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Abstract This chapter introduces the state-of-the-art modeling, analysis and sim-
ulation of the wind turbine dynamics and control. The modeling part is a compre-
hensive time domain layout of the model currently considered by industry, such as
General Electric, National Renewable Energy Lab and other major manufacturers.
The time domain modeling allows for nonlinear and optimization studies for the
highly nonlinear and complex wind turbine control system. Also, this allows for
better understanding and intensive study of the very important Pitch control, which
is crucial in wind turbine systems, for building/designing control strategies and for
optimization objectives. This chapter also provides a documentation for what have
been published recently (2016–2018) regarding important dynamical properties and
parameter sensitivities in the wind turbine control system. In this regard, the chapter
also provides a possible reduction to the wind turbine control system based on the
range of wind speeds the wind turbine is exposed to. This allows scholar to study
the wind turbine dynamics and control in three different regions, one of them has the
Pitch control activated in the case of higher wind speeds. Moreover, the chapter pro-
vides an illustration of the dynamical stability and the possibility of approximating
the wind turbine control system by multiple time scales. Additionally, The chapter
provides different simulations of the system, which can be helpful for academic stud-
ies that intend to run non-autonomous scenarios. Also, we cite in a recently (2018)
published work, a data validation for the model versus real measured data of the
power-wind curve, which magnify the findings of our study.
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List of Symbols

Pwind wind power in the airstreams

ρ,Ar, vwind air density, rotor area (m2), wind speed (m/s)
Cp,Pmech aerodynamic power coefficient, power extracted by the tur-

bine
wref ,Pelec rotor reference speed, electrical (active) power delivered to

the grid
V the magnitude of the terminal voltage
R,X ,E infinite bus parameters: resistance, reactance, infinite bus

voltage
Qgen total reactive power delivered to the grid
H ,Hg turbine and generator inertia constants
w0,wbase initial speed, base angular frequency
Dtg,Ktg shaft damping and stiffness constants
f1, f2 integrals of differences of speeds and powers
Pstl,Kpp rated power and Pitch control proportional
Kip,Kpc integral gain and Pitch compensation proportional
θ,Kic Pitch angle and integral gain
pinp,Tpc power order (subject to modifications) and its time constant
Kptrq,Kitrq torque control proportional and gain
P1elec,Tpwr filtered electrical power and its time constant
Vref ,KQi reference voltage and its gain
Eqcmd ,Kvi reactive voltage command and terminal voltage control gain
Qdroop,Tlpqd the droop function and its time constant
Qinp the input to the droop function block
V1reg,Tr filtered supervisory voltage and its time constant
Vreg,Tr supervisory voltage and its time constant
Qwvl,Qwvu,Kpv,Kiv two integrals lead to Qord and their gains

1 Brief Introduction

Humanity future is depending much on advancement and development of renewable
energies. There are many reasons of why we need to expand our energy systems.
This is due to economic justifications and environmental concerns. No matter what
the reasons are, we require additional understanding of the generation of renewable
energies if we are to fully utilize them.

Based on the US department of energy reported [1], wind energy is the fastest
growing source of renewable energies. Consequently, we need more studies and re-
search and to fully comprehend the dynamics and behavior ofWind Turbine Genera-
tors (WTGs) if we are to gain themost from this valuable resource. Both corporations
and governments are highly interested in understanding the challenges of integrating
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WTGswith other conventional power systems. Because of the complexities involved
in the WTGs implementation, researching control systems, optimization, energy
storage, and power generation of WTGs has dramatically increased recently. In this
regard, this chapter is intended to provide a state-of-the-art comprehensive modeling
effort that should guide scholars working in the research areas mentioned earlier in
this paragraph.

The provided modeling effort in this chapter is a summary for the state-of-the-art
nonlinear modeling of WTGs control system dynamics. The industry publications,
namely General Electric (GE) ones [2, 3], have been intensively investigated in the
last two years through the publications [4–12]. These studies converted the model
found in GE reports into nonlinear system of differential-algebraic equations, fol-
lowed by a wide range of analysis and simulation results. The resultant time domain
nonlinear model can be reduced based on the wind speed vwind range the WTG is
exposed to. This important possibility of reduction to the model, will be covered and
presented collectively in Sect. 2. Also, we will summarize some of the most recent
and important observations these studies have concluded about the WTG system,
such as parameter sensitivity, stability and different time scale structure found in the
WTG system. In Sect. 3, the Pitch control and its significance will be presented.
Additionally, some non-autonomous simulations for the given model under Pitch
control, is provided. In the same section, we will provide a Simulink verification of
the model and how it compares to National Renewable Energy Lab [13, 14]. In this
regard, it is important to mention that our modeling intensive study recognized some
other modeling sources such as [15–18]. Also, at the end of this chapter, we will
provide and discuss a real data validation for the power-wind curve of our model.
These verifications and validations are a supportive evidence that the modeling effort
presented in this chapter is reliable. This is essential in any optimization or control
study. The reader is recommended to check the Ph.D. dissertation [19] for more
detailed information about the topics covered in this chapter.

2 State-of-the-Art Nonlinear Modeling of WTGs

In this section, we provide a mathematical model that is in time domain (can be
solved by stiff differential equations solvers such as ODE15s in Matlab). This full
scale modeling allow for better and more in-depth control studies. This is especially
true because the WTG system is highly nonlinear. Also, a system/model formulated
in time domain, usually provide better framework for non-autonomous simulations,
keeping in mind that non-autonomous simulations are more practical to present ex-
treme scenarios. We start by explaining the different controls in WTGs and translate
them into differential equations. Then, we provide tables that summarize and collect
the parameters, Cp coefficients, and limiters (control limits) needed for the model.
Also, we give a method to eliminate the algebraic equation resulting from the net-
work equation. This results in a system of differential equations instead of a system
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of differential-algebraic equations, which allows for simpler implementation in nu-
merical solvers.

The main references used while constructing the model are [2–6, 18]. In [2],
the control blocks are consistent of the wind power extraction block, one/two mass
block, Pitch compensation control block, and reactive power block (power factor
and supervisory voltage cases). In [3], Cp curves are provided and explained. The
GE team suggested an extra two optional blocks to, possibly, be added (active power
and inertia blocks). The GE team in [3] introduced the so called Q Droop function,
which has been intensively studied in [6] and fully analyzed in [11]. The study
[18] introduced their model effort citing [20] and GE studies. The reader may ask
a legitimate question: Why and how GE models relate to other WTGs? In another
words, how building the model is inclusive to the-state-of-the-art modeling efforts if
it follows heavily GE modeling? These questions were answered by detail in [4–11].
The answers though can be grouped in the two points below:

1. The GE team made the case in their reports [2, 3] that their model can be used to
represent WTG models for other manufacturers/companies. As a matter of fact,
they have provided many validation results, as can be found in [21].

