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Preface

As a kind of sustainable energy source, wind energy systems have received a sub-
stantial jump in power industry and currently the fastest-growing (about 30%
annually) energy source worldwide as compared to other renewable energy sources.
The main concern regarding wind energy systems is the major difference between
the highly intermittent nature of the primary source (wind speed) and the desired
demands concerning the electrical energy quality and system stability. This leads to
challenging control problems because of several types of disturbance inputs.
Therefore, wind energy conversion within the standard parameters imposed by the
energy market and power industry is unachievable without the essential involvement
of optimization and control. Control and optimization techniques have already
exposed their importance in all areas of engineering including energy and sustain-
ability. This book uses the rapid growth of control and optimization paradigms (i.e.,
adaptive control, fuzzy control, artificial neural networks, modified neural-fuzzy
control, predictive control, genetic algorithms, and swarm intelligence algorithms) to
increase the conversion efficiency, mechanical reliability, dynamical stability, har-
monics mitigation, power regulation, and quality in wind energy systems.

The material of the book is organized in the following ten chapters. All chapters
are included in this book after a rigorous review process. Special importance is
given to chapters offering novel control and optimization techniques in wind energy
systems. The contributed chapters provide new ideas and approaches, clearly
indicating the advances made in modeling, analysis, and simulation with respect to
the existing state-of-the-art.

Chapter “Nonlinear Modeling, Analysis and Simulation of Wind Turbine
Control System With and Without Pitch Control as in Industry” of this book
provides nonlinear modeling, and simulation of wind turbine generator dynamics
and control with and without pitch control. The modeling part is a comprehensive
time-domain layout of the model currently considered by industry, such as General
Electric and National Renewable Energy Laboratory. The chapter also summarizes
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some of the most recent and important observations, such as parameter sensitivity,
dynamical stability, and multiple timescales structure found in wind turbine gen-
erator system. A data validation for the model versus real measured data of the
power–wind curve is also discussed and magnifies the findings of this chapter.

Chapter “Distributed Cooperative Control of Wind Farms with On-site Battery
Energy Storage Systems” presents research on output power regulation in wind
farms consisting of doubly fed induction generator wind turbines equipped with
on-site battery energy storage systems. A novel distributed control strategy based
on the leader–follower consensus theory is proposed where a virtual leader is
embedded in the wind farm supervisory controller to provide the demand infor-
mation. A small-signal model of a wind turbine and battery energy storage systems
is derived, and eigenvalue analysis is conducted to investigate the stability of the
combined system.

Frequency regulation in a power system is always critical for the better-quality
power supply to the end user. The growth of wind generators and the unpre-
dictability and variability associated with the resource increase the difficulty level
of the frequency regulation tasks in power systems. Chapter “Sensitivity Analysis
of Frequency Regulation Parameters in Power Systems with Wind Generation” is
devoted to study the impact of fluctuating different system parameters on the overall
performance of the traditional frequency regulation system when including con-
tributions of wind energy mix. A model for the inclusion of variable-speed wind
turbines in the frequency control loops is analyzed, and parametric sensitivity
functions are established using linearized models. The stability analysis for inertia
sensitivity of frequency regulation involving wind generation is also carried out.

Among the various power quality problems, harmonic distortion is another
important problem of power quality in wind energy systems. This phenomenon can
cause serious effects on the grid connection, which may result hosting capacity
limitation to preserve the overall performance of the network. Chapter “Wind
Turbines Integration into Power Systems: Advanced Control Strategy for
Harmonics Mitigation” provides physical factors responsible for harmonic current
emissions by full-converter wind turbines. The chapter also presents an advanced
control structure to mitigate the harmonics in a wind power generator. The design is
directed toward guaranteeing the integration of a large-scale wind farm, through
minor changes to the background harmonic distortion at the busbar common
coupling into the existing electrical grid.

Among the various control strategies, finite control-set model predictive control
strategy has emerged as a simple and promising digital control tool for electric
power conversion systems. The predictive control is a nonlinear control method and
provides an approach that is better suited for controlling power converters in wind
energy systems. Chapter “Power Conversion and Predictive Control of Wind
Energy Conversion Systems” presents power conversion systems and predictive
control strategies for variable-speed wind energy systems. Various forms of
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predictive control techniques such as predictive current control, predictive torque
control, and predictive power control are discussed considering variable-speed wind
energy systems as case studies. The predictive control strategies fulfill various
control requirements such as maximum power point tracking, regulation of DC link
voltage, grid synchronization, generation of reactive power to three-phase grid, and
fault ride-through operation.

Chapter “Adaptive Guaranteed Performance Control of Wind Energy Systems”
discusses an adaptive guaranteed performance controller for wind energy conver-
sion system equipped with a doubly fed induction generator. The proposed con-
troller consists of outer loop control concerning the aero turbine mechanical
subsystem, and inner loop control concerning the electrical subsystem. The pro-
posed technique is capable of quantifying and further guaranteeing the system
performance on both transient and steady-state stages with the help of error
transformation techniques. The stability is guaranteed through standard Lyapunov
synthesis.

Chapter “Machine Learning and Meta-heuristic Algorithms for Renewable
Energy: A Systematic Review” presents a detailed review on the application of
machine learning and meta-heuristic optimization algorithms in renewable energy.
The chapter discusses artificial neural networks, back-propagation neural networks,
fuzzy logic, adaptive neuro-fuzzy inference systems, genetic algorithms, swarm
intelligence algorithms (including cuckoo search, artificial bee colony, and particle
swam optimization algorithms), and their application in wind energy systems.

Chapter “Design of a Supervisory Control System Based on Fuzzy Logic for a
Hybrid System Comprising Wind Power, Battery and Ultracapacitor Energy
Storage System” presents a control strategy for the coordinated operation of a wind
power generator, and battery/ultracapacitor. The proposed control scheme is based
on the use of fuzzy logic to monitor the state of charge of the storage systems, while
defining their power references to comply with an imposed grid demand. The
control strategy is evaluated through simulation under different operating condi-
tions, proving a satisfactory regulation of the monitored parameters and an adequate
supply of the grid requirements.

Chapter “Neural-Based P-Q Decoupled Control for Doubly Fed Induction
Generator in Wind Generation System” introduces the robust decoupled control of
active and reactive powers of a wind-driven doubly fed induction generator using
artificial neural network under fault conditions and varying wind speed conditions.
The power estimators based on neural networks are trained by back-propagation
method, and they are divided into five subnets, namely real and reactive power
measurement, reference active and reactive computation, reference stator current
computation, reference rotor current computation, and reference rotor voltage
computation.

Chapter “An Indirect Adaptive Control Paradigm for Wind Generation Systems”
describes an indirect adaptive wavelet-based control to acquire maximum power
from variable-speed wind turbine. The new developed controller maintains its
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self-adaptive behavior under uncertainties generating from various load distur-
bances and wind speed variation. The proposed technique is better in terms of
efficiency, output power, and steady-state characteristics as compared to the
existing state-of-the-art.

Timișoara, Romania Radu-Emil Precup
Serdivan, Turkey Tariq Kamal
Chongqing, China Syed Zulqadar Hassan
December 2018
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Nonlinear Modeling, Analysis and
Simulation of Wind Turbine Control
System With and Without Pitch Control
as in Industry

Sameh A. Eisa

Abstract This chapter introduces the state-of-the-art modeling, analysis and sim-
ulation of the wind turbine dynamics and control. The modeling part is a compre-
hensive time domain layout of the model currently considered by industry, such as
General Electric, National Renewable Energy Lab and other major manufacturers.
The time domain modeling allows for nonlinear and optimization studies for the
highly nonlinear and complex wind turbine control system. Also, this allows for
better understanding and intensive study of the very important Pitch control, which
is crucial in wind turbine systems, for building/designing control strategies and for
optimization objectives. This chapter also provides a documentation for what have
been published recently (2016–2018) regarding important dynamical properties and
parameter sensitivities in the wind turbine control system. In this regard, the chapter
also provides a possible reduction to the wind turbine control system based on the
range of wind speeds the wind turbine is exposed to. This allows scholar to study
the wind turbine dynamics and control in three different regions, one of them has the
Pitch control activated in the case of higher wind speeds. Moreover, the chapter pro-
vides an illustration of the dynamical stability and the possibility of approximating
the wind turbine control system by multiple time scales. Additionally, The chapter
provides different simulations of the system, which can be helpful for academic stud-
ies that intend to run non-autonomous scenarios. Also, we cite in a recently (2018)
published work, a data validation for the model versus real measured data of the
power-wind curve, which magnify the findings of our study.

S. A. Eisa (B)
Mechanical and Aerospace Engineering Department,
University of California, Irvine, USA
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List of Symbols

Pwind wind power in the airstreams

ρ,Ar, vwind air density, rotor area (m2), wind speed (m/s)
Cp,Pmech aerodynamic power coefficient, power extracted by the tur-

bine
wref ,Pelec rotor reference speed, electrical (active) power delivered to

the grid
V the magnitude of the terminal voltage
R,X ,E infinite bus parameters: resistance, reactance, infinite bus

voltage
Qgen total reactive power delivered to the grid
H ,Hg turbine and generator inertia constants
w0,wbase initial speed, base angular frequency
Dtg,Ktg shaft damping and stiffness constants
f1, f2 integrals of differences of speeds and powers
Pstl,Kpp rated power and Pitch control proportional
Kip,Kpc integral gain and Pitch compensation proportional
θ,Kic Pitch angle and integral gain
pinp,Tpc power order (subject to modifications) and its time constant
Kptrq,Kitrq torque control proportional and gain
P1elec,Tpwr filtered electrical power and its time constant
Vref ,KQi reference voltage and its gain
Eqcmd ,Kvi reactive voltage command and terminal voltage control gain
Qdroop,Tlpqd the droop function and its time constant
Qinp the input to the droop function block
V1reg,Tr filtered supervisory voltage and its time constant
Vreg,Tr supervisory voltage and its time constant
Qwvl,Qwvu,Kpv,Kiv two integrals lead to Qord and their gains

1 Brief Introduction

Humanity future is depending much on advancement and development of renewable
energies. There are many reasons of why we need to expand our energy systems.
This is due to economic justifications and environmental concerns. No matter what
the reasons are, we require additional understanding of the generation of renewable
energies if we are to fully utilize them.

Based on the US department of energy reported [1], wind energy is the fastest
growing source of renewable energies. Consequently, we need more studies and re-
search and to fully comprehend the dynamics and behavior ofWind Turbine Genera-
tors (WTGs) if we are to gain themost from this valuable resource. Both corporations
and governments are highly interested in understanding the challenges of integrating
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WTGswith other conventional power systems. Because of the complexities involved
in the WTGs implementation, researching control systems, optimization, energy
storage, and power generation of WTGs has dramatically increased recently. In this
regard, this chapter is intended to provide a state-of-the-art comprehensive modeling
effort that should guide scholars working in the research areas mentioned earlier in
this paragraph.

The provided modeling effort in this chapter is a summary for the state-of-the-art
nonlinear modeling of WTGs control system dynamics. The industry publications,
namely General Electric (GE) ones [2, 3], have been intensively investigated in the
last two years through the publications [4–12]. These studies converted the model
found in GE reports into nonlinear system of differential-algebraic equations, fol-
lowed by a wide range of analysis and simulation results. The resultant time domain
nonlinear model can be reduced based on the wind speed vwind range the WTG is
exposed to. This important possibility of reduction to the model, will be covered and
presented collectively in Sect. 2. Also, we will summarize some of the most recent
and important observations these studies have concluded about the WTG system,
such as parameter sensitivity, stability and different time scale structure found in the
WTG system. In Sect. 3, the Pitch control and its significance will be presented.
Additionally, some non-autonomous simulations for the given model under Pitch
control, is provided. In the same section, we will provide a Simulink verification of
the model and how it compares to National Renewable Energy Lab [13, 14]. In this
regard, it is important to mention that our modeling intensive study recognized some
other modeling sources such as [15–18]. Also, at the end of this chapter, we will
provide and discuss a real data validation for the power-wind curve of our model.
These verifications and validations are a supportive evidence that the modeling effort
presented in this chapter is reliable. This is essential in any optimization or control
study. The reader is recommended to check the Ph.D. dissertation [19] for more
detailed information about the topics covered in this chapter.

2 State-of-the-Art Nonlinear Modeling of WTGs

In this section, we provide a mathematical model that is in time domain (can be
solved by stiff differential equations solvers such as ODE15s in Matlab). This full
scale modeling allow for better and more in-depth control studies. This is especially
true because the WTG system is highly nonlinear. Also, a system/model formulated
in time domain, usually provide better framework for non-autonomous simulations,
keeping in mind that non-autonomous simulations are more practical to present ex-
treme scenarios. We start by explaining the different controls in WTGs and translate
them into differential equations. Then, we provide tables that summarize and collect
the parameters, Cp coefficients, and limiters (control limits) needed for the model.
Also, we give a method to eliminate the algebraic equation resulting from the net-
work equation. This results in a system of differential equations instead of a system
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of differential-algebraic equations, which allows for simpler implementation in nu-
merical solvers.

The main references used while constructing the model are [2–6, 18]. In [2],
the control blocks are consistent of the wind power extraction block, one/two mass
block, Pitch compensation control block, and reactive power block (power factor
and supervisory voltage cases). In [3], Cp curves are provided and explained. The
GE team suggested an extra two optional blocks to, possibly, be added (active power
and inertia blocks). The GE team in [3] introduced the so called Q Droop function,
which has been intensively studied in [6] and fully analyzed in [11]. The study
[18] introduced their model effort citing [20] and GE studies. The reader may ask
a legitimate question: Why and how GE models relate to other WTGs? In another
words, how building the model is inclusive to the-state-of-the-art modeling efforts if
it follows heavily GE modeling? These questions were answered by detail in [4–11].
The answers though can be grouped in the two points below:

1. The GE team made the case in their reports [2, 3] that their model can be used to
represent WTG models for other manufacturers/companies. As a matter of fact,
they have provided many validation results, as can be found in [21].

2. In [8], it is shown that the GE modeling is equivalent to the NREL [13] if we fix
the parameters. The Simulink projects used for this comparison are also given in
Sect. 3.4. Additionally, we provide in Sect. 3.4 a discussion regarding the data
validation for the proposed model (uses intensively GE) versus the model of [18,
20].

2.1 Main Outline of the Model

• Wind power model: Using basic physics, the wind power in the air streams is
given by Pwind = 1

2ρArv3wind Per Unit (pu), see [3]. This block models how a
WTG extracts power from the air and with what efficiency. The model’s main
purpose is to introduce the Cp curves such that the power extracted by the WTG is
Pmech = 1

2CpρArv3wind . As discussed in the introduction, and as in [22], the ideal
Cp is the Betz limit which is approximately 0.59. No WTG can extract more than
the Betz limit of the power available in the air-streams. Cp curves of the three
bladed wind turbine (type-3) are better other types for some tip ratios (Fig. 1).

• Rotor model: This model represents the dynamics of the generator and turbine
speeds due to the electrical and mechanical torques. The two-mass model has
been introduced in [2, 3, 18] while in [23] this block was represented by a single-
mass rotor. It can be noticed that GE studies [2, 3] hinted that singlemass rotormay
be used for simplification. Later (in Sect. 2.2.1) we will mention the representative
differential equations for both models. Figure 2 shows the transfer function for this
block as in [3].

• Reference speed: This block models how the reference speed is calculated. The
reference speed dynamics are dependent on the generated electric power such that
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at steady statewref = f (Pelec). GE studies [2, 3]mentioned that the reference speed
should increase slowly with the generated electric power until it reaches the rated
speed. This speed is essential to control the generator and turbine speeds. There
is a difference between [2, 3, 18] regarding the transfer function of the reference
speed. Later (in Sect. 3.4) we will discuss this difference in more detail.

• Pitch control and compensation: This block captures the dynamics of the Pitch.
This has been a growing area of research. This control calculates the Pitch angle
based on the differences between the rated power and the power order, and between
the reference speed and the generator speed. The Pitch angle has direct effect
on power extraction efficiency. This is an important control to keep the WTG
producing the rated power for a higher range of wind speeds. Figure 3 shows the
transfer function for this block as in [3].

• Reactive power control: This control manages the generated reactive power from
the WTG. This control can be in the power factor setup or the supervisory voltage
setup. The first case occurs when the WTG is treated as one unit by itself, while
the second case occurs when the WTG is treated as one unit in a compound of
units. These two cases were introduced in [2, 3, 18]. Figure 4 shows the transfer
function for this block as in [3].

• Electrical control: Unlike the previous block where the control was for the reactive
branch that feeds the generator, the electrical control shows how the active current
can be generated and controlled. This block is the same across the references [2,
3, 18] that covered it. Figure 5 shows the transfer function for this block as in [3].

• Active power and inertia controls: Usually these controls are not activated. The
function of these two controls is to manage the power order produced by the
WTG. This management depends on and corresponds to changes in bus frequency.
The two controls provide extra power in the case there is lower than normal bus
frequency (reference frequency) and vise versa. The active power control provide
extra power by setting up the maximum rated power and cutting out, if needed, the
available power to the WTG. On the other hand, the inertia control does the same
function, but by providing extra power from the rotor inertia. GE [3] has hinted
that most current WTGs have yet to implement these controls as of 2010. Figures
6 and 7 show the blocks as in [3].

• Converter/Generatormodel: This is the stepwhere the output theWTG is delivered
to the power grid. Two branches are considered in this model, active and reactive
ones, which deliver the active and the reactive power to the grid respectively. In [2,
3] this model is very similar, with some lower and upper limit differences for the
controls, however, in [18] we see that a third branch is added to the model for the
phase shift convergence between the resultant components (current and voltage)
of the wind turbine and the grid. For more detail about how this difference is
insignificant when we have stability, the reader is recommended to read about
the convergence between the models in [19]. Figures 8 and 9 show the generator
model as in [2, 18] respectively (Fig. 10).

• Terminal voltage and grid model: The terminal voltage is the connection between
the converter/generator model and the grid model. In the models we follow, the
wind turbine is connected to the grid in order to work. This implies that even for
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Wind Power
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Pitch Control
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& Inertia Control
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Reference
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Power Order
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Generator
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& Reactive Controls

(Groups 5,6,7)

vwind

fbus

Pmech

wt

wg

θ

wre f
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Pstl

dpwi

Pelec

Qgen

V
Connection Bus

Pinp,Pord

Vre f Iplv

Fig. 1 WTG control blocks and dynamics

theoretical/mathematical studies, the grid should be modeled so we can have an
algebraic equation (the network equation) from Kirchhoff’s law, that relates the
dynamics of the WTG to the grid. In our study, we follow the model used in [18]
and suggested in [2, 3] to represent the grid by an infinite bus model, see Fig. 11.
Therefore, the terminal voltage will be given by the following equation as in [18]:

(V 2)2 − [2(PelecR + QgenX ) + E2]V 2 + (R2 + X 2)(P2
elec + Q2

gen) = 0 (1)

Note that, if the grid model changes to another model other than the infinite bus,
a new algebraic constraint will need to be derived and analyzed. Without this part
of the grid modeling, the wind turbine is working without load and has undefined
inputs to some of the control dynamics. Figure 12 gives the transfer functions of
the WTG as in [3].

2.2 Characteristics and Dynamical Analysis

2.2.1 Translating the Blocks of Transfer Functions and Controls into a
System of Differential Algebraic Equations

Having first reviewed the transfer functions and control blocks in Sect. 2.1, we now
begin the process of breaking down the blocks (in every Fig.) into algebraic relations
in the transfer function domain. This will be done by deriving the transfer function
relations after specifying nodes of variables.
Group 1: Two mass model as in Fig. 2.
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Fig. 2 Two mass model of a WTG as in [3]

In Fig. 2, we let the nodes s6 = wg and s8 = wt , so the turbine speedwill be the sumof
w0 and the node s6. Therefore,wturbine = wrotor = wt + w0 and similarly the generator
speed wgenerator = w = wg + w0. Also we let Δθm = s9 − s7, so Tshaft = KtgΔθm.
Thus wt is given by,

wt = 1

2H
· 1
s
[Tmech + Dtg(wg − wt) + Tshaft]. (2)

Similar to Eq. (2) we get,

wg = 1

2Hg
· 1
s
[−Telec − Dtg(wg − wt) − Tshaft] (3)

and,

Δθm = wbase

s
(wg − wt). (4)

The above equations contain the dynamics of the two mass rotor model.
Group 2: Pitch control as in Fig. 3.
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Fig. 3 Pitch control model of a WTG as in [3]

Fig. 4 Reactive power control of a WTG as in [3]

In Fig. 3, we start with the two integrators (branches that have 1
s ). We let f1 be the

output of the transfer function Kic
s and we let f2 be the output of the transfer function

Kip

s . Thus,
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Fig. 5 Electrical control of a WTG as in [3]

Fig. 6 Active power control of a WTG as in [3]

f1 = (w − wref )

s
= (wg + w0 − wref )

s
(5)

and,

f2 = (Pinp − Pstl)

s
. (6)

The Pitch angle command (θcmd ) is the node after summing the upper and the lower
outputs of the Pitch control. Also, it is the node before the transfer function of Tpl .
Thus θcmd is given by,
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Fig. 7 Inertia control of a WTG as in [3]

Fig. 8 Converter/Generator model of a DFAG/DFIG WTG as in [2]

θcmd = Kpp(wg + w0 − wref ) + Kipf1 + Kpc(Pinp − Pstl) + Kicf2. (7)

The Pitch angle (θ ) is the output of the transfer function of Tpl , which has θcmd as an
input. Thus θ is given by,

θ = θcmd
1

1 + s · Tpl . (8)

After algebraic re-arrangement we get,

θ = Kpp(wg + w0 − wref ) + f1 + Kpc(Pinp − Pstl) + f2
1 + s · Tpl . (9)
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Fig. 9 Converter/Generator model of a DFAG/DFIG WTG as in [18]

Fig. 10 wref steady state as a function of Pelec as in [4]

Fig. 11 Single machine
infinite bus test system as in
[4]

WTG

Pelec+ jQgen

R+ jX

Infinite Bus

Ve jφ Ee j0
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Fig. 12 All of the WTG model transfer functions and controls as in [3]

Equations (5), (6), and (9) contain the dynamics of the Pitch control.

Group 3: Reference speed as in Fig. 12.
The reference speed wref is the output of the transfer function ( 1

1+s·60 ), which has the
node symbol s5 (at the upper part of Fig. 12). The input for this transfer function is
−0.75P2

elec + 1.59Pelec + 0.63. Thus wref is given by,
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wref = −0.75P2
elec + 1.59Pelec + 0.63

1 + s · 60 . (10)

Equation (10) represent the dynamics of wref .

Group 4: Power order as in Fig. 12.
The main power order Pinp is the output of the transfer function of Tpc, which has the
node symbol s4 (in the middle of Fig. 12). The input for This transfer function is the
multiplication of w and the output of the transfer function that has the node symbol
s2. With f1 in Eq. (5) and w = wg + w0, Pinp is given by,

Pinp = (wg + w0)(Kptrq + Kitrqf1)

1 + s · Tpc (11)

and wsho (the output of the transfer function of Tw with the node symbol s10) is given
by,

wsho = (Pinp − Plim) · s · Tw
1 + s · Tw . (12)

As shown at the sum after the node s10 in Fig. 12, the final power order is given by,

Pord = Plim + wsho + dpwi. (13)

Group 5: Reactive power in power factor setup case and electrical controls as in Figs.
4 and 5.
Since we consider the reactive power control operating in power factor case, then
the lower part in Fig. 4 is operating. We let the output of the transfer function of Tpwr
be P1elec (see Fig. 4). Thus P1elec is given by,

P1elec = Pelec

1 + s · Tpwr . (14)

Qcmd is the output of the multiplier in Fig. 4. Therefore,

Qcmd = P1elec · tan(PFAref ). (15)

In the electrical control (Fig. 5), Vref is the output of the transfer function of KQi

(upper part of Fig. 5). This transfer function has Qcmd − Qgen as an input. Thus Vref

is given by,
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Vref = KQi(Qcmd − Qgen)

s
. (16)

Equations (14) and (16) contain the dynamics of group 5.

