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Abstract In power systems, frequency constitutes a parameter indicating the equi-
librium between power demanded by load and energy produced by generation sys-
tems. This chapter studies the effects of varying different system parameters on the
overall performance of the traditional frequency regulation system when including
contributions of renewable energy sources. A model for the inclusion of variable
speed wind turbines in the frequency control loops is analyzed, and parametric
sensitivity functions are established using linearized models and transfer function
representations for the system components. Through both theoretical analysis and
performance simulations, the impact of an inaccurate representation of system iner-
tia in frequency performance is established. Stability analysis for inertia sensitivity
of frequency regulation involving wind generation is also provided. Results indi-
cate more robustness to parameter variations for systems including wind turbine
participation. However, the frequency deviation rate increases when the uncertainty
in system parameters grows. This behavior might lead to instability scenarios under
frequency disturbances for the power system.

1 Introduction

In power systems, frequency constitutes a parameter indicating the equilibrium
between power demanded by load and energy produced by generation systems [1].
When this relationship is unbalanced, control structures are in place to return the
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system frequency to operational values in the so-called Load Frequency Control
(LFC) of power systems. However, traditional frequency control strategies have been
developed for power systems with almost complete reliance on conventional energy
sources, but penetration of Renewable Energy Sources (RES) may require the par-
ticipation of these new units in the control loops [2].

Wind is the fastest growing and most widely deployed renewable energy source
worldwide [3].Variable SpeedWindTurbineGenerators (VSWTG) are themost pop-
ular devices for extracting electrical power from wind. VSWTG operation requires
action of electronic power converters, which effectively decouple the rotor angular
speed of the wind generating unit from the electrical frequency of the grid. Conse-
quently, VSWTG does not contribute directly to the natural inertial response of the
system under frequency disturbances and other operational events [4].

However, the increase of wind generators and the unpredictability and variabil-
ity associated with the wind resource also raise the difficulty level of the frequency
regulation tasks in power systems. In future grid operating normative, the partic-
ipation of wind turbine generators in system frequency regulation might become
mandatory. Hence, several studies have been proposed about control strategies for
the active inclusion of VSWTG in LFC loops. Complete reviews can be found in
[4–6]. Among many techniques, the required primary reserves for frequency regu-
lation contributions from Wind Turbine generators (WT) can be supplied through
de-loaded operation (under the point of maximum power extraction) of the WT and
the addition of control loops, emulating the response of conventional units (inertia
and droop controllers) [4, 7, 8].

This chapter focuses on analyzing the effects of parameter variations in the fre-
quency regulation structure of power systems involving wind generation. Sensitivity
functions are established using linearized models and transfer function representa-
tions for the system components. Sensitivity analysis has been previously employed
in the assessment of the dynamic performance of power systems. Nanda and Kaul
[9] explored the optimal tuning of automatic generation controllers in a multi-area
power systemwith conventional steam generation units. The role of inertia was stud-
ied through sensitivity tests in the development of a composite load model with
conventional machines [10]. For scenarios considering renewable energy sources,
the impacts of damping and inertia in the dynamic performance of grid frequency
were studied in [11], where authors analyzed different locations to provide emulated
inertia. Additionally, the behavior of Doubly-Fed Induction Generator (DFIG) wind
units in power systems was studied using eigenvalue sensitivities about inertia vari-
ations [12]. However, these works did not consider an explicit function for system
sensitivities. In this regard, transfer functions for power systems frequency regulation
elements are developed in [13–16] for conventional-only scenarios, and extended in
[7] for assessing the effects of load damping including wind farms.

Amidst this context, this chapter studies the effects of varying different system
parameters on the overall performance of the traditional LFC systemwhen including
contributions of renewable energy systems such as VSWTG. Through both theoret-
ical analysis and performance simulations, the impact of an inaccurate representa-
tion of system inertia is established. Results indicate more robustness to parameter
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variations for systems that include wind turbine participation. However, the fre-
quency deviation rate increases when the uncertainty in system parameters grows.
This behavior would lead to instability scenarios under frequency disturbances for
the power system.

