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Preface

This book extends the possibility of a cancer gene diagnosis using many results.
Medical researchers tried to identify oncogenes from genetic data such as
microarrays since 1970, but they did not obtain precise results because the statistical
discriminant analysis was useless for their research. In 2017, we explained our
surprising results to Japanese genetic expert. He told us as follows: “After NIH
reports microarrays are useless for cancer gene diagnosis, many researchers believe
that this theme has ended. Therefore, you terminate your research.” I am regretful to
start the study from 2015. If we could show our results before NIH’s report, we
believe that microarray genetic diagnosis has contributed to cancer control at this
time. Some statisticians focused on this research theme as a new field of “big or
high-dimensional data analysis” which is different from a small sample (small n and
small p data). However, they pointed out three excuses for the difficulty of research.
Although it was easy to use highly reliable data collected by physicians, they did
not obtain a definite result. The discriminant analysis is the most useful method to
classify the two groups of cancer and normal patients or two different cancers.
However, since the statistical discriminant functions are utterly useless, medical
researchers use cluster analysis such as “self-organizing map” (SOM) and so forth.
They seemed to have used discriminant analysis in the early stages of the study, but
they probably judged it to be utterly useless.

In this book, as a successful application example of “high-dimensional data
analysis” using microarray, it concretely shows that new discriminant theory
(Theory) is most suitable for cancer gene analysis and diagnosis in addition to the
small samples (small n and small p). The fatal problem of conventional studies is
that they do not know that the two classes are entirely separable in the
high-dimensional gene space (Fact3). There was no research of linearly separable
data (LSD) discrimination except for our research. Most researchers did not
understand that only H-SVM and Revised IP-Optimal Linear Discriminant
Function (Revised IP-OLDF, RIP) can find Fact3, and other LDFs including
LASSO cannot discriminate microarray correctly. This fact indicates only mathe-
matical programming (MP)-based LDFs can find Fact3. Statistical discriminant
functions are useless for cancer gene analysis. Therefore, they could not define
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“signal” in high-dimensional genetic space clearly. They cannot select cancer genes
from microarray or filter oncogenes from noise without being based on the correct
signal. We call the linearly separable gene space and subspaces as Matryoshka.
Microarrays (big Matryoshka) include many small Matryoshkas in it. Moreover,
RIP and the Matryoshka feature selection method (Method2) can decompose
microarray into many Small Matryoshkas (SMs) and noise gene subspace (Fact4).
Because the quadratic programming (QP) defines SVMs, those cannot decompose
into many SMs. QP finds only one optimal H-SVM on the whole region. In order to
find optimal subspace (SM), H-HVM surveys all possible models. It is NP-hard. If
we call the smallest Matryoshka as cancer basic gene set (BGS), LINGO Program3
can find many SMs and LINGO Program4 can find many BGSs. At first, because
each SM (or BGS) consists of few genes, we expected statistical methods analyzed
those small samples and obtained many useful results for cancer gene diagnosis.
However, although all NMs of logistic regression are zero for all SMs of six
microarrays, other methods do not show the linear separable facts (Problem6).
After many trials, we produce the signal data made by RIP discriminant scores of all
SMs instead of genes included in SM or BGS. LINGO Program3 decomposes
Alon’s microarray into 64 SMs, and LINGO Program4 decomposes it into 130
BGSs. The RatioSVs of 64 SMs and 130 BGSs are [2.33%, 26.76%] and [0.00%,
0.9%], respectively. Because 64 RatioSVs of all SMs are over 2.33%, we judge
SMs are useful for cancer gene diagnosis. On the other hand, BGSs are useless for
cancer gene diagnosis because 130 RatioSVs of all BGSs are 0.9% or less. We
expect BGS is important for cancer gene research as same as Yamanaka’s four
genes in iPS research. That is, when a normal patient becomes cancer, RIP dis-
criminates two classes clearly. However, statistical discriminant functions cannot
discriminate two classes (Problem6) because of two reasons. First reason is those
cannot discriminate LSD theoretically. Second reason is all RatioSVs of BGS are
tiny. When other genes are added to BGS and become 64 SMs, SV can separate two
classes very easy. This result seems that SM is more suitable for the cancer gene
diagnosis than BGS. As a future task, we must clarify of the classification and roles
of many SMs and BGS (Problem7).

This book proposes the cancer gene diagnosis and malignancy indexes analyzing
all SMs obtained from six microarrays. However, the malignancy indexes need to
be verified by medical professionals. Therefore, we disclose LINGO programs and
explain many statistical results used for verification in this book. These results offer
benefits for statistical researchers and statistical education because many persons
can easily participate in this field, using our successful examples of the
“high-dimensional data analysis.” Also, due to maximum use of our statistical
knowledge, this book can be used for the excellent guidebook of the data analysis.
Moreover, seven problems and four facts that no one has pointed out in statistics
will undoubtedly be useful to improve your actual data analysis abilities. We expect
many persons such as medical researchers, statisticians, and statistical users con-
tribute to the cancer gene diagnosis, in order to produce useful results. However,
although many engineers such as pattern recognition and machine-learning tried
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Problem5, they did not succeed also. It was very strange because they were free
from the restriction of normal distribution.

Chapter 1 introduces a novel theory of discriminant analysis and its application
to the genetic analysis of cancer with a new perspective (New Theory of
Discriminant Analysis After R. Fisher, Springer 2016). I graduated from the uni-
versity in 1971 and participated in the development project of “Electrocardiogram
Automatic Diagnosis System” at the Osaka Prefectural Adult Disease Center.
Dr. Nomura, the leader of project, given us the theme of diagnostic logic to separate
normal symptom and several abnormal symptoms by discriminant analysis. Four
years the discriminant study was inferior to empirical branching logic developed by
doctor Nomura at all. The reason is that the statistical discriminant theory is useless
because many data used for medical diagnosis are not a normal distribution. This
failure was motivated to research new discriminant theory. Then, based on many
empirical studies such as medical data until 2015, I established a new discriminant
theory. I first showed the relationship between number of misclassification
(NM) and discriminant coefficient (Factl). From this fact, we could explain many
defects of NM (Probleml). We have developed IP-OLDF and Revised IP-OLDF
(RIP) based on minimum NM (MNM) criterion instead of NM. I found a monotonic
decrease of MNM (Fact2). Also, for Swiss banknote data with six variables,
MNM = 0 for two variables (X4, X6). In other words, we can ultimately distinguish
between genuine and counterfeit notes. With MNM monotonic decreasing nature,
the 16 models containing these two variables are MNM = 0, and 47 out of the
remaining MNMs are more than one. This fact is a first discriminant study on LSD
that is essential for the genetic analysis of cancer (Problem2). There are other two
problems such as deficiencies of generalized inverse matrices (Problem3) and
discriminant theory that is not inference statistics (Problem4). Because both prob-
lems have little relation with cancer gene analysis, we do not explain in this book
precisely. The six research groups in the USA published papers on the genetic
diagnosis of cancer using microarrays during the period from 1999 to 2004. They
released the microarrays on the Internet. When RIP discriminates the microarrays in
54 days from 25th October to 20th December 2015, we found that the six MNMs
are zero (Problem5). No researchers could solve this problem since 1970 because
the existing discriminant theory was useless. That is, cancer and normal patients are
entirely separable in the high-dimensional genetic space, which is the fact that it is
LSD (Fact3). Based on Fact2, we found that the gene space is a Matryoshka
structure containing many SMs in which MNM = 0. We developed a Matryoshka
feature selection method (Method2). RIP and Method2 could decompose
microarrays into many SMs (or BGS) (Fact4). Because of completing the research
theme since 1971, we published “New Theory of Discriminant Analysis After
R. Fisher” from Springer (2016). In Chap. 1, Method2 decomposes Swiss banknote
data and Japanese car data into several SMs. In other words, Method2 is a
general-purpose method for high-dimensional data and common data. Furthermore,
it shows how RIP and Revised LP-OLDF can easily produce many SMs. The reason
why H-SVM using QP cannot obtain SM can be understood by the common sense of
MP. That is, the cancer gene analysis cannot be done with a statistical discriminant
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function based on normal distribution. And the cancer gene analysis is easy for
MP-based LDFs. Using LINGO Program3 introduced in Chap. 10, we can divide
arbitrary microarray and ordinary data into SM. We analyze this SM by statistical
method and propose genetic diagnosis of cancer in Chap. 2 and below.

Chapter 2 introduces the cancer gene diagnosis using SMs (From Cancer Gene
Analysis to Cancer Gene Diagnosis. 2017). In order to evaluate many SMs found in
Method2, we created a statistic called RatioSV. Like MNM, this is an essential
statistic of LSD-discrimination. In Alon’s dataset (Proc.Natl.Acad. Sci. USA 96:
6745-6750, 1999), RIP found 130 pairs of BGS in addition to 64 pairs of SM. The
130 SVs of BGS separated cancer and normal patients at less than 1%. The 64 SVs
of SM separated the two groups from 2.4% to 26.8%. Although these results
indicate the discrimination of SM is easy, no researchers could not succeed from
1970. BGS is vital for the study of oncogene combinations, but we judged that it
was not useful for cancer gene diagnosis. Because SM is a small sample (small n
and small p), we considered the standard statistical methods are useful for the
analysis of SM. However, only logistic regression was found to be NM = 0 for all
SMs. Two groups often overlapped by other statistical methods (Problemo6).
Therefore, we created new data with RIP discriminant score (RipDS) as a variable
and showed this signal data is a true signal in microarrays. By this breakthrough,
the analysis was carried out by standard statistical methods using signal data.
Especially, PCA and cluster analysis separate the two groups completely. It was
also found that the first principal component of PCA represents the malignancy
index of cancer the same as the DS of each SM. Because we need to verify these
results medically, we published the book from Amazon to call for cooperation
among the six research groups. However, there were no answers as following
reasons: (1) Six projects may have ended after 2004, (2) they did not access this
book and our papers because we are medically unknown, and (3) the Kindle version
is not an academic journal. In Chap. 2, we outline the results of cluster analysis and
PCA obtained by using six microarrays. After Chap. 3, we examine our claim about
the signal by many approaches.

Chapter 3 explains the cancer gene diagnosis of Alon dataset to compare 39 SMs
by Revised LP-OLDF and 56 SMs by RIP. In 2017, only RIP and Revised
LP-OLDF were convinced that the datasets could be decomposed into different
combinations of SMs. Therefore, if 39 pairs of SM obtained by Revised LP-OLDF
with a short calculation time are useful for genetic analysis of cancer, it is more
useful than using 56 sets of SM obtained by RIP. Therefore, they were analyzed by
RatioSV and various statistical methods, compared and evaluated. In conclusion,
almost the same results were obtained in any analysis.

In Chap. 4, we try that we have not done so far. One is the evaluation of the
signal and noise separated by the RIP and Revised LP-OLDF. For this reason, we
analyze Alon’s microarray (2000 genes). RIP finds 62 SMs (1968 genes) and noise
subspace (32 genes). Revised LP-OLDF finds 32 SMs (1005 genes) and noise
subspace (995 genes). Although we have analyzed individual SMs so far, we have
not evaluated a signal subspace and noise subspace. When we discriminate the
signal and noise subspaces by RIP, it is certainly confirmed that the MNM of the
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signal subspace is 0 and the noise subspace is more than one. In addition, many
normal cases locate on SV = —1, and many cancer cases were on SV = 1. This
shows that many cases are concentrated on two points in a high-dimensional signal
subspace. The Revised LP-OLDF decomposes a signal subspace with 1005 genes
into 32 SMs and a noise subspace with 995 genes. Both the signal and noise
subspaces are NM = 0, which indicates that Revised LP-OLDF cannot separate SM
from the noise subspace. This is the reason why the Revised LP-OLDF cannot
make NM = 0O for all of the linearly separable subspaces (Factl). We examine the
correlation of the genes contained in the signal subspace, and it was found that they
are all fairly high-positive correlations. Moreover, we explain the reason why the
statistical methods cannot find Fact3.

From Chaps. 5 to 9, we introduce the cancer gene diagnosis of other five
datasets. Those datasets are Golub dataset (Science 286(5439): 531-537. 1999),
Shipp dataset (Nature Medicine 8(1.1): 68-74. 2002), Chiaretti dataset (Blood 103:
2771-2778. 2004), Singh dataset (Cancer Cell 1(1.1): 203-209. 2002), and Tian
dataset (The New England Journal of Medicine, 349: 2483-2494. 2003). Each
chapter shows different verification results to explain Problem6 and Problem7.

In Chap. 10, we will discuss three LINGO programs. The first model is the
LINGO sample model developed by Schrage, which is explained by common data
such as Swiss banknote data, Japanese automobile data, and iris data. Since the
high-dimensional gene datasets are unfamiliar for a statistical user, the threshold is
high for statistical users. By explaining genetic diagnosis with common data,
familiarity is born even for general statistical users. In particular, Swiss banknote
data and Japanese automobile data are LSD, but RatioSV is very small, less than 0
0.1% as same as BGSs. This contrasts with the genetic diagnosis. With these
programs, not only microarrays but also other data can easily be decomposed by
RIP. This will be useful for research on marketing and exam questions and product
characteristics as a new research theme to classify many variables. We are released
from the curse of high-dimensional data and prove the theory can solve six prob-
lems of discriminant analysis.
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Abbreviations

Cancer gene

Cancer gene analysis

Cancer gene diagnosis

Common data

CP

HsvmDSs
LDF

LOO
LpDSs
LSD

In our cancer gene analysis, we use cancer
genes instead of oncogene.

RIP, Revised LP-OLDF and H-SVM find six
microarrays are LSD (Fact3). Moreover,
Method2 decompose each microarray into
many SMs and noise subspace (Fact3) by RIP
and Revised LP-OLDF, not H-SVM. We call
these analysis as cancer gene analysis. It is
important statistical analysis are useless

If we make three types of signal data by Rip
DSs (RipDSs), LpDSs and HsvmDSs, statisti-
cal methods can analyze these signal data and
find many malignancy indexes those open the
new frontier of cancer gene diagnosis

The iris data, the student data, the CPD data,
the Swiss banknote data, the Japanese auto-
mobile data, and the pass/fail determination
using examination data

A convex polyhedron on discriminant coeffi-
cient space

H-SVM discriminant scores

Linear discriminant functions such as Fisher’s
LDF, logistic regression, four OLDFs, and
three SVMs

Leave-one-out method

Revised LP-OLDF discriminant scores

A linearly separable data, MNM of which is
Zero

XiX
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Matryoshka
Matryoshka structure

Method1
Method2

OCP
Oncogenes

PCA

Prinl

QDF

RDA

RipDSs

Signal data

SOM

Standard statistical methods

Statistical discriminant functions

Abbreviations

All linear separable spaces and subspaces

The microarray is a big Matryoshka that
includes small Matryoshka in it. MNM mono-
tonic decrease is the same idea as Matryoshka
structure

The 100-fold cross-validation for small sample
Matryoshka feature selection method that can
discriminate the common data and the
microarrays. It can find SM and decompose
LSD into many SMs

An optimal CP, NM of which is MNM

This word is used for cancer genes found by
physicians

Principal component analysis

The first principal component

A quadratic discriminant function

A regularized discriminant analysis

RIP discriminant scores

Made by RIP, Revised LP-OLDF, and H-SVM
Self-organizing map

One-way ANOVA with t-test, correlation
analysis, univariate analysis, hierarchical clus-
ter analysis, principal component analysis
(PCA), QDF, Fisher’s LDF, logistic regression
Fisher’s LDF, QDF, RDA and LASSO
including logistic regression. However, only
logistic regression can discriminate all SMs
correctly. Other discriminant functions are fatal
in determining the LSD and are useless



Symbols

Our Research Theme: Discrimination of two classes
(n Cases and p Variables) by Eight LDFs and QDF

LDF Linear Discriminant Function f(x;) = b;*x; +,..., + by*x, + ¢
DS Discriminant score f(x;) for ith case x; fori=1,...,n
Extended DS  y;* f(x;) for y; = —1 for classl and y; = 1 for class2

RipDS RIP discriminant score

LpDSs Revised LP-OLDF discriminant score

HsvmDSs H-SVM discriminant score

Book0 Optimum Linear Discriminant Functions, 2010, JUSE Press, Ltd.
Bookl New Theory of Discriminant Analysis After R. Fisher: advanced research
by the feature selection method for microarray data, 2016, Springer.

The theory consisted of two facts, two methods, and four optimal linear
discriminant functions (OLDF) and solved five problems.

Four OLDFs and three SVMs are solved by LINGO Programl.
Methodl is solved by LINGO Program?2.

Method?2 is solved by LINGO Program3.
Book2 From Cancer Gene Analysis to Cancer Gene Diagnosis, 2017, Amazon

Kindle version.
Book3 High-dimensional Microarray Data Analysis—Cancer Gene Diagnosis
and Malignancy Indexes by Microarray, 2019, Springer.
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Two Facts of Theory

Symbols

Factl  The relation of the number of misclassification (NM) and discriminant

coefficient.

Fact2 Minimum NM (MNM) decreases monotonously (MNM,> = MNM 1))

Six Mathematical Programming (MP)-Based LDFs

by LINGO

IP-OLDF

Revised IP-OLDF (RIP)
Revised LP-OLDF
Revised IPLP-OLDF
H-SVM

S-SVM

SVM4
SVM1

Two Methods

Integer programming (IP) defines IP-OLDF based on a
minimum number of misclassifications (MNM).

The definition of IP-OLDF found Factl and Fact2.
RIP can solve Probleml, Problem2, and ProblemS5.
Linear programming (LP) defines Revised LP-OLDF
that minimizes the summation of distance from support
vector (SV) only for misclassified cases.

A mixture of Revised LP-OLDF and Revised
IP-OLDF.

Quadratic programming (QP) defines SVM.
Hard-margin SVM solves Problem?2 theoretically.

A soft-margin SVM.

S-SVM for penalty ¢ = 10000.

S-SVM for penalty ¢ = 1.

Methodl The 100-fold cross-validation for small sample method solves
Problem4.

M1 The mean error rate in the training sample.

M2 The mean error rate in the validation sample.

The Best Model The model with minimum M2 instead of leave-one-out by
Method1

Method2 The Matryoshka feature selection method solves Problem5 and

finds Fact3
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Important Statistics

MNM
NM

M1

M2
Best model

Malignancy indexes

RatioSV

RatioSV of PCA
RatioS

Minimum number of misclassifications

A number of misclassifications. There are many defects of
NMs.

The minimum mean of error rate in the training sample
The minimum mean of error rate in the validation sample
The model having the minimum M2 among all possible
models. To choose the best model is simple feature selection
method instead of LOO methods.

When RIP, Revised LP-OLDF, and H-SVM discriminate all
SMs, we obtain many DSs. Because two classes are
separable by DSs,

RatioSV is the distance of SV/the range of discriminant
score*100. RatioSV evaluates the malignancy indexes.

We calculate RatioSV on the Prinl axis of PCA.

The ratio of number of genes contained in all SMs/total
number of genes.

LINGO Programs:

LINGO
LINGO Program1

LINGO Program?2
LINGO Program3

LINGO Program4

MP solver that can solve LP, IP, QP, NLP, and stochastic
programming.

Program1 of RIP and H-SVM finds microarrays are LSD
(Fact3).

Program? solves six MP-based LDFs by Method1.
Program3 of Method2 can decompose microarray into many
SMs and noise subspace (Fact4).

Program4 finds BGS.

Discriminant Functions by JMP

JIMP Statistical software supported by the JMP division of SAS Institute
Japan.

Fisher’s LDF  LDF under Fisher’s assumption.

LDF1 The prior probability is set 1:1.

LDF2 The prior probability is proportional to the numbers of two classes.

Logist Logistic regression.

QDF Quadratic discriminant function.

RDA Regularized discriminant analysis.
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Seven Problems and Four Facts

Five Problems of Discriminant Analysis

Book1 introduces the theory using six different types of common data. Method1
evaluates eight LDFs such as three OLDFs, three SVMs, logistic regression, and
Fisher’s LDF. Moreover, Method2 firstly succeeds in the cancer gene analysis
using six microarrays as follows:

(1) RIP and Factl solve Probleml.

(2) RIP and H-SVM solve Problem?2 by Fact2.

(3) Methodl solves Problem4. We compare six MP-based LDFs, Fisher’s LDF,
and logistic regression by the best models of six different common data. All
M2s of RIP are better than those of other seven LDFs. These facts show LDFs
based on MNM criterion do not overestimate the validation samples.

(4) Method2 and RIP solve Problem5.

Problem1 All LDFs cannot discriminate the cases on the discriminant hyper-
plane. This is one of the defects of NM.

Problem2 All LDFs, except H-SVM and RIP, cannot recognize linearly
separable data (LSD) theoretically. Error rates of discriminant
functions based on variance—covariance matrices are very high.

Problem3 The defect of the generalized inverse matrix technique and quadratic
discriminant function (QDF) misclassifies all cases as other classes for
a particular case. Adding small random noise to the constant values
solves Problem3.

Problem4 Fisher never formulated an equation for the standard error of the error
rate and discriminant coefficient. Method1 offers a 95% confidence
interval (CI) for the error rate and coefficient. Because M1 and M2 are
more useful than 95% CI of the error rate, there are explanations for
the 95% CI of the error rate.

Book3 discusses two problems and two facts.

Matryoshka We call all linear separable gene space, and subspaces are
Matryoshka.

SM Method?2 finds small Matryoshka, genes of which are less than or
equal to n. LINGO Program3 of RIP finds all SMs correctly.

BGS The minimum-dimensional SM. LINGO Program4 finds BGS.
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Problem5

Problemé6

Problem?7

Fact3

Fact4

Fact5

Problemé6

XXV

From 1970, many researchers could not succeed in the cancer gene
diagnosis. Three OLDFs and H-SVM find the microarrays are LSD
(Fact3). Moreover, only RIP and Revised LP-OLDF can decom-
pose the microarrays into many SMs and noise subspace. These
facts show RIP and Revised LP-OLDF make feature selection and
separate signal gene subspace from noise subspace naturally.

Method2 of RIP finds a surprising structure of the microarrays
those are the exclusive unions of many SMs. Therefore, we can
analyze all SMs for the cancer gene diagnosis.

However, Method2 of H-SVM cannot decompose the microarrays
into SM because QP finds only one H-SVM on the whole domain.

H-SVM needs to compute all possible models to find SM.
Although the microarrays and all SMs are LSD, statistical methods

cannot find the linear separable facts. Book3 explains this reason.
We must survey the categories of many SMs and explain the
relation of SM and BGS. This theme will be explained by the next
book (Book4).

Because the six microarrays are LSDs and the two classes are
completely separated in the high-dimensional gene space, LSD is
an important signal for cancer gene diagnosis.

Only RIP and Revised LP-OLDF can decompose six microarrays into
several SMs (signal, MNM = 0) and noise subspace (MNM> = 1).
H-SVM cannot find SM.

All SMs are small samples, but not all statistical methods can show
linearly separable signs for all SMs. Only logistic regression can
correctly discriminate all SMs, and all NMs are empirically zero
because it is free from Fisher’s assumption.

RatioSV of many RipDSs is large and easy to discriminate two
classes correctly, but statistical methods other than logistic
regression are utterly useless. We discuss this reason in Chap. 4.
RipDS data gives a hint in this chapter. It seems that the signal
found by the RIP and logistic regression may have small variations
that are hidden by massive variations of noise. Problem6 is the
second reason why many researchers could not find useful meaning
in microarrays



Chapter 1 )
New Theory of Discriminant Analysis i
and Cancer Gene Analysis

Abstract This chapter explains the “New Theory of Discriminant Analysis after
R. Fisher (Theory)” and the first success of cancer gene analysis as its application
(Problem 5). The theory consists of four Optimal Linear Discriminant Functions
(Optimal LDFs, OLDFs), two facts of discriminant analysis, two methods, and two
statistics such as MNM and RatioSV. Section 1.1 summarises the theory and explains
new results. Section 1.2 explains two facts as follows: (1) the relation of NM and LDF
coefficient that solves Problem 1 (the defect of NM). (2) MNM monotonic decrease
that is important for ProblemS5. Furthermore, we explain the reason why statisticians
and machine learning researchers could not solve the cancer gene analysis since 1970.
Only RIP and Revised LP-OLDF can decompose microarrays into many SMs. This
fact is vital for cancer gene diagnosis. Section 1.3 introduces five severe problems
of discriminant analysis. Section 1.4 introduces four OLDFs and three SVMs in
addition to statistical discriminant functions. Section 1.5 explains the Matryoshka
feature selection method (Method2) that solves Problem5 completely. Section 1.6
describes how to validate Method2 by two common data such as Swiss banknote data
and Japanese car data those are LSD. Thus, this section indicates Method2 is useful
for LSD including the common data and microarrays. Section 1.7 is the conclusion.
We can explain the reason why only RIP and Revised LP-OLDF can decompose the
microarray into many SMs. This reason is the answer why statisticians and machine
learning researchers could not solve the cancer gene analysis since 1970.

Keywords Microarrays - Cancer gene analysis + Matryoshka feature selection
method (Method2) + Small Matryoshka (SM) - Revised IP-OLDF (RIP) *
Minimum number of misclassifications (MNM) - Relation of NM and LDF
(Factl) - Monotonic Decrease of MNM (Fact2)

1.1 Introduction

We found five serious problems of discriminant analysis (Shinmura 2014a, 2015c,
d) through our discriminant analysis research after 1973 (Shimizu et al. 1975; Shin-
mura et al. 1973, 1974, 1983, 1987; Nomura and Shinmura 1978; Shinmura and

© Springer Nature Singapore Pte Ltd. 2019 1
S. Shinmura, High-dimensional Microarray Data Analysis,
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Miyake 1979; Shinmura 1984, 2001). We developed the new theory of discriminant
analysis (Theory; Shinmura 2016d) that consists of four optimal linear discrim-
inant functions (optimal LDFs, OLDFs) using mathematical programming (MP),
two methods, and two statistics such as the minimum number of misclassifications
(minimum NM, MNM) and RatioSV after 1997. Theory solved five problems of dis-
criminant analysis completely. Especially, [P-OLDF and Revised IP-OLDF (RIP)
defined by integer programming (IP) are very important LDFs based on MNM cri-
terion (Shinmura 1998, 2000a, b, 2003, 2004, 2005, 2007a, b, 2011a; Shinmura and
Tarumi 2000). All LDFs, except for IP-OLDF and RIP, use the NM that has many
defects (Problem1). On the other hand, MNM is the best statistic in the discrimi-
nant analysis instead of NM. Let us consider the two-class discrimination of data
with n cases and p variables. Because the formulation of IP-OLDF is shown on the
p-discriminant coefficient space by fixing discriminant intercept = 1, it can reveal
the relation of NM and LDF coefficient clearly (Factl) and introduce MNM that is
important statistics for LSD (Fact2). However, IP-OLDF cannot find a right vertex of
an optimal convex polyhedron (optimal CP, OCP) if data does not satisfy the general
position (Shinmura 2000a). Thus, we developed RIP that looked for the interior point
of OCP. Only RIP can solve Problem1. Because Revised LP-OLDF is weak for Prob-
lem1, it cannot find all SMs from the microarray explained in Chap. 4. Moreover,
other NMs and error rates of LDFs may not be correct. Only RIP and hard-margin
SVM (H-SVM; Vapnik 1995) can discriminate LSD theoretically. Thus, statistical
discriminant functions based on the variance—covariance matrix are useless for LSD-
discrimination, especially cancer gene analysis using microarrays (Problem2). This
is the reason why researchers could not solve the cancer gene analysis since 1970.
Although the generalized inverse matrix has a fatal defect (Problem3), Problem3
is not important for Problem5. Because Fisher never defined the standard error of
discriminant coefficient and error rate (Problem4; Miyake and Shinmura 1976), we
developed the 100-fold cross-validation for a small sample (Methodl; Shinmura
2013; 2014c; 2015a). Although most cancer gene researchers validated their results
by the leave-one-out (LOO) procedure (Lachenbruch and Mickey 1968), we do not
validate our results by Method1 because two classes are completely separable in the
microarrays and all SMs. RIP and two methods solved five problems. Especially, RIP
and the Matryoshka feature selection method (Method2) solved cancer gene analysis
as its application in 2015 (ProblemS5).
Section 1.2 explains two new facts of discriminant analysis as follows:

(1) The relation of NM and LDF coefficient that solves Problem1 (the defect of
NM).
(2) MNM monotonic decrease that is important for Problem5.

We explain the reason why statisticians and machine learning researchers could
not solve the cancer gene analysis since 1970. Furthermore, only RIP and Revised
LP-OLDF can decompose microarrays into many SMs.

Section 1.3 summarizes five severe problems of discriminant analysis and three
difficulties of Problem5. Section 1.4 explains four OLDFs and three SVMs in addition
to statistical discriminant functions.
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Section 1.5 explains Method?2 that solves Problem5 entirely and introduces the
RatioSV. Section 1.6 describes how to validate Method2 by two common data such
as Swiss banknote data (Flury and Riedwyl 1988) and Japanese car data (Shinmura
2016c¢) those are LSD. Thus, this section indicates Method2 is useful for LSD includ-
ing the common data and microarrays. Section 1.7 is the conclusion.

In this chapter, we can explain the reason why only RIP and Revised LP-OLDF can
decompose the microarray into many SMs. This result is the answer why researchers
could not solve the cancer gene analysis since 1970 (Shinmura 2018a, b).

After all, gene analysis of microarray was possible by discriminant analysis
defined by mathematical programming (MP). Since Chap. 2 and later, it was possible
to divide the microarray into many small subspaces (SMs) that are easy to handle, so
we propose various approaches for genetic diagnosis of cancer by statistical analysis.

1.2 Fundamental of Theory

1.2.1 The Motivation of Our Research

Although we developed a diagnostic logic of Electrocardiogram (ECG) data by
Fisher’s LDF and the quadratic discriminant function (QDF) from 1971 to 1974,
our research was inferior to the decision tree logic developed by the medical doctor
(Shinmura et al. 1973, 1974). After this experience, we concluded these discrimi-
nant functions are not adequate for the discrimination of the normal and abnormal
subjects because of two main reasons as follows:

(1) There are many patients (cases) nearby the discriminant hyperplane. The doctor
is trying to discriminate the case (patient) near the discriminant hyperplane.
Exam scores and rating data have the same characteristic. Most statisticians do
not understand our claim because they are not interested in real data analysis.

(2) Ifthe value of some variable increases or decreases continuously, the probability
of belonging to abnormal disease increases from 0 to 1. Fisher’s LDF assumes
the typical abnormal patients are the average of the abnormal class. However,
typical cases of patients are far from healthy subjects. We proposed “Earth
Model” in medical diagnosis (Shinmura 1984).

(3) The normal group is the land, and the abnormal group is the mountain range.
The discriminant hyperplane is the horizontal line. While many patients locate
near the horizon, a typical patient is at the summit. Taguchi method (Taguchi and
Jugular 2002) was one of multi-class discrimination by Mahalanobis distance
based on the variance—covariance matrices. Our claim is the same perception
as Taguchi theory. Although the pass/fail determinations using exam score data
are LSD, we observed several error rates are over 20%. These results are caused
by many pass students nearby the discriminant hyperplane obtained by Fisher’s
assumption. Since these data do not satisfy the Fisher hypothesis, the hyperplane
obtained based on the normal distribution does not coincide with the actual
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distribution, and it misclassifies many successful applicants. Although this book
illustrates the two classes are separable in SMs, the error rates of SM by statistical
LDF are very high.

(4) If some independent variable of logistic regression increases or decreases, the
probability “p” belonging to class1 (normal symptom) increases from 0 (class1)
to 1 (class2). This way is suitable for medical diagnosis and is the same as our
claim. Moreover, the maximum likelihood method developed by Fisher solves
logistic regression coefficients (Cox 1958). It finds the coefficients that fit the real
data and can almost discriminate LSD correctly. Thus, most Japanese medical
researchers use logistic instead of Fisher’s LDF empirically. Because JMP does
not support logistic regression for high-dimensional microarrays, we cannot dis-
criminate the microarrays by logistic regression. Even if the logistic regression
could discriminate the microarray into two classes, most of the coefficients are
not zero like H-SVM, as inferred from common data discrimination results.