2. In [8], it is shown that the GE modeling is equivalent to the NREL [13] if we fix
the parameters. The Simulink projects used for this comparison are also given in
Sect. 3.4. Additionally, we provide in Sect. 3.4 a discussion regarding the data
validation for the proposed model (uses intensively GE) versus the model of [18,
20].

2.1 Main Outline of the Model

• Wind power model: Using basic physics, the wind power in the air streams is
given by Pwind = 1

2ρArv3wind Per Unit (pu), see [3]. This block models how a
WTG extracts power from the air and with what efficiency. The model’s main
purpose is to introduce the Cp curves such that the power extracted by the WTG is
Pmech = 1

2CpρArv3wind . As discussed in the introduction, and as in [22], the ideal
Cp is the Betz limit which is approximately 0.59. No WTG can extract more than
the Betz limit of the power available in the air-streams. Cp curves of the three
bladed wind turbine (type-3) are better other types for some tip ratios (Fig. 1).

• Rotor model: This model represents the dynamics of the generator and turbine
speeds due to the electrical and mechanical torques. The two-mass model has
been introduced in [2, 3, 18] while in [23] this block was represented by a single-
mass rotor. It can be noticed that GE studies [2, 3] hinted that singlemass rotormay
be used for simplification. Later (in Sect. 2.2.1) we will mention the representative
differential equations for both models. Figure 2 shows the transfer function for this
block as in [3].

• Reference speed: This block models how the reference speed is calculated. The
reference speed dynamics are dependent on the generated electric power such that
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at steady statewref = f (Pelec). GE studies [2, 3]mentioned that the reference speed
should increase slowly with the generated electric power until it reaches the rated
speed. This speed is essential to control the generator and turbine speeds. There
is a difference between [2, 3, 18] regarding the transfer function of the reference
speed. Later (in Sect. 3.4) we will discuss this difference in more detail.

• Pitch control and compensation: This block captures the dynamics of the Pitch.
This has been a growing area of research. This control calculates the Pitch angle
based on the differences between the rated power and the power order, and between
the reference speed and the generator speed. The Pitch angle has direct effect
on power extraction efficiency. This is an important control to keep the WTG
producing the rated power for a higher range of wind speeds. Figure 3 shows the
transfer function for this block as in [3].

• Reactive power control: This control manages the generated reactive power from
the WTG. This control can be in the power factor setup or the supervisory voltage
setup. The first case occurs when the WTG is treated as one unit by itself, while
the second case occurs when the WTG is treated as one unit in a compound of
units. These two cases were introduced in [2, 3, 18]. Figure 4 shows the transfer
function for this block as in [3].

• Electrical control: Unlike the previous block where the control was for the reactive
branch that feeds the generator, the electrical control shows how the active current
can be generated and controlled. This block is the same across the references [2,
3, 18] that covered it. Figure 5 shows the transfer function for this block as in [3].

• Active power and inertia controls: Usually these controls are not activated. The
function of these two controls is to manage the power order produced by the
WTG. This management depends on and corresponds to changes in bus frequency.
The two controls provide extra power in the case there is lower than normal bus
frequency (reference frequency) and vise versa. The active power control provide
extra power by setting up the maximum rated power and cutting out, if needed, the
available power to the WTG. On the other hand, the inertia control does the same
function, but by providing extra power from the rotor inertia. GE [3] has hinted
that most current WTGs have yet to implement these controls as of 2010. Figures
6 and 7 show the blocks as in [3].

• Converter/Generatormodel: This is the stepwhere the output theWTG is delivered
to the power grid. Two branches are considered in this model, active and reactive
ones, which deliver the active and the reactive power to the grid respectively. In [2,
3] this model is very similar, with some lower and upper limit differences for the
controls, however, in [18] we see that a third branch is added to the model for the
phase shift convergence between the resultant components (current and voltage)
of the wind turbine and the grid. For more detail about how this difference is
insignificant when we have stability, the reader is recommended to read about
the convergence between the models in [19]. Figures 8 and 9 show the generator
model as in [2, 18] respectively (Fig. 10).

• Terminal voltage and grid model: The terminal voltage is the connection between
the converter/generator model and the grid model. In the models we follow, the
wind turbine is connected to the grid in order to work. This implies that even for
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Wind Power
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Pitch Control
(Group 2)

Active Power
& Inertia Control

(Group 7)

Rotor Model
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Power Order
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Generator
(Group 8)

Electrical
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vwind

fbus

Pmech

wt

wg
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V
Connection Bus

Pinp,Pord

Vre f Iplv

Fig. 1 WTG control blocks and dynamics

theoretical/mathematical studies, the grid should be modeled so we can have an
algebraic equation (the network equation) from Kirchhoff’s law, that relates the
dynamics of the WTG to the grid. In our study, we follow the model used in [18]
and suggested in [2, 3] to represent the grid by an infinite bus model, see Fig. 11.
Therefore, the terminal voltage will be given by the following equation as in [18]:

(V 2)2 − [2(PelecR + QgenX ) + E2]V 2 + (R2 + X 2)(P2
elec + Q2

gen) = 0 (1)

Note that, if the grid model changes to another model other than the infinite bus,
a new algebraic constraint will need to be derived and analyzed. Without this part
of the grid modeling, the wind turbine is working without load and has undefined
inputs to some of the control dynamics. Figure 12 gives the transfer functions of
the WTG as in [3].

2.2 Characteristics and Dynamical Analysis

2.2.1 Translating the Blocks of Transfer Functions and Controls into a
System of Differential Algebraic Equations

Having first reviewed the transfer functions and control blocks in Sect. 2.1, we now
begin the process of breaking down the blocks (in every Fig.) into algebraic relations
in the transfer function domain. This will be done by deriving the transfer function
relations after specifying nodes of variables.
Group 1: Two mass model as in Fig. 2.
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Fig. 2 Two mass model of a WTG as in [3]

In Fig. 2, we let the nodes s6 = wg and s8 = wt , so the turbine speedwill be the sumof
w0 and the node s6. Therefore,wturbine = wrotor = wt + w0 and similarly the generator
speed wgenerator = w = wg + w0. Also we let Δθm = s9 − s7, so Tshaft = KtgΔθm.
Thus wt is given by,

wt = 1

2H
· 1
s
[Tmech + Dtg(wg − wt) + Tshaft]. (2)

Similar to Eq. (2) we get,

wg = 1

2Hg
· 1
s
[−Telec − Dtg(wg − wt) − Tshaft] (3)

and,

Δθm = wbase

s
(wg − wt). (4)