2 Modeling of the Variable Speed Wind Turbine Generator
Control Loops

The relationship between rotor speed and power for awind turbine (WT) is inherently
non-linear. Themaximumpower point (MPP) is the operational rotor speed value that
causes the maximum power extraction from the WT. Given the non-linear dynamic
of the system, the MPP needs to be tracked continually in order to guarantee the
efficiency of the WT. The MPP tracking (MPPT) process starts with Eq. (1), which
represents the mechanical power of the WT:

Pm = 1

2
ρACp (λw, βw) ν3

w. (1)

where A denotes the turbine sweeping area, ρ represents the air density, βw is the
pitch-angle, λw is Tip Speed Ratio (TSR),Cp (λw, βw) is the performance coefficient
for the WT, and νw represents the per-unitized values of measured wind speed.

By definition, the TSR is a relation between the tangential speed at the tip of a
WT blade and the actual wind speed. Therefore, in per-unit system, λw,p.u. = ω

ν
, with

ν and ω denoting the rotor speed and the wind speed per-unit for a reference speed
of 12 m/s. Additionally, Eq. (2) presents the mechanical torque Tm,p.u. of the WT
in per-unit system, where ωm represents the per-unitized values of measured rotor
speed, Cp,max is the maximum value of Cp (λw, βw), and Kw is a constant defined in
Eq. (3).

Tm,p.u. =0.5 ρ A Cp(λw, βw)ν3
w

ωm Pbase
= KwCpν

3

ω
, (2)

with Kw =0.5 ρ A Cp,max

Pbase
(3)

Ifwind turbines are contributing to frequency regulation, the linearized representation
must include changes of the area frequency Δ f and wind speed variations v. In the
sameway as the LFC, frequency regulation contributions can come from the variation
of mechanical or electrical power in response to grid frequency changes.

Frequency contribution from wind turbines is possible due to the so called de-
loaded operation [4]. In this mode, the wind turbine operates under the MPP to
generate the active power reserve employed to contribute to frequency control tasks.
This active power reserve Pcont (p.u.) is:
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Pcont = PMPP − Pund = (1 − Xu) Kwind ω3 (4)

where ω denotes the rotor speed, Xu ∈ (0, 1) is a weighting factor expressing the
fraction of maximum power at de-loaded operating point [7], Pund is the de-loaded
power, PMPP is the maximum power extracted at the operating speed, and Kwind is a
constant parameter depending on the characteristics of the wind turbine [17]. In oper-
ation, ωMPP and ωund are the rotor angular speeds at PMPP and Pund , respectively.
According to [18], the power Pure f and torque τure f for operating at determined wind
speed are:

Pure f =Pund + (PMPP − Pund)
(ωund − ω)

(ωund − ωMPP)
(5)

=Xu Kwind ω3 + Kwind ω3 (1 − Xu) (ωund − ω)

(ωund − ωMPP)
(6)

τure f =Xu Kwind ω2 + Kwind ω2 (1 − Xu) (ωund − ω)

(ωund − ωMPP)
(7)

Figure 1 illustrates the model of WT with control loops for frequency contribution
from wind turbines. According to this figure, variations in electrical torque Δτe,cont
can be expressed as:

Δτe,cont (s) = ΔPe,cont (s)

ω0
= (−1)

[
1/Rw + Kns

ω0

]
Δ f (s) (8)

Fig. 1 Model of variable speed WT for LFC support
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In Eq. (8), ΔPe,cont denotes electrical power variations related to changes in fre-
quency, ω0 is the current angular speed of the rotor, Kn is a parameter weighting the
inertia control loop, and Rw is a parameter similar to the speed droop R of the LFC
regulation. The latter parameters are responsible for inertial emulation from WT,
with dynamic performance improving with both low values of Rw and high values
of Kn [18]. Let the linearized dynamic operating electrical torque be:

Δτure f (s) = ∂τure f

∂ω
Δω(s) = (9)

[
2Kwind ω0 Xu + 2Kwind ω0(1 − Xu) · (ωund − ω0)

(ωund − ωMPP )
−Kwind ω2

0 (1 − Xu)

(ωund − ωMPP )

]
Δω(s).

The total variation in electrical torque (Δτe) can be presented in terms of Δ f (s) and
Δω(s) as follows:

Δτe(s) = Δτe,cont (s) + Δτure f (s) = (−1)

[
1/Rw + Kns

ω0

]
Δ f (s) + ∂τure f

∂ω
Δω(s).