(5) Many statisticians focus on RDA (Friedman 1989) and LASSO (Simon et al.
2013) based on the variance—covariance matrix, but these discriminant functions
are not suitable for medical diagnosis, especially cancer gene analysis. With
these methods, we cannot distinguish between two classes like Fisher’s LDF.
Cox extends the new frontier of second-generation discriminant analysis, and
logistic regression is the best way of statistical LDF. Also, Vapnik opened a new
boundary for MP-based LDF after the first generation summarized by Stam
(1997). He disseminated SVM in the field of pattern recognition and avoided
the research area on statistics and operations research (OR). He was able to avoid
statisticians and OR researchers from ignoring SVM in the same way as us and
refusing. H-SVM and kernel SVM apply to many kinds of data. However, as far
as we know, there are few comparisons with other LDFs, and H-SVM clearly
defines LSD-discrimination, but there is no research of LSD-discrimination.

1.2.2 IP-OLDF Based on MNM Criterion and Two Facts

Above ECG failure was our motivation to develop theory. After many experiences
of the discriminant analysis, we developed IP-OLDF based on MNM criterion in
Eq. (1.1) (Shinmura 1998). Because we fix the intercept of IP-OLDF to one, we
can define it in the p-dimensional coefficient space instead of (p + 1)-dimensional
space. Although (‘xib + 1) is a discriminant score (DS), we use the extended DS
such as y; * (txib + 1). It is a linear hyperplane and divides discriminant space into
two half-planes such as plus half-plane (y; * ("x;b + 1) > 0) and minus half-plane
(yi * (txib + 1) < 0). If we choose by in plus hyperplane as LDF coefficient, LDF
such as y; * (tbkxi + l) discriminates X; correctly because of y; * (tbkxi + l) =
Y * (‘xibk + 1) > (. On the other hand, if we choose by in minus hyperplane, LDF
misclassifies x; because of y; * (‘bix; + 1) = y; * (*Xib + 1) < 0. However, we must
solve the other two models such as the intercept = —1 and 0. Setting the intercept
as arbitrary positive real value is the similar result obtained by intercept = 1.
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It looks for the right vertex of an OCP if data is a general position. There are only
p-cases on the discriminant hyperplane, and it becomes the vertex of correct OCP.
On the other hand, if data is not general position, it may not look for the right vertex
of OCP because there are over (p + 1) cases on the discriminant hyperplane, and
we cannot correctly discriminate these cases (Problem1). Thus, we developed RIP
that looks for the interior point of right OCP in Eq. (1.4). Equation (1.1) defines IP-
OLDF based on MNM criterion after the heuristic approach (Miyake and Shinmura
1980). The e; is a 1/0-binary integer, and IP defines IP-OLDF. If the extended DS
classifies the case x; correctly, the e; becomes zero. Otherwise, if the extended DS
misclassifies the case x;, it becomes one. Thus, the minimum value of the objective
function is the minimum NM. If data is LSD, NM becomes MNM = 0. It looks for
the vertex of a correct OCP if data is a general position. There are only p-cases on
the discriminant hyperplane, and it becomes the exact vertex of OCP. However, if
data is not the general position and the vertex consist of over (p + 1) cases, the vertex
may not be the correct vertex of OCP. Because all the LDFs correctly discriminate
just the same case, these LDFs are equivalent. There are only a finite equivalent
LDFs corresponding to a limited number of CPs. Thus, all interior points of each CP
correspond to each equivalent LDF.

MIN = ¥ ¢;;
yi* (‘xib+1)>= — Mxej; (1.1)

e; 0/1 integer variable corresponding to classified/misclassified cases.
yi 1/—1 for classl /class2 or object variable.

X; p-independent variables.

b; discriminant coefficients.

M big M constant such as 1,000.

If we exchange x; and b;, we understand IP-OLDF on data space. This model
indicates two relevant facts as follows.

(1) Factl: We explain the notation of IP-OLDF by the Golub microarray. It consists
of two classes such as All (47 cases) and AML (25 cases) with 7,129 genes.
Our primary concern is to discriminate two classes by 7,129 variables (genes)
correctly. The 72 linear hyperplanes, the 7,129 coefficients of those are values of
each case, divide the 7,129-dimensional discriminant coefficient space into finite
CP. The interior points of each CP correspond to the discriminant coefficient
of LDF that discriminates the same cases correctly and misclassifies another
same case. Thus, because the internal points of each CP have unique NM, we
can define the OCP with MNM. Many examinations show the best models
(Shinmura 2016b) of RIP are better than other seven LDFs by Method1.

(2) Fact2: Let MNMyg be MNM in the k-dimensional subspace. MNM decreases
monotonously (MNMy >= MNM,1y). If MNMy = 0, all MNMs including
these k variables (genes) are zero. We call the minimum-dimensional SM as
Basic Gene Sets (BGS) that is as same as the Yamanaka’s four genes in iPS
research. Yamanaka’s three genes do not produce iPS cell. If we drop one gene
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from BGS, MNM is greater than one. We consider “MNM = 0” equals to
produce iPS cell. This fact tells us BGS can completely describe the Matryoshka
structure of gene space by monotonic decreases of MNM.! “MNM monotonic
decrease” is the same idea as the Matryoshka structure of microarray. However,
iPS cell does not have the characteristics of “MNM monotonic decrease.” When
we discriminate all possible models of Swiss banknote data [Shinmura 2016d
(Chap. 6)], IP-OLDF finds a two-variable model, such as (X4, X6), is unique
BGS. By the monotonic decrease of MNN, 16 MNMs including BGS are zero
among 63 models (=2° — 1 = 63). Other 47 MNMs are greater than one. We can
define 16 models as the signal, and 47 models are noise. However, there was no
precise definition of signal and noise until now because researchers did not know
microarrays are LSD and have Matryoshka structure. This book claims that the
16 models are signals, and the other 47 models are noise in LSD-discrimination.
Because we had already LSD-discrimination study by common data, we could
solve the cancer gene analysis in 54 days in 2015.

1.2.3 Simple Example

[P-OLDF can explain the relation of NMs and discriminant coefficients clearly
(Factl). Let us consider the discrimination using three cases and two variables
(n =3, p=2) as follows:

Classl (y; = 1): casel = (—1/18, —1/12)
Class2 (y, = —1, y3 = —1): case2 = (—1, 1/2), case3 = (1/9, —1/3).

Equation (1.2) defines the model of IP-OLDF (Shinmura 2000a, b). We need to
be aware that y, = y3 = —1. To multiply y, and y3 changes the signs of case2, case3,
and constant. This role of y; aligns the inequality signs with casel (Class1). However,
Schrage (2006) proposes the LDF that does not change the sign of data in Chap. 10.

MIN = X ¢;;

vy *# {—(1/18) xb; — (1/12) x by + 1} >= — ey;

Yok {=b1+(1/2) xby+ 1} >= — ey;

y3 ¥ {(1/9) by — (1/3) x by + 1} >= —e3; (1.2)

We consider three linear equations in Eq. (1.3) from the three constraints of
Eq. (1.2).

Hy = —(1/18) b, — (1/12) ¥ by + 1 =0,
Hy=b, — (1/2) xby — 1 =0,
Hy = —(1/9) %b; +(1/3) %by — 1 =0 (1.3)

IChapter 6 (Shinmura 2016d) explains this problem in detail.
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Three linear equations divide the two-dimensional coefficient space into seven
CPs in Fig. 1.1. The number of CP is NM of each LDF that equals the number
of minus half-planes of H;(b) that surrounds CP. The interior point in the triangle
locates in three-plus hyperplanes, NM of which is zero and MNM. This triangle
becomes a feasible region and optimal CP (OCP) for IP-OLDF. This OCP has a
special feature because all interior points have the same values such as MNM = 0.
Thus, all points of OCP become the optimal solutions. Because two linear equations
make three vertexes of OCP, this data is general position and free from Ploblem1.
Because n = 3 and p = 2, the two linear equalities (p = 2) chosen from three cases
(n = 3) make three intersections of the feasible region. In the common data (n >
p), the dimension of a vertex is less than p. In the high-dimensional data such as
microarrays (n < p), this graph explains the dimension of a vertex is less than n. This
fact indicated RIP and Revised LP-OLDF defined by LP can find SM having less
than n genes at the first iteration (Shinmura 2018a, b). NMs of three opposite CPs of
OCP are one. Namely, NMs of adjacent CPs differ by 1. Although we fix the constant
to one, we must solve three models as follows: the constant = 1, the constant = —1,
and the constant = 0, because we cannot decide the sign of discriminant score (DS)
a priori. When we fix the constant = 2, Fig. 1.1 is similarly enlarged to twice.

Fig. 1.1 Relation of NM a b2 w
and discriminant coefficient ) /

1.2.4 Ordinary LP Solution

We explain the ordinary MP model by Eq. (1.3"). Change the objective function to
“MIN = X 2 * by + 3 * by;” Fix the three binary variables to zeros such as e; = 0
(i =1, 2, 3). This model consists of n = 3 and p = 2 (n >= p). The feasible region
of b; and by is triangles in Fig. 1.1.
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MIN = 2% by +3 % by;
(1/18) x by + (1/12) % by + 1 >=0;
—b;+(1/2)% by +1=<0;
(1/9) % by — (1/3) * by +1=<0; (1.3)

The optimal solution is (b, by) = (3, 4) at the intersection with the second and
third constraints. The minimum value is 18. In this way, the LP solution usually
selects one of the vertexes of the OCP obtained by selecting p constraints from n
constraints. On the other hand, because the gene data is (p >> n), the intersection
becomes at most n simultaneous equations by setting (p—n) genes to zero. If we list
up all the candidates and assign them to the objective function, the brute force method
obtains the minimum solution, also. However, the simplex method of LP algorithm
can do this efficiently. In the IP model, the executable area of the LP model is limited
to the integer variable specified. However, because the e; do not affect the feasible
region, RIP and IP-OLDF have the same feasible region as Revised LP-OLDF. Thus,
RIP and Revised LP-OLDF can find the optimal subspace having less than same n
genes at the first step of Method2 and decompose microarrays into many SMs (new
Fact4). On the other hand, three SVMs find the only one optimal SVMs on the
whole domain. These facts are the reason why no statisticians and machine learning
researchers could not solve the cancer gene analysis since 1970 (Shinmura 2018a, b).

1.3 Five Serious Problems and Three Excuses

We found five severe problems and two facts of discriminant analysis (Shinmura
2016d). Moreover, theory solved five problems introduced in Chap. 1. After Chap. 2,
we discuss two new problems and two new facts of cancer gene diagnosis.

1.3.1 Four Problems

Problem1?
The discriminant rule is straightforward. However, most researchers believe in the
wrong law. Even now, they think that the following law is correct.

(1) If f(xj) >= 0 and x; belongs to classl, x; belongs to classl correctly (TP).
Otherwise, if f(x;) >=0 and x; belongs to class2, x; is misclassified to classl
(FP).

2Chapter 1 (Shinmura 2016d) explains this problem in detail.
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(2) If f(x;) < 0 and x; belongs to class2, x; is classified to class2 correctly (TN).
Otherwise, if f(x;) < 0 and x; belongs to class1, x; is misclassified to class2 (FN).
(3) NM is defined by (FP + FN).

They misunderstand as following two points:

(1) Generally speaking, it is not possible to determine to which class the case on
the discriminant hyperplane belongs.

(2) If f (x;) >= 0 by statistical LDF, we cannot decide that x; belongs to classl a
priori.

The values of y; are 1 for class] with a symbol [J and —1 for class2 with symbol
x in the graphs of this book. The yj; is the objective variable of the regression model
also. Let f(x) be LDF and y; * f(x;) be an extended discriminant score (DS) for x;.
In the MP-based LDF, the following rule is correct.

(1) Ify; *f(xj) >0, x; is classified to class1/class2 correctly.

2) Ify; * f(x;) <0, x; is misclassified to class1/class2 correctly.

(3) We cannot properly discriminate X; on the discriminant hyperplane (f(x;) = 0).
Many researchers ignored this unsolved problem until now. Factl found by
IP-OLDF solved this Problem1 completely.

Only RIP can treat this Problem1 appropriately. Indeed, except for RIP, no LDFs
can count the NMs correctly. These LDFs should count the number of cases where
f(x;) = 0 and display this figure h alongside the NM in the output. The correct NM
may increase up to h.

Student data® (Shinmura 2010a) tells us the defect of IP-OLDF caused by Prob-
lem1. Thus, we develop RIP. RIP looks for the interior point of OCP. Only the internal
points of CP avoid the cases on the discriminant hyperplane explained by Factl. The
vertex and edge of CP have over p-cases on the discriminant hyperplane. If another
LDF corresponds to the vertex of CP, it cannot avoid Problem1. Indeed, except for
RIP, no LDFs can count the NMs correctly because these LDFs may choose the
vertex or edge of CP.

Problem2*

Only H-SVM and RIP can recognize LSD theoretically. Although many statisticians
and users use NM, without doubt, LSD-discrimination reveals NM is not reliable
because each LDFs have different NM and we get different NM by the change
of discriminant hyperplane. Experimentally, Revised LP-OLDF discriminates LSD
correctly. Nevertheless, it tends to collect cases on the discriminant hyperplane
(Probleml1). If we discriminate exam scores by two testlets score such as T1 and
T2, and the pass mark is 50 point, we can obtain a trivial LDF such as f = T1 +
T2 — 50 [Shinmura 2015b, 2016d (Chap. 5)]. Although these data are LSD, NMs

3Chapter 4 (Shinmura 2016d) explains this problem in detail.
4Chapters 4-8 (Shinmura 2016d) explains this problem in detail.
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or error rates are very high. Furthermore, seven LDFs,> except for Fisher’s LDF,
become the same trivial LDFs if we divide all coefficients by the intercept value and
fix the intercept = 1. We can judge the student pass the exam if f(x; : T1, T2) >= 0°
and fail the exam if f(x;) < 0. However, error rates of Fisher’s LDF and QDF based
on variance—covariance matrices are very high because exam scores do not satisfy
Fisher’s assumption (Shinmura 2016c¢). Thus, these LDFs are useless for important
applications such as cancer gene analysis in addition to medical diagnosis, pattern
recognition, and different rating.

Problem3’

Problem3 is the defect of the generalized inverse matrix technique. When we dis-
criminated math exam scores by QDF and RDA, all successful students were mis-
classified in the failed class because all successful students correctly answered a few
questions and the answers of failed students are scattered. In this case, if we add slight
random noise to the constant values, we can solve Problem3 completely. Moreover,
discriminant functions based on the variance—covariance matrix cannot correctly dis-
criminate LSD, such as many SMs in addition to Swiss banknote data, Japanese car
data, pass/fail determination using examination scores, and student linearly separable
data.

Problem4®

Fisher never formulated the equation of SE of discriminant coefficients and error
rates based on the normal distribution. Because there is no model selection pro-
cedure instead of the LOO procedure in the discriminant analysis, we propose
Methodl. It offers the 95% Cls of error rates and discriminant coefficients. More-
over, it provides a simple and powerful model selection procedure such as the best
model. We confirmed the best models of RIP were better than Fisher’s LDF, logistic
regression, and five MP-based LDFs using six common data. JMP script of Fisher’s
LDF and logistic regression discriminates these data. SAS Institute Japan Ltd. JMP
Japan Division supported us to develop the script of Method2. LINDO Systems Inc
(Schrage 1991, 2006) supported six MP-based LDFs by LINGO Program?2.” We can
establish the theory by JMP and LINGO in 2015.

SWe compare eight LDFs such as three OLDFs, three SVMs, logistic regression, and Fisher’s LDF
in addition to QDF.

6Since the discrimination rule is defined with two scores, the path class contains an equal sign.
"Chapter 7 (Shinmura 2016d) explains this problem in detail.

8Chapters 2—7 (Shinmura 2010a, 2016d) explains this problem in detail.

Chapter 9 (Shinmura 2016d) explains this problem in detail.
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1.3.2 Problem5'°

Since 1970, many researchers were struggling to select cancer gene features from
the microarrays. However, when we discriminate six microarrays by three Revised
OLDFs, MNM, and two NMs are zero, and most of the coefficients become zero
(Fact3). This fact implies three OLDFs can select cancer genes naturally without
feature selection method. Moreover, we established Method2 within 54 days and
found all SMs of six microarrays (Fact4). On the other hand, we spent three years to
solve Problem3. This comparison tells us that the theory is most suitable for cancer
gene analysis because we study LSD-discrimination by common data. It finds the
surprising fact the microarrays consist of the disjoint unions of many SMs and noise
gene subspace (MNM > 0). Until now, many researchers analyze high-dimensional
gene space with noise directly by standard statistical methods and could not obtain the
meaningful results. Everybody can analyze each SM by these methods now. Those are
one-way ANOVA, t-test, correlation analysis, hierarchical cluster analysis, principal
component analysis (PCA), QDF, logistic regression, and Fisher’s LDF (Fisher 1936,
1956)

1.3.3 Three Excuses of Cancer Gene Analysis

Since 1970 (Golub et al. 1999), many researchers are struggling to select a cancer
gene (ProblemS5). They pointed out the three difficulties (or excuses) about cancer
gene analysis as follows:

(1) Small n and large p data (Diao and Vidyashankar 2013, Buhlmann and Geer
2011)

To estimate the variance—covariance matrices for small n and large p was difficult
for statistical discriminant functions based on the variance—covariance matrices. On
the other hand, MP-based LDFs are free from this difficulty. Sall (1981) announced
Fisher’s LDF for high-dimensional microarrays by the singular value decomposi-
tion (SVD) at the Discovery Summit in Tokyo, November 2015. However, when
Fisher’s LDF discriminated the microarrays, six NMs were not zero in Table 1.1.
This fact is the defect of discriminant analysis based on variance—covariance matri-
ces. In addition, discriminant functions by maximizing the correlation ratio could not
discriminate LSD correctly for many data. Only two standards such as the maximiza-
tion of SV distance by H-SVM and RIP based on MNM criterion can discriminate
LSD theoretically. Moreover, six MP-based LDFs discriminate the small n and large
p data compared with the large n and small p data easily.

10Chapter 8 (Shinmura 2016d) explains this problem in detail.
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(2) Statistical feature selection is NP-hard (Charikar et al. 2000)

In general speaking, it is challenging to select proper cancer genes for large p vari-
ables by statistical discriminant functions. Many statisticians do not understand that
“feature selection” is finding one of the optimal solutions of subspaces from p-
dimensional space. In general, the statistical discriminant function finds one LDF
on the p-dimensional domain. To see the optimum LDF of the subspaces needs a
stepwise variable selection procedure or all possible models (Goodnight 1978) to
search all optimal subspaces such as SMs. If p is gigantic, it will surely be NP-hard.
However, the LDF formulated with LP and IP can find one of the optimum OLDFs of
subspaces as explained in Sect. 1.2.1. However, because the SVM expressed by QP
finds the only SVM’s coefficient to maximize/minimize the objective function in the
p-dimensional space, it needs feature selection as same as the statistical discriminant
functions (NP-hard).

Because the microarrays are LSD, six MP-based LDFs can discriminate the
microarrays within 10 s. B and B algorithm of LINGO IP solver has the same algo-
rithm to compute all possible models. Thus, RIP can find SM among the massive
number of MNM = 0 on gene subspaces. Moreover, Revised LP-OLDF defined by
LP finds the vertex of the feasible region made by n constraints in the first step
(Shinmura 2018a, b). The vertex is an intersection point of n constraint equations
and corresponds to a subspace of p-dimension (p > n).

On the other hand, SVM can find only one optimal SVM for high-dimensional
gene space (whole domain) and cannot find SM that is one of the small gene sub-
spaces. Because QP defines SVM, it can see only one minimum or maximum optimal
solution of the quadratic objective function. Thus, SVM must compute all possible
models for large p genes. This computation is NP-hard because there is no efficient
algorithm such as the B and B algorithm. Revised LP-OLDF can decompose the
microarrays into another combination of SMs as same as RIP. However, it cannot
find all SMs from the microarray introduced in Chap. 4.

(3) The signal is buried in noise (Brahim and Lima 2014)

This difficulty is unclear because the definition of signal and noise is not defined
explicitly until now. Alternatively, it may only refer to the signal/noise ratio used in
the paper by Golub et al. We claim the gene sets included in each SM or BGS is
cancer gene set and signal because two classes are entirely separable in SM. Until
now, because no researchers knew this critical Fact3, they could not define oncogenes
of microarrays clearly. We can decompose signal subspace into many SMs (Fact4).
Thus, RIP can separate the microarrays into signal and noise naturally. Also, RIP
decomposes signal subspace into many SMs that are small signals. Although to
measure microarray is expensive, to measure SM saves the expense for cancer gene
diagnosis if we can decide the best SM for cancer diagnosis (Shinmura 2017a, b, c)
that is the future work (Problem?7). In this book, we solve the following Problem6
explained after Chap. 3.

Problem6: Why can no researchers find the linear separable facts in SM since 19707

We could solve five problems and found two facts. In this book, we discuss two
new problems and two new facts. Only RIP, Revised LP-OLDF, and H-SVM find
the microarrays are LSD (Fact3), and RIP and Revised LP-OLDF can decompose



1.3 Five Serious Problems and Three Excuses 13

the microarrays into many SMs (Fact4). At first, because all SMs are small samples,
the standard statistical methods can easily find the linear separable facts that two
classes are entirely separable in all SMs. However, only RIP, Revised LP-OLDF,
and logistic regression can find the linear separable facts. From Chaps. 3-9 examine
several approaches and explain the several reasons for Problem6.

1.4 Four OLDFs and MNM Instead of NM

We developed four OLDFs, two facts, two methods, and two statistics such as MNM
and RatioSV. Those LDFs are IP-OLDF, RIP, Revised LP-OLDF, and Revised IPLP-
OLDF (Shinmura 2010b, 2014b) that is the mixture model of Revised LP-OLDF
and RIP. Thus, we do not focus on Revised IPLP-ODF in this book. IP-OLDF found
two facts about LDF. Those are (1) the relation of NM and the LDF discriminant
coefficients, and (2) MNM monotonous decreases. Two methods are Method1 and
Method2. Six MP-based LDFs by LINGO Program2 and two statistical LDFs by
JMP discriminate all possible models of 100 training samples of six different types
of common data and compute the minimum means of 100 error rates (M1) in the 100
training samples. Because M1 decreases monotonously as same as MNM, M1s of the
full model are always the minimum value. Thus, M1 is not proper for model selection
statistic. Obtained LDFs are applied for the 100 validation samples and choose the
best model with the minimum means of 100 error rates in the validation samples (M2).
We confirmed the M2s of RIP are less than those of the other seven LDFs. Although
some referees of Japanese statistical journal rejected heuristic OLDF based on MNM
criterion 38 years ago because MNM criterion overfitted for the training samples,
JSMEBE (Miyake and Shinmura 1980) accepted our paper later. Our best model
results prove the former journal referees were wrong. However, we do not discuss
Methodl1 in this book. We need not validate our findings by Method1 because two
classes are entirely separable in SM. RIP and two methods solved five problems of
discriminant analysis, and we established the theory in 2015. Notably, our theory
is the most suitable for cancer gene analysis as its application. On the other hand,
because all LDFs, except for RIP and H-SVM, cannot discriminate LSD theoretically,
these LDFs are useless for cancer gene analysis of microarrays.

1.4.1 Revised IP-OLDF and the Defects of Number
of Misclassifications

On the other hand, if data is not general position and there are over (p + 1) cases
on the discriminant hyperplane, it may not look for the vertex of correct OCP and
cannot discriminate these cases correctly. Thus, we developed RIP that looks for the
interior point of right OCP in Eq. (1.4) directly.
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MIN = Ye;;
i * (‘'xib+ bp) >=1— M= ¢ (1.4)

by free decision variables.
M 10,000 (Big M constant).
e; 1/0 binary integer.

Because b is the free variable, RIP is defined in (p + 1)-dimensional coefficient
space,11 and we cannot understand the relation of NM and LDF found by IP-OLDF
directly. If it discriminates x; correctly, e; = 0 and y; * (*x;b + bp) >= 1. If it cannot
discriminate x; correctly, &; = 1 and y; * (tx;b + bp) >= —9999. Although SV for
classified cases are y; * (tx;b + by) = 1, SV for misclassified cases are y; * (tx;b
+ by) = —9999. The binary decision variable chooses two alternatively. Thus, we
expect DSs of misclassified cases are less than —1, and there are no cases within SV.
SV is a window with length two that separate two classes completely for LSD. If
M is a small constant, it does not work correctly (Shinmura 2010a). Because there
are no cases on the discriminant hyperplane, we can understand the optimal solution
is an interior point of OCP defined by IP-OLDF in p-dimension space. All LDFs,
except for RIP, cannot solve Problem1 theoretically. Thus, these LDFs must check
the number of cases (h) on the discriminant hyperplane. Correct NM may increase
up to h. Problem1 suggests us the severe defects of NM that is not a reliable statistic
for the discriminant analysis as follows:

(1) Above fact shows NM is not a reliable statistic.

(2) Seven NMs, except for RIP, are often different. Moreover, MNM becomes the
lower limit of all NMs. If the data satisfies Fisher’s assumption, NM of Fisher’s
LDF decreases to MNM. Because there is no proper test statistic for Fisher’s
hypothesis, we can validate whether data satisfies it. If both values are similar,
we can judge data fills it.

(3) We need to select one of the prior probabilities. The first option is proportional
to 1:1 (Fisher’s LDF1). The second option is equivalent to the case numbers
(Fisher’s LDF2). Both NMs are often different. In statistical meaning, the first
option is better. However, because we must evaluate two statistical LDFs and
six MP-based LDFs, we choose the latter Fisher’s LDF2.

(4) Although LDF decides the discriminant hyperplane theoretically, we often
choose better result by changing the discriminant hyperplane. In the logistic
regression, we accept the minimum NM by changing the discriminant hyper-
plane on the receiver operating characteristic curve (ROC). If NM of logistic
regression is zero and MNM = 0 confirmed by RIP, we judge logistic regres-
sion can discriminate LSD correctly. However, some statisticians and users do
not trust logistic regression for LSD because of the defect pointed out by Firth
(1993).

1 pattern recognition, (p + 1) dimensional space with the intercept defines LDF.
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On the other hand, MNM is better than NM.

Because MNM decreases monotonously, MNM of full model is always the
minimum value. Moreover, M1 is always the minimum value. We propose the
best model with M2 among all possible models. We examined the best models
of RIP are better than other best models of seven LDFs using five different
types of common data. Only the iris data (Anderson 1945) is almost the same
as MNM.

For iris data, the best model of Fisher’s LDF is almost the same as that of RIP.
Fisher has chosen the better test data to validate Fisher’s LDF. In the discriminant
analysis, many researchers evaluate their results using this data. However, it is
not adequate for test data because it does not show the severe differences and
consists of only four variables. In Sect. 10.2.5, other OLDF based on MNM
criterion developed by Linus analyze this data. For a while, Japanese academic
journals asked to create and verify training and verification samples with the
normal random numbers. This request is an inaccurate request indicating the
goodness of the method made by assuming a normal distribution.

For Swiss banknote data, the two-variable model such as (X4, X6) is BGS. How-
ever, the best model is a five-variable model such as (X1, X3-X6) [Shinmura
2016d (Chap. 6)]. This truth suggests us BGS is not proper for cancer gene diag-
nosis explained in Chap. 2. We discuss this theme in Chap. 3. In Sect. 10.2.1,
Linus OLDF analyzes this data.

Japanese statistical referee rejected our paper about a heuristic OLDF based on
MNM criterion. He claimed MNM was the foolish discriminant criterion and
overestimated the training samples. However, the medical journal published
our paper (Miyake and Shinmura 1980) because the referees knew the real data
examination. The results of the best model proved the first claim was wrong
after 38 years later. Another referee rejected our paper in 2015. He claimed
the purpose of the discriminant analysis is to discriminate the overlapping data,
not LSD. However, he could not distinguish whether data is LSD or overlap
because he could not judge by “MNM = 0 or MNM >=1.” The reason why
many researchers could not be successful in cancer gene analysis is the lack of
knowledge of MNM.

Moreover, we showed several error rates of Fisher’s LDF were very high for
LSD-discrimination. If medical researchers abandoned their research because
of high error rates, they have better reviewed their studies with RIP because they
can obtain a smaller error rate by RIP. RIP can solve Problem1 and Problem?2.
Moreover, because it can naturally select features for common data and the
microarrays, it can explain Problem5. However, we develop more powerful
model selection procedure such as the best model. Thus, we had ignored the
natural feature selection for common data before Method?2.
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1.4.2 Revised LP-OLDF and Revised IPLP-OLDF

If we change the 1/0 binary integer variable e; to a nonnegative real variable, RIP
changes to Revised LP-OLDF in Eq. (1.5). LP solves this model that is faster than
RIP. Because it tends to collect several cases on the discriminant hyperplane, we
recommend not to use it for the overlapping data because NM is not often correct
(Problem1). However, it can decompose the microarrays into another different com-
bination of SMs. We examine these SMs compared with SMs obtained by a RIP from
Chaps. 3-9.

MIN = Xe;;
i * (x;b +bg) >=1— Mxe;; (1.5)

e; nonnegative real values

Revised IPLP-OLDF is a mixture model of Revised LP-OLDF and RIP. In the
first step, Revised LP-OLDF discriminates all cases. In the second stage, RIP dis-
criminates the restricted cases fixing e; = 0 for classified cases in the first step. In
this book, we do not focus on Revised IPLP-OLDF precisely.

1.4.3 Hard-Margin SVM (H-SVM)

Vapnik proposed three different SVM models. H-SVM indicates the discrimination
of LSD clearly. IP-OLDF confirms that Swiss banknote data is LSD and realizes
the importance of Problem2. H-SVM adapted the maximization of the SV distance
to obtain an excellent k-variable model with good generalization ability, which is
similar to “not overestimating the validation data” in statistics. It is redefined to
minimize (1/distance of SV) in Eq. (1.6). H-SVM can discriminate the only LSD, not
overlapping data. This restriction might ignore the research of LSD-discrimination.
Some statisticians erroneously believe that LSD-discrimination is easy. In statistics,
there was no technical term for LSD before H-SVM. However, the condition “MNM
= 0” is the same as being linearly separable. Note that “NM = 0” does not imply
that the data is linearly separable. Also, because the correct NM may be higher than
the obtained NM, NM is not a reliable statistic. It is unfortunate that there has been
no research on LSD-discrimination for Problem5. Thus, many researchers cannot
select cancer genes naturally. We guess LASSO cannot discriminate LSD correctly
as same as Fisher’s LDF, also. Although H-SVM can discriminate the microarrays
accurately, it cannot find SM because of QP.

MIN = [b]|*/2;y; x (‘xib+ by) >=1; (1.6)

b: p-discriminant coefficients. by: H-SVM constant
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1.4.4 Soft-Margin SVM (S-SVM)

Because real data is rarely LSD, most users use S-SVM defined in Eq. (1.7). S-SVM
permits certain cases that are not discriminated by SV (y; x ('x;b + bg) < 1). The
second objective is to minimize the summation of distances of misclassified cases
(Xe;) from SV. The penalty ¢ combines two objects. Revised LP-OLDF minimizes
the summation of misclassified distance from the discriminant hyperplane as same as
the second objective function in Eq. (1.7). This fact is crucial for cancer gene analysis
because Revised LP-OLDF can select SM. On the other hand, H-SVM and SVM4
cannot select SM. The Markowitz portfolio model (Markowitz 1959) that minimizes
risk and maximizes return is the same as S-SVM. Moreover, because all NMs of
SVM1 are often not zero, SVM1 is not used for cancer gene analysis. However, the
return is a constraint, and the objective function minimizes the only risk. The decision
maker selects a solution on the efficient frontier. On the contrary, S-SVM does not
have the rule to determine a proper c as same as RDA; nevertheless, an optimization
solver solves it. Thus, we compare two S-SVMs, such as SVM4 (¢ = 10,000) and
SVMI1 (c = 1). In many trials, NMs of SVM4 are less than NMs of SVM1. We
claim the methods with tuning parameters such as S-SVM and RDA are useless for
statistical users because they must pay their efforts to select the best parameters for
each data. On the other hand, although RIP must set the big M constant, we confirmed
M = 10,000 (or 1000) causes good results using six different types of common data
and all possible models. We surveyed and investigated to change the value M from
¢=0.1, 1, 10, 100, 103, 10* and 10° (Shinmura 2010a).

MIN = ||b|>/2 + ¢ x Ze;;
i X (‘Xib+bg) >=1—Mxeg; (1.7)

¢ penalty c for combining two objectives.
e; nonnegative real value.
M big M constant.