The above equations contain the dynamics of the two mass rotor model.
Group 2: Pitch control as in Fig. 3.
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Fig. 3 Pitch control model of a WTG as in [3]

Fig. 4 Reactive power control of a WTG as in [3]

In Fig. 3, we start with the two integrators (branches that have 1
s ). We let f1 be the

output of the transfer function Kic
s and we let f2 be the output of the transfer function

Kip

s . Thus,
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Fig. 5 Electrical control of a WTG as in [3]

Fig. 6 Active power control of a WTG as in [3]

f1 = (w − wref )

s
= (wg + w0 − wref )

s
(5)

and,

f2 = (Pinp − Pstl)

s
. (6)

The Pitch angle command (θcmd ) is the node after summing the upper and the lower
outputs of the Pitch control. Also, it is the node before the transfer function of Tpl .
Thus θcmd is given by,
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Fig. 7 Inertia control of a WTG as in [3]

Fig. 8 Converter/Generator model of a DFAG/DFIG WTG as in [2]

θcmd = Kpp(wg + w0 − wref ) + Kipf1 + Kpc(Pinp − Pstl) + Kicf2. (7)

The Pitch angle (θ ) is the output of the transfer function of Tpl , which has θcmd as an
input. Thus θ is given by,

θ = θcmd
1

1 + s · Tpl . (8)

After algebraic re-arrangement we get,

θ = Kpp(wg + w0 − wref ) + f1 + Kpc(Pinp − Pstl) + f2
1 + s · Tpl . (9)
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Fig. 9 Converter/Generator model of a DFAG/DFIG WTG as in [18]

Fig. 10 wref steady state as a function of Pelec as in [4]

Fig. 11 Single machine
infinite bus test system as in
[4]

WTG

Pelec+ jQgen

R+ jX

Infinite Bus

Ve jφ Ee j0
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Fig. 12 All of the WTG model transfer functions and controls as in [3]

Equations (5), (6), and (9) contain the dynamics of the Pitch control.

Group 3: Reference speed as in Fig. 12.
The reference speed wref is the output of the transfer function ( 1

1+s·60 ), which has the
node symbol s5 (at the upper part of Fig. 12). The input for this transfer function is
−0.75P2

elec + 1.59Pelec + 0.63. Thus wref is given by,
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wref = −0.75P2
elec + 1.59Pelec + 0.63

1 + s · 60 . (10)

Equation (10) represent the dynamics of wref .

Group 4: Power order as in Fig. 12.
The main power order Pinp is the output of the transfer function of Tpc, which has the
node symbol s4 (in the middle of Fig. 12). The input for This transfer function is the
multiplication of w and the output of the transfer function that has the node symbol
s2. With f1 in Eq. (5) and w = wg + w0, Pinp is given by,

Pinp = (wg + w0)(Kptrq + Kitrqf1)

1 + s · Tpc (11)

and wsho (the output of the transfer function of Tw with the node symbol s10) is given
by,

wsho = (Pinp − Plim) · s · Tw
1 + s · Tw . (12)

As shown at the sum after the node s10 in Fig. 12, the final power order is given by,

Pord = Plim + wsho + dpwi. (13)

Group 5: Reactive power in power factor setup case and electrical controls as in Figs.
4 and 5.
Since we consider the reactive power control operating in power factor case, then
the lower part in Fig. 4 is operating. We let the output of the transfer function of Tpwr
be P1elec (see Fig. 4). Thus P1elec is given by,

P1elec = Pelec

1 + s · Tpwr . (14)

Qcmd is the output of the multiplier in Fig. 4. Therefore,

Qcmd = P1elec · tan(PFAref ). (15)

In the electrical control (Fig. 5), Vref is the output of the transfer function of KQi

(upper part of Fig. 5). This transfer function has Qcmd − Qgen as an input. Thus Vref

is given by,
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Vref = KQi(Qcmd − Qgen)

s
. (16)

Equations (14) and (16) contain the dynamics of group 5.

Group 6: Reactive power in supervisory voltage setup case and electrical controls as
in Figs. 4 and 5.
The Qdroop function as shown in Fig. 12 in [3] is given by,

Qdroop = (Qinpt − Qdroop)

1 + s · Tlpdq . (17)

Since we consider the reactive power control operating in supervisory voltage case,
then the upper part in Fig. 4 is operating. We let V1reg be the output of the transfer
function of Tr , which has the node symbol s3 (see Fig. 4). This transfer function has
Vreg as an input. Thus Vreg1 is given by,

V1reg = (Vreg − V1reg)

1 + s · Tr . (18)

In Fig. 4, we let fn = 1 or included in the gains (see page 4.7 in [3], second para-
graph). We let the outputs of the transfer functions of Kpv and Kiv be Qwvl and Qwvu

respectively. The input for those two transfer functions is Vref − V1reg − Vqd (see
Fig. 4). Thus Qwvl and Qwvu are given by,

Qwvl = Kpv(Vrfq − V1reg − Vqd )

1 + s · Tv (19)

and,

Qwvu = Kiv(Vrfq − V1reg − Vqd )

s
. (20)

As shown in Fig. 4, Qwv is given by,

Qwv = Qwvl + Qwvu. (21)

The output of the transfer function of Tc isQord (see Fig. 4). The input for this transfer
function is Qwv. Thus Qord is given by,

Qord = Qwv

1 + s · Tc . (22)
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Since the reactive power control is operating in supervisory voltage case, then
Qcmd = Qord from Eq. (22). Equation (16) holds for this group 6 as a representative
for the electrical control. Equations (17)–(20), (22), and (16) contain the dynamics
of group 6.

Group 7: Active power and inertia controls as in Figs. 6 and 7.
For the active power control (Fig. 6), Pavf is the output of the transfer function of
Tpav. This transfer function has Pavl as an input. Thus Pavf is given by,

Pavf = Pavl

1 + s · Tpav . (23)

For the inertia control (Fig. 7), fltdf wi is the output of the transfer function of Tlpwi,
which has the node symbol s12. This transfer function has dfdbwi as an input. Thus
dfdbwi is given by,

fltdf wi = dfdbwi

1 + s · Tlpwi . (24)

The final output of the inertia control (dpwi) is the output of the transfer function of
Twowi, which has the node symbol s13. This transfer function has fltdf wi multiplied
by the gain Kwl as an input. Thus dpwi is given by,

dpwi = Kwl · dpwi · s · Twowi
1 + s · Twowi . (25)

Equations (23)–(25) contain the dynamics of group 7.