(10)
Denote v0 as the wind speed (p.u.) and ω0 as the initial angular speed of the rotor
at de-loading operating point, and let, λre f and Cp,re f be the operational values of
the tip speed ratio λ and the performance coefficient Cp(λ, β) of WT for a reference
pitch-angle βre f . The mechanical torque τm of the turbine is:

τm = KwindCpv3

ω
(11)

From Eq. (11), the linearized mechanical torque Δτm(s) can be expressed as:

Δτm(s) =∂τm

∂ω
· Δω(s) + ∂τm

∂v
· Δv(s) + ∂τm

∂ f
· Δ f (s); with (12)

∂τm

∂ω
=
(
Kwind ς v02

ω0
− Kwind Cp,ref v03

ω0
2

)

∂τm

∂v
=
(
3Kwind Cp,ref v02

ω0
+ Kwind ς λref v02

ω0

)

∂τm

∂ f
=
(

ε Kwind Kb v03

ω0

)
.

The expressions for ε = ∂Cp

∂β
|op and ς = ∂Cp

∂λ
|op should be calculated depending on

the operational conditions λre f and Cp,re f . Also, Kb = Δβ

Δ f = ∂β

∂ f .
For a wind turbine with a inertia Hw, the swing equation can be employed to

obtain and expression for the variations in rotor angular speed Δω in terms of the
grid frequency variations Δ f and wind speed changes Δv. Using the functions for
Δτe(s) and Δτm(s), the power swing equation becomes:
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Δω(s) = Δτm(s) − Δτe(s)

2Hw s
. (13)

As illustrated in [19], the current parameter values related with active power produc-
tion in WT can be obtained with small-signal analysis. Denote by ΔPe, Δτ and Δω

the small deviations in electrical power Pe, electrical torque τe and the angular rotor
speed ω respectively. Then,

ω = ω0 + Δω; (14)

τe = τe0 + Δτe; (15)

Pe = Pe0 + ΔPe = τe ω = (τe0 + Δτe) (ω0 + Δω) , (16)

where Pe0, τe0, and ω0 are the initial values for the corresponding parameters pre-
viously mentioned. After expanding Eq. (16) and neglecting the terms of superior
order, ΔPe can be expressed in terms of the angular speed and electrical torque
deviations as:

ΔPe = ω0 Δτe + τe0 Δω. (17)

In this context, the initial operating electrical torque τe0 equates the de-loaded torque
τure f presented in Eq. (7). Using the previously developed expressions for Δω, Δτe,
and τe0, the linearized electrical power ΔPe for a wind turbine in terms of the grid
frequency variations Δ f and wind speed changes Δv is:

ΔPe(s) =
( −1

s + r

)(as2 + bs + c

qs + 1

)
Δ f (s) +

(
g

qs + 1

)
Δv(s), with (18)

Gw f (s) =
( −1

s + r

)(as2 + bs + c

qs + 1

)
(19)

Gwv(s) =
(

g

qs + 1

)
. (20)

Parameters g, q, r , a, b, and c are constant terms left omitted because of their
extension. They are the result of long algebraic operations among system parameters.

3 Extraction of Sensitivity Functions

Frequency regulation can be classified in three main stages according to the nature
and timescales of the control efforts: primary actions proportional to the frequency
deviations, secondary actions allowing correction of steady-state errors, and tertiary
actions related with predefined dispatches and some emergency conditions. These
three stages constitute the Load Frequency Control (LFC) system [1, 20]. Grid ele-
ments must be modeled for the design of LFC controllers. First order models are
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Fig. 2 Load frequency regulation system with linearized WT model for RES power contributions

assumed for the governor and turbine of conventional units, and for the representa-
tion of the frequency response characteristic of any control area in the power system.