1.4.5 Statisticians Claim for MP-Based LDFs

Some statisticians claimed we did not describe the algorism of four OLDFs. Although
the notations of four OLDFs and three SVMs are similar, IP solver solves IP-OLDF
and RIP, LP solves Revised LP-OLDF, and QP solves three SVMs. Thus, IP, LP, and
QP solvers are the algorism of MP-based LDFs and conclude completely different
results. First, we must be aware of the optimization criteria. IP-OLDF and RIP use
MNM criterion. Revised LP-OLDF uses to minimize the summation of misclassified
distance from the SVs that is the same as the second object of S-SVM. H-SVM
maximizes the SV distance that is the same as the first object of S-SVM. Because
three SVMs cannot select feature naturally, their standard may cause these results,
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and QP solver prevents to find SMs typically. Second, we must be aware the all points
of the feasible region are the optimal solutions. Moreover, three SVMs and Fisher’s
LDF accept each one optimal LDF on the whole gene space, not on the subspace. We
must understand the stepwise and all possible model methods are methods to find
the better model in the subspaces. On the other hand, the B and B algorithm of the
IP solver outputs many optimal LDFs in the whole gene space and many subspaces.

1.5 Matryoshka Feature Selection Method (Method2)
and RatioSV

1.5.1 Method2

Many statistical researchers have raised the above three excuses for reasons why
they could not succeed in Problem5. However, when we discriminated against six
microarrays downloaded from Higgins HP (Jeffry et al. 2006), the following surpris-
ing results were obtained.

(1) The microarrays are LSD (Fact3). To the best of our knowledge, there is no
research about LSD-discrimination. MNM decreases monotonously (MNMy
>= MNMx.1)). If MNMy = 0, all MNMs including these k variables are zero
(Fact2). This fact is essential for cancer gene analysis. We call all linearly sepa-
rable microarray and subspaces as Matryoshkas in gene analysis. The full model
having p-variable is a big Matryoshka that includes all smaller Matryoshkas in
it. When RIP discriminates the microarrays, most coefficients of those are zero,
and few coefficients are not zero. RIP can find smaller Matryoshka naturally,
gene number of which is less than the case number n. When again discriminating
Matryoshka, RIP found smaller Matryoshka than the previous Matryoshka. If
we cannot see smaller Matryoshka anymore, we call it the first SM 1. Next, RIP
discriminates the reduced microarray removed SM1 again. RIP finds the second
SM2. Moreover, RIP finds many SMs, MNM of those are zero. Thus, we develop
Method?2 within 54 days from October 28, 2015, to December 20, 2015. On the
other hand, we spent three years to solve Problem3 because we approached
by wrong trials from the multivariate analysis. We found the reason of Prob-
lem3 by checking all variables by one-way ANOVA. Many statisticians think
Problem5 using microarrays may be impossible because they could not solve
it from 1970. The actual reason is that the statistical discriminant functions are
useless for Problem5 (Shinmura 2018b). This suggests that RIP is the best LDF
for cancer gene analysis'? for the following reasons. (a) RIP and H-SVM can
theoretically discriminate LSD. (b) RIP can find one of the SMs from the many
optimal solutions which make MNM = 0, but H-SVM finds only the optimal

12Because our results are true from the viewpoint of statistical analysis and are not confirmed by
medical research, we use cancer gene analysis instead of oncogene analysis.
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SVM coefficient for maximizing SV’s distance. Thus, H-SVM cannot separate
the microarrays into signal and noise because of NP-hard. Furthermore, the
statistical discriminant functions based on variance—covariance matrices can-
not discriminate SMs theoretically. On the other hand, logistic regression, three
OLDFs, and H-SVM can discriminate SMs correctly.

(2) Method2 finds the microarray consists of disjoint unions of many SMs and
another noise subspace (MNM >= 1). We think SMs are signals, and another
gene subspace is noise in cancer gene analysis because we can discriminate two
classes entirely by genes set of each SM and misclassify two classes by noise
subspace. However, we could not find the linear separable fact of all SMs by the
standard statistical methods. The “linear separable fact” means that two classes
are separable in each SM.

(3) Because NM of Fisher’s LDF is often large for LSD-discrimination, it is useless
for cancer gene analysis in addition to medical diagnosis, pattern recognition,
rating, and so forth. JMP (Sall, Creighton and Leman 2004) does not support
logistic regression to analyze the microarrays now. Even if logistic regression
could discriminate high-dimensional microarray and its NM may be zero, most
of the coefficients are not zero like H-SVM. Thus, H-SVM and logistic regres-
sion must compute all possible models to find SM from the microarrays.

(4) Because six NMs of H-SVM are zero and most coefficients are not zero, H-SVM
is useless for cancer gene analysis. H-SVM must compute all possible models to
find SMs. Thus, NP-hard is true for H-SVM as same as statistical discriminant
functions. The maximization distance of two SVs that is the objective function
of H-SVM in Eq. (1.6) and the first objective of S-SVM in Eq. (1.7) causes this
defect because Revised LP-OLDF can select gene feature naturally. Primarily,
the object function of Revised LP-OLDF is the same as the second object func-
tion of S-SVM. Moreover, it is an essential fact that all LDFs, except for RIP
and Revised LP-OLDF, cannot find one of the several optimal LDFs.

Shinmura (2015e, f, g, h, i, j, k, I, m, n, 0, p, q, 1, s, 2016a) finds all SMs of six
microarrays. Thus, we recommend LASSO researchers will evaluate and compare
their results with our results using the microarrays. At first, they must check whether
their methods can discriminate LSD correctly. We consider the LASSO cannot dis-
criminate LSD successfully. Next, it cannot separate the microarrays into many small
signals and noise as same as Fisher’s LDF. If our claim is wrong, please show the
results in papers or books.

1.5.2 RatioSV: Measurement of the Degree of Linear
Separability

To evaluate LSD-discrimination by RIP, Revised LP-OLDF, and H-SVM, we intro-
duce a RatioSV that is the ratio of support vector (SV) distance and DS range defined
by Eq. (1.8).
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RatioSV = SV distance * 100/discriminant score(DS) (1.8)

Because the maximum RatioSV range of six microarrays by RIPs is [11.67,
38.98%] explained in Chap. 2, we expect the RatioSV may be useful as cancer
gene malignancy indicators. Although Golub et al. validated their results by LOO
method, we need not validate our results by Method1 because two classes are sepa-
rated in SM entirely. After many trials, we make new data having n cases (subjects)
and all RipDSs as variables. When we analyze new data by PCA and cluster analysis,
these results show the clear linear separable facts. Thus, we conclude our three new
data made by RipDSs, LpDSs, and HsvmDSs are the true signals instead of SMs.
We show many truths about our claim after Chap. 3.

1.5.3 Six Famous Microarrays

We developed two new methods such as Method1 and Method2. Because Method1
solved Problem4 completely, we misunderstood to establish the theory in 2015. On
October 25, 2015, we presented our theory at the Japanese statistical conference
held in our native Toyama city. Next day, because doctor course student presents
her research using the microarrays (Ishi et al. 2014), we realized we did not solve
Problem5. On October 28, we could download the following microarrays from
Higgins HP.

1. Alon’s microarray (1999) consists of 62 cases and 2,000 genes. Two classes are
the 22 normal cases (Normal, Class1) and the 40 tumor cases (Tumor, Class2).
File volume is 21.12 Kb.

2. Golub microarray (1999) consists of 72 cases and 7,129 genes. Two classes
are the 25 Acute Myeloid Leukemia cases (AML, Class1) and the 47 Acute
Lymphoblastic Leukemia cases (ALL, Class2). File volume is 6,190 Kb.

3. Shipp microarray (2002) consists of 77 cases and 7,129 genes. Two classes are
the 19 Follicular Lymphoma cases (FL, Class1) and 58 DLBCL cases (DLBCL,
Class2). File volume is 9,344 Kb.

4. Chiaretti microarray (2004) consists of 128 cases and 7,129 genes. Two classes
are the 95 patients (B-cell, Class1) and 33 patients (T-cell, Class2). File volume
is 27,409 Kb.

5. Singh’s microarray (2002) consists of 102 cases and 12,625 genes. Two classes
are the 50 normal subjects (Normal, Class1) and the 52 tumor prostate patients
(Tumor, Class2). File volume is 21,888 Kb.

6. Tian’s microarray (2003) consists of 173 cases and 12,625 genes. Two classes
are the 36 false cases (FALSE, Class1) and the 137 true cases (TRUE, Class2).
File volume is 37,000 Kb.

We could develop the first three microarrays on Excel 32 bit version. Later, after
we bought Office 64 bit version and replaced LINGO 32 bit version to LINGO 64
bit version, we could discriminate other three microarrays.
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1.5.4 How to Develop Method?2 (a Surprising 54-Day

Research Diary)

Between October 28 and December 28, 2015, we discriminated against six microar-
rays. The microarrays were LSDs (Fact3), and those could be very easily decom-
posed into many SMs (Fact4). Since 1970, many researchers tried to analyze high-
dimensional data such as a microarray. Because there was no success in cancer gene
analysis, there were three excuses. However, our theory solved cancer gene analysis
entirely without being influenced by three excuses.

L.

On October 28, 2015, we discriminated against the Shipp microarray. RIP’s
CPU time is less than 1 s. The MNM of RIP was zero. Also, 32 coefficients of
the 7,129 genes were not zero, and the other 7,097 coefficients were zero. All the
discriminant coefficients on the first sheet were 0, but 32 nonzero coefficients
were found by scrolling the sheet. Thus, 32 genes with nonzero coefficients
were judged to be cancer genes in a statistical sense, as they can ultimately
distinguish between the two classes. In this book, we use “cancer genes” in
place of the technical term “oncology” discovered by medical research. Because
cancer gene analysis is very important for humans, we decided to upload the
results to Research Gate (Shinmura 2015¢) as a position paper.

On November 1, 2015, six MP-based LDFs such as three OLDFs and three
SVMs discriminated Alon, Golub, and Shipp microarrays. We find three
microarrays are LSD. Although the nonzero coefficients of the three OLDFs
are less than 62, zero coefficients of three SVMs are few. Although about 1,000
coefficients of H-SVM and SVM1 are zero for Golub microarray, these results
are not used for cancer gene analysis because NMs of these models with nonzero
coefficients are not zero. We claim the models chosen by LASSO are not used
for cancer gene analysis because NMs of these models with nonzero coeffi-
cients may be not zero. Because we count these numbers by eyesight, there
are mistakes in the values. We conclude only three OLDFs find SMs and three
SVMs cannot find SMs (Shinmura 2015f).

On November 3, 2015, we considered three steps of feature selection methods
to find smaller gene set using Shipp microarray. In step 1, RIP reduces 72 cases
with 7,129 genes to 72 cases with 72 genes. In step 2, the stepwise forward
method finds 72 cases with six genes data is LSD because of NM of logistic
regression = 0. In step 3, all possible models of six variables find two three-gene
models are a minimum number of SMs. Later, we called these SMs as BGSs.
On November 5, 2015, we confirmed the above feature selection method for
Alon’s microarray. In step 1, RIP reduces 77 cases with 2,000 genes to 77 cases
with 63 genes. In step 2, the stepwise forward method finds 77 cases with six
genes data is LSD because of NM of “logistic regression = 0.” In step 3, all
possible models of six variables find BGSs.

On November 9, 2015, we confirmed the above feature selection method for
Golub microarray. In step 1, RIP reduces 72 cases with 7,129 genes to 72 cases
with 72 genes. In step 2, the stepwise forward method finds 77 cases with six
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genes data is LSD because of NM of “logistic regression = 0.” In step 3, all
possible models of six variables find BGSs.

6. At Discovery Summit held in Tokyo, Doctor Sall announced JMP version 12
that can support Fisher’s LDF for high-dimensional data. We borrow JMP ver.12
from JMP Japan division and discriminate above three microarrays by Fisher’s
LDE. On November 11, 2015, we compared MNM of RIP and two NMs of
Revised LP-OLDF and Fisher’s LDF using three microarrays. NMs of Alon,
Shipp, and Golub are zero, three, and eight, respectively. We report this result to
JMP technical staff. Later, NM of Alon’s microarray becomes to five (Shinmura
2015;j).

7. On November 18, 2015, although RIP reduces Golub microarray (72 cases and
7,129 genes) to 72 genes, we get a smaller SM with 46 genes when RIP discrimi-
nates 72 genes again. By three trials of discrimination, we obtained the following
Matryoshka process: Matryoshka7129 -> Matryoshka72 -> Matryoshka46 ->
Matryoshka36. If RIP cannot find a smaller Matryoshka anymore, we stop and
call it SM1 (Shinmura 2015k).

8. On November 22, 2015, we defined the Matryoshka Trap of Feature Selec-
tion Method that was confirmed by six MP-based LDFs and JMP using three
microarrays. Moreover, we find another new truth. When we remove SM1 from
microarray and discriminate the reduced microarray, we find the second SM2.
We realized it was difficult for us to find all SMs manual work (Shinmura 2015).
Caution: Because above eight position papers have several mistypes, nobody
had better read.

9. We realize we cannot find all SMs by manual work. Thus, we develop LINGO
Program3 of Method2 on December 4. Shinmura lists up all SMs of three
microarrays of Shipp, Golub, and Alon (Shinmura 2015m, n, o).

10. To develop Singh, Tian, and Chisretti microarrays on Excel files, we bought the
64-bit version of Excel, PC, and OS. Shinmura (2015p, q, r) lists up all SMs of
Singh, Tian, and Chiaretti microarrays by LINGO Program3.

After we recognize Problem5 on October 28, we completely solve it on December
20, 2015 with 54 days.!* Although we misunderstand the discrimination of microar-
rays requests colossal CPU time, Fisher’s LDF by JMP ver.12 (JMP12) and other
MP-based LDFs coded by LINGO can solve microarrays less than 20 s because the
microarrays are LSD. Although many researchers have complained that Problem5 is
NP-hard, LSD-discrimination is easy. Moreover, MP-based LDFs are free from the
small n and large p problem because these LDFs need not construct the variance—
covariance matrices. Besides, because three OLDFs can decompose the microarrays
into many SMs and noise gene subspace, we get signals naturally. Although there
are many types of research of the filtering systems and feature selection methods, we
need not use these methods. From December 11th to 16th, I presented my paper at
the CMStatistics conference held at the University of London. Other presentations

131 presented at CMStatistics held at London University from December 11 to 16, 2015. My pre-
sentation was related to Method 1, but since other researchers’ presentations were a genetic analysis
of cancer by LASSO, I switched the presentation to cancer gene analysis.
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were to analyze microarrays by Lasso in the near future. I did not understand why
they did not analyze at once.

1.5.5 Results of Six Microarrays

Table 1.1 shows the summary of all SMs found by December 20, 2015. The “Descrip-
tion” line is the details of the two classes. The row “size” is the number of patients
and the number of genes. “SM: Gene” is the number of SMs and the total number
of genes included in all SMs. The parentheses are reference papers listing them.
Six papers (Shinmura 2015m, n, o, p, q, r) include full gene names of SM. “Min,
Mean, Max” rows are the minimum, mean, and maximum values of genes included
in all SMs of each microarray. Rows JMP12 are two by two contingency tables of
the discrimination by Fisher’s LDF. Six NMs (=False Positive + False Negative) are
5,3, 8, 10, 3 and 29. Rows “% and error rate” are the percentages of (Maximum
value/number of patients) and error rates of Fisher’s LDF. Maximum percent is 88%
of Tien’s microarray. Minimum percent is 45% of Singh’s microarray. The maximum
error rate is 17% of Tian’s microarray, and the minimum error rate is 2% of Chiaretti

microarray.

Table 1.1 Summary of six microarrays (December 2015)

Data

Description

Size
(SM: Gene)

Min, mean, max
JIMP12
% and error rate

Data

Description

Size
(SM: Gene)

Min, mean, max
JMP12

% and error rate (%)

Alone et al. (1999)

Normal (22) : tumor
cancer (40)

62 * 2000

66:1131(Shinmura
20150)

11,17.1,32
20:2/3:37

52, 8%

Singh et al. (2002)

Normal (50) : tumor
prostate (52)

102 * 12,626

178: 3984 (Shinmura
2015p)

13,22.4, 46
46:4/6:46
45, 10%

Chiaretti et al.
(2004)

B-cell (95) : T-cell
(33)
128 * 12,625

269:5220 (Shinmura
2015r)

9,19.4,71
94:1/2:31

55,2%

Shipp et al. (2002)

Follicular lymphoma
(19) : DLBCL (58)

77 * 7129

214: 3040 (Shinmura
2015m)

7,14.2,39
17:2/1:51
51,4%

Golub et al. (1999)

All (47) : AML (25)

72 #7129

67:1203 (Shinmura
2015n)

10, 19.4, 41
20:5/3:44

57,11%

Tian et al. (2003)
False (36) : true (137)

173 * 12,625

159: 7221 (Shinmura
2015q)

28, 48, 152
16:20/9:128
88, 17%

(SM: Gene): Five results of SM: Gene, except for Tian et al. is replaced in new results of Table 1.2
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BGSs may be unique in each microarray. On the other hand, there are defects of
SMs as follows:

(1) Revised LP-OLDF and Revised IPLP-OLDF (Shinmura 2009) find another dif-
ferent SMs. These differences are caused by different optimization criteria and
MP solvers such as IP and LP. From Chaps. 2-9 describe the results of new SMs
obtained by the different versions of LINGO from 2016 to 2018.

(2) LINGO Program3 need to select the iteration number of RIP as an option. In
Table 1.1, because we do not know the appropriate value of it, we used 10 or 15,
and so forth. Because we are not skilled in programming techniques, we chose
a simple program structure to specify the iteration number.

(3) In addition to the iteration number, a yearly version up of LINGO may cause a
different combination of SMs, especially for a RIP. RIP outputs one of the SMs
among many optimal solutions.

In Chap. 3, we consider the method of determining the appropriate number of
repetitions, and we are conducting analyzes on the SM obtained by this method.
Seven chapters from Chaps. 3—9 introduce the cancer gene diagnosis using new SMs
and several different themes.

1.5.6 The Reason for Natural Feature Selection

After finding all the SMs of six microarrays, the following questions arose.
(1) Why couldn’t statisticians find the microarrays are LSD?

If some researchers discriminate the microarray with H-SVM or RIP, they can find an
essential fact that the six microarrays are LSDs (Fact3). Although some papers used
SVM, there were no explanations which they used H-SVM or S-SVM. Probably,
we understand they used S-SVM because H-SVM does not work correctly for the
overlapping data. When they discriminated the microarray with H-SVM or RIP, they
found essential clues for cancer gene analysis. Several papers have pointed out that
the NMs of SVM were zero with certain small gene combinations selected by the
medical judgments. However, we found LSD has Matryoshka structure by Swiss
banknote data, but no researchers derived essential facts of the Matryoshka structure
of microarrays. In summary, most researchers do not recognize the importance of
LSD. Moreover, it is crucial to find that microarray is LSD and think that systematic
understanding could not be obtained even if the NM of S-SVM was 0 with arbitrarily
selected genes.
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(2) Why couldn’t Fisher’s LDF find LSD?

Fisher opened the new frontier of the discriminant analysis and developed the maxi-
mum likelihood method. He defined Fisher’s LDF based on the variance—covariance
matrices under Fisher’s assumption. Two classes belong to two same normal distri-
butions with the same variance and different averages such as m; and m; (m; not
= my). It maximizes the correlation ratio. Because he had no computer power, we
guess he used the character of the exponential function in Eq. (1.9).

log{fi(x : s, my)/Ex(x : 5, my)} = log[el ™M =0m} /(2 4 ¢2)]

=(m; —my)/s” xx +(m5 —m})/(2xs%) (L.9)

If we consider the discriminant hyperplane as f;(x: s, m;) = f,(x: s, m;), we obtain
the discriminant hyperplane in Eq. (1.10). In this case, NM becomes MNM because
data satisfies Fisher’s assumption. If the data does not satisfy Fisher’s assumption,
NM is greater than equal MNM.

(my —m2)/sz*x+(m§—m%)/(2*sz) =0 (1.10)

We consider Fisher’s LDF by F(x) = b * x + by. Later, he or another statistician
introduced the maximization criterion of correlation ratio. Most statisticians believe
this standard is essential for the discrimination. They do not doubt the defect of this
standard that cannot discriminate LSD correctly and solve Problem5. We had already
confirmed QDF and RDA were very weak for LSD-discrimination, also. We believe
the LASSO cannot solve cancer gene analysis as same as Fisher’s LDF, QDF, and
RDA. If the maximum likelihood method solves Fisher’s LDF as same as logistic
regression, we believe it can often discriminate LSD correctly for a small sample. In
summary, we believe that posterity researchers did not enhance discriminant theory
to solve real essential problems.

(3) Why couldn’t LASSO find SM?

Some statisticians misunderstand LASSO can solve the cancer gene analysis because
it can make several coefficients zero. Because it does not adopt the MNM criterion,
the found subspaces are rare to be LSD. We already explained in Fig. 1.1. First,
because it cannot discriminate LSD theoretically, we think it cannot solve the cancer
gene analysis. Next, only coefficients related to BGS or SM must be the nonzero
coefficients. Because all LDFs, except the three OLDFs, find one optimal solution
in the whole domain, it does not find one of the optimal solutions from subspaces.
Thus, it must compute all possible models to find SMs. We must realize the feature
selection methods including all possible models are to find the optimal solution of
subspaces. In summary, we suggested that LASSO researchers examine the above
matters after 2016. It is also worthwhile to announce failed research results.



26 1 New Theory of Discriminant Analysis and Cancer Gene Analysis

(4) Why couldn’t H-SVM find SM?

H-SVM can correctly identify LSD, but it cannot find SM because it can see only
one optimal H-SVM coefficients on the whole domain. This is because QP defines
SVM based on the maximization of SV’s distance. QP minimizes or maximizes
the quadratic objective function on the entire domain. To summarize, if researchers
understand that microarray is LSD and LSD has Matryoshka structure, they may
have found SM by overcoming the difficulty of NP-hard.

(5) Why could only OLDFs find SM?

Because Revised LP-OLDF finds a vertex of the feasible region which is a solution of
simultaneous equations obtained from n or fewer constraints as an optimal solution,
it can discover SM having less than same n genes easily and quickly. Furthermore,
the feasible region has a unique feature that all MNMs of the feasible region are 0.
The reason why RIP can decompose the microarrays is simple. B and B algorithm of
IP solver is the efficient algorithm of all possible models that search all subspaces.
Moreover, the IP model is a restricted LP model that the decision variables are the
binary integers. Thus, it can output one of SM.

On the other hand, in summary, RIP based on the MNM criterion found SMs
at first. However, Revised LP-OLDF (and Revised IPLP-OLDF) can discriminate
against six microarrays correctly and decompose six microarrays into many different
SMs, also. Because Revised LP-OLDF has the defect of Problem1 and its NMs may
not be correct showed in Chap. 3, we recommend not to use it for the overlap data.
For six microarrays, although six MNM:s are zero, Revised LP-OLDF cannot find all
SMs from the microarrays. From Chaps. 4-7 introduce this truth. However, because
three microarrays such as Singh, Tian, and Chiaretti consist of 12,625 genes and
find over 150 SMs, we show the evaluation results using SMs found by Revised
LP-OLDF from Chaps. 7-9, and almost the same results as Alon, Golub, and Shipp.
In other words, when there are more than 200 SMs, even if there is a loss, analysis
by SM obtained by Revised LP-OLDF is also conceivable.

1.5.7 Two New Facts

(1) Two Known Facts
This book discusses the two new facts in addition to two known facts such as:

(1) IP-OLDF and Fig. 1.1 can explain the relation of NMs and LDF coefficients on
the p-discriminant hyperplane clearly. This known fact proves the defect of NM
that is not reliable. Correct NM may be higher than obtained NM. Although
microarrays are LSD (Fact3), six NMs of Fisher’s LDF are not zero. This truth
is one of the reasons why researchers could not solve the cancer gene analysis
since 1970, also. The error rate of Fisher’s LDF using Tian’s microarray is
17% in Table 1.1. In the pass/ fail judgment of the test, the error rate was high.



1.5 Matryoshka Feature Selection Method (Method2) and RatioSV 27

However, some researchers said that the pass/fail decision of the examination
was meaningless because the results are not applied for the next examination.
The same result was shown even with cancer determination using microarray.
(2) “MNM monotonic decrease” explains the Matryoshka structure of LSD. We
had already found the Swiss banknote data, Japanese car data, and the pass/fail
determination by exam scores (Shinmura 2011b, 2015b) were LSD. We can
easily understand the new idea about Matryoshka structure and SMs of the
microarrays by the results of the above common data. Section 1.6 shows the
Matryoshka structure using the Swiss banknote data and the Japanese car data.

(2) The New Facts in This Book

We introduce several truths to explain the reason why all LDFs, except for three
OLDFs, cannot find SMs (Fact4). Swiss banknote data illustrates the reason for
Fact4. At first, we found MNM of the two-variable model (X4, X6) is zero after
we examined all possible models (Goodnight 1978). This model is the minimum-
dimensional SM. We call it as basic gene set (BGS) among 63 models. The BGS is as
same as Yamanaka’s four genes. If we drop one gene from BGS, MNMs of (X4) and
(X6) are higher than zero. Next, we found the MNM monotonic decrease. Third, if
MNMy =0, all MNM:s including these k-variable are zero. Thus, 16 MNM:s including
(X4, X6) are zero and are signals. Other 47 MNMs those do not include (X4, X6)
are higher than 0. The 47 models are noise. IP-OLDF and RIP could separate signals
and noise naturally and are free from three excuses explained in Sect. 1.3.3.

1.6 Validation of Method2 by Common Data

1.6.1 Matryoshka Structure of Swiss Banknote Data

Although several discriminant coefficients of Swiss banknote data and Japanese car
data became zero by RIP, we do not use this fact for feature selection because we
developed the best model instead of feature selection method for six common data.
Furthermore, we had found the several coefficients of LP-OLDF and IP-OLDF are
zero by the Iris data that is not LSD (Shinmura 2000b).'* We ignored the fact that
a few coefficients become zero. We are happy to avoid a wrong approach because
the nonzero variable model is not valuable. Probably, even if we omit the variables
with zero coefficients, the model differs from SM. Figure 1.2 shows What’s Best!,
add-in solver of Excel. Seven coefficients are output on “I2: O2.” Two hundred e; are
from S3 to S202 cells. Cell S2 defines the objective function. P column stores 200
discriminant scores and R column stores 1 or —9999 of 200 e;. If we choose “IT=4",
the five-variable model (X1, X3-X6) in Fig. 1.2.

14This dissertation can be downloaded from Research Gate as same as all English papers related to
OLDFs. Even if LASSO could make some discriminate coefficients of 0, it would be of no use to
cancer research at all because its MNM is not zero.
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Fig. 1.2 Swiss banknote data

1.6.2 Validation of LINGO Program3 Results

We validate the results of Table 1.1 by other approaches as follows:

(1) Although we counted the number of nonzero coefficients on the Excel files by
our eyesight in Table 1.1, we compute those by JMP in Table 1.2.

(2) We explain the logic of Program3 in Sect. 1.6.2.2. If we choose the different
iteration number (option), we may obtain the various combination of SMs. On
the other hand, each microarray has a unique disjoint union of BGSs. Thus,
we targeted to look for all BGSs. However, we realize the analysis of BGSs is
useless for cancer gene diagnosis because the 130 RasioSVs of Alon’s BGS are
too small compared with those of Alon’s SVs in Chap. 2.

1.6.2.1 Validation of Discriminant Coefficients by JMP

We are regretful not to count the number of zero coefficients by JMP. LINGO Pro-
gram1 discriminates the microarrays by six LDFs and outputs the discriminant coeffi-
cients in array Vark100 of LINGO Program1 and Excel array in Chap. 10 of Shinmura
(2016d). After IMP replaces zero coefficient as 0 and another nonzero coefficient as
1, JIMP counts the number of 0/1 in Table 1.2. Alon’s microarray has 2,000 genes.
The 1,938 coefficients of RIP are zero, and only 62 coefficients are not zero. Bold
figures indicate that the intercept becomes zero. Thus, the bold figures 1938 mean
that 1938 coefficients and the constant are zero. Because 40 coefficients of Revised
IPLP-OLDF and Revised LP-OLDF are not zero, RIP gene subspace is 22 greater
than Revised IPLP-OLDF and Revised LP-OLDEF. All coefficients including the
intercept of three SVMs are not zero. Golub microarray has 7,129 genes. The 903
coefficients of H-SVM and 904 coefficients of SVM1 are zero. H-SVM and SVM1
can select features of Golub microarray. However, we consider these SVMs cannot
find SM and BGS, because number of non-zero coefficients are large.
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To summarize these results are as follows:

(1) H-SVM and SVM1 can select features of Golub microarray, and 903 and 904
coefficients of two SVMs are zero. H-SVM and SVM1 cannot reduce the sub-
space to smaller SM again. Thus, these LDFs, like LASSO, cannot find SM and
BGS fewer than case numbers because of QP prevents it. We hope Golub give
us valuable information about this fact.

(2) However, because Revised LP-OLDF is faster than RIP, Revised LP-OLDF is
another choice to survey about SMs.

Table 1.2 Validation of discriminant coefficients

LDF Level Alon Chiaretti Golub Shipp Singh Tian
RIP 0 1938 12,498 7057 7065 12,534 12,452
1 62 127 72 64 91 173
Total 2000 12,625 7129 7129 12,625 12,625
IPLP 0 1960 12,587 2102 7108 12,550 12,507
1 40 38 27 21 75 118
Total 2000 12,625 7129 7129 12,625 12,625
LP 0 1960 12,587 2103 7108 12,550 12,486
1 40 38 26 21 75 139
Total 2000 12,625 7129 7129 12,625 12,625
HSVM |0 0 0 903 0 0 0
1 2000 12,625 6226 7129 12,625 12,625
Total 2000 12,625 7129 7129 12,625 12,625
SVM4 0 0 0 0 0 0 0
1 2000 12,625 7129 7129 12,625 12,625
Total 2000 12,625 7129 7129 12,625 12,625
SVM1 0 0 0 904 0 0 0
1 2000 12,625 6225 7129 12,625 12,625
Total 2000 12,625 7129 7129 12,625 12,625

1.6.2.2 Detail of the Matryoshka Feature Selection Method

We explain Method?2 briefly. Table 1.3 is the output of Golub microarray by LINGO
Program3. Two columns LOOP1 and LOOP2 are the sequence number of big and
small loops of Method2. RIP discriminates the microarray with 7,129 genes in the
LOOPI1 = 1 and LOOP2 = 1, and only 34 coefficients of RIP are not zero. In general,
this number is less than the case number such as 72. In the second small loop (LOOP1
= 1, LOOP2 = 2), we discriminate the smaller Matryoshka with 34 genes again,
and only 11 coefficients are not zero. Thus, we get the Matryoshka sequence such as
Matryoshka7,129 — Matryoshka34 — Matryoshkal 1 drastically. We stop at LOOP2
= 4 because we cannot find the smaller Matryoshka. We call Matryoshka 11 as the
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SM1 because RIP cannot locate the smaller Matryoshka anymore. We exclude the
first SM1 with 11 genes from the big Matryoshka with 7,129 genes and make the
second big Matryoshka with 7,118 genes. In the second big loop at LOOP1 = 2, we
get the second SM2 with 16 genes. We can continue this loop until it cannot naturally
select features and find small subspace with MNM >= 1.

5;‘(’)‘;;3 Outlook for SN LOOPI  |LOOP2 | Gene MNM
1 1 1 7129 0
2 1 2 34 0
3 1 3 11 0
4 1 4 1 0
16 2 1 7118 0
17 2 2 36 0
18 2 3 18 0
19 2 4 16 0
20 2 5 16 0

After LINGO Program3 finds 69 SMs in Table 1.4, it stops the big loop when MNM
is higher than one at LOOP1 = 70. However, we can continue this loop by changing
the option and list up all small subspaces with MNM >= 1. Thus, Method?2 can apply
for other gene data that are not LSD. However, it is difficult to find valid meanings
in non-LSD subspaces. Because Golub microarray consists of 69 SMs that are LSD,
it is vital for us to analyze all SMs for cancer gene diagnosis.

Table 1..4 All SMs of Golub Loopl Loop2 Gene n MNM
et al. microarray
1 11 7129 11 0
11 7118 16 0
11 7102 11 0
32 11 6683 19 0
33 11 6664 16 0
34 11 6648 18 0
35 11 6630 17 0
36 11 6613 19 0
37 11 6594 12 0
38 11 6582 16 0
67 11 5976 23 0
68 11 5953 31 0
69 11 5922 31 0
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1.6.3 Validation of Method2 by Japanese 44 Cars Data

1.6.3.1 Japanese 44 Cars Data

Japanese car data consists of the 29 regular cars and 15 small cars. The six indepen-
dent variables are the emission rate (X1), the price (X2), the number of seats (X3),
CO2(X4), fuel (X4), and sales (X6). Because the emission (X1) and capacity (X3)
of small cars are less than those of regular cars, two MNMs of these one-variable
models are zero, and those are BGSs. Figure 1.3 shows the Box-whisker plots of X1
and X3. These graphs tell us that X1 and X3 are linearly separable models. Thus, 48
MNMs including (X1) or (X3) are zero. Other 15 MNMs are not zero.