Group 8: DFAG generator/converter as in Fig. 8.
In order to have equations for Eq and Iplv (outputs of the transfer functions with the
node symbols s0 and s1 respectively), we need to relate Eqcmd and Ipcmd (inputs of the
transfer functions with the node symbols s0 and s1 respectively) to other variables
we have that represent the dynamics in other controls. Looking at the electric control
(Fig. 5), we notice that Eqcmd is the output of the transfer function of Kiv, which has
the node symbol s1. Similarly, in the lower part of Fig. 5, we find Ipcmd as the output
of the divider (Pord

V ). Thus Eqcmd is given by,

Eqcmd = Kvi(Vref − V )

s
(26)

and,

Eq = Eqcmd

1 + s · 0.02 . (27)
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We have Ipcmd = Pord
Iplv

, then Iplv is given by,

Iplv =
Pord
Iplv

1 + s · 0.02 . (28)

We note that Ip in [2] is equivalent to Iplv (the symbol used in this document) in [3].
Equations (26)–(28) contain the dynamics of the generator.

After applying inverse Laplace transform to the equations above, we derive a sys-
tem of differential equations as follows:

Group 1: Two-mass rotor.

dwg

dt
= 1

2Hg

[
− Pelec

wg + w0
− Dtg(wg − wt) − KtgΔθm

]
. (29)

dwt

dt
= 1

2H

[
Pmech

wt + w0
+ Dtg(wg − wt) + KtgΔθm

]
. (30)

d(Δθm)

dt
= wbase(wg − wt). (31)

As discussed when we were introducing the different controls, a one mass model
may be used to replace the two-mass model in group 1. The one mass differential
equation was given in [24]:

dw

dt
= 1

Hwbase
[Pmech − Pelec].

The following relations hold:

Pmech = 1

2
Cp(λ, θ)ρArv

3
wind = 1

2

⎛
⎝ 4∑

i=0

4∑
j=0

αi,jθ
iλj

⎞
⎠ ρArv

3
wind

and,

Pelec = V Iplv.

Group 2: Pitch control.

df1
dt

= wg + w0 − wref . (32)
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df2
dt

= Pinp − Pstl . (33)

dθ

dt
= 1

Tp
[Kpp(wg + w0 − wref ) + Kipf1

+Kpc(Pinp − Pstl) + Kicf2 − θ)]. (34)

Group 3: Reference speed.

dwref

dt
= 1

60
[−0.75P2

elec + 1.59Pelec + 0.63 − wref ]. (35)

Group 4: Power order.

dPinp

dt
= 1

Tpc
[(wg + w0)(Kptrq(wg + w0 − wref )

+Kitrqf1) − Pinp]. (36)

dwsho

dt
= dPinp

dt
− dPstl

dt
− 1

Tw
wsho. (37)

Group 5: Reactive power control in the power factor setup case.

dP1elec

dt
= 1

Tpwr
[Pelec − P1elec]. (38)

dVref

dt
= KQi[Qcmd − Qgen] (39)

where,

Qgen = V (Eq − V )

Xeq
.

Qcmd is explained in detail in Sect. 2.2.2.

Group 6: Reactive power control in the supervisory voltage setup case.

dQdroop

dt
= 1

Tlpqd
[Qinpt − Qdroop]. (40)

dV1reg

dt
= 1

Tr
[Vreg − V1reg]. (41)
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dQwvl

dt
= 1

Tv
[Kpv(Vref − V1reg − Vqd ) − Qwvl]. (42)

dQwvu

dt
= Kiv(Vref − V1reg − Vqd ). (43)

dQord

dt
= 1

Tc
(Qwvl + Qwvu − Qord ). (44)

Equation (39) is holding in all reactive power groups.

Group 7: Active power control and inertia control.

dPavf

dt
= 1

Tpav
[Pavl − Pavf ]. (45)

d(fltdf wi)

dt
= 1

Tlpwi
[dfdbwi − fltdf wi]. (46)

d(dpwi)

dt
= Kwi

Tlpwi
[dfdbwi − fltdf wi] − dpwi

Twowi
. (47)

Group 8: DFAG generator/converter.

dEqcmd

dt
= Kvi[Vref − V ]. (48)

dEq

dt
= 1

0.02
[Eqcmd − Eq]. (49)

dIplv
dt

= 1

0.02

[
Pord

V
− Iplv

]
. (50)

Group 9: The algebraic equation resulting from the network (see [18]):

0 = (V 2)2 − [2(PelecR + QgenX ) + E2]V 2 + (R2 + X 2)(P2
elec + Q2

gen). (51)

Table 1 represents the model’s parameter values as in [3], however the grid parameter
values are taken from [18]. Table 2 has the Cp curves’ needed coefficients as in [3].
Also, we define the control limits introduced in [3] to be the lower and upper bounds
as following in Table 3:
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Table 1 The model’s parameter value

Parameter Value

w0 1 (choice larger than 0)

Dtg 1.5 (60 Hz) or 2.3 (50 Hz)

Ktg 1.11 (60 Hz, 1.5 MW)

Ktg 1.39 (50 Hz, 1.5 MW)
1
2ρAr,Kb 0.00159 and 56.6 respectively

wbase 125.66 (60 Hz) or 157.08 (50 Hz)

H (two mass) 4.33

H (one mass) 4.94 (60 Hz), 5.29 ( 50 Hz)

Hg 0.62 (60 Hz), 0.96 (50 Hz)

Kpp,Kip 150, 25 respectively

Kpc,Kic 3, 30 respectively

Tp, pstl 0.3, 1 respectively

Tpc,Kptrq 0.05, 3 respectively

Kitrq,Tw 0.6, 1 respectively

Tpwr,KQi 0.05, 0.1 respectively

Tlpqd ,Tr 5, 0.02 respectively

Tv,Kpv 0.05, 18 respectively

Kiv,Tc 5,0.15 respectively

Tpav,Tlpwi 0.15,1 respectively

Kwi,Twowi 10,5.5 respectively

Kvi,Xeq 40,0.8 respectively

R,E 0.02,1.0164 respectively

X = Xl + Xtr Xl = 0.0243,Xtr = 0.00557 respectively

2.2.2 Reduction of the Model

Here we go through a number of possible cases that reduce the system. These reduc-
tions are based on the range of wind speeds the WTG is operating on, or on which
optional controls, such as active power and inertia controls are deactivated.