Group 6: Reactive power in supervisory voltage setup case and electrical controls as
in Figs. 4 and 5.
The Qdroop function as shown in Fig. 12 in [3] is given by,

Qdroop = (Qinpt − Qdroop)

1 + s · Tlpdq . (17)

Since we consider the reactive power control operating in supervisory voltage case,
then the upper part in Fig. 4 is operating. We let V1reg be the output of the transfer
function of Tr , which has the node symbol s3 (see Fig. 4). This transfer function has
Vreg as an input. Thus Vreg1 is given by,

V1reg = (Vreg − V1reg)

1 + s · Tr . (18)

In Fig. 4, we let fn = 1 or included in the gains (see page 4.7 in [3], second para-
graph). We let the outputs of the transfer functions of Kpv and Kiv be Qwvl and Qwvu

respectively. The input for those two transfer functions is Vref − V1reg − Vqd (see
Fig. 4). Thus Qwvl and Qwvu are given by,

Qwvl = Kpv(Vrfq − V1reg − Vqd )

1 + s · Tv (19)

and,

Qwvu = Kiv(Vrfq − V1reg − Vqd )

s
. (20)

As shown in Fig. 4, Qwv is given by,

Qwv = Qwvl + Qwvu. (21)

The output of the transfer function of Tc isQord (see Fig. 4). The input for this transfer
function is Qwv. Thus Qord is given by,

Qord = Qwv

1 + s · Tc . (22)
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Since the reactive power control is operating in supervisory voltage case, then
Qcmd = Qord from Eq. (22). Equation (16) holds for this group 6 as a representative
for the electrical control. Equations (17)–(20), (22), and (16) contain the dynamics
of group 6.

Group 7: Active power and inertia controls as in Figs. 6 and 7.
For the active power control (Fig. 6), Pavf is the output of the transfer function of
Tpav. This transfer function has Pavl as an input. Thus Pavf is given by,

Pavf = Pavl

1 + s · Tpav . (23)

For the inertia control (Fig. 7), fltdf wi is the output of the transfer function of Tlpwi,
which has the node symbol s12. This transfer function has dfdbwi as an input. Thus
dfdbwi is given by,

fltdf wi = dfdbwi

1 + s · Tlpwi . (24)

The final output of the inertia control (dpwi) is the output of the transfer function of
Twowi, which has the node symbol s13. This transfer function has fltdf wi multiplied
by the gain Kwl as an input. Thus dpwi is given by,

dpwi = Kwl · dpwi · s · Twowi
1 + s · Twowi . (25)

Equations (23)–(25) contain the dynamics of group 7.

Group 8: DFAG generator/converter as in Fig. 8.
In order to have equations for Eq and Iplv (outputs of the transfer functions with the
node symbols s0 and s1 respectively), we need to relate Eqcmd and Ipcmd (inputs of the
transfer functions with the node symbols s0 and s1 respectively) to other variables
we have that represent the dynamics in other controls. Looking at the electric control
(Fig. 5), we notice that Eqcmd is the output of the transfer function of Kiv, which has
the node symbol s1. Similarly, in the lower part of Fig. 5, we find Ipcmd as the output
of the divider (Pord

V ). Thus Eqcmd is given by,

Eqcmd = Kvi(Vref − V )

s
(26)

and,

Eq = Eqcmd

1 + s · 0.02 . (27)
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We have Ipcmd = Pord
Iplv

, then Iplv is given by,

Iplv =
Pord
Iplv

1 + s · 0.02 . (28)

We note that Ip in [2] is equivalent to Iplv (the symbol used in this document) in [3].
Equations (26)–(28) contain the dynamics of the generator.

After applying inverse Laplace transform to the equations above, we derive a sys-
tem of differential equations as follows:

Group 1: Two-mass rotor.

dwg

dt
= 1

2Hg

[
− Pelec

wg + w0
− Dtg(wg − wt) − KtgΔθm

]
. (29)

dwt

dt
= 1

2H

[
Pmech

wt + w0
+ Dtg(wg − wt) + KtgΔθm

]
. (30)

d(Δθm)

dt
= wbase(wg − wt). (31)

As discussed when we were introducing the different controls, a one mass model
may be used to replace the two-mass model in group 1. The one mass differential
equation was given in [24]:

dw

dt
= 1

Hwbase
[Pmech − Pelec].

The following relations hold:

Pmech = 1

2
Cp(λ, θ)ρArv

3
wind = 1

2

⎛
⎝ 4∑

i=0

4∑
j=0

αi,jθ
iλj

⎞
⎠ ρArv

3
wind

and,

Pelec = V Iplv.

Group 2: Pitch control.

df1
dt

= wg + w0 − wref . (32)
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df2
dt

= Pinp − Pstl . (33)

dθ

dt
= 1

Tp
[Kpp(wg + w0 − wref ) + Kipf1

+Kpc(Pinp − Pstl) + Kicf2 − θ)]. (34)

Group 3: Reference speed.

dwref

dt
= 1

60
[−0.75P2

elec + 1.59Pelec + 0.63 − wref ]. (35)

Group 4: Power order.

dPinp

dt
= 1

Tpc
[(wg + w0)(Kptrq(wg + w0 − wref )

+Kitrqf1) − Pinp]. (36)

dwsho

dt
= dPinp

dt
− dPstl

dt
− 1

Tw
wsho. (37)

Group 5: Reactive power control in the power factor setup case.

dP1elec

dt
= 1

Tpwr
[Pelec − P1elec]. (38)

dVref

dt
= KQi[Qcmd − Qgen] (39)

where,

Qgen = V (Eq − V )

Xeq
.

Qcmd is explained in detail in Sect. 2.2.2.

Group 6: Reactive power control in the supervisory voltage setup case.

dQdroop

dt
= 1

Tlpqd
[Qinpt − Qdroop]. (40)

dV1reg

dt
= 1

Tr
[Vreg − V1reg]. (41)
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dQwvl

dt
= 1

Tv
[Kpv(Vref − V1reg − Vqd ) − Qwvl]. (42)

dQwvu

dt
= Kiv(Vref − V1reg − Vqd ). (43)

dQord

dt
= 1

Tc
(Qwvl + Qwvu − Qord ). (44)

Equation (39) is holding in all reactive power groups.

Group 7: Active power control and inertia control.

dPavf

dt
= 1

Tpav
[Pavl − Pavf ]. (45)

d(fltdf wi)

dt
= 1

Tlpwi
[dfdbwi − fltdf wi]. (46)

d(dpwi)

dt
= Kwi

Tlpwi
[dfdbwi − fltdf wi] − dpwi

Twowi
. (47)

Group 8: DFAG generator/converter.

dEqcmd

dt
= Kvi[Vref − V ]. (48)

dEq

dt
= 1

0.02
[Eqcmd − Eq]. (49)

dIplv
dt

= 1

0.02

[
Pord

V
− Iplv

]
. (50)

Group 9: The algebraic equation resulting from the network (see [18]):

0 = (V 2)2 − [2(PelecR + QgenX ) + E2]V 2 + (R2 + X 2)(P2
elec + Q2

gen). (51)

Table 1 represents the model’s parameter values as in [3], however the grid parameter
values are taken from [18]. Table 2 has the Cp curves’ needed coefficients as in [3].
Also, we define the control limits introduced in [3] to be the lower and upper bounds
as following in Table 3:



Nonlinear Modeling, Analysis and Simulation of Wind Turbine … 19

Table 1 The model’s parameter value

Parameter Value

w0 1 (choice larger than 0)

Dtg 1.5 (60 Hz) or 2.3 (50 Hz)

Ktg 1.11 (60 Hz, 1.5 MW)

Ktg 1.39 (50 Hz, 1.5 MW)
1
2ρAr,Kb 0.00159 and 56.6 respectively

wbase 125.66 (60 Hz) or 157.08 (50 Hz)

H (two mass) 4.33

H (one mass) 4.94 (60 Hz), 5.29 ( 50 Hz)

Hg 0.62 (60 Hz), 0.96 (50 Hz)

Kpp,Kip 150, 25 respectively

Kpc,Kic 3, 30 respectively

Tp, pstl 0.3, 1 respectively

Tpc,Kptrq 0.05, 3 respectively

Kitrq,Tw 0.6, 1 respectively

Tpwr,KQi 0.05, 0.1 respectively

Tlpqd ,Tr 5, 0.02 respectively

Tv,Kpv 0.05, 18 respectively

Kiv,Tc 5,0.15 respectively

Tpav,Tlpwi 0.15,1 respectively

Kwi,Twowi 10,5.5 respectively

Kvi,Xeq 40,0.8 respectively

R,E 0.02,1.0164 respectively

X = Xl + Xtr Xl = 0.0243,Xtr = 0.00557 respectively

2.2.2 Reduction of the Model

Here we go through a number of possible cases that reduce the system. These reduc-
tions are based on the range of wind speeds the WTG is operating on, or on which
optional controls, such as active power and inertia controls are deactivated.

Wind Speeds versus Reference Speed: The rated reference speed is wref = 1.2
pu. Physically the WTG can’t reach this rated speed with low wind speeds. That is
why wref increases gradually as shown in Eq. (35), until it reaches 1.2 pu. Given the
model and the parameter in this study, the rated reference speed (1.2 pu) is reached
at vwind = 8.2 m/s. Therefore, the differential equation of wref can be seen as,

dwref

dt
=

{
1
60 [−0.75P2

elec + 1.59Pelec + 0.63 − wref ] vwind < 8.2 m/s
0, wref (0) = 1.2 vwind ≥ 8.2 m/s
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Table 2 Cp coefficients αi,j

i j αi,j i j αi,j

4 4 4.9686e−10 4 3 −7.1535e−8

4 2 1.6167e−6 4 1 −9.4839e−6

4 0 1.4787e−5 3 4 −8.9194e−8

3 3 5.9924e−6 3 2 −1.0479e−4

3 1 5.7051e−4 3 0 −8.6018e−4

2 4 2.7937e−6 2 3 −1.4855e−4

2 2 2.1495e−3 2 1 −1.0996e−2

2 0 1.5727e−2 – – –

1 4 −2.3895e−5 1 3 1.0683e−3

1 2 −1.3934e−2 1 1 6.0405e−2

1 0 −6.7606e−2 0 4 1.1524e−5

0 3 −1.3365e−4 0 2 −1.2406e−2

0 1 2.1808e−1 0 0 −4.1909e−1

Table 3 Control limits to be applied as in [3]

Variable Lower bound Upper bound

V1reg + Vrfq − Vqd Vermn = −0.1 Vermx = 0.1

Qwv Qmin = −0.436 Qmax = 0.436

Qcmd Qmin = −0.436 Qmax = 0.436

Vref Vmin = 0.9 Vmax = 1.1

Eqcmd XlQmin = 0.5 XlQmax = 1.45

Pord
V Ipmin > 0 Ipmax = 1.1

θ θmin > 0 θmax = 27

Pinp Pwmin = 0.04 Pwmax1.12

Pavl Pwmin = 0.04 1

dpwi Pmnwi = 0 Pmxwi = 0.1

dPinp
dt dPmin = −0.45 dPmax = 0.45

dθ
dt dθmax = −10 dθmin = 10

Therefore based on the above equation, Eq. (35) can be considered as part of the
system’s dynamics (if vwind < 8.2) or eliminated (if vwind ≥ 8.2) by setting wref =
1.2.
ElectricPower versusPitchControl:Unlessmentioned otherwise, the rated electric
power generated is 1 pu. The Pitch control gets activated only when the WTG would
otherwise generate more power than the rated power. In this case, the Pitch angle
increases, so less power is extracted, and the electric power is held at the rated power.
When θ = 0 extraction of power is maximized. Therefore the differential equation
of θ can be seen as,
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dθ

dt
=

⎧⎪⎪⎨
⎪⎪⎩

1
Tp

[Kpp(wg + w0 − wref ) + Kipf1 + Kpc(Pinp − Pstl)

+Kicf2 − θ)] Pelec > 1 pu

0, θ(0) = 0 Pelec ≤ 1 pu

Therefore, based on the above equation, Eq. (34) can be considered part of the sys-
tem’s dynamics (highwind speeds such thatPelec > 1) or eliminated by setting θ = 0
(to maximize power extraction for low wind speeds when Pelec ≤ 1). If we set θ = 0,
we eliminate f2 as well in Eq. (33).
Reactive Power Control Qcmd Cases: In the reactive power control, Qcmd is de-
pendent on whether the reactive power control is operating in power factor case or
supervisory voltage case. This difference was explained in group 5 and 6 in Sect.
2.2.1. We can summarize that difference in the following relation:

Qcmd =
⎧⎨
⎩
P1elec · tan(PFAref ) Power factor case
Qord Supervisory voltage case
constant or considered from another model

The nature of the study determines the reactive power setup case (represented by Eqs.
(38)–(39) in the power factor case or by Eqs. (40)–(44) and (39) in the supervisory
voltage case). As mentioned in [3] it can also be a constant or from a separate model
depends on the study and its conditions.
The Power Order Pord Cases: The power order as shown at the sum in the lower
part of Fig. 12, has three main parts. Those parts are the regular power order Pinp,
the effect of the active power control wsho, and the output of the inertia control dpwi
(see Eq. (13)). But the active power control and the inertia control can be activated
or deactivated. This lead to Pord can be one of the following cases:

Pord =

⎧⎪⎪⎨
⎪⎪⎩

Pinp Active Power and inertia controls (deactivated)
Plim + wsho Active Power control (activated)
Plim + dpwi Inertia control (activated)
Plim + wsho + dpwi Active Power and inertia controls (activated)

WTG Power versus Wind Speed Curve and the Study Cases: Based on the vwind
range, the dynamics of the WTG can be divided into regions. Giving the parameter
values in Tables 1 and 2, we have the following cases:

• Region 1: Wind speeds between the minimum cut off speed (3 m/s) and 8.2 m/s.
Within this range, the Pitch angle θ is fixed at zero in order to extract all possible
power from the air, as the rated power is not reached by this range of wind speeds.
Also, the rated reference speed, 1.2 pu is reached when vwind = 8.2 m/s so, the
reference speed should be seen to gradually increases versus the wind speed.
Therefore, in this region of dynamics, Eq. (35) is considered, while Eqs. (33) and
(34) are eliminated, and we set θ = 0.
This case can be furthermodified by taking into account the activated or deactivated
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Fig. 13 Power curve profile
for the WTG

optional controls (active Power and inertia controls). Also, it can be modified to
any of the reactive power cases.

• Region 2: Wind speeds between 8.2 and 11.4 m/s. In this region, the reference
speed is at the rated level 1.2 pu, while the power remains below the rated level.
The WTG reaches the rated power 1 pu at vwind = 11.4 m/s. Therefore, in this
region, Eqs. (35), (33), and (34) are eliminated and we set wref = 1.2 and θ = 0.
As in the previous case, this case can be further modified.

• Region 3: Wind speeds between 11.4 and 25 m/s (the maximum allowed speed).
The dynamics of this region take into consideration Eqs. (33)–(34), while Eq. 35
is eliminated and we set wref = 1.2. Also this case can be further modified as
mentioned in the previous cases.

We built a numerical simulator for the dynamical system in the three regions above.
The stable steady state of the generated electric power versus wind speeds is as ex-
pected for anyWTGpower curve profile. Figure 13 shows the result of the simulation
in the three regions of dynamics, and the power curve profile for the WTG.

2.3 Documented Results and Conclusions About the Model

In this subsection, we present some of the important information and conclusion that
have been made about the model derived in Sect. 2.2.1. These points and conclusions
are summarized below:

• Parameters: The model’s parameters can be different based on the sources found
in literature. Therefore, scholars are encouraged to determine the conditions in
which theirmodel is used. For instance, some fewdifferences can be foundbetween
[2, 3, 13, 18, 20]. However, we remark that later in Sect. 3.4 we verified our model
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versus real data, which suggest credibility for the parameters given in Tables 1 and
2. These parameters are mainly taken from [2, 3] and also some from [18].

• Stability: Stability for the model has been significantly studied through eigenval-
ues as in [5, 25]. It seems however, from [5] that in the case of the power factor
set up (see Sect. 2.2.2), only the grid parameters (R and X ) can have a large effect
on transitioning the system from Stable to Unstable. Figure 14 shows the region
where Stability and Instability occurs in the grid parameter space. We note that
Fig. 14 has been produced in [5, 8, 10] respectively for the model in all ranges
(Regions 1,2 and 3) of wind speeds introduced in Sect. 2.2.2 and Fig. 13. However,
it is important to notice that [5] reported the possibility of a Hopf bifurcation for
very small value of X . Note that small values of X has been reported by the NREL
[26] to also cause the WTG acting funny and break. The interesting part about
small value of X that it can lead to a Hopf bifurcation behavior, but also under
the control limits given in Table 3 as discussed in [5]. This phenomenon of how
allowable oscillations can be allowed by the WTG controls as reported by the
NREL [26], has been further investigated in [12] to continue on the work of [5]
and use the model provided in this chapter to provide a theoretical explanation for
the phenomenon. On the other hand, if the system is in the supervisory voltage
reactive power control set up (see Sect. 2.2.2), then it is required to have theQdroop

function “activated” to maintain stability (see [6, 11]). As a matter of fact, the
Qdroop function has to be in a a feedback mode that is feeding a gain of the reactive
power delivered to the grid to have stability, not just a specific constant (see [6,
11]).

• Parameter Sensitivity: Checking how the system steady states and local trajec-
tories would react (change in response) to small changes in a given parameter has
been studied in [4, 8–10]. In these papers, it was concluded that they system is
highly sensitive to vwind and sensitive enough to all grid parameters X , R and E for
all wind speed ranges (Regions 1,2 and 3, Fig. 13). To determine local trajectories
sensitivity to parameters, we need to study eigenvalue sensitivity to parameters as
done in [9]. Only the region (Region 3, Fig. 13) has eigenvalue sensitivity towards
vwind , which will be included in our study to the Pitch control next section.

• Boundedness, Existence and Uniqueness: If we consider the control limits
(bounds) given in Table 3, it can be shown mathematically that the network
equation in Eq. (51) has a unique solution that allow us to have the system in
differential equations instead of the system being in differential-algebraic equa-
tions. As proved and introduced in [7], We can use directly Eq. (52) to represent
V :

V = f (Iplv,Eq;X ;R;E) = −B + √
B2 − 4AC

2A
(52)

With A = 1 + 2X
Xeq

+ R2+X 2

Xeq
, B = −

[
2IplvR + 2XEq

Xeq
+ 2(R2+X 2)Eq

Xeq

]
and C =

R2+X 2

Xeq
+ (R2 + X 2)I2plv − E2. This reduction helps significantly in any nonlinear

optimization and/or control study. To the best of our knowledge, no WTG system
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Fig. 14 Stable (red) and
Unstable (Black)

has been mathematically analyzed to even conclude existence and uniqueness
for the resultant system of differential equations, as have been done in [7]. It is
also worth mentioning that in [7], it was mathematically proved and found that
there is a safe region in the parameter space of R and X , in which the system al-
ways maintains existence and uniqueness of solutions. This region is given in the
Fig. 15.

• Multiple Time Scale Structure: In [7] and intensively in [8], it has been shown
that the WTG system has different time scales in it. In fact, it was shown that the
system can reduces into fast-slow (two) time scales or fast-medium-slow (three)
time scales. This is the first time in literature, as we think, that some study covered
the multiple time structure in WTGs. Reduction to the model (two or three time
scales), with guaranteeing eventual convergence (shown in [7, 8]), can expand
and enhance the real time domain simulations and provide nonlinear studies with
another tool to use while studying the WTGs.

• Eliminating the control limits: In [6, 11], it was shown that the attraction limits
in the case of stability are larger than the control limits provided in Table3. In
another words, the stable steady states are shown to attract trajectories in a range
that is even larger than the control limits. This, as concluded by [6, 11] means
that the limiters can be eliminated when we build simulations for the system, at
least if we are concerned about small-signal stability studies. The reader then is
recommended to take a look at how the block diagrams, in transfer function, for
the WTG components/controls, look like without any of the limiters in [11].
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Fig. 15 Safe region in which solutions uniquely exists

3 Pitch Control, Simulations, Simulink Verification and
Real Data Validation

3.1 Modeling and Analysis of Pitch Control

In this subsection, we provide a full time domain study for the dynamics in Region
3 (see Fig. 13) where the important Pitch control is activated. We start first by con-
sidering the power factor setup for the range of wind speeds in Region 3 (11.4–25
m/s) with the two mass model,the power factor, and without the active power and in-
ertia controls. Next subsection, we expand the analysis to the reactive power control
being in the set up of supervisory voltage and, having the Qdroop function in effect.
The differential equations reduce to Eqs. (29)–(34), (36), (38)–(39), (48)–(50). For
this system of 12 nonlinear differential equations, there is no algebraic (network)
equation, as we eliminate the algebraic equation using Eq. (52). We find the steady
states versus the wind speed, so we can see the Pitch control function that stabilizes
the system. We study stability in parameter space.

3.1.1 Pitch Control with Power Factor

The Steady States and Eigenvalues: Once the wind speed approaches 11.4 m/s, the
power extracted from the air-streams exceeds the 1 pu (rated power). Consequently,
the Pitch control gets into action and enforce less power extraction. Figure 17 shows
the Pitch angle in steady state as a function of wind speed. Because of the Pitch
dynamics, in the steady state Pelec = Pmech = Pinp = P1elec = 1. Figure 16 shows
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Fig. 16 Pmech when the pitch angle is fixed at zero versus the pitch control activated

Fig. 17 Pitch angle steady state as a function of vwind

what happens to the power to be extracted if the Pitch are fixed at zero versus when
the Pitch control is activated. Since the Pitch control fix the power generation, the
physical steady state in Region 3 is constant versus vwind . We computed these values,
wg = wt = 0.2, Eq = Eqcmd = 1.167, and V = Vref = 1.039.

Because the Cp function is forth degree polynomial of θ , the resultant steady
states are not necessary unique. We ran tests numerically to see if there are other
possible steady states. For every fixed wind speed, we could find two different Pitch
angles. One of these steady states is negative and the other is positive. As a result
we fixed our codes to only find these Pitch angles that are in the acceptable range.
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Table 4 The eigenvalues computed at the steady state

Real
vwind = 11.4

Imag
vwind = 11.4

Real
vwind = 25

Imag
vwind = 25

% change

λ1 −52.25 0 −52.25 0 0, 0

λ2 −48.94 0 −48.94 0 0, 0

λ3 −19.99 0 −19.99 0 0, 0

λ4 −16.11 0 −16.11 0 0, 0

λ5,6 −1.34 ±12.15 −1.35 ±11.6 0.7, 4.5

λ7 −3.14 0 −0.88 0 71.9, 0

λ8,9 −0.68 ±2.16 −0.68 ±2.16 0, 0

λ10,11 −0.18 ±0.46 −1.52 ±3.2 744, 59.5

λ12 −0.13 0 −0.16 0 23, 0

For instance, vwind = 20 is associated with θ = −3.775 and θ = 19.115 as steady
states values. Our code then chooses only θ = 19.115. It is important to hint that only
the acceptable range of Pitch angles belong to a locally stable set of steady states.
When the Pitch control is deactivated in other Regions, the eigenvalues showed no
sensitivity to the wind speed (see Sect. 2.3). In Region 3, the eigenvalues are highly
sensitive to vwind . Table 4 shows complex pair of the eigenvalues and their change
when vwind = 11.4m/s and vwind = 25m/s. The sixth column presents the percentage
of change for both the real part and the imaginary part respectively.