1=/One way Anova of Emission rate 4~/One way Anova of Seat
3.5
84
34
2.5 : 74
= 24 . Q6
1.5 s 54
%
o 1 ]
4
0.5
-1 T 1 -1 T 1
Small/Regular Small/Regular

Fig. 1.3 Box-whisker plots of emission and capacity (—1: small car, 1: regular car)

Table 1.5 shows the result of a stepwise forward method that chooses X1, X2,
X3, X4, X5, and X6 in this order. “MNM” column is MNMs of RIP. Because X1
is BGS, all models including X1 are zero by the MNM monotonic decrease. On the
other hand, LDF column (Fisher’s LDF) shows four NMs of (X1), (X1, X2), (X1,
X2, X3), and (X1, X2, X3, X4) are not zero. Although two NMs of (X1) and (X1,
X2) by QDF are zero, QDF misclassifies all 29 regular cars to the small cars because
the seat numbers of 15 small cars are four and those numbers of 29 regular cars vary
from five to eight. If we add a small random number the constant value, we can solve
Problem3. If we set two parameters such as “A = y = 0.8,” RDA’s NMs are over
two. By the grid search of two parameters such as “A =y = 0.1,” all NMs of six
models change zero. Because there is no rule to choose the best parameter values,
we must survey the better parameters by try and error. This is the reason why we do
not recommend RDA and S-SVM.
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Table 1.5 Comparison of MNM and NMs

Var. MNM LDF QDF A=y= 0.1
0.8
1 Emission (X1) 0 2 2 0
2 Price (X2) 0 1 4 0
3 Capacity (X3) 0 1 29 3 0
4 CO; (X4) 0 1 29 4 0
5 Fuel (X5) 0 0 29 5 0
6 Sales (X6) 0 0 29 5 0

1.6.3.2 Validation of Method2 by Japanese Car Data

When LINGO Program3 discriminates against Japanese car data, we obtain the result
in Table 1.6. “SM” column is the sequential number of SM found by Program3. “IT”
column shows the iteration of LOOP2 until three steps introduced in Table 1.3. In the
three steps, Program3 finds the first SM 1. From the fifth column to the tenth column
in the third row shows the value of “Choice.” Because six values are 1 s, Program3
discriminates against six-variable model at first. “SUM” column shows the number
of selected variables. The last column “c”’ means that the constant is always included
in the model. Although the constant sometimes becomes zero, Method2 fixes the
constant to 1. The first discrimination, MNM = 0. Because only the coefficient of
X1 is not zero, the other five values from X2 to X6 become to O s in the second
step. When Program3 discriminates one-variable model again, there is no change.
Because of choosing “IT = 3,” Program3 discriminates one-variable model again
and stop the first big loop. We obtain SM1 including X1 that is the first BGS1. In
the second big loop, Program3 drops X1 and discriminates five-variable model in
the first step. Moreover, the only third coefficient is not zero. In the second and third
steps, Program3 discriminates against this model and stops the second big loop.
Thus, Program3 finds the second SM2. In the third big loop, it discriminates the
four-variable model, and two coefficients of X2 and X5 are not zero. Because of
“MNM = 4,” this is not SM. However, we call it SM3 in this section. In the fourth
step, it finds SM4 that consists of the two-variable model such as (X4, X6). Because
we terminate big loop under the condition “NM >=15,” Program3 terminates in the
fifth big loop and output “NM = 15.” The first row indicates Program3 finds four
SMs as follows: SM1 = (X1), SM2 = (X3), SM3 = (X2, X5), and SM4 = (X4).
Four NMs of SM1, SM2, SM3, and SM4 are 0, 0, 4 and 9, respectively.
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Table 1.6 Results by RIP

X6

X5

X4

X3

X2

X1

Matryoshka| 1

SUM

NM

15
15
15

IT

SM

Table 1.7 is the result of Revised LP-OLDF. Program3 finds four SMs as follows:
SM1 = (X1), SM2 = (X3), SM3 = (X2, X4, X6), and SM4 = (X5). Because NM
of (X5) is over than 15, it terminates in the fourth big loop and output “NM = 15.”

Table 1.7 Result by Revised LP-OLDF

X6

X5

X4

X3

X2

X1

SUM

NM

15
15
15

IT

SM
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Table 1.8 is the result of H-SVM, SVM4, and SVM1. Because six coefficients of
three SVMs are not zero, Program3 terminates in the first big loop.

Table 1.8 Result by H-SVM, SVM4, and SVM1
SM|IT NM SUM X1 X2 X3 X4 X5 X6
1 1 - 6 1 1 1 1 1 1
1 2 - 6 1 1 1 1 1 1
1 3 - 6 1 1 1 1 1 1

—_| = |- | &

1.6.3.3 Six Coefficients of Six MP-Based LDFs

Table 1.9 shows six MP-based LDF coefficients by Program1. We set the “absolute
value <= 10"—9” is showed as zero. In three OLDFs of step1, both X3 and constant
are zero. Three columns such as “O< , =0, >0 show the case number of which
discriminant score y; * f(x;) satisfy the condition. All 44 cars are classified correctly.
Seven “1/0” values of “Choice” row indicate which variables are included in the
model. In step 2, we drop (X2, X3) in the models. Six LDFs are in Eq. (1.11). Thus,
three OLDFs choose X1 as BGS correctly. The emission rate of small and regular
cars ranges from [0.657, 0.658] to [0.996, 3.456], respectively. We can discriminate
the data by X1 = (0.658 + 0.996) /2 = 0.827. Because X1 = 4.89/5.9172 = 0.825,
the hyperplane of the threshold are almost the same.

Three OLDFs : 5.9172 % X1 — 4.89

HSVM : 59172 %« X1+ 1E — 08 * X4 + 7E — 08 % X5 — 4.89

SVM4 : 59175 %« X1 — 0% X4 — 0.02 % X5 + 8E — 07 « X6 — 3.97

SVMI :2.9806 %« X1 +4E — 06« X4 + 1E — 05 % X5 — 2.96 (1.11)
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In step 3, we drop (X1) in the models. Six LDFs are in Eq. (1.12). Five LDFs
except for SVM4 find the second BGS X3 correctly. The seats of small and regular
cars are 4 and [5, 8], respectively. We can discriminate the data by X3 = (4 + 5)/ 2
= 4.5 as the discriminant hyperplane is X3 = 4.5. This means the average of small
cars seat numbers and the minimum seat number of regular cars.

RIP:2%xX3 -9
IPLP:2%xX3 -9
LP:2%xX3-9
HSVM : 2% X3 -9
SVM4 :9E — 09 % X2 +2.005% X3 — 0x X4 — 4E — 08 * X5 — 8.99
SVM1:2%xX3 —9
(1.12)

In step 4, we drop X1 and X3 in the models. NMs of RIP, IPLP, LP, H-SVM,
SVM4, and SVM1 are 3, 3, 4, 4, 4, and 4, respectively. Thus, LINGO Program1 can
simulate Program3 by step-by-step discrimination and conclude as follows:

(1) Three OLDFs can select two BGSs correctly.
(2) H-SVM and SVMI1 can scarcely select features.
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1.6.4 Examination of Duplicate Data

We copy the data twice because there may be redundant pairs of genes. Six original
variable names replace to C1-C6. First and second copy variable names change
to c11-c16 and c21-c26. Program3 discriminates this data by ten small loops in
Table 1.10. Program3 can decompose three SMs and three BGS. Three SMs include
c21, c11 and C1. Three BGSs include one of ¢23, C3 and c13. These results show
that three copies of X1 do not become BGSs because X1 fluctuates. On the other
hand, because X3 is the constant, Program3 can find three BGSs.

Japanese Car Data with 18 variables = S1 U S2 U S3 U S4 U S5 U S6
= (C2, C6, c21, c24, c25) U (cl1, cl4, cl5, cl6, c22) U (C1, C4, C5, c12, c26)
U(c23) U (C3) U (c13)

(1.13)

Program3 cannot find three BGSs such as (C1), (c11), and (c21). However, it finds
three SMs such as (C2, C6, c21, c24, ¢25) U (cl11, cl4, cl5, cl16, c22) U (C1, C4,
C5, c12, ¢26) before three BGSs such as (c23) U (C3) U (c13). Therefore, we expect
Program3 can decompose the redundant gene pairs.
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Table 1.11 shows six RIPs corresponding to Table 1.10. Three SMs and three
BGSs have the same coefficients.

Table 1.11 Six RIPs corresponding to Table 1.10

IT C2 Cé6 c21 c24 c25 [

1 —3E—-08 —2E—-05 5.9999 —0.019 —0.132 0

10 —3E—-08 —2E—05 5.9999 -0.019 —0.132 0
cll cl4 cls clé6 c22 c

1 5.9999 —0.019 —0.132 —2E—05 —3E—-08 0

10 5.9999 —0.019 —0.132 —2E—05 —3E—08 0
C1 C4 Cs cl2 c26 c

1 5.9999 -0.019 —0.132 —3E—-08 —2E—05 0

10 5.9999 —-0.019 —0.132 —3E—-08 —2E—05 0
1 2 c23 4 5 c

1 2 -9

10 2 -9
1 2 C3 4 5 c

1 2 -9

10 2 -9
1 2 cl3 4 5 c

1 2 -9

10 2 -9

1.7 Conclusion

From 1999 to 2004, six major research groups published papers on oncogene analysis
using six microarrays and released their microarrays to the Internet. Golub et al.
published an article in Science 1999 and summarized their research as follows.
“Although cancer classification has improved over the past 30 years, we identify new
cancer classes (class findings) or assign tumors to known classes (class predictions).
Here, a generic approach to cancer classification based on gene expression monitoring
by DNA microarrays is described and applied to acute human leukemias as a test
case. A class discovery procedure automatically discovered the distinction between
acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) without
previous knowledge of these classes. An automatically derived class predictor was
able to determine the class of new leukemia cases. The results demonstrate the
feasibility of cancer classification based solely on gene expression monitoring and
suggest a general strategy for discovering and predicting cancer classes for other
types of cancer, independent of previous biological knowledge.” Therefore, we can
see that this kind of research started at least around 1970.
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Because these microarrays are high-dimensional data characterized as “small n
large p,” statisticians targeted this theme as a new frontier of statistics. However, they
offered no noticeable result. They summarized the difficulties with the following three
excuses.

(1) Small n large p
(2) NP-hard
(3) Itis difficult to separate signal and noise in high-dimensional gene space.

These excuses are mainly for statistical discriminant functions based on vari-
ance—covariance matrices because these discriminant functions could not discrimi-
nate LSD correctly. This fact is the reason why researchers could not solve the cancer
gene analysis since 1970.

On the other hand, we developed the theory (Shinmura 2016d) that solved this
theme only 54 days in 2015 as follows.

(1) Six microarrays are LSD and have the Matryoshka structure (Fact3).

(2) Method?2 finds the microarrays consist of many SMs and other noise subspace
very easy (Fact4). That is, three excuses are right only for statistical discrimi-
nant functions based on variance—covariance matrices. Why did not statistical
researchers know that the microarray was LSD? This answer is that they did
not know the essential definition of the signal. There was no exact definition
of the signal until now. Furthermore, they could not solve ProblemS by the
statistical discriminant functions and decompose the microarrays into many
SMs. Chapter 1 explains these two new facts clearly. After Chap. 3, we explain
the reasons why the statistical discriminant functions cannot discriminate the
microarrays and all SMs from the viewpoints of many examinations.

Acknowledgements We can achieve our research by the dominant software such as LINGO sup-
ported by LINDO Systems Inc. and JMP backed by SAS Institute Japan Ltd. JMP Japan Division.

References

Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ (1999) Broad patterns
of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by
oligonucleotide arrays. Proc Natl Acad Sci USA, 96(12):6745-6750

Anderson E (1945) The irises of the Gaspe Peninsula. Bull Am Iris Soc 59:2-5

Brahim AB, Lima M (2014) Hybrid instance based feature selection algorithms for cancer diagnosis.
Pattern Recogn Lett 8

Buhlmann P, Geer AB (2011) Statistics for high-dimensional data-method, theory, and applications.
Springer, Berlin

Charikar M, Gurus V, Kumar R, Rajagopalan S, Saha A (2000) Combinatorial feature selection
problems. IEEE Xplore, pp 631-640

Chiaretti S, Li X, Gentleman R, Vitale A, Vignetti M, Mandelli F, Ritz J, Foa R (2004) Gene
expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients
with different response to therapy and survival. Blood 103/7: 2771-2778


https://doi.org/10.1007/978-981-13-5998-9_1

42 1 New Theory of Discriminant Analysis and Cancer Gene Analysis

Cox DR (1958) The regression analysis of binary sequences (with discussion). J Roy Stat Soc B
20:215-242

Diao G, Vidyashankar AN (2013) Assessing genome-wide statistical significance for large p small
n problems. Genetics 194:781-783

Firth D (1993) Bias reduction of maximum likelihood estimates. Biometrika 80:27-39

Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7:179-188

Fisher RA (1956) Statistical methods and statistical inference. Hafner Publishing Co., New Zealand

Flury B, Riedwyl H (1988) Multivariate statistics: a practical approach. Cambridge University Press,
New York

Friedman JH (1989) Regularized discriminant analysis. ] Am Stat Assoc 84(405):165-175

Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing
JR, Caligiuri MA, Bloomfield CD, Lander ES (1999) Molecular classification of cancer: class
discovery and class prediction by gene expression monitoring. Science 286(5439):531-537

Goodnight JH (1978) SAS technical report—the sweep operator: its importance in statistical com-
puting—R(100). SAS Institute Inc, USA

Ishi A, Yata K, Aoshima M (2014) Asymptotic distribution of the largest eigenvalue via geometric
representations of high-dimensional, low-sample-size data. Sri Lankan J Appl Statist, Special
issue: modern statistical methodologies in the cutting edge of science (ed. Mukhopadhyay N):
81-94

Jeffery IB, Higgins DG, Culhane C (2006) Comparison and evaluation of methods for generating
differentially expressed gene lists from microarray data. BMC Bioinf 7(1):359 https://doi.org/10.
1186/1471-2105-7-359

Lachenbruch PA, Mickey MR (1968) Estimation of error rates in discriminant analysis. Techno-
metrics 10(1):11

Markowitz HM (1959) Portfolio selection, efficient diversification of investment. Wiley, USA

Miyake A, Shinmura S (1976) Error rate of linear discriminant function. In: Dombal FT, Gremy F
(ed) North-Holland Publishing Company, The Netherland, pp 435445

Miyake A, Shinmura S (1980) An algorithm for the optimal linear discriminant function and its
application. Japan Soc Med Electron Biol Eng 1815:452-454

Nomura Y, Shinmura S (1978) Computer-assisted prognosis of acute myocardial infarction. MED-
INFO 77, In: Shires W (ed) IFIP, North-Holland Publishing Company, pp 517-521

Sall JP (1981) SAS regression applications. SAS Institute Inc. USA (Shinmura S. translate Japanese
version)

Sall JP, Creighton L, Lehman A (2004) JMP start statistics, 3rd edn. SAS Institute Inc. USA
(Shinmura S. edits Japanese version)

Schrage L (1991) LINDO—an optimization modeling systems. The Scientific Press, USA (Shin-
mura S, Takamori H translate Japanese version)

Schrage L (2006) Optimization modeling with LINGO. LINDO Systems Inc. (Shinmura S translates
Japanese version)

Shimizu T, Tsunetoshi Y, Kono H, Shinmura S (1975). Classification of subjective symptoms of
junior high school students affected by photochemical air pollution. J Jpn Soc Atmos Environ
9(4):734-741. Translated for NERC Library, EPA, from the original Japanese by LEO Cancer
Associates, P.O. Box 5187 Redwood City, California 94063, Nov 1975 (TR 76-213)

Shinmura S, Kitagawa M, Takagi Y, Nomura Y (1973) The spectrum diagnosis by a two-stage
weighting. In: The 12th conference of BME, pp107-108

Shinmura S, Kitagawa M, Nomura Y (1974) The spectrum diagnosis (Part 2). In: The 13th confer-
ence of BME, pp 414-415

Shinmura S, Miyake A (1979) Optimal linear discriminant functions and their application. COMP-
SAC 79:167-172

Shinmura S, Suzuki T, Koyama H, Nakanishi K (1983) Standardization of medical data analysis
using various discriminant methods on a theme of breast diseases. MEDINFO 83, In Vann Bemmel
JH, Ball MJ, Wigertz O (ed) North-Holland Publishing Company, pp 349-352

Shinmura S (1984) Medical data analysis, model, and OR. Oper Res 29(7):415-421


https://doi.org/10.1186/1471-2105-7-359

References 43

Shinmura S, lida K, Maruyama C (1987) Estimation of the effectiveness of cancer treatment by
SSM using a null hypothesis model. Inf Health Soc Care 7(3):263-275. https://doi.org/10.3109/
1463923870901008

Shinmura S (1998) Optimal linear discriminant functions using mathematical programming. J
Japanese Soc Comput Stat 11(2):89-101

Shinmura S, Tarumi T (2000) Evaluation of the optimal linear discriminant functions using integer
programming (IP-OLDF) for the normal random data. J Japanese Soc Comput Stat 12(2):107-123

Shinmura S (2000a) A new algorithm of the linear discriminant function using integer programming.
New Trends in Probability and Statistics 5:133—142

Shinmura S (2000b) Optimal linear discriminant function using mathematical programming. Dis-
sertation, Okayama University, Japan, p 101, March 2000

Shinmura S (2001) Analysis of effect of SSM on 152,989 cancer patient. ISI2001.1-2. https://doi.
org/10.13140/rg.2.1.30779281

Shinmura S (2003) Enhanced algorithm of IP-OLDF. ISI2003 CD-ROM, pp 428-429

Shinmura S (2004) New algorithm of discriminant analysis using integer programming. IPSI 2004
Pescara VIP Conference CD-ROM, pp 1-18

Shinmura S (2005) New age of discriminant analysis by IP-OLDF—beyond fisher’s linear discrim-
inant function. ISI2005, pp 1-2

Shinmura S (2007a) Overviews of discriminant function by mathematical programming. J Japanese
Soc Comput Stat 20(12):59-94

Shinmura S (2007b) Comparison of revised [IP-OLDF and SVM. ISI12009, pp 1-4

Shinmura S (2009) Practical discriminant analysis by IP-OLDF and IPLP-OLDF. In: IPSI 2009,
Belgrade VIPSI Conference, CD-ROM, pp 1-17

Shinmura S (2010a) The optimal linearly discriminant function. Union of Japanese Scientist and
Engineer Publishing, Japan. ISBN 978-4-8171-9364-3

Shinmura S (2010b) Improvement of CPU time of revised IP-OLDF using linear programming. J
Japanese Soc Comput Stat 22(1):39-57

Shinmura S (2011a) Beyond fisher’s linear discriminant analysis—new world of the discriminant
analysis. ISI2011 CD-ROM, pp 1-6

Shinmura S (2011b) Problems of discriminant analysis by mark sense test data. Japanese Soc Appl
Stat 4012:157-172

Shinmura S (2013) Evaluation of optimal linear discriminant function by 100-fold cross-validation.
1S12013 CD-ROM, pp 1-6

Shinmura S (2014a) End of discriminant functions based on variance-covariance matrices.
ICORE2014, pp 5-16

Shinmura S (2014b) Improvement of CPU time of linear discriminant functions based on MNM
criterion by IP. Stat Optim Inf Comput 2:114-129

Shinmura S (2014c) Comparison of linear discriminant functions by K-fold cross-validation. Data
Anal 2014:1-6

Shinmura S (2015a) The 95% confidence intervals of error rates and discriminant coefficients. Stat
Optim Inf Comput 2:66-78

Shinmura S (2015b) A trivial linear discriminant function. Stat Optim Inf Comput 3:322-335.
https://doi.org/10.19139/s0ic.20151202

Shinmura S (2015c¢) Four serious problems and new facts of the discriminant analysis. In: Pinson
E, Valente F, Vitoriano B (ed) Operations research and enterprise systems. Springer, Berlin, pp
15-30. ISSN 1865-0929, ISBN 978-3-319-17508-9, https://doi.org/10.1007/978-3-319-17509-6)

Shinmura S (2015d) Four problems of the discriminant analysis. ISI 2015:1-6

Shinmura S (2015¢e) The discrimination of microarray data (Ver. 1). Res Gate 14

Shinmura S (2015f) Feature selection of three microarray data. Res Gate 1-7

Shinmura S (2015g) Feature selection of microarray data—Shipp et al microarray data. Res Gate
1-11

Shinmura S (2015h) Validation of feature selection—Alon et al microarray data. Res Gate 1-11

Shinmura S (20151) Repeated feature selection method for microarray data. Res Gate 1-12


https://doi.org/10.3109/1463923870901008
https://doi.org/10.13140/rg.2.1.30779281
https://doi.org/10.19139/soic.20151202
https://doi.org/10.1007/978-3-319-17509-6

44 1 New Theory of Discriminant Analysis and Cancer Gene Analysis

Shinmura S (2015j) Comparison fisher’s LDF by JMP and revised IP-OLDF by LINGO for
microarray data. Res Gate 1-10

Shinmura S (2015k) Matryoshka trap of feature selection method—Golub et al microarray data.
Res Gate 1-14

Shinmura S (20151) Minimum sets of genes of Golub et al. Microarray Data. Research Gate: 1.12

Shinmura S (2015m) Complete lists of small matryoshka in Shipp et al. microarray data. Res Gate
1-81

Shinmura S (2015n) Sixty-nine small matryoshka in Golub et al. microarray data (9). Res Gate 1-58

Shinmura S (20150) Simple structure of Alon et al. microarray data. Res Gate (10):1-34

Shinmura S (2015p) Feature selection of Singh et al. microarray data. Res Gate (11):1-89

Shinmura S (2015q) Final list of small matryoshka in Tian et al. microarray data. Research Gate
(12):1-60

Shinmura S (2015r) Final list of small matryoshka in Chiaretti et al. microarray data. Research
Gate (13):1-16

Shinmura S (2015s) Matryoshka feature selection method for microarray data. Research Gate
(14):1-16

Shinmura S (2016a) Matryoshka feature selection method for microarray data. Biotechnol 2016:1-8
(Best Paper Award)

Shinmura S (2016b) The best model of Swiss bank note data. Stat Optim Inf Comput 4:118-131.
https://doi.org/10.19139/soic.v4i2.178, ISSN 2310-5070 (online), ISSN 2311-004X (print)

Shinmura S (2016c¢) Discriminant analysis of the linearly separable data—Japanese 44 cars. J Stat
Sci Appl 4(7-8):165-178. https://doi.org/10.17265/2328-224x/2016.0708.001

Shinmura S (2016d) New theory of discriminant analysis after R. Fisher. Springer. ISBN 978-
981.10-2163-3, ISBN 978-981.10-2164-0 (eBook), https://doi.org/10.1007/978-981.10-2164-0

Shinmura S (2016e) The 100-fold cross-validation for small sample. Data Anal 2016:1-8

Shinmura S (2017a) From cancer gene to cancer gene diagnosis. Amazon

Shinmura S (2017b) Examination of 64 small matryoshka (SM) of Alon et al. microarray
microarray. Biotechno2017 1-8

Shinmura S (2017c) Cancer gene analysis by Singh et al. microarray data. ISI2017, pp 1-6

Shinmura S (2018a) Cancer gene analysis of microarray data. In: 3rd IEEE/ACIS international
conference on BCD’18, pp 1-6

Shinmura S (2018b) First success of cancer gene analysis by microarrays. In: Biocomp’18, pp 1-7

Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, Gaasenbeek M, Angelo M,
Reich M, Pinkus GS, Ray TS, Koval MA, Last KW, Norton A, Lister TA, Mesirov J, Neuberg
DS, Lander ES, Aster JC, Golub TR (2002) Diffuse large B-cell lymphoma outcome prediction
by gene-expression profiling and supervised machine learning. Nat Med 8(1.1):68-74. https://
doi.org/10.1038/nm0102-6

Simon N, Friedman J, Hastie T, Tibshirani R (2013) A sparse-group lasso. J Comput Graph Stat
22:231-245

Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P, Renshaw AA, D’ Amico
AV, Richie JP, Lander ES, Lada M, Kantoff PW, Golub TR, Sellers WR (2002) Gene expression
correlates of clinical prostate cancer behavior. Cancer Cell 1(2):203-209

Stam A (1997) Non-traditional approaches to statistical classification: some perspectives on
Lp-norm methods. Ann Oper Res 74:1-36

Taguchi G, Jugular R (2002) The Mahalanobis-Taguchi strategy—a pattern technology system.
Wiley

Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy JD (2003) The Role of the
Wnht-signaling antagonist DKKI1 in the development of osteolytic lesions in multiple myeloma.
N Engl J Med 349(26):2483-2494

Vapnik V (1995) The nature of statistical learning theory. Springer


https://doi.org/10.19139/soic.v4i2.178
https://doi.org/10.17265/2328-224x/2016.0708.001
https://doi.org/10.1007/978-981.10-2164-0
https://doi.org/10.1038/nm0102-6

Chapter 2 ®)
Overview of Cancer Gene Diagnosis Gzt

Abstract This chapter explains the cancer gene diagnosis using all Small
Matryoshkas (SMs) of six microarrays found in 2016. Section 2.2 explains the dif-
ferent role of cancer gene analysis and cancer gene diagnosis because these technical
terms are our original ones. Section 2.3 shows the analysis of 64 SMs obtained by
RIP using Alon’s microarray. Section 2.4 shows the usefulness of 64RIP discriminant
scores (RipDSs) and new data made by 64 RipDSs instead of 2,000 genes. Thus, we
consider RipDSs new data is signal instead of 64 SM. Section 2.5 shows the same
analysis of 130 BGSs of Alon’s microarray found by LINGO Program4 in 2016.
BGS is as same as the Yamanaka’s four genes in iPS research. Section 2.6 shows
the cancer gene diagnosis of other five microarrays those are analyzed in the same
way as Alon. Section 2.7 is the conclusion. Alon and Singh’s microarrays consist of
cancer and normal classes. Other four microarrays consist of two different types of
cancer classes. It is vital for us that six results are almost the same. Thus, we expect
another microarray’s result is as same as our results if medical researchers control
two classes strictly.

Keywords Gene diagnosis -+ Malignant indicators + Small Matryoshka (SM) -
Basic gene subspace (BGS) + Discriminant scores (DSs) - RatioSV of RIP and PCA

2.1 Introduction

We developed the new theory of discriminant analysis (theory) and solved five prob-
lems of discriminant analysis by 2015 (Shinmura 2016). Since 1970, many statis-
ticians and engineers failed to identify oncogenes from microarrays (ProblemS5)
because statistical discriminant functions were useless for cancer gene analysis.
Mainly, we could completely solve the cancer gene analysis (ProblemS5) as an applied
problem of our theory. Six medical projects published their articles in prominent
medical journals from 1999 to 2004 and released the microarrays on the Internet
(Golub et al. 1999; Alon et al. 1999; Shipp et al. 2002; Singh et al. 2002; Tian et al.
2003; Chiaretti et al. 2004). When Revised IP-OLDF (RIP) and the Matryoshka fea-
ture selection method (Method2) analyzed six microarrays, our cancer gene analysis
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quickly completed in 54 days of 2015. RIP and Method2 could decompose microar-
rays into many SMs. Chapter 1 explains these results. Our cancer gene analysis was
the first successful example of “big data analysis or high-dimensional data analysis”
which was the latest leading theme in statistical analysis. We found the five problems
and two facts of the discriminant analysis and solved five problems entirely.

This chapter explains the cancer gene diagnosis by statistical analysis of all SMs
found in 2016 (Shinmura 2017). Section 2.2 explains the different role of cancer gene
analysis and cancer gene diagnosis because these technical terms are our original
ones. Although medical research authorized about 100 “oncogenes,” we define the
gene combination included in each SM found by Method?2 as “cancer genes.” Thus,
we claim we can first succeed in cancer gene analysis. However, physicians need to
examine and validate our malignant indicators are useful for cancer gene diagnosis.
Section 2.3 shows the analysis of 64 SMs obtained by RIP using Alon’s microarray.
The standard statistical methods analyze the 64 SMs. We choose SM8 because its
RatioSV is large. One-way ANOVA with t-test indicates there are three types of
t-values such as the positive, almost zero, and negative values. These results tell us
a proper combination of thee-types genes can separate two classes. If we omit genes
that have t-values near zero, MNM will exceed 1. We claimed we could first succeed
in cancer gene analysis. However, we expect that physicians examine and validate
our malignant indicators that are useful for cancer gene diagnosis because we are not
the specialist in this area. If they confirm our results, we will be able to open the new
frontier of cancer gene diagnosis shortly. We confirmed MNM using 47 oncogenes
was not zero by data gathered at Japanese cancer blood testing center. However,
our all results showed two classes were separable in the proper gene combinations
such as SM or BGS. Section 2.4 shows the usefulness of 64 RIP discriminant scores
(RipDSs) and new data made by 64 RipDSs. PCA and Ward cluster analyze new data
and obtain the linear separable fact, and PCA shows several outliers. If we analyze
the transpose data of new data, we obtain many outliers those are expected to be new
classes of cancer pointed out by Golub et al. Sect. 2.5 shows the same analysis of 130
BGSs of Alon’s microarray found by LINGO Program4 in 2016. BGS is as same as
the Yamanaka’s four genes in iPS research. If we drop one gene from BGS, MNM of
which is greater than 1 and noise. Because 130 RatioSVs of BGSs are less than 1%,
we think BGS is not useful for cancer gene diagnosis. We must validate the results
of BGS by Method1. Probably, BGS is essential to survey the role of the cancer
gene. We examine BGS128 by standard statistical methods because its RatioSV is
the maximum value 0.9%. Section 2.6 shows the cancer gene diagnosis of other
five microarrays analyzed in the same way as Alon. Section 2.7 is the conclusion.
Alon and Singh’s microarrays consist of the cancer and normal classes. Other four
microarrays consist of two different types of cancer classes. It is vital for us that six
results are almost the same. Thus, we expect another microarray’s result is as same
as our results if medical research strictly controls two classes.

Chapter 1 introduced theory about five problems and two facts. After this chapter,
we discuss the cancer gene diagnosis using cancer malignancy indicators.
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2.2 Cancer Gene Diagnosis

In this book, all chapter, except Chaps. 1 and 10, discuss cancer gene diagnosis
analyzing SMs found by the RIP and Revised LP-OLDF.

(1) Why could not the standard statistical methods find the linearly separable fact
in SMs?

At first, we expect the standard statistical methods can find the linear separable
fact that two classes are separable in each SM. Although we tried to consider the
meaning of PCA and cluster analysis, we could not find useful results. Thus, we
recognized our trials are meaningless. On the other hand, three OLDFs and H-SVM
can discriminate all SMs entirely, and there are many RatioSVs over 5%. We find
many facts that explain the reason why the standard statistical methods cannot find
the linearly separable fact in SMs. However, because RIP, Revised LP-OLDF, and
H-SVM can discriminate all SMs completely, we make several new data made by
RIP discriminant scores (RipDSs), Revised LP-OLDF DSs (LpDSs) and H-SVM
DSs (HsvmDSs) as variables instead of genes. Although there are many malignancy
indicators by RipDSs, LpDSs, and HsvmDSs, Prinl is another malignancy indicator.
Many outliers found by PCA may be the new subclasses of cancer pointed out
by Golub et al. (1999). They developed new methods of cancer gene analysis and
cancer gene diagnosis. However, their methods are difficult for researchers without
the background of medical bits of knowledge. On the other hand, our methods are the
standard statistical methods and offer many pieces of information for both medical
experts and medical non-experts.