Wind Speeds versus Reference Speed: The rated reference speed is wref = 1.2
pu. Physically the WTG can’t reach this rated speed with low wind speeds. That is
why wref increases gradually as shown in Eq. (35), until it reaches 1.2 pu. Given the
model and the parameter in this study, the rated reference speed (1.2 pu) is reached
at vwind = 8.2 m/s. Therefore, the differential equation of wref can be seen as,

dwref

dt
=

{
1
60 [−0.75P2

elec + 1.59Pelec + 0.63 − wref ] vwind < 8.2 m/s
0, wref (0) = 1.2 vwind ≥ 8.2 m/s
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Table 2 Cp coefficients αi,j

i j αi,j i j αi,j

4 4 4.9686e−10 4 3 −7.1535e−8

4 2 1.6167e−6 4 1 −9.4839e−6

4 0 1.4787e−5 3 4 −8.9194e−8

3 3 5.9924e−6 3 2 −1.0479e−4

3 1 5.7051e−4 3 0 −8.6018e−4

2 4 2.7937e−6 2 3 −1.4855e−4

2 2 2.1495e−3 2 1 −1.0996e−2

2 0 1.5727e−2 – – –

1 4 −2.3895e−5 1 3 1.0683e−3

1 2 −1.3934e−2 1 1 6.0405e−2

1 0 −6.7606e−2 0 4 1.1524e−5

0 3 −1.3365e−4 0 2 −1.2406e−2

0 1 2.1808e−1 0 0 −4.1909e−1

Table 3 Control limits to be applied as in [3]

Variable Lower bound Upper bound

V1reg + Vrfq − Vqd Vermn = −0.1 Vermx = 0.1

Qwv Qmin = −0.436 Qmax = 0.436

Qcmd Qmin = −0.436 Qmax = 0.436

Vref Vmin = 0.9 Vmax = 1.1

Eqcmd XlQmin = 0.5 XlQmax = 1.45

Pord
V Ipmin > 0 Ipmax = 1.1

θ θmin > 0 θmax = 27

Pinp Pwmin = 0.04 Pwmax1.12

Pavl Pwmin = 0.04 1

dpwi Pmnwi = 0 Pmxwi = 0.1

dPinp
dt dPmin = −0.45 dPmax = 0.45

dθ
dt dθmax = −10 dθmin = 10

Therefore based on the above equation, Eq. (35) can be considered as part of the
system’s dynamics (if vwind < 8.2) or eliminated (if vwind ≥ 8.2) by setting wref =
1.2.
ElectricPower versusPitchControl:Unlessmentioned otherwise, the rated electric
power generated is 1 pu. The Pitch control gets activated only when the WTG would
otherwise generate more power than the rated power. In this case, the Pitch angle
increases, so less power is extracted, and the electric power is held at the rated power.
When θ = 0 extraction of power is maximized. Therefore the differential equation
of θ can be seen as,
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dθ

dt
=

⎧⎪⎪⎨
⎪⎪⎩

1
Tp

[Kpp(wg + w0 − wref ) + Kipf1 + Kpc(Pinp − Pstl)

+Kicf2 − θ)] Pelec > 1 pu

0, θ(0) = 0 Pelec ≤ 1 pu

Therefore, based on the above equation, Eq. (34) can be considered part of the sys-
tem’s dynamics (highwind speeds such thatPelec > 1) or eliminated by setting θ = 0
(to maximize power extraction for low wind speeds when Pelec ≤ 1). If we set θ = 0,
we eliminate f2 as well in Eq. (33).
Reactive Power Control Qcmd Cases: In the reactive power control, Qcmd is de-
pendent on whether the reactive power control is operating in power factor case or
supervisory voltage case. This difference was explained in group 5 and 6 in Sect.
2.2.1. We can summarize that difference in the following relation:

Qcmd =
⎧⎨
⎩
P1elec · tan(PFAref ) Power factor case
Qord Supervisory voltage case
constant or considered from another model

The nature of the study determines the reactive power setup case (represented by Eqs.
(38)–(39) in the power factor case or by Eqs. (40)–(44) and (39) in the supervisory
voltage case). As mentioned in [3] it can also be a constant or from a separate model
depends on the study and its conditions.
The Power Order Pord Cases: The power order as shown at the sum in the lower
part of Fig. 12, has three main parts. Those parts are the regular power order Pinp,
the effect of the active power control wsho, and the output of the inertia control dpwi
(see Eq. (13)). But the active power control and the inertia control can be activated
or deactivated. This lead to Pord can be one of the following cases:

Pord =

⎧⎪⎪⎨
⎪⎪⎩

Pinp Active Power and inertia controls (deactivated)
Plim + wsho Active Power control (activated)
Plim + dpwi Inertia control (activated)
Plim + wsho + dpwi Active Power and inertia controls (activated)

WTG Power versus Wind Speed Curve and the Study Cases: Based on the vwind
range, the dynamics of the WTG can be divided into regions. Giving the parameter
values in Tables 1 and 2, we have the following cases:

• Region 1: Wind speeds between the minimum cut off speed (3 m/s) and 8.2 m/s.
Within this range, the Pitch angle θ is fixed at zero in order to extract all possible
power from the air, as the rated power is not reached by this range of wind speeds.
Also, the rated reference speed, 1.2 pu is reached when vwind = 8.2 m/s so, the
reference speed should be seen to gradually increases versus the wind speed.
Therefore, in this region of dynamics, Eq. (35) is considered, while Eqs. (33) and
(34) are eliminated, and we set θ = 0.
This case can be furthermodified by taking into account the activated or deactivated
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Fig. 13 Power curve profile
for the WTG

optional controls (active Power and inertia controls). Also, it can be modified to
any of the reactive power cases.

• Region 2: Wind speeds between 8.2 and 11.4 m/s. In this region, the reference
speed is at the rated level 1.2 pu, while the power remains below the rated level.
The WTG reaches the rated power 1 pu at vwind = 11.4 m/s. Therefore, in this
region, Eqs. (35), (33), and (34) are eliminated and we set wref = 1.2 and θ = 0.
As in the previous case, this case can be further modified.

• Region 3: Wind speeds between 11.4 and 25 m/s (the maximum allowed speed).
The dynamics of this region take into consideration Eqs. (33)–(34), while Eq. 35
is eliminated and we set wref = 1.2. Also this case can be further modified as
mentioned in the previous cases.

We built a numerical simulator for the dynamical system in the three regions above.
The stable steady state of the generated electric power versus wind speeds is as ex-
pected for anyWTGpower curve profile. Figure 13 shows the result of the simulation
in the three regions of dynamics, and the power curve profile for the WTG.

2.3 Documented Results and Conclusions About the Model

In this subsection, we present some of the important information and conclusion that
have been made about the model derived in Sect. 2.2.1. These points and conclusions
are summarized below:

• Parameters: The model’s parameters can be different based on the sources found
in literature. Therefore, scholars are encouraged to determine the conditions in
which theirmodel is used. For instance, some fewdifferences can be foundbetween
[2, 3, 13, 18, 20]. However, we remark that later in Sect. 3.4 we verified our model
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versus real data, which suggest credibility for the parameters given in Tables 1 and
2. These parameters are mainly taken from [2, 3] and also some from [18].