Grid Parameters and Stability: The resistance R and the reactance X are the grid
parameters of interest (see Fig. 11). Changes in parameter, while fixing vwind = 12
in our trial, is expected to have an effect on the terminal voltage. We ran a code that
discretized the parameter space of R and X using a high resolution unit square grid,
and found the steady states based on the given parameters at each point (Fig. 14).
The code computes the Jacobian matrix and linearizes around the steady states. The
reader is recommended to see [5] for Figures of the steady states plotted in the grid
parameter space.

3.2 Pitch Control and Q Droop Function

By setting up the system to be the supervisory voltage case and two-mass rotor
model, the model reduces to Eqs. (29)–(35), (39)–(44), and (48)–(50). Note that the
model can reduce again depending on the wind speed Region of interest (Regions
1, 2 and 3 in Fig. 13). Equation (40) has the formulation of the Q Droop function
dynamics. Furthermore, the effect of this dynamics is in the term Vqd = KqdQdroop

(Eqs. (42)–(43)), which eventually lead to Qord in Eq. (40). The Q Droop function is
activated when the gain Kqd is larger than 0. The Q Droop function is a slow acting
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Table 5 Steady sates versus Ktd

wg V Qgen Eq Iplv

Ktd = 0.04 0.2 1.03 −0.154 0.911 0.97

Ktd = 0.05 0.2 1.032 −0.08 0.97 0.96

Ktd = 0.06 0.2 1.033 −0.05 0.99 0.96

function, and is supposed to help reducing the effective reference voltage in the
reactive power control, corresponding the changes in the reactive power control. The
result of applying this function is to have improved coordination between multiple
integral controllers regulating the same point in the system. This positive result is
claimed by GE [3]. As described by more details in [6, 11] the system has to have the
QDroop function activated to maintain stability. Moreover, this activation has to be a
feedbackmode from the reactive power delivered to the grid, that is Vqd = KqdQgen in
Eqs. (42)–(43), and not to haveQdroop=constant, as this has shown to cause instability
[5]. This is a very important consideration and result both [6, 11]. It is important to
mention that in throughout and detailed analysis [11] has shown thatQdroop=constant
result in an unstable system, which directly contradict the GE claim in [3] that the
Qdroop=constant is acceptable.

In Region 3 (11.4 < Vwind < 25), the physical state variables are constant as
discussed earlier. As suggested in [3], we have Kqd = 0.04. We fixed vwind = 11.4
m/s and computed the steady states in Table 5 by varying the gain Ktd to test its
sensitivity. Similarly, Table 6 is for the eigenvalues. It is noticeable that changingKtd

from 0.04 to 0.06 (50% change) have the changes 67%, 0.3%, 8.6%, and 1% inQgen,
V , Eq, and Iplv respectively. It can be noted as well that some of the eigenvalues had
over a 100% change. In Table 6, the sixth column has the change in percentage (real
and imaginary parts respectively). From these results it is clear that the gain parameter
Kdq has direct effects on both the steady states and the eigenvalues. Eigenvalues
sensitivity means that this parameter can affect local trajectories behavior, so it is
important to have more parameter estimate studies, especially if tunning is needed
based on the application conditions.

3.3 Simulations

3.3.1 System Response to a Pulse Wind Profile

Figure 18 shows a vwind profile for a pulse changing from 20 to 21 m/s and again to
20 m/s with the system response. The profile equation is vwind = 20 + e−(t−10)2 .
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Table 6 Eigenvalues at vwind = 11.4

Real
Ktd = 0.04

Imag
Ktd = 0.04

Real
Ktd = 0.06

Imag
Ktd = 0.06

% change

λ1 −52.25 0 −52.25 0 0, 0

λ2 −48.94 0 −48.94 0 0, 0

λ3 −19 0 −19 0 0, 0

λ4 −16.11 0 −16.11 0 0, 0

λ5,6 −1.34 ±12.15 −1.35 ±12.15 0.74, 0

λ7 −3.14 0 −3.14 0 0, 0

λ8,9 −0.1 ±1.19 −0.002 ±1.18 98, 0.84

λ10,11 −0.18 ±0.46 −0.18 ± 0.46 0, 0

λ12 −0.13 0 −0.13 0 0, 0

λ13 −8.83 0 −8.82 0 0.11, 0

λ7 −3.14 0 −3.14 0 0, 0

λ15,16 −0.096 ±0.14 −0.2 ±0.21 108, 50

Fig. 18 System response for a given wind profile (upper graph)
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Fig. 19 Drop-clear in the terminal voltage (upper graph) along with the system’s response

3.3.2 System Response to a Drop-Clear in Terminal Voltage

Figure 19 shows a drop-clear in terminal voltage and the system’s response.

3.3.3 System Response to a Droop-Clear in the Reactance X

Figure 20 shows a droop-clear case of the reactance X. The dropping happens from a
stable condition to an unstable one, passing a Hopf bifurcation, as discussed in Sect.
2.3), and then returning to the stable status. The system is capable of stabilizing after
clearing the severe disturbance as shown in the simulation.

3.3.4 Basin of Attraction Versus Control Limits

Testing the Attraction Limits Versus Control Limits: As found by strong and
detailed study/simulation in [11], the region of attraction around the steady states
seems to be larger than the control limits themselves. Let us consider x and x0 be the
vectors of the steady states and initial conditions respectively. Figure 21 represents a
simulation for the dynamics having initial condition x0 = x + 0.5 |x|. The simulation
had fixed wind speed. Notice that initial values and the trajectories exceeded the
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Fig. 20 Droop-clear in the reactance X (upper graph) and the system’s response

Fig. 21 State trajectories (blue) and limiters (black)

limiters (control limits) in solid black lines and are still attracted to the stable steady
state eventually.
Testing the Derivatives of some Mechanical State Variables in Extreme Cases:
Since on of the main things of interest for the system is how it responds to sudden
disturbances, we tested the system response and both dPinp

dt and dθ
dt for a sudden but

continuous wind disturbance and terminal voltage drop. Figure 22 shows some of
the state variables’ response to the given wind profile. The derivatives of the power
order and the Pitch angle do not exceed their control limits. Figure 23 has the same
trajectories response but for a sudden drop in the terminal voltage. Note that one of
the states exceeded the control limits. The conducted simulations indicate that the
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Fig. 22 State trajectories (blue) and limiters (black)

Fig. 23 State trajectories (blue) and limiters (black)

trajectories response and themechanical derivatives limits respondwithin the control
limits for very disturbing pulse of wind.

3.3.5 Effect of the Q Droop Function

We tested the system by by running a simulation, with and without Qdroop function,
for a pulse wind speed profile. This should help us emphasize how the integrator
variables Qwvl and Qwvu will behave. For the wind profile in Fig. 24, the integrators
seem unable to stabilize after the pulse effect. While, In real life the limiters will
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Fig. 24 Trajectories response with (blue) and without (red) Qdroop

intervene to prevent such divergences, the same pulse effect could not force the
integrators to divergewhen theQdroop function is used. This indicates that theQDroop
helps stabilizing the system in extreme cases through improving the performance of
the integrator.

3.4 Verification and Validation of the Model

3.4.1 Simulink Verification

Simulink projects were built for the transfer functions of the model given by GE [2,
3] and NREL [13]. The purpose is to verify that our differential equations model
(Eqs. (29)–(50)) is typical in results when compared to the Simulink simulations.
For more information about the verification, the reader is recommended to refer
[8]. First project constructed a Simulink project of the system in Fig. 27 and ran
the numerical solver ODE15s in Matlab for a fixed wind speed of vwind = 8.2 m/s,
which makes the model in Region 2 (see Sect. 2.2.2 and Fig. 13). The results of
the simulation are typical. Figure 25 represents one of the results for V (the initial
condition is the same in both Simulink and ODE15s). The similarity of the results
of V is very important as it is the main term to calculate both the active and reactive
power. Second project constructed a Simulink project (Fig. 28) with an oscillating
wind speed (vwind = 8 + sin(10t)). The dynamics in this case is in Region 1, see
Sect. 2.2.2 and Fig. 13. The result was also typical. Figure 26 presents Pelec response
to the continuous oscillation of vwind .
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Fig. 25 Response of implementations inMatlab (differential equations) and Simulink to zero initial
conditions

Fig. 26 Pelec in the steady response from the model and Simulink

3.4.2 Validation Versus Real Measured Data

In this validation we re-used what we provided in [8, 11]. The models cho-
sen for comparison are [18, 20] as they are a highly cited academic source that
also are inclusive in their modeling. We focus on one of the clear differences
between our model and theirs. Both the generator and turbine speeds are controlled
by the reference speed wref (see Rotor Model discussion in Sect. 2.1). The rated
reference speed is 1.2 pu, however, for lower wind speeds, this is not physi-
cally possible. Therefore, the reference speed changes slowly with Pelec until it
reaches 1.2 pu (see Fig. 10). Our model and the models [18, 20] have different
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Fig. 29 wref from our model in solid with [18, 20] doted, and the rated speed dashed

Fig. 30 Real data of a WTG (stars) versus power-wind speed curves for our model in solid and the
models [18, 20] dashed. The Fig. is re-used from [8, 11]

curves for lower wind speeds wref = −0.67P2
elec + 1.42P + 0.51 in our model and

wref = −0.75P2
elec + 1.59P + 0.63 in their models (Fig. 29). Figure 10 shows dif-

ferent wref curves. To test the effects of this difference between our model and the
models considered in the comparison, we generated the power-wind speed profile for
all the models (stable steady state of Pelec vs. vwind ) and plotted them with real mea-
sured data (re-use of the same data in [8, 11]). Figure 30 illustrates this comparison
and validation with real measure data.
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Observations from the comparison and the validation:

1. As seen in Fig. 10 when comparing our model versus [18, 20], we see that wref

reaches the rated value (1.2 pu) at Pelec ≈ 0.45 pu in our model, while it reaches
the rated value (1.2 pu) at Pelec ≈ 0.75 pu in their model. The manufacturer (see
page 35, [3]) recorded thatwref only has to follow some feed back fromPelec below
Pelec = 0.46 pu, as this is the stage where the system can start having wref = 1.2.
This indicates that our model is more practical and matches the specifications
recorded by the manufacturer.

2. Our model has relatively better power-wind speed profile when compared to [18,
20] and the real time measured data (Fig. 30). The stable steady state of Pelec is
not an average for the measured data. However, when the size of the measured
data is very large, which is the case in our trial, the data may be expected to have
some form of normal distribution around the stable steady state. Our model shows
better results if we have this explanation in consideration.

3. The power-wind speed profile in Fig. 30 can be generated with either the reactive
power control in power factor or supervisory voltage mode (see Fig. 4). The
supervisory voltage mode is preferable as it is associated with having the WTG
as a member in a group of WTGs as opposed to have the WTG as a separate unit
(power factor mode). We remark that stability of Pelec and the whole system is
not possible without having the Q Droop function in effect (explained in Sect.
3.2). There is almost no explanation about how to implement Q Droop function
and/or analyzing its effect and possible cases in other models throughout our
search to date in the literature and cited papers that are considered major sources
of modeling for WTGs.

4 Conclusion

In this chapter, a state-of-the-art modeling effort, that represents the WTG dynamics
and control, is provided. This modeling efforts summarize and collect very recent
publications and is validated and verified versus real measured data and Simulink
simulations. An advantage from the collective modeling presentation in this chapter,
is that one can use numerical solvers such as ODE15s to simulate the WTG system
for different scenarios and conditions, without the need for commercial and special
simulators. The pitch control, that is essential for the WTG system to keep the
power production stable and saturated at the rated requirement, is discussed and
analyzed by detail in this chapter. Moreover, the chapter provides the reader with
all important technical information regarding this important control as is in industry,
such as: stability, sensitivity, resilience in different reactive power modes and a lot
of demonstrative simulations.
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Distributed Cooperative Control of Wind
Farms with On-site Battery Energy
Storage Systems

Dinh Hoa Nguyen, Javad Khazaei, Susan W. Stewart
and Jennifer Annoni

Abstract This chapter studies the output power regulation in wind farms consisting
of doubly-fed induction generator wind turbines, one of the most popular generator
configurations in modern multi-MW wind industry, equipped with on-site battery
energy storage systems. Traditionally, wind farms were operated as standalone units
or were equipped with a central, large-scale, energy storage system. In fact, most
of the existing control designs for hybrid wind-storage applications are centralized,
where the central unit collects the measured data from all wind turbines and storage
systems (if they exist) and compares with the load demand to generate the reference
power for each wind turbine controller. Those centralized setups or control structures
do not fully exploit the flexibility and locality of the on-site energy storage systems in
a wind farm. Moreover, the storage functionality is lost if the central storage system
is broken down, while in a distributed architecture, a failure only affects individual
on-site storage systems and the others will still operate. Therefore, on-site storage
systems and distributed control designs need to be developed for wind farms to
provide regulation services for the grid. An approach to tackle that challenge will be
presented in this chapter.
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Nomenclature

DFIG Doubly-fed induction generator.
ESS, BESS Energy storage system, battery energy storage system.
GSC, RSC Grid side converter, rotor side converter.
MAS Multi-agent system.
PMSG Permanent magnet synchronous generator.
RES Renewable energy source.
WF, WT Wind farm, wind turbine.
t, s, τ Time, frequency, and time delay variable.
G , A , D, L Communication graph, its adjacency, degree, and Laplacian

matrices.
R Set of real numbers.
Pst,i , Est,i , Qst,i Power, energy, and reactive power of the i-th BESS.
Ps,i , Pg,i , Qs,i , Qg,i Active power of RSC and GSC, reactive power of RSC and

GSC, at the i-th WT.
Pd , Qd Active and reactive power demand for the WF.
n Number of WTs in the WF.
uPB
i , uQB

i , uQr
i , uQs

i Control input for active and reactive power of the i-th BESS,
and reactive power at the RSC and GSC of the i-th WT.

Kst,i Gain to denote the heterogeneity of the i-th WT and BESSs.

1 Introduction

The combustion of fossil fuels for energy production creates problems for the global
climate landscape and environment due to green house gas (GHG) and other pollutant
emissions. To address these concerns, RESs along with their associated technologies
have widely been sought and deployed into electric power grids around the world.
Wind generation is now one of the most popular RESs being used worldwide. Large
penetration of wind turbines requires planning for long term WF operation with a
broad range of ancillary services. These services include but not limited to frequency
and output power regulation, voltage control, and lowvoltage ride through (LVRT) [1,
2], of which, the output power regulation of theWFs was reported as the most critical
[3, 4]. This motivates the research to investigate the possibility of incorporating on-
site ESSs, in particular BESSs, with individual WTs in WFs along with the needed
distributed control strategies to strengthen the flexibility and resiliency of WFs, and
providing regulation services for the power grid.
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1.1 Literature Review

There are different types of WTs currently available at the utility scale as well as
the residential scale. Horizontal-axis wind turbines, as opposed to vertical-axis wind
turbines, generally dominate both utility and residential markets [5, 6]. The industry
has alsomoved fromfixed speed turbines to nearly entirely all variable speed turbines
at the utility scale because of itsmany advantages such as cost effectiveness, improved
performance, and the ability to reduce turbine loads [5, 6]. The current chapter
focuses on the DFIG WT since it is one of the most popular types of WTs currently
being deployed in wind energy and integration to power grids.

A few research articles have focused on controlling the output power of WFs in
smart grids by modifying the existing WFs’ controllers [7–11]. For example, three
controllers were designed in [7] for the active and reactive power regulation of aWF
to predefined set points. As another example, [9] introduced a sliding mode control
structure for variable-speed wind systems to ensure stability inWF operating regions
despitemodel uncertainties. It is alsoworth noting that in practical applications, wake
losses are encountered in WFs and this is an issue that could affect the WF output
power regulation problem [12, 13]. This effect however has been omitted in this
chapter for conciseness and clarity of the control architecture.

The WF control studies mentioned thus far all employed a centralized controller
architecture for the output power control, where a centralized unit is dedicated to
coordinate theWTs and ESSs. This structure requires significant data to be processed
in the central unit and is susceptible to a single point of failure. This centralized ap-
proach thus does not guarantee flexibility or reliability and therefore, is not the best
option to regulate the generated power in distributedWTs+ESSs [14, 15]. Hence, dis-
tributed designs are preferred to synchronize the operation of dispersed WTs+ESSs
in smart power grids to maximize the reliability and economic performance of both
the grid and the WF.

Several studies have been reported to control wind generations with distributed
ESSs in a distributed manner [16–20]. A model predictive control using a semi-
distributed algorithm was implemented for BESSs to enhance the output power reg-
ulation of WFs [16]. Unfortunately, the designed approach ignored the equal power
sharing and did notmodel the energy balance of BESSs. Furthermore, it was assumed
that the BESSs had 100% state of charge at any time, which was not realistic. In an-
other example, a planning strategy was suggested to optimally calculate the power
rating and capacity of distributed BESSs using a power flow algorithm [17]. The
study did not formulate the output power generation problem of WFs using BESSs
and no communication links were considered for energy management studies.

In a recent study, an average consensus method was used for power regulation
of distributed WFs with storage devices [19, 20]. The WF controller was taken into
account and BESSs were synchronized to control the total power of WTs. However,
the energy storage was linked to the DC-link of the WTs and standalone BESSs
were not considered. This could greatly limit the capacity of BESSs in output power
regulation of WTs. Furthermore, the proposed approach considered all the WTs and
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ESSs had the same capacity and reactive power control was not possible due to
limited capacity of BESSs. As another limitation, 100% state of charge was assumed
for all the ESSs at any moment, which was not realistic. It is worth mentioning that
in all the existing research, the communication delays were ignored in the controller
designs, which motivated the contribution of this research for the distributed control
of ESSs for WTs in presence of communication delays.

In this chapter, a novel control strategy is proposed to synchronize and optimize the
operation of WFs using distributed standalone energy storage devices. The proposed
controller ensures regulation of active/reactive power demand and solves the capacity
limit of BESSs (e.g., in [19]) by a standalone BESS connected to each WT at a point
of common coupling (PCC), as shown in Fig. 1. Application of standalone BESS
allows reactive power support of WTs and provides more flexibility in control. The
standalone application of BESSs for WFs has recently been commercialized, e.g.,
the Notrees project which was supported by the department of defense (DoD) [21].
The contributions of this work are included in the following.

• A small-signal model of WT and BESS is derived and eigenvalue analysis is
conducted to investigate the stability of combined system.

• A distributed control strategy is proposed for standalone BESSs to regulate the
output power of WTs in unpredicted wind variations.

• The communication delays were considered in the design that can be any con-
nected undirected graphs. The designed controllers can guarantee the successful
regulation of WF output power in case of communication failures, given the fact
that a subset of BESSs are still connected.

• A distributed controller is designed for BESSs and WTs to meet the active and
reactive power demand based on the capacity of BESSs and WTs.

1.2 Chapter Organization

The rest of the chapter is classified as follows. Section 2 introduces the dynamic
modeling of WT and BESSs where detailed mathematical models of the DFIG WT
and the BESS together with their electronics parts are presented. Section 3 elaborates
the formulation of the power regulation challenge of WTs and BESSs, and discusses
their simplified dynamic models for control designs. Next, several case studies are
provided in Sect. 4 to demonstrate the proposed theoretical designs. Simulation
results show how the proposed consensus controllers can accommodate the on-site
BESSs to eliminate the power mismatch between load demand and available wind
power, with or without time delays. Finally, Sect. 5 summarizes the chapter.
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Fig. 1 Distributed control architecture for WTs with on-site BESSs

2 Dynamic Modeling of WT and BESS

An energy storage can help the WF to meet the load demand even in varying wind
speed conditions. A typical circuit diagram of a DFIG with a standalone BESS is
shown in Fig. 1. Step by step procedure to derive the linearized small signal model
of a DFIG wind turbine with a standalone BESS is included in the following.

2.1 Small Signal Model of DFIG Wind Turbine

To find the small signal model of a DFIG WT, the linearized model of the induction
generator, drivetrain, pitch control, RSC, GSC, and the DC link capacitor should be
derived. Since this chapter focuses on distributed control ofWTswith on-site BESSs,
the pitch angle control dynamics is ignored. The readers should refer to reference
[22] for a detailed small signal model.

The equations of voltage and flux linkage in an induction generator can be used
to derive the dynamics of the stator and rotor circuits in a dq reference frame, also
known as the generator reference frame [22]. A 6th-order dynamic model is used for
the DFIG [23]:

Ẋg = AXg + BU, (1)

where, Xg = [iqs, ids, ios, i ′qr , i ′dr , i ′or ]T , U = [vqs, vds, vos, v′
qr , v

′
dr , v

′
or ]T , and A, B

are defined as:
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,

where ωe is the angular velocity of the arbitrary frame. If ωe = ωb, the rotating
speed of the reference frame is equal to the nominal electrical angular velocity,
120π rad/s. Such reference frame is named a synchronous reference frame. It is also
known that in the analysis of induction machines, the symmetrical rotor variables are
transformed to the arbitrary reference frame and transformed variables are shown
with a prime “ ′ ” symbol. In the above representation, ωr is the rotating speed of
the rotor, and Xss, Xls, Xrr , XM , Xlr are related to the stator and rotor self/mutual
leakage inductances as defined by [24]. The dq frame air gap flux linkage is repre-
sented as λqm = LM(iqs + i ′qr ), λdm = LM(ids + i ′dr ), and the torque equation can
be represented as Te = λqmi ′dr − λdmi ′qr .

A two-massmodel is considered for the drivetrain as thewind turbine shaft is softer
than that of synchronous machines in power plants [25]. The dynamic equations of
a two-mass drivetrain are represented as:

⎡
⎣
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⎦ +

⎡
⎢⎢⎢⎢⎣

Tm
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−Te
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0

⎤
⎥⎥⎥⎥⎦

, (2)

where ωt and ωr are the turbine and generator angular velocities, respectively, Hg

and Ht are the generator and turbine inertias, respectively; Tg is an integral torque of
the model; Dt and Dg are the mechanical damping coefficients between two masses,
and Ktg is the shaft stiffness.

The voltage dynamics of the DC link capacitor, which is located between the GSC
and RSC of the DFIG, is represented by a first-order dynamic model:

Cvdcv̇dc = Pr − Pg, (3)

where Pr and Pg are the active powers of the rotor side and grid side converters,
respectively, and canbe represented by Pr = 0.5(v′

qr i
′
qr + v′

dr i
′
dr ), Pg = 0.5(vqgiqg +

vdgidg). Now, consider that the DFIG WT is connected to the grid through an RL
circuit (filter). A synchronous reference frame can be adopted to model the network
dynamics. The dynamics of the grid and network model are represented as:
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Fig. 2 DFIG’s rotor side converter controller

[
i̇wd
v̇wq

]
=

⎡
⎢⎢⎣

− Rg

Lg
ωe

−ωe − Rg

Lg

⎤
⎥⎥⎦

[
iwd
iwq

]
+

⎡
⎢⎣
vpd − vbd

Lg
vpq − vbq

Lg

⎤
⎥⎦ . (4)

In the above equation, iw = iwd + j iwq is the filter current, ig = igd + j igq is theGSC
current, vb = vbd + jvbq is the grid voltage (input), and vp = vpd + jvpq is the point
of common coupling (PCC) voltage, which can be derived as vpd = vgd − xtgigq ,
vpq = vgq + xtgigd . A basic control structure of the RSC is shown in Fig. 2. To
decouple the electromagnetic torque and the reactive power, a stator flux-oriented
reference frame rotating at synchronous speed is used, where its d-axis is aligned
with the stator flux vector. Variables with superscript s denote the stator flux-oriented
reference frame. Since the inner current control loop has a much wider bandwidth
than the outer loops (reactive power and speed controllers), fast dynamics of the
inner current controller can be ignored [26]. Therefore, simplified dynamics of the
rotor side converter can be derived [22], where KiTe = KTe/TTe, KiQs = KQs/TQs ,

ẋT e = KTe

KiT e
(T ∗

e − Te), (5)

ẋQs = KQs

KiQs
(Q∗

s − Qs), (6)

and i sdr = i sdr ref = KQs(Q∗
s − Qs) + xQs , i sqr = i sqr ref = −[KTe(T ∗

e − Te) + xω].
Grid voltage-oriented control, which rotates at synchronous speed with the d-axis
aligned with the grid voltage, is used to control the GSC [22]. Two proportional
integral (PI) controllers are implemented for regulating the DC link voltage and the



48 D. H. Nguyen et al.

Fig. 3 DFIG’s grid side converter controller

reactive power at the grid side, as depicted in Fig. 3. Similar to the RSC derivation,
fast dynamics in the inner loop can be omitted, and the dynamics of the GSC can be
simplified as follows [22], where Ki4 = Kp4/Tp4,

ẋV = KPV

Ki4
(V ∗

dc − Vdc), (7)

ẋQg = Kp4

Ki4
(Q∗

g − Qg), (8)

and i sgd = i sgdref = [Kp4(V ∗
dc − Vdc) + xV ], i sqg = i sqgref = Kp4(Q∗

g − Qg) + xQg.Fi-
nally, combining (1), (2), (3), (4), (6), and (8), the overall DFIGWTmodel is derived
as a 16th-order differential equation described by:

Ẋ = f (X,U ), (9)

where X = [iqs, ids, ios, i ′qr , i ′dr , i ′or ,Δωt ,Δωr ,ΔTg, vdc, iwd , iwq , xTexQs, xV , xQg].
The step by step approach to find the operating-point values of the state variables
and parameters of the WT are included in [27, 28].