(2) This Book Conclusion

This book shows that only RIP and Revised LP-OLDF can decompose microarrays
into many SMs. Although the standard statistical methods cannot find the linear
separable fact, RIP, Revised LP-OLDF, and H-SVM can separate both SMs found
by the RIP and Revised LP-OLDF into two classes entirely. Thus, we obtain many
malignancy indicators made by three LDFs using both different types of SMs. We
make six types of new data by RipDSs, LpDSs, and HsvmDSs as variables. However,
five chapters from Chaps. 2 to Chap. 6 introduce the results of new data made by the
combination of RIP using SM found by RIP. Chapters 7-9 introduce the new data
made by LpDSs. Our examinations show that all malignancy indicators by RipDSs,
LpDSs, and HsvmDSs are useful for cancer gene diagnosis. Moreover, PCA and
several hierarchical cluster analyses show almost the same results. It seems that for
the data managed for research, microarray data may give almost the same results as
shown in this book. Outliers found by PCA may be useful to find new subclasses of
cancer.
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2.3 Analysis of 64 SMs Obtained by Alon’s Microarray

In this section, LINGO Program3 (Schrage 2006) of RIP can discriminate Alon’s
microarray correctly and separate the microarray into 64 SMs (1,999 genes) and
noise subspace (one gene). We omit this one gene from our analysis. Alon et al.
analyzed 6,500 genes by SOM and identified 2,000 genes as oncogenes. Because
both ways got nearly the same result that 2,000 genes are oncogenes and cancer
genes' included in 64 SMs, it shows the validity of each other’s method. Although
Revised LP-OLDF can select cancer genes naturally as same as RIP, we do not
discuss these SMs because we wish to accomplish our analysis of SM as soon as
possible in Alon’s microarray. At first, standard statistical methods analyze 64 SMs
that consist of 62 subjects (62 cases) and 1,999 genes (1,999 variables). Because all
NMs of logistic regression are zero, logistic regression confirms 64 SMs as signals.
However, other standard statistical methods do not show two classes are separable in
most SMs. On the other hand, when analyzing new data consisting of 62 subjects and
64 RipDSs (64 variables), surprising results are found that two classes are entirely
separable in new data by PCA and cluster analysis. These two different results reveal
the reason why cancer gene analysis and cancer gene diagnosis are difficult until
now (Problem6). Now, only three OLDFs can decompose microarray into signals
and noise. H-SVM and statistical discriminant functions are useless for cancer gene
analysis.

2.3.1 Analysis of 64 SMs

2.3.1.1 NMs of 64 SMs by Four Statistical Discriminant Functions

Table 2.1 shows 64 SMs from SM = 1 to SM = 64 that is the order found by
RIP. This table is sorted in descending order by RatioSV. “Gene” column is the
number of genes included in each SM. The range of gene number is [21, 42] and 64
SMs include 1,999 genes. LP and IP select less 62 nonzero coefficients from 2,000
genes. The maximum number of actual nonzero coefficients is 42. Because the ratio
of signal (RatioS) is 99.9% (=1,999/2,000 * 100%), only this microarray has high
RatioS compared with other five microarrays. It was worthy of praise that SOM
could select 2,000 oncogenes from 6,500 genes. Although anyone cannot achieve
this achievement, we consider it is not a contribution of SOM but a result of medical
knowledge. From a statistical point of view, it is surprising that cluster analysis is
so useful for oncogenes research. Furthermore, in a different approach according
to Method2, it decomposes 2000 genes into nearly 64 SMs and 130 BGSs, with
low noise. These results indirectly indicate that their approach and Method2 are
appropriate. However, the usage of Method2 is easy for many researchers who do
not have medical knowledge.

ICancer gene means a set of genes included in SM. Those genes separate two classes entirely.
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Table 2.1 NMs of 64 SMs

SM GENE | Logistic | QDF LDF2 LDF1 DS RatioSV |t (#)
8 31 0 0 0 0 7.5 26.8 0.3
35 30 0 0 1 1 8.5 23.5 4.6
11 25 0 0 2 2 9.7 20.7 33
53 29 0 0 3 3 10.1 19.8 2.4
27 28 0 0 1 1 10.2 19.6 2.6
63 40 0 0 6 8 324 6.2 35
7 41 0 0 0 1 322 6.2 3
59 36 0 0 6 6 37.2 5.4 1.3
14 26 0 0 0 0 39.8 5 0.5
64 42 0 0 8 9 84.9 2.4 35
Max 42 0 0 8 9 84.9 26.8 4.6
Mean 31.23 0 0 2.1 2.17 19.04 | 12.84 1.72
Min 21 0 0 0 0 7.5 24 —1.1
Sum 1999 0 0 134 139 1218 821.8 110.3
NM=0 64 64 13 12

All NMs of logistic regression are zero. Because all NMs of QDF are 0 also, the
distance of two-class averages may be larger than the condition of the difference
of two variance—covariance matrices (Aoshima and Yata 2017; Yata and Aoshima
2010). “LDF2 and LDF1” are NMs of two different prior probability options of
Fisher’s LDFs. The prior probability of LDF2 is proportional to the case number of
22:40. That of LDF1 is “1:1” that is default in much statistical software. However,
we used the proportional prior probability because we wish to compare NMs of six
MP-based LDFs in our research. The NM’s ranges of LDF2 and LDF1 are [0, 8] and
[0, 9], respectively. The 13 NMs of LDF2 and 12 NMs of LDFI1 are zero. Because
three LSD ratios of QDF, LDF1, and LDF2 are 64/64 = 100%, 13/64 = 20.3%,
and 12/64 = 18.7%, these results are better than the other five microarrays. Thus, we
forecast that two classes of Alon are fairly separable in each SM. “DS” is the range of
RipDSs. The range of 64 RipDSs is [7.5, 84.9]. “RatioSV” is the value calculated by
“2/DS * 100 (%)” that indicates the ratio of the SV width and the RipDSs width. The
range of 64 RatioSVs is [2.4, 26.8]. The eighth RipDF (RipDS8) has the maximum
RatioSV among 64 RipDSs. RipDS64 has the minimum RatioSV less than 5%. The
RatioSV recommends RipDS8 because it is the maximum value of 64 RipDSs. We
claim RatioSV is the best index for the LSD-discrimination of two classes and is
helpful for cancer gene diagnosis. “t” column is t-value to test the mean’s difference
of the RipDSs. The ranges of t-values are [—1.1, 4.6]. Furthermore, we surveyed all
t-values of genes included in each RipDSs. Those values are either of minus, almost
zero, and positive values, not only positive values. On the other hand, some papers
claimed high positive t-values or Welch values are oncogenes. However, our results
of t-test showed that a t-test or Welch’s test was not helpful to find cancer genes.
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Our Claim: The t-test and Welch test may be useless for cancer gene diagnosis.
2.3.1.2 Histogram and Correlation

Figure 2.1 is a histogram of gene, LDF2, LDF1, RatioSV, and t-values. If we select
the case “NM of LDF 2 equals 0,” these cases will be dark green in other variables
also. The dark green cases of “gene, RatioSV, and t (#)” spread throughout the range.
On the other hand, dark green cases of LDF1 are less than 3. This fact indicates one of
the NM’s defects that cannot find the linear separable fact at all. In general, examining
the histogram is essential. However, it is more critical whether MNM = 0 or not,
so the results that do not contribute to this are not meaning at all. We obtained the
results of various studies and conducted wasteful investigations.

1= GENE 4=LDF2 4= LDF1 4~ RatioSV A=)
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4 Percentile 4 Percentile 4 Percentile 4 Percentile

1000% AXE a2 00.0% BxE 8 100.0% Ax@ L] 1000% BT@ 268

0.5% 42 9.5% ] 99.5% E) 99.5% 268

97.5% 41375 97.5% 675 97.5% 8375 97.5% M.7375

50.0% 3.5 50.0% 5 90.0% 5 90.0% 188

TS0% 4BEd 1Is 0% 4pad 3 mo% 4nad 3 80 165

0.0% SRE 1n 0% RE 2 50.0%  mRE 2 50.0 131

25.0% 4 o B 4B 1 2.0% B0 1 B

10.0% =] 10.0% ] 10.0% ] 10.0 64

2% 2.5 2% ] 5% ] 29% 4.005

0.5% 2 0.5% 0 0.5% ] 0.5% 24

00% B 1 oo Aha o oo Eha ] 0o% A 24

Fig. 2.1 Histograms of gene, QDF, LDF2, and LDF1, RatioSV and t (#)

Figure 2.2 is the matrix correlation of five variables. The upper figure shows the
correlation of ten pairs. We focus on the three positive correlations of (gene, LDF1,
and LDF2). The positive correlations indicate that the larger the number of genes, the
higher the number of misclassifications. That is, SM containing many genes tends to
have a large NM. Three correlations between RatioSV and (gene, LDF1, and LDF2)
are negative correlations. These correlations indicate that the smaller the number of
genes and two NMs, the larger the value of RatioSV. Four correlations between the
t-test with the other four variables are almost zero. These correlations show that the
t-tests are uncorrelated with the number of genes and two NMs. Again, we emphasize
that using the t-test is useless for cancer gene diagnosis. The figure below is a scatter
plot matrix of five variables.
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| Correlation of Pairs
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Fig. 2.2 Matrix correlation of five variables

2.3.2 Analysis of RipDS8 by Standard Statistical Methods

2.3.2.1 One-Way ANOVA with T-Test

We analyze RipDS8 by standard statistical methods because the RatioSV of RipDS8
has the maximum value among 64 SMs. Four NMs of logistic regression, QDF, and
both LDFs are zero. Although this fact shows that QDF and Fisher’s LDF can discrim-
inate RipDS8 correctly in addition to logistic regression, this is a rare case. However,
it is crucial other statistical methods cannot show the linear separable fact. This fact
indicates the discriminant analysis is the best methods for LSD-discrimination and
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cancer gene analysis. QDF and Fisher’s LDF often cannot discriminate SM correctly
for other five microarrays. Table 2.2 is the result of one-way ANOVA of RipDS8
that consists of 31 genes. Two columns “Min and Max” are the range of class1 (nor-
mal, 22 cases). “MIN and MAX” are the range of class2 (tumor, 40 cases). All two
classes overlap. However, RipDS8 is linearly separable that two classes are entirely
separable in RipDSS8. Standard statistical methods cannot show the linear separable
fact of SM8 (Problem6). Two t-tests are done to test the difference of means on each
gene. “t (#)” is the t-test value under two variances which are not equal, and “t (=)”
is the t-test value in the case of two variances which are equal. The table is sorted in
descending order by the value of “t (#%).” The range of t-values is [—6.5, 4.27]. Some
papers expected t-value was useful for cancer gene analysis and claimed that some
genes with sizeable positive t-value were oncogenes. We doubt their claims because
two results in Tables 2.1 and 2.2 denied their claim.

Table 2.2 Result by one-way

ANOVA of RIPDSS Gene Min Max MIN MAX |t(#) t(=)

X1473 | 4.74 8.12 4.89 9.55 4.20 4.27
X698 6.37 8.53 6.50 |10.46 3.95 3.43
X1896 | 3.91 6.60 4.17 6.75 2.27 2.51
X1859 | 5.11 7.17 4.55 7.66 222 2.20
X1485 | 5.89 |10.59 4.87 ]10.58 2.04 1.92
X1662 | 5.44 7.15 5.37 7.86 1.70 1.70
X1961 | 4.44 7.08 4.39 7.98 1.60 1.53
X1464 | 6.62 |11.02 5.16 |11.62 1.21 1.11
X1024 | 6.16 |11.50 572 | 11.09 1.20 1.27
S8X6 | 10.99 |13.07 |10.28 |13.07 0.84 0.87
X1606 | 4.61 9.72 3.76 | 10.29 0.60 0.65
X1706 | 4.69 7.84 4.76 7.96 0.30 0.31
X1077 | 4.39 9.50 4.30 |10.16 0.19 0.20
X1571 | 3.76 7.05 5.18 7.57 0.17 0.18
X1883 | 5.02 7.38 4.35 7.33 0.01 0.01
X1207 | 5.11 7.23 5.29 739 |-0.01 |-0.01
X1177 | 5.83 9.23 6.30 944 | -0.34 | -0.34
X1228 | 5.75 7.62 5.52 7.87 | =051 |-0.51
X1958 | 5.16 7.49 3.50 752 | =091 |-0.81
X1433 | 533 9.74 447 |10.05 |-1.03 |-0.99
X1295 | 4.85 7.53 5.10 755 |—-123 |-1.16
X1448 | 4.93 7.53 4.39 6.86 |—142 |—-1.36
X1182 | 5.80 9.10 5.86 883 | —1.54 |—-1.56
X404 7.30 9.15 6.65 1024 |—-1.74 | —1.58
X1842 | 5.50 7.65 4.47 775 | =246 |—-2.33

(continued)
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Table 2.2 (continued) Gene |Min |Max |MIN |MAX |t |t
X1348 7.08 10.05 494 11007 |—-2.94 |-2.64
X1642 | 6.22 8.54 4.35 848 |-3.06 |—-2.73
X119 10.22 | 13.07 7.50 |12.66 |-3.46 |-3.07
X1387 6.21 11.52 4776 | 1143 | —4.25 |—4.14
X14 11.18 |12.84 |10.18 |12.84 |—-524 |-5.12
X1423 | 6.03 |10.75 3.50 9.84 | —-6.68 | —6.50

Figure 2.3 is the box—whisker plots of two classes. Three t-values of X1423, X14,
and X1387 are —6.68, —5.24, and —4.25, respectively. Because three averages of
class2 (tumor subjects) are less than those of class1 (normal subjects), these genes
may prevent cancer disease (suppressor of cancer). Although these three genes are
high negative values, two classes are not linearly separable. We investigate 64 SMs
and get the same results. Although some cancer gene researchers expect there is one
oncogene that can discriminate two classes completely, our examination by one-way
ANOVA suggests their expectations are wrong. Our study shows that the appropriate
set of genes included in SM can correctly distinguish between cancer and normal
classes.
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Fig. 2.3 Box—whisker plots of two classes

2.3.2.2 Ward Cluster Analysis of RipDS8

We analyze RipDS8 in Ward cluster analysis. Figure 2.4 is a heat map of RipDS8
(64 cases and 31 genes). The right side is the dendrogram of 22 normal cases with
marks [ and 40 tumor subjects with marks x. Although it is difficult to decide the
proper number of clusters, we accept four clusters. However, four clusters include
normal and tumor subjects in each cluster. In the bottom dendrogram of the gene, we
cannot classify genes into clear clusters. In this case, it is meaningless to analyze the
variable dendrogram displayed below. However, sixth and seventh genes from the
right firstly join at a small distance. These are thought to be mutually substitutable.
Nevertheless, four discriminant functions can discriminate RipDS8 completely in
Table 2.1. This fact indicates that the expression level of genes cannot classify two
classes well (Problem6). Moreover, we understand the discriminant functions are the
best methods to discriminate between two classes. However, we concluded that it
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would be better not to analyze the result of each SM in detail. That is, we consider
the gene contained in SM as an oncogene. However, standard statistical methods
cannot find linearly separable fact. Therefore, RIP, Revised LP-OLDF, and H-SVM
DSs are considered to be a signal.
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Fig. 2.4 Heat map of RipDS8 with 31 genes by the ward method
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2.3.2.3 PCA and Canonical Plot of LDF2

Figure 2.5 is PCA outputs. Left plot is an eigenvalue. Ten eigenvalues from Prinl to
Prin10 are greater than one. The central plot is a scatter plot. Two classes overlap. The
right plot is the factor loading plot. The 31 genes are located in four quadrants. Most
factor loading of 64 SMs have the same tendencies. PCA cannot explain the meaning
of two classes. In the end, we concluded that it would be better not to analyze this

result in detail.
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Fig. 2.5 PCA figures (eigenvalue, scatter plot, and factor loading plot)

Figure 2.6 is the canonical plot of LDF2. Because three discriminant function’s
NMs are zero, two classes are separable entirely. This figure is quite different from
Fig. 2.5 of PCA. Thus, this result indicates the discriminant analysis is better than
other statistical methods from the viewpoint of classifying two classes. On the
other hand, because statistical discriminant functions are useless for discriminat-
ing microarrays, most medical researchers did not use discriminant functions after
1999.
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2.3.2.4 Our Conclusion of Standard Statistical Methods

At first, we expected to obtain a good result by analyzing all SMs using standard
statistical methods. Although we analyzed all SMs by these methods, only logistic
regression was meaningful. In this section, NMs of QDF and Fisher’s LDF occa-
sionally became zero. However, most analyses of SMs showed no useful results that
two classes were completely separable. Thus, we recommended researchers did not
expect the useful results except for definitive result by logistic regression.

Strange fact of cancer gene analysis (ProblemS5): Although two classes are entirely
separable in high-dimensional microarrays and SMs, we could not observe the linear
separability of two classes by the standard statistical methods. Moreover, logistic
regression can show the linear separability for SMs. This fact implies the noise
entirely includes the signal found by RIP. We forecast the variance of the signal is
smaller than those of noise. This book shows facts by many examinations.

2.4 Analysis of 64 RipDSs Data

We claimed standard statistical methods could analyze SM very easily because each
SM is a small sample (small n and small p; (p; <= n)). However, we cannot obtain
useful results analyzing 64 SMs in Sect. 2.3. Next, when the standard statistical
methods analyze 64 RipDSs new data with 62 cases and 64 RipDSs (64 variables),
we get the next surprising success explained in this section.

2.4.1 Examination of 64 RipDSs and RatioSV of RIP

Table 2.3 is two ranges of two classes, the range of DS, RatioSV (=200/DS), and
two t-values. Three columns such as DS, RatioSV, and t (# 0) are the same as
Table 2.1. The range of 22 cases in class1 (Min and Max columns) is less than equal
—1, and the range of 40 cases in class2 (MIN and MAX columns) is greater than
equal 1. SV separates two classes of 64 SMs. We consider “RatioSV of RIP” is
the most important statistics for cancer gene analysis because it shows the ease of
classification by two classes. The table is sorted in descending order of the value
of “RatioSV of RIP.” Although the SV distance is 2, it is 26.27% for the range of
RipDS8. SV becomes a wide window and separate two classes completely. The last
three rows are the maximum, mean, and minimum of eight variables. The range
of DS, RatioSV, and two t-values are [7.47, 84.94], [2.35, 26.76], [4.22, 15.5], and
[3.12, 14.76], respectively. Table 2.3 shows 64 discriminations by RIP are very easy.
However, standard statistical methods are difficult to obtain the linear separable fact
(Problem6). This fact implies the difficulties of cancer gene analysis until now and
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answers why many researchers could not succeed cancer gene analysis from 1970
because these methods are useless for microarrays and those SMs. We must choose
proper methods for cancer gene diagnosis as same as cancer gene analysis.

Table 2.3 Sixty-four RipDSs, range of DS, RatioSV (=200/DS) and t-values

RipDS Min Max MIN MAX DS RatioSV |t (#) t(=)

RipDS8 —-3.35 | -1 1 4.12 7.47 26.76 15.50 14.76
RipDS35 | —2.58 | -1 1 5.92 8.51 23.52 13.02 9.94
RipDS11 —4.15 | -1 1 5.52 9.67 20.68 12.71 11.17
RipDS53 | —3.72 | -1 1 6.40 10.13 19.75 11.98 10.20
RipDS27 | =375 | -1 1 6.45 10.20 19.62 13.19 11.58
RipDS46 | —5.04 | -1 1 5.44 10.48 19.09 10.73 11.04
RipDS30 | =392 | -1 1 6.86 10.79 18.54 11.32 9.67
RipDS33 | —5.34 | -1 1 5.50 10.85 18.44 11.46 10.77
RipDS3 —4.74 | -1 1 6.14 10.88 18.39 11.80 10.01
RipDS25 | —555 | -1 1 5.39 10.94 18.29 11.66 11.45
RipDS17 | —4.05 | -1 1 7.01 11.06 18.08 12.99 11.14
RipDS15 | =570 | -1 1 5.47 11.17 17.90 10.52 11.01
RipDS51 —398 |—1 1 7.35 11.34 17.64 11.68 9.95
RipDS42 | —6.28 |—1 1 5.15 11.43 17.50 10.47 10.38
RipDS19 | —6.38 | -1 1 5.32 11.70 17.09 10.00 10.42
RipDS9 —335 | -1 1 8.70 12.04 16.60 12.13 10.00
RipDS22 | —4.14 | -1 1 7.90 12.05 16.60 10.79 9.25
RipDS6 —-4.30 | —1 1 8.49 12.78 15.64 11.21 9.93
RipDS23 | —7.26 | -1 1 5.93 13.19 15.16 9.65 10.75
RipDS10 | —6.33 | -1 1 6.92 13.25 15.09 9.66 10.26
RipDS16 | —5.25 | -1 1 8.10 13.35 14.98 10.51 9.29
RipDS48 | —6.76 | —1 1 6.67 13.43 14.89 10.03 10.22
RipDS31 —-5.06 |—1 1 8.43 13.50 14.82 10.17 9.52
RipDS1 —-535 | -1 1 8.18 13.53 14.78 11.02 9.80
RipDS24 | —4.60 | —1 1 9.18 13.78 14.52 10.96 9.12
RipDS21 —4.79 | -1 1 9.82 14.62 13.68 10.05 8.70
RipDS18 | —5.88 |—1 1 8.77 14.66 13.64 10.32 9.46
RipDS2 530 |—1 1 9.38 14.68 13.62 9.25 8.07
RipDS32 | —7.66 |—1 1 7.19 14.85 13.47 9.05 9.32
RipDS34 | —527 | -1 1 9.69 14.96 13.37 9.73 8.29
RipDS36 | —8.23 | -1 1 6.97 15.20 13.16 9.73 10.00
RipDS5 —6.94 | -1 1 8.29 15.22 13.14 9.42 9.04

(continued)



58 2 Overview of Cancer Gene Diagnosis

Table 2.3 (continued)

RipDS | Min Max MIN |MAX |DS RatioSV |t(#) |t(=)

RipDS20 | —6.06 | —1 1 926 [1532 | 13.06 9.12 8.42
RipDS49 | —420 | —1 1 1123|1543  |12.96 9.84 7.67
RipDS56 | —5.28 | —I 1 1061 1589 |12.59 8.02 6.44
RipDS26 | —6.71 | —1 1 926 [1596 |12.53 9.39 8.53
RipDS54 | —5.22 | —1 1 1147 1669 |11.99 9.19 7.34
RipDS38 | —7.40 | —I 1 967 1707 1172 9.05 7.94
RipDS29 | —6.46 | —I 1 1082 1728 |11.57 10.05 8.55
RipDS55 | —9.86 | —1 1 782 [17.68 1131 8.28 8.52
RipDS58 | —5.67 | —1 1 12.14 1781 |11.23 8.73 7.26
RipDS60 | —4.60 | —1I 1 1344 1805 |11.08 9.71 7.52
RipDS52 | —5.98 | —1 1 1223|1821 | 10.98 8.95 7.61
RipDS40 | —7.12 | —1 1 1169 |18.81 |10.63 8.18 6.83
RipDS43 | —834 | —I 1 1087 1921 1041 9.21 8.41
RipDS4 | —7.90 | —1I 1 12.87 2077 9.63 9.02 8.53
RipDS45 | —1249 | —1 1 924 | 21.73 9.20 7.58 7.66
RipDS44 | —8.02 | —I 1 1382  |21.84 9.16 8.26 7.16
RipDS37 | —10.52 | —1I 1 1333|2384 8.39 7.88 7.07
RipDS41 | —10.67 | —1 1 1554|2621 7.63 8.98 8.18
RipDS39 | —14.35 | —1 1 11.99 2635 7.59 8.20 8.43
RipDS61 | —12.37 | —1 1 1467 |27.04 7.40 6.68 6.50
RipDS62 | —8.83 | —1I 1 1924 | 28.07 7.13 6.65 6.12
RipDS57 | —12.95 | —1 1 1570 | 28.66 6.98 6.99 6.48
RipDS12 | —16.52 | —1I 1 13.00 |29.52 6.78 6.06 6.46
RipDS47 | —12.97 | —1 1 17.10  30.07 6.65 7.19 6.55
RipDS50 | —11.52 | —1 1 18.78 3030 6.60 7.59 6.95
RipDS13 | —10.77 | —1 1 19.77  |30.54 6.55 8.04 6.94
RipDS28 | —15.22 | —1 1 16.77 |31.99 6.25 7.69 7.58
RipDS7 | —7.94 | —1 1 2425 [32.19 6.21 6.46 5.06
RipDS63 | —838 | —1 1 2400 | 32.38 6.18 6.22 472
RipDS59 | —15.25 | —1 1 2191 |37.17 5.38 6.17 5.53
RipDS14 | —21.94 | —1 1 17.85 | 39.79 5.03 7.16 7.42
RipDS64 | —3.94 | —1 1 81.00 | 84.94 235 422 3.12
MAX 258 |—1 1 81.00 | 84.94 |26.76 1550 | 14.76
MEAN | —735 | —I 1 1169 |19.04 |12.84 9.49 8.63
MIN —21.94 | -1 1 4.12 747 2.35 422 3.12
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Figure 2.7 is two box—whisker plots of RipDS8 and RipDS64. Left plot is RipDS8
with maximum RatioSV, and the right plot is RipDS64 with minimum RatioSV. Two
ranges are [—3.35, 4.12] and [—3.94, 81], respectively. Both ranges of DS are 7.47
and 84.94. RatioSVs of RipDS8 and RipDS64 opens windows of 26.76 and 2.35%
for each DS. If we will get the validation samples, RipDS8 discriminates validation
sample in two classes very easy and completely. Thus, we judged not to validate
RipDS8 by Method1. However, RipDS64 may not be able to discriminate validation
samples correctly. In other words, six projects are verifying using LOO, but we think
there is no need to verify the malignancy indicator for the case of large RatioSV. This
threshold is future research, but we think that it is enough if it is 5% or more.

Our Claim: If we use the malignancy indicator with “RatioSV >= 5%,” we do not
need to verify it with Method1.

On the other hand, if we remove the outlier value 81 of RipDS64, RatioSV of
RipDS64 becomes large, and we obtain the different result. In this book, we do not
consider the effects of the outliers of cancer gene data. The treatment of outliers is
very vital and the future important research theme.

Future Research: We must consider the effect of the outliers in the cancer gene
diagnosis.
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Fig. 2.7 Two box—whisker plots of RipDS8 and RipDS64

2.4.2 Ward Cluster Analysis of RipDSs New Data

Ward cluster analyzes the RipDSs new data (62 cases and 64 variables). Figure 2.8
is the result of two clusters of heat map and dendrogram (22 healthy cases and 40
cancer cases). Two classes become two clear clusters. The top blue cluster is 22
healthy cases in class1, and the second red cluster is 40 cancer cases in class2. The
medical specialist may be able to explain over ten clusters by dendrogram of 62
subjects. However, 64 RipDSs variable dendrogram shown in under heatmap have
more complex clustering. Over five pairs of two RipDSs become one cluster in
the early stage of clustering. This fact may show two RipDSs in each pair can be
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exchanged with each other. These pairs show redundancy. Moreover, if it is possible
to exchange with each other, there is a possibility that BGSs will not be unique.
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Fig. 2.8 Heat map and dendrogram of two classes

2.4.3 PCA Results of New Data

2.4.3.1 PCA Using Correlation Matrix

Figure 2.9 is three plots of PCA. Left plot is an eigenvalue. The first eigenvalue of
the Prinl is 39.36 and enormous because two classes are entirely separable on the
Prinl. Its cuamulative contribution ratio is 61.508%. The following three reasons may
cause this result:

(1) Two classes are almost on Prinl. This fact means 64 RipDSs have almost the
same axes in the high-dimensional microarray.
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(2) Because two classes are entirely separable on Prinl, the first eigenvalue is enor-
mous. Because the eigenvalues of the other 63 principal components are smaller
than Prinl, the discrimination axes of 64 RipDSs are almost the same.

(3) The dispersions of the other 63 principal components are 38.5%. Thus, in the
space of the high-dimensional microarray, we assume that the 64 axes produced
by 64 RipDSs are in almost the same direction, the variation of 64 RipDSs is
small, and the noise includes it. We confirm this claim in the later chapter.

The 22 normal cases overlap with the almost negative segment of the Prinl axis.
The 40 cancer cases scatter on the first and fourth quadrants. Right factor loading
plot explains the correlation of Prinl and Prin2 with 64 RipDSs. The correlation of
the Prinl with 64 RipDSs are almost from 0.5 to 1, and the correlation of Prin2 with
64 RipDSs is almost from —0.4 to 0.5. These plots imply us the normal subjects have
a small variance on other 63 principal components, and severe cancer subjects have
a slightly large variance on other 63 principal components. Severe cancer subjects
locate a wide range compared with healthy subjects. These characteristic meets our
common knowledge about cancer. Because two classes of Singh’s microarray are
healthy and cancer subjects in Fig. 2.23, its scatter plot is almost the same. On
the other hand, because other microarrays are two different types of cancers, both
classes do not locate on the segment of the Prinl such as a healthy class in Fig. 2.9.
Thus, we conclude the 63 variances of the healthy subjects are very small compared
with cancer subjects. Factor loading plot locates on the first and fourth quadrants. If
we obtain the validation cases, we can confirm the scatter plot is useful for cancer
gene diagnosis as same as 64 individual RipDS. Thus, Prinl indicates the cancer
malignancy indicator in addition to 64 RipDSs.

Alon and Singh consist of two classes of cancer and healthy subjects. Even though
the four microarrays except Alon and Singh are two different types of cancer, we
obtained almost the same results as Alon and Singh. From this, we think that our
analysis results are generally as follows. Because six eigenvalues of the Prinl in
Sect. 2.6 are large, this fact shows two classes of six microarrays are entirely separable
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Fig. 2.9 Three plots of PCA
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in high-dimensional microarray gene space. It is critical that our results may be
almost the same by other microarrays and other types of gene data. We think another
microarrays show the same results.

Figure 2.10 is 63 scatter plots of new data. The x-axis is Prinl. Y-axes are from
Prin2 to Prin5 and from Prin61 to Prin64. Because other 55 scatter plots are almost the
same, we omit those plots. Although PCA using genes of SMs cannot separate two
classes, it can easily separate two classes by RipDSs new data. The 63 scatter plots
of new data show two classes are separable in 64-dimensional space. Most statistical
users misunderstand PCA can grasp the relevant information by Prinl and Prin2
which represent large data variations. However, many statistical methods as same as
PCA cannot find the linear separable fact of the signal having small variations.