• Stability: Stability for the model has been significantly studied through eigenval-
ues as in [5, 25]. It seems however, from [5] that in the case of the power factor
set up (see Sect. 2.2.2), only the grid parameters (R and X ) can have a large effect
on transitioning the system from Stable to Unstable. Figure 14 shows the region
where Stability and Instability occurs in the grid parameter space. We note that
Fig. 14 has been produced in [5, 8, 10] respectively for the model in all ranges
(Regions 1,2 and 3) of wind speeds introduced in Sect. 2.2.2 and Fig. 13. However,
it is important to notice that [5] reported the possibility of a Hopf bifurcation for
very small value of X . Note that small values of X has been reported by the NREL
[26] to also cause the WTG acting funny and break. The interesting part about
small value of X that it can lead to a Hopf bifurcation behavior, but also under
the control limits given in Table 3 as discussed in [5]. This phenomenon of how
allowable oscillations can be allowed by the WTG controls as reported by the
NREL [26], has been further investigated in [12] to continue on the work of [5]
and use the model provided in this chapter to provide a theoretical explanation for
the phenomenon. On the other hand, if the system is in the supervisory voltage
reactive power control set up (see Sect. 2.2.2), then it is required to have theQdroop

function “activated” to maintain stability (see [6, 11]). As a matter of fact, the
Qdroop function has to be in a a feedback mode that is feeding a gain of the reactive
power delivered to the grid to have stability, not just a specific constant (see [6,
11]).

• Parameter Sensitivity: Checking how the system steady states and local trajec-
tories would react (change in response) to small changes in a given parameter has
been studied in [4, 8–10]. In these papers, it was concluded that they system is
highly sensitive to vwind and sensitive enough to all grid parameters X , R and E for
all wind speed ranges (Regions 1,2 and 3, Fig. 13). To determine local trajectories
sensitivity to parameters, we need to study eigenvalue sensitivity to parameters as
done in [9]. Only the region (Region 3, Fig. 13) has eigenvalue sensitivity towards
vwind , which will be included in our study to the Pitch control next section.

• Boundedness, Existence and Uniqueness: If we consider the control limits
(bounds) given in Table 3, it can be shown mathematically that the network
equation in Eq. (51) has a unique solution that allow us to have the system in
differential equations instead of the system being in differential-algebraic equa-
tions. As proved and introduced in [7], We can use directly Eq. (52) to represent
V :

V = f (Iplv,Eq;X ;R;E) = −B + √
B2 − 4AC

2A
(52)

With A = 1 + 2X
Xeq

+ R2+X 2

Xeq
, B = −

[
2IplvR + 2XEq

Xeq
+ 2(R2+X 2)Eq

Xeq

]
and C =

R2+X 2

Xeq
+ (R2 + X 2)I2plv − E2. This reduction helps significantly in any nonlinear

optimization and/or control study. To the best of our knowledge, no WTG system
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Fig. 14 Stable (red) and
Unstable (Black)

has been mathematically analyzed to even conclude existence and uniqueness
for the resultant system of differential equations, as have been done in [7]. It is
also worth mentioning that in [7], it was mathematically proved and found that
there is a safe region in the parameter space of R and X , in which the system al-
ways maintains existence and uniqueness of solutions. This region is given in the
Fig. 15.

• Multiple Time Scale Structure: In [7] and intensively in [8], it has been shown
that the WTG system has different time scales in it. In fact, it was shown that the
system can reduces into fast-slow (two) time scales or fast-medium-slow (three)
time scales. This is the first time in literature, as we think, that some study covered
the multiple time structure in WTGs. Reduction to the model (two or three time
scales), with guaranteeing eventual convergence (shown in [7, 8]), can expand
and enhance the real time domain simulations and provide nonlinear studies with
another tool to use while studying the WTGs.

• Eliminating the control limits: In [6, 11], it was shown that the attraction limits
in the case of stability are larger than the control limits provided in Table3. In
another words, the stable steady states are shown to attract trajectories in a range
that is even larger than the control limits. This, as concluded by [6, 11] means
that the limiters can be eliminated when we build simulations for the system, at
least if we are concerned about small-signal stability studies. The reader then is
recommended to take a look at how the block diagrams, in transfer function, for
the WTG components/controls, look like without any of the limiters in [11].



Nonlinear Modeling, Analysis and Simulation of Wind Turbine … 25

Fig. 15 Safe region in which solutions uniquely exists

3 Pitch Control, Simulations, Simulink Verification and
Real Data Validation

3.1 Modeling and Analysis of Pitch Control

In this subsection, we provide a full time domain study for the dynamics in Region
3 (see Fig. 13) where the important Pitch control is activated. We start first by con-
sidering the power factor setup for the range of wind speeds in Region 3 (11.4–25
m/s) with the two mass model,the power factor, and without the active power and in-
ertia controls. Next subsection, we expand the analysis to the reactive power control
being in the set up of supervisory voltage and, having the Qdroop function in effect.
The differential equations reduce to Eqs. (29)–(34), (36), (38)–(39), (48)–(50). For
this system of 12 nonlinear differential equations, there is no algebraic (network)
equation, as we eliminate the algebraic equation using Eq. (52). We find the steady
states versus the wind speed, so we can see the Pitch control function that stabilizes
the system. We study stability in parameter space.

3.1.1 Pitch Control with Power Factor

The Steady States and Eigenvalues: Once the wind speed approaches 11.4 m/s, the
power extracted from the air-streams exceeds the 1 pu (rated power). Consequently,
the Pitch control gets into action and enforce less power extraction. Figure 17 shows
the Pitch angle in steady state as a function of wind speed. Because of the Pitch
dynamics, in the steady state Pelec = Pmech = Pinp = P1elec = 1. Figure 16 shows
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Fig. 16 Pmech when the pitch angle is fixed at zero versus the pitch control activated

Fig. 17 Pitch angle steady state as a function of vwind

what happens to the power to be extracted if the Pitch are fixed at zero versus when
the Pitch control is activated. Since the Pitch control fix the power generation, the
physical steady state in Region 3 is constant versus vwind . We computed these values,
wg = wt = 0.2, Eq = Eqcmd = 1.167, and V = Vref = 1.039.

