1.640 99 1 72 1

64 66 1.043 101 2.620 68 1.068 73 1

65 56 1.045 81 2.693 60 1.254 74 1

66 58 1.059 68 2.742 90 1.421 79 1

67 94 1.064 58 3.403 73 1.432 80 1

68 54 1.167 56 3.484 79 1.577 81 1

69 93 1.225 70 3.571 95 1.618 83 1

70 86 1.314 64 3.693 80 1.867 84 1

71 64 1.345 91 3.741 102 1.885 86 1

72 81 1.513 66 4.470 72 1.966 87 1

73 63 1.522 97 4.481 76 1.985 89 1

74 68 1.644 62 4.521 63 2.248 90 1

75 78 1.650 79 4.760 78 2.380 92 1

76 71 1.751 72 4.812 66 2.422 93 1

77 87 1.841 80 4.830 62 2.449 94 1

78 89 1.845 98 5.055 70 2.457 95 1

79 65 1.888 100 5.230 86 2.943 96 1

80 79 1.934 93 5.595 83 2.966 99 1

81 100 1.967 76 5.627 77 3.400 101 1

82 73 1.985 65 5.733 53 3.555 85 1.810

83 59 2.055 55 6.796 69 3.675 88 5.064

(continued)
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Table 7.2 (continued)

SM1 RIP1 SM83 RIP83 SM94 RIP94 SM139 RIP139

84 72 2.062 60 6.809 101 3.719 52 8.045

85 82 2.306 99 6.949 65 3.733 77 9.389

86 83 2.579 53 7.114 51 3.861 55 14.985

87 90 2.626 96 7.384 93 3.874 64 15.859

88 77 2.766 83 8.308 81 3.924 78 25.962

89 76 2.861 67 8.334 52 3.986 53 32.307

90 74 3.071 59 8.583 88 5.024 82 32.360

91 88 3.167 75 9.176 82 5.530 75 32.496

92 75 3.199 90 9.349 59 5.825 97 36.619

93 55 3.307 52 10.120 97 5.848 62 40.128

94 102 3.313 85 10.527 64 6.249 59 43.835

95 62 3.636 102 11.118 61 6.308 76 48.871

96 91 3.923 77 11.929 96 7.126 102 52.551

97 85 4.037 78 12.152 55 8.764 98 56.262

98 70 4.108 51 13.223 98 8.961 91 57.771

99 97 4.153 88 13.635 94 9.111 100 65.514

100 101 4.280 63 13.891 100 9.123 70 69.813

101 57 5.383 94 14.906 57 16.879 54 69.938

102 51 5.705 57 16.953 54 32.045 57 110.020

7.3.2 PCA of Signal Data Made by 139 RipDSs

PCA analyzes the signal data made by 139 RipDSs and outputs the 30 principal com-
ponents showed in Table 7.3. The eigenvalue of Prin1 is 102.668, and the contribution
rate is 73.862%. This fact shows that two separable classes are almost explained by
the Prin1. The eigenvalue of Prin2 is 4.742, and the contribution rate is 3.412%.
Thus, two principal components explain the 77.274% of total variance.

Table 7.3 PCA of 139
RipDSs

Prin Eigenvalue Contribution Cumulative

1 102.668 73.862 73.862

2 4.742 3.412 77.274

3 1.972 1.418 78.692

4 1.802 1.297 79.989

5 1.532 1.102 81.091

6 1.400 1.007 82.098

(continued)



300 7 Cancer Gene Diagnosis of Singh et al. Microarray

Table 7.3 (continued) Prin Eigenvalue Contribution Cumulative

7 1.240 0.892 82.990

8 1.132 0.815 83.805

9 1.053 0.757 84.562

10 0.976 0.702 85.264

11 0.929 0.668 85.933

12 0.896 0.645 86.578

13 0.888 0.639 87.216

14 0.832 0.598 87.815

15 0.775 0.557 88.372

16 0.704 0.506 88.878

17 0.693 0.499 89.377

18 0.683 0.491 89.868

19 0.648 0.466 90.335

20 0.607 0.437 90.771

21 0.581 0.418 91.190

22 0.555 0.399 91.589

23 0.531 0.382 91.971

24 0.500 0.360 92.330

25 0.488 0.351 92.682

26 0.471 0.339 93.020

27 0.440 0.316 93.337

28 0.419 0.301 93.638

29 0.403 0.290 93.928

30 0.392 0.282 94.210

Figure 7.3 is eight scatter plots. All x-axes are Prin1. Upper y-axes are from
Prin2 to Prin5, and lower y-axes are from Prin27 to Prin30. A left ellipse is the 99%
confidence ellipse of the normal class, and the right ellipse is the 99% confidence
ellipse of the tumor class. We confirm the 138 scatter diagrams are almost the same
results as Prin1 in Fig. 7.4 that two classes are entirely separated on the Prin1.
Individual RipDS divides the two groups with SV � 1 and −1. However, because
PCA analyzes 139 RipDSs at the same time, the values of two SVs are not at 1 and
−1 in Fig. 7.4. The critical fact here shows that two classes are entirely separable in
all scatter plots of signal data. In this fact, we recognize that a signal data is an actual
signal instead of the genes included in SM or BGS.
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Fig. 7.3 Eight scatter plots (x-axis: Prin1; upper y-axis: from Prin2 to Prin5; lower y-axes: from
Prin27 to Prin30)

Figure 7.4 is PCA output of the 139 RipDSs. The eigenvalue of Prin1 is 102.669,
and the contribution rate is 73.9%. The eigenvalue of Prin2 is 4.742, and the contri-
bution rate is 3.41%. The cumulative rate is 77.37%. Thus, we consider the Prin1 is
the malignancy index of PCA. Because 139 correlations of 139 RipDSs and Prin1
are higher than 0.7, Prin1 represents all RipDSs well. On the other hand, because
139 correlations of 139 RipDSs and Prin2 are range from −0.25 to 0.5, Prin2 shows
that 139 RipDSs belong to two groups with positive and negative correlation.

Fig. 7.4 PCA output of the signal data of 139 RipDSs
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7.3.3 How to Categorize 139 RipDSs

Our claim is the 139 RipDSs (139 malignancy indexes) open the door of cancer
gene diagnosis. We believe that these malignant indicators will belong to several
categories having different roles, but are currently unresolved. Therefore, we exam-
ined the mechanism that many RipDSs appear. We survey how to build 139 RipDSs
in this section. Table 7.4 shows 139 rows from SM1 to SM139. Each row shows
the minimum and maximum identification number of 102 cases in the Normal and
Tumor columns. Range and RatioSV columns are the range and RatioSV of each
RipDS. In SM1, the 40th normal subject takes the minimum value among 50 Normal
subjects, and 51st tumor subject takes the maximum value among 52 Tumor patients.
The selected two subjects are considered to be in the most normal state and the worst
cancer state. The RatioSV is 22.326%.

Table 7.4 Minimum and
maximum subject’s SM and
its RatioSV

SM Normal Tumor Range RatioSV

SM1 40 51 8.958 22.326

SM2 41 94 7.333 27.274

SM3 34 91 6.951 28.775

SM4 41 91 9.163 21.828

SM5 36 101 7.423 26.943

SM6 18 54 7.277 27.484

SM7 42 91 8.631 23.173

SM8 41 51 10.635 18.806

SM9 41 91 11.799 16.951

SM10 1 94 8.469 23.616

SM11 37 100 8.354 23.941

SM12 13 51 7.454 26.833

SM13 37 55 9.071 22.049

SM14 37 62 6.830 29.284

SM15 37 70 6.965 28.714

SM16 41 51 10.872 18.396

SM17 2 62 8.977 22.280

SM18 1 91 9.162 21.829

SM19 29 62 9.715 20.586

SM20 37 100 13.459 14.860

SM21 39 51 9.288 21.534

SM22 20 94 10.256 19.501

SM23 37 91 10.863 18.411

(continued)
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Table 7.4 (continued) SM Normal Tumor Range RatioSV

SM24 37 97 9.508 21.034

SM25 20 77 11.089 18.035

SM26 36 85 9.986 20.028

SM27 37 86 14.248 14.038

SM28 24 62 8.352 23.947

SM29 20 51 9.959 20.083

SM30 16 51 10.645 18.789

SM31 34 101 11.384 17.569

SM32 1 85 10.936 18.288

SM33 29 62 8.435 23.711

SM34 37 89 12.306 16.252

SM35 20 57 10.273 19.468

SM36 37 100 14.953 13.376

SM37 34 51 12.051 16.596

SM38 37 94 11.286 17.720

SM39 25 100 16.496 12.124

SM40 16 62 12.945 15.450

SM41 30 102 12.948 15.446

SM42 30 51 9.974 20.052

SM43 20 51 12.146 16.466

SM44 45 100 9.234 21.659

SM45 31 81 9.802 20.405

SM46 25 62 13.749 14.547

SM47 16 94 14.992 13.341

SM48 14 88 9.847 20.310

SM49 20 94 18.766 10.658

SM50 20 62 14.668 13.635

SM51 16 102 11.810 16.935

SM52 20 91 9.601 20.831

SM53 20 62 12.122 16.499

SM54 21 91 11.750 17.021

SM55 18 51 23.322 8.575

SM56 14 70 11.533 17.341

SM57 16 88 17.090 11.703

SM58 25 94 12.931 15.467

(continued)
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Table 7.4 (continued) SM Normal Tumor Range RatioSV

SM59 20 57 10.105 19.792

SM60 19 52 8.717 22.944

SM61 16 91 17.734 11.278

SM62 33 97 12.742 15.697

SM63 25 57 20.723 9.651

SM64 34 70 12.041 16.611

SM65 37 51 16.339 12.240

SM66 29 54 10.960 18.248

SM67 37 97 10.792 18.532

SM68 42 51 11.766 16.998

SM69 14 54 17.347 11.530

SM70 16 62 16.450 12.158

SM71 25 51 12.841 15.575

SM72 16 94 25.266 7.916

SM73 25 94 15.480 12.920

SM74 16 102 13.553 14.757

SM75 25 62 23.707 8.436

SM76 37 52 15.506 12.898

SM77 37 51 13.805 14.488

SM78 20 85 16.204 12.342

SM79 30 85 17.944 11.146

SM80 36 51 24.447 8.181

SM81 20 57 14.796 13.517

SM82 44 100 14.990 13.342

SM83 39 57 31.467 6.356

SM84 16 51 21.265 9.405

SM85 41 70 13.738 14.558

SM86 21 64 16.417 12.183

SM87 37 62 20.704 9.660

SM88 44 51 26.679 7.497

SM89 20 57 27.688 7.223

SM90 37 51 25.639 7.800

SM91 20 97 15.673 12.761

SM92 20 62 20.835 9.599

SM93 41 59 20.661 9.680

(continued)
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Table 7.4 (continued) SM Normal Tumor Range RatioSV

SM94 49 54 40.981 4.880

SM95 20 57 31.692 6.311

SM96 37 85 21.997 9.092

SM97 16 55 13.090 15.279

SM98 20 57 24.523 8.156

SM99 41 91 51.249 3.902

SM100 41 100 39.350 5.083

SM101 41 100 39.350 5.083

SM102 20 51 55.426 3.608

SM103 41 85 25.523 7.836

SM104 36 57 31.126 6.426

SM105 20 62 29.604 6.756

SM106 37 54 48.447 4.128

SM107 16 97 32.532 6.148

SM108 36 100 43.070 4.644

SM109 44 51 30.312 6.598

SM110 41 57 47.119 4.245

SM111 25 51 50.451 3.964

SM112 36 57 60.278 3.318

SM113 36 54 36.942 5.414

SM114 25 70 28.812 6.941

SM115 36 100 35.950 5.563

SM116 41 57 33.926 5.895

SM117 18 57 47.592 4.202

SM118 44 57 28.357 7.053

SM119 41 57 25.266 7.916

SM120 36 57 29.406 6.801

SM121 37 57 34.512 5.795

SM122 5 57 70.984 2.818

SM123 20 54 37.973 5.267

SM124 36 88 30.050 6.656

SM125 36 54 43.175 4.632

SM126 37 100 49.543 4.037

(continued)
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Table 7.4 (continued) SM Normal Tumor Range RatioSV

SM127 41 57 54.947 3.640

SM128 34 57 30.673 6.520

SM1209 37 94 37.315 5.360

SM130 37 57 61.048 3.276

SM131 41 57 36.844 5.428

SM132 20 91 64.680 3.092

SM133 37 100 53.502 3.738

SM134 35 100 76.348 2.620

SM135 36 57 130.324 1.535

SM136 37 100 77.227 2.590

SM137 36 91 53.635 3.729

SM138 5 100 85.988 2.326

SM139 25 57 191.944 1.042

Table 7.5 is sorted in descending order by the second column value (Normal) that
takes the minimum value in Table 7.4. In SM32, the first subject of the normal class
takes the minimum value, and the 85th subject takes the maximum value. Because
there is no other pair of the same patients, the pair column is blank. In SM30 and
SM84, because the 16th subject takes the minimum value and the 51st patient takes
the maximum values, the pair number is two, and the correlation of RIP30 and
RIP84 is 0.822. In this way, we focus on the RipDSs having the pair. Because it is
difficult to examine the similarity of 139 RipDSs with 9,591 correlation coefficients,
we consider as one possibility. The 20 two pairs choose the same minimum and
maximum subjects; 3 three pairs choose the same three minimum and maximum
subjects, 2 four pairs choose the four same minimum and maximum subjects, 1 five
pairs chooses the five same minimum and maximum subjects, and 2 six pairs choose
the six minimum and maximum subjects. We expect these segmentations are useful
to categorize SMs and RipDSs. The other 65 SMs select the different minimum
patient and maximum patient and may indicate cancer diversity. However, if we
check the rank correlations of 139 RipDSs, we may obtain better results because
those evaluate all subjects. The last three columns are the correlation coefficients of
the two RipDSs. The range of correlations is [0.572, 0.922]. Whether SMs of each
pair have the same role as each other is a future research theme. Although SM100 and
SM101 contain different gene sets, RIP 100 and RIP 101 are considered to provide
the same information as malignant tumor indices because R � 1.
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Table 7.5 Sorted in descending order of the second column (Normal1) and the seventh column
(Tumor2)

SM Normal1 Tumor1 Pair1 Correlation

SM32 1 85

SM18 1 91

SM10 1 94

SM17 2 62

SM122 5 57

SM138 5 100

SM12 13 51

SM69 14 54

SM56 14 70

SM48 14 88

SM30 16 51 2 0.822

SM84 16 51

SM97 16 55

SM40 16 62 2 0.832

SM70 16 62

SM57 16 88

SM61 16 91

SM47 16 94 2 0.739

SM72 16 94

SM107 16 97

SM51 16 102 2 0.824

SM74 16 102

SM55 18 51

SM6 18 54

SM117 18 57

SM60 19 52

SM29 20 51 3 0.834

SM43 20 51 0.737

SM102 20 51 0.659

SM123 20 54

SM35 20 57 6 0.922 0.849 0.697

SM59 20 57 0.860 0.778 0.839

SM81 20 57 0.808 0.790 0.674

SM89 20 57 0.771 0.775

SM95 20 57 0.808 0.754

SM98 20 57 0.800 0.737

SM50 20 62 4 0.812 0.756

(continued)
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Table 7.5 (continued)

SM Normal1 Tumor1 Pair1 Correlation

SM53 20 62 0.766 0.718

SM92 20 62 0.737

SM105 20 62 0.838

SM25 20 77

SM78 20 85

SM52 20 91 2 0.714

SM132 20 91

SM22 20 94 2 0.828

SM49 20 94

SM91 20 97

SM86 21 64

SM54 21 91

SM28 24 62

SM71 25 51 2 0.785

SM111 25 51

SM63 25 57 2 0.584

SM139 25 57

SM46 25 62 2 0.801

SM75 25 62

SM114 25 70

SM58 25 94 2 0.879

SM73 25 94

SM39 25 100

SM66 29 54

SM19 29 62 2 0.872

SM33 29 62

SM42 30 51

SM79 30 85

SM41 30 102

SM45 31 81

SM62 33 97

SM37 34 51

SM128 34 57

SM64 34 70

SM3 34 91

SM31 34 101

SM134 35 100

(continued)



7.3 Examination of RipDSs and SMs 309

Table 7.5 (continued)

SM Normal1 Tumor1 Pair1 Correlation

SM80 36 51

SM113 36 54 2 0.754

SM125 36 54

SM104 36 57 4 0.714 0.769

SM112 36 57 0.759 0.805

SM120 36 57 0.728

SM135 36 57 0.749

SM26 36 85

SM124 36 88

SM137 36 91

SM108 36 100 2 0.710

SM115 36 100

SM5 36 101

SM65 37 51 3 0.831

SM77 37 51 0.791

SM90 37 51 0.808

SM76 37 52

SM106 37 54

SM13 37 55

SM121 37 57 2 0.778

SM130 37 57

SM14 37 62 2 0.822

SM87 37 62

SM15 37 70

SM96 37 85

SM27 37 86

SM34 37 89

SM23 37 91

SM38 37 94 2 0.733

SM129 37 94

SM24 37 97 2 0.848

SM67 37 97

SM11 37 100 6 0.859 0.746 0.72781

SM20 37 100 0.835 0.727 0.77163

SM36 37 100 0.687 0.676 0.67226

SM126 37 100 0.722 0.688

SM133 37 100 0.601 0.664

(continued)
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Table 7.5 (continued)

SM Normal1 Tumor1 Pair1 Correlation

SM136 37 100 0.835 0.572

SM21 39 51

SM83 39 57

SM1 40 51

SM8 41 51 2 0.877

SM16 41 51

SM110 41 57 5 0.731 0.737

SM116 41 57 0.752 0.693

SM119 41 57 0.715 0.732

SM127 41 57 0.715 0.713

SM131 41 57 0.788 0.721

SM93 41 59

SM85 41 70

SM103 41 85

SM4 41 91 3 0.852

SM9 41 91 0.721

SM99 41 91 0.781

SM2 41 94

SM100 41 100 2 1

SM101 41 100

SM68 42 51

SM7 42 91

SM88 44 51 2 0.761

SM109 44 51

SM118 44 57

SM82 44 100

SM44 45 100

SM94 49 54

7.4 Analysis of 139 SMs of Singh et al. Microarray (2018)

LINGO Program3 found the Singh’s microarray consists of 179 SMs (1,238 genes)
in 2015. However, we obtain 139 SMs (4,046 genes) in 2018. We obtain fewer SMs
and more genes in 2018. A yearly update of LINGOmay cause these differences. We
analyze the signal data and obtain almost the same results introduced in Chap. 2. We
think that these facts are suitable for considering signal data as a signal rather thanSM.
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7.4.1 Validation of 139 SMs by Six MP-Based LDFs
and Discriminant Functions

Table 7.6 shows the 139 SMs from SM � 1 to SM � 139. Program3 determines this
order of SM. The “Gene” column is the number of genes of each SM. The range
of genes included in the 139 SMs is [20, 66]. The average is 29.1. Row “SUM”
indicates 139 SMs which contain 4,046 genes. From RIP column to H-SVM column
show three RatioSVs of 139 SMs. Three ranges of RatioSV are [1.04, 29.11], [1.06,
32], and [1.07, 29.48], respectively. Three averages of RatioSVs are 13.2%, 13%, and
13.32%, respectively. Row “SUM” indicates the number of the maximum RatioSVs
of 139 SMs those are 37, 33, and 55, respectively. To summarize these results, the
range, average, andmaximumnumber ofH-SVMare slightly better thanRIP because
the maximization SV of H-SVM work well. Two columns “MAX and MIN” are the
maximum and minimum values of six LDFs including Revised IPLP-OLDF, SVM4
and SVM1. Because all NMs of logistic regression and SVM4 are zero and 139 SMs
are linearly separable, we omit two columns from the table. Three columns “SVM1,
LDF2, and QDF” show the NM. SVM1 cannot discriminate 113 SMs correctly.
LDF2 cannot discriminate 92 SMs correctly. The 26 NMs of QDF are not zero.

Table 7.6 Summary of four RatioSVs of four LDFs and NMs of other discriminant functions

SM Gene RIP LP HSVM Max Min SVM1 LDF2 QDF

1 22 22.96 25.22 22.88 25.22 21.62 0 0 0

2 24 29.11 28.58 26.42 29.11 26.42 0 0 0

3 24 28.77 18.75 26.66 28.77 18.75 0 0 0

4 27 22.36 20.37 21.06 22.36 20.37 0 0 0

5 30 26.94 24.84 24.80 26.94 19.05 0 0 0

6 28 27.48 32.00 29.48 32.00 27.48 0 0 0

7 29 26.33 25.02 25.04 26.33 24.94 0 0 0

8 22 19.82 19.14 20.42 20.42 19.14 1 1 0

9 26 17.31 20.18 18.57 20.18 17.31 1 0 0

10 30 23.62 216.10 23.23 23.62 18.29 0 0 0

11 26 24.81 26.50 24.17 26.50 24.17 0 0 0

12 28 26.83 26.89 26.74 27.47 26.74 0 0 0

13 25 22.94 22.19 21.33 22.94 20.76 1 0 0

14 26 26.88 25.79 27.44 27.44 25.79 0 0 0

15 32 25.67 27.03 26.56 27.03 25.67 0 0 0

16 27 21.61 21.12 21.92 21.93 21.12 0 0 0

17 27 23.28 21.88 23.27 23.28 20.83 0 0 0

18 24 21.83 21.45 21.69 22.58 21.45 0 0 0

(continued)
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Table 7.6 (continued)

SM Gene RIP LP HSVM Max Min SVM1 LDF2 QDF

19 21 20.59 22.69 21.50 22.69 18.81 3 0 1

20 24 16.01 15.81 16.15 16.15 15.81 4 0 1

21 26 22.83 19.67 22.98 22.98 19.67 0 0 0

22 30 19.50 19.20 203.2 203.2 18.99 0 1 0

23 23 21.35 18.10 18.95 21.35 18.10 1 1 0

24 24 21.65 21.00 20.92 21.65 19.33 0 1 0

25 25 18.04 17.96 18.01 19.70 17.96 0 0 0

26 27 20.03 20.85 20.51 20.85 20.03 1 1 0

27 20 16.88 11.89 16.07 16.88 11.89 2 0 0

28 31 23.95 21.98 21.58 23.95 19.06 0 0 0

29 29 20.08 24.10 23.03 24.10 20.08 0 0 0

30 27 18.79 17.71 16.33 18.79 16.33 0 0 0

31 32 17.57 16.57 18.60 18.60 16.57 1 0 0

32 25 18.29 19.06 18.38 19.06 17.93 1 0 0

33 27 23.71 23.27 23.02 24.63 23.02 0 0 0

34 28 19.77 16.60 19.56 19.77 16.60 5 0 0

35 28 19.47 213.2 21.47 21.47 18.57 0 0 0

36 20 13.61 13.62 13.69 13.69 13.61 2 3 0

37 28 16.60 15.58 17.32 17.32 15.58 3 0 0

38 24 18.48 15.95 18.28 18.48 15.95 3 0 0

39 26 12.12 13.77 13.87 13.87 12.12 0 0 1

40 25 15.45 14.83 15.19 15.45 14.18 2 0 0

41 25 15.45 14.98 17.07 17.07 14.82 2 1 0

42 28 20.05 21.20 21.02 21.20 223 2 1 0

43 27 15.96 15.48 16.10 16.32 15.48 4 1 1

44 26 21.92 20.73 22.04 22.04 20.44 4 0 0

45 29 20.40 20.66 21.01 21.73 20.40 4 1 0

46 23 14.55 14.16 14.63 14.63 14.08 1 1 0

47 25 13.34 14.60 13.92 14.60 13.34 4 2 0

48 24 20.31 19.97 19.20 20.31 18.48 3 0 0

49 23 10.66 10.42 11.14 11.14 10.31 5 4 1

50 29 13.64 225 16.92 16.92 13.64 4 1 0

51 25 227 16.63 15.72 16.63 15.72 2 6 0

52 28 20.83 20.89 21.54 21.54 20.83 0 0 0

53 28 16.50 14.52 16.52 16.52 14.52 5 2 0

54 30 17.02 13.36 17.57 17.57 13.36 1 1 1

55 23 8.58 8.42 8.59 8.59 8.42 7 4 0

(continued)
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Table 7.6 (continued)