2.2 Small Signal Model of BESS

The BESS is integrated to the grid via a Voltage Source Converter (VSC) and a filter
as shown in Fig. 4. As can be observed, the BESS includes battery packs, a DC/AC
converter, a transformer, and an output filter. The BESS is linked to the grid at the
point of common coupling (PCC)—point P . Since the dynamics of the battery cell
are much slower than the converter dynamics, it is reasonable to ignore the battery
cell dynamics for small signal analysis, and therefore, only the fast dynamics of the
converter, its controller, the LCL filter, and the grid are considered in this section.
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Fig. 4 Top level diagram representation of a BESS connected to the grid

Fig. 5 VSC controller for BESS

When the VSC operates in a grid connected mode, the primary controller is in charge
of meeting the active and reactive power demand. The AC voltage and frequency in
this mode are controlled by the grid. In the islandedmode, when the connection to the
grid is lost, the VSC regulates the AC voltage magnitude and the frequency as well as
the active and reactive power demand [29]. A basic structure of the BESS control in
the grid supporting mode is illustrated in Fig. 5. It mainly has three control loops; the
inner current loop, the active and reactive power loops, and the primary/secondary
frequency and voltage loops. Voltages and currents in the abc-frame, that are the
inputs to the VSC, are measured at the PCC and passed through a first order filter to
remove the high frequency harmonics. A phase-locked loop (PLL) is used tomeasure
the real-time frequency of the system. The filter’s transfer function is of the form

1
βs+1 , where β is the filter’s time constant. Since analyzing the small signal stability
of the BESS is the primary objective of this section, the effects of the first order
filter and computational delays involved in the PCC measurements are ignored for
simplicity[30]. In the following sections, the small signal model of the BESS with
various control loops are derived.
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The dynamics of the AC grid in the system are derived using Fig. 4. Applying
the Kirchoff’s voltage and current laws (KVL and KCL) around the PCC, the AC
dynamics of the system in dq frame are expressed in the following equations:

L f
dī1
dt

= v̄c − v̄p + j L f ωbī1

C
dv̄p
dt

= ī1 − ī2 + jCωbv̄p,

L̂g
dī2
dt

= v̄p − ī2Rg + j Lgωbī2 − v̄g,

(10)

where ωb is the rated frequency in rad/s, L f is the summation of inductances of the
converter transformer and converter side filter (L f = LTc + L1), and L̂g is the sum-
mation of inductances of the grid side transformer and the grid side filter inductance
(L̂g = Lg + LTg). It is noted that variables with a bar (−) on top represent vectors
in dq frame and need to be separated for the small-signal analysis. The inner current
controller generates the reference voltages in the dq-frame, which are fed to the pulse
width modulation (PWM) generation unit to generate the gate pulses necessary to
operate the power electronic switches in the VSC. Dynamics of the inner current
control loop in the dq frame can be represented as:

v∗
cd =

(
kpi + kii

s

)
(i∗d − i1d) − ωL f i1q + vpd ,

v∗
cq =

(
kpi + kii

s

)
(i∗q − i1q) + ωL f i1d + vpq .

(11)

If the converter is ideal and dynamics of the PWMgeneration is ignored, the reference
voltages, vcd and vcq , in the dq-frame generated by the inner current controller are the
same as the measured voltages in the terminal of the converter. Therefore, v∗

cd ≈ vcd
and v∗

cq ≈ vcq . In this equation, i∗d and i∗q are the reference currents generated by the
outer control loop, i1d and i1q are the currents measured at the PCC and the feed
forward voltage components, vpd and vpq , are measured at the PCC. Furthermore,
kpi and kii are the PI controller gains for the inner current loop controller.

The outer loops of the BESS control the active power P and reactive power Q,
delivered by the BESS to the grid. Two PI controllers which track the references Pref
and Qref and generate the reference currents (i∗d and i∗q ) are used.

i∗d =
(
kpP + ki P

s

)
(Pref − P),

i∗q =
(
kpQ + kiQ

s

)
(Qref − Q).

(12)

The outer control loop dynamics in the dq-frame are expressed in (12), where Pref
and Qref are active and reactive power demanded by the grid, P and Q are active and
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reactive powermeasured at thePCC,which canbe calculatedusing P = 1.5(vpd i1d +
vpqi1q), Q = 1.5(−vpd i1q + vpqi1d) [31].

The PLL block measures the real-time frequency of the system and decouples the
dq-frame components so that they can be independently controlled [32]. The PLL
block uses a PI controller to force the q component of voltage measured at the PCC,
vpq , to zero. The dynamics of the PLL block is represented in (13):

ω =
(
kPLL
p + kPLL

i

s

)
vpq + ω0,

ẋPLL = vpq , (13)

ωPLL = ω0 + kPLL
p vpq + kPLL

i xPLL .

2.3 Overall Small Signal Model of the Integrated DFIG
WT+BESS

TheBESSwill be integrated into theDFIGmodel at the PCC. Therefore, dynamics of
the PCC represented in (10) needs to be updated. Referring to Fig. 4, theDFIGwill be
connected to the point of common coupling (vp), therefore, a new current component
including the DFIG’s stator and the grid side converter currents (iw = is + ig) will
be added to the PCC dynamics. The new PCC dynamics including the BESS and
DFIG model is expressed as:

Cv̇pd = i1d + isd + igd − i2d + Cωvpq ,

Cv̇pq = i1q + isq + igq − i2q − Cωvpd .
(14)

Therefore, (10) will be updated by (14). The BESS model is then linearized and
added to the DFIG’s small signal model to form the entire small signal model of
the DFIG+BESS system. The MATLAB/LINMOD function is used to linearize the
overall system and the eigenvalues of the combined wind turbine and the BESS are
shown in Table 1. By comparing the eigenvalues of the DFIG alone and the combined
DFIG+BESS system, it is observed that by integrating the BESS with the DFIG, the
frequencies of λ25, λ26, λ27, and λ28 have decreased from 60 to 6 Hz. However,
the overall system remains stable as all the eigenvalues belong to the open left half
complex plane.
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Table 1 Eigenvalue analysis of a DFIG WT+BESS connected to the grid through an LCL filter

Eigenvalue f (Hz) Eigenvalue f (Hz) Eigenvalue f (Hz)

λ1 = −10.2 + j0.98 60 λ11 = −20 0 λ21 = −39.6 0

λ2 = −10.2 − j0.98 60 λ12 = −3.89 0 λ22 = −20 0

λ3 = −33.2 + j0.32 20 λ13 = −1 0 λ23 = −9.83 + j2.5 150

λ4 = −33.2 − j0.32 20 λ14 = −0.9 0 λ24 = −9.83 − j2.5 150

λ5 = −78.7 0 λ15 = −0.001 0 λ25 = −3.6 + j0.1 6

λ6 = −108.9 + j0.08 5 λ16 = −1 0 λ26 = −3.6 − j0.1 6

λ7 = −108.9 − j0.08 5 λ17 = −20 0 λ27 = −0.1 + j0.1 6

λ8 = −20.79 0 λ18 = −48.9 0 λ28 = −0.1 − j0.1 6

λ9 = −15.1 + j0.16 10 λ19 =
−35.1 + j33

1980 λ29 = −19.2 0

λ10 = −15.1 − j0.16 10 λ20 =
−35.1 − j33

1980

3 Distributed Cooperative Controller Design for DFIG
Wind Turbines with On-site BESSs

The wind farm sizes are explicitly considered and the controller will guarantee that
at anymoment, the BESSs have enough state of charge to support the load even when
the wind speed varies. The main objective is to synchronize the BESSs and WT’s
GSCs cooperatively for attaining the control purposes below:

• Supply-demand balance: The first-priority control objective for a WF is to bal-
ance the supply and demand of active and reactive power. The power demands
(Pd , Qd ) are obtained from the weather forecast and the optimal power dispatch
solution. The time slot for the forecast update is five minutes which is enough for
distributed controllers to appropriately regulate the set points for BESSs and WTs
such that the power demands (Pd , Qd ) are always met by the WF. In fact, the sizes
of WTs might differ in a WF, therefore, each WT is supposed to response to the
demand depending on its output power. This means WTs are expected to share the
load demand equally with regards to their maximum capacities. The BESSs can
play a key role to compensate the wind fluctuations and limited capacity of WTs
in demand response. Therefore, the heterogeneity of a WT with its on-site BESS
is denoted by a gain, Kst,i . As the capacity of the on-site BESS is normally the
same as the capacity of WT, same gain can be considered for BESS and WT [33].
Therefore, the power balance can be represented by [33]

Pd =
n∑

i=1

Kst,i (Pr,i + Ps,i + Pst,i ) ⇔
n∑

i=1

Kst,i Pst,i = Pd −
n∑

i=1

Kst,i (Pr,i + Ps,i ),

(15)
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and Qd = ∑n
i=1 Kst,i (Qg,i + Qs,i + Qst,i ). Normally, Q∗

s,i is set to zero, since
the DFIG operates at unity power factor, hence Qs,i is also zero. Thus,

Qd =
n∑

i=1

Kst,i Qst,i +
n∑

i=1

Kst,i Qg,i . (16)

• Equal sharing of power demands: Since the capacities of BESSs are different,
it is expected that they equally share active and reactive power demands [33], i.e.,

Kst,i Pst,i = Kst, j Pst, j ,

Kst,i (Qg,i + Qst,i ) = Kst, j (Qg, j + Qst, j ).
(17)

Furthermore, since the capacity of GSC is normally up to 30% of the rated DFIG
power, only 30% of reactive load demand can be supplied by the DFIG and the
other 70% should be supported by BESSs

n∑
i=1

Kst,i Qst,i = 0.7Qd ,

n∑
i=1

Kst,i Qg,i = 0.3Qd . (18)

• BESS Energy Synchronization: It is also expected that the state of charges of
BESSs are enough at anymoment so that no BESS is out of energywhile the others
are still full. Therefore, another control objective in this chapter is to guarantee:

Est,i = Est, j . (19)

In order to simplify the control designs for achieving the given control objectives
in (15)–(19), the simplified models of the DFIG WT and the BESS are developed in
the following subsections.

3.1 Simplified Model of DFIG Wind Turbine

The connection between a DFIGWT and the grid is at the terminals of both the rotor
and the stator. The objective of such connection is to supply the active and reactive
powers from the WF to the grid. More specifically, the DFIG’s stator will supply the
active and reactive powers Ps,i and Qs,i . Next, two back-to-back converters called
the GSC and the RSC are utilized to connect the DFIG’s rotor to the grid. For
a DFIG WT, the GSC usually accounts for 25–30% of its nominal power, and the
GSC’s active power and reactive power Pg,i and Qg,i could be individually regulated.
On the other hand, the RSC independently regulates the stator-side active power and
reactive power Ps,i and Qs,i by regulating the rotor current in a synchronous reference
frame through two control loops. The external loop individually controls Ps,i and
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Qs,i , whilst the internal loop controls the rotor current (see Fig. 2 for details). Then
the distributed controller for reactive power is added to the external loop. Suppose
that the inner and the outer loops can successfully track the reference values, i.e.,
P∗
s ≈ Ps , Q∗

s ≈ Qs , the RSC dynamics is simplified by:

Kst,i Q̇s,i = uQr
i , (20)

where uQr
i is a control input synthesized for the equal sharing of reactive power

of the DFIG i with an on-site BESS using RSC. The GSC’s control regulates the
voltage Vdc,i of the DC-link and the exchanged reactive power Qg,i by employing a
synchronous frame based vector control method. Similar to RSC, two control loops
exist for theGSC (see Fig. 3 for details), inwhich a control input is incorporated to the
external loop for regulating the reactive power of DFIG WT+BESS in a distributed
manner. Assuming that the controllers for the DC-link and reactive power can track
the reference values fast enough, i.e., V ∗

dc ≈ Vdc and Q∗
g ≈ Qg , the GSC controller

dynamics is simplified by:
Kst,i Q̇g,i = uQs

i , (21)

where uQs
i is the incorporated distributed input to be designed for the equal sharing

of the DFIG WT and an on-site BESS reactive power.

3.2 BESS Simplified Model

Vector current control strategy is used for the BESS, as shown in Fig. 6, to indepen-
dently regulate the active power Pst,i and reactive power Qst,i transferred to the grid.
More precisely, the active power of BESSs is utilized to compensate the variations
on the WT’ output active power in presence of fluctuating wind velocity. Further-
more, BESSs’ reactive powers are controlled to accommodate the sharing of reactive
power fromWTs+BESSs in aWF. Because BESSs’ active power and reactive power
could be individually controlled, two distributed control inputs will be designed ac-
cordingly. Recently, the research in [34] has shown that a simplified model, which
were validated through real-time simulations, can be employed for BESSs to develop
distributed control algorithms. Hence, a similar simplified BESS dynamics is used
here for synthesizing distributed control algorithms for WTs with on-site BESSs.
Note that the on-site BESSs may have different sizes because of the difference on
WTs’ sizes. To take into account the heterogeneity of on-site BESSs, the following
model is employed,
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Fig. 6 Distributed control structure for the BESS

Ėst,i = −Kst,i

3600
Pst,i , (22a)

Kst,i Ṗst,i = uPB
i , (22b)

Kst,i Q̇st,i = uQB
i . (22c)

3.3 Problem Formulation

Based on (21), (22), and the given control objectives, an overall simplified model for
DFIG WTs with on-site BESSs is described below,

ẋi = Axi + Bui , (23)

xi �

⎡
⎢⎢⎣

Est,i

Kst,i Pst,i
Kst,i Qst,i

Kst,i Qg,i

⎤
⎥⎥⎦, u �

⎡
⎣
uPB
i

uQB
i

uQs
i

⎤
⎦, A �

⎡
⎢⎢⎣
0 −1

3600 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦, B �

⎡
⎢⎢⎣
0 0 0
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎦.

Remark 1 It is worth noting that Qs,i �= 0 when WTs do not work at unity power
factor, hence Qs,i will appear in the equations (16) and (17). Hence, a state variable
Kst,i Qs,i and a control input uQr

i must be added to the overall system state-space
model in (23), and matrices A, B should be modified correspondingly. Therefore,
the distributed designs to be proposed in Sect. 3.4 need to be modified accordingly,
however, the design principle is still the same.
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3.4 Control Design

To synthesize distributed controllers for the WF, MAS theory is utilized, in which
eachWT+BESS is considered as an agent, and an undirected graph G , with its vertex
set V , and edge set E is considered for the communication structure among agents.
Each vertex constitutes an agent and each edge (k, j) ∈ E matches to the commu-
nication between agent k and agent j . Then Nk � { j ∈ V : (k, j) ∈ E } stands for
agent k’s neighboring set. DenoteA the graph adjacencymatrix and akj its elements,
where akj = 1 if (k, j) ∈ E , akj = 0 otherwise. Next, letD = diag{dk}k=1,...,n be the
degree matrix of G , in which dk �

∑
j∈N k

ak j . Subsequently,L � D − A is called
the Laplacian matrix.

To account for the difference on the demand from the main grid and the WF
output power, the WF supervisory controller is equipped with a virtual leader which
sends an information on the power imbalance to at least one agent in the MAS. As
a result, all WTs+BESSs can equally share that power imbalance throughout the
communications among agents. The leader is denoted through the sub-index 0 and
N0 denotes its neighboring set. Consequently, define a0i = 1 if i ∈ N0, i.e., there
is a connection between the leader and agent i while a0i = 0 otherwise. Finally, let
Γ � diag{a0i }i=1,...,N .

3.4.1 Control Design without Communication Delays

To track a power demand from the grid, the WF supervisory controller contains a
virtual leader with the following dynamics

ẋ0 = Ax0, (24)

where x0 ∈ R
4 is its state vector capturing the power imbalance information. Then

the design of distributed controllers for WTs with on-site BESSs is proposed as
follows.

Theorem 1 Having G connected, with at least once connection from the virtual
leader to an agent, the virtual leader initial states are set to be

x0(0) =
[
0,

Pd − ∑
Kst,i (Pr,i + Ps,i )

n
,
0.7Qd

n
,
0.3Qd

n

]T

. (25)

The distributed controller for WTs+BESSs is designed as follows,

ui = −cK
∑
j∈N i

ai j (xi − x j ) − c0ai0K (xi − x0), (26)
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with any c > 0, c0 > 0; K =
⎡
⎣
k1 k2 0 0
0 0 k3 0
0 0 0 k4

⎤
⎦, k1 < 0, k2 > 0, k3 > 0, k4 > 0, and

i = 1, 2, . . . , n. Then, the following quantities reach consensus: energy levels, pro-
portional active powers, and proportional reactive powers of all BESSs, proportional
reactive powers of GSCs. Moreover, the demand power tracking is achieved.

Proof Denote ζ = x − 1n ⊗ x0. We then obtain

u = −[c0Γ ⊗ K ]ζ − c[L ⊗ K ]x . (27)

Therefore,

ζ̇ = [In ⊗ A]ζ + [In ⊗ B]u
= [In ⊗ A]ζ − c[In ⊗ B][L ⊗ K ]x − [IN ⊗ B][c0Γ ⊗ K ]ζ
= [In ⊗ A − cL ⊗ BK − c0Γ ⊗ BK ]ζ − c[L ⊗ BK ](1n ⊗ x0),

= [In ⊗ A − (cL + c0Γ ) ⊗ BK ]ζ, (28)

becauseL 1n = 0. Let us denoteA � In ⊗ A − (c0Γ + cL ) ⊗ (BK ), then the dy-
namics of ζ in (28) is rewritten as

ζ̇ = Aζ. (29)

Note that c0Γ + cL is positive definite because of the connectedness of G and the
connection from the virtual leader to an agent [35]. Denote the eigenvalues of c0Γ +
cL by λi , then λi > 0 ∀ i = 1, . . . , n. Moreover, c0Γ + cL is diagonalizable by
an orthogonal matrix U ∈ R

n×n , which leads to

A = (U ⊗ I4)diag{A − λi BK }i=1,...,N (UT ⊗ I4), (30)

Therefore, all eigenvalues of matrix A are actually indicated by the eigenvalues of
matrices A − λi BK for i = 1, . . . , n. It can be easily shown that the characteristic
equation of the system matrix A − λi BK is

(s + λk4)(s + λk3)

(
s2 + λi k2s − 1

3600
λi k1

)
= 0. (31)

Thus, A − λi BK is stable, and hence, A is stable, if and only if λi k4 > 0, λi k3 >

0, λi k2 > 0 and 1
3600λi k1 < 0, which are equivalent to k2 > 0, k3 > 0, k4 > 0, and

k1 < 0. This means the consensus is achieved for the energy levels, proportional
active powers, and proportional reactive powers of all BESSs. Further, the demand
power tracking is achieved because of the initial conditions setting (25). �
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3.4.2 Control Design in Presence of Communication Delays

Suppose that all communication channels have a uniform time delay which is equal
to τ > 0. Then the distributed controller design in Section 3.4.1 needs to be revised
to account for time delays, as follows.

Theorem 2 Having G connected, with at least one connection from the virtual
leader to an agent, the virtual leader initial states are set by (25). The delayed
distributed controller is designed as follows,

ui (t) = cK
∑
j∈N i

ai j [xi (t − τ) − x j (t − τ)] − c0ai0K (xi (t − τ) − x0(t − τ)),

(32)

where K is defined in Theorem 1, c > 0, c0 > 0, and

τ <

arccos 1
k22λn
2αk1

+
√

(
k22λn
2αk1

)2+1
√

k22λ
2
n

2 +
√

(
k22λ

2
n

2 )2 + α2k21λ
2
n

, (33)

with λn denotes the maximum eigenvalue of c0Γ + cL and α � − 1
3600 . Conse-

quently, the consensus is achieved for all BESSs for their energy levels, proportional
active powers, and proportional reactive powers. The consensus is also achieved
for proportional reactive powers of GSCs. Moreover, the demand power tracking is
achieved.

Proof The closed-loop system dynamics in presence of the controller (32) is

ζ̇ (t) = (In ⊗ A)ζ(t) − (c0Γ + cL ) ⊗ (BK )ζ(t − τ). (34)

Subsequently, utilizing the similar approach as Theorem 1’s proof leads to the result
that ζ(t) becomes 0 if and only if the closed-loop transfer function s I4 − (A −
λi BKe−τ s) is stable. This is achieved if all roots of the following characteristic
equation lie on the open left hand side of the complex plane,

(s + λk4e
−τ s)(s + λk3e

−τ s)

(
s2 + λi k2e

−τ ss − 1

3600
λi k1e

−τ s

)
= 0. (35)

The equations s + λk4e−τ s = 0 and s + λk4e−τ s = 0 have all roots on the open left
hand side of the complex plane if and only if k4 > 0 and k3 > 0. Next, we can prove
that all roots of the following equation also lie on the open left hand side of the
complex plane,

s2 + λi k2e
−τ ss − 1

3600
λi k1e

−τ s = 0, (36)

if (33) is satisfied, by employing the same technique in [36]. �
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Fig. 7 The tested IEEE 14-bus system with 10 WTs and BESSs, and their communication graph

4 Case Studies

The system under consideration, which is depicted in Fig. 7, is the modified version
of the classical IEEE 14-bus system whose parameters can be found in [37]. Ten
WT+BESS modules are added to the system at Bus 1 as a replacement of the gener-
ator. Distributed control inputs are then developed and supplemented to the system
based on (26) and (32). For the control design, the MatDyn toolbox is utilized [38].
The undirected communication structure of the system under consideration shown
in Fig. 7 means that two-way communication channels are available for neighboring
WTs+BESSs. To validate the proposed approach’s performance in the regulation of
the WF output power, a few case studies are considered. Parameters of the design
can be found in [33]. BESS parameters can be found in [34].

4.1 Case 1: Variation of Wind Speed and Demand Response

In this scenario, the proportional power sharing and energy synchronization are
validated for BESSs in terms of fluctuating wind velocity and a sudden demand
change. To account for unpredicted wind speed variations due to weather conditions,
the wind speed is randomly changed, which results in WF output power change
accordingly. In addition, a step increase on the active power demand Pd is applied
after 4000 s. Simulation results are displayed in Fig. 8. It can be seen that the energy
levels of BESSs are synchronized and the power is equally shared between BESSs.

As also shown in the last subplot, the mismatch between the total load demand
and generated WT powers at anytime (red line) is compensated by energy storage
devices (black line).
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Fig. 8 Simulation results for case 1

In order to have a faster synchronization, the consensus gains can be adjusted,
but the BESS output power will experience higher transients. The information on
how to adjust the consensus gains to achieve limited transients in the output power
was further investigated in [34], the interested readers can check this reference for
details.