Because the Cp function is forth degree polynomial of θ , the resultant steady
states are not necessary unique. We ran tests numerically to see if there are other
possible steady states. For every fixed wind speed, we could find two different Pitch
angles. One of these steady states is negative and the other is positive. As a result
we fixed our codes to only find these Pitch angles that are in the acceptable range.
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Table 4 The eigenvalues computed at the steady state

Real
vwind = 11.4

Imag
vwind = 11.4

Real
vwind = 25

Imag
vwind = 25

% change

λ1 −52.25 0 −52.25 0 0, 0

λ2 −48.94 0 −48.94 0 0, 0

λ3 −19.99 0 −19.99 0 0, 0

λ4 −16.11 0 −16.11 0 0, 0

λ5,6 −1.34 ±12.15 −1.35 ±11.6 0.7, 4.5

λ7 −3.14 0 −0.88 0 71.9, 0

λ8,9 −0.68 ±2.16 −0.68 ±2.16 0, 0

λ10,11 −0.18 ±0.46 −1.52 ±3.2 744, 59.5

λ12 −0.13 0 −0.16 0 23, 0

For instance, vwind = 20 is associated with θ = −3.775 and θ = 19.115 as steady
states values. Our code then chooses only θ = 19.115. It is important to hint that only
the acceptable range of Pitch angles belong to a locally stable set of steady states.
When the Pitch control is deactivated in other Regions, the eigenvalues showed no
sensitivity to the wind speed (see Sect. 2.3). In Region 3, the eigenvalues are highly
sensitive to vwind . Table 4 shows complex pair of the eigenvalues and their change
when vwind = 11.4m/s and vwind = 25m/s. The sixth column presents the percentage
of change for both the real part and the imaginary part respectively.

Grid Parameters and Stability: The resistance R and the reactance X are the grid
parameters of interest (see Fig. 11). Changes in parameter, while fixing vwind = 12
in our trial, is expected to have an effect on the terminal voltage. We ran a code that
discretized the parameter space of R and X using a high resolution unit square grid,
and found the steady states based on the given parameters at each point (Fig. 14).
The code computes the Jacobian matrix and linearizes around the steady states. The
reader is recommended to see [5] for Figures of the steady states plotted in the grid
parameter space.

3.2 Pitch Control and Q Droop Function

By setting up the system to be the supervisory voltage case and two-mass rotor
model, the model reduces to Eqs. (29)–(35), (39)–(44), and (48)–(50). Note that the
model can reduce again depending on the wind speed Region of interest (Regions
1, 2 and 3 in Fig. 13). Equation (40) has the formulation of the Q Droop function
dynamics. Furthermore, the effect of this dynamics is in the term Vqd = KqdQdroop

(Eqs. (42)–(43)), which eventually lead to Qord in Eq. (40). The Q Droop function is
activated when the gain Kqd is larger than 0. The Q Droop function is a slow acting
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Table 5 Steady sates versus Ktd

wg V Qgen Eq Iplv

Ktd = 0.04 0.2 1.03 −0.154 0.911 0.97

Ktd = 0.05 0.2 1.032 −0.08 0.97 0.96

Ktd = 0.06 0.2 1.033 −0.05 0.99 0.96

function, and is supposed to help reducing the effective reference voltage in the
reactive power control, corresponding the changes in the reactive power control. The
result of applying this function is to have improved coordination between multiple
integral controllers regulating the same point in the system. This positive result is
claimed by GE [3]. As described by more details in [6, 11] the system has to have the
QDroop function activated to maintain stability. Moreover, this activation has to be a
feedbackmode from the reactive power delivered to the grid, that is Vqd = KqdQgen in
Eqs. (42)–(43), and not to haveQdroop=constant, as this has shown to cause instability
[5]. This is a very important consideration and result both [6, 11]. It is important to
mention that in throughout and detailed analysis [11] has shown thatQdroop=constant
result in an unstable system, which directly contradict the GE claim in [3] that the
Qdroop=constant is acceptable.

In Region 3 (11.4 < Vwind < 25), the physical state variables are constant as
discussed earlier. As suggested in [3], we have Kqd = 0.04. We fixed vwind = 11.4
m/s and computed the steady states in Table 5 by varying the gain Ktd to test its
sensitivity. Similarly, Table 6 is for the eigenvalues. It is noticeable that changingKtd

from 0.04 to 0.06 (50% change) have the changes 67%, 0.3%, 8.6%, and 1% inQgen,
V , Eq, and Iplv respectively. It can be noted as well that some of the eigenvalues had
over a 100% change. In Table 6, the sixth column has the change in percentage (real
and imaginary parts respectively). From these results it is clear that the gain parameter
Kdq has direct effects on both the steady states and the eigenvalues. Eigenvalues
sensitivity means that this parameter can affect local trajectories behavior, so it is
important to have more parameter estimate studies, especially if tunning is needed
based on the application conditions.

3.3 Simulations

3.3.1 System Response to a Pulse Wind Profile

Figure 18 shows a vwind profile for a pulse changing from 20 to 21 m/s and again to
20 m/s with the system response. The profile equation is vwind = 20 + e−(t−10)2 .
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Table 6 Eigenvalues at vwind = 11.4

Real
Ktd = 0.04

Imag
Ktd = 0.04

Real
Ktd = 0.06

Imag
Ktd = 0.06

% change

λ1 −52.25 0 −52.25 0 0, 0

λ2 −48.94 0 −48.94 0 0, 0

λ3 −19 0 −19 0 0, 0

λ4 −16.11 0 −16.11 0 0, 0

λ5,6 −1.34 ±12.15 −1.35 ±12.15 0.74, 0

λ7 −3.14 0 −3.14 0 0, 0

λ8,9 −0.1 ±1.19 −0.002 ±1.18 98, 0.84

λ10,11 −0.18 ±0.46 −0.18 ± 0.46 0, 0

λ12 −0.13 0 −0.13 0 0, 0

λ13 −8.83 0 −8.82 0 0.11, 0

λ7 −3.14 0 −3.14 0 0, 0

λ15,16 −0.096 ±0.14 −0.2 ±0.21 108, 50

Fig. 18 System response for a given wind profile (upper graph)
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Fig. 19 Drop-clear in the terminal voltage (upper graph) along with the system’s response

3.3.2 System Response to a Drop-Clear in Terminal Voltage

Figure 19 shows a drop-clear in terminal voltage and the system’s response.

3.3.3 System Response to a Droop-Clear in the Reactance X

Figure 20 shows a droop-clear case of the reactance X. The dropping happens from a
stable condition to an unstable one, passing a Hopf bifurcation, as discussed in Sect.
2.3), and then returning to the stable status. The system is capable of stabilizing after
clearing the severe disturbance as shown in the simulation.