SM Gene RIP LP HSVM Max Min SVM1 LDF2 QDF

56 28 17.34 15.81 17.73 17.73 13.66 4 2 1

57 23 9.76 9.30 10.23 10.23 9.30 6 2 0

58 27 15.47 16.72 14.88 16.72 14.88 2 0 0

59 28 19.79 20.66 21.71 21.71 19.79 4 0 0

60 28 22.94 23.67 23.29 23.67 20.92 1 0 0

61 28 11.28 10.86 11.14 11.73 10.86 7 2 0

62 26 15.70 15.26 16.50 16.50 15.26 7 0 0

63 23 9.65 9.54 9.73 9.73 9.12 5 3 2

64 24 16.61 16.13 15.83 16.61 15.83 4 1 0

65 22 14.19 14.23 14.24 14.24 14.19 8 3 0

66 31 18.25 17.16 17.62 18.25 17.16 3 1 1

67 32 18.56 18.02 18.80 20.01 18.02 4 0 0

68 31 18.59 18.49 18.18 18.68 18.18 7 3 0

69 28 11.53 13.26 12.68 12.71 11.53 8 0 0

70 27 6.16 12.96 15.04 15.04 11.38 7 0 0

71 27 15.58 15.89 15.98 15.98 15.57 6 1 0

72 24 7.92 8.12 8.10 8.12 7.92 7 4 0

73 27 12.92 12.56 13.33 13.33 12.56 4 1 0

74 30 14.76 14.94 14.68 14.94 12.05 2 2 0

75 25 8.44 83.2 8.63 8.63 83.2 10 4 0

76 33 12.50 12.84 13.09 13.09 12.50 4 2 0

77 26 15.74 15.21 15.66 15.74 15.21 4 2 0

78 29 12.34 13.00 13.28 13.48 12.34 5 2 0

79 24 11.15 10.81 12.09 12.48 10.81 10 2 0

80 25 8.18 8.35 8.35 8.35 8.18 10 3 0

81 27 13.52 13.59 14.68 14.68 13.52 9 0 0

82 31 14.23 13.07 15.95 15.95 13.07 5 1 0

83 22 7.09 6.95 6.77 7.09 6.77 8 6 2

84 25 9.41 10.66 10.65 10.66 9.41 15 2 1

85 27 15.52 14.96 15.71 15.71 14.96 9 0 0

86 29 12.18 12.38 12.68 12.68 12.18 11 2 0

87 30 10.57 10.77 12.75 12.75 10.57 8 1 0

88 25 7.66 8.04 8.02 8.04 7.66 12 5 0

89 27 73.2 7.18 7.18 73.2 7.18 8 7 1

90 28 9.55 9.43 9.83 9.84 9.43 11 5 0

91 27 12.76 13.09 12.37 13.09 12.37 10 1 0

92 33 9.60 8.33 9.38 9.60 8.33 10 5 0

93 28 10.00 9.38 9.87 10.00 8.86 11 4 1

(continued)
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Table 7.6 (continued)

SM Gene RIP LP HSVM Max Min SVM1 LDF2 QDF

94 27 5.06 4.64 5.16 5.16 4.64 14 8 0

95 30 6.31 7.36 6.97 7.36 5.59 15 4 1

96 25 9.13 9.25 9.30 9.30 9.00 13 4 1

97 34 15.28 13.36 15.39 15.39 13.36 10 1 0

98 33 8.16 7.76 8.01 8.20 7.76 7 5 0

99 26 4.19 4.41 4.30 4.41 4.19 12 11 0

100 22 4.19 4.41 4.30 4.41 4.19 12 6 4

101 27 5.37 5.24 5.28 5.37 5.24 14 5 0

102 28 3.61 3.44 3.60 3.61 3.31 16 9 1

103 27 10.43 10.38 10.25 10.43 8.89 12 4 0

104 24 6.43 6.44 6.37 6.44 6.37 15 6 0

105 29 6.76 6.55 6.64 6.76 6.55 12 4 0

106 26 4.48 4.50 4.50 4.50 4.47 17 8 0

107 26 6.15 7.27 7.09 7.47 6.15 13 6 1

108 23 4.64 4.57 4.85 4.85 4.27 15 9 2

109 27 7.40 7.43 7.65 7.65 7.40 12 7 1

110 28 4.35 4.35 4.35 4.43 4.35 15 8 1

111 25 3.96 3.95 4.05 4.05 3.95 11 11 0

112 29 3.32 3.33 3.33 3.34 3.32 16 11 2

113 36 5.41 5.43 5.37 5.44 5.37 13 6 0

114 31 6.94 7.00 7.31 7.31 6.94 19 7 0

115 32 5.56 5.50 5.56 5.56 5.47 15 10 1

116 32 6.21 6.01 6.23 6.23 6.01 18 7 0

117 27 4.20 4.20 4.20 4.20 4.11 14 8 1

118 33 7.55 7.65 7.21 7.65 7.21 18 8 0

119 42 8.60 7.43 7.18 8.60 7.14 11 6 0

120 35 6.80 6.83 6.85 6.85 6.57 15 6 0

121 29 5.45 5.14 5.45 5.45 5.14 17 7 2

122 29 2.82 2.82 2.81 2.82 2.81 11 12 3

123 36 5.27 5.59 5.50 5.59 5.25 11 10 0

124 42 6.66 6.91 6.61 6.91 6.61 16 10 0

125 29 4.63 4.56 4.63 4.63 4.56 16 9 0

126 36 4.18 4.19 4.18 4.19 4.17 17 16 0

127 29 3.68 3.71 3.71 3.71 3.68 13 12 0

128 48 6.52 6.47 6.12 6.52 6.12 16 13 0

(continued)
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Table 7.6 (continued)

SM Gene RIP LP HSVM Max Min SVM1 LDF2 QDF

129 42 6.20 6.20 6.19 6.20 6.19 14 11 0

130 37 3.52 3.57 3.56 3.57 3.41 15 11 0

131 51 5.03 5.08 4.98 5.08 4.98 19 15 0

132 40 3.09 3.08 3.17 3.17 3.08 21 16 0

133 36 4.45 4.47 4.49 4.49 4.45 15 11 0

134 44 2.62 2.58 2.60 2.62 2.58 20 13 0

135 38 1.53 1.53 1.54 1.54 1.53 19 15 0

136 51 3.09 3.09 3.14 3.14 3.04 15 14 0

137 48 3.73 3.72 3.66 3.81 3.66 15 17 0

138 56 2.33 2.14 2.38 2.52 2.14 16 13 0

139 66 1.04 1.06 1.07 1.07 1.04 19 13 0

Max 66 29.11 32.00 29.48 32.00 27.48 21 17 4

Min 20 1.04 1.06 1.07 1.07 1.04 0 0 0

Mean 29.1 13.20 13.00 13.32 13.73 12.35 7.37 3.85 0.26

Sum 4046 37 33 55 113 93 26

7.4.2 Analysis of Signal Data Using 139 SMs Found by RIP

Because we cannot obtain useful results of 139 SMs, we analyze three signal data
made by 139 RipDSs, 139 LpDSs, and 139 HsvmDSs using 139 SMs found by RIP.
We get the following surprising success as same as the other five microarrays.

7.4.2.1 Ward Cluster Analysis and PCA of Signal Data Made
by RipDSs

Figure 7.5 is a Ward cluster analysis of RipDSs signal data. If Ward cluster analyzes
139 SMs individually, they cannot show the clear clusters. However, the upper green
part is 50 normal subjects, and the lower red part is 52 cancer patients. We consider
the remarkable effects of RipDSs cause this surprising result. In the dendrogram of
50 normal subjects shown on the right side, those become two clusters with 44 and
6 cases from the top. Singh’s microarray shows that normal class has two clusters.
Surely, there will be some medical implication. The 52 prostate cancers consist of
three clusters of 10, 3, and 39 patients.We expect that these clusters will havemedical
implications easily. Variable dendrogram may be analyzed by relating the results of
case dendrogram with mosaic charts. Our approach is more simple and reliable than
other approaches, as it is an analysis of the signal data.
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Fig. 7.5 Cluster analysis of signal data by RipDSs

Figure 7.6 shows the result of RipDSs signal data by PCA. The first eigenvalue
is 102.668, and the contribution ratio is 73.862%. The second eigenvalue is 4.742,
the contribution ratio is 3.412, and the cumulative contribution ratio is 77.274%.
That is, the Prin1 almost represents 102 subjects. From the scatter plot, because the
second eigenvalue is small and the variation is small, it is understood that the normal
subjects are almost placed on the Prin1 axis of −6.32 or less in Table 7.7. Cluster
analysis shows that six green normal subjects are adjacent to 10 blue tumor patients.
However, PCA shows that between these clusters, there are 44 normal subjects and
39 cancer patients. Thus, caution is required for cluster analysis. The range of cancer
patients is [3.28, 22]. Three brown patients such as 57th, 100th, and 54th cases are
significant outliers. We recommend physicians survey the green and brown cases.
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Fig. 7.6 Three plots of PCA (RipDS signal data)

The first columns and second columns of Table 7.7 show the case number corre-
sponding “SM” in Table 7.2 and its value of Prin1 axis. Upper 50 rows are corre-
sponding to the normal class, and lower 52 rows are corresponding to cancer class in
Fig. 7.6. The range of normal class is [−16.10, −6.32], and the range of cancer class
is [3.28, 22]. SV opens the window having the width (−6.32, 3.28). The RatioSV
for PCA in (7.1) is 25.2%.

RatioSV of PCA � (6.32 + 3.28)/(16.10 + 22) ∗ 100 � 960/38.1 � 25.2%
(7.1)

Although this is the overall characteristic value of RatioSVof 139RIP, it is smaller
than the maximum value of RatioSV of 139 RIPs 29.11. In later, we conclude the
same results of both RaioSV of PCA by Revised LP-OLDF and HSVM. Because we
cannot explain this reason, it is future work.

Table 7.7 Prin1 values of
three LDFs sorted by each
Prin1

RIP Prin1 LP Prin1 HSVM Prin1

37 −16.10 37 −16.00 37 −16.09

36 −15.48 20 −15.61 36 −15.60

20 −15.46 36 −15.49 20 −15.19

41 −14.63 41 −14.75 41 −14.97

16 −13.83 25 −14.03 16 −14.09

25 −13.78 16 −13.70 25 −14.08

44 −13.77 44 −13.59 44 −13.71

34 −1.16 34 −12.47 12 −12.56

12 −12.30 12 −12.31 34 −12.40

31 −11.14 39 −11.10 42 −11.41

(continued)
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Table 7.7 (continued) RIP Prin1 LP Prin1 HSVM Prin1

39 −11.12 42 −10.94 39 −11.23

5 −10.77 31 −10.92 31 −10.96

42 −10.65 5 −10.75 5 −10.81

18 −10.63 18 −10.49 21 −10.61

29 −10.51 29 −10.45 18 −10.58

21 −10.47 24 −10.37 29 −10.56

24 −10.45 1 −10.35 24 −10.45

35 −10.34 21 −10.31 1 −10.33

1 −10.21 35 −10.28 35 −10.16

49 −10.03 43 −9.91 49 −10.07

43 −9.95 49 −9.88 43 −9.94

13 −9.84 13 −9.82 13 −9.93

15 −9.54 26 −9.54 26 −9.49

14 −9.36 15 −9.53 15 −9.46

26 −9.34 14 −9.33 14 −9.32

30 −8.79 30 −8.75 30 −8.89

40 −8.74 40 −8.66 45 −8.72

19 −8.66 33 −8.46 40 −8.60

45 −8.61 45 −8.46 23 −8.45

33 −8.47 23 −8.44 33 −8.44

23 −8.38 19 −8.28 19 −8.25

22 −8.16 22 −8.21 22 −8.20

50 −7.87 2 −7.96 2 −8.05

3 −7.78 3 −7.84 3 −7.93

38 −7.69 50 −7.72 46 −7.85

46 −7.51 46 −7.68 38 −7.79

7 −7.44 38 −7.63 50 −7.61

2 −7.44 7 −7.52 7 −7.38

9 −7.31 27 −7.40 8 −7.37

27 −7.23 8 −7.37 27 −7.30

8 −7.18 9 −7.08 9 −7.18

48 −6.94 48 −6.91 11 −6.88

11 −6.88 10 −6.88 10 −6.88

10 −6.80 11 −6.71 48 −6.87

6 −6.70 6 −6.62 6 −6.72

17 −6.57 4 −6.53 4 −6.45

(continued)
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Table 7.7 (continued) RIP Prin1 LP Prin1 HSVM Prin1

28 −6.49 28 −6.34 32 −6.44

4 −6.48 17 −6.24 17 −6.40

32 −6.41 47 −6.16 28 −6.25

47 −6.32 32 −6.15 47 −6.16

84 3.28 92 3.15 84 3.20

92 3.31 84 3.24 92 3.27

69 3.97 58 3.78 69 3.88

58 4.08 69 3.90 58 3.90

80 4.10 80 4.12 80 4.29

67 4.39 71 4.24 67 4.30

71 4.40 67 4.25 95 4.30

95 4.41 95 4.32 71 4.38

68 4.65 68 4.61 68 4.65

60 5.26 60 5.14 60 5.11

61 5.54 63 5.39 63 5.25

63 5.60 61 5.42 61 5.51

56 5.62 99 5.55 56 5.76

99 5.70 56 5.65 99 5.77

79 6.20 65 6.01 65 5.95

65 6.26 93 6.29 93 6.16

90 6.28 79 6.30 90 6.21

93 6.43 90 6.62 79 6.25

66 7.21 66 7.21 66 7.36

73 7.25 98 7.28 73 7.40

98 7.36 73 7.34 96 7.55

86 7.61 72 7.67 89 7.65

96 7.63 96 7.69 86 7.65

83 7.69 86 7.69 98 7.75

74 7.78 89 7.78 87 7.87

89 7.85 82 7.79 83 7.88

82 7.91 83 7.88 81 7.96

72 7.94 81 8.04 82 8.05

87 7.95 74 8.05 72 8.07

81 8.11 87 8.16 74 8.16

59 9.27 59 9.02 59 9.16

(continued)



320 7 Cancer Gene Diagnosis of Singh et al. Microarray

Table 7.7 (continued) RIP Prin1 LP Prin1 HSVM Prin1

53 9.64 101 9.74 53 9.60

101 9.71 53 9.75 64 10.14

64 10.37 64 10.16 101 10.29

78 10.50 78 10.36 78 10.36

55 10.82 55 10.89 55 11.14

88 11.34 88 11.27 88 11.50

52 122 52 11.74 52 122

75 11.90 75 11.75 75 11.99

77 12.42 77 12.61 77 12.70

76 12.83 76 12.84 94 13.00

94 12.91 94 13.06 76 13.10

102 13.49 70 13.46 70 13.83

70 13.66 102 13.87 102 13.96

97 13.88 97 14.12 97 14.25

85 14.34 85 14.62 85 14.52

54 15.28 54 14.82 54 14.68

91 16.36 91 16.02 91 16.06

62 17.11 62 16.98 100 17.03

100 17.27 100 17.20 62 173.2

51 20.48 51 20.64 51 20.78

57 22.00 57 22.681 57 22.68

7.4.2.2 Ward Cluster Analysis and PCA of Signal Data Made by LpDSs

Figure 7.7 is aWard cluster analysis of LpDSs signal data. The upper green part is 50
normal subjects, and the lower red part is 52 cancer patients. We consider the great
effects of LpDSs cause this surprising result. In the dendrogramof 50 normal subjects
shown on the right side, those become two clusters with 44 and 6 cases from the top.
Singh’s microarray shows that normal class has two clusters. Surely, there will be
some medical implication. The 52 prostate cancers consist of three clusters of 11, 3,
and 38 patients. We expect that these clusters will have medical implications easily.
Variable and case dendrograms can be analyzed via mosaic charts. Our approach is
more simple and reliable than other approaches, as it is an analysis of the signal data.
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Fig. 7.7 Cluster analysis of signal data of LpDSs

Figure 7.8 shows the result of LpDSs signal data by PCA. The first eigenvalue
is 102.128, and the contribution ratio is 74%. The second eigenvalue is 4.744, the
contribution ratio is 3.24, and the cumulative contribution ratio is 77.24%. That is, the
Prin1 almost represents 102 subjects. Cluster analysis shows that six green normal
subjects are adjacent to 11 blue tumor patients. However, PCA shows that between
these clusters, there are 44 normal subjects and 38 cancer patients. Thus, caution
is required for cluster analysis. Three brown patients such as 57th, 100th, and 54th
cases are significant outliers. We recommend physicians survey the green and brown
cases.
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Fig. 7.8 Three plots of PCA (LpDS data)

The ranges of normal class and cancer class are [−16, −6.15] and [3.15, 22.681],
respectively. SV opens the window that is the interval (−6.15, 3.15). RatioSV of
PCA by LpDSs is (7.2).

RatioSV of PCA by LpDSs � (6.15 + 3.15)/(16 + 22.681) ∗ 100 � 24.04281%
(7.2)

Because the maximum RatioSV of HsvmDSs is 32, RatioSV of PCA is useless
as a malignancy index. However, there are several outliers as same as RipDSs. This
fact is the merit to analyze the signal data by PCA.

7.4.2.3 Ward Cluster Analysis and PCA of Signal Data Made By
HsvmDSs

Figure 7.9 is a Ward cluster analysis of HsvmDSs signal data. The upper green part
is 50 normal subjects, and the lower red part is 52 cancer patients. We consider
the great effects of HsvmDSs cause this surprising result. In the dendrogram of 50
normal subjects shown on the right side, those become two clusters with 44 and 6
cases from the top. Singh’s microarray shows that normal class has two clusters.
Surely, there will be some medical implication. The 52 prostate cancers consist of
three clusters of 11, 3, and 38 patients.We expect that these clusters will havemedical
implications easily. Variable dendrogram may be analyzed by relating the results of
case dendrogram with mosaic charts. Our approach is easier and more reliable than
other approaches, as it is an analysis of the signal data.
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Fig. 7.9 Cluster analysis of signal data of HsvmDSs

Figure 7.10 shows the result of HsvmDSs signal data by PCA. The first eigenvalue
is 103.908, and the contribution ratio is 74.8%. The second eigenvalue is 4.789, the
contribution ratio is 3.45%, and the cumulative contribution ratio is 79.25%. The
Prin1 represents 102 subjects. From the scatter plot, we confirmed several outliers as
same as Fig. 7.8. Although the second eigenvalue is small, the dispersion of cancer
patient class is large on the Prin2. In other words, the Prin1 becomes an indicator of
cancer malignancy as same as individual RipDSs. The fifth and sixth columns of the
ranges of normal and cancer classes are [−16.09, −6.16] and [3.2, 22.68]. SV opens
the window that is the interval (−6.16, 3.2). RatioSV of PCA by HsvmDSs is (7.3).

RatioSV of PCA by LpDSs � (6.16 + 3.2)/(16.09 + 22.68) ∗ 100 � 24.14238%
(7.3)
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Because the maximumRatioSV of HsvmDSs is 29.48, RatioSV of PCA is useless
as a malignancy index. However, scatter plot tells us several outliers. This fact is the
merit to analyze the signal data by PCA.

Fig. 7.10 Three plots of PCA (HsvmDS data)

7.4.3 Transposed Data of RipDSs Using 139 SMs Found
by RIP

Figure 7.11 is theWard cluster analysis of transposed data of RipDSs using 139 SMs
found by RIP. Analyzing the transposed matrix gives different results. 139 RipDSs
are divided into five clusters having 115 (Red), 18 (Green), two (Blue), three (Brown)
and one (RIP139) subjects.Whether these five clusters of malignancy indicators play
the same rolemedically, it is a future research subject. The dendrogramof the variable
(102 subjects) tells us that the two green cancers separate 50 normal cases into two
clusters. We hope physicians examine this result. Until now, medical researchers
have developed and used their methods because conventional statistical methods are
largely useless. However, if they create signal data, they only need to medically
examine the abundant results analyzed by general statistical methods.
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Fig. 7.11 Cluster analysis of signal data of RipDS using 139 SMs found by RIP

Figure 7.12 shows three plots of PCA. Because the 115 red RipDSs include the
origin of the scatter plot, to some extent, those can be indicators of general malig-
nancy. However, roles are slightly different if those belong to different quadrants.
The 18 green RipDSs surround the red cluster. The two brown RipDSs are in the
fourth quadrant. Two blue RipDSs are in the first and fourth quadrant. One cluster
of RIP139 has small RatioSV, and we cannot find it. Both scatter plot and factor
loading plot have meanings in each quadrant. The contribution ratio of Prin1 and
Prin2 are only 20.5% and 9.31%, and the cumulative contribution rate is not suf-
ficient as 29.81%. Based on medical knowledge, the results will be useful for the
categorization of many SM and BGS.
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Fig. 7.12 PCA of transposed data of 139 RipDSs

7.5 Conclusions

Only Alon and Singh consist of healthy subjects and cancer patients. Other four
microarrays consist of two groups of different cancers. However, it is essential that
the results of all SMs obtained by three signal data are almost the same. Ifmicroarrays
are well managed for research purposes, we believe that the two classes are LSDs
and obtain almost the same results as this book. In other words, microarray does not
include cancer patients receiving treatment for cancer and healthy subjects suspected
of cancer. The range of 9,591 correlations of 139RipDSs is [0.417, 1], andwe indicate
two SMs with R � 1 may be redundant to each other. Moreover, we show how to
make the 139 different RipDSs and categorize those into several groups. Singh’s
microarray consists of 139 RipDSs, but we must categorize medically into several
groups. We proposed to classify those by statistical methods, but physicians need to
validate those categories.
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Chapter 8
Cancer Gene Diagnosis of Tian et al.
Microarray

Abstract We developed the New Theory of Discriminant Analysis after R. A.
Fisher (theory). Although there are five severe problems of discriminant analy-
sis, theory solves five problems completely. Especially, Revised IP-OLDF (RIP)
based on MNM and Method2 firstly succeed in the cancer gene analysis (Prob-
lem5) from 1970. RIP decomposes six microarrays into the many SMs those are
signals (MNM � 0) explained in Chap. 1. Although Revised LP-OLDF decomposes
the microarray into many SMs as same as RIP, we find the defect of Revised LP-
OLDF that cannot find all SMs from the microarray in Chap. 4. However, Revised
LP-OLDF can find many SMs faster than RIP. It may be convenient for many
researchers to analyze SMs found by Revised LP-OLDF. Tian’s microarray con-
sists of 173 subjects (36 False subjects and 137 True patients) and 12,625 genes. In
this chapter, Revised LP-OLDF decomposes Tian’s microarray into the 104 SMs.
We analyze 104 SMs by the standard statistical method such as one-way ANOVA,
t-test, Ward cluster analysis, PCA, logistic regression, and Fisher’s LDF. Although
we expected standard statistical methods were useful for cancer gene diagnosis, only
logistic regression could discriminate 104 SMs correctly, and other methods did not
show the linear separable facts. Because Revised LP-OLDF discriminates 104 SMs,
and the range of 104 RatioSVs is [8.34%, 22.79%], we make signal data by 104
Revised LP-OLDF discriminant scores (LpDSs) instead of 12,625 genes. By this
breakthrough, hierarchical cluster methods can separate two classes as two clusters
entirely. In addition to these results, the Prin1 axis of PCA indicates proper malig-
nancy indexes as same as 104 malignancy indexes. Thus, we reconsider the signal
data is the signal. Moreover, we examine the characteristic of 104 LpDSs precisely
as same as Chap. 7 using the correlation analysis.

Keywords Cancer gene diagnosis · Malignancy indexes · Revised LP-OLDF
discriminant scores (LpDSs) · Correlation analysis · Small Matryoshka (SM) ·
RatioSV of PCA · Ward cluster · PCA
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Thanks to Tian et al.
We appreciate Tian et al. (2003)1 for providing excellent data. Below, we will quote
their “summary” for the reader.

Background
Myeloma cells may secrete factors that affect the function of osteoblasts, osteoclasts,
or both.

Methods
We subjected purified plasma cells from the bonemarrowof patientswith newly diag-
nosedmultiplemyeloma and control subjects to oligonucleotidemicroarray profiling
and biochemical and immunohistochemical analyses to identify molecular determi-
nants of osteolytic lesions.

Results
We studied 45 control subjects, 36 patients with multiple myeloma in whom focal
lesions of bone could not be detected bymagnetic resonance imaging (MRI), and 137
patients in whomMRI detected such lesions.Different patterns of expression of 57
of approximately 10,000 genes from purifiedmyeloma cells could be used to distin-
guish the two groups of patients (P < 0.001). Permutation analysis, which adjusts the
significance level to account for multiple comparisons in the datasets, showed that 4
of these 57 genes were significantly overexpressed by plasma cells from patients with
focal lesions. One of these genes, dickkopf1 (DKK1), and its corresponding protein
(DKK1) were studied in detail because DKK1 is a secreted factor that has been
linked to the function of osteoblasts. Immunohistochemical analysis of bone mar-
row–biopsy specimens showed that only myeloma cells contained detectable DKK1.
Elevated DKK1 levels in bone marrow plasma and peripheral blood from patients
with multiple myeloma correlated with the gene-expression patterns of DKK1 and
were associated with the presence of focal bone lesions. Recombinant human DKK1
or bone marrow serum containing an elevated level of DKK1 inhibited the differen-
tiation of osteoblast precursor cells in vitro.

Conclusion
The production of DKK1, an inhibitor of osteoblast differentiation, by myeloma
cells is associated with the presence of lytic bone lesions in patients with multiple
myeloma.”

8.1 Introduction

We developed the New Theory of Discriminant Analysis after R. A. Fisher (theory)
(Shinmura 2016). Although there are five severe problems of discriminant analysis
(Shinmura 2016), theory solves five problems completely. Especially, Revised IP-
OLDF (RIP) based onMNMandMethod2 firstly succeed in the cancer gene analysis

1Erming Tian, Fenghuang Zhan, Ronald Walker, Erik Rasmussen, Yupo Ma, Bart Barlogie, and
John D. Shaughnessy.
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(Problem5) since 1970. RIP decomposes six microarrays into the many SMs those
are signals and linearly separable gene subspaces (MNM � 0) explained in Chap. 1
(Schrage 2006). Although Revised LP-OLDF decomposes the microarray into many
SMs as same as RIP, we find the defect of Revised LP-OLDF that cannot find all
SMs from the microarray in Chap. 4. However, Revised LP-OLDF can find many
SMs faster than RIP. It may be convenient for many researchers to analyze SMs
found by Revised LP-OLDF. Tian’s microarray consists of 173 subjects (36 False
subjects and 137 True patients) and 12,625 genes. In this chapter, Revised LP-OLDF
decomposes Tian’s microarray into the 104 SMs. We analyze 104 SMs by six MP-
based LDFs. Because the ranges of 104 RatioSVs by the RIP and Revised LP-OLDF
are [8.34, 22.79%] and [4.2, 21.8%], this chapter introduces the result of Revised LP-
OLDF.Wemake signal data that consists of 173 subjects and 104 Revised LP-OLDF
discriminant scores (LpDSs) instead of 12,625 genes. By this breakthrough, Ward
cluster analysis can separate two classes as two clusters, and the Prin1 axis of PCA
indicates propermalignancy index as same as 104malignancy indexes.Moreover, we
examine the characteristic of 104 LpDSs precisely as same as Chap. 7. Furthermore,
we examine the Problem6 of cancer gene analysis using 104 SMs and LpDSs as
follows:

Problem6: Why can no researchers find the linear separable facts in SM since
1970?