4.2 Case 2: Invariant Wind Velocity and Communication
Delays

The requirements on allowed communication delays in smart gridswere developedby
the IEEE (P2030—Smart Grid Interoperability Standard and 1527—Interconnection
Standard) and the International Electrotechnical Commission (IEC 61850—Power
Utility Automation) to ensure the grid reliability and to avoid possible transient
problems. Utilizing those standards, the maximum time delay for communication in
the monitoring and control is defined as 16 milliseconds (ms) [39], which is adopted
in the current analysis. To verify the effect of time delays, the delayed control inputs
in (32) are supplemented to the WTs and BESSs. Two scenarios are investigated: (i)
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Fig. 9 Simulation results for communication delays in case 2

10 ms time delays; and (ii) time delays start at 20 ms then increase to 30 ms after
4050 s.

Figure 9 depicts the simulation results for 10 ms communication delays. It can
be observed that the synthesized controller successfully shares the active power be-
tween BESSs, synchronizes the state of charge levels of BESSs, and compensates
the demand mismatch (as seen in the last subplot). It is also observed that the syn-
chronization takes more time, around 3000 s, to obtain the consensus of active power
sharing (first subplot). However, it takes less than 2000 s to achieve consensus when
there is no communication delays. As a result, the synchronization is slower when
time delays exist.

Figure 10 shows the simulation results when there exist 20 ms time delays for the
first 4050 s andwhen there are 30ms communication delay after 4050 s. The obtained
results show that the system synchronizes the WTs+BESSs successfully when the
communication delays are 20 ms. In contrast, by increasing the communication
delays to 30 ms, the designed controller cannot coordinate the power sharing and
the system loses its stability. Based on the IEEE standard, the maximum allowable
communication delay for a control system is 16 ms [39]. Therefore, the designed
approach can successfully operate in standard communication systems.
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Fig. 10 Simulation results for 20 and 30 ms time delays

4.3 Case 3: Failure in a Communication Link

This case study investigates the capability of the developed design in case of commu-
nication failures. It should be noted that all available consensus designs (including
the developed approach) are valid in connected communication graphs. This means,
if the communication structure in the system becomes unconnected due to communi-
cation failures, the synchronization of the entire system is impossible. However, the
synchronization can be attained in each sub-network associated with each sub-graph
which is connected.

Next, assume that a communication failure happens for WT+BESS number 1
where all communication links from this WT+BESS to its neighbors are failed.
Consequently, WT+BESS number 1 is separated from the rest of the system. Based
on the above clarification, the synchronization in this case should be achieved for
WT+BESS number 2–10, as shown in Fig. 11. It is observed thatWT+BESS number
2–10 could still successfully support the demand mismatch without help from BESS
number 1. In addition, the consensus of active power sharing and energy levels is
still attained for the connectedWTs+BESSs (WT+BESS numbers 2–10). The results
validate that the designed approach operates even when communication failures
occur.

4.4 Case 4: Verification of Reactive Power Demand

This section investigates the ability of the designed distributed controllers in reac-
tive power sharing. The purpose is to equally share the demand on reactive power
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Fig. 11 Simulation results for communication failure

among all GSCs ofWTs and their on-site BESSs based on their respective maximum
capacities, as shown in (16).

The reactive power demand is initially set to 1 p.u., where after 1500 s the reactive
power demand is suddenly increased by 50%. Subsequently, after 4000 s, the demand
is decreased to 0.5 p.u. Simulation results are depicted in Fig. 12. It is seen that the
WT+BESS units can successfully share the demand on reactive power even with
sudden demand changes. In addition, the proposed controller operates successfully
in presence of maximum 20 ms time delays. If the time delay is increased from 20
to 30 ms, the system becomes unstable. Hence, as discussed in case 2, the proposed
approach meets the demand on reactive power for standard communication systems.
Also, the fast synchronization of reactive power sharing can be achieved as the
reactive power does not depend on BESS energy. By adjusting the consensus input
gains, k3 and k4, different synchronization speeds are achieved.

5 Conclusion and Remarks

The problem ofWF output power regulation using standalone BESS is considered in
this chapter. First, the small signal stability analysis is conducted on full models of
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Fig. 12 Simulation results for reactive power control

the DFIGWT and on-site BESS system when they are connected to the grid. Next, a
novel control architecture based on the leader-follower consensus theory is proposed
for DFIG WTs with on-site BESSs. The proposed approach could synchronize the
energy levels, the active power sharing, and the reactive power sharing of individual
WTs with on-site BESSs. Two distributed consensus design approaches are derived
for the scenarios of having no time delay and delayed communication links. In case
of no communication delays, the delay-free consensus design can successfully meet
the power demand mismatch and compensate for the variations in wind velocity or
power demands.When there are timedelays in the communication links, the proposed
distributed delayed design can successfully ensure the cooperation of WTs with on-
site BESSs. In case of failures on communication links, the proposed approach can
also synchronize the operation of WTs with on-site BESSs if the rest of the system
is still connected.
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19. Baros S, IlićMD (2018)A consensus approach to real-time distributed control of energy storage
systems in wind farms. IEEE Trans Smart Grid. https://doi.org/10.1109/TSG.2017.2749379
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Sensitivity Analysis of Frequency
Regulation Parameters in Power Systems
with Wind Generation

Julian Patiño, José David López and Jairo Espinosa

Abstract In power systems, frequency constitutes a parameter indicating the equi-
librium between power demanded by load and energy produced by generation sys-
tems. This chapter studies the effects of varying different system parameters on the
overall performance of the traditional frequency regulation system when including
contributions of renewable energy sources. A model for the inclusion of variable
speed wind turbines in the frequency control loops is analyzed, and parametric
sensitivity functions are established using linearized models and transfer function
representations for the system components. Through both theoretical analysis and
performance simulations, the impact of an inaccurate representation of system iner-
tia in frequency performance is established. Stability analysis for inertia sensitivity
of frequency regulation involving wind generation is also provided. Results indi-
cate more robustness to parameter variations for systems including wind turbine
participation. However, the frequency deviation rate increases when the uncertainty
in system parameters grows. This behavior might lead to instability scenarios under
frequency disturbances for the power system.

1 Introduction

In power systems, frequency constitutes a parameter indicating the equilibrium
between power demanded by load and energy produced by generation systems [1].
When this relationship is unbalanced, control structures are in place to return the
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system frequency to operational values in the so-called Load Frequency Control
(LFC) of power systems. However, traditional frequency control strategies have been
developed for power systems with almost complete reliance on conventional energy
sources, but penetration of Renewable Energy Sources (RES) may require the par-
ticipation of these new units in the control loops [2].

Wind is the fastest growing and most widely deployed renewable energy source
worldwide [3].Variable SpeedWindTurbineGenerators (VSWTG) are themost pop-
ular devices for extracting electrical power from wind. VSWTG operation requires
action of electronic power converters, which effectively decouple the rotor angular
speed of the wind generating unit from the electrical frequency of the grid. Conse-
quently, VSWTG does not contribute directly to the natural inertial response of the
system under frequency disturbances and other operational events [4].

However, the increase of wind generators and the unpredictability and variabil-
ity associated with the wind resource also raise the difficulty level of the frequency
regulation tasks in power systems. In future grid operating normative, the partic-
ipation of wind turbine generators in system frequency regulation might become
mandatory. Hence, several studies have been proposed about control strategies for
the active inclusion of VSWTG in LFC loops. Complete reviews can be found in
[4–6]. Among many techniques, the required primary reserves for frequency regu-
lation contributions from Wind Turbine generators (WT) can be supplied through
de-loaded operation (under the point of maximum power extraction) of the WT and
the addition of control loops, emulating the response of conventional units (inertia
and droop controllers) [4, 7, 8].

This chapter focuses on analyzing the effects of parameter variations in the fre-
quency regulation structure of power systems involving wind generation. Sensitivity
functions are established using linearized models and transfer function representa-
tions for the system components. Sensitivity analysis has been previously employed
in the assessment of the dynamic performance of power systems. Nanda and Kaul
[9] explored the optimal tuning of automatic generation controllers in a multi-area
power systemwith conventional steam generation units. The role of inertia was stud-
ied through sensitivity tests in the development of a composite load model with
conventional machines [10]. For scenarios considering renewable energy sources,
the impacts of damping and inertia in the dynamic performance of grid frequency
were studied in [11], where authors analyzed different locations to provide emulated
inertia. Additionally, the behavior of Doubly-Fed Induction Generator (DFIG) wind
units in power systems was studied using eigenvalue sensitivities about inertia vari-
ations [12]. However, these works did not consider an explicit function for system
sensitivities. In this regard, transfer functions for power systems frequency regulation
elements are developed in [13–16] for conventional-only scenarios, and extended in
[7] for assessing the effects of load damping including wind farms.

Amidst this context, this chapter studies the effects of varying different system
parameters on the overall performance of the traditional LFC systemwhen including
contributions of renewable energy systems such as VSWTG. Through both theoret-
ical analysis and performance simulations, the impact of an inaccurate representa-
tion of system inertia is established. Results indicate more robustness to parameter
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variations for systems that include wind turbine participation. However, the fre-
quency deviation rate increases when the uncertainty in system parameters grows.
This behavior would lead to instability scenarios under frequency disturbances for
the power system.

2 Modeling of the Variable Speed Wind Turbine Generator
Control Loops

The relationship between rotor speed and power for awind turbine (WT) is inherently
non-linear. Themaximumpower point (MPP) is the operational rotor speed value that
causes the maximum power extraction from the WT. Given the non-linear dynamic
of the system, the MPP needs to be tracked continually in order to guarantee the
efficiency of the WT. The MPP tracking (MPPT) process starts with Eq. (1), which
represents the mechanical power of the WT:

Pm = 1

2
ρACp (λw, βw) ν3

w. (1)

where A denotes the turbine sweeping area, ρ represents the air density, βw is the
pitch-angle, λw is Tip Speed Ratio (TSR),Cp (λw, βw) is the performance coefficient
for the WT, and νw represents the per-unitized values of measured wind speed.

By definition, the TSR is a relation between the tangential speed at the tip of a
WT blade and the actual wind speed. Therefore, in per-unit system, λw,p.u. = ω

ν
, with

ν and ω denoting the rotor speed and the wind speed per-unit for a reference speed
of 12 m/s. Additionally, Eq. (2) presents the mechanical torque Tm,p.u. of the WT
in per-unit system, where ωm represents the per-unitized values of measured rotor
speed, Cp,max is the maximum value of Cp (λw, βw), and Kw is a constant defined in
Eq. (3).

Tm,p.u. =0.5 ρ A Cp(λw, βw)ν3
w

ωm Pbase
= KwCpν

3

ω
, (2)

with Kw =0.5 ρ A Cp,max

Pbase
(3)

Ifwind turbines are contributing to frequency regulation, the linearized representation
must include changes of the area frequency Δ f and wind speed variations v. In the
sameway as the LFC, frequency regulation contributions can come from the variation
of mechanical or electrical power in response to grid frequency changes.

Frequency contribution from wind turbines is possible due to the so called de-
loaded operation [4]. In this mode, the wind turbine operates under the MPP to
generate the active power reserve employed to contribute to frequency control tasks.
This active power reserve Pcont (p.u.) is:
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Pcont = PMPP − Pund = (1 − Xu) Kwind ω3 (4)

where ω denotes the rotor speed, Xu ∈ (0, 1) is a weighting factor expressing the
fraction of maximum power at de-loaded operating point [7], Pund is the de-loaded
power, PMPP is the maximum power extracted at the operating speed, and Kwind is a
constant parameter depending on the characteristics of the wind turbine [17]. In oper-
ation, ωMPP and ωund are the rotor angular speeds at PMPP and Pund , respectively.
According to [18], the power Pure f and torque τure f for operating at determined wind
speed are:

Pure f =Pund + (PMPP − Pund)
(ωund − ω)

(ωund − ωMPP)
(5)

=Xu Kwind ω3 + Kwind ω3 (1 − Xu) (ωund − ω)

(ωund − ωMPP)
(6)

τure f =Xu Kwind ω2 + Kwind ω2 (1 − Xu) (ωund − ω)

(ωund − ωMPP)
(7)

Figure 1 illustrates the model of WT with control loops for frequency contribution
from wind turbines. According to this figure, variations in electrical torque Δτe,cont
can be expressed as:

Δτe,cont (s) = ΔPe,cont (s)

ω0
= (−1)

[
1/Rw + Kns

ω0

]
Δ f (s) (8)

Fig. 1 Model of variable speed WT for LFC support
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In Eq. (8), ΔPe,cont denotes electrical power variations related to changes in fre-
quency, ω0 is the current angular speed of the rotor, Kn is a parameter weighting the
inertia control loop, and Rw is a parameter similar to the speed droop R of the LFC
regulation. The latter parameters are responsible for inertial emulation from WT,
with dynamic performance improving with both low values of Rw and high values
of Kn [18]. Let the linearized dynamic operating electrical torque be:

Δτure f (s) = ∂τure f

∂ω
Δω(s) = (9)

[
2Kwind ω0 Xu + 2Kwind ω0(1 − Xu) · (ωund − ω0)

(ωund − ωMPP )
−Kwind ω2

0 (1 − Xu)

(ωund − ωMPP )

]
Δω(s).

The total variation in electrical torque (Δτe) can be presented in terms of Δ f (s) and
Δω(s) as follows:

Δτe(s) = Δτe,cont (s) + Δτure f (s) = (−1)

[
1/Rw + Kns

ω0

]
Δ f (s) + ∂τure f

∂ω
Δω(s).

(10)
Denote v0 as the wind speed (p.u.) and ω0 as the initial angular speed of the rotor
at de-loading operating point, and let, λre f and Cp,re f be the operational values of
the tip speed ratio λ and the performance coefficient Cp(λ, β) of WT for a reference
pitch-angle βre f . The mechanical torque τm of the turbine is:

τm = KwindCpv3

ω
(11)

From Eq. (11), the linearized mechanical torque Δτm(s) can be expressed as:

Δτm(s) =∂τm

∂ω
· Δω(s) + ∂τm

∂v
· Δv(s) + ∂τm

∂ f
· Δ f (s); with (12)

∂τm

∂ω
=
(
Kwind ς v02

ω0
− Kwind Cp,ref v03

ω0
2

)

∂τm

∂v
=
(
3Kwind Cp,ref v02

ω0
+ Kwind ς λref v02

ω0

)

∂τm

∂ f
=
(

ε Kwind Kb v03

ω0

)
.

The expressions for ε = ∂Cp

∂β
|op and ς = ∂Cp

∂λ
|op should be calculated depending on

the operational conditions λre f and Cp,re f . Also, Kb = Δβ

Δ f = ∂β

∂ f .
For a wind turbine with a inertia Hw, the swing equation can be employed to

obtain and expression for the variations in rotor angular speed Δω in terms of the
grid frequency variations Δ f and wind speed changes Δv. Using the functions for
Δτe(s) and Δτm(s), the power swing equation becomes:
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Δω(s) = Δτm(s) − Δτe(s)

2Hw s
. (13)

As illustrated in [19], the current parameter values related with active power produc-
tion in WT can be obtained with small-signal analysis. Denote by ΔPe, Δτ and Δω

the small deviations in electrical power Pe, electrical torque τe and the angular rotor
speed ω respectively. Then,

ω = ω0 + Δω; (14)

τe = τe0 + Δτe; (15)

Pe = Pe0 + ΔPe = τe ω = (τe0 + Δτe) (ω0 + Δω) , (16)

where Pe0, τe0, and ω0 are the initial values for the corresponding parameters pre-
viously mentioned. After expanding Eq. (16) and neglecting the terms of superior
order, ΔPe can be expressed in terms of the angular speed and electrical torque
deviations as:

ΔPe = ω0 Δτe + τe0 Δω. (17)

In this context, the initial operating electrical torque τe0 equates the de-loaded torque
τure f presented in Eq. (7). Using the previously developed expressions for Δω, Δτe,
and τe0, the linearized electrical power ΔPe for a wind turbine in terms of the grid
frequency variations Δ f and wind speed changes Δv is:

ΔPe(s) =
( −1

s + r

)(as2 + bs + c

qs + 1

)
Δ f (s) +

(
g

qs + 1

)
Δv(s), with (18)

Gw f (s) =
( −1

s + r

)(as2 + bs + c

qs + 1

)
(19)

Gwv(s) =
(

g

qs + 1

)
. (20)

Parameters g, q, r , a, b, and c are constant terms left omitted because of their
extension. They are the result of long algebraic operations among system parameters.

3 Extraction of Sensitivity Functions

Frequency regulation can be classified in three main stages according to the nature
and timescales of the control efforts: primary actions proportional to the frequency
deviations, secondary actions allowing correction of steady-state errors, and tertiary
actions related with predefined dispatches and some emergency conditions. These
three stages constitute the Load Frequency Control (LFC) system [1, 20]. Grid ele-
ments must be modeled for the design of LFC controllers. First order models are
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Fig. 2 Load frequency regulation system with linearized WT model for RES power contributions

assumed for the governor and turbine of conventional units, and for the representa-
tion of the frequency response characteristic of any control area in the power system.

Figure 2 illustrates the complete system representation for m1 conventional units
with contribution of m2 wind generation systems. Note that wind speed variations
Δv j are acting as input parameters, just as the load variations (ΔPL ). From Fig. 2
parameters for the i-th area are: ΔPmki the change in mechanical power of the
generator k, ΔPgki the change in the active power output of generator k, ΔPL the
load perturbation, Δ fi the frequency change, Di the damping coefficient. Hi the
equivalent inertia, ΔPcki the control action of the LFC for the k-th generator, Ti j the
power exchange coefficient between area i and area j , ΔPtiei the total change in the
power exchanged between area i and other areas andΔ f j the change in the frequency
of area j connected to area i . Also, Bi denotes the bias factor for modulation of the
error signal in secondary regulation, Ki (s) is the transfer function of the secondary
controller and αi the participation factor of each generator in secondary control. The
total inertia Hi represents the sum of the aggregated inertias of conventional units
and wind turbines. Usually, this parameter is calculated empirically, but the analysis
of previous works has shown the impacts of inertia in frequency regulation [21, 22].
The sensitivity analysis proposed in this chapter shows the impacts on frequency
regulation when the measured value of Hi is different from the expected. This is also
justified as the inertial emulation from wind turbines could lead to inertia variations
[13, 14]. From Fig. 2, the total variations on system frequencyΔ f can be obtained as
the linear composition of the individual responses to each input signal. Denote with
Δ fL the variations in system frequency with respect to load changes ΔPL . Making
Δv j = 0, Δ fL is given by:
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Δ fL(s) =
1

2Hi s+D {−ΔPL(s)}
1 + 1

2Hi s+D

{
K (s) +∑m1

i=1 Mi (s) +∑m2
j=1 Gw f, j (s)

} (21)

In the sameway, denotingwithΔ fv the variations in system frequencywith respect to
wind speed changesΔv j andmakingΔPL = 0, the following expression is obtained:

Δ fv(s) =
1

2Hi s+D

{∑m2
j=1 Gwv, j (s)Δv j (s)

}

1 + 1
2Hi s+D

{
K (s) +∑m1

i=1 Mi (s) +∑m2
j=1 Gw f, j (s)

} (22)

Finally, the total variations on system frequency Δ f (s) can be expressed from
Eqs. (21) and (22), as:

Δ f (s) = Δ fL(s) + Δ fv(s) (23)

=
{
−ΔPL(s) +∑m2

j=1 Gwv, j (s)Δv j (s)
}

2His + D +
{
K (s) +∑m1

i=1 Mi (s) +∑m2
j=1 Gw f, j (s)

}

3.1 Sensitivity to Inertia Hi

To represent the effects of inertia variations in frequency regulation, the calculation
of ∂Δ f (s)

∂Hi
is required. Extracting the partial derivative of Δ f with respect to Hi from

Eq. (23), the following expression is obtained:

∂Δ f (s)

∂Hi
=

2s
[
ΔPL (s) −∑m2

j=1 Gwv, j (s)Δv j (s)
]

[
2Hi s + D +

{
K (s) +∑m1

i=1 Mi (s) +∑m2
j=1 Gw f, j (s)

}]2 (24)

= {2s}
⎡
⎣ Δ f (s){

ΔPL (s) −∑m2
j=1 Gwv, j (s)Δv j (s)

}
⎤
⎦
2⎧⎨
⎩ΔPL (s) −

m2∑
j=1

Gwv, j (s)Δv j (s)

⎫⎬
⎭

The unit-less sensitivity function SH with respect to total inertia Hi can be also
calculated by definition as:

SH = dΔ f (s)

Δ f (s)

/
dHi

Hi
= ∂Δ f (s)

∂Hi
· Hi

Δ f (s)

= Δ f (s){
ΔPL(s) −∑m2

j=1 Gwv, j (s)Δv j (s)
} · {2sHi } (25)
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In [14], a similar sensitivity analysis was performed for a power system but only with
conventional hydraulicmachines. From those results, frequency variationsΔ fbase for
a purely conventional system (no RES penetration) can be obtained. In this sense,
the sensitivity expression Δ fbase with respect to to inertia for conventional power
systems is

∂Δ fbase(s)

∂H
=
[
Δ fbase(s)

ΔPL(s)

]2
· ΔPL(s) · 2s. (26)

Similarly, the aforementioned unit-less sensitivity expression SH,base of Δ fbase with
respect to Hbase for a completely conventional power system is [13]:

SH,base = dΔ f (s)

Δ f (s)

/
dHbase

Hbase
= ∂Δ f (s)

∂Hbase
· Hbase

Δ f (s)
= Δ fbase(s)

ΔPL(s)
2Hbases. (27)

The comparison among sensitivities with respect to inertia for power systems with
and without wind turbine contributions to frequency variations can be established
from Eqs. (24) to (27). As expected, the inclusion of wind turbines means includ-
ing wind speed in frequency sensitivity through the term

∑m2
j=1 Gwv, j (s)Δv j (s) (see

Eqs. (24) and (25)). It is expected that the intrinsic unpredictable and variable nature
of the wind resource will impact the power generated from renewable units. In con-
sequence, the dynamic characteristics of the frequency regulation are being modified
according to the wind profile for a determined inertia value. This will be illustrated
through simulation in subsequent sections.

4 Stability Analysis of Inertia Sensitivity of LFC with WT

Traditionally, grid frequency variationsΔ f (s) have been exclusively analyzed under
the influence of load disturbancesΔPL(s) [1, 19, 20]. This approximationwas devel-
oped for systems involving only conventional generation, resulting in the following
expression:

dΔ f (s) = ∂Δ f (s)

∂ΔPL(s)
· dΔPL(s). (28)

For systems with contribution of wind turbines to frequency regulation, wind speed
variations Δv j need to be considered in the analysis of frequency deviation. There-
fore, for a system with frequency regulation contributions from m2 wind turbines,
Eq. (28) becomes:

dΔ f (s) = ∂Δ f (s)

∂ΔPL(s)
· dΔPL(s) +

m2∑
j=1

∂Δ f (s)

∂Δv j (s)
· dΔv j (s). (29)
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Nevertheless, the impacts of the system inertia coefficient are not considered neither
in Eq. (28) nor Eq. (29). This omission could offer incomplete information, because
a loss of generation or an interruption event may result in a variation of the inertia
coefficient for a given machine, affecting the aggregated system inertia [23]. These
events have an high probability of occurrence in an environment with variable and
unpredictable renewable energy sources, where resource intermittence or generation
drops may result in changes from the initial inertia calculation [22]. Additionally,
inertia could have been estimated form an outdated generation profile. All these
phenomena suggest that frequency deviation Δ f should consider the effects of the
generator inertia coefficient rather than being function of the external disturbances
ΔPL and Δv j exclusively. In consequence, the impact of the inertia coefficient in
the grid frequency regulation performance must be determined.