Figure 2 illustrates the complete system representation for m1 conventional units
with contribution of m2 wind generation systems. Note that wind speed variations
Δv j are acting as input parameters, just as the load variations (ΔPL ). From Fig. 2
parameters for the i-th area are: ΔPmki the change in mechanical power of the
generator k, ΔPgki the change in the active power output of generator k, ΔPL the
load perturbation, Δ fi the frequency change, Di the damping coefficient. Hi the
equivalent inertia, ΔPcki the control action of the LFC for the k-th generator, Ti j the
power exchange coefficient between area i and area j , ΔPtiei the total change in the
power exchanged between area i and other areas andΔ f j the change in the frequency
of area j connected to area i . Also, Bi denotes the bias factor for modulation of the
error signal in secondary regulation, Ki (s) is the transfer function of the secondary
controller and αi the participation factor of each generator in secondary control. The
total inertia Hi represents the sum of the aggregated inertias of conventional units
and wind turbines. Usually, this parameter is calculated empirically, but the analysis
of previous works has shown the impacts of inertia in frequency regulation [21, 22].
The sensitivity analysis proposed in this chapter shows the impacts on frequency
regulation when the measured value of Hi is different from the expected. This is also
justified as the inertial emulation from wind turbines could lead to inertia variations
[13, 14]. From Fig. 2, the total variations on system frequencyΔ f can be obtained as
the linear composition of the individual responses to each input signal. Denote with
Δ fL the variations in system frequency with respect to load changes ΔPL . Making
Δv j = 0, Δ fL is given by:
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Δ fL(s) =
1

2Hi s+D {−ΔPL(s)}
1 + 1

2Hi s+D

{
K (s) +∑m1

i=1 Mi (s) +∑m2
j=1 Gw f, j (s)

} (21)

In the sameway, denotingwithΔ fv the variations in system frequencywith respect to
wind speed changesΔv j andmakingΔPL = 0, the following expression is obtained:

Δ fv(s) =
1

2Hi s+D

{∑m2
j=1 Gwv, j (s)Δv j (s)

}

1 + 1
2Hi s+D

{
K (s) +∑m1

i=1 Mi (s) +∑m2
j=1 Gw f, j (s)

} (22)

Finally, the total variations on system frequency Δ f (s) can be expressed from
Eqs. (21) and (22), as:

Δ f (s) = Δ fL(s) + Δ fv(s) (23)

=
{
−ΔPL(s) +∑m2

j=1 Gwv, j (s)Δv j (s)
}

2His + D +
{
K (s) +∑m1

i=1 Mi (s) +∑m2
j=1 Gw f, j (s)

}

3.1 Sensitivity to Inertia Hi

To represent the effects of inertia variations in frequency regulation, the calculation
of ∂Δ f (s)

∂Hi
is required. Extracting the partial derivative of Δ f with respect to Hi from

Eq. (23), the following expression is obtained:

∂Δ f (s)

∂Hi
=

2s
[
ΔPL (s) −∑m2

j=1 Gwv, j (s)Δv j (s)
]

[
2Hi s + D +

{
K (s) +∑m1

i=1 Mi (s) +∑m2
j=1 Gw f, j (s)

}]2 (24)

= {2s}
⎡
⎣ Δ f (s){

ΔPL (s) −∑m2
j=1 Gwv, j (s)Δv j (s)

}
⎤
⎦
2⎧⎨
⎩ΔPL (s) −

m2∑
j=1

Gwv, j (s)Δv j (s)

⎫⎬
⎭

The unit-less sensitivity function SH with respect to total inertia Hi can be also
calculated by definition as:

SH = dΔ f (s)

Δ f (s)

/
dHi

Hi
= ∂Δ f (s)

∂Hi
· Hi

Δ f (s)

= Δ f (s){
ΔPL(s) −∑m2

j=1 Gwv, j (s)Δv j (s)
} · {2sHi } (25)
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In [14], a similar sensitivity analysis was performed for a power system but only with
conventional hydraulicmachines. From those results, frequency variationsΔ fbase for
a purely conventional system (no RES penetration) can be obtained. In this sense,
the sensitivity expression Δ fbase with respect to to inertia for conventional power
systems is

∂Δ fbase(s)

∂H
=
[
Δ fbase(s)

ΔPL(s)

]2
· ΔPL(s) · 2s. (26)

Similarly, the aforementioned unit-less sensitivity expression SH,base of Δ fbase with
respect to Hbase for a completely conventional power system is [13]:

SH,base = dΔ f (s)

Δ f (s)

/
dHbase

Hbase
= ∂Δ f (s)

∂Hbase
· Hbase

Δ f (s)
= Δ fbase(s)

ΔPL(s)
2Hbases. (27)

The comparison among sensitivities with respect to inertia for power systems with
and without wind turbine contributions to frequency variations can be established
from Eqs. (24) to (27). As expected, the inclusion of wind turbines means includ-
ing wind speed in frequency sensitivity through the term

∑m2
j=1 Gwv, j (s)Δv j (s) (see

Eqs. (24) and (25)). It is expected that the intrinsic unpredictable and variable nature
of the wind resource will impact the power generated from renewable units. In con-
sequence, the dynamic characteristics of the frequency regulation are being modified
according to the wind profile for a determined inertia value. This will be illustrated
through simulation in subsequent sections.