We had already obtained the hint of Problem6 in Chaps. 4 and 5. The hint is
as follows: Although two SVs can separate two classes of microarray, the variation
of the two classes is tiny, and the signal is buried in the noise. This fact is already
pointed out as one of three difficulties discussed by the statisticians. In this chapter,we
explain the reason by clear information about LpDSs and SMs using the correlation
analysis. This book concept is as follows. LINGO (Schrage 2006) decomposes Tian’s
microarray into 104 SMs and opens a new frontier of cancer gene analysis. JMP (Sall
et al. 2004) analyzes all SMs and offers cancer gene diagnosis. Shinmura (2016, 2017,
2018a, b) relate to this Chapter.

8.2 Examination of Revised LP-OLDF Discriminant Scores
and SMs

Because we obtain almost the same results by the RIP and Revised LP-OLDF, we
answer the Problem6 from the examination of 104 LpDSs and SMs.

8.2.1 Correlation of 104 LpDSs

Figure 8.1 is the histogram of 5,356 correlations (abbreviated R) of 104 LpDSs
analyzed by JMP. The range of correlations is [0.133, 1]. We believe that two LpDSs
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with a correlation of 1 will play the same role in oncogenic diagnosis. The correlation
analysis finds four important SMs such as (SM27, SM28) and (SM98, SM99) in
Table 8.1. We will deeply survey four SMs for solving Problem6 in future research.
If we omit the four SMs, the range of R is [0.133, 0.600]. Tian’s 100 LpDSs seem to
be relatively low correlated.

Fig. 8.1 Histogram of 5,356
correlations by 104 LpDSs

Table 8.1 is the list of 5,356 correlations sorted by descending order of R. The
[2.5, 97.5%] is the 95% confidence interval of each R. Because 5,354 p-values are
0.01, these correlations are positive. However, we cannot explain the reason why
there are no high correlations of 0.658 to less than 1. On the other hand, we expect
four LpDSs having correlation1 may be useful medically.
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Table 8.1 List of 5,356 correlations sorted by descending order of R

Var1 Versus
Var2

Correlation n 2.5% 97.5% p-value

LP28 LP27 1 173 1 1 0.000

LP99 LP98 1 173 1 1 0.000

LP80 LP70 0.658 173 0.564 0.735 0.000

LP86 LP39 0.651 173 0.556 0.729 0.000

LP78 LP56 0.636 173 0.538 0.717 0.000

LP85 LP79 0.634 173 0.536 0.716 0.000

LP49 LP34 0.626 173 0.526 0.709 0.000

LP95 LP49 0.625 173 0.525 0.709 0.000

LP56 LP23 0.624 173 0.524 0.707 0.000

LP53 LP39 0.617 173 0.515 0.702 0.000

– – – – – – –

LP99 LP50 0.226 173 0.079 0.363 0.003

LP96 LP24 0.215 173 0.068 0.353 0.004

LP104 LP98 0.208 173 0.060 0.346 0.006

LP104 LP99 0.208 173 0.060 0.346 0.006

LP104 LP72 0.205 173 0.057 0.343 0.007

LP104 LP17 0.204 173 0.057 0.343 0.007

LP104 LP40 0.204 173 0.057 0.343 0.007

LP104 LP30 0.204 173 0.056 0.343 0.007

LP104 LP102 0.186 173 0.038 0.326 0.014

LP104 LP46 0.133 173 −0.016 0.277 0.080

8.2.2 PCA of 104 LpDSs

We analyze the 104 LpDSs by PCA and output the 30 principal components showed
in Table 8.2. The eigenvalue of Prin1 is 102.668, and the contribution rate is 73.862%.
The eigenvalue of Prin2 is 4.742, and the contribution rate is 3.412%. Thus, two prin-
cipal components explain the 77.274% of total variance and 30 principal components
explain the 94.21% of total variance. Because two classes are completely separated
in the signal data, the first eigenvalue is very large.
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Table 8.2 PCA of 104
LpDSs

Prin Eigenvalue Contribution Cumulative

1 102.668 73.862 73.862

2 4.742 3.412 77.274

3 1.972 1.418 78.692

4 1.802 1.297 79.989

5 1.532 1.102 81.091

6 1.400 1.007 82.098

7 1.240 0.892 82.990

8 1.132 0.815 83.805

9 1.053 0.757 84.562

10 0.976 0.702 85.264

11 0.929 0.668 85.933

12 0.896 0.645 86.578

13 0.888 0.639 87.216

14 0.832 0.598 87.815

15 0.775 0.557 88.372

16 0.704 0.506 88.878

17 0.693 0.499 89.377

18 0.683 0.491 89.868

19 0.648 0.466 90.335

20 0.607 0.437 90.771

21 0.581 0.418 91.190

22 0.555 0.399 91.589

23 0.531 0.382 91.971

24 0.500 0.360 92.330

25 0.488 0.351 92.682

26 0.471 0.339 93.020

27 0.440 0.316 93.337

28 0.419 0.301 93.638

29 0.403 0.290 93.928

30 0.392 0.282 94.210

Figure 8.2 is eight scatter plots. All x-axes are Prin1. The y-axes in the upper plots
are from Prin2 to Prin5, and the y-axes in lower plots are from Prin27 to Prin30. Left
circles are the 99% confidence ellipse of the False class, and right circles are the 99%
confidence ellipse of the True class. The 29 scatter diagrams shows two classes are
separable on Prin1 entirely. Thus, the Prin1 of PCA becomes the malignancy index
to summarize 104 LpDSs.
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Fig. 8.2 Eight scatter plots (x-axis: Prin1; upper y-axes: From Prin2 to Prin5; lower y-axes: from
Prin27 to Prin30)

Figure 8.3 is PCA output of the 104 LpDSs. The scatter plot is the same as the
left upper scatter plot in Fig. 8.2. If we look for the 29 scatter plots from Prin2 to
Prin30, False’s 99% confidence ellipse becomes large sequentially, approaching the
same size as True’s ellipse. Because the eigenvalues of Prin2 and higher are small,
Prin1 is considered to be a malignant index representing two classes.

Fig. 8.3 PCA output of the 104 LpDSs

8.2.3 How to Categorize Many 104 LpDSs

RIP and Revised LP-OLDF can decompose the microarrays into many SMs (Fact4).
Because RIP, Revised LP-OLDF, and H-SVM can discriminate two classes of all
SMs entirely, we consider the genes included in each SM as cancer genes and signals.
However, other statistical discriminant functions cannot discriminate between two
classes completely. On the other hands, because six signal data made by RIP, Revised
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LP-OLDF, andH-SVMusing two kinds of SMs found byRIP andRevised LP-OLDF
show the linear separable facts by other statistical methods, we consider six signal
data are signals. These facts indicate that only three LDFs can discriminate two
classes entirely and other methods cannot find the linear separable facts.

By the breakthrough of signal data made by 104 LpDSs, we can succeed to obtain
the 104 malignancy indexes and open the door of cancer gene diagnosis. Thus, we
survey how to build 104 LpDSs in this section. The second and third columns of
Table 8.3 show the minimum and maximum subjects of LpDS included in each
SM from SM1 to SM104. Because we choose the minimum number of each LpDS
from the 36 False classes, the selected subject is considered to be fairely better. The
maximum number of LpDS among the 137 True classes is that the degree of True
is the worst. The fifth column is the range of LpDS (abbreviated LPi), and the last
column is RatioSV of each LPi. The range of 104 LpDSs is [4.2%, 21.8%]. The
maximum value 21.8% is small compared with other microarrays.

Table 8.3 Minimum and maximum subject’s SM and its RatioSV

SM Min Max LpDS Range RatioSV

SM1 6 150 LP1 15.3 13.1

SM2 23 93 LP2 11.3 17.7

SM3 1 52 LP3 14.0 14.2

SM4 19 157 LP4 10.8 18.5

SM5 34 92 LP5 15.4 13.0

SM6 6 173 LP6 16.3 12.3

SM7 23 107 LP7 13.5 14.9

SM8 23 38 LP8 15.6 12.8

SM9 8 70 LP9 15.6 12.9

SM10 3 145 LP10 24.7 8.1

SM11 33 55 LP11 14.5 13.8

SM12 16 148 LP12 16.4 12.2

SM13 30 154 LP13 12.8 15.7

SM14 29 157 LP14 13.2 15.1

SM15 23 170 LP15 13.5 14.8

SM16 23 37 LP16 15.7 12.7

SM17 26 150 LP17 10.3 19.5

SM18 34 37 LP18 14.2 14.1

SM19 9 51 LP19 15.3 13.0

SM20 3 150 LP20 16.8 11.9

SM21 10 143 LP21 11.3 17.8

(continued)
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Table 8.3 (continued)

SM Min Max LpDS Range RatioSV

SM22 11 145 LP22 19.0 10.5

SM23 25 169 LP23 12.1 16.6

SM24 6 65 LP24 23.6 8.5

SM25 16 82 LP25 14.0 14.3

SM26 23 101 LP26 23.0 8.7

SM27 35 68 LP27 17.4 11.5

SM28 35 68 LP28 17.4 11.5

SM29 14 173 LP29 24.1 8.3

SM30 25 48 LP30 23.8 8.4

SM31 24 73 LP31 14.9 13.4

SM32 7 102 LP32 11.7 17.1

SM33 4 75 LP33 14.2 14.1

SM34 3 84 LP34 14.4 13.9

SM35 10 169 LP35 11.5 17.4

SM36 19 103 LP36 12.3 16.2

SM37 18 46 LP37 13.6 14.7

SM38 22 129 LP38 16.8 11.9

SM39 5 100 LP39 12.7 15.7

SM40 3 44 LP40 15.5 12.9

SM41 8 136 LP41 15.4 13.0

SM42 8 164 LP42 16.9 11.8

SM43 29 84 LP43 20.7 9.6

SM44 32 85 LP44 17.8 11.2

SM45 31 71 LP45 22.5 8.9

SM46 31 100 LP46 16.1 12.4

SM47 5 166 LP47 16.7 12.0

SM48 5 153 LP48 12.8 15.6

SM49 24 46 LP49 10.6 18.9

SM50 16 164 LP50 17.1 11.7

SM51 1 110 LP51 24.8 8.1

SM52 1 63 LP52 19.5 10.3

SM53 31 122 LP53 10.2 19.5

SM54 21 63 LP54 14.6 13.7

SM55 8 169 LP55 13.7 14.5

SM56 33 112 LP56 10.3 19.3

SM57 20 148 LP57 21.0 9.5

SM58 8 102 LP58 12.0 16.6

(continued)
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Table 8.3 (continued)

SM Min Max LpDS Range RatioSV

SM59 10 120 LP59 12.0 16.7

SM60 30 44 LP60 12.1 16.6

SM61 25 37 LP61 18.5 10.8

SM62 12 164 LP62 13.3 15.0

SM63 26 144 LP63 11.7 17.0

SM64 7 114 LP64 9.2 21.8

SM65 33 102 LP65 17.2 11.6

SM66 30 156 LP66 11.7 17.1

SM67 15 71 LP67 19.6 10.2

SM68 31 141 LP68 14.7 13.6

SM69 2 129 LP69 16.9 11.9

SM70 10 65 LP70 12.9 15.5

SM71 12 61 LP71 13.2 15.2

SM72 20 70 LP72 15.1 13.3

SM73 6 100 LP73 14.7 13.6

SM74 22 173 LP74 21.2 9.4

SM75 10 79 LP75 14.0 14.3

SM76 13 102 LP76 13.8 14.5

SM77 3 102 LP77 21.2 9.4

SM78 19 65 LP78 10.4 19.2

SM79 25 44 LP79 11.5 17.4

SM80 30 148 LP80 13.9 14.4

SM81 6 43 LP81 13.9 14.4

SM82 14 107 LP82 15.3 13.0

SM83 9 38 LP83 15.6 12.8

SM84 8 164 LP84 16.6 12.0

SM85 24 40 LP85 12.5 16.0

SM86 3 40 LP86 13.7 14.6

SM87 6 130 LP87 17.9 11.2

SM88 9 153 LP88 15.5 12.9

SM89 10 124 LP89 14.7 13.6

SM90 11 102 LP90 17.7 11.3

SM91 9 173 LP91 9.4 21.3

SM92 13 43 LP92 12.6 15.9

SM93 28 107 LP93 25.3 7.9

(continued)
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Table 8.3 (continued)

SM Min Max LpDS Range RatioSV

SM94 28 70 LP94 12.5 16.0

SM95 34 44 LP95 17.7 11.3

SM96 12 43 LP96 17.8 11.3

SM97 1 37 LP97 15.2 13.2

SM98 11 102 LP98 25.7 7.8

SM99 11 102 LP99 25.7 7.8

SM100 32 105 LP100 20.8 9.6

SM101 8 103 LP101 16.7 12.0

SM102 8 147 LP102 18.8 10.7

SM103 13 100 LP103 22.1 9.1

SM104 32 43 LP104 48.0 4.2

We sort the second column of Table 8.3 in descending order. As also shown
in Chap. 7, the left five columns of Table 8.4 are the first 52 results and the right
five columns are the remaining 52 results. The Pair column is the number of SMs
with the sameminimum andmaximum value. The correlation shows their correlation
coefficient. There are two sets of two LpDSs having the same pair, and the correlation
coefficients are 1 and 0.397. There are one set of three LpDSs having the same
pair, and the correlation coefficients are 1, 0.457, and 0.457. It reflects that only
two correlations are 1, and the rest are less than 0.6 and is entirely different from
Singh’s LpDSs. Because other 97 correlation coefficients are between 0.13 and 0.6,
these LpDSs may be different malignancy indexes. Correlation analysis tells us the
difference between LpDSs. In the abstract, Tian et al. introduce as follows: “Different
patterns of expression of 57 of approximately 10,000 genes from purified myeloma
cells could be used to distinguish the two groups of patients (P < 0.001).” We would
like to compare 104 LpDSs with their patterns.

Table 8.4 Sorted in descending order of the second column (False) and the seventh column (False)

SM False True Pair Corr SM FALSE TRUE Pair Corr

SM97 1 37 SM29 14 173

SM3 1 52 SM67 15 71

SM52 1 63 SM25 16 82

SM51 1 110 SM12 16 148

SM69 2 129 SM50 16 164

SM86 3 40 SM37 18 46

(continued)
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Table 8.4 (continued)

SM False True Pair Corr SM FALSE TRUE Pair Corr

SM40 3 44 SM78 19 65

SM34 3 84 SM36 19 103

SM77 3 102 SM4 19 157

SM10 3 145 SM72 20 70

SM20 3 150 SM57 20 148

SM33 4 75 SM54 21 63

SM39 5 100 SM38 22 129

SM48 5 153 SM74 22 173

SM47 5 166 SM16 23 37

SM81 6 43 SM8 23 38

SM24 6 65 SM2 23 93

SM73 6 100 SM26 23 101

SM87 6 130 SM7 23 107

SM1 6 150 SM15 23 170

SM6 6 173 SM85 24 40

SM32 7 102 SM49 24 46

SM64 7 114 SM31 24 73

SM9 8 70 SM61 25 37

SM58 8 102 SM79 25 44

SM101 8 103 SM30 25 48

SM41 8 136 SM23 25 169

SM102 8 147 SM63 26 144

SM42 8 164 2 0.397 SM17 26 150

SM84 8 164 SM94 28 70

SM55 8 169 SM93 28 107

SM83 9 38 SM43 29 84

SM19 9 51 SM14 29 157

SM88 9 153 SM60 30 44

SM91 9 173 SM80 30 148

SM70 10 65 SM13 30 154

SM75 10 79 SM66 30 156

SM59 10 120 SM45 31 71

SM89 10 124 SM46 31 100

SM21 10 143 SM53 31 122

SM35 10 169 SM68 31 141

SM90 11 102 3 0.457 SM104 32 43

SM98 11 102 0.457 SM44 32 85

(continued)
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Table 8.4 (continued)

SM False True Pair Corr SM FALSE TRUE Pair Corr

SM99 11 102 1.000 SM100 32 105

SM22 11 145 SM11 33 55

SM96 12 43 SM65 33 102

SM71 12 61 SM56 33 112

SM62 12 164 SM18 34 37

SM92 13 43 SM95 34 44

SM103 13 100 SM5 34 92

SM76 13 102 SM27 35 68 2 1.000

SM82 14 107 SM28 35 68

8.3 Analysis of 104 SMs of Tian et al. Microarray (2018)

In 2018, RIP of LINGO Program3 decomposes Tian’s microarray into 104 SMs
(12,334 genes). At first, we consider 104 SMs are signals, and 291 gene sub-
spaces are noise. This fact indicates signal subspace includes 12,334 genes and
noise subspace includes only 291 genes. If this definition of the signal is valid,
other statistical methods can find the linear separable facts easily. However, those
methods cannot find the linear separable facts. Thus, we consider six signal
data define the true definition of signal. If we accept this definition, we can
explain two reasons: (1) why only three LDFs can separate two classes, and (2) why
other statistical methods cannot find the linear separable fact (Shinmura 2018a, b).

Table 8.5 shows the 104 SMs from SM � 1 to SM � 104, which is SM found
by RIP. Although Revised LP-OLDF can decompose microarrays into other types
of SMs, we omit those results. Program3 determines this order of SM. The “gene”
column is the number of genes of each SM. The range of genes included in the
104 SMs is [93,144]. The average is 118.6. Row “SUM” indicates 104 SMs contain
12,334 genes. LP and IP can find an optimal solution of a small gene subspace whose
number of genes is n (173) subjects or less explained in Chap. 1. From RIP column
to H-SVM column show three RatioSVs of 104 SMs by RIP, Revised LP-OLDF
and H-SVM. Three ranges of RatioSV are [8.34, 22.79], [4.17, 21.81], and [14.65,
28.75], respectively. Three averages of RatioSVs are 14.18%, 13.39%, and 20.53%,
respectively. Row “Max Ratio” indicates the number of the maximum RatioSVs of
104 SMs those are 5, 1, and 98, respectively. To summarize these results, the range,
average, andmaximumnumber ofH-SVMare better thanRIP because themaximiza-
tion SV of H-SVM works well. Two columns “MAX and MIN” are the maximum
and minimum values of three LDFs. Because all NMs of logistic regression, SVM4
and QDF are zero and 104 SMs are linearly separable, we omit these columns from
the table. Two columns “SVM1 and LDF2” show the NMs. Although SVM4 can
discriminate 104 SMs completely, SVM1 cannot discriminate four SMs correctly.
The 71 NMs of LDF2 are not zero.
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Table 8.5 Summary of six RatioSVs of six MP-based LDFs and NMs of other discriminant func-
tions

SM Gene RIP LP HSVM Max Min SVM1 LDF2

1 112 17.48 13.06 17.24 17.48 10.17 0 2

2 117 14.34 15.73 21.96 21.96 14.34 0 0

3 132 15.50 17.66 20.98 20.98 15.50 0 0

4 114 17.31 14.24 24.53 24.53 14.24 0 3

5 109 12.19 18.52 19.62 19.62 12.19 0 1

6 116 12.52 12.99 16.64 16.64 12.52 0 3

7 126 8.52 12.28 19.74 19.74 8.52 0 2

8 117 11.66 14.86 21.29 21.29 11.66 0 1

9 117 13.85 12.79 18.03 18.03 12.79 0 2

10 119 12.26 12.86 21.79 21.79 12.26 0 0

11 116 11.16 8.11 17.65 17.65 8.11 0 2

12 119 13.01 13.82 21.07 21.07 13.01 0 0

13 119 14.60 12.21 18.16 18.16 12.21 0 4

14 127 16.35 15.66 26.74 26.74 15.66 0 1

15 121 16.75 15.10 19.19 19.19 15.10 0 0

16 100 18.76 14.77 17.36 18.76 14.77 0 0

17 119 19.31 12.71 23.76 23.76 12.71 0 1

18 137 17.16 19.48 25.00 25.00 13.44 0 0

19 134 16.21 14.09 27.25 27.25 14.09 0 0

20 123 17.19 13.03 20.75 20.75 13.03 0 0

21 108 18.59 11.88 19.08 19.08 11.88 0 2

22 111 14.84 17.75 21.22 21.22 12.41 0 2

23 117 12.77 10.53 20.36 20.36 10.53 0 0

24 107 14.08 16.56 17.54 17.54 12.05 0 0

25 111 14.27 8.48 15.42 15.42 8.48 0 3

26 128 8.36 14.29 17.36 17.36 8.36 0 1

27 123 12.01 8.70 18.67 18.67 8.70 0 3

28 119 14.452 11.515 17.15 17.15 11.52 0 3

29 134 13.80 8.31 18.87 18.87 8.31 0 0

30 118 12.13 8.40 18.70 18.70 8.40 0 2

31 130 14.68 13.41 26.88 26.88 13.41 0 0

32 109 14.52 17.10 19.25 19.25 14.52 0 3

33 128 15.01 14.12 25.35 25.35 13.72 0 1

34 116 14.05 13.93 16.57 16.57 10.45 0 2

35 120 13.85 17.43 22.95 22.95 13.85 0 3

36 130 11.60 16.25 19.02 19.02 11.28 0 3

(continued)
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Table 8.5 (continued)

SM Gene RIP LP HSVM Max Min SVM1 LDF2

37 128 21.32 14.73 24.53 24.53 12.35 0 0

38 125 15.59 11.90 21.78 21.78 11.90 0 2

39 114 16.59 15.70 18.73 18.73 15.70 0 0

40 121 21.10 12.93 17.90 21.10 11.15 0 1

41 113 9.08 13.01 17.57 17.57 9.08 0 1

42 125 17.22 11.81 18.92 18.92 11.81 0 1

43 106 15.78 9.65 18.20 18.20 9.65 0 0

44 123 10.54 11.20 17.57 17.57 10.54 0 2

45 123 12.73 8.89 22.03 22.03 8.89 0 1

46 116 15.49 12.41 21.03 21.03 12.41 0 0

47 120 18.50 11.95 18.30 18.50 11.95 0 3

48 117 14.73 15.62 20.48 20.48 14.73 0 0

49 110 15.84 18.91 28.02 28.02 15.84 0 0

50 134 9.45 11.69 20.45 20.45 9.45 0 2

51 120 12.76 8.06 17.05 17.05 8.06 0 2

52 115 12.69 10.28 19.53 19.53 10.28 0 0

53 118 12.23 19.53 20.90 20.90 12.23 0 1

54 124 14.55 13.74 21.64 21.64 13.74 0 1

55 117 16.16 14.55 16.97 16.97 11.28 0 1

56 118 16.40 19.34 23.58 23.58 16.40 0 0

57 126 13.70 9.53 22.69 22.69 9.53 0 0

58 116 11.84 16.63 14.87 16.63 11.16 0 4

59 115 12.26 16.73 19.54 19.54 12.26 0 1

60 123 11.59 16.55 22.99 22.99 11.59 0 1

61 105 9.31 10.82 19.40 19.40 9.31 0 1

62 104 10.18 14.99 15.40 15.40 10.18 0 3

63 115 14.75 17.03 24.28 24.28 14.75 0 1

64 111 16.40 21.81 27.08 27.08 16.40 0 0

65 99 15.71 11.61 23.74 23.74 11.61 0 1

66 112 13.38 17.08 21.06 21.06 13.38 0 1

67 110 9.46 10.20 18.51 18.51 9.46 0 1

68 112 16.70 13.56 20.39 20.39 13.56 0 2

69 122 12.69 11.85 26.09 26.09 11.85 0 0

70 119 18.62 15.55 18.52 18.62 14.43 0 1

71 109 13.63 15.17 17.65 17.65 13.63 0 1

72 118 16.94 13.27 17.11 17.11 13.27 0 1

73 104 16.31 13.60 18.04 18.04 13.60 0 1

(continued)
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Table 8.5 (continued)

SM Gene RIP LP HSVM Max Min SVM1 LDF2

74 108 16.76 9.44 18.19 18.19 9.44 0 2

75 112 15.32 14.33 25.87 25.87 14.33 0 2

76 127 13.63 14.46 18.90 18.90 13.63 0 2

77 93 13.749 9.437 16.08 16.08 9.44 0 3

78 116 11.96 19.23 20.32 20.32 11.96 0 5

79 109 16.578 17.44 20.11 20.11 16.58 0 1

80 102 12.946 14.356 21.62 21.62 12.95 0 0

81 112 14.409 14.35 19.6 19.60 14.35 0 1

82 139 9.033 13.043 24.88 24.88 9.03 0 0

83 103 12.749 12.83 22.04 22.04 12.75 0 2

84 109 19.28 12.04 21.16 21.16 12.04 0 1

85 112 13.91 16.02 19.70 19.70 13.91 0 0

86 95 16.41 14.59 24.16 24.16 14.59 0 1

87 117 17.43 11.20 18.57 18.57 11.20 0 5

88 115 13.32 12.90 21.80 21.80 12.90 0 1

89 132 18.47 13.62 26.18 26.18 13.62 0 0

90 99 14.19 11.30 19.93 19.93 11.30 0 1

91 117 22.79 21.28 22.78 22.79 21.28 0 0

92 142 13.26 15.87 21.58 21.58 13.26 0 0

93 100 15.21 7.91 23.67 23.67 7.91 0 0

94 140 17.942 15.977 28.75 28.75 15.98 0 0

95 137 13.65 11.28 23.31 23.31 11.28 0 1

96 112 13.51 11.25 20.15 20.15 11.25 0 3

97 133 11.08 13.16 20.08 20.08 11.08 1 0

98 137 11.14 7.78 19.80 19.80 7.78 0 0

99 119 11.14 7.78 19.80 19.80 7.78 0 4

100 131 12.10 9.60 22.87 22.87 9.60 1 2

101 132 8.34 11.97 16.86 16.86 8.34 0 1

102 138 9.14 10.66 20.17 20.17 9.14 4 2

103 142 9.08 9.06 14.65 14.65 8.06 8 5

104 144 8.97 4.17 15.44 15.44 4.17 0 4

MAX 144 22.79 21.81 28.75 28.75 21.28 8 5

MIN 93 8.34 4.17 14.65 14.65 4.17 0 0

Mean 118.60 14.18 13.39 20.53 20.59 11.95 0.13 1.32

Max Ratio 5 1 98

SUM 12334
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8.4 Analysis of Three Signal Data Made by 104 DSs

We cannot obtain useful results of 104 SMs (173 cases and 12,334 genes) until now.
Next, we analyze three signal data made by RipDSs, LpDSs, and HsvmDSs having
104 DSs instead of 12,334 genes. The cluster analysis and PCA get almost the same
excellent results. Although we show the results of several cluster methods, we do not
interpret detailed analysis results.Manymedical researchers use SOMs, but the use of
hierarchical cluster methods are easy. Although the results of hierarchical methods
usually vary, it is critical that the result of this book is almost the same in each
microarray. Interpretation of the case and variable dendrograms will undoubtedly
yield results that will be useful for medical researchers. For PCA, healthy subjects
place on the negative axis of Prin1. Many cancer patients are on the positive axis, but
there is a common feature that it varies even at Prin2 when the malignancy becomes
high. PCA can easily identify outliers, also.