4.1 Extraction of Differential Equation for Frequency
Deviation

Assuming mutual independence amongΔPL ,Δv j , and inertia coefficient Hi , Eq. 29
is modified by adding variations with respect to Hi , as follows:

dΔ f (s) = ∂Δ f (s)

∂ΔPL(s)
· dΔPL(s) +

m2∑
j=1

∂Δ f (s)

∂Δv j (s)
· dΔv j (s) + ∂Δ f (s)

∂ΔHi
dΔHi .

(30)
From Eq. (24),

∂Δ f (s)

∂Hi
dHi = 2s(dHi )

[
Δ f (s)

ΔPL (s) −∑m2
j=1 Gwv, j (s)Δv j (s)

]2 ⎧⎨
⎩ΔPL (s) −

m2∑
j=1

Gwv, j (s)Δv j (s)

⎫⎬
⎭ (31)

Additionally, taking partial derivatives with respect to ΔPL and Δv j from Eq. 23,
we can show that:

∂Δ f (s)

∂ΔPL(s)
= Δ f (s)

ΔPL(s)
; ∂Δ f (s)

∂Δv j (s)
= Δ f (s)

Δv j (s)
(32)

Replacing Eqs. (31) and (32) in Eq. (30), we get:

dΔ f (s) = Δ f (s)

ΔPL (s)
· dΔPL (s) +

m2∑
j=1

Δ f (s)

Δv j (s)
· dΔv j (s) (33)

+ 2s(dHi )

[
Δ f (s)

ΔPL (s) −∑m2
j=1 Gwv, j (s)Δv j (s)

]2⎧⎨
⎩ΔPL (s) −

m2∑
j=1

Gwv, j (s)Δv j (s)

⎫⎬
⎭
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Laplace inverse transformation is employed to get the time domain representation of
Eq. (33), resulting in:

dΔ f (t) =L−1
[

Δ f (s)

ΔPL (s)
· dΔPL (s)

]
+ L−1

⎡
⎣ N∑

j=1

∂Δ f (s)

∂Δv j (s)
· dΔv j (s)

⎤
⎦+ . . . (34)

. . . L−1

⎧⎨
⎩
[

Δ f (s)

ΔPL (s) −∑m2
j=1 Gwv, j (s)Δv j (s)

]2 ⎡
⎣ΔPL (s) −

m2∑
j=1

Gwv, j (s)Δv j (s)

⎤
⎦ · 2sdHi

⎫⎬
⎭ .

Further, taking integration of Eq. (34), we get Δ f (t) as

∫
dΔ f (t) =Δ f (t) =

∫
L−1

[
Δ f (s)

ΔPL (s)
· dΔPL (s)

]
+
∫

L−1

⎡
⎣ N∑

j=1

∂Δ f (s)

∂Δv j (s)
· dΔv j (s)

⎤
⎦+ · · ·

(35)

· · · L−1

⎧⎨
⎩
[

Δ f (s)

ΔPL (s) −∑m2
j=1 Gwv, j (s)Δv j (s)

]2 ⎡
⎣ΔPL (s) −

m2∑
j=1

Gwv, j (s)Δv j (s)

⎤
⎦ · 2sdHi

⎫⎬
⎭ .

Equation (35) presents the total differential equation of frequency deviation Δ f (t)
in time domain considering inertia effects. In order to determine the impacts of
the inertia coefficient, a stability analysis of Δ f (t) is presented in the following
subsection.

4.2 Stability Analysis

After a disturbance, all characteristic poles of the transfer function of a power system
are located on the left half-plane in the s-domain if the system is stable. In this case,
the finite time-domain input signals Δv j (t) and ΔPL(t) would not be producing
infinite time-domain responses on system output Δ f (t). From control theory, that is
equivalent to show that the norm of the transfer function of the system is bounded.
From Eq. (35), this would represent that the transfer functions listed in Eq. (36) are
already bounded:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∥∥∥∥Δ f (s)

/[
ΔPL(s) −∑m2

j=1 Gwv, j (s)Δv j (s)
]∥∥∥∥∥∥∥∥Δ f (s)

/
ΔPL(s)

∥∥∥∥ < ∞ for ∀t ∈ (0,∞)∥∥∥∥∥
N∑
j=1

Δ f (s)

/
Δv j (s)

∥∥∥∥∥

(36)

Moreover, frequency regulation in power systems is designed to keep Δ f (t) inside
a determined finite band despite variations in Δv j and ΔPL . Assuming an stable
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system, the bounds of frequency variations should be determined. Considering both
Δv j andΔPL as step functions, and using triangle inequality properties in the expres-
sion of Eq. (35) we get:

‖Δ f (t)‖ ≤
∥∥∥∥∥∥
∫

L−1
[

Δ f (s)

ΔPL (s)
· dΔPL (s)

]
+
∫

L−1

⎡
⎣ m2∑

j=1

Δ f (s)

Δv j (s)
· dΔv j (s)

⎤
⎦+ · · ·

· · ·
∫

L−1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

Δ f (s)

ΔPL (s) −
m2∑
j=1

Gwv, j (s)Δv j (s)

⎤
⎥⎥⎥⎦

2

·
⎡
⎣ΔPL (s) −

m2∑
j=1

Gwv, jΔv j (s)

⎤
⎦ · 2sdHi

⎫⎬
⎭

∥∥∥∥∥∥∥∥∥

≤
∥∥∥∥
∫

L−1
{∥∥∥∥ Δ f (s)

ΔPL (s)

∥∥∥∥ dΔPL (s)

}∥∥∥∥+
∥∥∥∥∥∥
∫

L−1

⎧⎨
⎩
∥∥∥∥∥∥
m2∑
j=1

Δ f (s)

Δv j (s)

∥∥∥∥∥∥
m2∑
j=1

dΔvi (s)

⎫⎬
⎭
∥∥∥∥∥∥+ · · ·

· · ·

∥∥∥∥∥∥∥∥∥

∫
L−1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎣

Δ f (s)

ΔPL (s) −
m2∑
j=1

Gwv, jΔv j (s)

⎤
⎥⎥⎥⎦

2∥∥∥∥∥∥∥∥∥

⎡
⎣ΔPL (s) −

m2∑
j=1

Gwv, jΔv j (s)

⎤
⎦ · 2sdHi

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∥∥∥∥∥∥∥∥∥

≤
∥∥∥∥
∫

L−1 [κ dΔPL (s)]

∥∥∥∥+
∥∥∥∥∥∥
∫

L−1

⎡
⎣η

m2∑
j=1

dΔv j (s)

⎤
⎦
∥∥∥∥∥∥+ · · ·

· · ·
∥∥∥∥∥∥
∫

L−1

⎧⎨
⎩ρ2

⎡
⎣ΔPL (s) −

m2∑
j=1

Gwv, jΔv j (s)

⎤
⎦ · 2sdHi

⎫⎬
⎭
∥∥∥∥∥∥

≤
∥∥∥∥
∫

κ · 1(t − t0)dΔPL

∥∥∥∥+
∥∥∥∥∥∥
∫

η · 1(t − t0)
m2∑
j=1

dΔv j

∥∥∥∥∥∥+ · · ·

· · ·
∥∥∥∥∥∥
∫

ρ2.

⎡
⎣1(t − t0)ΔPL −

m2∑
j=1

(
g j

q j

)
· e−

(
1
q j

)
t
Δv j

⎤
⎦ 2sdHi

∥∥∥∥∥∥

≤ κ ‖ ΔPL‖ + η

∥∥∥∥∥∥
m2∑
j=1

Δv j

∥∥∥∥∥∥+ ρ2 ‖Hi‖
∥∥∥∥∥∥
⎡
⎣ΔPL −

m2∑
j=1

(
g j

q j

)
· e−

(
1
q j

)
t
Δv j

⎤
⎦
∥∥∥∥∥∥ (37)

where κ =
∥∥∥ Δ f (s)

ΔPL (s)

∥∥∥, η =
∥∥∥∥∥

N∑
j=1

Δ f (s)
Δv j (s)

∥∥∥∥∥ and ρ =
∥∥∥∥∥∥
⎡
⎣ Δ f (s)

ΔPL (s)−
N∑
j=1

Gwv, jΔv j (s)

⎤
⎦
∥∥∥∥∥∥ represent

the respective bounded magnitudes of the transfer functions established in Eq. (36).
Also, L−1[1/s] = 1(t − t0), with 1(t − t0) = 1 when t ≥ t0. In this way, ||1(t −
t0)|| = 1. Therefore, the system remains stable when the effects of inertia variations
are considered.

In the same way, the output frequency deviation Δ f of the traditional power
system model without considering inertia effects is given as [23]:

‖Δ fbase(t)‖ ≤ κbase ‖ΔPL‖ (38)

The expressions in Eqs. (37) and (38) show that the frequency deviations in both
cases remain bounded when a stable power system is considered. However, it is



Sensitivity Analysis of Frequency Regulation Parameters … 79

also evident that the boundaries are different. The limits of the conventional model
depend on the boundaries of load disturbance ΔPL . However, the consideration
of inertia effects and wind turbine integration to frequency regulation affects the
boundaries of frequency deviations. In this case, the limits depend on factors such
as load disturbance, variations in wind speed, system configuration, and the specific
value of Hi .

5 Simulation Results and Discussion

A modified version of the WSCC 9-bus power system [1] was employed for simu-
lating wind turbine contribution in the LFC for a multi-area power system. For the
system of Fig. 3, 20% of conventional generation in Area III was replaced by a wind
farm. The wind farm was formed by 32 DFIG WT of 2 MW each, whose model
parameters were shown in Table 2. The system was modeled as indicated in Fig. 1,
and several case studies were analyzed.

5.1 Case 1: Frequency Response for a Load Step Change

A step change of 10% is applied to the simulated system at t = 0 s. The system with
a reduced inertia was simulated without wind, and with increasing constant wind
speed (5 and 10 m/s) as disturbance. Contribution of wind turbines in frequency

Fig. 3 WSCC 9-bus system
multi-area partitioning. The
modified system parameters
are summarized in Table 1,
considering an hydraulic
machine and two gas units.
The Power Base was set at
100 MVA
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Table 1 WSCC 9 bus system parameters [1]

Parameter Value Parameter Value Parameter Value

H1 23.64 s T12 2.064 p.u. R1 2 p.u.

H2 6.4 s T13 6.1191 p.u. R2 10 p.u.

H3 1.505 s T23 14.4353 p.u. R3 7.5019 p.u.

MV Anom1 247.5 D1, D2, D3 0.8 B1 2.8 s

MV Anom2 192 Tg1, Tg2, Tg3 0.2 B2 10.8 s

MV Anom3 128 Tτ1, T τ2, T τ3 0.3 B3 8.3 s

Table 2 Wind-turbine model simulation parameters [25]

Parameter Value Parameter Value

Pnom 2MW Rs 0.00491p.u.

Vnom 966V Xls 0.09273p.u.

K1 5000Nm Xm 3.96545p.u.

K2 2000Nm Rr 0.00552p.u.

Tw 1 Xlr 0.1p.u.

Ka 500 H 4.5 s

Ta 20 J 506.61Kgm2

regulation is not being considered. Fig. 4 presents the grid frequency deviations for
this case. Frequency nadir is lower for the system with reduced inertia and no wind.
Despite the wind being considered exclusively as disturbance, the effects of the wind
power injections help to improve the frequency characteristic of the system. Wind
power production increases with higher speeds. However, higher speeds may lead to
a more oscillatory response, as seen from the curve for a speed of 10 m/s.

5.2 Case 2: Frequency Response for a Load Step Change and
WT Contribution to LFC

For the previous example, contribution of wind turbines in frequency regulation is
now being considered as constant in every case. Figure 5 presents the grid frequency
deviations for this case. Again, we can see how the lower frequency nadir is given for
the case without active power injections from RES. Response is similar as the one
shown in Fig. 4; however, the contribution of wind turbines to frequency regulation
provided a smoother response in grid frequency deviation. Again, a higher speed and
oscillatory response even with inertia emulation from wind turbines are concerning.
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Fig. 4 Case 1: Frequency response without contribution of WT and increasing wind speed

Fig. 5 Case 2: Frequency response with constant contribution of WT and increasing wind speed



82 J. Patiño et al.

Fig. 6 Case 3: Frequency response with constant wind speed and increasing contribution of WT

5.3 Case 3: Frequency Response for a Load Step Change and
Increasing Wind Contribution to LFC

A step change of 10% is applied to the simulated system at t = 0 s. Contribution of
wind turbines in frequency regulation is being increased (0–10% and 20%) in every
case by modifying loop parameters. The systemwith a reduced inertia was simulated
with a constant wind speed of 5 m/s. Figure 6 presents the grid frequency deviations
for this case. Here, the effects of the increased inertia with the contribution of wind
turbines are evident. However, these effects are being shown with the assumption of
constant wind speed.

5.4 Case 4: Frequency Response with Constant Wind Speed
and Increasing Contribution of WT After Unstable
Conditions

For this case, one of the system poles was changed to a value in the right half-plane
of the s-domain. This caused an unstable response in frequency deviations. The same
conditions of Sect. 5.3 are applied in this case and the resulting responses are plotted
in Fig. 7. The system took longer time in reaching unstable conditions when wind
turbines contributed to grid frequency regulation. Wind speed was kept as constant
value of 5 m/s. Variability in wind speed may lead to a faster unstable mode.
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Fig. 7 Case 4: Frequency response with constant wind speed and increasing contribution of WT,
starting from unstable case

5.5 Case 5:Frequency Response with a Simulated Wind
Profile and Increasing Contribution of WT

The power generation in wind units depends on the wind profile. Wind speed is
highly variable and unpredictable, causing fluctuations on wind power generation
and frequency deviations. A wind speed profile was simulated with data obtained
from the database of Virgin Islands [24]. Load disturbance was not considered, just
wind speed. The resultant responses are plotted in Fig. 8, while contribution of wind
turbines in frequency regulation is increased (0–10% and 20%). According to Fig. 8,
the curves with higher inertia contributions from wind turbines presented smaller
peaks than the purely conventional system. In consequence, frequency deviation had
a better performance with contribution of RES despite the inherent variability of the
wind speed.

5.6 Case 6: Frequency Response with a Simulated Wind
Profile and Load Disturbance

The same conditions of the immediately previous case were replicated, but now a
step load disturbance of 10% was applied at t = 50 s. The contributions of wind
turbines make the system more robust to disturbance action, even under the effects
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Fig. 8 Case 5: Frequency response with a simulated wind profile and increasing contribution of
WT

Fig. 9 Case 6: Frequency response with a simulated wind profile and increasing contribution of
WT, and load disturbance ΔPL = 0.1 at t = 50 s

of variable wind speed (see Fig. 9). Starting from an stable case, the consideration
of inertia variations maintains the stability of the system. This is expected from
Eq. (35), and the analysis of Sect. 4.2. The dynamic characteristics of grid frequency
deviations can actually improve with a higher value of inertia coefficient.
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6 Conclusions

This chapter addressed the effects of inertia variations for power systems with inte-
grated wind units. The system transfer functions were obtained from a linearized
wind turbine model. The mathematical relationships were formulated to analyze
the sensitivity and stability regarding inertia coefficient H . These expressions were
verified through simulation of several cases under different stability conditions and
disturbances in wind speed and load.

Simulations have shown a better and smoother response of frequency deviations
for the cases with contributions of wind turbines in comparison with the basic case of
the purely conventional system. These improvements on frequency response provide
a better power quality. Actually, results indicate a better performance of the frequency
response for higher contributions ofwind turbines to system inertia.Moreover, results
suggest more robustness to parameter variations of systems with wind turbine par-
ticipation. However, the frequency deviation rate increases when the uncertainty of
system parameters grows. This behavior would lead to instability scenarios under
frequency disturbances for the power system.

With the growing development of intermittent renewable energy sources and its
integration of the electrical grid, renewable energy will take more responsibility
for frequency regulation tasks in the foreseeable future. Therefore, the impact of
changes in generator inertia coefficient H on the power system frequency regulation
must be accounted. We showed, both with theoretic and simulation analyses, that
when including the wind generation system into the control loop, an inaccurate
generator inertia coefficient H has a relatively small impact when the power system
is inherently stable; while the system frequency deviation may be accelerated when
the power system is indeed unstable after disturbance.

In future works, the analysis of the impacts of the combination of the frequency
sensitivities with respect to the main system parameters should be explored. This
would include parameter such as generator inertia coefficient H , the governor speed
coefficient R and load-damping coefficient D. Their effects on the regulation of
power system frequency response and stability studies in LFC should be explored
together rather than considering them individually.

Acknowledgements Colciencias supported contributions of J. Patiño through the program “Con-
vocatoria 528—Convocatoria Nacional para Estudios de Doctorados en Colombia 2011”.
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Wind Turbines Integration into Power
Systems: Advanced Control Strategy
for Harmonics Mitigation

Alex Reis, José Carlos de Oliveira and Leandro Pains Moura

Abstract When considering the topic of grid integration, it is recognized that wind
farms can bring about negative power quality impacts at the connection point. A lot
of attention has been given to this type of generation system, aiming at achieving the
required level of compatibility between the wind turbine and the AC grid. Amongst
the various existing power quality phenomena, harmonic distortion emerges as a
relevant challenge once power electronics converters that currently exist on wind
energy conversion systems have a direct effect upon the Voltage Harmonic Total
Distortion (THD). The search for solutions that reduce the harmonic current injection
emerge as an issue that needs ample consideration. In this context, this chapter is
focused on twomain points directed to full converterwind turbines (type IV). Thefirst
exploits an analysis and an experimental validation of the physical factors responsible
for harmonic current emissions. The second part contemplates an advanced control
strategy aimed at reducing the level of harmonic currents.

1 Introduction

Electric power systems are currently going through great paradigm breakups and
modernization of processes, because of scientific and technological advances on
generation, transmission, distribution and use of energy. This is mainly due to grow-
ing concerns about climate change, sustainability and efficiency, high-energy prices,
energy reliability, among other issues. In this scenario, over the last decades, wind
power stations have reached significant participation on electrical generation in sev-
eral countries and the connection of wind turbines to the electrical grid has motivated
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the need for international standards or electrical grid codes [1]. These include require-
ments related to steady state, transients, dynamics and power quality issues of the
system.

An IEEE Task Force on distributed generation (DG) planning and optimization
[2] shows that there are numerous challenges when integrating wind power systems.
Among such aspects, harmonic current emissions by wind turbines emerges as a
relevant topic [3]. This fact is aggravated when considering the large number of units
that make up a wind farm [4] and the ever-growing number of installations. This
phenomenon can cause serious effects on the connection grid, which may result in
hosting capacity limitation to preserve the overall performance of the network.

Considering the aforementioned scenario, the development of techniques to miti-
gate the impacts of harmonics on the point of common coupling (PCC) emerges as a
relevant engineering matter in need of resolution. To this end, passive [5] and active
[6] filters appear as traditional solutions. These devices can be installed to allow the
connection of wind farms to existing grids without causing standard distortion limit
violations.Although these techniques are effective, the rated power of the filter is very
sensitive to background harmonic distortions on the coupling point. Consequently,
extra financial investments can be required so that the filter can handle the harmonics
produced by the wind generation plant and the grid. Noteworthy here is that there are
still no acceptable procedures for the sharing of the harmonic responsibility neither
the costs of the solution between the utility and wind farm [7].

In addition, the control of the switching pattern of the converter characterizes
an alternative approach for harmonic current control. This methodology allows the
harmonic current to be fixed to preset values without hardware modifications. The
idea is based on the fact that, by setting the switching instants to predefined values,
it is possible to eliminate individual harmonic components and the total distortion
produced by the inverters [8–11].

Based on the above-mentioned strategy, this chapter dealswith the physical factors
responsible for harmonic current emissions by full-converter wind turbines, as well
as presenting a proposal of an advanced control function to mitigate the harmonics
in a wind power generator. The methodology is directed toward guaranteeing the
integration of a large-scale wind farm, through minor changes to the background
harmonic distortion at the busbar common coupling, onto the existing electrical grid.

2 Wind Turbine Harmonic Generation

The output voltage of the inverter unit is a determining factor in establishing the
harmonic flow between the wind turbine and the electrical system. The harmonics
generated by the wind farm are influenced by the converter control, as well as elec-
trical characteristics at the coupling point. In this context, details are provided below
to elucidate the main factors that influence the generation of harmonics currents
associated with full converter wind turbines.
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2.1 Harmonic Distortions Inherent to the PWM Switching
Pattern

HarmonicDistortions producedby thePWMswitching process are essentially related
to two factors: the frequency modulation index (m f ) and the amplitude modulation
index (ma). Such magnitudes are defined by (1) and (2), respectively.

m f = f p
fm

(1)

ma = Vm

Vp
(2)

here: f p is a carrier frequency, fm is a modulator frequency, Vm is the amplitude of
the modulator wave and Vp is the amplitude of the carrier wave.

The indexma is directly related to the amplitude of the converter output voltage in
fundamental frequency [12]. The correlation between such magnitudes is indicated
in Fig. 1, which details three regions of operation, namely: linear, overmodulation
and saturation range.

• Linear region: This range is related to an amplitude modulation index less than
the unit. As a result, the inverter output voltage linearly varies with the amplitude
modulation index. The harmonic content of the voltage is exemplified in Fig. 2,
which presents the expected waveform of the operation in the linear region for a
2-level voltage source converter;

• Overmodulation region: This occurs when the amplitude modulation index is
greater than the unit and less than 3.24, which results in a non-linear relationship
between the output voltage of the converter and thema index. Under this condition

4
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0
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Fig. 1 Inverter operating regions
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Fig. 2 Inverter output voltage(m f = 41.67): linear region (ma = 1)
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Fig. 3 Inverter output voltage (m f = 41.67): overmodulation region (ma = 2)
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Fig. 4 Inverter output voltage (m f = 41.67): saturation region (ma = 5)

of operation, the converter produces low frequency harmonic components on the
output frequency, as presented in Fig. 3;

• Saturation region (operation with square wave): This comprises the functionality
of the inverter at offering the highest levels for output voltages. Under such con-
ditions, Fig. 4 shows that the voltage waveform produced by the inverter contains
a predominant range of low order components.

In line with the above, it is important to highlight that the constructive details
(switching frequency, coupling filters, etc.) and the rated voltages of both AC and
DC sides of the inverter directly affect the harmonic distortions produced by the
equipment.
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Fig. 5 Drive pulses considering the dead time of the switches

2.2 Harmonic Distortions Inherent to Switches Dead Time

A second aspect of upmost importance to the characterization of the converter har-
monic current emissivity is the switches dead time. Such a mechanism can be estab-
lished as a time delays that are programmed between switches drive pulses, as shown
in Fig. 5.

Although the programmingof timedelays guarantees a secure converter operation,
the output voltage waveform is changed due to the modification in the switching
process. During the dead time, both power electronics switches on an inverter arm
remain temporarily inactive and this causes an increase/reduction in the pulse width
of the converter output voltage which changes the voltage output harmonic content.

Reference [13] presents a quantitative evaluation of the effects through the inclu-
sion of dead time into the converter switching process. In a simplified manner, the
voltage harmonic distortions caused by this procedure can be calculated by super-
imposing the fundamental voltage wave with a square wave. This wave is 180 out
of phase with the current circulating in the system and results in a ΔV amplitude
defined by (3) [13].

ΔV = Mtm
T

Vcc (3)

Here:M is the switching number in a cycle, tm is the dead time, T is the switching
period, Vcc is the DC voltage.

Figure6 shows the aforementioned effects, which demonstrates that the output
current of the inverter is changed.

2.3 Harmonic Distortions Inherent to the Network Coupling
Point

The harmonic flow established between the wind turbine and the AC network are
affected by background distortion existing on the point of common coupling (PCC).
Such relationship can be justified by the interaction of the PCC voltages and currents
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Fig. 7 Wind turbine inverter control loop

on the feedback of the control system of the connection converters. Figure7 presents
a classical control loop of a wind turbine inverter and clearly highlights such physical
correlation.