4 Stability Analysis of Inertia Sensitivity of LFC with WT

Traditionally, grid frequency variationsΔ f (s) have been exclusively analyzed under
the influence of load disturbancesΔPL(s) [1, 19, 20]. This approximationwas devel-
oped for systems involving only conventional generation, resulting in the following
expression:

dΔ f (s) = ∂Δ f (s)

∂ΔPL(s)
· dΔPL(s). (28)

For systems with contribution of wind turbines to frequency regulation, wind speed
variations Δv j need to be considered in the analysis of frequency deviation. There-
fore, for a system with frequency regulation contributions from m2 wind turbines,
Eq. (28) becomes:

dΔ f (s) = ∂Δ f (s)

∂ΔPL(s)
· dΔPL(s) +

m2∑
j=1

∂Δ f (s)

∂Δv j (s)
· dΔv j (s). (29)
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Nevertheless, the impacts of the system inertia coefficient are not considered neither
in Eq. (28) nor Eq. (29). This omission could offer incomplete information, because
a loss of generation or an interruption event may result in a variation of the inertia
coefficient for a given machine, affecting the aggregated system inertia [23]. These
events have an high probability of occurrence in an environment with variable and
unpredictable renewable energy sources, where resource intermittence or generation
drops may result in changes from the initial inertia calculation [22]. Additionally,
inertia could have been estimated form an outdated generation profile. All these
phenomena suggest that frequency deviation Δ f should consider the effects of the
generator inertia coefficient rather than being function of the external disturbances
ΔPL and Δv j exclusively. In consequence, the impact of the inertia coefficient in
the grid frequency regulation performance must be determined.

4.1 Extraction of Differential Equation for Frequency
Deviation

Assuming mutual independence amongΔPL ,Δv j , and inertia coefficient Hi , Eq. 29
is modified by adding variations with respect to Hi , as follows:

dΔ f (s) = ∂Δ f (s)

∂ΔPL(s)
· dΔPL(s) +

m2∑
j=1

∂Δ f (s)

∂Δv j (s)
· dΔv j (s) + ∂Δ f (s)

∂ΔHi
dΔHi .

(30)
From Eq. (24),

∂Δ f (s)

∂Hi
dHi = 2s(dHi )

[
Δ f (s)

ΔPL (s) −∑m2
j=1 Gwv, j (s)Δv j (s)

]2 ⎧⎨
⎩ΔPL (s) −

m2∑
j=1

Gwv, j (s)Δv j (s)

⎫⎬
⎭ (31)

Additionally, taking partial derivatives with respect to ΔPL and Δv j from Eq. 23,
we can show that:

∂Δ f (s)

∂ΔPL(s)
= Δ f (s)

ΔPL(s)
; ∂Δ f (s)

∂Δv j (s)
= Δ f (s)

Δv j (s)
(32)

Replacing Eqs. (31) and (32) in Eq. (30), we get:

dΔ f (s) = Δ f (s)

ΔPL (s)
· dΔPL (s) +

m2∑
j=1

Δ f (s)

Δv j (s)
· dΔv j (s) (33)

+ 2s(dHi )

[
Δ f (s)

ΔPL (s) −∑m2
j=1 Gwv, j (s)Δv j (s)

]2⎧⎨
⎩ΔPL (s) −

m2∑
j=1

Gwv, j (s)Δv j (s)

⎫⎬
⎭
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Laplace inverse transformation is employed to get the time domain representation of
Eq. (33), resulting in:

dΔ f (t) =L−1
[

Δ f (s)

ΔPL (s)
· dΔPL (s)

]
+ L−1

⎡
⎣ N∑

j=1

∂Δ f (s)

∂Δv j (s)
· dΔv j (s)

⎤
⎦+ . . . (34)

. . . L−1

⎧⎨
⎩
[

Δ f (s)

ΔPL (s) −∑m2
j=1 Gwv, j (s)Δv j (s)

]2 ⎡
⎣ΔPL (s) −

m2∑
j=1

Gwv, j (s)Δv j (s)

⎤
⎦ · 2sdHi

⎫⎬
⎭ .