Fig. 2.10 Sixty-three scatter plots of new data (x-axis: Prinl, y-axis: from Prin2 to Prin5 and from
Prin61 to Prin64)

Table 2.4 is the values of four principal components corresponding to Fig. 2.10.
“ID” is the sequential number from 1 to 62. “Prinl” is the values of Prinl sorted
in ascending order. We consider “Prinl” is the cancer malignancy indicators. Both
ranges of the 22 cases in class1 and 40 cases in class2 are [—9.57, —5.55] and [0.02,
8.77], respectively. There is 5.57 (=0.02 + 5.55) window width between two classes.
RatioSV of PCA is 30.4% (=(0.02 + 5.55) * 100/(8.77 + 9.57) = 557/18.34 = 30.4).
Because RatioSV of RipDS8 is 26.76%, RatioSV of PCA is 3.64% greater than
RatioSV of RipDS8 because RatioSV of PCA is the total characteristic value of 64
RIPs. If the doctor confirms that the order of magnitude of the DS and the general
severity of the subject are almost the same, Prin1 is available as the total characteristic
value of the cancer malignancy indicator in addition to 64 RipDSs.
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Table 2.4 Ranking of four

principal components

63

ID  |Prinl |[R1 |Prin2 |[R2 |Prin3 |R3 |Prin4 |R4
4 =957 1 -0.52|19 0.02|34 —1.04|12
10 -9.33| 2 —-0.62|12 0.15] 40 —1.05/11
21 -9.12| 3 —0.07 |28 —0.05|31 0.72| 49
9 —8.58| 4 —0.02|32 0.46 | 45 0.99] 51
19 —843| 5 0.87|53 —0.05|32 -1.39| 6

—837| 6 —-042|21 0.57| 46 —-0.29|23

—834| 7 —-092| 8 0.23]42 —0.14|29
11 —8.33| 8 —0.55|16 0.11|37 —0.28 |24
1 -8.32| 9 —0.03|31 0.85|50 0.34| 41
13 —8.29/10 —0.01|33 1.06| 53 0.58| 46
3 —-8.27|11 0.54| 45 0.99| 52 —-0.37|22
12 —8.23|12 0.65| 47 —0.13 |28 —-0.92|15
14 —8.15|13 —0.21|25 0.08] 35 —-1.22| 8
16 —7.48| 14 0.48]43 —-0.72|17 —0.51|20
2 —7.47|15 0.61 |46 0.76 | 48 1.34|55
8 —7.46|16 0.75|52 0.87|51 —0.17|27
15 —7.28|17 0.14| 40 0.29]43 —-0.73| 19
6 —6.84| 18 —0.18 |27 03144 0.30| 39
22 —6.81|19 0.66| 48 -0.12|29 —-0.19| 26
17 —6.80| 20 —0.43|20 —0.81| 16 —-0.19| 25
20 —5.64| 21 0.22| 41 0.13] 38 —0.05|32
18 —5.55|22 0.01|34 0.10| 36 0.03 |35
55 0.02| 23 —0.23|24 —0.20| 26 02938
52 0.14| 24 —0.19| 26 0.00| 33 0.43]43
58 0.43| 25 —0.31|23 —0.14|27 —0.02|33
24 0.52]26 0.08| 39 —0.32|24 —0.01|34
30 0.90| 27 —0.54 |17 —0.63 |21 1.27| 54
59 0.92] 28 0.04| 37 —0.63|20 0.06 |36
23 1.86|29 —-0.62| 13 —1.08| 13 1.20|53
25 1.86| 30 —0.77| 10 —0.44 |23 —0.14| 28
57 2.29|31 —-0.52| 18 —-0.68| 19 0.39]42
34 23232 0.02|36 —0.54|22 —1.40| 5
29 2.35|33 —-0.39|22 —-1.27|11 —-0.50| 21
26 2.36|34 —-0.83| 9 —0.85|15 —0.11|30
56 2.37|35 —0.04| 30 —-0.72| 18 —0.07|31
50 2.59| 36 0.69 |50 —-1.17|12 1.72| 58

(continued)
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Table 2.4 (continued) ID |Prinl |[R1 |Prin2 [R2 |Prin3 [R3 | Prin4 | R4

31 2.96| 37 -0.59| 14 —2.13| 5 1.13|52
33 3.01|38 —0.07|29 —0.96| 14 275|161
62 3.40| 39 —0.55|15 —-1.70| 8 1.85|59
27 3.50|40 0.71| 51 =175 7 4.19|62
35 3.53 41 1.25]56 0.72| 47 —-1.14| 9
61 3.90| 42 1.21|55 —0.08 |30 2.04| 60
32 4.03|43 1.48|57 —0.31|25 0.86| 50
42 4.46| 44 -3.15| 3 228 1 —-0.99| 14
28 4.57|45 0.04] 38 —2.22| 3 —-0.87|17
41 4.62| 46 -1.19| 7 —2.26| 2 —0.78 | 18
49 5.111|47 1.56| 58 2.34|57 1.52|56
47 525|148 —-0.67| 11 3.53|62 —1.07| 10
54 543149 2.34| 60 1.59|55 0.47| 44
45 591150 0.01]35 1.54| 54 0.63| 47
37 6.17| 51 0.67|49 —1.55| 9 0.31]40
44 6.56|52 3.39|61 —-1.76| 6 —2.63| 2
40 7.05|53 0.51|44 273159 0.72| 48
51 7.10| 54 -390 2 0.21]41 0.28| 37
60 7.24|55 0.30|42 3.39| 61 1.55|57
39 7.74| 56 1.01| 54 0.14| 39 —1.53
38 8.13|57 5.19| 62 —-1.29/10 —2.52
43 8.14|58 —1.26| 6 1.59] 56 —2.94| 1
48 8.16|59 —3.96| 1 2.78| 60 —1.01|13
53 8.29| 60 —2.12| 4 0.83| 49 —091| 16
36 8.69| 61 1.80|59 2.62|58 04745
46 8.77| 62 —-135| 5 —217| 4 —-1.29| 7

2.4.3.2 Comparison of Correlation Matrix and Variance-Covariance
Matrix

(1) Analysis of New Data by Correlation Matrix

In general, PCA uses a correlation matrix. Correlation matrix makes it possible to
avoid the influence of variables having different units. Because all the variables are
the same units of the gene expression level, it is meaningful to analyze microarray
by the variance-covariance matrix. Attempts with the variance—covariance matrix,
the results were surprisingly different. Examination of the result is future research.



2.4 Analysis of 64 RipDSs Data 65

(2) Analysis of New Data by Variance—Covariance Matrix

If we analyze new data made by the variance—covariance matrix, we obtain the differ-
ent result in Fig. 2.11. The first eigenvalue is 612.23, and its cumulative contribution
ratio is 51.848%. The second eigenvalue is 208.002, and its cumulative contribution
ratio is 69.4%. Scatter plot has two tendencies. Many subjects are located on a line
about 40° relative to Prinl. Over 13 cancer subjects widely scatter under this line at
an angle of —45° with Prinl. Factor loading plot explains this meaning.

RipDS64 and RipDS7 are in the fourth quadrant. These two RipDSs are differ-
ent from other 62 RipDSs. Especially, RipDS64 may relate over 13 patients. This
example shows the merit of our approach because general knowledge of statistics
can interpret unique cases.
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Fig. 2.11 Three plots of PCA (variance—covariance matrix)

(3) The 62 RipDSs new data using the correlation matrix

After we drop two variables such as RipDS64 and RipDS7, we analyze the 62 RipDSs
new data with 62 subjects and 62 RipDSs. Figure 2.12 is the three plots using the
correlation matrix. The Prinl eigenvalue is 38.719, and its cumulative contribution
ratio is 62.45%. Scatter plot and factor loading plot are similar to Fig. 2.9. However,
RipDS63 is different from other 61 RipDSs those are two groups in the first and
fourth quadrants. These two groups have different meanings in Prin2.
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(4) The 62 RipDSs New Data using the Variance—Covariance Matrix

Figure 2.13 shows three plots of PCA using variance—covariance matrix instead of
the correlation matrix in Fig. 2.12. The Prinl eigenvalue is 500.687, and its cumu-
lative contribution ratio is 58.515%. Although two eigenvalues of Prinl and Prin2
in Fig. 2.11 are 612.2 and 208, those of Prinl and Prin2 in Fig. 2.13 are 500.7 and
49.4. We guess to remove RIP64 reduce the variance of Prin2 as Fig. 2.13.

If we remove RIP63 in next, RIP13 or RIP44 may become outliers. In future
research, the surveys of PCA using correlation matrix and variance—covariance
matrix may suggest more useful knowledge about cancer gene diagnosis.
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Fig. 2.13 Three plots of PCA without two RipDSs (variance—covariance matrix)
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2.4.3.3 Analysis of Transpose Data

We transpose the new data with 62 subjects and 64 RipDSs and analyze the transpose
data that consists of 64 RipDSs (64 cases) and 62 subjects (62 variables). Figure 2.14
is three plots of PCA. Eleven eigenvalues are over one. Scatter plot shows most
RipDSs locate on around the origin. The 13th, 14th, and 28th RipDSs are an outlier
in the fourth quadrant. The 64th DS (64) is an outlier in the first quadrant. These
four RIPs may become different malignancy indicators from other 60 RipDSs. Factor
loading plot shows most of the healthy subjects in class1 having variable name prefix
“N” located in the second quadrant. The tumor cases variable name prefix “C” locate
in the fourth and first quadrants.
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Fig. 2.14 Three plots of PCA

Figure 2.15 is four scatter plots of PCA. The x-axis is the Prinl. Y-axes are Prin2,
Prin3, Prin4, and Prin5. We find several outliers. Both outliers of new data and
transposed new data may be the new subclass of cancers pointed out by Golub et al.
This is the future theme.

Fig. 2.15 Three scatter plots of transposed data
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2.4.3.4 Summary

At first, we claimed standard statistical methods could analyze SM very easily
because these subspaces were small samples with small n and small p (Shinmura
2016). However, our examination shows it is difficult for us to obtain good results
using the 64 SMs. However, we can get surprising results from the RipDSs new data.
Primarily, the 62 subjects are ranking on the Prinl. Thus, we can rank the malig-
nancy of cancer by the value of Prinl in Fig. 2.9. Moreover, the Ward cluster analysis
can identify two clusters entirely in Fig. 2.8. Usually, cluster analysis cannot cluster
two classes. However, we can separate two classes completely by RipDS new data.
We need cooperation with an expert on gene diagnosis. Especially, we expect seven
research members of Alon et al. They can validate our results and confirm our claim.
Alon et al. can prove their research was right. If they offer new validation samples,
we analyze those samples and feedback the results to them.

2.5 The 130 BGSs of Alon’s Microarray

2.5.1 Results by Standard Statistical Methods

After LINGO Program3 found 64 SMs in 2016, LINGO Program4 separates 130
BGSs and noise subspace with five genes in 2016. In this section, we analyze 130
BGSs by standard statistical methods. We claimed standard statistical methods could
analyze BGS very easily because each BGS was a small sample. However, we cannot
obtain useful results of 130 BGS showed in this section. Next, we analyze 130
RipDSs new data with 62 cases and 130 RipDSs (130 variables) by standard statistical
methods and get the surprising success in Sect. 2.5.3. However, RatioSVs show BGSs
are not helpful for cancer gene diagnosis because 130 RatioSVs using 130 BGSs are
less than 1%.

2.5.1.1 Validation of 130 BGSs by Three Statistical Discriminant
Functions

Table 2.5 is 130 BGSs from SN = 1 to SN = 130. “BGS” column shows 130 BGSs
sorted by descending order of RatioSV values. “Gene” column is the number of genes
in each BGS. Because all NMs of logistic regression are zero, we can confirm 130
BGSs are linearly separable. The 60 NMs of QDF are zero. “LDF2 and LDF1” are
NMs of two different prior probability options of Fisher’s LDFs. The prior probability
of LDF?2 is proportional to the case number of 22:40. The prior probability of LDF1
is “1:1” that is default in much statistical software. However, we use the proportional
prior probability because we wish to compare NMs of six MP-based LDFs. We omit
LDF1 from Table 2.5. The RatioSV of RIP using BGS in Table 2.5 recommends
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RipDS128 because it is the maximum value of 130 BGSs. We claim RatioSV is
the best index for the LSD-discrimination of two classes. Last three rows are the
maximum, mean, minimum values of 130 BGSs. The range of gene is [9, 25]. The
ranges of QDF, LDF2 and LDF1 are [0, 7], [3, 14] and [0, 13], respectively. Because
60 NMs of QDF are zero and maximum NM is almost half of NMs of LDF2, QDF is
better than LDF2. Because the range of 130 RatioSVs is [0.00, 0.9], 130 BGSs are
not helpful for cancer gene diagnosis. However, in the case of Swiss banknote data,
two-variable (X4, X6) is BGS, and its RatioSV is 0.524% in Fig. 10.2. Thus, 0.9%
is not such a bad value for BGS. On the other hand, RatioSV of SM is abnormally
large beyond our knowledge.

Future Research (Problem7): We must survey and compare the relation of BGSs
and SMs.

Table 2.5 Hundred and thirty NMs of BGSs by three discriminant functions and RatioSV

SN BGS Gene Logistic | QDF LDF2 DS RatioSV
128 BGS128 |11 0 0 7 222 | 0.90
93 BGS93 12 0 3 7 258 | 0.77
56 BGS56 9 0 2 7 295 | 0.68
129 BGS129 |12 0 3 5 380 | 0.53
1 BGS1 20 0 0 9 395 | 0.51
23 BGS23 14 0 2 84,975 | 0.00
32 BGS32 15 0 0 10 82,982 | 0.00
127 BGS127 |14 0 2 14 113,129 | 0.00
64 BGS64 12 0 4 8 300,470 | 0.00
83 BGS83 18 0 0 176,727 | 0.00
MAX 25 0 7 14 300,470 | 0.90
MEAN 15.35 0 1.14 7.36 16,093 | 0.11
MIN 9 0 0 3 222 | 0.00
SUM 1995 0 148 957 2,092,140 |13.93
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2.5.1.2 Histogram and Correlation
Figure 2.16 is the histograms of gene, QDF, LDF2, RangeSV, and t-value. If we

select the cases with “NM of QDF = 0,” those cases become dark green. Dark green
cases of the other four variables have wide ranges.
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Fig. 2.16 Histograms of gene, QDF, LDF2, RatioSV and t-value

Figure 2.17 is the matrix correlation of five variables. Two correlations of (gene,
LDF2) and (RangeSV, t) are positive correlations such as 0.229 and 0.218. These are
weak positive correlations compared with SMs. Two correlations of (gene, RangeSV)
and (gene, QDF) are negative correlations such as —0.182 and —0.599. Generally
speaking, as the number of genes increases, NM of QDF becomes smaller, so it is
not very useful information. That is, this analysis is useless.
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Fig. 2.17 Matrix correlation of five variables (BGS)

2.5.1.3 Analysis of Eleven Genes of BGS128 by Standard Statistical
Methods

We analyze eleven genes included in BGS128 by standard statistical methods because
the RatioSV of RipDS128 has the maximum value among 130 BGSs. Table 2.6 is the
result of one-way ANOVA of BGS128 that consists of 11 genes. Two columns “Min
and Max” are the range of class1 (normal, 22 cases). “MIN and MAX” are the range
of class2 (tumor, 40 cases). “t (#)” is the t-test value under two variances which are
not equal, and “t (=)” is the t-test value under two variances which are equal. The
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most important fact is that there are seven positive values and four negative values.

Moreover, these absolute values are not so large. This fact indicates it is entirely
wrong that genes with significant positive values are oncogenes.

Table 2.6 Result by one-way ANOVA of BGS128

Gene Min Max MIN MAX t(#) t(=)

B128X1963 |5.18 8.48 3.21 10.53 2.49 2.23
X1964 3.91 6.92 3.21 7.69 —1.13 —1.09
X1965 4.30 6.57 3.76 6.94 3.46 3.29
X1966 4.85 7.14 3.50 7.77 —1.00 —0.89
X1967 7.28 10.95 3.50 10.52 —4.79 —4.17
X1968 4.39 7.13 5.20 7.57 0.35 0.37
X1969 3.76 9.36 4.66 9.18 1.73 1.72
X1970 5.17 7.23 3.21 7.62 —2.45 —2.08
X1971 4.35 8.94 6.27 9.29 1.68 1.89
X1976 4.24 10.43 4.44 9.16 0.23 0.24
X1978 4.61 7.70 3.50 8.08 1.28 1.17

Figure 2.18 is three plots of PCA. Left plot is an eigenvalue. Four principal
components from Prinl to Prin4 are larger than one. The central plot is a scatter
plot. Two classes overlap. The right plot is the factor loading plot. The 11 genes are
located in three quadrants except for the third quadrant. Because two classes overlap,
these results are not valuable. The presence or absence of the linear separable fact
is vital for the cancer gene diagnosis. This indicator will be an excellent guide to
mitigating sizeable genetic analysis work.
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2.5.2 Examination of RipDSs of 130 BGSs

2.5.2.1 Validation of RipDSs and RatioSV of 130 BGSs

Table 2.7 is the summary of 130 BGSs. “BGS” columns correspond “SN” columns
in Table 2.5. The table is sorted in descending order by RatioSV value. “BGS = 128”
is RipDS of BGS128. “Min and Max” columns are the range of classl. The range
of 22 normal subjects with BGS128 is [—74, —1]. “MIN and MAX” columns are
the range of class2. The range of 40 tumor subjects of BGS128 is [1, 148]. Thus,
RipDSs range of BGS128 has 222 widths in “RipDS” column. Because maximum
RatioSV of BGS128 is 0.901% (=200/222), BGS may be useless for cancer gene
diagnosis. However, because BGS explains the structure of Alon’s microarray by
the monotonic decrease of MNM, it is essential for the study of the gene’s role in
cancer. Furthermore, RipDS of BGS may be a valid signal instead of RipDS of SM
(Problem7).

Table 2.7 Summary of RipDSs and RatioSV of 130 BGSs

BGS Min Max MIN MAX RipDS RatioSV
128 —74 -1 1 148 222 0.901
93 —69 -1 1 189 258 0.774
57 —84 -1 1 211 295 0.679
129 —167 —1 1 213 380 0.526
1 —149 -1 1 246 395 0.507
23 —46,017 -1 1 38,958 84,975 0.002
32 —35,120 -1 1 47,862 82,982 0.002
127 —46,881 -1 1 66,247 113,129 0.002
64 —118,569 -1 1 181,901 300,470 0.001
83 —72,581 -1 1 104,146 176,727 0.001
Max —69 -1 1 181,901 300,470 0.901
Mean —5979 -1 1 9947 15,926 0.107
Min —118,569 —1 1 148 222 0.001
Range 5910 0 0 171,954 284,544 0.794

We misunderstood BGS was more critical than SM because BGS could explain
the Matryoshka structure of microarrays entirely. However, we think BGS may not
discriminate validation samples correctly. This fact recollects us two facts.

1. Two-variable (X4, X6) is a unique BGS of Swiss banknote data (Flury and
Riedwyl 1988). However, the best model is five variable (X1, X3, X4, X5, X6)
that has the minimum M2 among 63 models. We explain this fact in Table 6.5
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of the Book1 (Shinmura, 2016). Because the M2 of (X4, X6) is larger than (X1,
X3-X6), the two-variable model is not the best model.

2. If we remove one gene from BGS, the removed gene subspace is not LSD and
is not used for cancer gene analysis anymore. For these reasons, we change the
research theme and analyze the SM instead of BGS in the seven chapters after this
chapter. We think that the four genes of Yamanaka’s iPS cells are BGS. However,
itis different in that there is no feature corresponding to the monotonous decrease
of MNM.

Table 2.7 is the result of 130 RipDSs using 130 BGSs. “Min and Max” columns
show the range of 22 normal cases (y; = —1), and “MIN and MAX” columns show the
range of 40 tumor cancer cases (y; = 1). Because all 130 pairs of “Max and MIN”
are —1 and 1, this fact tells us 130 BGSs are linearly separable gene subspaces.
“RipDS” is the range of DS of RIP such as [Min, MAX]. “RatioSV of BGS” is the
value calculated by 200/DS that is the ratio (%) of the SV distance and DS. The
RatioSV of BGS128 is 0.901% and maximum value. Although the distance of SV
is two, it is 0.901% of DS. The RatioSV of BGS83 is 0.001% and minimum value.
These ratios tell us that the degree of linear separability is very tiny. Thus, it is hard
for us to find linear separable fact by standard statistical methods for 130 BGSs. Last
three rows are a summary of 130 BGSs. The range of RipDSs is [222, 300470] that is
abnormally large. Because the range of RatioSV is [0.001, 0.901], 130 RIPs scarcely
discriminate two classes in 130 BGSs.

2.5.2.2 Box-Whisker Plots of BGS128 and BGS65

Figure 2.19 is two box—whisker plots of BGS128 with the maximum RatioSV and
BGS65 with the minimum RatioSV. Because SV separates both two classes com-
pletely, many researchers usually willingly accept these results. Until now, there is
no research on LSD-discrimination except for us. MNM is critical statistics, and
RatioSV is the second crucial statistics in addition to MNM. Three SVMs and three
OLDFs discriminate the microarrays by SV that divide the data space into three
subspaces such as y; * f(x;) >= 1, 1 >y; * f(x;) > —1 and —1 >=y; * f(x;). Vapnik
defined LSD as follows:

(1) There are no cases in “1 >y; * f(x;) > —1.”
(2) Two classes can be assigned to either one of “y; * f(x;) >= 17 or “—1 >=y;
*fi(xi).”

3

In this book, we assign the classl in “—1 >= y; * f(x;)” and the class2 in
“y; * f(xj) >= 1.” MNM is a statistic introduced by Shinmura. This statistic explains
the Matryoshka structure of the microarrays that is the same idea of “MNM mono-
tonic decrease.” RatioSVs of BGS128 and BGS65 are 0.901% (=2/222 * 100) and
0.001% (=2/176727 * 100). The distances of SV are 0.901% and 0.001% for the
width of RipDSs. These values are too small. On the other hand, all RatioSVs of SMs
are larger than RatioSV of BGS. Although BGS can explain Matryoshka structure
of the microarrays completely, we judge those are useless for cancer gene diagno-
sis. Yamanaka’s four genes are a kind of BGS. His team made a new stem cell to
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become gospel to human beings, iPS cell. We consider stem cell formation as the
same phenomenon as LSD. His team replaced c-myc with L-myc to prevent cancer.
The c-myc and L-myc may be compatible, and our research foresaw that there are
other Yamanaka’s genes that pair with L-myc.
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Fig. 2.19 Two box—whisker plots of BGS128 and BGS65

2.5.3 Examination of RipDSs New Data by PCA and Cluster
Analysis

2531 PCA

We examine 130 RipDSs new data by PCA. The data consist of 62 cases and 130
variables. Figure 2.20 is three plots of PCA. Left plot is an eigenvalue. The first
eigenvalue is 71.322, and contribution is 54%. The central plot is a scatter plot. The
range of 22 normal cases with [J on Prinl is [—13.642, —5.007], and the range of 40
cancer cases with x is [—3.133, 13.005]. In many analyses, all healthy cases have
negative scores, and all cancer patients have positive scores. How to evaluate cancer
patients having negative scores as in this example is a future study. In particular, it is
important whether or not medical meaning can be found. Thus, RatioSV is 7.294%.
Because all subjects are almost nearby Prinl axis, we can rank the malignancy
indicator by the value of the Prinl. Because maximum RatioSV of 130 RipDSs
is 0.901%, RatioSV on Prinl is eight times wider than those of 130 RipDSs. The
right plot is the factor loading plot. All RipDSs are in the first and fourth quadrants.
The 130 correlations of Prinl with RipDSs are from 0.620 to 0.863, and the 130
correlations of Prin2 with RipDSs are from —0.402 to 0.394.
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Fig. 2.20 Three plots of PCA

Figure 2.21 is four scatter plots. The x-axis is the Prinl, and y-axes are the Prin2,
Prin3, Prin4, and Prin5 from the left plot to right plot. A small 95% confidence ellipse
in the left is the normal class, and the right large 95% confidence ellipse is the cancer
class. The negative DS corresponds to a healthy subject group or a mild cancer group,
which is a feature shared by six microarrays. There are outliers, and two classes are
separable visually.

Fig. 2.21 Four scatters plots

2.5.3.2 Cluster Analysis

We analyze the new data by Ward cluster analysis. Figure 2.22 is the heat map
and case dendrogram of 62 cases. We categorize two clusters. The upper cluster
includes 22 normal cases marked by [J. The lower cluster includes 40 cancer cases
marked by x. Although many researchers approached the gene analysis using cluster
analysis, they could not obtain clear results such as this figure because the cluster
analysis cannot cluster the microarrays. However, by creating signal data, we can
easily capture the linearly separable facts in cluster analysis and PCA.

The bottom dendrogram is the variable dendrogram of 130 RipDSs. More than
ten clusters can be classified. About seven distances of pairs are very close. We think
that these seven pairs are redundant and interchangeable. That is, the orders of the
discrimination scores of 62 cases are considered to be almost the same.
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Fig. 2.22 Heat map and case dendrogram of 62 cases by Ward method. (upper: normal 22 cases;
lower: cancer 40 cases)

2.5.4 Summary

We claimed standard statistical methods could analyze BGS very easily because these
subspaces were small samples as same as SM. However, our examination shows it
is difficult for us to obtain good results from BGS. On the other hand, we can get
useful results from the RipDSs new data as same as SM. Notably, the 64 subjects
are ranking on the Prinl. Thus, we can rank the cancer malignancy indicator by the
value of Prinl in Table 2.7. Moreover, the Ward cluster analysis can identify two
clusters entirely.
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2.6 Other Five Microarrays

We introduce cancer gene diagnosis of other five microarrays. Because all results
are almost the same as 64 SMs of Alon’s microarray, we focus on the results of
malignancy indicators and outliers of transposed data.

2.6.1 Singh’s Microarray

2.6.1.1 Outlook

We analyze Singh’s microarray that consists of two classes, such as 50 normal sub-
jects (class1) and 52 tumor prostate subjects (class2) with 12,625 genes. LINGO
Program3 finds 179 SMs that include 1,238 genes. Because other 11,387 gene sub-
space is not linearly separable, we omit this subspace from our analysis. In other
words, we choose only the signal by removing noise. Ratio of signal (RatioS) is
9.01% (=1,238/12,625 * 100%). The portion of noise is 91%. Because all researchers
analyze microarrays with noise and do not understand the Matryoshka structure, they
could not find significant facts from 1970. At first, we analyze 179 SMs by standard
statistical methods and cannot obtain useful results. Because 179 NMs of logistic
regression and 26 NMs of QDF are zero, only logistic regression can find that all
SMs are linearly separable. Other standard statistical methods cannot locate linear
separable fact. Because we are not the gene specialists, we cannot conclude the useful
meaning of these results without linear separable fact. However, if we analyze new
data with 102 subjects and 179 RipDSs, we find surprising results for cancer gene
analysis. Ward cluster analysis and PCA can separate two classes correctly. The range
of 179 RatioSVs is [0.28, 11.67%]. If we suppose RatioSV with over 5% is useful for
cancer gene analysis, 38 RIPs among 179 SMs become different cancer malignancy
indicators. Moreover, both ranges of the 50 subjects in classl and 52 subjects in
class2 on the Prinl are [-17.89, —4.81] and [0.99, 22.53], respectively. There is 5.8
(=4.81 + 0.99) window width between two classes. Thus, RatioSV of PCA is 14.35%
(=(4.81 + 0.99) * 100/(17.89 + 22.53) = 580/40.42). Because RatioSV of RIP2 is
11.67%, RatioSV of PCA is 2.68% greater than RatioSV of RIP2 because RatioSV
of PCA is the total characteristic value of 179 RIPs. If cancer gene specialists validate
and confirm our results, we can open a new frontier of cancer gene diagnosis by 38
RIPs and Prinl malignancy indicators. These results will be helpful for cancer gene
diagnosis. We expect Singh et al. researchers validate our results and confirm our
claim to open a new frontier of cancer gene diagnosis.

At first, we plan to obtain all BGSs and analyze all BGSs. However, because the
range of 130 BGSs RatioSVs of Alon et al. microarray is [0.001, 0.9%], we judge
RIPs of BGSs are not helpful for cancer gene diagnosis.
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2.6.1.2 Malignancy Indexes

Figure 2.23 is three plots of PCA. The first eigenvalue is 113.749 and contribution
ratio is 63.5%. Scatter plot shows two classes are entirely separable. The 50 cases in
class1 locate on negative first principal axis (Prinl). The 52 cases in class2 scatter
on the first and fourth quadrants. Factor loading plot locates on the first and fourth

quadrants.
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Fig. 2.23 Three plots of PCA

Figure 2.24 is three scatter plots. The x-axis is Prinl. Y-axes are Prin2, Prin3,

and Prin4 from left, central, and right plots, respectively. The two ellipses are 99%
confidence ellipses. A small one in the left is class1, and right large one is class?2.
The 42nd, 54th, 57th, and 100th cases may be outliers. Cancer subjects scatter to a
great area.
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2.6.1.3 Analysis of Transpose New data

We transpose the new data with 102 subjects and 179 RipDSs and analyze the trans-
posed new data. Figure 2.25 is three plots of PCA. Factor loading plot shows 50
normal subjects in classl locate in the second and third quadrants, and 52 cancer
cases (variables) locate in the first and fourth quadrants. The variable name with the
suffix “N”” shows the normal subjects in class1, and other variable names with “C”
show the cancer subjects in class2. Scatter plot shows most RipDSs are on the line
of 45° with Prinl. The 179th, 178th, 175th, and other several RipDSs are outliers
those may be different types of malignancy indicators.
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Fig. 2.25 Three plots of PCA

Figure 2.26 is three scatter plots of PCA. The x-axis is the Prin1. Y-axes are Prin2,
Prin3, and Prin4. There are more outliers than other microarrays. Especially, there
is one large cluster of outliers. This consideration is the future work. If Singh et al.
validate our results and confirm our claim, they can prove their research was right.
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2.6.2 Golub Microarray

2.6.2.1 Outlook

We analyze the Golub microarray that consists of two classes, such as 25 acute
myeloid leukemia (AML, classl) and 47 acute lymphoblastic leukemia (ALL,
class2) with 7,129 genes. LINGO Program3 finds 69 SMs that include 1,238 genes.
Because other 5,891 gene subspaces are not linearly separable and noise, we omit
these 5,891 genes from our analysis. In other words, we choose the only signal. The
ratio of signal (RatioS) is 17.36% (=1,238/7,129 * 100), and the portion of noise
is 82.64%. At first, we analyze 69 SMs by standard statistical methods. Because 69
NMs of logistic regression are zero, only logistic regression can find that 64 SMs
are linearly separable. The 16 NMs of QDF and one NM of both Fisher’s LDFs are
zero. Other standard statistical methods cannot show linear separable fact. Because
we are not the specialists of the cancer gene, we cannot conclude the useful meaning
of these results without linear separable fact. However, if we analyze 69 RipDSs
new data, we find surprising results. Ward cluster analysis and PCA can separate
two classes correctly. The range of 69 RatioSVs of RIP is [0.004, 15.69%]. Ninth
RIP (RIP9) of SM9 has the maximum value of 15.69%. Thus, RIP9 can discriminate
new validation samples very easy. If we supposed RatioSV with over 5% is useful
for cancer gene diagnosis, 28 RIPs become different cancer malignancy indicators.
Moreover, both ranges of the 25 cases in class1 and 47 cases in class2 on the Prinl
are [—11.72, —4.66] and [—1.66, 23.16], respectively. There is 3 (=4.66 — 1.66)
window width between two classes. RatioSV of PCA is 8.6% (=3 * 100/(11.72 +
23.16) = 300/34.88 = 30.4). Because RatioSV of RIP9 is 15.69%, RatioSV of Prinl
is 7.69% less than RatioSV of RIP9. This result is different from Alon and Singh
results that are two-class discriminations between cancer subjects versus normal
subjects. Although RatioSV on Prinl is the total characteristic value of 69RIPs,
Prinl does not reflect the merit of PCA. By analyzing 69 RipDSs, we find surprising
results for cancer gene diagnosis. If medical experts will validate our results and
confirm our claim, we can open a new frontier of cancer gene diagnosis.

2.6.2.2 Malignancy Indexes

Figure 2.27 is three plots of PCA. Left eigenvalue shows the eigenvalue of Prinl is
45.02 and the contribution ratio is 65.246%. Because two classes are two different
types of cancer, both classes do not locate on Prinl as same as Alon and Singh’s
microarrays. The first eigenvalue is very large. Scatter plot shows two classes are
completely separable. The 25 AML cases locate on negative Prinl. The 47 ALL
cases scatter on the first and fourth quadrants. Factor loading plot scatters on the first
and fourth quadrants. However, some RipDSs have small correlations with Prinl and
Prin2.
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Fig. 2.27 Three plots of PCA

Figure 2.28 is three scatter plots. Left small 95% ellipse is AML. Because the
right 95% ellipse is larger than AML ellipse, we guess ALL is more variance than
AML and may be severe cancer. The 30th, 62nd, and 65th cases in class2 are outliers.
We expect some member of Golub et al. explain the reason why these ALL subjects
are outliers.
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Fig. 2.28 Three scatter plots (x-axis: Prinl, y-axis: Prin2, Prin3, Prin4)

2.6.2.3 Analysis of Transpose New data

Figure 2.29 is three plots of PCA using transpose new data with 69 RipDSs and 72
subjects. Factor loading plot shows 25 AML subjects with prefix N located in the
second and third quadrant. However, this class may be categorized into three groups.
Those are two high negative correlations with Prinl or Prin2, and low negative
correlations with Prinl and Prin2. The 47 ALL subjects with prefix C located in
the first and fourth quadrants. However, this class may be categorized into three
groups. Those are two high positive correlations with Prin1 or Prin2, and low positive
correlations with Prinl and Prin2. Scatter plot shows most RipDSs are nearby the
origin. Two large outliers discriminate two ALL groups having two different types
of high positive correlations.



2.6 Other Five Microarrays 83

Furthermore, although PCA result of Fig. 2.27 is almost the same as the other
five results, Fig. 2.29 is quite different from others. The reason why the results of
the transposed matrix greatly differ is the future research topic.
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Fig. 2.29 Three plots of PCA using transpose new data

Figure 2.30 is three plots of PCA. The x-axis is Prinl. Y-axes are the Prin2, Prin3,
and Prin4. The RIP30, RIP62, RIP65, and other RipDSs may be outliers. If Golub
et al. validate our results and confirm our claim, they can prove their research was
right.
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Fig. 2.30 Three plots of PCA

2.6.3 Tian’s Microarray

2.6.3.1 Outlook

Tian’s microarray consists of two classes, such as 36 cases (false, classl) and 137
cases (true, class2) with 12,625 genes. LINGO Program3 finds 159 SMs that include
7,221 genes and other 5,404 genes are noise. We omit these noises from our analysis.
The ratio of signal (RatioS) is 57.2%, and the portion of noise is 42.8%. At first,
we analyze 159 SMs by standard statistical methods and cannot obtain success.
Because 159 NMs of logistic regression are zero, 159 SMs are linearly separable.
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Because 158 NMs of QDF are zero, two classes may be fairly separated. Other
standard statistical methods cannot show linear separable fact. Because we are not
the specialists of the cancer gene, we cannot conclude the useful meaning of these
results without linear separable fact. However, if we analyze 159 RipDSs new data,
we find surprising results for cancer gene analysis. Ward cluster analysis and PCA
can separate two classes correctly. The range of RatioSVs is [0.63, 19.13%]. The
21st RIP (RIP21) has the maximum value of 19.13%. Thus, RIP21 can discriminate
new validation samples very easily and may indicate a cancer malignancy indicator
for cancer gene diagnosis. If we supposed RatioSV with over 5% is useful for cancer
gene analysis, 27 RIPs become different cancer malignancy indicators. Moreover,
both ranges of the 36 cases in class1 and 137 cases in class2 on the Prin1 are [—17.68,
—11.94] and [—4.09, 15.07], respectively. There is 7.85 (=11.94 — 4.09) window
width between two classes. RatioSV of PCA is 24% (=7.85 * 100/(17.68 + 15.07) =
785/32.75). Because RatioSV of RIP21 is 19.13%, RatioSV of PCA is 4.87% greater
than RatioSV of RIP21. If medical doctors validate and confirm our results, we can
open a new frontier of cancer gene diagnosis by 63 RIPs and Prinl.