Primarily, it is worth noting that the control loop of the inverter requires the
measurement of AC voltages, which are necessary to establish the references for
synchronization. In this way, eventual voltage background distortions that exist on
the connection bus will affect the operation of the PLL (Phase Locked Loop) or
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FLL (Frequency Locked Loop) algorithms. However, it must be stressed that the
structures currently employed by commercial inverters, such as DDSRF-PLL or
DSOGI-FLL, are not significantly affected by the mentioned association. If this is
the case, aforementioned interaction has shown to be of minor relevance upon the
synchronization requirements [14].

On the other hand, the currents that will be established between the wind turbine
and the connection point are shown as more sensitive. For a better understanding of
the mechanism, the balanced three-phase currents between the power converter and
the electric network can be represented through Eqs. (4), (5) and (6). These currents
are used as a feedback to the control system. In order to simplify the mathematical
process, only a single harmonic component related to a generic order is added to the
respective fundamental component.

ia = I1cos(ωt − φ) + Ihcos[h(ωt − φ)] (4)

ib = I1cos(ωt − 2π/3 − φ) + Ihcos[h(ωt − 2π/3 − φ)] (5)

ic = I1cos(ωt + 2π/3 − φ) + Ihcos[h(ωt + 2π/3 − φ)] (6)

where: ia , ib and ic are instantaneous currents on phases a, b and c, respectively; I1 is
the amplitude of the fundamental current; h is the harmonic order; Ih is the amplitude
of the harmonic current; ω is the angular frequency; φ is the phase angle difference
between voltage and current.

By applying Park transformation, which uses the fundamental voltage angle as
a reference, the above currents can be referred to the dq0 system, for which the
result is given by (7) and (8). These expressions show the existence of an oscillatory
term that is proportional to the amplitude of the harmonic components, and which is
added to the continuous signal arising from the fundamental frequency components.
These variables will possess oscillating terms due to the presence of the harmonic
component of order h, thus influencing the voltage to be synthesized on the inverter
terminals.

id = I1cos(φ) + Ihcos[(h − 1)(ωt − φ)] (7)

iq = I1sin(φ) + Ihsin[(h − 1)(ωt − φ)] (8)

where id and iq are the direct axis currents and the quadrature axis, respectively.

2.4 Experimental Analysis of the Influence Factors

This section is aimed at validating the aforementioned dependence between the
harmonic generation by the inverters and the operational condition imposed by the
control and the connecting busbar. The experimental arrangement set up to highlight
the described factors capable of modifying the harmonic spectrum is shown in Fig. 8.
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The laboratory structure is constituted by a 2-level voltage source inverter, a LCL
(Inductive-Capacitive-Inductive) coupling filter, a transformer and a programmable
voltage source CSW5550 from California Instruments. This latter component was
programmed to provide a voltage that represents the wind turbine, the synchronous
generator and the rectifier. These components are necessary to represent the trans-
ference of the active energy produced by the synchronous generator to the electrical
network. Additionally, there are still the voltage/currents conditioning boards, a DSP
F28335 from Texas Instruments to provide the integration of the control algorithm
and real time calculations. The inverter main parameters are given in Table1.

In order to illustrate the harmonic generation dependence with the interference
factors herein discussed, the following case studies were investigated:

mrofsnar reTSynchronous
generator

Rectifier
P

QInverter unit

LCL filter

Voltage/current
sensors

Signal conditioning

Computer

Low-pass filters
and adders

3.3-15 V
Voltage
adapter

PCC

microcontroller
TMS320F28335

Controlled
voltage source

Fig. 8 Laboratory physical structure

Table 1 Inverter parameters Parameters Values

Input voltage (V) 450.0

Output voltage (V) 220.0

Output current (A) 8.0

Rated power (kVA) 3.0

Switching frequency (kHz) 5.0

Dead time (µs) 1.5
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Table 2 Inverter input voltages and modulation indexes Case 1

Subcase Vdc (V) Modulation index Active power (kW)

Sub-case 1.1 450.0 0.93 2.763

Sub-case 1.2 200.0 1.05 2.754

Sub-case 1.3 370.0 1.26 2.748

• Case 1: This case was carried out to emphasize the relationship between the har-
monic current generation with the modulation index of the inverter unit;

• Case 2: The second study was focused on the effect of the inverter switching dead
time upon the harmonic content;

• Case 3: This study was aimed at demonstrating the dependence between the har-
monic currents with the AC busbar background distortions.

2.4.1 Results and Analysis—Case 1

The relationship between DC inverter voltage, modulation index and active power
injected into the network are presented in Table2. The results show that, to transfer
a constant active power, with distinct levels of DC voltage, the inverter switching
control employs different modulation indexes. Therefore, with such strategy, the
inverter is required to work within three distinct conditions: the first in the linear
region, the second in the overmodulation region, and the third, at the border of these
two regions.

Figure9 andFig. 10 presents, respectively, the currents injected at the PCCover the
three aforementioned regions. It can be noted that the low order harmonic distortion
of the output currents is considerably higher when the inverter unit is operating in
the overmodulation region. This fact is in line with theoretical expectations.

2.4.2 Results and Analysis—Case 2

Table3 summarizes the case studies herein carried out with distinct time delays with
the same modulation indexes (linear region) and constant active power delivered to
the PCC.

The frequency spectrum of the currents associated to the two dead time conditions
is presented in Fig. 11. It can be noted that with the dead time of the inverter being
increased, the harmonics will be affected. The corresponding current waveforms are
given in Fig. 12.
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Fig. 9 Current waveforms at the inverter output Case 1; a Sub-case 1.1—Vcc = 450 V (linear
region); b Sub-case 1.2—Vcc = 400 V (overmodulation region); c Sub-case 1.3—Vcc = 370 V
(higher overmodulation region)

2.4.3 Results and Analysis—Case 3

In order to investigate the relationship between the PCC background distortion effect
upon the inverter harmonic generation, the experimental arrangementwas considered
as having two situations associated to the busbar voltage. The first was admitted as
having a background distortion close to zero and the second with an existing THD of
6.36%. Table4 gives the imposed busbar voltage conditions and the corresponding
total harmonic current distortion. Both situations are carried out with a modulation
index in the linear region and constant switching dead time of 3.0 µs.
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Table 3 Dead time values—case 2

Subcase tm (µs) (V) Modulation index Active power (kW)

Sub-case 2.1 3.0 0.93 2.754

Sub-case 2.2 4.5 0.95 2.753
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Fig. 11 Currents harmonic spectrum with different dead time Case 2
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Fig. 12 Current waveforms at the inverter output Case 2; a Sub-case 2.1 dead time of 3.0 µs; b
Sub-case 2.2 dead time of 4.5 µs

Table 4 Relationship between the PCC voltage background distortion and the inverter harmonic
current emission Case 3

Subcase Voltage THD (%) Current THD (%) Active power (kW)

Sub-case 3.1 ≈0.00 3.36 2.293

Sub-case 3.2 6.36 17.81 2.302

As for the sub-case 3.2, Fig. 13 indicates the PCC background voltage compo-
nents.

Figure14 indicates the current waveforms with the busbar background distor-
tion close to zero. In addition, Fig. 15 shows the current waveforms supplied by the
inverter when the PCC background voltage distortion exists. In order to compare the
effect of the given background PCC voltage distortion, Fig. 16 shows the harmonic
current spectrum related to both situations. It can be seen that the harmonic con-
tent is highly increased with the previous PCC voltage distortion. Again, this is in
accordance with the theoretical expectations.
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Fig. 15 Inverter output current waveforms (with background distortion) Sub-case 3.2
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3 Wind Turbine Grid Integration: Advanced Control
Strategy

Once the wind turbine harmonic generation concepts have been understood, this
section is focused on the establishment of an advanced control strategy applied
to full converter wind systems, aiming at reducing the level of harmonic currents
throughout a switching control technique inspired on the classical active filters. The
physical and mathematical principles of such methodology as well as computational
modelling and performance evaluation are carried out in next sections.

3.1 Harmonic Current Mitigation Technique

Figure17 shows the full-converter wind turbine circuit and its connection to a generic
AC grid at the PCC busbar. As previously stated, the inverter unit is the main non-
linear component that is responsible for the harmonic content injected onto the exist-
ing AC network. Through highlighting the importance of the effects presented in
the previous section, Eq. (9) is obtained through a Fourier analysis of a two-level
inverter output voltage. The acquired relationship clearly shows that deviations on
the switching angle αk will promptly affect the inverter output voltage waveform and
its harmonic content.

en = 4

nπ

{
1 + 2

M∑
k=1

(−1)k cos(nαk)

}
Vcc

2
(9)
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where en is the amplitude of the output voltage of the nth order (n = 1, 2, …, n), Vcc

is the inverter DC voltage and M is the number of switching per half cycle.
Concerning the harmonic compensation approach focused herein, this technique

is feasible through controllers that operate in parallel with the fundamental frequency
mechanism by superposing harmonic signals onto the reference that was originally
applied to the classical inverter PWM device [15]. This condition modifies the PWM
pattern to allowboth active power supply andoneormore harmonic ordersmitigation.

In order to exemplify the fundamentals of such technique, Fig. 18 shows three
different switching conditions applied to the inverter unit. They are:

• Case 1—operation with switching pulses produced by just the fundamental fre-
quency control signal;

• Case 2—operation with switching pulses produced by a control signal containing
the previous fundamental waveform added to a 2nd harmonic component;

• Case 3—operation with switching pulses produced by a control signal containing
a waveform given by: fundamental, 2nd harmonic and 5th order component.

Figure18a is associated to the PWM reference signal containing only the funda-
mental waveform. The switching pattern resulting from this procedure produces a set
of pulses that results on the inverter harmonic currents generation in accordance with
Fig. 18b. The 2nd harmonic current shows the highest level. Other even components
are of minor relevance.

By adding a 2nd harmonic component to the fundamental control signal, as given
in Fig. 18c, such condition modifies the inverter pattern pulses in such a way to
produce the inverter harmonic generation seen in Fig. 18d. This shows that the cor-
responding 2nd harmonic current previously injected by the inverter has been dras-
tically reduced.
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Fig. 18 Inverter harmonic current generation as a function of the switching pulses pattern

Finally, Fig. 18e indicates that the control signal given by the addition of a funda-
mental, a 2nd and a5th componentwill cause the inverter harmonic current generation
set in Fig. 18f.

The results are clear enough to show that the methodology herein considered
dynamically changes the inverter PWM switching patterns.

Based on the above, Fig. 19 shows the control strategy block diagram required to
implement the harmonic compensation technique herein considered [16].

3.2 Computational Studies

In order to demonstrate the applicability of the harmonic compensation technique
discussed, this section is dedicated to present computational studies carried out to
highlight the methodology. This was realized using a typical distribution system
with a wind farm similar to an actual application. The studies are carried out with
the aim of eliminating some pre-defined harmonic components. Figure20 presents a
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Fig. 20 The simulated AC grid with wind farm generation
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Table 5 Busbar 01—equivalent generator

Generator Nominal voltage (kV) Short circuit power (MVA)

G1 138.00 680.0

Table 6 Capacitor bank parameters

Busbar Rated power (MVAr)

4 13.80

7 1.02

10 1.02

11 4.00

8 5.08

15 5.05

Table 7 Line parameters

Line Resistance (�) Inductance (mH) Capacitance (µF)

1 17.05 152.55 1.14

2 2.51 22.43 0.17

3 16.72 172.51 1.33

4 9.88 60.34 0.48

5 2.51 22.43 0.17

6 2.37 14.48 0.11

7 2.09 18.19 0.14

8 13.05 54.52 0.37

9 0.70 6.06 0.05

single-line diagram of the electrical arrangement [17] that has been modelled in the
ATP/EMTP software.

Tables5, 6, 7, 8 and 9 emphasize the electrical parameters for the individual com-
ponents that perform the arrangement. For greater similarity with that encountered
in the field, a group of nonlinear loads are adopted to produce the AC system back-
ground distortion. The corresponding harmonic currents related to the loads are given
on Table9.

Figure21 presents the single-line diagram of the wind farm. It comprises of 35
wind turbine units that are represented in accordance with [18]. Table10 presents the
main parameters of the inverter and Table11 the data of the medium voltage cables.

The simulation considers a constant wind speed corresponding to an active power
production of a 100% of the installed capacity of the wind farm. Similar results
were verified for other situations and the conclusions were similar to those presented
herein.
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Table 8 Transformers parameters

Transformer Rated power (MVA) Rated voltage (kV) Impedance (%)

1 60.0 138.0/69.0 15.60

2 60.0 138.0/69.0 15.60

3 12.0 69.0/13.8 4.64

4 5.0 69.0/13.8 6.01

5 12.0 69.0/13.8 8.35

6 12.0 69.0/13.8 8.35

7 12.0 69.0/13.8 8.35

8 12.0 69.0/13.8 6.15

9 12.0 69.0/13.8 6.15

10 70.0 138.0/34.5 12.0

Table 9 Load parameters

Rated power—fundamental frequency Harmonic currents (A)

Load Active
(MW)

Reactive
(MVAr)

5th 7th 11th 13th

1 20.8 8.9 7.0 5.0 11.6 2.3

2 1.8 0.8 1.2 0.9 0.3 0.2

3 5.4 2.3 9.0 7.0 4.7 3.0

4 2.1 0.9 7.1 5.1 1.8 1.2

5 7.1 3.0 12.0 9.0 6.2 3.9

6 0.9 0.4 3.0 2.2 0.8 0.5

7 3.0 1.3 10.1 7.3 2.6 1.7

8 18.9 8.1 10.1 7.3 2.6 1.7

Figure22 presents the amplitude of the harmonic currents established between
wind farm and AC grid. During the first 2 seconds, the wind generator inverters
operate only with fundamental frequency control loops, which are aimed at injecting
the required active and reactive power. The harmonic content produced within this
period is in total agreement with those theoretically expected, both in order and
value. Following this, at t = 2s, the harmonic compensation strategy is activated
and the 2nd, 5th, 7th, 11th and 13th harmonic components were eliminated showing,
computationally, the success of the proposed strategy.

In a complementary way, Fig. 23 shows the harmonic voltages at the PCC. Both
the individual harmonic distortions and the THD are shown under the following
conditions:

• AC grid with no wind farm operation;
• AC grid with wind farm at full power and no harmonic mitigation technique
activation;
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Fig. 21 Wind farm—Single-line diagram

Table 10 Wind system inverter—main parameters

Parameter Value

Rated power 2.00 MVA

DC inverter input voltage 1200 V

Switching frequency 2500.00 Hz

LCL Filter—Converter Side Inductance 0.14 mH

LCL Filter—Capacitance 780.00 µF

LCL Filter—Damping Resistance 0.10 �

LCL Filter—Grid Side Inductance 0.14 mH

Switches dead time 8.00 µs
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Table 11 Wind farm—Cables parameters

Parameter Value

Resistance 0.1932 �/km

Inductive reactance 0.1444 �/km

Capacitance 0.21 nF/km

Fig. 22 Harmonic currents circulating between wind farm and power system—without and with
harmonic compensator

Fig. 23 Harmonic voltages at the PCC without and with harmonic compensator—AC grid under
normal conditions

• ACgrid with wind farm at full power and harmonicmitigation technique activated;
• Typical harmonic level limits established by regulatory agencies [19].

The results emphasize the mitigation approach effectiveness at compensating
the individual and total harmonic distortion to the required levels. The PCC total
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harmonic distortion of 1.22% is approximately the same already existing and pro-
duced by the AC loads, with or without the wind farm operation. With no harmonic
mitigation control activation, the corresponding THD achieved a value of 1.81%.
This is above the given standard value.

4 Conclusions

This chapter emphasized issues associated with the problems inherent to electrical
power quality challenges, with emphasis placed upon the harmonic distortions pro-
duced when integrating wind farms to the connecting electricity networks. Within
this context, theoretical and experimental considerations related to the factors that
influence and determine the orders and magnitudes of the harmonic currents pro-
duced by the full converter type generation units were established. Following on, the
principles that guide a strategy for an intrinsic harmonic compensation technique
aimed at mitigating current components were presented.

Based on the aforementioned generation structures that is based on synchronous
generators and a full power connection converter, three influencing factors were
pointed out that play a decisive role in the generation of the harmonic currents injected
by such installations. One such factor is the switching operating principle of the
inverters and their respective PWM technologies for the control of the pulses for the
electronic keys (modulation index); another one is related to the so-called “dead time”
in order to avoid any eventual undesirable short-circuit between switches assembled
on the same branch of the inverter and finally, the existence of pre-distortions in the
AC busbar to which the wind park will be connected (PCC background distortion).

Concerning the modulation index, this is presented as a factor that exercises
major influence over the spectrum content. It became evident that when operating
the inverter in its linear region, the harmonic frequencies present higher orders. In
the overmodulation and saturation region, there already exists the emergence of low
order harmonics in addition to those of higher frequencies. Regarding the switch
dead-time, which guarantees the safe operation of the inverter semiconductors, this
effect was shown through adequate verification to be of minor significance. On the
other hand, the existence of background distortions are shown to be a major factor
that impacts on the operation of the complex and in its generation of harmonics.

In succession, the chapter was directed to the proposition and exploitation of a
control strategy that integrates functionalities into wind turbines to mitigate specific
harmonic currents. Themethodology is an intrinsic compensationmechanism, which
dynamically changes the inverter PWM switching patterns, and as such aims at
mitigating pre-defined harmonic orders.

The main idea put forward relies on the use of controllers that operate parallel to
the fundamental frequency control. A PI controller was used, which superimposes
harmonic frequencies onto the reference signal used by the Space Vector PWM. This
strategy changes the amplitude and phase of the inverter output harmonic voltage,
allowing for harmonic emission control.
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In order to verify the efficacy of this proposal a case study associated to a real
site grid was used and two situations were considered. Both of which have demon-
strated that by activating the compensationmechanism, the existing voltage distortion
present at the connection busbar were kept constant, i.e. no further changes on the
distortions other than those already existing were noted.
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Power Conversion and Predictive Control
of Wind Energy Conversion Systems
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Abstract Wind energy conversion systems have become mature and competitive
with conventional and other renewable energy sources. Electric generators, power
converters, and control systems ensure safe, efficient, reliable, and high-performance
operation for wind energy systems, while meeting the strict grid codes. This book
chapter presents power conversion systems and predictive control strategies for
permanent magnet synchronous generator, squirrel cage induction generator, and
doubly-fed induction generator-based wind energy conversion systems. Various
forms of predictive control techniques including predictive current control, predic-
tive torque control, and predictive power control are discussed with case studies. The
discrete-time models of overall system are presented in terms of power converter
switching states. The predictive control strategies fulfill the control requirements
such as maximum power point tracking, regulation of DC-link voltage, grid synchro-
nization, generation of reactive power to a three-phase grid, and fault-ride through
operation. The intuitiveness of material presented in this book chapter allows readers
extending the predictive control strategies for other power conversion applications.
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1 Introduction

Wind energy installed capacity has skyrocketed from 6,100 MW in 1996 to 539,123
MW by 2017 [1]. The wind power capacity worldwide accounts for approximately
4% of the global electricity production. Besides the installed capacity, the power
rating of wind turbines (WTs) increased exponentially to 10 MW [2]. This trend
continues to increase, and future WT projects in the 10–15 MW class are anticipated
fromglobalWTmanufacturers such asClipper,Mitsubishi, SwayTurbine,GoldWind,
Sinovel, Mecal, MingYang, GE Energy, United Power, and Gamesa [3].

The past three decades have witnessed fixed-speed, semi-variable speed, and full-
variable speed operation of wind energy conversion systems (WECS) through dif-
ferent combinations of electric generators and power electronic converters [4]. The
present WT manufacturers primarily use doubly-fed induction generator (DFIG) for
semi-variable speed operation, and squirrel-cage induction generator (SCIG), per-
manent magnet synchronous generator (PMSG), wound rotor synchronous generator
(WRSG), and high-temperature-superconducting synchronous generator (HTS-SG)
for full-variable speed operation. Among the classes of wind generators for full-
variable speed operation, PMSG is the most popular because it offers high power
density and reliability, does not require rotor field excitation and gearbox, and oper-
ates with high efficiency [5].

The control system design ensures safe, reliable, and efficient operation ofWECS.
The present industry practices high performance vector control techniques such as
field-oriented control (FOC) and direct torque control (DTC) to control wind gen-
erators [6]. Grid-side converters (GSCs) in variable-speed WECS are controlled by
decoupled voltage-oriented control (VOC) and direct power control (DPC) [7]. In
recent years, the finite control-set model predictive control (FCS-MPC) strategy has
emerged as a simple and promising digital control tool for electric power conver-
sion systems [8]. During the low-switching frequency operation of megawatt-level
WECS, the predictive control mitigates several technical and operational disadvan-
tages associated with the classical control techniques [3].

Considering the present and emerging trends in wind energy industry, the authors
present a comprehensive survey on variable-speedWECSwith respect to power con-
version and control schemes. The principles of FOC/VOC, DTC, and DPC schemes
are used to design predictive current control (PCC), predictive torque control (PTC),
and predictive power control (PPC), respectively. The PCC, PTC, and PPC schemes
are discussed in detail for PMSG, SCIG, and DFIGWECS, respectively. The design
procedure for the calculation and extrapolation of reference control variables, predic-
tion of control variables’ behavior, and cost function is provided. The PCC, PTC, and
PPC schemes accomplish control objectives similar to the FOC/VOC,DTC, andDPC
schemes, respectively, but without any PI controllers, modulation stage, hysteresis
controllers, and look-up tables. The predictive control schemes operate with variable
switching frequency as they do not employ anymodulation stage. The state-of-the-art
and emerging technologies presented in this chapter on variable-speed WECS will
help the eventual readers to update their knowledge on this specific topic.
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This chapter is organized as follows:

• The WT power converters are discussed in Sect. 2 with respect to low-voltage
(LV) and medium-voltage (MV) configurations.

• An overview of digital control schemes for WTs is given in Sect. 3.
• PCC of PMSG WECS, PTC of SCIG WECS, and PPC of DFIG WECS are dis-
cussed in Sects. 4, 5, and 6, respectively.

• Section 7 provides concluding remarks for this book chapter.

2 Power Converter Topologies for WECS

The two-stage (AC/DC + DC/AC) and three-stage (AC/DC + DC/DC + DC/AC)
converters are employed in WECS, and the former class is very popular in wind
industry. The power converters are also classified into LV (<1000V) andMV (3000–
4000 V) categories.

2.1 LV Converters

A full-variable speed WECS with SCIG/SG and full-power (100%) back-to-back
(BTB) connected two-level voltage source converter (2L-VSC) is shown in Fig. 1
[9]. The 2L voltage source rectifier (2L-VSR) and 2L voltage source inverter (2L-
VSI) are identical in terms of topology, construction, modulation, and control. Due to
the nature of connection, the 2L-VSRand 2L-VSI are also referred to asmachine-side
converter (MSC) and grid-side converter (GSC), respectively. The MVA capacity of
GSC is usually higher than the MSC such that the WT meets the grid codes. The
DC-link provides decoupling between the wind generator and grid. The DC chopper
consisting of an IGBT and a resistor is used to dissipate surplus energy during grid
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Fig. 1 Full-variable speed WECS with SCIG/SG and full-power BTB connected 2L-VSC
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Fig. 2 Semi-variable speed WECS with DFIG and partial-power BTB connected 2L-VSC
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Fig. 3 Variable-speed WECS with IG/SG and parallel connected BTB 2L-VSCs

voltage dips. This configuration is very popular for SCIG/SGWTs rated below 0.75
MW power level.