Further, taking integration of Eq. (34), we get Δ f (t) as

∫
dΔ f (t) =Δ f (t) =

∫
L−1

[
Δ f (s)

ΔPL (s)
· dΔPL (s)

]
+
∫

L−1

⎡
⎣ N∑

j=1

∂Δ f (s)

∂Δv j (s)
· dΔv j (s)

⎤
⎦+ · · ·

(35)

· · · L−1

⎧⎨
⎩
[

Δ f (s)

ΔPL (s) −∑m2
j=1 Gwv, j (s)Δv j (s)

]2 ⎡
⎣ΔPL (s) −

m2∑
j=1

Gwv, j (s)Δv j (s)

⎤
⎦ · 2sdHi

⎫⎬
⎭ .

Equation (35) presents the total differential equation of frequency deviation Δ f (t)
in time domain considering inertia effects. In order to determine the impacts of
the inertia coefficient, a stability analysis of Δ f (t) is presented in the following
subsection.

4.2 Stability Analysis

After a disturbance, all characteristic poles of the transfer function of a power system
are located on the left half-plane in the s-domain if the system is stable. In this case,
the finite time-domain input signals Δv j (t) and ΔPL(t) would not be producing
infinite time-domain responses on system output Δ f (t). From control theory, that is
equivalent to show that the norm of the transfer function of the system is bounded.
From Eq. (35), this would represent that the transfer functions listed in Eq. (36) are
already bounded:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∥∥∥∥Δ f (s)

/[
ΔPL(s) −∑m2

j=1 Gwv, j (s)Δv j (s)
]∥∥∥∥∥∥∥∥Δ f (s)

/
ΔPL(s)

∥∥∥∥ < ∞ for ∀t ∈ (0,∞)∥∥∥∥∥
N∑
j=1

Δ f (s)

/
Δv j (s)

∥∥∥∥∥

(36)

Moreover, frequency regulation in power systems is designed to keep Δ f (t) inside
a determined finite band despite variations in Δv j and ΔPL . Assuming an stable
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system, the bounds of frequency variations should be determined. Considering both
Δv j andΔPL as step functions, and using triangle inequality properties in the expres-
sion of Eq. (35) we get:

‖Δ f (t)‖ ≤
∥∥∥∥∥∥
∫

L−1
[

Δ f (s)

ΔPL (s)
· dΔPL (s)

]
+
∫

L−1

⎡
⎣ m2∑

j=1

Δ f (s)

Δv j (s)
· dΔv j (s)

⎤
⎦+ · · ·

· · ·
∫

L−1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

Δ f (s)

ΔPL (s) −
m2∑
j=1

Gwv, j (s)Δv j (s)

⎤
⎥⎥⎥⎦

2

·
⎡
⎣ΔPL (s) −

m2∑
j=1

Gwv, jΔv j (s)

⎤
⎦ · 2sdHi

⎫⎬
⎭

∥∥∥∥∥∥∥∥∥

≤
∥∥∥∥
∫

L−1
{∥∥∥∥ Δ f (s)

ΔPL (s)

∥∥∥∥ dΔPL (s)

}∥∥∥∥+
∥∥∥∥∥∥
∫

L−1

⎧⎨
⎩
∥∥∥∥∥∥
m2∑
j=1

Δ f (s)

Δv j (s)

∥∥∥∥∥∥
m2∑
j=1

dΔvi (s)

⎫⎬
⎭
∥∥∥∥∥∥+ · · ·

· · ·

∥∥∥∥∥∥∥∥∥

∫
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where κ =
∥∥∥ Δ f (s)

ΔPL (s)

∥∥∥, η =
∥∥∥∥∥

N∑
j=1

Δ f (s)
Δv j (s)

∥∥∥∥∥ and ρ =
∥∥∥∥∥∥
⎡
⎣ Δ f (s)

ΔPL (s)−
N∑
j=1

Gwv, jΔv j (s)

⎤
⎦
∥∥∥∥∥∥ represent

the respective bounded magnitudes of the transfer functions established in Eq. (36).
Also, L−1[1/s] = 1(t − t0), with 1(t − t0) = 1 when t ≥ t0. In this way, ||1(t −
t0)|| = 1. Therefore, the system remains stable when the effects of inertia variations
are considered.