2.6.3.2 Malignancy Indexes

Figure 2.31 is three plots of PCA. The eigenvalue of Prinl is 62.73 and larger than
other eigenvalues. Its contribution ratio is 39.339%. Scatter plot shows two classes
are completely separable. Factor loading plot locates on the first and fourth quad-
rants. However, 159 correlations of Prinl with 159 RipDSs are smaller than other
microarrays. We cannot explain this reason now.

Eigenvalue 20 40 60 80
62.7301 | 154
4.2779
3.0077 10 0.5
2.7476
2.6254
24533
2.3097
22722
2.1864
2.0460
2.0410
1.5089

% x
54 #,

| we ol -l
e -"*_'ésg:}o . %

Piin2 (2.69 %)
Piin2 (2.69 %)

S T T T T T T T T T T T
20 15 <10 -5 0 5 10 15 20 -1.0 -0.5 0.0 0.5 1.0
Prinl (39.5 %) Prind (39.5 %)

Fig. 2.31 Three plots of PCA

2.6.3.3 Analysis of Transpose New Data

We transpose the new data and analyze it that consists of 159 RipDSs and 173
subjects. Figure 2.32 is three plots of PCA. Factor loading plot shows FALSE class1
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cases locate in the second and third quadrants, and TRUE class2 cases locate in the
first and fourth quadrants. Scatter plot indicates that it fluctuates largely in a trumpet
or fan shape as it goes from left to right. Approximately ten RIPs widely spread from
the first quadrant to fourth quadrants like the top of a fan. These outliers are thought
to represent different information with other RIP and cancer diagnosis.
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Fig. 2.32 Three Plots of PCA

Figure 2.33 is three scatter plots of PCA. The x-axis is Prinl. Y-axes are Prin2,
Prin3, and Prin4. We indicate about ten outliers. This consideration is the future
work. If Tian et al. validate our results and confirm our claim, they can prove their
research was right.
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Fig. 2.33 Three scatter plots of transposed new data

2.6.4 Chiaretti Microarray

2.6.4.1 Outlook

Chiaretti microarray consists of two classes, such as 95 subjects (B-cell, class1) and
33 subjects (T-cell, class2) with 7,129 genes. LINGO Program3 finds 95 SMs with
5,163 genes, and other 1,956 genes are noise. We omit these genes from our analysis.
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Ratio of signal is 72.36% (=5,160/7,129 * 100%). At first, we analyze 95 SMs by
standard statistical methods and cannot obtain success. Because 95 NMs of logistic
regression and QDF are zero, logistic regression and QDF confirms all SMs are
linearly separable. The 92 NMs of LDF2 and 94 NMs of LDF1 are zero. Thus, two
classes are the most separated among six microarrays. Because we are not the cancer
gene specialists, we cannot find the useful meaning of these results without linear
separable fact. However, if we analyze 95 RipDSs new data, we find surprising
results for cancer gene analysis. Ward cluster analysis and PCA can separate two
classes correctly. The range of RatioSVs is [10.73, 38.93%]. The 23rd RIP (RIP23)
of SM23 has the maximum value of 38.93%. RIP23 can discriminate new validation
samples very easily and may indicate the cancer malignancy indicator for cancer gene
diagnosis. If we supposed RatioSV with over 5% is useful for cancer gene analysis,
95 RIPs become different cancer malignancy indicators. Moreover, both ranges of
the 95 cases in classl and 33 cases in class2 on the Prinl are [—11.4, —1.71] and
[12.73, 16.66], respectively. There is 14.44 (=12.73 + 1.71) window width between
two classes. RatioSV of PCA is 51.46% (=(12.73 + 1.71) * 100/(16.66 + 11.4) =
14.44/28.06). Because RatioSV of RIP23 is 38.98%, RatioSV of PCA is 12.48%
greater than RatioSV of RIP23. If medical gene specialists validate and confirm our
results, we can open a new frontier of cancer gene diagnosis by 95 RIPs and Prinl.

2.6.4.2 Malignancy Indexes

Figure 2.34 is three plots of PCA. Three eigenvalues are greater than one. The
eigenvalue of Prinl is 72.243, and contribution ratio is 76.046%. Scatter plot shows
two classes are completely separable. The 95 subjects in class1 locate on negative
first principal axis. The 33 subjects in class2 scatter on the positive first axis. Factor
loading plot locates on the first and fourth quadrants. The 95 correlations of Prinl
with 95 RipDSs are approximately over 0.8.
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Figure 2.35 is three scatter plots. The x-axis is Prinl. Y-axes are Prin2, Prin3, and
Prin4, respectively. Left ones are B-cell classes. Right ones are T-cell classes.
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Fig. 2.35 Three scatter plots

2.6.4.3 Analysis of Transpose New Data

We transpose the new data and analyze it that consists of 95 RipDSs and 128 subjects.
Figure 2.36 is three plots of PCA. Factor loading plot shows T-cell in class2 locates
in the second and third quadrants and B-cell in class1 locates in the first and fourth
quadrants. Scatter plot shows most RipDSs are nearby the origin. The 3rd, 4th, 41st,
46th, and 95th RipDSs are outliers. These five RIPs are considered to show different
diagnostic results from the other 90 RIPs.

40 1.0
Eigenvalue 20 40 60 80
19.6503( | 304 |
7.1815 |
5.5510| 204 0.5 |
ppod i
: F 10 3
4.6031 = ) ] |
4.4358 w04 ToE s 0.0 |
3.9200 o g ~ [
3.6872 £ 104 # £ |
3.3250 |
3.1960 20+ -0.54
2.0238
-304
]
= T T T T T T T L0 T ¥ T |
40 -3 -20 -10 0 10 20 30 40 -1.0 -0.5 0.0 0.5 1.0}
Prinl (15.4 %) Prinl (15.4 %) |

Fig. 2.36 Three plots of PCA

Figure 2.37 is three scatter plots of PCA. The x-axis is Prinl. Y-axes are Prin2,
Prin3, and Prin4. We indicate the outliers. This consideration is the future work. The
3rd, 4th, 41th, 46th, and 95th RipDSs may be outliers. Thus, these outliers indicate
the different roles from other RIP. If Chieretti et al. validate our results and confirm
our claim, they can prove their research was right.
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Fig. 2.37 Three scatter plots of PCA

2.6.5 Shipp Microarray

2.6.5.1 Outlook

Shipp microarray consists of two classes, such as 19 cases (follicular lymphoma,
class1) and 58 cases (DLBCL, class2) with 7,129 genes. LINGO Program3 finds
239 SMs with 4,716 genes. Because it is hard work to analyze 239 SMs manually,
we focus on 130 SMs with 3,827 genes in this book. In other words, we choose only
signal by removing noise and 109 SMs. Because all researchers analyze microarray
with noise, they could not find the significant facts from 1970. At first, we ana-
lyze 130 SMs by standard statistical methods and cannot obtain success. Because
130 NMs of logistic regression are zero, only logistic regression can find 130 SMs
are linearly separable. QDF, LDF2, and LDF1 can discriminate 121, 46, and 53
SMs correctly. Other standard statistical methods cannot show linear separable fact.
Because we are not the cancer gene specialists, we cannot find the useful meaning of
these results without linear separable fact. However, if we analyze 130 RipDSs, we
find surprising results for cancer gene analysis. Ward cluster analysis and PCA can
separate two classes correctly. The range of 130 RatioSVs is [4.99, 30.67%]. The
11th RIP (RIP11) of SM11 discriminates two classes by SV completely. Although
SV distance is two, the ratio of this distance is 30.67% of the RIP11 DS range.
Thus, RIP11 can discriminate new validation samples very easily and may indicate
the cancer malignancy indicator for cancer gene diagnosis. If we suppose RatioSV
with over 5% is useful for cancer gene diagnosis, 129 RIPs become different cancer
malignancy indicators. Moreover, both ranges of the class1 and class2 on the Prinl
are [—18.98, —12.56] and [—2.23, 13.62], respectively. There is 10.33 (=12.56 —
2.23) window width between the two classes. RatioSV of PCA is 31.69% (=10.33 *
100/(13.62 + 18.98) = 1033/32.6 = 31.69). Because RatioSV of RIP11 is 30.67%,
RatioSV of PCA is 1.02% greater than RatioSV of RIP11 because RatioSV of PCA
is the total characteristic value of 130 RIPs. If medical doctors validate and confirm
our results, we can open a new frontier of cancer gene diagnosis by 129 RIPs and
Prinl.
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2.6.5.2 Malignancy Indexes

Figure 2.38 is three PCA plots using a correlation matrix. Left plot is an eigenvalue.
Twelve principal components from Prinl to Prinl2 are greater than one. The cumu-
lative contribution ratio is 60.82%. The central plot is a scatter plot. Two classes are
separable. The 19 subjects in classl distribute on negative Prinl. The 58 subjects
in class2 distribute the first and fourth quadrants that separate three groups. The
first group consists of ID = 14, 40, and 54 DLBCL subjects in the first quadrant.
The second group distributes on positive Prinl. The third group consists of over
13 subjects such as ID = 4, 27, 32, 39, 44, 55-58, and other subjects in the fourth
quadrants. The right figure is the factor loading plot. Moreover, both ranges of the
19 cases in class1 and 58 cases in class2 on Prinl are [—18.98, —12.56] and [—2.23,
13.62], respectively. There is 10.33 (=12.56 — 2.23) window width between the two
classes. RatioSV of PCA is 31.69% (=10.33 * 100/(13.62 + 18.98) = 1033/32.6 =
31.69). Because RatioSV of RIP11 is 30.67%, RatioSV of PCA is 1.02% greater
than RatioSV of RIP11 because RatioSV of PCA is the total characteristic value of
130 RIPs. If medical doctors validate and confirm our results, we can open a new
frontier of cancer gene diagnosis by 129 RIPs and Prinl.
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Fig. 2.38 PCA plots (eigenvalue, scatter plot, and factor loading)

Figure 2.39 is three scatter plots. The x-axis is Prinl. The y-axes are Prin2, Prin3,
and Pin4. The left small clusteris 58 class1 cases. The right large cluster is 5§ DLBCL
class2 those include many outliers.
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2.6.5.3 Analysis of Transpose New Data

We transpose the new data and analyze the transpose new data that consists of 130
RipDSs and 77 subjects (77 variables). Figure 2.40 is three plots of PCA using a
correlation matrix. Factor loading plot shows all patients locate only in the first and
fourth quadrants. Scatter plot shows most RipDSs are nearby the origin. Outliers are
located in the first and fourth quadrants.

20. 10
Eigenvalue 20 40 60 80
9.0138| | 154
4.4021
3.4714| 104 0.5
3.2065|
3.0959 F 54 g
2.9381 o o
2.8752 b 04 ¥ 0.04
2.5445 ~ >
23119 E -5 &
2.1%01
2.0316 -104 0.5+
1.9624
-15
-20 T T T T T T T T 1.0 T T T T
20 -15 -10 -5 o 5 10 15 20 -1.0 0.5 0.0 0.5 10
Prinl (11.7 %) Prinl (11.7 %)

Fig. 2.40 Three plots of PCA

Figure 2.41 is three scatter plots of PCA using variance—covariance matrixes. The
x-axis is the Prinl. Y-axes are Prin2, Prin3, and Prin4. We indicate the outliers. This
consideration is the future work. There are many outliers those indicate the different
roles from other RIPs. If Shipp et al. validate our results and confirm our claim, they
can prove their research was right.
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Fig. 2.41 Three scatter plots of PCA
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2.7 Conclusion

After establishing theory and solving cancer gene analysis, our next research
theme was to obtain all BGSs of microarrays at first. However, because LINGO
Program4 to find all BGSs needed much computational time, we changed to find
each BGS step by step. Because finding 130 BGSs of Alon’s microarray took over
one week, we compared 130 BGSs with 64 SMs of Alon’s microarray. RatioSV
of 63 SMs among 64 SMs is over 5%. On the other hand, 130 RatioSVs of 130
BGSs are less than 0.9%. Thus, we judged BGS is useless for cancer gene diagnosis.
Moreover, we changed to analyze all SMs of microarrays. Even though two classes
are completely separable in all SMs, all standard statistical methods except for logistic
regression cannot show linear separable fact. Thus, we made new data having RipDSs
as variables. Cluster analysis and PCA separate two classes completely. Especially,
the Prinl of PCA illustrates malignancy indicators very well. Next, the scatter plot
of transposed new data shows many RipDSs become outliers. These outliers may
be expected unknown subclass of cancer pointed out by Golub et al. We confirmed
the other five microarrays are almost the same results. Table 2.8 is the summary of
this chapter. RatioS is the ratio of (the number of genes included in all SMs/total
genes). “ >=5%" is the number of SMs, RatioSVs of those are over than 5%. The
ratio of RatioSV over 5% are 98.4%, 18.8%, 99.2%, 21.2%, 16.9%, and 100%,
respectively. Alon, Shipp, and Chiaretti microarrays are 98.4% over. RatioSV of
PCA is slightly different about this trend. Last three columns are the number of
linearly separable SMs by QDF, LDF1, and LDF2. These numbers indicate two
classes are well separable in all SMs as same as the trend of “ >=5%.”

So far, we think the genes included in SM or BGS are oncogenes, and they are
signals. However, we could not obtain the right results by standard statistical methods.
That is, the discriminant score obtained by the genes included in SM and BGS may
be as a signal. In 2017, we obtain two kinds of SMs from the RIP and Revised
LP-OLDF. In Chaps. 4—9, we compared two results of new data and transposed
new data made by RipDSs, LpDSs, and HsvmDSs. Furthermore, by comparing the
signal subspace that is the union of all SMs, we explain the reason why the standard
statistical methods cannot find the linear separable fact in SM.
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Chapter 3 ®)
Cancer Gene Diagnosis of Alon’s st

microarray by RIP and Revised
LP-OLDF

Abstract This chapter discusses the following three points. (1) We have introduced
only SMs obtained with the RIP in Chap. 2. RIP analyzed SMs by Program3’ arbitrary
iteration number. In 2017, we increase the number of iterations successively from 1
and select the iteration number that the number of SM obtained is constant. More-
over, we compare two types of SMs obtained by the RIP and Revised LP-OLDF and
evaluate the eight LDFs and QDF by RatioSV and the number of misclassifications
(NMs). (2) The microarrays are linearly separable data (LSD). However, because
the statistical discriminant functions cannot discriminate LSD theoretically, many
researchers could not solve the cancer gene analysis completely from 1970 (Prob-
lem5). Moreover, the Matryoshka feature selection method (Method2) and LINGO
Program3 can decompose the microarray into many SMs those are LSD. Although
all SMs are small samples, many statistical methods cannot find the linear separa-
ble facts. However, RIP, Revised LP-OLDF, and H-SVM can discriminate all SMs
correctly. We realized the three data made by three LDFs are signal data and reduce
the high-dimensional microarray to low-dimensional signal data. (3) We propose
the standard procedure for how to analyze all SMs. Specialists of gene analysis can
solve the cancer gene analysis and approach the cancer gene diagnosis from the new
aspect. On the other hand, statisticians recognize the difficulties of cancer gene anal-
ysis and understand the easiness of the cancer gene diagnosis by statistical methods.
Statistical users can analyze many SMs those are a gift from high-dimensional data
and skill-up their statistical ability to solve practical applications.

Keywords Cancer gene diagnosis + Malignancy indicators + Small Matryoshka
(SM) - Revised IP-OLDF (RIP) - Revised LP-OLDF + Hard-margin SVM
(H-SVM) - Signal data made by discriminant scores

3.1 Introduction

Chapter 1 outlined the new theory of discriminant analysis after R. A. Fisher and
explained the successful example of cancer gene analysis (Theory). Chapter 2
described the cancer gene diagnosis and malignancy indicators. LINGO Program3

© Springer Nature Singapore Pte Ltd. 2019 95
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and LINGO Program4 of Revised IP-OLDF (RIP) found 64 Small Matryoshkas
(SMs) and 130 basic gene sets (BGSs) of Alon’s microarray. Although 63 RatioSVs
among 64 SMs are higher than 5%, all RatioSVs of 130 BGSs were less than 1%.
These facts showed us BGSs were useless for the cancer gene diagnosis. Thus, we
decided not to look for BGSs of other five microarrays anymore. After many trials, we
realized RIP discriminant scores (RipDSs) become proper malignancy indicators and
contains much information. Thus, we made the signal data made by RipDSs. With this
breakthrough, we can propose the cancer gene diagnosis by malignancy indicators.
This chapter discusses the following three points.

(1) We have introduced only SMs obtained with the RIP in Chap. 2. RIP analyzed
SMs by Program3’ arbitrary iteration number. In 2017, we increase the number
of iterations successively from 1 and select the iteration number that the number
of SM obtained is constant. Moreover, we compare two types of SMs obtained
by the RIP and Revised LP-OLDF and evaluate the eight LDFs and QDF by
RatioSV and the number of misclassifications (NMs).

(2) The microarrays are linearly separable data (LSD). However, because the sta-
tistical discriminant functions cannot discriminate LSD theoretically, many
researchers could not solve the cancer gene analysis completely from 1970
(Problem5). Moreover, the Matryoshka feature selection method (Method2)
and LINGO Program3 can decompose the microarray into many SMs those
are LSD. Although all SMs are small samples, many statistical methods cannot
find the linear separable facts easily. However, RIP, Revised LP-OLDF, and
H-SVM can discriminate all SMs correctly. We realized the three data made
by three LDFs are signal data and reduce the high-dimensional microarray to
low-dimensional signal data.

(3) We propose the standard procedure for how to analyze all SMs. Specialists of
gene analysis can solve the cancer gene analysis and approach the cancer gene
diagnosis from the new aspect. On the other hand, statisticians recognize the
difficulties of cancer gene analysis and understand the easiness of the cancer
gene diagnosis by statistical methods. Statistical users can analyze plenty of SMs
that is a gift from high-dimensional data and skill-up their statistical ability to
solve practical applications.

This chapter considers the following two points because we have only studied
SM obtained with the RIP in Chap. 2. (1) In this chapter, we compare two types
of SMs obtained by the RIP and Revised LP-OLDF. (2) So far, we have chosen
SMs by Program3’ arbitrary iteration number. For this time, we decided to increase
the number of iterations successively from 1 and use the number of times that the
number of SM obtained is constant. In Chaps. 3 to 9, we examined with the two
sets of SMs obtained by the RIP and Revised LP-OLDEF. Section 3.2 examines the
iteration option of LINGO Program3 and chooses the 39 SMs by Revised LP-OLDF
and the 56 SMs by the RIP. Also, Revised LP-OLDF chooses 36 SMs by fixing
“IT = 3.” We compare three different SMs by RatioSVs and NMs. Sections 3.4 and
3.5 introduce the cancer gene diagnosis of 39 SMs and 56 SMs. Section 3.6 is the
conclusion.
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3.2 Outlook of This Chapter

Alon’s microarray consists of the 62 cases (the 22 Normal subjects and the 40 Tumor
cancer patients) with 2,000 genes. This chapter introduces the third time discrimi-
nation of Alon’s microarray in 2017 and evaluates the results from a new point by
LINGO ver.17. RIP finds the 56 SMs (1,999 genes), and Revised LP-OLDF find 39
SMs (992 genes). Until now, although we used an arbitrary iteration option value of
LINGO Program3, we decide a proper option by changing the value this time. RIP
and Revised LP-OLDF choose the different combinations of SMs. Because Revised
LP-OLDF are faster than RIP and choose a small number of SMs, it is convenient
for many researchers to use Revised LP-OLDF’s SMs if there are no problems with
SMs found by Revised LP-OLDF. Thus, we validate two different combinations of
SMs by several points.

3.2.1 Alon’s microarray

Alon et al. (1999)! published a paper entitled “Broad patterns of gene expression
revealed by clustering analysis of Tumor and Normal colon tissues probed by oligonu-
cleotide arrays.” They explained their research purpose in their abstract as follows:
“Oligonucleotide arrays can provide a broad picture of the state of the cell, by mon-
itoring the expression level of thousands of genes at the same time. It is of interest
to develop techniques for extracting useful information from the resulting microar-
rays. Here we report the application of a two-way clustering method for analyz-
ing a microarray consisting of the expression patterns of different cell types. Gene
expression in 40 tumors and 22 normal colon tissue samples were analyzed with an
Affymetrix oligonucleotide array complementary to more than 6,500 human genes.
An efficient two-way clustering algorithm was applied to both the genes and the
tissues, revealing broad coherent patterns that suggest a high degree of organization
underlying gene expression in these tissues. Coregulated families of genes clus-
tered together, as demonstrated for the ribosomal proteins. Clustering also separated
cancerous from non-cancerous tissue and cell lines from in vivo tissues by subtle
distributed patterns of genes even when expression of individual genes varied only
slightly between the tissues. Two-way clustering thus may be of use both in classi-
fying genes into functional groups.”

When RIP discriminated Alon’s microarray by LINGO Program3, it found 66 SMs
(1,131 genes) in 2015 by LINGO ver.15 (Schrage 2006). Shinmura (2015) showed
all the SMs gene name. In 2016, RIP found 64 SMs (1,999 genes) by the different
iteration option value by LINGO ver.16. Moreover, RIP found 130 BGSs (1,995
genes) by LINGO Program4 and manual cooperation. We are stuck in the defect of
SM which selects different combinations of SM by different iteration option value and
LINGO yearly version up. Although many papers said that high-dimensional noise
embeds the signal, Alon’s microarray has few noises. In position book (Shinmura
2017) and Chap. 2, we evaluate the 64 SMs and 130 BGSs by RatioSVs. The range

I Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ.
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of 64 RatioSVs and 130 BGSs are [2.35%, 26.76%] and [0.00%, 0.9%], respectively.
Thus, we concluded BGSs were useless for cancer gene diagnosis and stopped to
search other five BGSs. Although they specified 2,000 genes by two-way clustering
(SOM: Self-Organizing Map) from the knowledge of cancer gene, our different
approaches decomposed 2,000 genes to almost the same 64 SMs and 130 BGSs.
Alon’s research confirms our results. Several statistical papers pointed out it was
difficult for statisticians to separate signal and noise (one of the difficulties). However,
Alon’s microarray is considered to be almost the signal. We cannot judge whether this
fact is by chance or SOM is helpful for gene analysis in addition to RIP. Because we
have no experience for SOM and it requests the proper clustering number k, we use the
hierarchical cluster analysis in our research. Furthermore, because two SMs in 2015
and 2016 are different, we discuss deciding the proper iteration number in this chapter.

3.2.2 Examination of the Iteration Option of LINGO
Program3

Table 3.1 shows how to determine the proper iteration values for the Revised LP-
OLDF and RIP.

If we find the same number of SMs consecutively, choose the first IT value. “CPU”
is the computation time (minute: second). “SM” is the number of SMs found by the
specified IT. “Gene” is total number included in SMs. “Gene/SM” is the average
gene number per SM. Revised LP-OLDF chooses “IT = 5” because six IT values
from five to ten choose 39 SMs. Thus, we evaluate 39 SMs of Revised LP-OLDF
in this chapter. Until now, we ignored the SMs except for RIP and chosen the IT by
an arbitrary constant value. Revised LP-OLDF chooses the signal (992 gens) and
separates 1,008 genes as the noise. Moreover, it decomposes the signal to 39 SMs.
RIP chooses “IT = 3” because three IT values from three to five choose 56 SMs.
Thus, we evaluate 56 SMs of RIP in this chapter. RIP chooses the signal (1,999 gens)
and separates one gene as the noise. Moreover, it decomposes the signal to 56 SMs.
Nevertheless, RIP found 64 SMs (1,999 genes) in 2016.

Table 3.1 Proper iteration values of revised LP-OLDF and RIP

IT LP RIP
CPU SM Gene Gene/SM | CPU SM Gene Gene/SM

1 10 24 1063 44 44 36 1989 55

2 29 36 1042 29 1:19 55 1965 36

3 36 37 1003 27 1:48 56 1999 36

4 47 38 988 26 2:16 56 1999 36

5 56 39 992 25 2:47 56 1999 36

6 1:08 39 992 25

7 1:47 39 992 25

10 1:47 39 992 25
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3.3 Comparison of 39 SMs by Revised LP-OLDF and 56
SMs by RIP

In Sect. 3.3, we compare three different SMs found by Revised LP-OLDF and RIP.
We evaluate these three different SMs by six MP-based LDFs such as RIP, Revised
LP-OLDF (LP), Revised IPLP-OLDF (IPLP), hard-margin SVM (H-SVM), SVM4
(penalty ¢ = 10"4) and SVMI1 (penalty ¢ = 1) using RatioSV.

3.3.1 Result of 39 SMs by Revised LP-OLDF

3.3.1.1 Pre-survey of 36 SMs by “IT = 2”

Before examination of 39 SMs obtained by “IT = 57, we survey 36 SMs of
“IT = 2” in Table 3.2. “SM” is the sequential number of 36 SMs. “Gene” is the
total gene numbers included in each SM. Six columns are RatioSVs of six MP-based
LDFs. “Max and Min” are maximum and minimum values of four RatioSV's except
for SVM4 and SVM . Last four columns are four NMs of SVM4, SVM 1, and LDF22
and QDF. Although RatioSV is the proper statistic for LSD-discrimination, its values
become large for “NM >= 1" and are not reliable. Last five rows are five elementary
statistics. “SUM?” is the total number of genes included in 36 SMs. “Max RatioSV” is
the total number of SMs having a maximum value of four RatioS Vs except for SVM4
and SVM1. Although the values of three OLDFs are ten, 16 RatioSVs of H-SVM
are the maximum values among the four MP-based LDFs. We think the maximiza-
tion of SV criterion causes this good result for H-SVM. Four ranges of RatioSV
by “RIP, LP, IPLP, and HSVM” are [0.19, 36.06], [0.19, 37.44], [0.19, 37.44] and
[0.19, 37.98], respectively. Thus, RatioSV of H-SVM is better than three OLDFs.
Last four ranges of NMs are [0, 1], [0, 6], [0, 8] and [0, 0], respectively. QDF is better
than SVM4, SVM1, and LDF2. In Alon’s microarray, only logistic regression and
QDF can discriminate 36 SMs correctly in addition to three OLDFs and H-SVM.
Although four NMs are fairly small NMs, other five microarrays have larger NMs
than Alon. However, because we focus on the linear separable facts, we count the
number of SM with NM = 0. Those are 35, 22, 19, and 36, respectively. The only
QDF discriminate 36 SMs correctly. These facts conclude SVM4, SVM1, (LDF1),
and LDF2 are useless for cancer gene diagnosis.

2Prior probability is proportional to the number of patients.
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Table 3.2 Result of 36 SMs

SM Gene RIP LP IPLP | HSVM| SVM4 | SVMI | Max | Min SVM4 | SVMI | LDF2 | QDF
1 24 2592 | 1599 | 1599 |28.50 | 2848 | 2850 |28.50 | 1599 |0 0 0 0
2 24 31.69 | 32.88 | 32.88 | 34.00 | 34.00 | 34.00 |34.00 | 31.69 |0 0 0 0
3 25 36.06 | 37.44 | 37.44 | 36.04 | 36.04 | 36.04 |3744 |36.04 |0 0 0 0
4 29 35.69 | 33.82 | 33.82 |37.98 | 38.00 |37.98 |38.00 |33.82 |0 0 0 0
5 25 2841 | 2748 | 2748 |32.83 | 3281 |32.83 |32.83 | 2748 |0 0 0 0
6 27 30.74 | 30.75 | 30.75 | 27.06 |27.06 |27.06 |30.75 |27.06 |0 0 0 0
7 30 2778 | 36.39 | 36.39 | 3220 | 3221 |3221 |3639 [27.78 |0 0 0 0
8 29 26.10 | 2582 | 2582 |29.05 | 29.05 |29.05 |29.05 | 2582 |0 0 0 0
9 29 20.30 | 24.58 | 24.58 |31.37 | 31.37 | 31.37 |31.37 | 2030 |0 0 0 0
10 27 31.27 | 3432 | 3432 | 3641 | 3641 | 3642 |3642 |31.27 |0 0 0 0
11 31 3475 | 30.52 | 30.52 | 28.66 |28.65 |28.66 |34.75 |28.65 |0 0 0 0
12 30 2740 | 3493 | 3493 |32.12 |32.16 |32.12 |3493 | 2740 |0 0 0 0
13 26 31.31 | 3392 | 3392 | 3246 | 3246 | 3386 |33.92 |31.31 |0 0 0 0
14 26 23.39 | 2221 | 2221 |21.34 |21.34 2406 |24.06 |21.34 |0 0 0 0
15 25 17.31 | 22.29 | 2229 |20.79 |20.79 | 2276 |22.76 |17.31 |0 0 0 0
16 30 19.71 | 22.71 | 2271 |23.59 |23.59 |26.64 |26.64 | 1971 |0 0 1 0
17 30 26.64 | 36.66 | 36.66 | 31.85 | 31.85 | 3249 |36.66 | 26.64 |0 0 0 0
18 25 19.57 | 22.50 | 22.50 |23.04 |23.04 | 2583 |25.83 |19.57 |0 0 1 0
19 26 1931 | 19.23 | 19.23 | 1821 | 18.21 |22.29 |2229 | 1821 |0 0 3 0
20 28 18.92 | 18.64 | 18.64 |21.18 |21.18 | 2529 |2529 |18.64 |0 0 1 0
21 28 21.56 | 18.79 | 18.79 | 2275 |22.74 | 2421 |2421 | 1879 |0 0 1 0
22 27 25.15 | 24.53 | 2453 |28.38 | 2838 | 3120 |31.20 | 2453 |0 0 0 0
23 29 25.00 | 30.19 | 30.19 | 2494 | 2494 (3775 | 3775 | 2494 |0 1 1 0
24 28 2443 | 27.08 | 27.08 | 2574 | 2574 3837 |3837 | 2443 |0 2 0 0
25 28 17.32 | 20.18 | 20.18 |21.17 |21.17 |3256 | 3256 | 17.32 |0 3 0 0
26 29 21.95 | 17.10 | 17.10 | 20.86 |20.86 | 3966 |39.66 | 17.10 |0 4 2 0
27 29 16.01 | 14.54 | 14.54 | 15.68 | 15.68 |36:56 | 30.50 | 1454 |0 4 2 0
28 28 16.83 | 1441 | 1441 |16.58 | 16.58 | 2946 |29.16 | 1441 |0 3 5 0
29 32 13.71 | 1681 | 16.81 |17.08 | 17.08 | 3872 |38.72 | 13.71 |0 5 3 0
30 30 7.05 7.43 7.43 8.24 8.24 | 2727 | 2727 7.05 |0 5 6 0
31 31 13.97 7.89 7.89 | 13.69 | 13.69 | 3234 | 32.34 789 |0 5 4 0
32 29 9.43 9.30 | 9.30 |10.16 | 10.16 | 4398 | 43.98 930 |0 5 4 0
33 36 18.67 954 | 954 |15.64 | 1564 | 3594 | 3594 954 |0 5 3 0
34 33 7.33 6.28 6.28 729 | 729 |4924 | 49.24 6.28 |0 5 6 0
35 35 6.19 594 | 594 | 619 | 6.19 | 3986 3980 | 594 |0 6 8 0
36 44 019 | 019 | 019 | 0.19 | 255 |4L06 |41.06 | 019 |1 5 6 0
Max | RatioSV | 10 10 10 16

MAX | 44 36.06 | 37.44 | 37.44 |37.98 | 38.00 |49.24 |49.24 |36.04 |1 6 8 0
MIN |24 0.19 | 0.19 0.19 019 | 255 |2229 |2229 | 019 (0O 0 0 0
Mean | 28.9 21.585|22.036 | 22.036 | 23.146 | 23.213 | 32.533 | 33.157 | 20.056 | 0 2 2 0
SUM | 1042
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3.3.1.2 Examination of 39 SMs

Table 3.3 shows the result of 39 SMs. Last three columns are three NMs of SVM1,
LDF2, and QDF. Because all NMs of logistic regression and SVM4 are zero, those
are omitted from the table. “Max RatioSV” row is the total number of SMs having
a maximum value of four RatioSVs. Four values of three OLDFs and H-SVM are
13, 12, 10, and 17. The maximization of SV causes this good result for H-SVM.
Five ranges of “gene, RIP, LP, IPLP, and HSVM” are [18, 35], [0.78, 40.59], [0.74,
45.14], [0.74, 45.14], and [0.78, 43.95], respectively. Thus, Revised LP-OLDF and
Revised IPLP-OLDF can separate two classes more than RIP and H-SVM. Last
three ranges are [0, 9], [0, 8], and [0, 0], respectively. QDF, SVM4, and logistic
regression can discriminate 39 SMs correctly. SVM1 and LDF2 cannot discriminate
17 SMs and 19 SMs. There are 1,042 and 1,002 genes in 34 SMs and 39 SMs, but 39
SMs contain genes smaller than 40 genes. By increasing repetition, we obtain many
SMs with fewer genes, so choose 39 SMs. These facts indicate we choose the proper
iteration value at this time. However, because we focus on the linear separable facts,
we count the number of SM with NM = 0. The SVM1 and LDF2 discriminate 22
and 20 SMs correctly. The SVM4 and QDF discriminate all SMs correctly. These
facts conclude SVM1, (LDF1), and LDF2 are useless for cancer gene diagnosis.