Short Column
The work of Tien et al. (2003) is different from the other five.They approached
their theme by logistic regression and statistical testing, and validated their
medical diagnosis as follows:

They studied 45 control subjects, 36 patients with multiple myeloma in
whom focal lesions of bone could not be detected by MRI (False), and 137
patients in whom MRI detected such lesions (True). Different patterns of
expression of 57 of 12,625 genes could be used to distinguish the two groups
of patients (p<0.001). Logistic regression was used to model bone disease in
multiple myeloma. The signal for each probe set was log transformed on a
base-2 scale before it was entered into the logistic regression model and sub-
jected to permutation analysis, which adjusts the significance level to account
for multiple comparisons in data sets with high dimensionality.

Significant differences in patients’ characteristics according to their bone-
disease status were evaluated with the use of either Fisher’s exact test or the
chi-square test. Spearman’s correlation coefficient was used to measure the
correlation between the level of gene expression and protein levels.

They analyzed 12,625 genes from two groups by logistic regression analysis
and identified 57 genes that were expressed differently (P<0.001) in the two
groups of patients.

Thus, they overcame the curse of higher dimension. Because of this, its NM
will probably not be zero. And it is considered that 57 genes are divided and
included in several SMs. That is, SMs containing 57 genes is a potential SM
candidate for gene diagnosis.
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8.4.1 Cluster Analysis of Three Signal Data

Figure 8.4 is a Ward cluster analysis of RipDSs signal data. Even if it analyzes 104
SMs individually, it cannot separate two classes, but the upper green part is 36 False
subjects, and the lower redpart is 137Truepatients.Weconsider themarvelous effects
of RipDSs cause this surprising result. The case dendrogram shows one cluster of the
False class and four clusters of the True class. Four clusters consist of the 88 green
patients, the 42 blue patients, the three orange patients, and the four green patients.
Among the six research groups, Alon et al. succeeded in using a self-organizing map
(SOM). Furthermore, if medical AI based on the cluster analysis will analyze SM,
it may be able to find useful results among many clusters made by many clustering
methods.

Fig. 8.4 Ward cluster analysis of RipDSs signal data
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Figure 8.5 is aWard cluster analysis of LpDSs signal data. The upper green part is
36 False subjects, and the lower red part is 137 True patients. The case dendrogram
shows one cluster of the False class and four clusters of the True class. Four clusters
consist of the 61 green patients, the 35 blue patients, the 36 orange patients, and the
five green patients. Four clusters are slightly different from Fig. 8.4.

Fig. 8.5 Ward cluster analysis of LpDSs signal data
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Figure 8.6 is a Ward cluster analysis of HsvmDSs signal data. The upper green
part is 36 False subjects, and the lower red part is 137 True patients. The case
dendrogram shows one cluster of the False class and four clusters of the True class.
Four clusters consist of the 78 green patients, the 11 blue patients, the four orange
patients, and the 44 pale green patients. Because four clusters by RipDSs, LpDSs,
and HsvmDSs are entirely different, this is because two classes of Tian et al. have
a different structure from the other five. This theme is a future research subject.
Generally it is not desirable that the results differ depending on the method of cluster
analysis. But if an expert can find a specific meaning in several clusters, it might be
useful for genetic diagnosis of cancer.

Fig. 8.6 Ward cluster analysis of HsvmDSs signal data

8.4.2 PCA of Three Signal Data

Figure 8.7 shows the result of RipDS signal data by PCA. Left eigenvalue shows that
the eigenvalue of Prin1 is larger than the others. The first eigenvalue is 44.930, and
the contribution ratio is 43.2%. The second eigenvalue is 2.227, the contribution ratio
is 2.14, and the cumulative contribution ratio is 45.34%. That is, the Prin1 almost
presents 172 subjects. The score plot shows the second eigenvalue is small and the
variation is small. Although the False subjects are almost on the Prin1, its shape is the
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ellipse because they are not healthy subjects. True patients are in the range [−1.88,
13.75], and as an increasing distance from False subjects, the dispersion of the Prin2
is large. Especially 156th, 100th, 173th, 148th, 99th, 145th, 122th, and 40th patients
are large outliers. That is, the Prin1 becomes cancer malignancy index as same as
104 RipDSs. The score plot shows the second eigenvalue is small and the variation
is small.

Fig. 8.7 Three plots of PCA (RipDS signal data)

The first columns and second columns of Table 8.6 show the case number cor-
responding RipDSs signal data and its value of Prin1 axis. The 173 rows have two
parts. Upper 36 rows are corresponding to the False class, and lower 137 rows are
corresponding to the True class in Fig. 8.7. These two columns are sorted in ascend-
ing order from a small value that corresponds from left to right of Prin1. In Fig. 8.7,
the leftmost point is the 14th False subject, and the value of Prin1 is −14.28. The
35th False subject has a value of −11.48, which is closest to the True patient in the
False case, and 36 cases of false cases are in the range [−14.28, −11.48]. On the
other hand, the 54th patient is the nearest to False class, and the 100th patient is far
from the False class. Its range is [−0.83, 10.02]. SV opens the window having the
width (−11.48, −0.83).

Thus, we can define the RatioSV for PCA in Eq. (8.1).

RatioSVof PCA � (11.48−0.83)/(14.28 + 10.02) ∗ 100 � 1065/24.3 � 43.82716%. (8.1)

Assuming that it is about 44%, SV separates two classes such as True patients and
False subjects in the remaining 56% range. Because this is the overall characteristic
value of RatioSV of 104 RIP, it is larger than the maximum value of RatioSV of
104 RIPs 22.79. In later, we conclude the same results of both RaioSV of PCA by
Revised LP-OLDF and HSVM.
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Table 8.6 Prin1 values of
RIP and Revised LP-OLDF
and HSVM sorted by each
Prin1 values

RatioSV 43.83 36.90 39.34

RIP Prin1 LP Prin1 HSVM Prin1

14 −14.28 3 −14.06 3 −16.93

3 −13.79 31 −13.69 8 −16.59

28 −13.62 25 −13.69 10 −16.39

8 −13.48 10 −13.60 25 −16.34

34 −13.47 11 −13.59 14 −16.02

31 −13.36 8 −13.42 33 −15.75

25 −13.30 6 −13.41 6 −15.59

6 −13.25 33 −13.32 31 −15.43

30 −13.23 9 −13.26 34 −15.41

33 −13.12 23 −13.05 1 −15.36

12 −12.93 1 −12.81 22 −15.27

9 −12.92 14 −12.73 11 −15.25

10 −12.86 32 −12.70 28 −15.05

29 −12.82 30 −12.68 13 −15.05

1 −12.81 22 −12.66 9 −14.87

13 −12.78 34 −12.58 23 −14.78

11 −12.74 29 −12.53 19 −14.76

32 −12.71 13 −12.52 32 −14.67

26 −12.51 28 −12.49 5 −14.61

15 −12.41 5 −12.33 29 −14.51

19 −12.20 19 −12.24 4 −14.47

24 −12.16 12 −12.18 18 −14.45

4 −12.16 18 −12.16 12 −14.43

18 −12.10 20 −12.07 30 −14.38

5 −12.03 24 −11.99 24 −14.24

20 −12.01 26 −11.91 2 −14.23

22 −12.01 16 −11.83 26 −14.18

23 −11.94 4 −11.80 7 −14.17

2 −11.80 7 −11.75 16 −14.16

17 −11.80 2 −11.71 20 −14.12

7 −11.76 15 −11.67 21 −14.12

27 −11.76 36 −11.64 15 −14.04

36 −11.76 35 −11.63 35 −14.01

(continued)
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Table 8.6 (continued) RatioSV 43.83 36.90 39.34

RIP Prin1 LP Prin1 HSVM Prin1

16 −11.75 21 −11.62 17 −14.00

21 −11.70 27 −11.48 36 −13.99

35 −11.48 17 −11.24 27 −13.95

54 −0.83 54 −2.13 54 −1.88

82 −0.34 159 −1.10 82 −1.58

142 0.11 82 −0.90 94 −1.07

79 0.21 94 −0.79 90 −0.98

161 0.22 163 −0.77 108 −0.92

159 0.27 108 −0.77 161 −0.91

94 0.33 111 −0.66 159 −0.76

69 0.44 90 −0.57 142 −0.56

78 0.46 142 −0.51 79 −0.46

64 0.53 64 −0.26 111 −0.36

108 0.54 77 −0.25 77 −0.30

163 0.60 66 −0.08 69 −0.07

74 0.68 161 −0.04 64 0.19

58 0.73 69 0.04 163 0.19

105 0.75 165 0.09 66 0.20

77 0.77 79 0.14 160 0.38

116 0.92 104 0.30 88 0.39

50 1.09 109 0.36 72 0.45

72 1.30 74 0.48 116 0.48

135 1.36 78 0.64 87 0.53

67 1.37 146 0.70 165 0.66

95 1.47 160 0.76 109 0.68

111 1.47 116 0.80 104 0.72

109 1.48 81 0.80 78 0.83

81 1.50 41 0.82 67 0.86

115 1.53 58 0.83 81 0.89

90 1.58 60 0.86 95 0.93

66 1.63 87 0.88 76 1.06

147 1.69 96 0.94 50 1.07

76 1.71 68 0.97 147 1.09

87 1.77 135 1.13 74 1.12

165 1.77 72 1.14 68 1.14

160 1.78 95 1.17 58 1.15

(continued)
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Table 8.6 (continued) RatioSV 43.83 36.90 39.34

RIP Prin1 LP Prin1 HSVM Prin1

68 1.78 67 1.26 60 1.29

88 1.81 138 1.31 96 1.44

60 1.85 139 1.38 138 1.48

96 1.95 50 1.44 139 1.67

73 1.95 115 1.62 151 1.73

37 2.01 37 1.66 146 1.85

104 2.03 88 1.75 37 1.89

80 2.06 149 1.84 39 1.91

75 2.16 168 1.92 168 1.91

146 2.17 76 1.92 135 2.14

86 2.17 39 1.93 115 2.19

168 2.18 147 1.94 75 2.20

170 2.27 162 2.06 80 2.28

151 2.32 89 2.10 121 2.40

138 2.34 105 2.18 140 2.44

152 2.37 167 2.21 93 2.45

139 2.42 121 2.28 105 2.64

129 2.45 75 2.29 73 2.65

41 2.52 140 2.30 41 2.75

121 2.61 127 2.42 86 2.80

119 2.70 93 2.46 126 2.90

107 2.72 80 2.52 119 3.05

39 2.79 107 2.56 124 3.09

103 2.84 170 2.70 162 3.22

132 2.91 129 2.73 152 3.25

126 2.92 73 2.77 97 3.34

134 2.92 117 2.87 170 3.41

56 3.03 126 2.91 137 3.46

112 3.09 55 2.98 149 3.46

55 3.10 133 3.00 127 3.50

123 3.15 97 3.06 134 3.50

106 3.17 171 3.08 133 3.72

92 3.19 132 3.08 155 3.75

53 3.20 124 3.14 128 3.83

131 3.21 119 3.14 89 3.88

133 3.21 137 3.23 55 3.89

(continued)
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Table 8.6 (continued) RatioSV 43.83 36.90 39.34

RIP Prin1 LP Prin1 HSVM Prin1

162 3.26 151 3.29 56 3.89

155 3.29 106 3.29 129 3.97

127 3.31 152 3.33 106 4.00

124 3.33 56 3.44 171 4.07

47 3.39 112 3.44 110 4.14

167 3.39 91 3.48 123 4.18

140 3.39 155 3.50 154 4.20

93 3.43 83 3.61 167 4.29

43 3.56 52 3.66 117 4.30

97 3.59 86 3.67 132 4.32

171 3.61 84 3.69 103 4.40

62 3.68 128 3.70 99 4.43

98 3.73 47 3.75 107 4.47

137 3.74 38 3.89 112 4.51

83 3.79 43 4.02 43 4.66

128 3.83 92 4.08 53 4.72

149 3.89 158 4.13 84 4.86

61 3.97 110 4.17 92 4.87

110 3.98 157 4.22 172 4.91

172 3.98 154 4.24 52 4.92

120 4.00 45 4.25 120 4.93

118 4.01 144 4.33 157 4.93

49 4.02 123 4.36 83 4.98

117 4.13 134 4.40 45 5.26

89 4.14 120 4.40 118 5.36

144 4.27 53 4.44 62 5.38

166 4.29 61 4.48 145 5.54

46 4.34 62 4.64 91 5.56

84 4.42 42 4.65 153 5.60

91 4.44 57 4.69 38 5.67

65 4.44 85 4.71 51 5.69

157 4.44 136 4.81 143 5.70

42 4.46 103 4.85 61 5.73

52 4.49 131 4.85 144 5.77

136 4.52 114 4.85 47 5.79

154 4.62 153 4.87 125 5.82

(continued)
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Table 8.6 (continued) RatioSV 43.83 36.90 39.34

RIP Prin1 LP Prin1 HSVM Prin1

38 4.62 63 4.93 42 5.95

45 4.62 70 4.99 98 5.95

125 4.71 51 5.00 70 6.04

150 4.80 143 5.02 158 6.24

169 4.84 172 5.05 166 6.35

145 4.98 98 5.06 59 6.49

164 5.04 99 5.11 49 6.51

143 5.06 118 5.32 136 6.59

51 5.18 59 5.33 71 6.69

63 5.19 166 5.34 130 6.70

48 5.21 145 5.43 113 6.86

102 5.23 49 6.03 114 6.90

57 5.27 130 6.26 57 6.94

141 5.33 48 6.35 150 7.24

70 5.36 125 6.44 131 7.25

158 5.52 101 6.56 63 7.31

130 5.53 71 6.64 164 7.47

153 5.58 164 6.92 101 7.66

59 5.65 44 6.93 85 7.75

113 5.76 141 6.97 48 8.01

71 5.78 150 6.97 44 8.03

99 5.91 46 7.05 141 8.28

101 5.98 169 7.07 46 8.73

44 6.12 113 7.15 169 8.81

173 6.19 122 7.41 65 9.28

114 6.21 65 7.62 122 9.45

85 6.33 173 8.04 102 9.53

40 8.09 156 8.59 40 10.00

156 8.15 40 8.69 156 10.26

148 8.30 102 8.95 173 11.12

122 8.62 100 9.55 148 13.05

100 10.02 148 10.03 100 13.75
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Figure 8.8 shows the result of LpDSs signal data by PCA. The first eigenvalue
is 46.356, and the contribution ratio is 44.6%. The second eigenvalue is 2.214, the
contribution ratio is 2.13%, and the cumulative contribution ratio is 46.73%. That
is, the Prin1 almost presents 173 subjects. Although the score plot shows several
outliers as same as in Fig. 8.7, the Prin1 becomes an indicator of cancer malignancy
as same as 104 LpDSs. The third and fourth columns of Table 8.6 show the result of
LpDSs. The ranges of False class and True class are [−14.06, −11.24] and [−2.13,
10.03]. SV opens the window that is the interval (−11.24, −2.13). RatioSV of PCA
by LpDSs is Eq. (8.2).

(8.2)

RatioSV of PCAbyLpDSs � (11.24−2.13) / (14.06 + 10.63) ∗ 100

� 9.11 ∗ 100/24.69 � 36.89753%

Because the maximum RatioSV of LpDSs is 21.81, RatioSV of PCA becomes a
malignancy index.

Fig. 8.8 Three plots of PCA (LpDS signal data)

Figure 8.9 shows the result ofHsvmDSs signal data. The first eigenvalue is 66.039,
and the contribution ratio is 63.5%. The second eigenvalue is 1.619, the contribution
ratio is 1.56%, and the cumulative contribution ratio is 65.06%. That is, the Prin1
almost presents 173 subjects. The score plot shows several outliers as same as in
Fig. 8.8. Because the second eigenvalue is small and the variation is small, the
False subjects are on the axis of −13.95 or less of the Prin1. In other words, the
Prin1 becomes a malignancy indicator as same as 104 HsvmDSs. The fifth and sixth
columns of Table 8.6 show the result of HsvmDSs. The ranges of False class and True
classes are [−16.93,−13.95] and [−1.88, 13.75], respectively. SV opens the window
that is the interval (−13.95, −1.88). RatioSV of PCA by HsvmDSs is Eq. (8.3).

RatioSVof PCAbyHsvmDSs � (13.95−1.88)/(16.93 + 13.75) ∗ 100 � 39.34159% (8.3)

Because the maximumRatioSV of HsvmDSs is 28.74, RatioSV of PCA is helpful
as a malignancy index.
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Fig. 8.9 Three plots of PCA (HsvmDS signal data)

8.4.3 PCA of Transpose Signal Data

We transpose the RipDSs signal data and analyze this transposed data with 104
RipDSs (104 cases) and 173 patients (173 variables). Figure 8.10 is three plots of
PCA. Because the first eigenvalue is 5.447 and contribution ratio is 3.15%, Prin1
explains only 3.15% variance. This fact indicates us that 104 RipDSs play almost
the same role in the transposed data. Thus, the factor loading plot shows all abso-
lutes of correlation coefficients with Prin1 and Prin2 are less 0.5. We guess other
absolute correlations with other principal components may be less 0.5 also. Scatter
plot suggests us there are many outliers in the four quadrants. Although there are
many outliers in scatter plots, these outliers are considered to represent a unique
malignancy index independent from others.

Fig. 8.10 Three plots of PCA (RipDS data)

We analyze transpose signal data made by 104 LpDSs. Figure 8.11 is three plots
of PCA. Because the first eigenvalue is 11.678 and contribution ratio is 6.75%, Prin1
explains only 6.75% variance. This fact indicates us that 104 LpDSs play almost the
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same role. Thus, the factor loading plot shows all absolutes of correlation coefficients
with Prin1 and Prin2 are less 0.8. We guess other absolute correlations with other
principal components may be less 0.8 also. Scatter plot suggests us two different
outliers such as (LP104) and (LP99). We expect two gene pairs included in (SM104)
and (SM99) are the “new class of cancer subsets” pointed out by Golub et al.

Fig. 8.11 Three plots of PCA (LpDS data)

We analyze the transpose data made by 104 HsvmDSs. Figure 8.12 is three plots
of PCA. Because the first eigenvalue is 6.064 and contribution ratio is 3.51%, Prin1
explains only 3.51% variance. This fact indicates us that 104 HsvmDSs play almost
the same role. Thus, the factor loading plot shows all absolutes of correlation coef-
ficients with Prin1 and Prin2 are less 0.5. We guess other absolute correlations with
other principal components may be less 0.5 also. Scatter plot suggests us there are
many outliers belonging in the first and fourth quadrants such as (HSVM6,HSVM12,
HSVM34, HSVM41, HSVM51, HSVM74, HSVM104) and (HSVM1, HSVM2,
HSVM27, HSVM28, HSVM32, HSVM102). We expect seven and six gene pairs
included in (SM6, SM12, SM34, SM41, SM51, SM74, SM104) and (SM1, SM2,
SM27, SM28, SM32, SM102) are the same “new class of cancer subsets” pointed
by Golub et al.

Fig. 8.12 Three plots of PCA (HsvmDS data)
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8.5 Conclusions

In Chaps. 3 and 4, we examine Alon’s microarray from the various angles of cancer
gene diagnosis. After Chap. 5, we examine the other five microarrays from the
viewpoints proposed in Chap. 4. Only two classes of Alon and Singh are the healthy
subjects and cancer patients. The remaining four microarrays consist of different
cancers. However, it is vital that the results of all SMs obtained by the RIP and
Revised LP-OLDF are almost the same. Perhaps, if medical projects collect data
for research purposes, we believe that the two classes in the microarray are LSDs
(Fact3) and many SMs (Fact4) show almost the same results explained in this book.
In other words, we believe that microarray provides useful information for cancer
diagnosis. Furthermore, the LSD has a Matryoshka structure, and Method2 is valid
even for general data. Our research is considered to be equally useful for data such
as other high-dimensional data and common data. If researchers create multiple SMs
with RIP and Revised LP-OLDF, they can quickly analyze by standard statistical
analysis by creating signal data using these SMs. Because statistical discriminant
methods were useless at all, Problem5 did not succeed. Moreover, the doctors had no
choice but to develop analytical methods themselves. In addition to their methods,
we believe that using a statistical method will open up a new world of cancer gene
diagnosis.

In this chapter, although RIP and Revised LP-OLDF find two different SMs,
we show the results of 104 SMs found by Revised LP-OLDF using the correlation
analysis and explain the results of three signal data made by RIP, Revised LP-OLDF
and H-SVM. Furthermore, cluster analysis and PCA analyze three signal data made
by RipDSs, LpDSs, and HsvmDSs. We omit the many results of three signal data
made by RipDSs, LpDSs, and HsvmDSs. The outline of these results is almost the
same as other chapters. This fact means that six types of signal data are signals. Also,
only RIP and Revised LP-OLDF can extract signals from noise. This is the gospel
for researchers of cancer genetic diagnosis. A simple analysis method proposed in
this book gives a large amount of information. Researchers can verify those results
by real patients. We expect many people to contribute to cancer diagnosis.
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Chapter 9
Cancer Gene Diagnosis of Chiaretti et al.
Microarray

Abstract This chapter introduces the cancer gene diagnosis of Chiaretti microarray
that consists of 128 patients and 12,625 genes. RIP finds 128 SMs, and Revised LP-
OLDF finds 124 SMs. We confirm the defect of Revised LP-OLDF, also. Because
both SMs are almost the same results, we introduce only the results of 124 SMs. In
Sect. 9.2, we confirm the 7,626 correlations of 124 LpDSs are greater than 0.359 and
standard statistical methods cannot find the linear separable facts of SMs. Thus, we
conclude three signal datamadebyRIP,RevisedLP-OLDF, andH-SVMare the better
definition of the signal instead of SMs. Also, we explain how to build 124 LpDSs. In
Sect. 9.3, the 124 SMs are evaluated by RatioSVs of six MP-based LDFs and NMs
of statistical discriminant functions. In Sect. 9.4, five hierarchical cluster methods
analyze three signal data of 124 RipDSs, LpDSs, and HsvmDSs. In Sects. 9.5 and
9.6, PCA analyzes signal data and transposed signal data. Section 9.7 concludes six
microarrays have almost the same results. We believe that the consistency of these
results confirms the reliability of cancer gene diagnosis.

Keywords Chiaretti microarray · Cancer gene diagnosis · Malignancy indexes ·
Small Matryoshka (SM) · RIP discriminant scores (RipDSs) · Signal data made by
RipDSs · Hierarchical clustering · Principal component analysis (PCA)
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“Abstract” for the reader.

Gene expression profiles were examined in 33 adult patients with T-cell acute lymphocytic
leukemia (T-ALL). Nonspecific filtering criteria identified 313 genes differentially expressed
in the leukemic cells. Hierarchical clustering of samples identified two groups that reflected
the degree of T-cell differentiation but was not associated with clinical outcome. Comparison
between refractory patients and those who responded to induction chemotherapy identified
a single gene, interleukin 8 (IL-8), that was highly expressed in refractory T-ALL cells and
a set of 30 genes that were highly expressed in leukemic cells from patients who achieved
complete remission.We next identified 19 genes that were differentially expressed in T-ALL
cells from patients who either had a relapse or remained in continuous complete remission.
A model based on the expression of 3 of these genes was predictive of duration of remission.
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The 3-gene model was validated on a further set of T-ALL samples from 18 additional
patients treatedwith the same clinical protocol. This study demonstrates that gene expression
profiling can identify a limited number of genes that are predictive of response to induction
therapy and remission duration in adult patients with T-ALL.