In the same way, the output frequency deviation Δ f of the traditional power
system model without considering inertia effects is given as [23]:

‖Δ fbase(t)‖ ≤ κbase ‖ΔPL‖ (38)

The expressions in Eqs. (37) and (38) show that the frequency deviations in both
cases remain bounded when a stable power system is considered. However, it is
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also evident that the boundaries are different. The limits of the conventional model
depend on the boundaries of load disturbance ΔPL . However, the consideration
of inertia effects and wind turbine integration to frequency regulation affects the
boundaries of frequency deviations. In this case, the limits depend on factors such
as load disturbance, variations in wind speed, system configuration, and the specific
value of Hi .

5 Simulation Results and Discussion

A modified version of the WSCC 9-bus power system [1] was employed for simu-
lating wind turbine contribution in the LFC for a multi-area power system. For the
system of Fig. 3, 20% of conventional generation in Area III was replaced by a wind
farm. The wind farm was formed by 32 DFIG WT of 2 MW each, whose model
parameters were shown in Table 2. The system was modeled as indicated in Fig. 1,
and several case studies were analyzed.

5.1 Case 1: Frequency Response for a Load Step Change

A step change of 10% is applied to the simulated system at t = 0 s. The system with
a reduced inertia was simulated without wind, and with increasing constant wind
speed (5 and 10 m/s) as disturbance. Contribution of wind turbines in frequency

Fig. 3 WSCC 9-bus system
multi-area partitioning. The
modified system parameters
are summarized in Table 1,
considering an hydraulic
machine and two gas units.
The Power Base was set at
100 MVA
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Table 1 WSCC 9 bus system parameters [1]

Parameter Value Parameter Value Parameter Value

H1 23.64 s T12 2.064 p.u. R1 2 p.u.

H2 6.4 s T13 6.1191 p.u. R2 10 p.u.

H3 1.505 s T23 14.4353 p.u. R3 7.5019 p.u.

MV Anom1 247.5 D1, D2, D3 0.8 B1 2.8 s

MV Anom2 192 Tg1, Tg2, Tg3 0.2 B2 10.8 s

MV Anom3 128 Tτ1, T τ2, T τ3 0.3 B3 8.3 s

Table 2 Wind-turbine model simulation parameters [25]

Parameter Value Parameter Value

Pnom 2MW Rs 0.00491p.u.

Vnom 966V Xls 0.09273p.u.

K1 5000Nm Xm 3.96545p.u.

K2 2000Nm Rr 0.00552p.u.

Tw 1 Xlr 0.1p.u.

Ka 500 H 4.5 s

Ta 20 J 506.61Kgm2

regulation is not being considered. Fig. 4 presents the grid frequency deviations for
this case. Frequency nadir is lower for the system with reduced inertia and no wind.
Despite the wind being considered exclusively as disturbance, the effects of the wind
power injections help to improve the frequency characteristic of the system. Wind
power production increases with higher speeds. However, higher speeds may lead to
a more oscillatory response, as seen from the curve for a speed of 10 m/s.

5.2 Case 2: Frequency Response for a Load Step Change and
WT Contribution to LFC

For the previous example, contribution of wind turbines in frequency regulation is
now being considered as constant in every case. Figure 5 presents the grid frequency
deviations for this case. Again, we can see how the lower frequency nadir is given for
the case without active power injections from RES. Response is similar as the one
shown in Fig. 4; however, the contribution of wind turbines to frequency regulation
provided a smoother response in grid frequency deviation. Again, a higher speed and
oscillatory response even with inertia emulation from wind turbines are concerning.
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Fig. 4 Case 1: Frequency response without contribution of WT and increasing wind speed

Fig. 5 Case 2: Frequency response with constant contribution of WT and increasing wind speed
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Fig. 6 Case 3: Frequency response with constant wind speed and increasing contribution of WT

5.3 Case 3: Frequency Response for a Load Step Change and
Increasing Wind Contribution to LFC

A step change of 10% is applied to the simulated system at t = 0 s. Contribution of
wind turbines in frequency regulation is being increased (0–10% and 20%) in every
case by modifying loop parameters. The systemwith a reduced inertia was simulated
with a constant wind speed of 5 m/s. Figure 6 presents the grid frequency deviations
for this case. Here, the effects of the increased inertia with the contribution of wind
turbines are evident. However, these effects are being shown with the assumption of
constant wind speed.