Table 3.3 Result of 39 SMs

SM | IT Gene | RIP LP IPLP | HSVM | SVM4 | SVM1 | Max Min SVM1 | LDF2 | QDF
1 6 20 28.01 |26.83 | 2683 |27.21 2720 | 27.21 28.01 2683 |0 0 0
2 6 24 36.05 | 2698 |2698 |37.17 37.18 | 37.17 37.18 12698 |0 0 0
3 6 19 36.04 | 41.06 | 41.06 | 3837 38.36 | 38.37 41.06 |36.04 |0 0 0
4 6 23 31.52 | 36.85 |36.85 | 35.31 3531 | 3531 36.85 | 31.52 |0 0 0
5 6 28 29.83 3032 |30.32 | 38.13 38.14 | 38.13 38.14 12983 |0 0 0
6 6 24 2726 |27.61 |27.61 | 28.60 28.59 | 28.60 28.60 |27.26 |0 0 0
7 6 24 40.59 3692 3692 |43.95 4395 | 4395 4395 13692 |0 1 0
8 6 28 3598 |45.14 | 4514 | 4183 41.83 | 41.83 45.14 3598 |0 0 0
9 6 28 2945 | 3750 | 37.50 | 35.04 35.04 | 35.04 3750 (2945 |0 0 0
10 6 25 2140 |2327 |2327 | 32.63 32,63 | 32.63 3263 2140 |0 0 0
11 6 29 2330 |23.76 |23.76 | 28.65 28.64 | 29.02 29.02 2330 |0 0 0
12 6 25 26.24 | 29.76 |29.76 | 28.92 28.92 | 28.92 29.76 12624 |0 0 0
13 6 27 24.83 | 2239 2239 |2258 22.58 | 25.11 25.11 2239 |0 0 0
14 6 18 24.83 | 2239 2239 | 2258 22,58 | 25.11 25.11 2239 |0 0 0
15 6 27 3593 | 3443 | 3443 | 3497 3495 | 3520 3593 3443 |0 0 0
16 6 26 2334 2212 | 2212 | 2695 26.96 | 28.38 2838 2212 |0 1 0
17 6 23 19.54 | 18.38 | 1838 | 19.40 19.40 | 21.31 21.31 | 1838 |0 0 0
18 6 27 24.83 | 28.60 |28.60 | 29.54 29.54 | 30.50 30.50 2482 |0 0 0

(continued)
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Table 3.3 (continued)
SM |IT |Gene |RIP |LP IPLP |HSVM | SVM4 |[SVMI |Max |Min |SVMI |LDF2 | QDF

19 6 28 23.09 | 2645 |2645 | 23.72 2372 | 27.14 27.14 |23.09 |0 1 0
20 6 25 3311 |23.68 | 23.68 |32.76 3274 | 37.87 37.87 |23.68 |0 0 0
21 6 28 17.76 | 21.79 | 21.79 | 21.64 21.64 | 26.20 2620 | 1776 |0 0 0
22 6 26 25.31 | 2827 |28.27 | 27.60 27.60 | 29.16 29.16 2531 |0 0 0
23 6 23 21.39 | 19.04 | 19.04 |20.86 2086 | 3+35 | 3135 | 19.04 |2 1 0
24 6 23 19.26 | 1690 | 16.90 | 18.87 18.87 | 2776 | 27.76 | 1690 |2 1 0
25 6 26 20.59 | 19.01 |19.01 |20.51 20.51 2396 | 2390 |19.01 |3 0 0
26 6 25 19.20 | 1832 | 1832 | 1895 1895 | 26999 2699 | 1831 |2 3 0
27 6 21 1923 | 19.74 | 19.74 | 19.81 1981 | 37t% |37.19 | 1923 |4 1 0
28 6 26 11.66 | 13.10 |13.10 | 14.00 1400 | 2636 | 2636 |11.66 |6 5 0
29 6 23 9.63 | 12.61 |12.61 |13.23 1322 | 2543 | 2543 9.63 |3 4 0
30 6 21 9.19 |10.71 | 10.71 |10.71 10.71 | 3596 | 35.90 9.19 |6 3 0
31 6 28 20.77 | 20.78 |20.78 | 21.29 2129 | 37t#+ | 37.17 |20.77 |5 1 0
32 6 27 10.16 | 11.22 | 11.22 | 11.38 11.38 | 3+63 |31.63 |10.16 |5 3 0
33 6 26 7.70 8.07 8.07 9.98 9.98 |36:55 | 3055 770 |6 3 0
34 6 27 7.88 8.85 8.85 9.34 9.34 | 3562 |35.62 7.88 |6 4 0
35 6 28 7.43 7.43 7.43 7.26 7.26 | 3659 | 30.59 726 |4 8 0
36 6 32 8.11 | 1015 |10.15 9.08 9.08 | 3463 |34.03 811 |5 5 0
37 6 26 3.03 3.17 3.17 3.57 3.57 |36 | 37.16 3.03 |9 6 0
38 6 33 3.03 2.64 2.64 3.01 3.01 |3+ |37.11 2.64 |5 6 0
39 6 25 0.78 0.74 0.74 0.78 0.78 | 3468 | 34.68 074 |5 6 0
Max RatioSV 13 12 10 17

Max 35 40.59 | 45.14 | 45.14 | 4395 | 4395 4395 45.14 13692 |9 8 0
Min 18 0.78 0.74 0.74 0.78 0.78 | 21.31 21.31 074 |0 0 0
Mean 26 2096 | 2146 |21.46 |22.82 22.82 |31.94 3226 1993 |2 2 0
Sum 992

3.3.2 Result of 56 SMs by RIP

Table 3.4 shows the result of 56 SMs found by RIP. Last three columns are three
NMs of SVM1, LDF2, and QDF. Because NMs of logistic regression and SVM4 are
zero, we omit two columns. RatioSV is the proper statistic for LSD-Discrimination.
However, its values become large for “NM >= 1" and are not reliable. Last five rows
are five elementary statistics. “Max RatioSV” is the total number of SMs having a
maximum value of four RatioSVs. Four values of MP-based LDFs are 7, 6, 6, and
43. The maximization of SV causes this good result for H-SVM. Five ranges of
“gene, RIP, LP, IPLP, and HSVM” are [29, 45], [2.98, 25.25], [4.72, 25.94], [4.72,
25.94], and [5.76, 32.58], respectively. Thus, H-SVM can discriminate two classes
better than other LDFs. Last three ranges are [0, 5], [0, 7], and [0, 0], respectively.
QDF, SVM4, and logistic regression discriminate two classes correctly. Because 56
SMs include 1,999 genes, 56 SMs include lager genes than two SMs by Revised
LP-OLDEF. The SVM4 and QDF discriminate 56 SMs correctly. Although SVM1
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can discriminate 31 SMs and LDF2 can discriminate 23 SMs correctly, these
discriminant functions are useless for cancer gene diagnosis.

Table 3.4 Result of 56 SMs by RIP

SM 1T Gene | RIP LP IPLP | HSVM | SVM4 | SVMI | Max Min SVM1 | LDF2 | QDF
1 6 35 7.19 11277 | 1277 | 1998 | 1998 | 19.98 | 19.98 719 |0 1 0
2 6 34 11.06 | 12.11 |12.11 |16.90 | 1690 | 1690 |1690 |11.06 |0 1 0
3 6 29 14.42 7.52 752 1946 | 1946 | 1946 | 19.46 752 |0 2 0
4 6 44 18.01 | 14.76 |14.76 |23.36 |23.36 | 2336 |2336 |1476 |0 0 0
5 6 35 21.55 [ 2594 | 2594 |32.58 | 3258 | 3258 |3258 |2155 |0 0 0
6 6 36 17.71 | 23.41 |23.41 |2347 |2347 2347 |2347 1771 |0 2 0
7 6 37 11.57 | 1232 | 1232 |19.29 |19.29 | 19.29 | 1929 |11.57 |0 1 0
8 6 37 2525 | 24.14 | 24.14 | 2354 | 2355 | 2354 |2525 |2354 |0 0 0
9 6 35 1420 | 12.03 |12.03 |21.82 |21.81 |21.82 |21.82 |12.03 |0 2 0
10 6 31 18.18 | 14.14 | 14.14 | 1836 | 1836 | 1836 |18.36 |14.14 |0 1 0
11 6 35 14.69 | 12.04 | 12.04 |19.64 | 19.64 | 19.64 |19.64 |12.04 |0 0 0
12 6 35 15.16 |23.16 |23.16 |26.05 |26.05 | 2605 |2605 |1516 |0 0 0
13 6 34 2256 | 19.45 |19.45 | 2584 | 2584 2584 |2584 1945 0 0 0
14 6 35 2296 |22.65 |22.65 |2598 | 2598 | 2598 |2598 |2265 |0 0 0
15 6 34 18.33 | 20.93 |2093 |25.08 | 2508 | 2508 |2508 |1833 |0 1 0
16 6 36 22.08 |16.18 |16.18 |28.84 | 28.84 |28.84 |28.84 |16.18 |0 1 0
17 6 33 1545 | 17.47 | 1747 |19.76 | 19.76 | 19.76 |19.76 | 1545 |0 2 0
18 6 36 19.53 | 17.17 | 17.17 | 2476 | 2475 | 2476 (2476 |17.17 |0 0 0
19 6 32 17.35 | 16.96 |16.96 |21.13 |21.13 | 2378 |23.78 | 1696 |1 0 0
20 6 41 17.31 | 18.37 | 1837 |22.79 | 2279 | 2825 |2825 |1731 |1 0 0
21 6 32 12.38 | 17.68 |17.68 | 17.13 |17.13 | 18.74 |18.74 | 1238 |0 2 0
22 6 34 18.39 | 20.16 |20.16 | 18.96 |18.96 | 18.96 |20.16 | 1839 |0 0 0
23 6 34 1573 | 1236 |12.36 | 1945 | 1945 | 2153 |21.53 | 1236 |0 1 0
24 6 33 17.26 | 1393 | 1393 |17.19 |17.19 | 19.08 | 19.08 | 1393 |0 0 0
25 6 37 1090 | 1590 | 1590 |19.66 | 19.66 | 19.66 |19.66 | 10.90 |0 2 0
26 6 31 1125 | 1445 | 1445 |17.69 | 17.69 |21.13 |21.13 | 1125 |0 1 0
27 6 32 10.50 4.94 494 11527 | 1528 | 3628 |30.28 494 |1 1 0
28 6 33 12.82 | 14.68 | 14.68 |19.18 | 19.18 | 20.81 |20.81 |12.82 |0 2 0
29 6 36 12.38 | 10.83 | 10.83 | 18.47 | 18.47 | 2220 |2220 |10.83 |1 1 0
30 6 36 17.69 | 21.65 |21.65 |21.58 |21.58 | 2255 |2255 |17.69 |0 0 0
31 6 32 1741 | 10.79 | 10.79 | 16.81 |16.81 |4893 1893 1079 |1 1 0
32 6 34 23.04 1692 | 1692 |24.63 |24.63 | 2463 |2463 | 1692 |0 0 0
33 6 39 17.78 | 1520 | 1520 |18.52 | 1852 | 2627 |2627 |1520 |2 2 0
34 6 34 1571 | 15.62 | 15.62 |20.82 | 2081 | 2276 |2276 |15.62 |0 2 0
35 6 38 1895 | 15.65 | 15.65 | 15.23 | 1523 | 2359 2359 | 1523 |2 2 0
36 6 32 1348 | 11.56 |11.56 |17.89 |17.89 | 3252 |3252 |11.56 |2 2 0

(continued)
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Table 3.4 (continued)

SM IT Gene | RIP LP IPLP | HSVM | SVM4 | SVMI | Max Min SVMI1 | LDF2 QDF
37 6 42 20.12 | 20.82 | 20.82 |28.65 | 28.65 |28.65 |28.65 |20.12 |0 0 0
38 6 37 14.95 8.33 833 | 17.69 | 17.69 |36.37 | 36.37 833 |3 2 0
39 6 31 13.24 9.65 9.65 | 18.63 | 18.63 |20.65 | 20.65 9.65 |0 1 0
40 6 36 1023 | 11.10 | 11.10 | 1512 |15.12 | 2593 | 2593 |10.23 |3 4 0
41 6 35 12.77 | 1546 | 1546 |21.12 |21.12 | 2538 |2538 |12.77 |0 0 0
42 6 38 13.32 9.96 9.96 | 18.05 | 18.05 | 2364 | 23.64 996 |1 2 0
43 6 34 13.63 9.65 9.65 | 12.10 |12.10 |2359 | 2359 | 9.65 |2 2 0
44 6 35 5.89 | 1142 | 1142 1290 | 1290 | 267 | 20.71 5.89 |4 5 0
45 6 37 13.40 9.43 943 | 1243 | 1243 | 2393 | 2393 943 |4 2 0
46 6 35 9.48 8.32 832 | 13.10 | 13.10 | 2460 | 24.00 832 |2 2 0
47 6 35 9.38 8.01 8.01 8.77 877 | 2572 | 2572 801 |3 2 0
48 6 36 8.30 6.83 6.83 | 14.77 | 1477 | 248+ | 24.81 683 |5 3 0
49 6 43 1212 | 1274 | 1274 | 1811 | 18.11 | 2574 2574 |12.12 |3 2 0
50 6 33 592 8.81 8.81 8.34 8.34 | 2874 | 28.74 592 |4 4 0
51 6 42 12.30 | 10.12 |10.12 |15.71 | 15.70 | 3286 |32.80 |10.12 |5 3 0
52 6 32 9.29 | 10.46 | 10.46 9.65 9.65 | 3733 | 37.33 929 |4 5 0
53 6 39 8.48 8.12 8.12 | 1048 | 1048 | 3+36 | 31.30 8.12 |4 7 0
54 6 41 11.79 6.75 6.75 | 17.19 | 17.19 | 3685 | 36.85 6.75 |4 3 0
55 6 42 298 | 472 | 472 576 | 576 | 36148 | 36.18 298 |5 5 0
56 6 45 9.29 | 1046 | 10.46 | 9.65 9.65 | 3733 |37.33 929 |4 6 0
Max RatioSV 7 6 6 43

Max 45 2525 2594 2594 |32.58 | 32.58 |37.33 |3733 | 2354 |5 7 0
Min 29 2.98 4.72 4.72 5.76 576 |16.90 | 16.90 298 |0 0 0
Mean 36 14.41 | 13.88 | 13.88 | 18.67 | 18.67 |25.00 | 2505 |12.61 |1 2 0
Sum 1999

3.3.3 Comparison of Three Results

Table 3.5 summarizes the three results. “SM” column shows three different SMs.
“Gene” column shows the total genes included in all SMs. The 56 SMs by RIP
include 1,999 genes and is double of others. Three “Best Range of RatioSV (By
LDF column)” are the ranges of H-SVM. In the 39 SMs by LP, the number of genes
involved is small, and the maximum value of RatioSV is the largest. On the other
hand, the 56 SMs by RIP have a sizeable minimum value of RatioSV over 5.78. From
these results, the result of 56 SMs may be better than 36 SMs and 39 SMs.

Table 3.5 Summary of three SM Gene Best range of By LDF
results RatioSV
36 SMsby LP | 1,042 [0.19, 37.98] H-SVM
39 SMs by LP 992 [0.78, 43.95] H-SVM
56 SMs by RIP | 1,999 [5.78, 32.58] H-SVM
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3.4 Three Signal Data Using 39 SMs Found by Revised
LP-OLDF

Although standard statistical methods analyze all 39 SMs found by Revised LP-
OLDF, the results are almost the same useless results explained in Chap. 2. Thus, we
omit these results. Section 3.4 introduces only results of cluster analysis and PCA.
RIP, Revised LP-OLDF, and H-SVM discriminated all 39 SMs obtained by Revised
LP-OLDF and made three signal data by RipDSs, Revised LP-OLDF DSs (LpDSs)
and H-SVM DSs (HsvmDSs). Ward cluster and PCA explain three results. Because
JMP supports six hierarchical cluster methods, we get the 18 different analyses
and survey the various aspects of SMs. However, it is difficult for non-specialists
of oncogenes to study the cluster analysis. Thus, we propose a useful procedure on
how to use the cluster analysis. On the other hand, non-specialists can understand the
results of PCA and the Prinl becomes important malignancy indicators in addition to
39 individual RipDSs, LpDSs, and HsvmDSs. Moreover, we expect several outliers
are candidates of the new subclass of cancer pointed out by Golub et al. We expect
our approach by cluster analysis and PCA will assist many researchers. We sincerely
hope some researchers validate our claim and will write a paper.

3.4.1 Signal Data Made by 39 RipDSs Using 39 SMs Found
by Revised LP-OLDF

(1) The combination of cluster analysis and PCA

Figure 3.1 is the result of RipDS signal data using 39 SMs found by Revised LP-
OLDF. Although Ward cluster cannot separate 39 SMs into two classes clearly, it
can divide the signal data into two clusters.

We introduce the output of cluster analysis. The left part is the case number with
symbols. Next large square is the color (or heat) map that consists of 62 cases (rows)
and 39 RipDSs (columns). Each row corresponds to case that includes 39 variables
(39 RipDSs). Upper green part is 22 normal cases, and lower white, and red part is 40
tumor patients. The tone of green — white — red corresponds to the magnitude of
the value corresponding to (case and variable). A red pixel indicates that the value of
the (case and variable) is large. Thus, the color map shows the 62 cases are entirely
separable into two clusters such as the 22 normal class and 40 tumor cases. Right
plot is the dendrogram of 22 normal subjects and 40 tumor patients. Move the upper
right diamond left or right to divide 62 cases into the desired number of clusters. We
can interactively obtain different clusters by a simple operation. On the other hand,
SOM and k-means is generally difficult to use because it is necessary to determine
the number of clusters in advance. We have designated five clusters here, and Ward
cluster divides the tumor into four clusters. Five clusters can be identified by color
and left symbol.
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Below figures of the color plot are the dendrogram of variable and the scree plot. If
we divide four clusters, those consist of 22, 9, 5, and 3 RipDSs, respectively. Because
RIP9 and RIP10 become the first cluster, the correlation of RipDS9 and RipDS10
may be close to 1 and compatible. RIP32 and RIP33 become the second cluster.
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Fig. 3.1 Result of RipDSs signal data using 39 SMs of Revised LP-OLDF
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Figure 3.2 shows the above two-pair correlations are one. That is, the correlation
is often 1 in pairs that are clustered quickly in cluster analysis.

| Pairwise Correlation

varl wvs.var2 r Frequency Lower95% Upper95% p-value -.8-.6-.4-.20 .2 .4 .6 .8
RIP10 RIP9 1.0000 62 . . <.0001*
RIP33 RIP32 1.0000 62 . <.0001*

RIP13 RIP4 0.9230 62 0.8750 0.9531 <.0001*
RIP6 RIP4 0.9135 62 0.8599 0.9472 <.0001*

Fig. 3.2 Pairs correlations

As we move the diamond to the left, the clustered distance is small, and it becomes
62 clusters. As we slide to the right, the distance to be clustered increases, the cases
are sequentially assembled and finally become one cluster. If we regard the scree
plot as a cliff, rolling stone from above will stop at the flat hem. So, we decide the
number of clusters. In this figure, we choose five clusters. We chose the five clusters
of the case by diamond mark and scree plot. However, we choose the four clusters
of the variable by our judgment.

After cluster analysis with mark and color, we recommend PCA in Fig. 3.3.
Cluster analysis is difficult without data expertise. Furthermore, it is not generally
definitive. However, because the discriminant analysis is not useful at all in medical
gene research, medical researchers use cluster analysis. We think this is because it
is easy to find out what represents the results of medical care among many cluster
results. Non-experts like us advance combinations with PCA. The analysis results
of the five clusters are represented by colors and marks in the middle scatter plot.
Especially, 20 normal cases located on the negative Prin1 axis are less than —4, and 42
tumor patients look like a fan that consists of four clusters. The green cluster is a mild
tumor. Brown and blue are divided into nearly the first and fourth quadrants and are
severe. These results correspond to the RipDSs in the first and the fourth quadrants of
the right factor loading amount. The 47th tumor case is an outlier, corresponding to
RIP39 from factor loading. This result corresponds to the red pixel in the lower right
corner of Fig. 3.1. Furthermore, it is meaningful to examine whether 38 RipDSs
without RIP39 become two groups in the first and fourth quadrants. Golub et al.
narrow down genetic candidates by signal/noise ratio, further select by weighted
vote method, and predict new subclass of cancer with SOM. This operation involves
much work as the definition of the signal is incorrect. However, if we admit signal
data is signal space, the analysis is easy. However, our result needs to be verified and
confirmed by the doctors.
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Fig. 3.3 PCA reflecting the results of cluster analysis

(2) How to validate PCA result

The first and second columns of Table 3.6 correspond to a malignancy indicator
on the Prinl in Fig. 3.3. The following remaining four columns are for Figs. 3.8
and 3.13. The numbers below the third row in the first column are the identification
number (SM) for normal and cancer patients. The second column is the value of
Prinl, which is sorted in ascending order from a small value. Because the minimum
value of normal subjects is —8.24 (SN = 4) and the maximum value is —5.67 (SN =
20), its range is [—8.24, —5.67]. On the other hand, the range of 40 cancer patients is
[0.28, 7.38]. Thus, the SV separates two classes by large SV window (—5.67, 0.28)
completely. Because the range of RipDS is [—8.24, 7.38] on Prinl, RatioSV of PCA
is 38.1027% (=(5.67 + 0.28)/(8.24 + 7.38) * 100). Because this is a comprehensive
of RatioSV of 39 RIPs, it becomes a large value. That is, Prinl can be considered
as a malignancy indicator and illustrates an idea of malignancy indicator very well.
Although we cannot understand the relation of 39 RipDSs, PCA shows most RipDSs
have almost the same axes. This scatter plot shows that 992 genes included in 39
SMs reduce to the 39-dimensional signal space. A large window of 38.10% opens.
Assuming that it is about 40%, it means that normal and cancer subjects share in the
remaining 60% of RipDS range. Such easy discrimination is not in past research.
However, it is as a new research field of statistics, and it was impossible to solve
until now. We solved this new problem (Problem6). Only green and blue clusters of
Fig. 3.3 correspond to G and B in Table 3.6. RIP62 has the maximum discriminant
score of 2.59 in the green cluster. RIP27 has the minimum discrimination score of
2.56 in the blue cluster, and RIP48 has the maximum discriminant score of 7.38 in
the blue cluster. RIP47 has the discriminant score of 6.63 and is the outlier.
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Table 3.6 Three malignancy indices

RatioSV 38.10 35.52 36.22

SN RIPPrinl SN LPPrinl SN HSVMPrinl
4 -8.24 4 —8.52 4 —8.90
21 —7.96 10 —8.02 10 —8.32
10 —7.90 21 —7.96 21 —8.04

=7.71 9 —7.90 9 —7.68
—7.23 11 —7.32 11 —7.31

7 —7.16 —6.99 —7.05
11 —7.02 —6.90 —7.03
12 —6.84 12 —6.89 12 —6.90
1 —6.78 3 —6.77 5 —6.89
3 —6.68 1 —6.73 1 —6.77
6 —6.54 19 —6.43 19 —6.50
17 —6.49 6 —6.41 2 —6.48
16 —6.44 17 —6.28 13 —6.37
19 —6.27 13 —6.28 17 —6.35
2 —5.95 16 —6.17 15 —6.29
15 —5.94 15 —6.17 6 —6.26
8 —5.92 2 —6.06 16 —6.23
22 —5.91 22 —6.06 14 —6.21
13 —5.86 14 —6.04 22 —6.08
14 —5.82 8 —-5.92 8 —6.05
18 —5.72 20 —5.67 20 —5.86
20 —5.67 18 —5.65 18 —5.85
58 G (green) 0.28 52 0.17 55 0.27
55 G (green) 0.30 55 0.20 52 0.28
52 G (green) 0.36 59 0.28 58 0.32
59 G (green) 0.60 58 0.32 59 0.33
30 G (green) 0.70 30 0.53 30 0.58
34 G (green) 0.97 57 0.72 34 0.88
57 G (green) 1.11 34 0.92 57 1.00
23 G (green) 1.19 23 1.28 24 1.32
24 G (green) 1.26 50 1.32 23 1.32
33 G (green) 1.49 24 1.49 56 1.48
26 G (green) 1.68 29 1.53 50 1.49
29 G (green) 1.74 33 1.61 29 1.58
50 G (green) 1.74 56 1.74 33 1.78
25 G (green) 1.91 26 2.09 25 2.17
56 G (green) 1.96 25 2.14 26 2.25

(continued)
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Table 3.6 (continued)

RatioSV 38.10 35.52 36.22

SN RIPPrinl SN LPPrinl SN HSVMPrinl
31 G (green) 2.25 31 2.31 62 2.40
27 B (blue) 2.56 62 2.39 27 243
62 G (green) 2.59 27 2.57 31 2.51
45 B (blue) 3.70 32 3.55 32 3.68
32 3.70 45 3.67 45 3.82
35 3.77 42 3.84 42 3.99
42 3.84 35 4.09 35 4.22
41 4.14 41 4.27 41 4.29
37 4.35 44 4.39 37 4.73
54 B (blue) 4.47 37 4.64 61 4.81
44 4.52 54 4.68 54 4.97
61 4.88 61 5.23 44 5.02
28 B (blue) 5.00 28 543 28 5.27
51 B (blue) 5.54 51 5.57 60 542
53 B (blue) 5.68 60 5.63 51 5.84
60 5.86 53 5.76 53 5.90
40 6.29 40 5.97 40 5.97
47 (outlier) 6.63 49 6.66 49 6.28
39 6.73 47 6.71 47 6.50
43 6.80 46 6.75 43 6.68
36 6.86 43 6.92 46 6.96
49 6.90 39 7.04 39 7.33
46 B (blue) 6.95 36 7.21 36 7.36
38 7.36 48 7.66 38 7.99
48 B (blue) 7.38 38 7.87 48 8.00

(3) Analysis of Transposed Data of 39 RipDSs using 39 SMs

We transpose signal data made by 39 RipDSs using 39 SMs and analyze it by Ward
cluster in Fig. 3.4. We choose the nine clusters of 39 RIPs. Upper 27 RipDSs become
one cluster. Other 12 RipDSs become eight clusters such as two green RipDSs
(RIP21, RIP28), four blue RipDSs (RIP32, RIP33, RIP35, RIP36), and six one
clusters such as (RIP29), (RIP34), (RIP30), (RIP37), (RIP38) and (RIP39). Other
12 RIPs may relate to the outliers. All transposed analyses indicate many outliers
that offer many candidates of new subclasses of cancer.
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Fig. 3.4 Ward cluster of transpose signal data made by 39 RipDSs using 39 SMs

The variable dendrogram consists of eight clusters. The first cluster includes five
normal cases and seven tumor cases. The second cluster includes three normal cases.
The third cluster consists of three tumor cases. The fourth cluster consists of five
normal cases. The fifth cluster consists of nine normal cases and three tumor cases.
The sixth cluster includes 11 tumor cases. The seventh cluster consists of seven tumor
cases. The eighth cluster consists of nine tumor cases.

Figure 3.5 is the result of transposed data of 39 RipDSs signal data by PCA.
Scatter plot shows six RipDSs of Fig. 3.4 are six one cluster outliers. Factor loading
plot indicates two features. Tumor cases are in the first and fourth quadrants, and
normal cases are in the second and third quadrants. The second feature is divided
into patients centered at the origin and patients group having a radius close to 1.
The principles of interpretation of PCA’s score plot and factor loading plot are the
same. In each quadrant, we can judge that clusters making clumps have the same
properties. Therefore, if those are making lumps across quadrants, we should consider
them separately. Since we cannot consider in the high dimensional quadrant, we will
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limit it to Prinl and Prin2 as a simple method. The factor loading plot in Fig. 3.5
is difficult to understand. Therefore, as shown in Fig. 3.6, a scatter diagram of a
factor load amount is separately made. There are cases surrounding the origin of
radius 0.25. Think of them as four clusters, or because they are close to the origin,
ignoring the quadrant difference, it can be considered to be a cluster of relatively
mild cancer patients and healthy cases close to cancer patients. For cases scattered in
the other four quadrants, we can consider two cancer patient clusters in the first and
fourth quadrants and two clusters of healthy cases in the second and third quadrants.
Cancer patients in first quadrant are divided into two more clusters, but whether it is
meaningful or not is what the medical expert should judge. In this way, clusters that
can be classified by PCA provide different information from discriminant analysis
and cluster analysis. Although Golub et al. tried to find a new subclass of cancer
by different methods, our approach is more straightforward because we analyze the
signal subspace. These verifications are areas of specialists.
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Fig. 3.5 Transposed data of RipDSs signal data by PCA
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Fig. 3.6 Factor loading plot of transposed data of RipDSs using 39 SMs
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3.4.2 Signal Data Made by 39 LpDSs Using 39 SMs Found
by Revised LP-OLDF

(1) Ward Cluster

Figure 3.7 is the result of LpDS signal data using 39 SMs found by Revised LP-
OLDF. Although Ward cluster cannot separate 39 SMs into two classes clearly, it
can divide the signal data into two clusters.

Upper green part is 22 normal cases, and lower white and red part is 40 tumor
patients. We have designated five clusters here, and Ward cluster divides the tumor
into four clusters. The color and left symbol identify five clusters.
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Fig. 3.7 Ward cluster result of signal data made by 39 LpDSs using SMs

If we divide the variable dendrogram into five clusters, those consist of 13, 14,7, 2,
and 3 LpDSs, respectively. Because LP9 and LIP10 become the first cluster and its
correlation is 1, those are compatible. The correlation of LP32 and LP33 is one, also.
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(2) PCA

Figure 3.8 is the result of PCA with colors and marks. The scatter plot shows 20
normal cases locate on the negative Prinl axis, and 42 tumor patients look like a fan
that consists of four clusters. The green cluster is a mild tumor. Brown patients are
in the first and fourth quadrants. Pale green patients in the first quadrant are outliers
and severe cancer. The factor loading plot shows the LP30 is a clear outlier. The
third and fourth columns of Table 3.6 are the identification number (SN) and the
Prinl value. We sincerely hope researchers of Alon project validate whether Table
3.6 corresponds to severity of cancer patients.
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Fig. 3.8 Result of PCA with colors and marks

(3) Analysis of Transposed Signal data

Figure 3.9 is the Ward cluster of transposed signal data made by 39 LpDSs using 39
SMs. If we choose five clusters, the 35 LpDSs become one large cluster and other
four one clusters those are LP34, LP37, LP38, and LP39.
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Fig. 3.9 Ward cluster of transposed signal data made by 39 LpDSs using 39 SMs

Figure 3.10 is the PCA result. Scatter plot shows the four outliers among 39 LPs.
The factor loading plot shows that the 40 tumor cases are in the first and fourth
quadrants, and the 22 