9.1 Introduction

Chapter 1 introduces the “New Theory of Discriminant Analysis after R. Fisher
(Shinmura 2016)” and the cancer gene analysis as an applied problem of the Theory.
Revised IP-OLDF (RIP) based on theminimumnumber ofmisclassifications (MNM)
criterion can find sixmicroarrays are linearly separable data (LSD;MNM� 0) that is
new Fact3. Matryoshka feature selection method (Method2) and LINGO Program3
can decompose microarray into many Small Matryoshkas (SMs) and noise subspace
(MNM > 0) that is new Fact4 (Schrage 2006). Chapter 2 introduces the cancer
gene diagnosis and malignancy indexes using all SMs found by the RIP in 2016.
Furthermore, we compare the RatioSVs of 64 SMs and 130 basic gene sets (BGSs)
and conclude the malignancy indexes of SMs are better than those of BGSs. In
Chap. 3, we propose how to choose the proper SMs and compare two different
types of SMs found by the RIP and Revised LP-OLDF. Chapter 4 evaluates signal
subspacemade by the union of SMs and noise subspace.Wefind the defect of Revised
LP-OLDF that cannot find all SMs from six microarrays. All correlations of RIP
discriminant scores (RipDSs) are positive values, but correlations of genes included
in SM take the positive values, almost the zero, and the negative values. Thus, we
reconsider that signal data made by RipDSs, Revised LP-OLDF DSs (LpDSs), and
H-SVM DSs (HsvmDSs) are true signal subspaces instead of SM itself (Shinmura
2018a, b). In Chaps. 5 and 6, we confirmed our results by SMs found by RIP using
Golub and Shipp microarrays. In Chaps. 7 and 8, we confirmed the research results
by SM found in Revised LP-OLDF using Singh et al. (2002) and Tian’s microarrays.

In Chap. 9, we introduce the cancer gene diagnosis of Chiaretti microarray that
consists of 128 patients (95 B-cell patients and 33 T-cell patients) and 12,625 genes.
RIP finds 128 SMs (4,907 genes) and Revised LP-OLDF finds 124 SMs (4,552
genes). We confirm the defect of Revised LP-OLDF as same as other microarrays.
Because both SMs are almost the same results, we introduce only the results of 124
SMs founded by Revised LP-OLDF. In Sect. 9.2, we confirm the 7,626 correlations
of 124 LpDSs are greater than 0.359 and standard statistical methods cannot find the
linear sparable facts of SMs. Thus, we conclude three signal data made by RipDSs,
LpDSs, and HsvmDSs are the better definition of signal instead of SMs. Also, we
explain how to build 124 LpDSs. In Sect. 9.3, the 124 SMs are evaluated by RatioSVs
of six MP-based LDFs and NMs of statistical discriminant functions. In Sect. 9.4,
five hierarchical clusteringmethods analyze three signal data of 124 RipDSs, LpDSs,
and HsvmDSs. In Sects. 9.5 and 9.6, PCA analyzes signal data and transposed signal
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data. Section 9.7 concludes six microarrays have the almost same results. We believe
that the consistency of these results confirms the reliability of cancer gene diagnosis.
Researchers can obtain results with short research time by our approach. LINGO
(Schrage 2006) decomposes microarray into many SMs and opens a new frontier of
cancer gene analysis. JMP (Sall et al. 2004) analyzes all SMs and offers cancer gene
diagnosis. Shinmura (2016, 2017, 2018a, b) relate to this Chapter.

9.2 Examination of Discriminant Scores of 124 SMs Found
by Revised LP-OLDF

OnlyRIP andRevisedLP-OLDFcandecomposemicroarrays intomanySMs (Fact4).
Although Revised LP-OLDF cannot find all SMs from microarrays, we use the 124
SMs.However,we discriminate the 124SMs byRIP, RevisedLP-OLDF, andH-SVM
andmake three signal datamade byRipDSs, LpDSs, andHsvmDSs.We analyze three
signal data by standard statistical methods and obtain the surprising results.

9.2.1 Correlation of 124 LpDSs

Figure 9.1 is the histogram of 7,626 correlations (abbreviated R)made by 124 LpDSs
instead of 124RipDSs because 124RipDSs are almost the same results. JMPanalyzes
all statistical methods (Sall et al. 2004). The range of correlations is [0.358, 0.948].
Although correlations of Golub, Singh, and Tian have the “R � 1,” Chiaretti has not
the “R � 1.” Thus, we cannot focus on the pairs of SMs with R � 1. Because the
range of Golub, Singh, and Tian are [0.069, 0.880], [0.417, 0.895], and [0.133, 0.6]
after omitting R � 1, the range of Chiaretti’s correlations is similar to Singh’s range.
Although the microarray of Chiaretti contains many genes, it seems that there are no
genes pairs to replace each other from the viewpoint of high correlation pairs (R �
1). Our claim is necessary to validate by medical specialists.
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Fig. 9.1 Histogram of 7,626
correlations by 124 LpDSs

Table 9.1 is the list of 7,626 correlations sorted by descending order of R. The
[2.5%, 97.5%] is the 95% confidence interval of each R. Because all p-values are
less than equal to 0.000 (p < 0.0005), all correlations are positive. This fact is one of
the reasons we consider the signal data is signal instead of SMs. On the other hand,
the correlations of genes included in SM take the positive, almost zero, and negative
values. Moreover, standard statistical methods cannot find the linear separable facts.
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Table 9.1 List of 7,626 correlations sorted by descending order of r

Var1 Versus
Var2

Correlation n 2.5% 97.5% p-value

LP30 LP24 0.949 128 0.928 0.964 0.000

LP20 LP19 0.948 128 0.927 0.963 0.000

LP2 LP1 0.947 128 0.925 0.962 0.000

LP28 LP24 0.942 128 0.919 0.959 0.000

LP18 LP1 0.942 128 0.919 0.959 0.000

LP14 LP1 0.941 128 0.917 0.958 0.000

LP18 LP14 0.940 128 0.917 0.958 0.000

LP19 LP10 0.940 128 0.916 0.958 0.000

LP25 LP10 0.940 128 0.916 0.957 0.000

LP41 LP19 0.939 128 0.914 0.957 0.000

– – – – – – –

LP124 LP44 0.390 128 0.233 0.528 0.000

LP123 LP3 0.390 128 0.232 0.528 0.000

LP124 LP4 0.379 128 0.220 0.518 0.000

LP124 LP57 0.376 128 0.216 0.516 0.000

LP123 LP12 0.374 128 0.215 0.514 0.000

LP123 LP13 0.374 128 0.214 0.514 0.000

LP124 LP1 0.372 128 0.213 0.513 0.000

LP124 LP87 0.372 128 0.212 0.512 0.000

LP124 LP12 0.371 128 0.211 0.512 0.000

LP124 LP55 0.359 128 0.197 0.501 0.000

9.2.2 PCA Analysis of Signal Data Made by 124 LpDSs

We analyze the signal data made by 124 LpDSs by PCA showed in Fig. 9.2. The
eigenvalue of Prin1 is 98.578, and the contribution rate is 79.5%. The eigenvalue of
Prin2 is 5.121, and the contribution rate is 4.13%. The cumulative rate is 83.65%.
Thus, twoprincipal components explain the 83.65%of total variance, and30principal
components explain the 95.135% of total variance. We check 29 scatter plots. All
x-axes are Prin1, and y-axes are from Prin2 to Prin30. All two classes are separate
entirely. Thus, we consider the Prin1 is better malignancy index of PCA. The scatter
plot shows the 91st patient in B-cell class and the 110th and 115th patients in T-cell
class are the outliers. Although the factor loading plot shows that 124 correlations of
124 LpDSs and Prin1 are higher than 0.5, 124 correlations of 124 LpDSs and Prin2
are range from −0.25 to 0.7.
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Fig. 9.2 PCA output of the 124 LpDSs

9.2.3 How to Categorize 124 LpDSs

We conclude only RIP and Revised LP-OLDF can decompose microarrays into
many SMs (Fact4). Although we find the defect of Revised LP-OLDF that cannot
find all SMs from the microarray, we examine the possibilities of SMs found by
Revised LP-OLDF in Chaps. 7 and 8. In Chap. 9, we examine the possibilities of
three signal data made by RipDSs, LpDSs, and HsvmDSs using 124 SMs found by
Revised LP-OLDF. Our results indicate the proper discriminant functions such as the
above three LDFs are the best methods for cancer gene diagnosis using two different
types of SMs found by the RIP and Revised LP-OLDF. With the breakthrough of
signal data, we can succeed to obtain the three different types of 124 malignancy
indexes and open the door of cancer gene diagnosis. Section 9.2.3 examines how to
construct 124 LpDSs. The second and third columns of Table 9.2 show the subject’s
SM taking the minimum and maximum values in each LpDS. Because the minimum
number of LpDSs is chosen from the patient of B-cell class, the selected subject is
considered to be in the typical one of B-cell. The maximum number of LpDSs is the
typical patient of T-cell class. The fourth column is the LpDSs (abbreviated LPi in
the figure). The fifth column is the range of LpDSi, and the last column is RatioSV
of each LpDSi. We omit the 114 rows from SM6 to SM119.

https://doi.org/10.1007/978-981-13-5998-9_9
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Table 9.2 Minimum and maximum subject’s SM and RatioSV

SM B-cell T-cell LpDS Range RatioSV

SM1 91 122 LpDS1 6.658 30.040

SM2 49 99 LpDS2 8.346 23.964

SM3 74 106 LpDS3 7.057 28.342

SM4 33 106 LpDS4 5.856 34.154

SM5 84 122 LpDS5 14.373 13.915

Omitted 114 SMs

SM120 91 115 LpDS120 41.585 4.809

SM121 89 113 LpDS121 53.404 3.745

SM122 56 115 LpDS122 59.840 3.342

SM123 58 115 LpDS123 112.889 1.772

SM124 60 115 LpDS124 1345.115 0.149

Table 9.3 shows how to categorize 124 LpDSs. Roughly speaking, we consider
the combinations of the minimum and maximum LpDS’s values specify 124 LpDSs.
The left four columns (and right four columns) are sorted in ascending order by the
second column value (B-cell) as the first sort key and the third T-cell value as the
second sort key. The second column shows the B-cell’s patient taking the minimum
value of LpDS. The third column shows the T-cell patient taking the maximum value
of LpDS. The first patient (second column) and the 128th patient (third column)
included in both SM81 and SM88 (first column) take the same minimum value 1 and
the maximum value 128 in two SMs such as SM81 and SM88. The fourth column
shows the pair number. Because two SMs, such as SM81 and SM88, take the same
minimum and maximum subjects, the pair number is two. Even though Table 9.4
shows SM81 includes 41 genes and SM88 includes 49 genes, LpDS81 and LpDS88
are almost the same malignancy indexes and may have the same effect in cancer
gene diagnosis. We guess two different gene sets have the same role in cancer gene
diagnosis and are redundant with each other. There is one group of seven SMs with
the same pair. There are one set of four SMs that have the same pair. There are 11
sets in which two SMs have the same pair. As the other 91 SMs do not have pairs,
they are considered to be useful for cancer gene diagnosis of one another.

Future Theme: Although RIP and Revised LP-OLDF find many SMs, these SMs
will be classified meaningfully for cancer gene diagnosis.
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Table 9.3 Categories of 124 LpDS

SM B-cell1 T-cell1 Pair SM B-cell1 T-cell1 Pair

SM81 1 128 2 SM17 49 123

SM88 1 128 SM14 49 124 2

SM90 6 100 SM68 49 124

SM57 6 101 SM51 49 125

SM102 6 110 SM52 49 127

SM77 6 112 SM21 49 128

SM43 6 113 SM33 54 117

SM29 7 99 2 SM12 54 126

SM37 7 99 SM63 56 105

SM35 7 112 2 SM112 56 115 2

SM56 7 112 SM122 56 115

SM42 7 116 SM123 58 115

SM23 7 120 SM9 60 96

SM87 7 124 SM124 60 115

SM32 11 112 SM30 70 116

SM73 11 121 SM101 71 115

SM58 11 127 SM60 73 123

SM13 14 99 SM3 74 106

SM104 14 100 SM50 76 102

SM19 14 109 SM46 76 112

SM111 14 110 SM7 76 118

SM44 14 112 SM20 83 100

SM105 14 115 SM69 83 101

SM40 14 116 2 SM74 83 103

SM66 14 116 SM49 83 105

SM28 14 121 SM53 83 106

SM6 14 122 SM64 83 108

SM91 14 123 SM18 83 109 2

SM55 14 125 SM98 83 109

SM48 14 127 SM70 83 113

SM26 15 97 SM38 83 115 4

SM22 15 116 SM95 83 115

SM80 24 105 SM103 83 115

SM16 24 113 SM115 83 115

SM107 24 115 SM34 83 116

SM10 25 108 SM83 83 122

SM85 25 110 SM59 83 123

(continued)
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Table 9.3 (continued)

SM B-cell1 T-cell1 Pair SM B-cell1 T-cell1 Pair

SM41 25 112 SM71 83 124

SM27 29 112 SM15 84 112

SM99 30 116 SM5 84 122

SM4 33 106 SM8 85 120

SM110 33 110 SM100 89 100

SM84 37 101 SM11 89 108

SM93 37 115 SM96 89 110

SM65 39 101 SM121 89 113

SM62 39 112 SM108 91 110 2

SM39 39 116 SM114 91 110

SM54 45 112 SM106 91 115 7

SM78 48 115 SM109 91 115

SM24 48 116 SM116 91 115

SM2 49 99 2 SM117 91 115

SM82 49 99 SM118 91 115

SM61 49 101 SM119 91 115

SM25 49 106 SM120 91 115

SM72 49 110 SM75 91 119

SM47 49 112 2 SM1 91 122

SM67 49 112 SM113 91 124

SM76 49 115 SM31 92 102

SM79 49 116 2 SM45 93 116

SM86 49 116 SM89 94 110

SM92 49 121 SM97 94 120

SM36 49 122 SM94 94 124

9.3 Validation of 124 SMs by Six MP-Based LDFs
and Discriminant Functions

Chiaretti microarray consists of 128 cases and 12,625 genes. RIP of LINGO Pro-
gram3 found the 269 SMs (5,220 genes) and the noise gene subspace (7,405 genes)
in 2015. Because the survey of 269 SMs requested huge research time, we did
not analyze the 239 SMs until now. However, when Revised LP-OLDF decom-
poses Chiaretti’s microarray again in 2018, 124 SMs (4,552 genes) are found. We
obtain fewer SMs and genes in 2018. Thus, we analyze 124 SMs by standard sta-
tistical methods. However, we cannot find linear separable facts as same as other
five microarrays. Next, we discriminate the 124 SMs by RIP, Revised LP-OLDF,
and H-SVM. RatioSVs evaluate three signal data made by RipDSs, LpDSs, and
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HsvmDSs. The last, we compare and examine the results of the cluster analysis and
PCA.

Table 9.4 shows the 124 SMs from SM � 1 to SM � 124. The “gene” column
is the number of genes included in each SM. The range of genes included in the
124 SMs is [6, 77]. The gene number of those is less than case number n (128).
The average is 36.71. Row “SUM” indicates 124 SMs contain 4,552 genes. We
compare six RatioSVs of sixMP-based LDFs. FromRIP column to H-SVM columns
show three RatioSVs of 124 SMs by RIP, Revised LP-OLDF, and H-SVM. Three
ranges of RatioSV are [0.15, 42.46], [0.17, 39.69], and [0.17, 45.81], respectively.
Three averages of RatioSVs are 26.68%, 24.16%, and 26.7%, respectively. Row
“MaxRatio” indicates the number of the maximum RatioSVs of 124 SMs those are
64, 16, and 27, respectively. The Revised IPLP-OLDF and the two S-SVMs take 17
maximum-values. Two columns “MAX and MIN” are the maximum and minimum
values of six LDFs. In this chapter, we omit Revised IPLP-OLDF and two soft-
margin SVM such as SVM4 (penalty c � 10,000) and SVM1 (penalty c � 1). To
summarize these results, the range of H-SVM is slightly better than RIP because the
maximization SV of H-SVM work well. On the other hand, the average of RIP are
better than H-SVM.

Because allNMsof logistic regression are zero and124SMsare linearly separable,
we omit this column from the table. Four columns “SVM4, SVM1, LDF2, and QDF”
show the number of misclassifications (NM). SVM4 and QDF cannot discriminate
one SM correctly. SVM1 and LDF2 cannot discriminate 23 and 21SMs correctly,
respectively. The prior probability of LDF2 is proportional to the case number of
33:95. Because many NMs are 0, we can see that in the many SMs of Chiaretti, the
two groups are somewhat separable. However, even in such SMs, cluster analysis
and PCA cannot find linear separable facts. In other words, only RIP and Revised
LP-OLDF are most suitable for analysis of microarray and SM. Moreover, H-SVM
is suitable for SM. SVM4 and QDF are better than cluster analysis and PCA.

Table 9.4 Summary of six RatioSVs of six MP-based LDFs and NMs of other discriminant func-
tions

SM Gene RIP LP HSVM MAX MIN SVM4 SVM1 LDF2 QDF

1 6 29.85 26.58 36.30 36.30 26.58 0 0 0 0

2 10 33.66 25.89 38.59 40.44 25.89 0 0 0 0

3 10 29.07 28.84 28.40 30.62 28.40 0 0 0 0

4 11 26.02 33.85 31.22 33.85 26.02 0 0 0 0

5 8 27.90 15.62 32.66 32.66 15.62 0 0 0 0

6 13 31.62 23.07 24.29 31.62 22.00 0 0 0 0

7 14 33.19 31.12 31.74 35.02 31.12 0 0 0 1

8 18 39.73 37.20 45.81 45.81 36.71 0 0 0 0

(continued)
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Table 9.4 (continued)

SM Gene RIP LP HSVM MAX MIN SVM4 SVM1 LDF2 QDF

9 15 33.14 34.01 34.72 34.72 33.14 0 0 0 0

10 13 31.00 30.79 28.37 31.00 28.37 0 0 0 0

11 15 36.16 27.24 34.66 38.17 27.24 0 0 0 0

12 22 32.92 28.26 33.26 39.08 28.26 0 0 0 0

13 16 34.95 25.89 31.43 34.95 25.89 0 0 0 0

14 14 33.41 34.88 36.48 36.48 33.41 0 0 0 0

15 18 28.32 27.36 33.97 35.65 27.36 0 0 0 0

16 17 26.45 27.19 27.80 30.57 26.45 0 0 0 0

17 18 28.26 28.49 34.54 34.54 28.21 0 0 0 0

18 24 33.86 38.56 37.15 38.56 33.86 0 0 0 0

19 24 38.59 39.69 36.48 39.69 36.48 0 0 0 0

20 25 41.95 36.03 36.73 41.95 32.13 0 0 0 0

21 23 38.54 33.85 35.42 40.50 33.85 0 0 0 0

22 23 34.83 37.73 40.45 40.45 34.83 0 0 0 0

23 16 25.53 25.23 23.47 25.53 23.47 0 0 0 0

24 18 35.24 35.16 32.32 35.24 29.80 0 0 0 0

25 24 27.95 36.76 38.89 38.89 27.95 0 0 0 0

26 21 27.63 24.70 32.58 32.58 24.70 0 0 0 0

27 21 26.30 25.37 19.29 26.30 19.29 0 0 0 0

28 29 39.01 38.47 34.88 39.01 34.88 0 0 0 0

29 24 35.07 22.87 35.01 35.07 22.87 0 0 0 0

30 28 38.69 38.64 38.40 39.59 38.40 0 0 0 0

31 26 35.70 36.71 34.30 36.71 32.05 0 0 0 0

32 25 30.04 27.71 27.11 30.04 25.33 0 0 0 0

33 27 32.65 27.78 28.11 32.65 27.78 0 0 0 0

34 26 22.88 21.65 29.37 29.37 21.65 0 0 0 0

35 32 28.29 28.06 27.50 28.29 26.30 0 0 0 0

36 32 36.75 33.28 35.85 37.47 33.28 0 0 0 0

37 31 34.97 33.28 33.42 34.97 30.76 0 0 0 0

38 29 27.29 30.04 29.60 32.19 27.29 0 0 0 0

39 24 25.89 20.65 24.53 25.89 20.65 0 0 0 0

40 32 42.46 35.70 38.10 42.46 33.33 0 0 0 0

41 27 34.31 36.84 34.41 36.84 34.31 0 0 0 0

42 27 32.64 31.58 31.28 32.64 31.23 0 0 0 0

43 32 39.88 27.34 31.98 39.88 26.81 0 0 0 0

44 34 33.82 32.73 32.45 33.82 32.45 0 0 0 0

45 32 41.73 36.62 35.95 41.73 35.95 0 0 0 0

(continued)
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Table 9.4 (continued)

SM Gene RIP LP HSVM MAX MIN SVM4 SVM1 LDF2 QDF

46 33 26.18 28.91 29.69 29.69 24.63 0 0 0 0

47 31 37.44 34.68 34.30 37.44 24.84 0 0 0 0

48 36 31.93 32.11 30.48 32.11 30.48 0 0 0 0

49 31 33.99 25.12 30.10 33.99 25.12 0 0 0 0

50 30 37.79 31.19 33.24 37.79 25.44 0 0 0 0

51 36 27.35 27.54 24.78 27.54 24.78 0 0 0 0

52 33 33.14 33.32 33.00 35.76 33.00 0 0 0 0

53 33 28.89 22.24 22.90 28.89 22.24 0 0 0 0

54 34 36.47 31.40 34.83 36.47 23.12 0 0 0 0

55 36 33.52 27.67 32.82 33.52 27.67 0 0 0 0

56 29 30.40 28.86 28.20 30.40 26.22 0 0 0 0

57 28 31.78 30.24 28.18 31.78 22.51 0 0 0 0

58 36 37.65 27.92 27.86 37.65 27.86 0 0 0 0

59 31 23.03 25.12 25.42 25.42 23.03 0 0 0 0

60 35 29.76 28.40 26.85 29.76 18.56 0 0 0 0

61 33 33.16 25.23 26.57 35.35 25.23 0 0 0 0

62 34 37.68 29.95 27.44 37.68 27.44 0 0 0 0

63 34 29.26 22.61 22.07 29.26 21.82 0 0 0 0

64 39 27.63 20.30 27.33 27.63 20.30 0 0 0 0

65 31 28.56 17.36 21.46 28.56 17.36 0 0 0 0

66 40 29.61 25.27 25.66 29.61 21.54 0 0 0 0

67 43 30.76 23.11 25.03 30.76 23.11 0 0 0 0

68 37 27.18 28.20 27.00 28.20 27.00 0 0 0 0

69 40 37.25 30.54 32.43 37.25 30.54 0 0 0 0

70 38 35.24 22.25 28.37 35.24 22.25 0 0 0 0

71 39 34.78 28.30 30.60 34.78 28.30 0 0 0 0

72 35 19.82 21.67 23.64 23.64 19.82 0 0 0 0

73 36 28.90 24.23 26.01 28.90 24.23 0 0 0 0

74 41 32.03 28.01 30.52 32.03 27.67 0 0 0 0

75 43 33.55 27.11 29.86 33.55 27.11 0 0 0 0

76 38 21.54 16.83 16.55 21.54 16.55 0 0 0 0

77 40 28.30 23.09 27.24 28.30 23.09 0 0 0 0

78 46 29.44 33.26 32.98 33.26 29.44 0 0 0 0

79 39 29.18 25.93 28.50 29.18 25.87 0 0 0 0

80 40 23.85 23.43 26.42 26.42 23.43 0 0 0 0

81 41 25.83 21.48 23.71 25.83 21.48 0 0 0 0

82 43 23.95 25.76 23.76 25.76 22.66 0 0 0 0

(continued)
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Table 9.4 (continued)

SM Gene RIP LP HSVM MAX MIN SVM4 SVM1 LDF2 QDF

83 43 23.54 21.51 22.25 23.97 21.51 0 0 0 0

84 38 24.29 22.51 23.16 24.29 20.53 0 0 0 0

85 38 28.68 26.04 26.37 28.68 21.37 0 0 0 0

86 41 27.77 25.31 23.58 27.77 22.32 0 0 0 0

87 46 21.33 15.26 24.89 24.89 15.26 0 0 0 0

88 49 25.22 20.89 21.08 25.22 20.89 0 0 0 0

89 49 20.44 24.27 25.23 25.23 20.44 0 0 0 0

90 46 25.85 18.20 19.89 25.85 18.20 0 0 0 0

91 45 24.38 18.89 20.05 24.38 18.57 0 0 0 0

92 43 22.53 22.64 24.47 24.47 22.53 0 0 0 0

93 51 26.04 24.10 23.74 26.04 21.16 0 0 0 0

94 46 21.50 22.73 21.71 22.73 21.50 0 0 0 0

95 48 25.40 18.30 19.31 25.40 18.30 0 0 0 0

96 47 25.20 19.16 21.09 25.20 19.16 0 0 0 0

97 50 23.68 19.84 22.47 23.68 19.66 0 0 0 0

98 48 25.75 21.60 22.47 25.75 21.60 0 0 0 0

99 46 26.30 21.48 25.28 26.30 21.48 0 0 0 0

100 51 25.25 17.87 22.09 25.25 13.33 0 1 0 0

101 55 18.76 18.93 19.31 19.31 18.19 0 0 0 0

102 47 15.72 14.84 15.28 15.72 14.84 0 1 4 0

103 49 19.42 17.24 21.68 21.68 17.24 0 2 1 0

104 54 22.42 19.89 20.67 22.42 19.89 0 1 0 0

105 56 16.69 14.12 15.56 16.69 14.12 0 1 2 0

106 47 15.58 15.48 16.78 16.94 15.48 0 3 1 0

107 48 21.43 14.83 15.42 21.43 13.88 0 1 0 0

108 57 15.46 12.93 14.84 15.46 12.93 0 2 2 0

109 50 10.13 11.79 12.15 12.17 10.13 0 0 4 0

110 55 12.22 12.68 12.23 12.68 11.43 0 6 3 0

111 52 13.94 13.23 13.02 13.94 10.94 0 7 4 0

112 58 12.25 14.18 13.86 14.18 12.25 0 7 3 0

113 57 10.82 9.55 11.12 11.12 9.55 0 5 6 0

114 64 9.54 14.21 14.31 14.71 9.54 0 8 3 0

115 61 7.50 9.55 9.39 9.55 7.50 0 10 6 0

116 67 8.45 8.40 10.24 10.24 7.98 0 11 6 0

117 66 6.05 6.69 6.77 6.77 6.05 0 13 8 0

118 67 5.21 5.39 6.24 6.24 3.79 0 18 12 0

119 62 5.14 7.25 7.10 7.25 5.14 0 14 13 0

120 69 4.79 6.03 6.20 6.26 4.79 0 17 9 0

(continued)
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Table 9.4 (continued)

SM Gene RIP LP HSVM MAX MIN SVM4 SVM1 LDF2 QDF

121 62 3.84 3.97 4.03 4.03 3.84 0 14 16 0

122 71 3.07 3.86 4.02 4.02 3.07 0 11 11 0

123 77 1.92 1.91 2.02 2.02 1.91 0 15 13 0

124 60 0.15 0.17 0.17 0.17 0.15 1 15 14 0

MAX 77 42.46 39.69 45.81 45.81 38.40 1.00 18.00 16.00 1.00

MIN 6 0.15 0.17 0.17 0.17 0.15 0.00 0.00 0.00 0.00

MEAN 36.71 26.68 24.16 25.70 28.07 22.59 0.01 1.48 1.14 0.01

MaxRatio 64 16 27

SUM 4552

9.4 Analysis of Three Signal Data of 124 RipDSs, LpDSs,
and HsvmDSs

We analyze 124 RipDSs signal data with 128 patients (128 cases) and 124 RipDSs
(124 variables) by standard statistical methods and get the surprising success.