3.3.4 Basin of Attraction Versus Control Limits

Testing the Attraction Limits Versus Control Limits: As found by strong and
detailed study/simulation in [11], the region of attraction around the steady states
seems to be larger than the control limits themselves. Let us consider x and x0 be the
vectors of the steady states and initial conditions respectively. Figure 21 represents a
simulation for the dynamics having initial condition x0 = x + 0.5 |x|. The simulation
had fixed wind speed. Notice that initial values and the trajectories exceeded the
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Fig. 20 Droop-clear in the reactance X (upper graph) and the system’s response

Fig. 21 State trajectories (blue) and limiters (black)

limiters (control limits) in solid black lines and are still attracted to the stable steady
state eventually.
Testing the Derivatives of some Mechanical State Variables in Extreme Cases:
Since on of the main things of interest for the system is how it responds to sudden
disturbances, we tested the system response and both dPinp

dt and dθ
dt for a sudden but

continuous wind disturbance and terminal voltage drop. Figure 22 shows some of
the state variables’ response to the given wind profile. The derivatives of the power
order and the Pitch angle do not exceed their control limits. Figure 23 has the same
trajectories response but for a sudden drop in the terminal voltage. Note that one of
the states exceeded the control limits. The conducted simulations indicate that the
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Fig. 22 State trajectories (blue) and limiters (black)

Fig. 23 State trajectories (blue) and limiters (black)

trajectories response and themechanical derivatives limits respondwithin the control
limits for very disturbing pulse of wind.

3.3.5 Effect of the Q Droop Function

We tested the system by by running a simulation, with and without Qdroop function,
for a pulse wind speed profile. This should help us emphasize how the integrator
variables Qwvl and Qwvu will behave. For the wind profile in Fig. 24, the integrators
seem unable to stabilize after the pulse effect. While, In real life the limiters will
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Fig. 24 Trajectories response with (blue) and without (red) Qdroop

intervene to prevent such divergences, the same pulse effect could not force the
integrators to divergewhen theQdroop function is used. This indicates that theQDroop
helps stabilizing the system in extreme cases through improving the performance of
the integrator.

3.4 Verification and Validation of the Model

3.4.1 Simulink Verification

Simulink projects were built for the transfer functions of the model given by GE [2,
3] and NREL [13]. The purpose is to verify that our differential equations model
(Eqs. (29)–(50)) is typical in results when compared to the Simulink simulations.
For more information about the verification, the reader is recommended to refer
[8]. First project constructed a Simulink project of the system in Fig. 27 and ran
the numerical solver ODE15s in Matlab for a fixed wind speed of vwind = 8.2 m/s,
which makes the model in Region 2 (see Sect. 2.2.2 and Fig. 13). The results of
the simulation are typical. Figure 25 represents one of the results for V (the initial
condition is the same in both Simulink and ODE15s). The similarity of the results
of V is very important as it is the main term to calculate both the active and reactive
power. Second project constructed a Simulink project (Fig. 28) with an oscillating
wind speed (vwind = 8 + sin(10t)). The dynamics in this case is in Region 1, see
Sect. 2.2.2 and Fig. 13. The result was also typical. Figure 26 presents Pelec response
to the continuous oscillation of vwind .
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Fig. 25 Response of implementations inMatlab (differential equations) and Simulink to zero initial
conditions

Fig. 26 Pelec in the steady response from the model and Simulink

3.4.2 Validation Versus Real Measured Data

In this validation we re-used what we provided in [8, 11]. The models cho-
sen for comparison are [18, 20] as they are a highly cited academic source that
also are inclusive in their modeling. We focus on one of the clear differences
between our model and theirs. Both the generator and turbine speeds are controlled
by the reference speed wref (see Rotor Model discussion in Sect. 2.1). The rated
reference speed is 1.2 pu, however, for lower wind speeds, this is not physi-
cally possible. Therefore, the reference speed changes slowly with Pelec until it
reaches 1.2 pu (see Fig. 10). Our model and the models [18, 20] have different
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Fig. 29 wref from our model in solid with [18, 20] doted, and the rated speed dashed

Fig. 30 Real data of a WTG (stars) versus power-wind speed curves for our model in solid and the
models [18, 20] dashed. The Fig. is re-used from [8, 11]

curves for lower wind speeds wref = −0.67P2
elec + 1.42P + 0.51 in our model and

wref = −0.75P2
elec + 1.59P + 0.63 in their models (Fig. 29). Figure 10 shows dif-

ferent wref curves. To test the effects of this difference between our model and the
models considered in the comparison, we generated the power-wind speed profile for
all the models (stable steady state of Pelec vs. vwind ) and plotted them with real mea-
sured data (re-use of the same data in [8, 11]). Figure 30 illustrates this comparison
and validation with real measure data.
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Observations from the comparison and the validation:

1. As seen in Fig. 10 when comparing our model versus [18, 20], we see that wref

reaches the rated value (1.2 pu) at Pelec ≈ 0.45 pu in our model, while it reaches
the rated value (1.2 pu) at Pelec ≈ 0.75 pu in their model. The manufacturer (see
page 35, [3]) recorded thatwref only has to follow some feed back fromPelec below
Pelec = 0.46 pu, as this is the stage where the system can start having wref = 1.2.
This indicates that our model is more practical and matches the specifications
recorded by the manufacturer.

2. Our model has relatively better power-wind speed profile when compared to [18,
20] and the real time measured data (Fig. 30). The stable steady state of Pelec is
not an average for the measured data. However, when the size of the measured
data is very large, which is the case in our trial, the data may be expected to have
some form of normal distribution around the stable steady state. Our model shows
better results if we have this explanation in consideration.

3. The power-wind speed profile in Fig. 30 can be generated with either the reactive
power control in power factor or supervisory voltage mode (see Fig. 4). The
supervisory voltage mode is preferable as it is associated with having the WTG
as a member in a group of WTGs as opposed to have the WTG as a separate unit
(power factor mode). We remark that stability of Pelec and the whole system is
not possible without having the Q Droop function in effect (explained in Sect.
3.2). There is almost no explanation about how to implement Q Droop function
and/or analyzing its effect and possible cases in other models throughout our
search to date in the literature and cited papers that are considered major sources
of modeling for WTGs.

4 Conclusion

In this chapter, a state-of-the-art modeling effort, that represents the WTG dynamics
and control, is provided. This modeling efforts summarize and collect very recent
publications and is validated and verified versus real measured data and Simulink
simulations. An advantage from the collective modeling presentation in this chapter,
is that one can use numerical solvers such as ODE15s to simulate the WTG system
for different scenarios and conditions, without the need for commercial and special
simulators. The pitch control, that is essential for the WTG system to keep the
power production stable and saturated at the rated requirement, is discussed and
analyzed by detail in this chapter. Moreover, the chapter provides the reader with
all important technical information regarding this important control as is in industry,
such as: stability, sensitivity, resilience in different reactive power modes and a lot
of demonstrative simulations.
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