5.4 Case 4: Frequency Response with Constant Wind Speed
and Increasing Contribution of WT After Unstable
Conditions

For this case, one of the system poles was changed to a value in the right half-plane
of the s-domain. This caused an unstable response in frequency deviations. The same
conditions of Sect. 5.3 are applied in this case and the resulting responses are plotted
in Fig. 7. The system took longer time in reaching unstable conditions when wind
turbines contributed to grid frequency regulation. Wind speed was kept as constant
value of 5 m/s. Variability in wind speed may lead to a faster unstable mode.
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Fig. 7 Case 4: Frequency response with constant wind speed and increasing contribution of WT,
starting from unstable case

5.5 Case 5:Frequency Response with a Simulated Wind
Profile and Increasing Contribution of WT

The power generation in wind units depends on the wind profile. Wind speed is
highly variable and unpredictable, causing fluctuations on wind power generation
and frequency deviations. A wind speed profile was simulated with data obtained
from the database of Virgin Islands [24]. Load disturbance was not considered, just
wind speed. The resultant responses are plotted in Fig. 8, while contribution of wind
turbines in frequency regulation is increased (0–10% and 20%). According to Fig. 8,
the curves with higher inertia contributions from wind turbines presented smaller
peaks than the purely conventional system. In consequence, frequency deviation had
a better performance with contribution of RES despite the inherent variability of the
wind speed.

5.6 Case 6: Frequency Response with a Simulated Wind
Profile and Load Disturbance

The same conditions of the immediately previous case were replicated, but now a
step load disturbance of 10% was applied at t = 50 s. The contributions of wind
turbines make the system more robust to disturbance action, even under the effects
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Fig. 8 Case 5: Frequency response with a simulated wind profile and increasing contribution of
WT

Fig. 9 Case 6: Frequency response with a simulated wind profile and increasing contribution of
WT, and load disturbance ΔPL = 0.1 at t = 50 s

of variable wind speed (see Fig. 9). Starting from an stable case, the consideration
of inertia variations maintains the stability of the system. This is expected from
Eq. (35), and the analysis of Sect. 4.2. The dynamic characteristics of grid frequency
deviations can actually improve with a higher value of inertia coefficient.
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6 Conclusions

This chapter addressed the effects of inertia variations for power systems with inte-
grated wind units. The system transfer functions were obtained from a linearized
wind turbine model. The mathematical relationships were formulated to analyze
the sensitivity and stability regarding inertia coefficient H . These expressions were
verified through simulation of several cases under different stability conditions and
disturbances in wind speed and load.

Simulations have shown a better and smoother response of frequency deviations
for the cases with contributions of wind turbines in comparison with the basic case of
the purely conventional system. These improvements on frequency response provide
a better power quality. Actually, results indicate a better performance of the frequency
response for higher contributions ofwind turbines to system inertia.Moreover, results
suggest more robustness to parameter variations of systems with wind turbine par-
ticipation. However, the frequency deviation rate increases when the uncertainty of
system parameters grows. This behavior would lead to instability scenarios under
frequency disturbances for the power system.

With the growing development of intermittent renewable energy sources and its
integration of the electrical grid, renewable energy will take more responsibility
for frequency regulation tasks in the foreseeable future. Therefore, the impact of
changes in generator inertia coefficient H on the power system frequency regulation
must be accounted. We showed, both with theoretic and simulation analyses, that
when including the wind generation system into the control loop, an inaccurate
generator inertia coefficient H has a relatively small impact when the power system
is inherently stable; while the system frequency deviation may be accelerated when
the power system is indeed unstable after disturbance.

In future works, the analysis of the impacts of the combination of the frequency
sensitivities with respect to the main system parameters should be explored. This
would include parameter such as generator inertia coefficient H , the governor speed
coefficient R and load-damping coefficient D. Their effects on the regulation of
power system frequency response and stability studies in LFC should be explored
together rather than considering them individually.
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