9.4.1 Hierarchical Clustering

Many cluster methods have two categories such as hierarchical and non-hierarchical
methods. In the hierarchical methods, there are many methods such as the Ward
method, group average method, center of gravity method, the shortest distance
method, the longest distance method, and so forth. The representative of the non-
hierarchical type is the k-means method such as SOM. Alon et al. succeed to find
2,000 genes by SOM. Here, we analyze the signal data using the five hierarchical
clustering methods. Moreover, we show the various results. Which cluster is mean-
ingful requires sufficient knowledge of the subject. We must choose the proper k
(cluster number) to use the k-means methods or SOM. Because we can trial and
error any number of clusters, the hierarchical clustering methods are very conve-
nient compared with the k means. Probably, because medical researchers could not
obtain good results using some gene subspaces by the hierarchical clustering before
2000, they analyzed their data by SOM. Now, although all researchers cannot obtain
the right results by the hierarchical clustering, they can classify signal data and obtain
the surprising results.
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(1) Ward cluster of RipDSs signal data

Figure 9.3 is a Ward cluster analysis of RipDSs signal data. Even if it analyzes 124
SMs individually, it cannot separate two classes, but the upper blue part is 95 B-cell
subjects, and the lower red part is 33 T-cell patients. We consider the marvelous
effects of RipDSs cause this surprising result. The case dendrogram shows three
clusters of the B-cell class and two clusters of the T-cell class. Three clusters consist
of the 40 red patients, the 11 green patients, and the 44 blue patients. Two clusters
consist of the 32 orange patients and the one green patient. Among the six research
groups, Alon et al. succeeded in using SOM. Furthermore, if medical AI based on the
cluster analysis will analyze SM, it may be able to find useful results among many
clusters made by many clustering methods.

Fig. 9.3 Cluster analysis of RipDSs signal data
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(2) The nearest neighbor (shortest distance) cluster analysis of RipDSs signal data

Figure 9.4 shows the cluster analysis of the RipDS signal data by the nearest neighbor
method. The case dendrogram shows three clusters of theB-cell class and two clusters
of the T-cell class. Three clusters consist of the 93 red patients, the one green patient,
and the one blue patient. Two clusters consist of the 32 orange patients and the one
green patient. The feature of the nearest neighbor method is that the other clusters
are sequentially merged into the cluster with the shortest distance to become one
cluster.

Fig. 9.4 Nearest neighbor cluster analysis of RipDSs signal data
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(3) The longest distance cluster analysis of RipDSs signal data

Figure 9.5 shows the longest distance cluster analysis of signal data of RipDS. The
case dendrogram shows three clusters of the B-cell class and two clusters of the T-cell
class. Three clusters consist of the 92 red patients, the two green patients, and the
one blue patient. Two clusters consist of the 31 orange patients and the two green
patients. The 33 T-cell classes show a pattern like the nearest neighbor method.

Fig. 9.5 Longest distance cluster analysis of RipDSs signal data
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(4) The centroid cluster analysis of discriminant score data of RIP

Figure 9.6 is the centroid cluster analysis ofRipDSs signal data. The case dendrogram
shows three clusters of the B-cell class and two clusters of the T-cell class. Three
clusters consist of the 93 red patients, the one green patient, and the one blue patient.
Two clusters consist of the 32 orange patients and the one green patient. Both classes
show patterns like the nearest neighbor method.

Fig. 9.6 Centroid cluster analysis of RipDSs signal data
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(5) The group mean cluster analysis of discriminant score data of RIP

Figure 9.7 is the group mean cluster analysis of RipDSs signal data. The case den-
drogram shows three clusters of the B-cell class and two clusters of the T-cell class.
Three clusters consist of the 92 red patients, the two green patients, and the one blue
patient. Two clusters consist of the 32 orange patients and the one green patient. Both
classes show patterns like the nearest neighbor method.

Fig. 9.7 Group mean cluster analysis of RipDSs signal data
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9.4.2 Clustering of LpDSs and HsvmDSs Signal Data

(1) Ward cluster analysis of the LpDSs signal data

Figure 9.8 shows Ward cluster analysis of the LpDSs signal data. The case dendro-
gram shows three clusters of the B-cell class and two clusters of the T-cell class.
Three clusters consist of the 43 red patients, the eight green patients, and the 44 blue
patients. Two clusters consist of the 31 orange patients and the two green patients.

Fig. 9.8 Ward’s cluster analysis of LpDSs signal data
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(2) Ward cluster analysis of HsvmDS signal data

Figure 9.9 is Ward cluster analysis of HsvmDSs signal data. Because this cluster
analysis is themost similar toWard cluster analysis of RipDSs signal data, we choose
the ten clusters. The case dendrogram shows seven clusters of the B-cell class and
three clusters of the T-cell class. Seven clusters consist of the 19 red patients, the
nine green patients, the six blue patients, the one orange patient, the 21 pale green
patients, the 16 purple patients, and the 23 yellow patients. Three clusters consist of
the 30 blue patients, the two purple patients, and the one yellow patient. For clarity
of explanation, we have fixed the number of clusters to 5 and analyzed it. However,
by changing to 10, we can see the abundant relationship of cases. If we prepare the
signal data, we do not need to search the number of clusters from 2 to 3 and so on in
SOM sequentially.

Fig. 9.9 Ward cluster analysis of HsvmDSs signal data
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9.5 PCA Analysis of Signal Data

Figure 9.10 shows the result of RipDSs signal data by PCA. The first eigenvalue is
99.679, and the contribution ratio is 80.4%. The second eigenvalue is 4.8782, the
contribution ratio is 3.93, and the cumulative contribution ratio is 84.33%. That is,
the Prin1 represents the 128 patients. Although there are no healthy subjects, the two
classes locate spherically on Prin1. The 95 B-cell patients are in the second and third
quadrants. The 44 blue patients include the origin. The RipDS values decrease in
40 red cases and 11 green cases in that order. Moreover, several cases of green are
outliers.

In 33 cases of T-cell, some of orange 32 cases are outliers, and one green case is
an outlier.

Fig. 9.10 Three plots of PCA (RipDS signal data)

The first columns and second columns of Table 9.5 show the case number corre-
sponding “SM” in Table 9.4 and its value of Prin1 axis. The 124 rows have two parts.
Upper 95 rows are a B-cell class, and lower 36 rows are a T-cell class in Fig. 9.10.
These two columns are sorted in ascending order from a small value. The range of
B-cell is [−14.040, −1.156]. The range of T-cell is [14.129, 22.638]. SVs open the
window range of (−1.156, 14.129). Thus, we can define the RatioSV for PCA in
Eq. (9.1).

RatioSV of PCA � (1.156 + 14.129)/(14.040 + 22.638) ∗ 100

� 1528.657/36.679 � 41.68%. (9.1)

Although this is the overall characteristic value of RatioSV of 124 RIPs, it is
smaller than the maximum value of RatioSV of 124 RIPs 42.46, so the malignancy
index of PCA is useless. In later, we conclude the same results of both RatioSV of
PCA by Revised LP-OLDF and HSVM.
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Table 9.5 Prin1 values of RIP and Revised LP-OLDF and HSVM sorted by each Prin1

RIP Prin1 LP Prin1 HSVM Prin1

83 −14.040 83 −13.751 83 −14.082

91 −12.970 49 −12.861 49 −13.556

49 −12.534 91 −12.591 91 −12.735

24 −11.272 7 −11.464 7 −11.492

7 −11.029 24 −11.013 14 −11.079

14 −10.980 14 −10.961 24 −10.956

76 −10.594 79 −10.668 58 −10.558

79 −10.481 76 −10.360 76 −10.476

58 −9.950 58 −10.310 79 −10.361

39 −9.330 39 −9.170 4 −10.101

4 −9.173 4 −9.060 39 −9.669

25 −9.132 42 −8.932 42 −9.149

5 −8.941 25 −8.820 25 −9.001

89 −8.513 89 −8.671 89 −8.812

42 −8.471 56 −8.270 40 −8.659

56 −8.362 71 −8.109 6 −8.550

40 −8.206 6 −8.062 71 −8.448

6 −8.067 40 −7.839 56 −8.201

54 −7.563 5 −7.701 5 −7.918

71 −7.500 2 −7.697 2 −7.863

11 −7.469 73 −7.254 11 −7.721

73 −7.299 11 −7.229 27 −7.545

1 −7.250 54 −7.147 73 −7.299

15 −7.020 90 −7.102 1 −7.251

27 −7.016 27 −7.014 15 −7.165

48 −6.806 15 −7.000 92 −7.141

50 −6.636 92 −6.874 54 −7.124

35 −6.634 1 −6.870 90 −7.117

75 −6.634 50 −6.643 57 −6.738

90 −6.554 33 −6.536 50 −6.632

19 −6.501 19 −6.443 19 −6.546

94 −6.490 35 −6.419 48 −6.535

51 −6.316 48 −6.394 33 −6.418

3 −6.316 57 −6.376 35 −6.345

(continued)
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Table 9.5 (continued)

RIP Prin1 LP Prin1 HSVM Prin1

2 −6.280 94 −6.337 52 −6.222

34 −6.264 75 −6.295 17 −6.189

92 −6.250 3 −6.256 34 −6.182

84 −6.228 17 −6.077 3 −6.159

33 −6.186 51 −6.069 29 −6.103

29 −6.061 84 −6.036 45 −5.968

8 −5.929 29 −5.928 75 −5.945

57 −5.890 30 −5.903 51 −5.944

17 −5.865 8 −5.889 20 −5.927

30 −5.702 34 −5.803 28 −5.812

59 −5.667 20 −5.664 84 −5.809

20 −5.626 45 −5.635 30 −5.794

37 −5.501 37 −5.498 94 −5.713

45 −5.425 52 −5.325 37 −5.584

67 −5.345 28 −5.308 8 −5.553

12 −5.234 60 −5.286 93 −5.318

52 −5.155 59 −5.270 60 −5.291

26 −4.926 26 −5.240 67 −5.283

28 −4.904 12 −5.040 12 −5.072

93 −4.854 67 −4.997 26 −4.967

60 −4.788 44 −4.910 44 −4.840

44 −4.621 78 −4.868 59 −4.821

13 −4.573 93 −4.786 78 −4.801

78 −4.539 74 −4.470 64 −4.623

46 −4.469 46 −4.324 46 −4.559

21 −4.390 64 −4.256 74 −4.429

64 −4.380 80 −4.227 13 −4.346

74 −4.366 13 −4.211 9 −4.259

36 −4.274 21 −4.077 21 −4.132

9 −4.154 9 −4.040 18 −4.130

80 −4.142 36 −4.031 80 −4.070

88 −4.111 65 −3.837 88 −3.969

65 −3.961 18 −3.830 23 −3.792

18 −3.805 47 −3.703 36 −3.692

10 −3.626 88 −3.541 22 −3.577

47 −3.604 10 −3.515 65 −3.492

(continued)
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Table 9.5 (continued)

RIP Prin1 LP Prin1 HSVM Prin1

23 −3.554 23 −3.374 10 −3.347

68 −3.406 69 −3.319 66 −3.337

22 −3.292 68 −3.279 47 −3.308

69 −3.182 82 −3.196 68 −3.090

62 −3.136 22 −3.152 77 −3.040

70 −3.125 86 −3.111 69 −3.020

77 −3.071 62 −3.051 82 −2.982

82 −3.003 77 −3.032 62 −2.914

86 −2.871 70 −3.028 70 −2.774

66 −2.781 66 −2.942 86 −2.774

41 −2.765 72 −2.719 41 −2.665

81 −2.671 16 −2.493 38 −2.528

16 −2.630 81 −2.475 72 −2.500

72 −2.605 85 −2.436 81 −2.396

63 −2.520 87 −2.427 16 −2.365

95 −2.452 95 −2.387 87 −2.199

31 −2.314 31 −2.248 31 −2.193

87 −2.312 41 −2.231 63 −2.189

61 −2.264 38 −2.141 95 −2.046

85 −2.233 63 −2.030 85 −2.031

38 −2.080 61 −1.990 61 −1.882

55 −1.916 55 −1.827 43 −1.748

43 −1.869 43 −1.761 55 −1.625

53 −1.712 53 −1.182 53 −1.393

32 −1.156 32 −0.927 32 −0.926

111 14.129 111 14.037 111 13.896

114 14.158 98 14.132 103 14.085

103 14.303 114 14.162 98 14.164

126 14.338 103 14.211 104 14.246

98 14.358 104 14.311 128 14.270

104 14.490 107 14.407 114 14.362

128 14.517 128 14.428 126 14.557

117 14.661 126 14.533 107 14.571

107 14.746 119 14.688 117 14.829

118 14.892 118 14.734 118 14.992

119 15.164 117 14.952 119 15.071

(continued)
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Table 9.5 (continued)

RIP Prin1 LP Prin1 HSVM Prin1

127 15.336 127 15.267 127 15.465

97 15.495 97 15.434 97 15.563

121 15.558 108 15.497 96 15.759

96 15.587 96 15.633 108 15.763

108 15.605 102 15.658 102 15.973

102 15.991 121 15.807 121 16.095

105 16.096 105 16.447 105 16.541

100 16.348 125 16.511 100 16.839

101 16.499 100 16.538 101 16.863

120 16.659 113 16.702 113 17.000

125 16.696 106 16.801 125 17.007

113 16.758 101 16.860 120 17.117

106 16.934 120 16.868 106 17.473

99 16.946 99 16.979 123 17.575

123 17.230 123 17.087 99 17.903

122 17.706 112 17.471 109 18.163

124 17.879 122 17.627 124 18.210

109 18.072 109 17.695 122 18.260

112 18.249 124 17.754 112 18.587

110 19.378 110 19.568 110 19.293

116 20.648 116 20.085 116 20.859

115 22.638 115 21.963 115 21.531

Figure 9.11 shows the result of LpDSs signal data by PCA. The first eigenvalue
is 98.578, and the contribution ratio is 79.5%. The second eigenvalue is 5.121, the
contribution ratio is 4.13%, and the cumulative contribution ratio is 83.63%. That
is, the Prin1 almost represents 128 patients. The score plot is almost the same as
Fig. 9.10. The third and fourth columns of Table 9.5 show the result of LpDSs. The
ranges of B-cell class and T-cell class are [−13.751, −0.927] and [14.037, 21.963].
SV opens the window that is the interval (−0.927, 14.037). RatioSV of PCA by
LpDSs is Eq. (9.2).

RatioSVof PCAbyLpDSs � (0.9274 + 14.037)/(13.751 + 21.964) ∗ 100 � 42.02% (9.2)

Because the maximum RatioSV of LpDSs is 39.69, RatioSV of PCA is helpful
as a malignancy index.
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Fig. 9.11 Three plots of PCA (LpDS signal data)

Figure 9.12 shows the result of HsvmDSs signal data by PCA. The first eigenvalue
is 101.901, and the contribution ratio is 82.2%. The second eigenvalue is 5.209, the
contribution ratio is 4.2%, and the cumulative contribution ratio is 86.4%. That is,
the Prin1 almost represents 128 patients. In the cluster analysis, we make 10 clusters,
and score plot explains their positional relation. By changing the number of clusters,
we believe it will be useful for medical case studies. The fifth and sixth columns of
Table 9.5 show the result of HsvmDSs. The ranges of B-cell class and T-cell class are
[−14.082, −0.926] and [13.896, 21.531]. SV opens the window that is the interval
(−0.926, 13.897). RatioSV of PCA by HsvmDSs is Eq. (9.3).

RatioSVof PCAbyHsvmDSs � (0.9262 + 13.89686)/(14.0821 + 21.53172) ∗ 100 � 41.62%
(9.3)

Because the maximum RatioSV of LpDSs is 45.81, RatioSV of PCA is useless
as a malignancy index.

Fig. 9.12 Three plots of PCA (HsvmDS signal data)
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9.6 PCA (Transposed Signal Data)

We transpose the RipDSs signal data and analyze this data with 124 RipDSs (124
cases) and 128 patients (128 variables). Figure 9.13 is three plots of PCA. Because
the first eigenvalue is 60.09 and contribution ratio is 46.9%, Prin1 explains 46.9%
variance. Score plot shows only R124 is the clear outlier among 124 RipDSs. Factor
loading plot shows the surprising result. Like the cross, it almost overlaps the axes
of Prin 1 and Prin 2. Now we cannot explain the meaning of the transposed data.

Fig. 9.13 Three plots of PCA (RipDS signal data)

Table 9.6 shows the five groups of factor loading plot. If Prin1 is greater than and
equal to 0.2, “Group � 1.” If Prin2 is greater than and equal to 0.2, “Group � 2.”
If Prin1 is less than and equal to −0.2, “Group � 3.” If Prin2 is less than and equal
to −0.2, “Group � 4.” Otherwise, “Group � 0.” Roughly speaking, the 95 B-cell
patients belong to Group � 1 or 2, and the 33 T-cell patients belong to Group � 3 or
4. Other 15 patients belong to Group � 0. Although we cannot explain the medical
meaning, our results of PCA and cluster analysis using two signal data indicate many
different patient clusters.

Table 9.6 Group of factor loading plot

Row Prin1 Prin2 Group Prin3 Prin4

Row1 −0.036 −0.131 0 0.291 −0.018

Row2 0.985 0.062 1 −0.084 −0.012

Row3 0.997 0.036 1 −0.034 −0.015

Row4 0.975 −0.001 1 0.029 −0.018

Row5 0.997 0.033 1 −0.037 −0.004

(continued)
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Table 9.6 (continued)

Row Prin1 Prin2 Group Prin3 Prin4

Row6 0.973 0.065 1 −0.122 −0.006

Row7 0.992 0.040 1 −0.061 0.008

Row8 0.997 0.030 1 −0.030 −0.001

Row9 0.960 0.140 1 −0.100 0.054

Row10 0.993 0.033 1 −0.035 −0.007

Row11 −0.111 0.013 0 −0.079 0.035

Row12 0.990 0.037 1 −0.029 0.004

Row13 0.994 0.058 1 −0.073 −0.016

Row14 0.989 0.044 1 −0.037 0.006

Row15 0.986 0.004 1 0.105 −0.003

Row16 0.954 0.027 1 −0.066 0.062

Row17 0.993 0.033 1 −0.009 0.004

Row18 −0.102 0.462 2 0.036 0.349

Row19 0.983 −0.004 1 0.053 0.029

Row20 −0.072 0.007 0 0.000 0.659

Row21 −0.123 0.569 2 −0.061 0.066

Row22 0.990 0.046 1 −0.069 −0.026

Row23 −0.122 0.477 2 −0.011 0.135

Row24 0.996 0.043 1 −0.059 −0.011

Row25 −0.074 −0.057 0 0.347 0.061

Row26 0.997 0.045 1 −0.010 −0.011

Row27 0.995 0.050 1 −0.051 −0.013

Row28 −0.086 0.056 0 −0.073 0.120

Row29 0.699 0.009 1 0.442 −0.167

Row30 0.996 0.051 1 −0.058 −0.017

Row31 −0.079 0.359 2 −0.009 −0.056

Row32 −0.060 0.470 2 0.107 0.058

Row33 0.944 0.071 1 −0.030 −0.035

Row34 0.987 0.019 1 0.018 −0.001

Row35 0.951 −0.017 1 0.134 −0.028

Row36 0.995 0.054 1 −0.060 −0.021

Row37 0.960 −0.035 1 0.124 −0.008

Row38 −0.044 0.120 0 0.060 −0.014

Row39 0.993 0.053 1 −0.076 −0.016

Row40 0.906 0.024 1 0.125 −0.111

Row41 −0.082 0.457 2 0.375 0.098

(continued)
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Table 9.6 (continued)

Row Prin1 Prin2 Group Prin3 Prin4

Row42 0.986 0.000 1 0.003 0.029

Row43 −0.044 0.160 0 0.436 0.022

Row44 0.690 −0.092 1 −0.045 0.404

Row45 0.473 −0.139 1 0.531 −0.067

Row46 −0.090 0.480 2 0.152 −0.012

Row47 0.996 0.051 1 −0.055 −0.017

Row48 0.993 0.069 1 −0.069 −0.027

Row49 0.997 0.027 1 −0.002 −0.020

Row50 0.962 −0.029 1 0.073 0.043

Row51 −0.038 0.001 0 0.512 −0.251

Row52 0.995 0.055 1 −0.055 −0.001

Row53 −0.073 0.707 2 0.167 0.083

Row54 0.992 0.038 1 −0.004 0.019

Row55 −0.059 0.378 2 0.151 −0.076

Row56 0.993 0.013 1 −0.005 0.005

Row57 −0.137 0.463 2 0.034 −0.035

Row58 0.998 0.035 1 −0.030 −0.016

Row59 −0.105 0.249 2 0.141 −0.210

Row60 0.994 0.054 1 −0.075 −0.022

Row61 −0.087 0.491 2 −0.011 0.071

Row62 −0.107 0.556 2 −0.077 −0.129

Row63 −0.032 0.211 2 0.103 0.746

Row64 0.989 0.087 1 −0.084 −0.023

Row65 0.020 −0.159 0 0.441 0.385

Row66 −0.059 −0.236 3 −0.176 0.144

Row67 0.996 0.051 1 −0.063 −0.007

Row68 −0.125 0.651 2 −0.039 −0.080

Row69 0.984 0.122 1 −0.081 −0.026

Row70 −0.109 0.670 2 0.078 −0.128

Row71 0.989 0.005 1 0.077 −0.031

Row72 −0.095 0.600 2 0.065 0.009

Row73 0.997 0.033 1 −0.025 −0.016

Row74 −0.102 0.349 2 −0.041 0.063

Row75 0.282 −0.219 1 0.651 0.124

Row76 0.996 0.038 1 −0.035 −0.028

Row77 −0.107 0.632 2 0.060 0.103

(continued)
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Table 9.6 (continued)

Row Prin1 Prin2 Group Prin3 Prin4

Row78 −0.108 0.334 2 0.040 0.337

Row79 0.998 0.035 1 −0.027 −0.011

Row80 0.997 0.048 1 −0.028 −0.012

Row81 −0.093 0.685 2 0.045 −0.027

Row82 0.995 0.064 1 −0.058 −0.011

Row83 0.982 −0.021 1 0.028 0.033

Row84 0.995 0.053 1 −0.056 −0.020

Row85 −0.088 0.403 2 −0.025 0.026

Row86 0.801 −0.040 1 0.150 0.029

Row87 −0.096 0.757 2 0.094 −0.013

Row88 −0.088 0.236 2 −0.052 0.305

Row89 0.042 −0.289 4 0.834 −0.070

Row90 0.963 −0.010 1 0.152 −0.001

Row91 0.972 −0.077 1 0.164 0.001

Row92 −0.102 0.187 0 −0.046 −0.027

Row93 −0.009 −0.133 0 0.507 −0.075

Row94 0.996 0.046 1 −0.069 −0.014

Row95 −0.100 0.433 2 −0.038 0.044

Row96 0.080 −0.431 4 0.008 0.224

Row97 0.073 −0.234 4 0.180 0.067

Row98 0.057 −0.552 4 −0.153 −0.046

Row99 −0.953 −0.081 3 −0.070 −0.005

Row100 −0.833 0.006 3 −0.118 −0.175

Row101 0.046 0.031 0 −0.090 0.087

Row102 0.089 −0.474 4 0.086 0.172

Row103 0.056 −0.346 4 −0.012 0.115

Row104 0.067 −0.332 4 0.003 0.046

Row105 0.089 −0.579 4 0.023 0.255

Row106 0.098 −0.562 4 0.054 0.093

Row107 0.075 −0.579 4 −0.116 −0.022

Row108 0.079 −0.651 4 −0.130 −0.013

Row109 −0.417 −0.003 3 −0.143 −0.331

Row110 −0.995 −0.031 3 0.056 0.014

Row111 0.054 −0.361 4 −0.087 −0.071

Row112 0.099 −0.542 4 0.077 0.127

Row113 −0.021 0.146 0 −0.721 0.269

(continued)
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Table 9.6 (continued)

Row Prin1 Prin2 Group Prin3 Prin4

Row114 0.058 −0.580 4 −0.125 0.128

Row115 −0.998 −0.019 3 0.019 0.011

Row116 −0.997 −0.051 3 0.047 0.022

Row117 0.066 −0.177 0 0.033 −0.107

Row118 0.062 −0.572 4 −0.064 0.083

Row119 0.028 −0.209 4 −0.097 −0.751

Row120 0.093 −0.442 4 0.050 −0.149

Row121 −0.980 −0.082 3 0.085 −0.040

Row122 −0.973 −0.135 3 0.063 0.043

Row123 0.103 −0.257 4 0.114 0.093

Row124 −0.789 0.112 3 −0.227 −0.041

Row125 0.100 −0.305 4 0.094 0.089

Row126 0.056 −0.332 4 0.030 0.150

Row127 0.062 −0.155 0 −0.004 0.225

Row128 0.064 −0.528 4 −0.116 −0.060

We transpose the LpDSs signal data (128 patients and 124 LpDSs) and analyze
this data with 124 LpDSs (124 cases) and 128 patients (128 variables). Figure 9.14
is three plots of PCA. Scatter plot shows three outliers. Factor loading plot shows
almost the same five groups of 128 patients as Table 9.6.

Fig. 9.14 Three plots of PCA (LpDS signal data)



9.6 PCA (Transposed Signal Data) 391

We transpose the HsvmDSs signal data (128 patients and 124 HsvmDSs) and
analyze this data with 124 HsvmDSs (124 cases) and 128 patients (128 variables).
Figure 9.15 is three plots of PCA. Scatter plot shows one outlier. Factor loading plot
shows almost the same five groups of 128 patients as Table 9.6. Although three signal
data of Chiaretti show almost the same results as other microarrays, three transposed
signal data of Chiaretti show the surprising different results. We cannot explain the
reason now. This is the next theme of Book4.

Fig. 9.15 Three plots of PCA (HsvmDSs signal data)

9.7 Conclusions

In this book, we introduce the cancer gene diagnosis to analyze all SMs of six
microarrays. Only three Revised OLDFs and H-SVM find microarrays are LSD
(Fact3). Only three Revised OLDFs can decompose microarrays into many SMs and
noise subspace (Fact4). At first, we consider several genes included in the SMs and
the union of SMs is signal subspaces because two classes are entirely separated.
However, standard statistical methods, except for logistic regression, cannot find the
linear separable facts (Problem6). On the other hand, many RatioSVs of SMs are
over 5%. These facts indicate RipDSs, LpDSs, and HsvmDSs can discriminate two
classes correctly. Moreover, PCA and cluster analysis find the linear separable facts
of tree signal data made by RipDSs, LpDSs, and HsvmDSs. Thus, we consider three
signal data are signal because RIP, Revised LP-OLDF, andH-SVMcan find the linear
separable facts in high-dimensional microarrays. Our claim is confirmed as follows:

(1) All correlations of DSs are the positive values. However, correlations of genes
included in SMs take the positive, almost zero, and negative values.

(2) Statistical discriminant functions cannot discriminate between microarrays and
all SMs correctly because they cannot discriminate LSD correctly. Moreover,
although standard statistical methods cannot find the linear separable facts,
those can analyze three signal data entirely and find many outliers those are the
research themes of Golub et al.
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Above facts invoke the Problem6 “Why cannot statistical discriminant functions
discriminate microarrays and all SMs correctly, and standard statistical methods find
the linearly separable signs of all SMs?” We show many facts that the fluctuation
of the two classes is too small compared with the genes variation. Moreover, we
propose to analyze SMs by Ward cluster analysis and make the five or ten clusters
using signal data. If we analyze the signal data by PCA, the score plot reveals the
relations of many clusters.
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Chapter 10
LINGO Programs of Cancer Gene
Analysis

Abstract In “New Theory of Discriminant Analysis after R. Fisher” (2016), Shin-
mura had already explained LINGO Program1 in Chap. 2. LINGO Program1 defines
six MP-based LDFs such as Revised IP-OLDF (RIP), Revised LP-OLDF, Revised
IPLP-OLDF, H-SVM, two soft-margin SVMs such as SVM4 (penalty c � 10000)
and SVM1 (penalty c � 1). Everyone can evaluate six MP-based LDFs in the train-
ing samples at once. If you can understand these models, you can develop your
bespoken models by yourself. LINGO Program2 can discriminate a small training
sample by the Method1 instead of LOO method. If you can understand LINGO
Program2, you can build the complex MP models to control several optimizable
models with many datasets as arrays. LINGO can control the complex optimiza-
tion models. In this chapter, we explained the Matryoshka feature selection method
(Method2). This chapter explains LINGO Program3 in addition to Linus’s Linear
Discriminant Function. Section 10.1 introduces the role of three LINGO programs.
Section 10.2 introduces LINGO sample model (DiscrmSwiss.lng) that is a sample
model downloaded from LINDO Systems Inc. HP (https://www.lindo.com/). Every-
body can download many fine models, manuals, textbooks, and evaluation solvers
such as LINGO,What’s Best! (Excel add-in), and LINGO/API (c libraries to develop
bespoken models and systems) in free. In order to simplify the program, we assume
that class1 has a discriminant score (DS) of 1 or more and class2 becomes −1 or
less as explained in Chap. 1. Then, it converts original data of class2 by multiply-
ing by −1 and thinks that the extended DSs are judged correctly more than 1. The
LDF introduced in this section can be used without converting a sign of class2 data.
Section 10.3 introduces six MP-based LDFs. Section 10.4 introduces LINGO Pro-
gram 3 of Method2. Section 10.5 introduces the validation of Method2 by LINGO
Program1 using common data. Section 10.6 is conclusion.

Keywords Matryoshka feature selection method (Method2) · LINGO Program3
for Method2 · Small Matryoshka (SM) · Revised IP-OLDF(RIP) · Minimum
number of misclassifications (MNM) · Revised LP-OLDF · Revised IPLP-OLDF ·
Support vector machine (SVM) · H-SVM · SVM4 · SVM1 · Number of
misclassifications (NM) · Discriminant score (DS)
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10.1 Introduction

We developed many LINGO Programs for the MP-based LDFs (Schrage 2006).
Those are three optimal linear discriminant functions (optimal LDFs, OLDFs) and
three support vector machines (SVMs). Three OLDFs are Revised IP-OLDF (RIP)
using integer programming (IP), Revised LP-OLDF using linear programming (LP)
andRevised IPLP-OLDFusing IP andLP.ThreeSVMsusing quadratic programming
(QP) are a hard-margin SVM (H-SVM), two soft-margin SVMs such as SVM4
(penalty c � 10000) and SVM1 (penalty c � 1). We summarized three standard
LINGO Programs. Program1 discriminate the data by six MP-based LDFs at once.
Section 2.3.3 of NewTheory of Discriminant Analysis After Fisher (Shinmura 2016)
explained it.We compare and evaluate six different types of common data by sixMP-
based LDFs and three statistical discriminant functions such as logistic regression,
Fisher’s LDF, and quadratic discriminant function (QDF). Six common data are used
to explain the unique themes as follows:

Chapter 2: Iris data and Fisher’s Assumption (Problem4)
Chapter 3: Cephalo-Pelvic Disproportion Data with Collinearities (Problem4)
Chapter 4: Student Data (Problem1 and Problem4)
Chapter 5: Pass/Fail DeterminationUsing Examinations Scores (Problem2 and Prob-
lem3 and Problem4)
Chapter 6: Best Models for Swiss Banknote Data (Problem2 and Problem4)
Chapter 7: Japanese-Automobile Data (Problem2 and Problem3 and Problem4)
Chapter 8: Matryoshka Feature Selection Method for Microarray Dataset (Problem1
and Problem2 and Problem5)
Chapter 9: Explanation of LINGO Program2.
Because the statistical discriminant analysis is not the inferential statistic (Problem3),
we develop the 100-fold cross-validation for small samplemethod (Method1) instead
ofLOO.WedevelopedLINGOProgram2 forMethod1 supportedbyLINDOSystems
Inc. Program2 offers the 100 error rates, and the discriminant coefficients of 100
validation samples explained in Chap. 9. Moreover, JMP script supports the 100
error rates and the discriminant coefficients of 100 validation samples for logistic
regression and Fisher’s LDF supported by the JMP division of SAS Institute Japan.
We evaluate all common data by sixMP-based LDFs and two statistical discriminant
functions usingMethod1.Weevaluated eight LDFsby comparing theminimummean
of error rate by the validation sample (M2). Six M2s of RIP are almost better than
other seven LDFs. Although most statisticians believe MNM criterion overestimate
the validation sample, this fact indicates MNM criterion is more robust and reliable
statistics than NM.

In this chapter, we introduced LINGO Program3. Because only RIP and H-SVM
can discriminate the linearly separable data (LSD) theoretically and other discrim-
inant functions are useless for microarrays, many statisticians and machine learn-
ing researchers could not solve the cancer gene analysis from 1970 (Problem5).
However, when we discriminate six microarrays at the end of 2015, RIP found six
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microarrays were LSD (Fact3), and RIP could decompose microarrays into
many SMs (Fact4). Thus, we developed the Matryoshka feature selection method
(Method2), and LINGO Program3 explained in this chapter. Moreover, we explain
other topics.

10.2 LINGO Sample Model (DiscrmSwiss.lng)

In this section, we introduce a LINGO sample model named “DiscrmSwiss.lng”
downloaded from LINDO Systems Inc. HP (https://www.LINDO.com). This HP
offers three evaluation solvers such as LINGO, What’s Best!, LINDO/API in addi-
tion to manuals and textbooks. These materials are free. Professor Emeritus Linus
Schrage developed this LDF based on the MNM criterion as same as RIP devel-
oped by us. We introduce it in this section. LINGO model consists of four sections
such as SET, DATA, SUBMODEL, and CALC sections. The SET section defines
a one-dimensional set with arrays. Moreover, the combinations of one-dimensional
sets generate multi-dimensional sets with arrays. Data section defines the values
on the array, and input/output the data with such as Excel. SUBMODEL section
defines models. CALC section computes and controls the optimal complex models
or systems.

10.2.1 Original DiscrmSwiss.lng

Program 10.1 is an original “DiscrmSwiss.lng” model. If everybody wishes to study
how to use LINGO and many mathematical programming (MP) models, you down-
loadLinus textbook “OptimizationModelingwithLINGObyLinusSchrage.”Every-
body can master the theory of MP and how to make many MP-based models with
many comments. “!..;” shows the comment. By these comments, you can understand
the meaning of models.

The “SETS: … ENDSETS;” section defines one-dimensional sets and multi-
dimensional sets. The combinations of one-dimensional sets define the multi-
dimensional sets. “TEST:” is a one-dimensional set that defines two arrays such
as “WGT and ZUSE.”

“DATA:…ENDDATA;” section defines the constant values and data sets. “TEST”
has seven elements such as “Length, Left, Right, Bottom, Top, Diagonal, Good;”
those are variable names. Set “OBS” has two arrays such as “DROP and SCORE.”
Three scalar arrays such as “WGTSUSEDMX, WGTMX, DEPVAR” have three
constants such as 2, 9999, and 7, respectively. “OBS, TSCR=” define two arrays.
“OBS” is 200 elements fromBN1 toBN200. “TSCR” is 200 rows and seven columns.

“SUBMODEL DISCRAMP: … ENDSUBMODEL” section defines submodel
named “DISCRAMP.” If we use “DISCRAMP” in the Calc section, the defined
character insert in that part.

In the CALC section, we can control the complex optimization model and
draw graphs and print a customized report. By “@SOLVE(DISCRAMP)”, Discrm-
Swiss.lng discriminates Swiss banknote data (Flury and Riedwyl 1988).

https://www.LINDO.com
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Program 10.1. Original DiscrmSwiss.lng

! Discriminant analysis by integer programming (DiscrmSwiss.lng); 
! This is a form of categorical regression in which the dependent variable
is a categorical variable, e.g., Good or Bad. 
 Basic idea: 
   Given the values of various characteristics of an object, predict its
category, e.g., 
  Is a prospective customer good credit risk, or bad? 
  Is a paper banknote good or counterfeit? 
  Does a patient have a certain disease or not? 
 We compute the weights in a scoring formula, so that 
Score(i) >= 0 implies a good item, < 0 implies bad. 
  There are various objectives one can use in finding an 
optimal scoring function. Here we use the objective of  
  Minimize the number of misclassifications; 
! Keywords: Discriminant analysis, Classification, Clustering, 
     Categorical regression, ChartScatter, Data Mining, Grouping,  
     Scatter chart, Statistics; 

SETS:  
 TEST: WGT, ZUSE; 
 OBS: DROP, SCORE; 
 OXT(OBS, TEST): TSCR; 
 OBS1(OBS): X1, Y1; 
 OBS2(OBS): X2, Y2; 
ENDSETS 

DATA: 
!  Genuine and counterfeit banknotes (100 Swiss Franks), 
various measurements. 
Banknotes BN1 to BN100 are genuine (Good=1), 
all others are counterfeit (Good=0). 
Dataset courtesy of H. Riedwyl, Bern, Switzerland; 
 WGTSUSEDMX = 2; ! Max # of weights to use; 
 WGTMX = 99999;  ! Max absolute value of any weight; 
 DEPVAR = 7;   ! Index of the dependent variable (Good); 
 TEST= Length Left  Right Bottom  Top  Diagonal  Good; 
 OBS, TSCR= 
BN1     214.8   131.0   131.1   9.0     9.7     141.0     1 
BN2     214.6   129.7   129.7   8.1     9.5     141.7     1 
……………………………………………………………………………………………………………… 
BN99    215.1   130.0   129.8   9.1     10.2    141.5     1 
BN100   214.7   130.0   129.4   7.8     10.0    141.2     1 
BN101   214.4   130.1   130.3   9.7     11.7    139.8     0 
BN102   214.9   130.5   130.2   11.0    11.5    139.5     0 
……………………………………………………………………………………………………………… 
BN199   214.7   130.7   130.8   11.2    11.2    139.4     0 

BN200   214.3   129.9   129.9   10.2    11.5    139.6     0 ; 
ENDDATA 

SUBMODEL DISCRAMP: 
! Minimize number of observations dropped to get a partition; 
  MIN = OBJV; 
    OBJV = @SUM( OBS( I): DROP( I)); 
! For bad observations, if DROP(I)=0, we want a strictly negative score;
@FOR( OBS(I)| TSCR( I, DEPVAR) #EQ# 0: 
   SCORE( I) <= -1 + WGTMX*DROP( I); 
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   SCORE( I) =  
   WGT0 + @SUM( TEST( J) | J #NE# DEPVAR: WGT( J)* TSCR(I,J)); 
   @FREE( SCORE(I)); 
    ); 
! For good observations, if DROP(I)=0, we want a strictly positive score;
@FOR( OBS(I)| TSCR( I, DEPVAR) #EQ# 1: 
   SCORE( I) >= 1 - WGTMX*DROP( I); 
   SCORE( I) <= WGTMX*(1-DROP(I)); 
   SCORE( I) = 
   WGT0 + @SUM( TEST( J) | J #NE# DEPVAR: WGT( J)* TSCR(I,J)); 
   @FREE( SCORE(I)); 
    );  
 @FREE( WGT0); 
 @FOR( TEST( J): @FREE( WGT( J));); ! The WFT(J) are unrestricted in sign;
 @FOR( OBS(I): @BIN( DROP(I))       ! The DROP(I) are 0 or 1; 
     ); 
! Constraints limit number of nonzero weights; 
 @FOR( TEST( K) | K #NE# DEPVAR: 
    WGT( K) <= WGTMX*ZUSE( K); 
   -WGT( K) <= WGTMX*ZUSE( K); 
    @BIN( ZUSE( K)); 
     ); 
  @SUM( TEST( K) | K #NE# DEPVAR: ZUSE( K)) <= WGTSUSEDMX; 
ENDSUBMODEL 

CALC:  
  @SOLVE( DISCRAMP); 
! Get ready to plot a 2 dimensional subdimension; 
! Set D1, D2 =  2 dimensions used; 
  D1 = 0; 
  @FOR( TEST( K) | ZUSE( k) #GT# 0.5: 
    @IFC( D1 #EQ# 0: 
        D1 = K; 
       @ELSE 
        D2 = K; 
        ); 

   SCORE( I) >=    - WGTMX*(1- DROP(I)); 

      ); 
! Create set of the GOOD ones, with 2 dimensions in X1, Y1; 
  @FOR( OBS(I) | TSCR( I, DEPVAR) #EQ# 1: 
    @INSERT( OBS1, I); 
    X1( I) = TSCR(I,D1); 
    Y1( I) = TSCR(I,D2); 
      ); 
! Create a set of BAD ones, with two dimensions in X2, Y2; 
  @FOR( OBS(I) | TSCR( I, DEPVAR) #EQ# 0: 
    @INSERT( OBS2, I); 
    X2( I) = TSCR(I,D1); 
    Y2( I) = TSCR(I,D2); 
      ); 
 @WRITE( ' Measure       WGT', @NEWLINE(1)); 
 @WRITE( ' CONSTANT ', @FORMAT( WGT0, '10.3f'), @NEWLINE(1)); 
 @FOR( TEST( J) | J #NE# DEPVAR: 
   @WRITE( @FORMAT( TEST( J),'9s'), @FORMAT( WGT( J), '10.3f'),
@NEWLINE(1)); 
     ); 
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  @WRITE( @NEWLINE(1)); 
  @WRITE(' If CONSTANT + @SUM( TEST( j): WGT(j)*TSCR(i,j)) >= 0,',
@NEWLINE(1)); 
  @WRITE('       Then predict as GOOD, else Predict as BAD.', @NEWLINE(1));
  @WRITE( @NEWLINE(1),'Number items incorrectly predicted= ', OBJV,
@NEWLINE(1)); 

! Now do a scatter plot; 
  @CHARTSCATTER( 'Swiss Bank Notes: Good vs. Counterfeit',!Chart title;
      @FORMAT(TEST(D1),"7s")+' MEASURE', !Legend for X axis; 
      @FORMAT(TEST(D2),"7s")+' MEASURE', !Legend for Y axis; 
      'Good', x1, y1,         !Point set 1; 
      'Counterfeit', x2, y2); !Point set 2; 
ENDCALC 

When we press the solve button in the LINGO menu bar, LINGO will output
two windows. The Solution Report window is an optimization output described in
Sect. 10.2.2. We introduce the result of Swiss banknote data that consists of six
independent variables and two classes such as 100 genuine bills and 100 counterfeit
bills identified by Good (1/0). Figure 10.1 is a LINGO chart window that is a scatter
plot of two variables like the diagonal (y-axis) and bottom (x-axis). The two classes
good (red) and counterfeit (green) appear to be almost separated.

Fig. 10.1 LINGO chart window that is the graph of a scatter plot (diagonal by bottom)

10.2.2 Modified DiscrmSwiss.lng

Program 10.2 is a modified model for the use of cancer gene diagnosis. Mainly,
we delete comments and graph output. In Data section, “OLE()” function inputs
data by “TEST, OBS, TSCR=@OLE();” from values defined in Excel. LINGO and
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Excel share the same array names such as TEST, OBS, and TSCR. Moreover, five
underlined commands are essential.

1. First underlined command is crucial to find BGS. We can expect to control the
number of genes in SM by changing this constant.

2. The second, third, and fourth underlined commands explain the meaning of
DROP.

3. The fifth underlined commands are crucial to output the optimization results on
Excel.

Program 10.2. A modified model for the use of cancer gene diagnosis.

SETS:  
 TEST: WGT, ZUSE; 
 OBS: DROP, SCORE; 
 OXT(OBS, TEST): TSCR; 
ENDSETS 

DATA: 
WGTSUSEDMX = 2; ! Max # of weights to use;
 WGTMX = 99999;  ! Max absolute value of any weight; 
 DEPVAR = 7;    ! Index of the dependent variable (Good); 
 TEST, OBS, TSCR=@OLE(); 
ENDDATA 
SUBMODEL DISCRAMP: 
! Minimize number of observations dropped to get a partition; 
  MIN = OBJV; 
    OBJV = @SUM( OBS( I): DROP( I)); 
! For bad observations, if DROP(I)=0, we want a strictly negative score;
@FOR( OBS(I)| TSCR( I, DEPVAR) #EQ# 0: 
   SCORE( I) <= -1 + WGTMX*DROP( I); 
   SCORE( I) >=    - WGTMX*(1- DROP(I)); 
   SCORE( I) =   WGT0 + @SUM( TEST( J) | J #NE# DEPVAR: WGT( J)* TSCR(I,J));

!DROP(I)=@IF(SCORE(I) #GE# 0,1,0);
   @FREE( SCORE(I)); 
    ); 
! For good observations, if DROP(I)=0, we want a strictly positive score;
@FOR( OBS(I)| TSCR( I, DEPVAR) #EQ# 1: 
   SCORE( I) >= 1 - WGTMX*DROP( I); 
   SCORE( I) <= WGTMX*(1-DROP(I)); 
   SCORE( I) = WGT0 + @SUM( TEST( J) | J #NE# DEPVAR: WGT( J)* TSCR(I,J));
!DROP(I)=@IF(SCORE(I) #LE# 0,1,0);
   @FREE( SCORE(I)); 
    );  
 @FREE( WGT0); 
 @FOR( TEST( J): @FREE( WGT( J));); ! The WFT(J) are unrestricted in sign;
 @FOR( OBS(I): @BIN( DROP(I))       ! The DROP(I) are 0 or 1; );
ENDSUBMODEL 

CALC:  
 @SOLVE( DISCRAMP); 
@OLE()=DROP, SCORE, WGT, WGT0;
ENDCALC
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If we define three Excel range names such as OBS (A3: A202), TSCR (B3: H202)
and TEST (B2: H2) in Fig. 10.2, “@OLE()” reads three range values from Excel
and stores those values on three LINGO arrays such as TEST, OBS, and TSCR.
Two one-dimensional sets such as OBS and TEST have 200 elements from BN1 to
BN200 and seven elements that shows variable name. One-dimensional set of OBS
and TEST defines two-dimensional set TSCR with 200 bills by seven variables.
“@OLE()=DROP, SCORE, WGT, WGT0;” outputs four optimization results on
Excel by “@OLE()=” function. WGT is LINGO array name and Excel cell range
name (B1: H1). Although H1 is usually the intercept of Linus’s LDF, he uses this one
as the label of good and counterfeit bills. We output the intercept value on cell A1.
Thus, LinusLDF is : f�−44*Bottom+48*Diagonal−6347.8. The200DSsoutput
on cell range (I3: I202). Because all bills are separable, 200 cells (J3: J202) have
0s. Thus, MNM � 0 by the formula (=SUM(J3: J202) that shows MNM. Cell L4 is
RatioSV defined by “=100 * (MIN(I3:I102)−MAX(I103:I202))/(MAX(I3:I102)−
MIN(I103:I202))”. Two variables model (Bottom, Diagonal) is SM and BGS having
RatioSV � 0.524. Because 130 BGSs of Alon’s microarray are less than 1%, both
results indicate the RatioSV of BGS may be tiny.

Fig. 10.2 Data input and solution output on Excel by @OLE()

10.2.3 Japanese Cars Data

Japanese car data consists of 44 cars and six variables.We had already known that two
one-variable models are BGSs (Shinmura 2016). In Program 10.3, we modify only
two underlined statements of a modified model for Japanese car data. Because Swiss
banknote data and Japanese cars data have six variables, there is no change of “DEP-
VAR� 7.” However, wemust change the variable names such as “TEST� Emission
Price Capacity CO2 Fuel Sales c;”. When we discriminate Alon’s microarray with
2,000genes,wemust change “DEPVAR=2001;” in addition to “TEST=X1–X2001;”.
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Program 10.3. How to apply for Other Data

DEPVAR = 7;   ! Index of the dependent variable (Good); 
 TEST= Emission Price Capacity CO2 Fuel Sales c;

Japanese car data consists of two classes such as the 29 regular cars (A2: A31)
and the 15 small cars (A32: A46) in Fig. 10.3. Set “OBS” has a one-dimensional set
with 44 labels from CAR1 to CAR44 (A2: A46). There are six independent variables
(B2: G2) and the intercept (H2). Set “TEST” has a one-dimensional set with seven
labels such as Emission, Price, Capacity, CO2, Fuel, Sales, and c (B2: H2). Two one-
dimensional sets such asOBSandTESTdefine two-dimensional setOXT that defines
two-dimensional array TSCR. Thus, TSCR defines two-class discriminant data with
44 cars and six variables. “1/0” of the intercept corresponds the regular or small
car. After optimization, LINGO output six discriminant coefficients on cell range
B1: G1. Because this model separates the intercept and six variables, the intercept
is on A1. The modified model finds LDF as follows: f � 36408.165 * Emission
+ 0.0002751 * Price − 1.814043 * Sales − 21526.4. SCORE on I3: I46 are 44
discriminant scores. “1/0” on OMIT (J3: J46) shows the status wheather 44 cars are
classified or misclassified into each class. Cell L3 contains the formula “=SUM(J3:
J46)” and shows MNM. Because we know each variable of emission and capacity is
BGS, three variables (emission, price, and sales) is SM.

Fig. 10.3 Optimization results in Excel (WGTSVSEDMX=5, 4, 3)

Table 10.1 shows the Japanese car data on cell range (A1: L46).
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10.2.4 Thank You for the Fabulous Model Creator Linus

We had already found two BGSs such as “emission and capacity” because these
two variables can separate two classes. When we discriminate five-variable model
without “Emission rate,” we obtain only “capacity” as BGS in Fig. 10.4. Linus LDF
is f � 2 * Capacity − 9. This LDF indicates if “capacity” is higher than 4.5, the car
belongs to regular car, otherwise small car. This result is as same as RIP explained in
Chap. 7 of Shinmura (2016, 2018a, b). Although Capacity is BGS, RatioSV is 25%.
This result is as same as RatioSVs of SMs.

Fig. 10.4 Capacity is BGS (DEPVAR � 6, WGTSUSEDMX � 5)

10.2.5 Iris Data

Iris data consists of four measurements of three species such as Setosa, Vircicle, and
Virginica (Anderson1945; Fisher 1956).BecauseSetosa and the other two species are
LSD,we discriminate two classes such as Vircicle andVirginica. AlthoughAnderson
collected these data, this data is called Fisher’s iris data because Fisher used this data
for validation of Fisher’s LDF. Because there are four independent variables, we set
DEPVAL � 5. Figure 10.5 shows the result. Because Fisher’s LDF misclassifies the
34th versicolor, MNM� 1. Although RatioSV� −12.4186, the RatioSV is not used
for overlapping data.

Fig. 10.5 Iris data (DEPVAR � 5)
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10.3 Six MP-Based LDFs and LINGO Models

We explain six MP-based LDFs and LINGO models.

(1) RIP

RIP in Eq. (10.1) can find the interior point of OCP directly, all NMs of which
become MNM. OCP is the feasible region, but all interior points have the same
minimum values such as MNM. It can solve the Problem1 and Problem2 correctly.
Because it can decompose common data and six microarrays into many SMs, it can
solve Problem5 very easy. Because we developed the best model by Method1, we
had ignored the natural feature selection obtained by common data before Method2.
We suppose to discriminate the Golub microarray with 72 cases and 7,129 variables.
Most researchers erroneously understand the gene analysis is the severe problem
because of small n and large p problem. However, RIP, Revised LP-OLDF, and
H-SVM can discriminate microarrays within 20 s and find those are LSD (Fact3).

MI N �
∑

ei ; y∗
i

(
t xi b + b0

)
>� 1 − M ∗ ei ; (10.1)

b0 free decision variables.
M 10000 (Big M constant)
ei 1/0 binary integer.

LINGO can define MP models by natural expression and SET expression. The
natural expression is effortless because it is almost the same as the arithmetic expres-
sion. However, it is hard to develop a large-scale MP model. The SET expression
can build a complex MP optimization system that consists of the combinations of
SET, DATA, SUBMODEL, and CALC sections. SUBMODEL section defines MP-
based LDFs as follows. We explain how RIP can discriminate microarray by LINGO
Program3. “SUBMODEL” section of LINGO defines RIP in Eq. (10.2). “@SUM
and @FOR” are essential LINGO SET looping functions. “@” means the LINGO
functions.

(1) The objective function (MIN=@SUM(N(I): E(I));) minimizes the summation of
ei those are 1/0 binary integers. Thus, it minimizes NM and finds the minimum
NM using @SUM LINGO function.
The natural expression is “Min =

∑
i�1,...,72 ei.”

(2) The 72 constraint expressions limit the extended DS of each case to be higher
than 1 of SV.
The natural expression of “@SUM(P1(J1): IS(I, J1) * VARK(J1) *
CHOICE(J1)) > 1 − 10000 * E(I));” is as follows:

∑
I

∑
J1
IS(I, J1) ∗ VARK(J1) ∗ CHOICE(J1)) > 1 − 10000 ∗ E(I).

J1 � 1, . . . , 7130,

I � 1, . . . , 72. (10.2)
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Thus, Eq. (10.2)means the 72 constraints. The left side of the constraint expression
is a summation of 7,130 elements of IS(I, J1) * VARK(J1) * CHOICE(J1). In the
case of LSD, all ei of the right side become zero.

“@FOR(N(I): @SUM …);” in Eq. (10.3) defines 72 constraints of 72 patients
having 7,130 coefficients including the constant means as follows:

∑
j1�1,...,7130

IS(I, J1) ∗ VARK(J1) ∗ CHOICE(J1)) > 1 − 10000 ∗ E(I).

For I � 1, . . . , 72. (10.3)

Thus, Eq. (10.3) corresponds to the 72 constraints in Eq. (10.1). Although old-
style MP solver was hard to construct a large-scale model, LINGO is very easy to
define plural complexmodels as same as small-sizemodels and control thosemodels.

“@FOR (P1(J1): @FREE(VARK(J1)));” means as follows:

@FREE(VARK(J1)); J1 � 1, . . . , 7130. (10.4)

Equation (10.4) means 7,130 discriminant coefficients such as VARK(J1) includ-
ing the intercept are free variables. Because a decision variable is nonnegative real
variable in default of MP world, it needs to set a free variable in MP. “@FOR(N(i):
@BIN (E(i)));” defines 72 E(i) are 1/0 binary integers. Because all these decision
variables (ei) are not related to the executable area, all the optimal solutions areMNM
� 0. In this sense, this model is a new model not existing in MP.

“SUBMODEL RIP:, …, ENDSUMMODEL” defines RIP by the LINGO IP
model. The IP algorithm of LINDO products use the branch & bound (B&B). We
are worried about another IP algorithm which cannot decompose the microarrays
into SM. In the CALC section, we can program and control MP-based models.
“@SOLVE(RIP);” discriminates the dataset by RIP. “!…,;” is a comment.

LINDO Systems Inc. offers free evaluation version, manual and Prof. Linus text-
books from http://www.lindo.jp/.

SUBMODEL RIP:                                                         (10.1) 
   MIN=ER;   

ER=@SUM(N(I): E(I));   
! You can output array ER on Excel file; 

@FOR(N(I): @SUM(P1(J1): IS(I, J1)*VARK(J1)* 
CHOICE(J1)) > 1-10000*E(I)); 

      @FOR(P1(J1): @FREE(VARK(J1)));  
      @FOR(N(I): @BIN(E(I))); 
ENDSUBMODEL 
………………. 

CALC: 
………………. 
@SOLVE(RIP); 
………………..       

ENDCALC 

http://www.lindo.jp/
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(2) Revised LP-OLDF

If ei is nonnegative real variable, Eq. (10.1) changes Revised LP-OLDF in (10.5).
Thus, the feasible region (OCP) is as same as RIP. However, LP finds one of the
vertexes. Because the dimension of the vertex is less than equal n, the number of
nonzero coefficients of Revised LP-OLDF and RIP is less than equal n in the first
step of Method2.

MIN �
∑

ei;

yi ∗
(txib + b0

)
>� 1 − M ∗ ei; (10.5)

b0 free decision variables.
ei nonnegative real variables.

Thus, if we drop “@FOR(N(I):@BIN(E(I)));” in Eq. (10.1), it becomes a Revised
LP-OLDF. Many statisticians claim we do not explain the algorithm of MP-based
LDFs in our papers. If we define the models of MP-based LDFs, LP, IP, QP, and NLP
solvers of LINGO solve the many problems. LP, IP, QP, and NLP are the algorithm
of our theory.

SUBMODEL LP:                                                            (10.5) 
 MIN=ER;  ER=@SUM(N(I): E(I)); 
      @FOR(N(I): @SUM(P1(J1): IS(I, J1)*VARK(J1)* 

CHOICE(J1)) > 1-10000*E(I)); 
      @FOR(P1(J1): @FREE(VARK(J1)));  
ENDSUBMODEL 

(3) Revised IPLP-OLDF

Revised IPLP-OLDF is a mixture model of Revised LP-OLDF in the first step and
RIP in the second step. Thus, SUBMODEL andCALC sections defineRevised IPLP-
OLDF in Eq. (10.6). At first, Revised LP-OLDF discriminates all cases and outputs
0/1 information to the array CONSTANT. If Revised LP-OLDF classifies the case
xi correctly, ei � 0 and CONSTANT(I) � 0. Otherwise, ei � 1 and CONSTANT(I)
� 1.

“@FOR(N(I):@IFC (E(I) #EQ#0:CONSTANT (I)� 0;@ELSECONSTANT(I)
� 1;));”

Next, RIP discriminates only cases misclassified by Revised LP-OLDF. “SUM-
MODEL IPLP” omits the classified cases by the following LINGO functions.

@FOR(N(I)| CONSTANT (I) #EQ# 0: E(I) � 0);
Thus, “@SOLVE(IPLP);” discriminates the restricted cases by RIP using the

information of “CONSTANT(I) � 1.”
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SUBMODEL IPLP:                                                         (10.6) 
 MIN = @SUM(N(I): E(I)); 
     @FOR(N(I): @SUM(P1(J1): IS(I, J1)* 

VARK(J1)*CHOICE(J1) )>=1-BIGM*E(I)); 
     @FOR(P1(J1): @FREE(VARK(J1)));  
     @FOR(N(I)| CONSTANT(I) #EQ# 1: @BIN(E(I))); 
     @FOR(N(I)| CONSTANT(I) #EQ# 0: E(I)=0); 
ENDSUBMODEL 

CALC: 
…………………. 
@SOLVE(LP);  
    @FOR(N( I): @IFC( E( I) # EQ # 0: CONSTANT(I)=0; @ELSE CONSTANT(I)=1;));

NM=0; NMP=0; Z=0; 
@SOLVE(IPLP); ! a restricted RIP for CONSTANT(i)=1; 
………………….. 
ENDCALC 

(4) Soft-margin SVM

Equation (10.7) is S-SVM. If we set c� 104 or c� 1 in the DATA section, it becomes
SVM4or SVM1because there is no proper rule to decide penalty c. Our examinations
tell us that SVM4 is almost better than SVM1 after many examinations. If we omit
“c * �ei” and “−ei,” it becomes H-SVM in Eq. (10.8). QP solves both SVMs. The
second object function such as “c * �ei” is as same as Revised LP-OLDF. Thus, we
can conclude that QP solver and the first object function such as “||b||2/2” prevent the
natural feature selection by three SVMs. That QP solver can find only one minimum
solution in the domain.

MIN � ||b||2/2 + c ∗
∑

ei;

yi ∗
(
txib + b0

)
>� 1 − ei; (10.7)

c penalty c to combine two objectives.
ei nonnegative real value.

SUBMODEL SVM:                                                (10.7) 
MIN=@SUM(P1(J1): VARK(J1)^2)/2 

+Penalty*@SUM(N(I): E(I)); 
 @FOR(N(I): @SUM(P1(J): IS(I, J)*VARK(J) 

*CHOICE(J)) >= 1-E(I)); 
ENDSUBMODEL 
……………………… 
CALC: 
………………….. 
@SOLVE(SVM); 
………………….. 
ENDCALC 
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(5) H-SVM

Equation (10.8) is an H-SVM that clearly defines LSD, and the generalization
ability is defined by “minimization of ||b||2/2”. However, most SVM researchers
seem to have passed through the LSD-discrimination because H-SVM cannot solve
the overlapping data. Moreover, SVM researchers and users pay their attention to
the kernel SVM. We guess no researchers do not use H-SVM for the cancer gene
analysis. They lost the chance that the signal of microarrays is LSD.

MIN � ||b||2/2; yi ∗
(
txib + b0

)
>� 1 − ei; (10.8)

ei nonnegative real value.

SUBMODEL HSVM:                                                         (10.8) 
 MIN=@SUM(P1(J1): VARK(J1)^2)/2; 
       @FOR(N(I): @SUM(P1(J): IS(I, J)*VARK(J) 

*CHOICE(J)) >= 1); 
ENDSUBMODEL 
……………………… 
CALC: 
………………….. 
@SOLVE(HVM); 
………………….. 
ENDCALC 

10.4 LINGO Program3 of Method2

We introduce LINGO Program3 of Method2 that consists of four sections, such as
SETS, DATA, SUBMODEL, and CALC sections. We explain to discriminate Golub
dataset with 72 cases and 7129 genes by RIP. SETS section defines set with arrays in
the form: “set-name: [array-names];.” “P, P1, P2, N, SN” are five one-dimensional
sets. In the DATA section, “P � 1 … 7129;” means set “P” has 7129 elements.
Without the definition of “P � 1 … 7129;”, LINGO estimates it by checking the
array. Above five sets have 7129, 7130, 7131, 72, and 600 elements, respectively.
Set “P” corresponds 7129 genes for Golub or Shipp datasets. Set “P1” has 7130
elements of “7129 genes + intercept” that has three arrays having 7130 elements
such as “CHOICE, VARK, and MATRYOSHKA.” Set “N” has two arrays having
72 elements such as “E and DS” that correspond 1/0 binary decision variables and
discriminant scores for 72 patients. Set “SN” has four arrays having 600 elements
such as “SM, IT, T, NM” that store the results of SMs obtained by Program3. Because
we cannot estimate the number of SMs, we set it 600. Set “DN (N, P1)” is two-
dimensional set defined by two one-dimensional sets of “N and P1” that is 64 * 7130
elements. “IS” is Golub dataset. “SNCHOICE (SN, P1)” is a two-dimensional set
made by two one-dimensional sets of “SN and P1” that is 600× 7130 elements. Two
arrays “CHOICE100 and VARK100” store 600 choice patterns and discriminant
coefficients.
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MODEL:                                                                   (10.9) 
SETS: 
  P; P1: CHOICE, VARK, MATRYOSHKA; P2; N: E, DS;  
SN: SM, IT, T, NM;  
D (N, P1): IS;  
SNCHOICE (SN, P1): CHOICE100, VARK100; 
ENDSETS 

DATA section defines the element number of sets, the constant such as the penalty
“c,” and “IS=@OLE();.” “IS” is the Excel cell array name that store Golub dataset.
“@OLE ()” reads this data and LINGO stores this data as LINGO array name.

DATA:                                                                     (10.10)
   P=1..7129; P1=1..7130; P2=1..7131; N=1..72; SN=1..600; 
   IT1=600; IT2=5; PENALTY=10000; 
IS =@OLE(); 

ENDDATA 

In the following SUBMODEL section, we define five MP-based LDFs. If we
set “PENALTY � 10000;” in the DATA section, it becomes SVM4. If we change
“PENALTY � 1;”, it becomes SVM1. Although many researchers spend many
research times to study MP-based LDFs by papers and books, it is effortless for
them to discriminate their research datasets. We claim the right software improves
our intelligence productivity.

SUBMODEL RIP:                                                            (10.11)
………. 
ENDSUBMODEL 

SUBMODEL LP: 
………. 
ENDSUBMODEL 

SUBMODEL IPLP: 
………. 
ENDSUBMODEL 

SUBMODEL HSVM: 
………. 
ENDSUBMODEL 

SUBMODEL SVM: 
………. 
ENDSUBMODEL

SUBMODEL LP:                                                             (10.12)
 MIN=ER; ER=@SUM(N(I): E(I)); 
    @FOR(N(I): @SUM(P1(J1): IS(I, J1)*VARK(J1)* 

CHOICE(J1)) > 1-10000*E(I)); 
 @FOR(P1(J1): @FREE(VARK(J1)));  
ENDSUBMODEL 
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SUBMODEL SVM:                                                           (10.13)
  MIN=ER; 
ER=@SUM(P1(J1): VARK(j1)^2)/2 

+Penalty*@SUM(N(I): E(I)); 
  @FOR(N(I): @SUM(P1(J): IS(I, J)*VARK(J) 

*CHOICE(J)) >= 1-E(I)); 
ENDSUBMODEL 

SUBMODEL HSVM:                                                           (10.14)
 MIN=ER; ER=@SUM(P1(J1):VARK(J1)^2)/2; 
       @FOR(N(I): @SUM(P1(J): IS(I, J)*VARK(J) 

*CHOICE(J)) >= 1); 
ENDSUBMODEL 

In the small loop of Method2, RIP repeatedly discriminates the dataset “IT2”
times. First, when RIP discriminates the dataset, the 7130 discriminant coefficients
with the intercept are stored on “VARK.” If the coefficient is zero, the value of
“CHOICE” becomes zero, and this variable is removed from the second discrimina-
tion. If the coefficient is not zero, the value of “CHOICE” becomes 1, and the variable
is included in the next discrimination. Second, RIP discriminates the dataset for the
discriminant model with value 1 of “CHOICE.” It finds only 34 coefficients are not
zero and 7095 coefficients are 0. Third, 34 coefficients decrease to 11 coefficients.
Because fourth discrimination is as same as third discrimination, LINGO Program3
stop here. However, if “IT � 11”, we repeat to discriminate 11 times and end small
loop (LOOP2). In big loop (LOOP1), selected 11 genes becomeMATRYOSHKA� 1
andMethod2 omit the 11 genes from7129 genes. In the second big loop, RIP discrim-
inates the 7118 reduced gene space and finds the second SM2 (MATRYOSHKA=2).

CALC:                                                                    (10.15)
@SET('DEFAULT'); @SET('TERSEO',2); (10.14) 
PP=@SIZE(P); 
K1=1; S=0; 
@FOR (P1(J1): CHOICE(J1) = 1; MATRYOSHKA(J1) = 0; );  
@WHILE (K1 #LE# IT1: 
K2=1; 
@WHILE(K2 #LE# IT2: 
@FOR(P1( J1): VARK( J1) = 0; @RELEASE( VARK( J1))); 
IC=0; 
@SOLVE(HSVM); 
@FOR(N(I):DS(I)=@SUM(P1(J1): IS(I, J1) * VARK(J1) * CHOICE(J1))); 
@FOR(N(I): @IFC(DS(I) #LT# 0: IC=IC+1)); 
@FOR( P1(J1)| J1 #LE# PP:@IFC(VARK(J1) #EQ# 0: CHOICE(J1)=0; @ELSE 
CHOICE(J1)=1;)); 
K2=K2+1); 
S=S+1; 
SM(S)=K1; IT(S)=K2; NM(S)=IC; T(S)=@SUM(P1(J1): CHOICE(J1)) - 1;  
@FOR( P1( J1): CHOICE100(S, J1)=CHOICE(J1)); 
@FOR( P1(J1)| J1 #LE# PP: @IFC(VARK(J1) #NE# 0: MATRYOSHKA(J1)=k1 )); 
@FOR( P1(J1)| J1 #LE# PP: @IFC(MATRYOSHKA(J1) #NE# 0: CHOICE(J1)=0; @ELSE
CHOICE(J1)=1;  ));   
@OLE( )=MATRYOSHKA,CHOICE,VARK; 
@IFC( IC #GE# 2: K1=IT1+1; @ELSE K1=K1+1 )); 
ENDCALC 
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In the second DATA section, Program3 outputs the results of SMs on Excel cell
array names such as “SM, IT, T, NM, CHOICE100, VARK100.”

DATA:                                                                    (10.16)
@OLE() = SM, IT, T, NM, CHOICE100, VARK100; 

ENDDATA 
END 

10.5 Validation Method2 by LINGO Program1 Using
Common Data

After publishing the Springer book (Shinmura 2016), we are afraid not to validate
LINGO Program3. Thus, we develop Program1 (six LDFs’ version) that discrim-
inates the data by six MP-based LDFs and outputs six discriminant coefficients.
Because Swiss banknote and Japanese automobile data are useful as test datasets,
Program1 can validate these datasets very easy. Next, we validate microarray using
Program1 and simulate Program3 by manual operation.

MODEL:                                                               (10.17)
SETS: 
   P; P2; P1: VARK, VARK0, CHOICE; 
 N: E, CONSTANT, SCORE; 
 MS: ; V2:; 
  D(N, P1):IS; 
  G2: IC, NP, ZERO; 
 VG(V2, P1):VARK100,VARK50; 
ENDSETS 

DATA: 
  P=1..6; P1=1..7; P2=1..8; 
  N=1..44; G2=1..6; MS=1; V2=1..6; BIGM=10000; 
  CHOICE = @OLE(); 
  IS = @OLE(); 
ENDDATA 

Insert six MP-based LDFs;                                               (10.18)
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CALC:                                                                (10.19) 
@SET('DEFAULT'); @SET('TERSEO',2); 
G=1; 
NM=0; NMP=0; Z=0; 
@FOR(P1(J1): VARK(J1) = 0; @RELEASE ( VARK ( J1))); 
@SOLVE(RIP); 
@FOR(P1(J1): VARK100(G, J1) = VARK(J1);); 
@FOR(N(I): SCORE(I)=@SUM(P1(J1): IS(I, J1) 

*VARK(J1) * CHOICE(J1))); 
 @FOR(N(I): @IFC(SCORE(I) #EQ# 0:  Z=Z+1)); 
 @FOR(N(I): @IFC(SCORE(I) #LT# 0:  NM=NM+1)); 
  @FOR(N(I): @IFC(SCORE(I) #GT# 0:  NMP=NMP+1)); 
 IC(G)=NM; ZERO(G)=Z; NP(G)=NMP; 

G=2; 
@SOLVE(LP);  
  @FOR(N(I): @IFC(E(I) #EQ# 0: CONSTANT(I)=0; @ELSE CONSTANT(I)=1;));
NM=0; NMP=0; Z=0;
@SOLVE(IPLP); 
  @FOR(P1(J1): VARK100(G, J1) = VARK(J1) 

*CHOICE(J1)); 
@FOR(n(I): SCORE(I)=@SUM(P1(J1): IS(I, J1) 

*VARK(J1) * CHOICE(J1))); 
  @FOR(n(I): @IFC(SCORE(I) #EQ# 0:  Z=Z+1)); 
  @FOR(n(I): @IFC(SCORE(I) #LT# 0:  NM=NM+1)); 
  @FOR(n(I): @IFC(SCORE(I) #GT# 0:  NMP=NMP+1)); 
IC(G)=NM; ZERO(G)=Z; NP(G)=NMP; 

G=3; 
……………………………. 
@SOLVE(LP); 
……………………………. 
G=4; 
@SOLVE(HSVM); 
……………………………. 
G=5; 
PENALTY=10000; NM=0; NMP=0; Z=0; 
@SOLVE(SVM); 
……………………………. 
G=6; 
PENALTY=1; NM=0; NMP=0; Z=0; 
@SOLVE(SVM); 
 ……………………………. 
ENDCALC 

DATA:                                            (10.19) 
@OLE( )=VARK100, IC, ZERO, NP; 
ENDDATA 
END 

10.6 Conclusion

Golub et al. began research to find oncogenes and subclasses of new cancers from
microarray with a high will around 1970. However, the statistical discriminant func-
tionwas not useful at all, so it could not be entirely completed (Problem5).Moreover,
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NIH reported that this kind of research is meaningless, medical researchers world-
wide abandoned this research. Meanwhile, high-dimensional data with high quality
is released free of charge, so many researchers of statistics, machine learning and
pattern recognition continue research on high-dimensional data analysis as a new
theme. However, research that non-expert finds cancer genes is medically mean-
ingless. Perhaps they do not know the judgment of NIH. However, on October 28,
2015, we could analyze the six famous USmicroarrays and solved it in only 54 days.
We have studied many themes of discriminant analysis so far and have solved four
problems. However, this Problem5 could be solved in the shortest time. Because we
have solved the valuable theme after retiring from the faculty of the university, we
satisfy deeply as a researcher. Because the MP-based LDFs have solved four defects
in the discriminant analysis, we can firstly succeed in the cancer gene analysis and
diagnosis. That is, RIP based on MNM standard easily found that microarrays are
MNM � 0 (Fact3). This fact shows that cancer and healthy subjects are LSDs in the
high-dimensional microarray space. Moreover, using the common data we made the
theory of LSD-discrimination, but Problem5 was just solved as applied research of
this theory. Furthermore, LSD has a Matryoshka structure and includes many SMs
(Fact4). Since SM is a small sample, we thought to analyze all SM easily with sta-
tistical software JMP and to provide the doctors with information useful for genetic
diagnosis of cancer. However, statistical methods other than logistic regression did
not find a fact that was linearly separable. Therefore, we prepare signal data using
DS created by RIP and H-SVM instead of genes. Moreover, analyzing signal data
instead of all the SMs, we foundmany facts that showed almost the same result. From
this, we think that LINGOProgram3 obtain good results with other high-dimensional
data. Medical research failed to produce good results because the statistical discrim-
inant function was not useful at all for LSD-discrimination. Medical researchers are
not responsible for this failure. We statisticians must be responsible for this matter.
The cause of the failure was not interested in the related MP theory, because most
discriminant analysis researchers satisfy in a narrow world of a normal distribution.
In this chapter, we explain how to find many SMs by analyzing high-dimensional
microarrays data and other ordinary data with LINGO Program3. After that, if read-
ers do the statistical analysis of the author proposed in this book, you are release
easily from the curse of the high-dimensional Microarray data analysis. We are sure
that NIH will recognize that microarrays are useful for cancer gene diagnosis and
contribute to humanity. In the new project, in order to shorten the research time, the
author wants to cooperate with your analysis. Also, we expect many researchers give
students a large number of SMs as research and education issues and find facts that
the author has not considered. If you download the lists of all SMs from Research
Gate, those offers good educational and research data.

If LINGO Program4 find the other five BGSs, we will survey the relation of BGSs
and SMs and solve the role of many SMs and BGSs. We will publish the fourth book
in 2020.
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