Figure 2 shows the semi-variable speed WECS with DFIG and partial-power
(30%) BTB 2L-VSC in rotor circuit. The DFIG rotor is connected to the grid through
rotor-side converter (RSC), DC-link, and GSC [10], and the stator is directly con-
nected to the grid. The partial-power converter in DFIG WECS controls the gen-
erator active/reactive power, DC-link voltage and grid power factor. Due to 30%
rated capacity of converter, the DFIG speed is controlled in ±30% range. The use of
partial-power converter decreases the size and weight of DFIG WTs in comparison
to the full-variable speed WTs. During grid faults, the rotor over-currents and DC
over-voltages are suppressed by AC crowbar and DC chopper, respectively.

For power ratings greater than 0.75 MW in full-variable speed WTs and 2.5 MW
in semi-variable speed WTs, the 2L-VSCs are connected in parallel to increase the
power handling capability (Fig. 3) [11]. For example, 10 converters are connected
in parallel in the Enercon E-126 WT to increase power capacity to 7.5 MW. The
parallel connection of converters lead to energy efficiency and redundancy. The
system efficiency can be improved by turning off one or more converters when the
wind speed is low. Higher converter cost, converter derating, circulating currents, and
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Fig. 4 Full-variable speed WECS with multiphase PMSG and distributed 2L-VSCs

complex configuration and control are the major drawbacks of this power conversion
configuration.

Issues with the circulating currents in converters can be solved by employing
multiphase PMSG, distributed converters, and open-winding transformer as shown
in Fig. 4. For example, theGamesaG10xWTuses 4 sets of three-phase windings and
4 BTB 2L-VSC modules in parallel to handle 5 MW power. Due to the redundancy
of phases, fault tolerance against power converter and generator faults is improved
[12]. To reach system voltage levels of 10–35 kV and perform transformerless grid
connection, the power converters can be connected in cascade [13].

The SGWECSdoes not require excitation current from the grid. Therefore, diode-
bridge rectifiers can be used for AC/DC conversion with unidirectional power flow.
The diode-bridge rectifiers are reliable and less expensive than the VSR. However,
due to the use of diode-bridge rectifiers, significant amount of 5th (14%) and 7th
(7%) harmonics appear in the generator currents; and as a consequence the generator
electromagnetic torque contains 6th harmonic distortion (10%) [14]. A six-phase SG
with 30◦ phase shift solves the issues with high torque ripples by cancelling the 5th
and 7th harmonic components in generator currents. Figure 5 shows the six-phase
configuration that has been commercialized by WT manufacturers such as Vensys
and GoldWind for 1.5 MW output power [15]. The boost converter performs the
maximum power point tracking (MPPT) and DC voltage step-up operations. The
interleaving operation of boost converter and 2L-VSI decreases the inductor and
grid current ripples, respectively.

2.2 MV Converters

For power ratings greater than 3.0 MW, the MV operation of WTs is more effi-
cient, reliable, and economical. The BTB connected neutral-point-clamped (NPC)
converters have been used in the commercial WTs for 6.0 MW power rating and
MV operation in 3–4 kV range [16]. The WT manufacturers such as ADVEN, Shan-
dong, XEMC-Darwind, and Zephyros have used NPC converters in conjunction with
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Fig. 6 Full-variable speed WECS with MV-SCIG/SG and BTB connected NPC converter

MV-PMSG. In comparison to the 2L-VSCs, the NPC converters offer several advan-
tages such as reduced dv/dt in the output voltage, reduced switching losses, lower
output current ripple, smaller harmonic filter requirement, and reduced electromag-
netic interference [17]. The neutral-point voltage control is a major issue with the
NPC converters; and this issue can be solved through the digital control scheme
design (Fig. 6).

3 Control Schemes for WECS

There are two type of control systems used simultaneously to control a WT: aerody-
namic control (by adjusting the pitch angle of blades) and electromechanical control
(by adjusting the WT speed). The focus of this chapter is on the later. The elec-
tromechanical control is performed by the power converter stages, and has the fol-
lowing control goals: MPPT by controlling the generator torque/speed through the
MSC/RSC; grid synchronization, DC-link voltage control and active/reactive power
control by the GSC. The classic or mainstream control methods used for these goals
are briefly described in the following subsections.
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3.1 MPPT Control

The MPPT schemes are designed to extract the peak power during varying wind
speed conditions. Some of the popular MPPT schemes are optimal tip speed ratio
(OTSR) control, optimal torque (OT) control, and WT power curves (WTPC)-based
control [15]. In OTSR method, the ω∗

m is obtained from the measured wind speed vw

and WT parameters, that is,
ω∗
m = K op

1 vw. (1)

In the case of OT method, the reference electromagnetic torque T ∗
e is calculated

from measured wind generator mechanical speed ωm , that is,

T ∗
e = K op

2 ω2
m (2)

where K op
1 and K op

2 are the proportional constants and obtained from the offline
calculations at the rated conditions. In WTPC-based control, the generator output
power Ps versus vw curves are derived from the initial experimental tests. Unlike
OTSR and WTPC-based control, the OT control does not require anemometer and
easy to implement.

3.2 Control of PMSG

In PMSGwind energy conversion systems, the vector control strategies are adopted to
achieve the decoupled torque and flux control [6]. Some of the popular vector control
strategies are zero d-axis current (ZDC) control and maximum torque per ampere
(MTPA) control [15]. The ZDC control is applied to surface-mount PMSG, whereas
the MTPA control is applied to interior PMSG to develop a maximum torque with a
minimum value of stator current , thereby reducing the power losses and improving
the system efficiency. In ZDC scheme, the reference d-axis stator current i∗ds is set to
zero, whereas the reference q-axis stator current i∗qs is calculated from T ∗

e as shown
below:

i∗ds = 0, i∗qs = T ∗
e

1.5 Pp ψr
(3)

where ids and iqs are d- and q-axis stator current components, ψr represents the peak
value of rotor flux linkage, and Pp represents the number of pole pairs.

In MTPA scheme, the reference d- and q-axis current components are calculated
from the measured ids and are given as,



120 V. Yaramasu et al.

i∗qs = T ∗
e

1.5 Pp
[
ψr + (

Lds − Lqs
)
ids

] (4)

i∗ds = − ψr

2 (Lds − Lqs)
−

√
ψ2
r

4 (Lds − Lqs)2
+ [i∗qs]2 (5)

where Lds and Lqs are stator dq-axis inductances.

3.3 Control of SCIG

Similar to SG, the SCIG can be controlled with FOC and DTC schemes [6]. In FOC
scheme, the rotor flux vector is aligned with the d-axis of the synchronous reference
frame. As a result, ψdr becomes equal to ψr and ψqr becomes zero. Furthermore, the
stator d-axis and q-axis current components (ids and iqs) are aligned with the d-axis
and q-axis of the synchronous reference frame. As a result, the decoupled control
of rotor flux and torque are possible in SCIG, and the resultant torque expression is
given by,

Te = KT ψr iqs (for ψdr = ψr and ψqr = 0), KT = 3 Pp Lm

2 Lr
(6)

where Lm and Lr are magnetizing and rotor self inductances, respectively.
The indirect FOC scheme estimates rotor flux value and its position from the

stator currents and rotor electrical speed ωr . The ωr is added to the estimated slip
frequency ωsl , which gives the stator angular frequency ωs . The ωs is integrated to
obtain the rotor flux angle θe. By using this angle, the stator currents in abc-frame are
converted into the dq-frame. The DTC scheme eliminates the inner current control
loop and directly controls the stator flux and torque. The electromagnetic torque of
SCIG is given by,

Te = 3 Pp Lm

2σ Ls Lr
ψs ψr sin θT (7)

where σ is total leakage coefficient, Ls is stator inductance, and θT is torque angle.
In DTC approach, the stator flux magnitude is maintained constant such that the

torque Te varies linearly with θT . During this process, there is a change in rotor flux
magnitude ψr , but its variation is small and negligible. The main features of DTC
scheme are simplicity in the design and fast dynamic response in comparison to the
FOC method, but the DTC operates at variable switching frequency and produces a
higher current ripple.
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3.4 Control of DFIG

TheDFIG can be controlled by FOC, DTC, or DPC schemes, which are implemented
in synchronous reference frame with stator voltage orientation [10]. Hence, the q-
axis stator voltage component becomes zero, and the three-phase rotor currents are
decoupled into active and reactive current components. By neglecting stator winding
resistance, the d- and q-axis rotor currents in terms of stator active and reactive
powers are given as follows [15]:

idr = −
(

2 Ls

3 vds Lm

)
Ps (8)

iqr =
(

2 Ls

3 vds Lm

)
Qs −

(
1

ωs Lm

)
vds . (9)

3.5 Grid Synchronization

The grid synchronization of GSC is achieved by using the grid voltage angle θg.
Therefore, the active and reactive power flow between the grid andGSC is effectively
regulated. Furthermore, the θg simplifies the digital controller design and allows the
decoupled control of electrical variables by transforming them from abc to dq, and
vice-versa. In reality, the AC-grids are weak and requires a sophisticated method to
obtain the grid voltage angle θg. Some of the popular methods are PI-based phase-
locked loop (PLL) and dual second order generalized integrator (DSOGI) PLL [7].

3.6 Control of Grid-Side Converter

In WECS, the GSC regulates the DC-link voltage vdc by controlling the grid active
power, whereas the reactive power Qg is controlled to obtain the required grid power
factor. To achieve these objectives, the VOC and DPCmethods are widely employed
[3]. To obtain the decoupled control of active and reactive powers, the grid voltage
vector is aligned with the d-axis of SRF; as a result, vqg becomes zero. Hence, the
Pg varies linearly with idg whereas the Qg is proportional to iqg under a constant vdg

value [18], that is,

Pg = +1.5 vdg idg (10)

Qg = −1.5 vdg iqg. (11)

From the above equations, the VOC scheme regulates the active power (Pg) and
reactive power (Qg) through the control of dq-axis grid currents. On the other hand,
the Pg and Qg are controlled by hysteresis comparators and a lookup table in DPC
method.
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3.7 Fault-Ride Through Control

Often, the wind energy conversion systems will be disconnected from the grid due to
the external disturbances including the faults and voltage sags and swells, which leads
to instability of the power system network. Under such scenarios, the GSC supplies
reactive power at its full capacity and zero active power to the grid. However, due
to large moment of inertia and mechanical time constant, the wind generators still
supply active power to the GSC. This injected active power increases the DC-link
voltage during the fault and damages the complete power converter system. Hence,
to dissipate the surplus energy, a DC chopper is connected across DC-link ofWECS.
In the case of DFIG WECS, the rotor over currents due to the surplus energy is
suppressed by using AC crowbar. In the direct drive PMSG WECS, the surplus
energy is stored in the inertia of rotating masses such that the FRT requirements will
be met [19].

3.8 Reactive Power Generation

The WECS should be able to generate reactive power during normal and abnormal
conditions. The RPG is not only improves the grid power factor, but also compensate
the voltage drop in transmission lines. Also, the RPG helps to stabilize the grid and
compile with the grid codes and FRT requirements. Hence, the RPG is one of the
important grid codes, which ensures efficient and reliable grids. This requirement
can be easily fulfilled by designing the WT GSC with high MVA capacity or high-
performance control scheme for MSC/RSC and GSC.

4 Predictive Current Control of PMSGWECS

The control structure of PCC scheme for the MSC and GSC in PMSG WECS is
shown in Fig. 7. The MSC performMPPT operation, whereas the GSC regulates the
DC-link voltage and reactive power. These control requirements are translated into
reference generator and grid currents in dq-frame. The PCC schemes for the MSC
and GSC ensure that the actual currents follow their reference currents during all
operating conditions. The PCC scheme for MSC and GSC mainly consists of feed-
back measurements, calculation and extrapolation of reference currents, prediction
of future behavior of currents, and optimization process of cost function to select the
switching signals.
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Fig. 7 Block diagram of PCC scheme for MSC and GSC in PMSG WECS

4.1 Control of MSC

The classical control scheme of MSC has an outer speed control loop and an inner
current control loop. However, the PCC scheme eliminates the PI controllers in inner
current control loops and improves the dynamic response. To implement the PCC
in SRF, the measured generator currents will be transformed into SRF by using the
electrical speed and position (ωr and θr ) values at kth sampling instant. The ωr and
θr values are obtained by multiplying the measured mechanical speed and position
(ωm and θm) values with the pole pairs Pp. Furthermore, to adopt the motor models
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for generator operation, the measured stator currents of PMSG are multiplied with
−1. The outer speed control loop requires a mechanical speed ωr , which is obtained
from the speed encoder. On the other hand, the reference mechanical speed ω∗

m is
calculated by using OTSR MPPT scheme given in (1) and wind speed vw. A PI
controller minimizes the mechanical speed error and generates the reference torque
T ∗
e . By using the T

∗
e information, the ZDC orMTPA control schemes generate d- and

q-axis reference current components based on the models given in (3)–(5). Finally,
the reference currents are extrapolated to (k + 1) sampling instant by using first order
Lagrange extrapolation technique as shown below:

î∗ds(k + 1) = 2 i∗ds(k) − i∗ds(k − 1)
î∗qs(k + 1) = 2 i∗qs(k) − i∗qs(k − 1)

}
(12)

The PCC scheme uses the mathematical model of PMSG in discrete-time domain,
which is obtained from the forwardEuler approximation technique. The discrete-time
model of PMSG stator currents is given as,

[
i pds(k + 1)
i pqs(k + 1)

]
=

⎡

⎣
1 − Rs Ts

Lds

ωr (k) Lqs Ts
Lds

−ωr (k) Lds Ts
Lqs

1 − Rs Ts
Lqs

⎤

⎦
[
ids(k)
iqs(k)

]

+
[

Ts
Lds

0
0 Ts

Lqs

] [
v
p
ds(k)

v
p
qs(k)

]
+

[
0

−ωr (k)ψr Ts
Lqs

]

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(13)

where p denotes the predicted variable. v p
ds and v

p
qs are predicted d- and q-axis stator

voltage components, Rs is the stator winding resistance, andωr is the electrical speed
of the rotor.

The MSC output voltages are predicted by using αβ-frame switching states (sαr
and sβr ), DC-link voltage vdc, and rotor electrical angle θr , that is,

[
v
p
ds(k)

v
p
qs(k)

]
=

[
cos θr (k) sin θr (k)

−sin θr (k) cos θr (k)

]
vdc(k)

[
s pαr (k)
s pβr (k)

]
. (14)

The MSC cost function designed to minimize the error between extrapolated ref-
erence and predicted d and q-axis stator current components and switching frequency
[20], that is,

gr (k) = [
î∗ds(k + 1) − i pds(k + 1)

]2 + [
î∗qs(k + 1) − i pqs(k + 1)

]2

+ λsw,r

∑

x=a, b, c

[
s pxr (k) − sopxr (k)

]2 (15)

where λsw,r is the weight factor for switching frequency minimization in high-power
WECS. The λsw,r value is heuristically selected to achieve the desired switching
frequency operation.
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The MSC has a total of eight switching states, which gives eight possible pre-
dictions for v

p
ds and v

p
qs . These voltage components are used to predict the PMSG

currents, i pds and i pqs . The cost function gr (k) is employed to evaluate the difference
between predicted and extrapolated reference currents. The switching state combi-
nation corresponding to the minimum cost function value is chosen as an optimal
actuation. The corresponding switching signals sar , sbr , and scr are applied to the
MSC at the (k + 1) sampling instant.

4.2 Control of GSC

The classical control scheme ofGSC also has an inner current control loop alongwith
an outer DC-link voltage control loop. The PCC scheme eliminates the PI controllers
in inner current control loops as shown in Fig. 7. The grid voltage angle θg is used to
transform the grid voltages and currents from abc-frame to synchronous dq-frame.
The reference DC-link voltage v∗

dc is set to 3.062 times grid phase voltage [15]. A PI
controller minimizes the error between measured and reference DC-link voltage and
generates reference d-axis grid current component (i∗dg). The grid operator defines
the reference reactive power command Q∗

g , and it is set to zero to achieve the unity
power factor operation. The reference q-axis grid current component i∗qg is obtained
from Q∗

g as shown in Fig. 7. Similar to the models in (12), the reference d- and q-
axis grid current components are extrapolated to (k + 1) sampling instant by using
first-order Lagrange extrapolation.

The predicted d- and q-axis grid current components in discrete-time domain are
given as,

[
i pdg(k + 1)
i pqg(k + 1)

]
=

[
1 − ri Ts

Li
ωg Ts

−ωg Ts 1 − ri Ts
Li

] [
idg(k)
iqg(k)

]

+
[

Ts
Li

0
0 Ts

Li

] [
v
p
di (k)

v
p
qi (k)

]
+

[
− Ts

Li
0

0 − Ts
Li

] [
vdg(k)
vqg(k)

]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(16)

where vdg and vqg are the d- and q-axis grid voltage components. idg and iqg are the
d- and q-axis grid current components. ri and Li are output filter internal resistance
and inductance, respectively.

The d- and q-axis voltage components of GSC are predicted by using αβ-frame
GSC switching states, DC-link voltage, and grid voltage angle as shown below:

[
v
p
di (k)

v
p
qi (k)

]
=

[
cos θg(k) sin θg(k)

−sin θg(k) cos θg(k)

]
vdc(k)

[
s pαi (k)
s pβi (k)

]
. (17)
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The GSC cost function designed to minimize the error between extrapolated ref-
erence and predicted d and q-axis grid current components and switching frequency,
that is,

gi (k) =
[
î∗dg(k + 1) − i pdg(k + 1)

]2 + [
î∗qg(k + 1) − i pqg(k + 1)

]2

+ λsw,i

∑

x=a, b, c

[
s pxi (k) − sopxi (k)

]2 (18)

The GSC also has a total of eight switching states, which gives eight possible
predictions for v

p
di and v

p
qi . These voltage components are used to predict the d- and

q-axis grid current components i pdg and i pqg . The cost function gi (k) is employed to
evaluate the difference between predicted and extrapolated reference currents (̂i∗dg and
î∗qg). The switching state combination corresponding to the minimum cost function
value is chosen as an optimal actuation. The corresponding switching signals sai , sbi ,
and sci are applied to the GSC at the (k + 1) sampling instant.

The mechanical components of WECS have large moment of inertia and are used
to store the surplus energy during grid disturbances, therefore, no DC chopper is
used [21]. This method is highly efficient and cost-effective compared with the DC
chopper. During grid disturbance, FRT control subsystem starts operating when the
grid voltage falls below 90% (0.9 pu) of the rated value and provides rated (1.0 pu)
reactive power (iqg component), whereas the FRT control subsystem provides 2%
reactive power for each 1% voltage dip, when the grid voltage is in the range of
50% (0.5 pu) to 90% (0.9 pu). The dashed lines for T ∗

e (k), i∗dg,FRT(k), and i
∗
qg,FRT(k)

correspond to the control variables during grid faults.

4.3 Results and Analysis

The startup transient performance of surface-mount PMSG WECS is analyzed
through MATLAB simulation results (Fig. 8). The rated specifications of a 750 kW,
690 V, 9.75 Hz direct drive PMSG are as follows: Rs = 6.521 m�, Lds = 3.848 mH,
Lqs = 3.848 mH, ψr = 8.532 Wb (peak), Pp = 26, and ωr = 61.26 rad/s. The GSC
operates with unity power factor (UPF), that is Q∗

g = 0. Ts = 100 µs.
From t = 0 to 0.5 s, the wind speed vw is maintained at a constant value of 6

m/s. From t = 0.5 s, the vw is increased linearly so that the vw reaches to the rated
value of 12 m/s at t = 1.5 s. Furthermore, the reference mechanical speed ω∗

m varies
proportional to the vw (Fig. 8a). The speed controller regulates the actual mechanical
speed at its reference value (Fig. 8a). The speed controller gives a reference torque
command T ∗

e , and the PCC adjust the gating pattern of MSC such that the generator
developed torque Te follows the reference torque command T ∗

e (Fig. 8b). As the
PMSG accelerates, the stator currents magnitude and frequency increases with the
speed (Fig. 8c). The PCC scheme maintains the d-axis current component at its



Power Conversion and Predictive Control of Wind Energy Conversion Systems 127

0 0.5 1.0 1.5 2.0
1.0

1.5

2.0

2.5

−4

−3

−2

−1

0
x 105

−1200

−600

0

600

1200

1200

1210

1220

1230

1240

−1200

−600

0

600

1200

0

5

10
x 10

5

0 0.5 1.0 1.5 2.0
−5

Sp
ee

d
(r

ad
/s

)
To

rq
ue

(N
.m

)
C

ur
re

nt
(A

)
V

ol
ta

ge
(V

)
C

ur
re

nt
(A

)
Po

w
er

(W
)

(a) Reference and measured mechanical speed (ω∗
m and ωm)

(b) Reference and measured electromagnetic torque (T ∗
e and Te)

(c) Phase-a and dq-axis stator currents (ias, ids, and iqs)

(d) Reference and measured DC-link voltage (v∗
dc and vdc)

(e) Phase-a and dq-axis grid currents (iag , idg , and iqg)

(f) Grid active and reactive power (Pg and Qg)

ω∗
m

ωm

T ∗
e Te

iasids

iqs

v∗
dc

vdc

iag

idg

iqg

Pg

Qg

Fig. 8 Simulated waveforms of the PCC scheme for PMSG WECS during startup

reference value of zero. The q-axis current iqs maintains linear relationship with the
PMSG torque Te. The DC voltage control loop of GSC regulates the average DC-
link voltage vdc at its reference value of 1220 V (Fig. 8d). As expected, the ripple in
vdc increases with the increase in the current (generator and grid) magnitudes. The
grid d-axis current component follows the peak value of the grid current waveform
in natural reference frame. On the other hand, the grid q-axis current component
is regulated at zero value to achieve the unity power factor operation on the grid
side (Fig. 8e). The total harmonic distortion (THD) of stator currents, THD of grid
currents, average switching frequency of MSC, and average switching frequency



128 V. Yaramasu et al.

of GSC during rated operating condition are 0.85%, 7.5%, 1800 Hz, and 1700 Hz,
respectively. These results prove the superiority of the PCC scheme in achieving a
fast dynamic performance and perfect current tracking in a PMSG based WECS.

5 Predictive Torque Control of SCIG WECS

Figure 9 shows the structure of PTC scheme for MSC and PCC scheme for GSC
in SCIG WECS. The PTC scheme regulates the SCIG torque Te and stator flux
by controlling the rotor speed and stator currents. The PTC scheme offers simple
implementation and fast dynamic response in the complete operational range [22].
The generator-side reference torque and flux are estimated to achieve the MPPT.

5.1 Control of MSC

The optimum torque (OT) MPPT scheme in (2) provides the reference torque com-
mand (T ∗

e (k)), whereas the reference stator flux ψ∗
s (k) is maintained constant at its

rated value. These reference commands are extrapolated to (k + 1) state similar to
the models in (12). The αβ-axis rotor flux linkages are estimated from three-phase
stator currents and measured electrical rotor speed ωr (k) (refer to Sect. 3.3).

The discrete-time model of SCIG is given by [23],

⎡

⎢⎢
⎣

i pαs(k + 1)
i pβs(k + 1)
ψ

p
αr (k + 1)

ψ
p
βr (k + 1)
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⎥⎥
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⎤

⎥
⎥
⎦ +

⎡

⎢
⎢
⎣

Ts
σ Ls

0
0 Ts

σ Ls

0 0
0 0

⎤

⎥
⎥
⎦

[
v
p
αs(k)

v
p
βs(k)

]

(19)

where iαs and iβs are the α- and β-axis stator current components. vαs and vβs are
the α- and β-axis stator voltage components. ψαr and ψβr are the α- and β-axis rotor
flux linkages. Ts is the sampling time.

The SCIG variables in the above model are defined as follows [24]:

• Coupling coefficients of stator and rotor: ks = Lm
Ls

and kr = Lm
Lr
.

• Total leakage coefficient, σ = 1 − ks kr = 1 − L2
m

Ls Lr
.

• Equivalent resistance, rσ = Rs + k2r Rr (�).
• Stator transient time constant, τσ = σ Ls

rσ
(s).



Power Conversion and Predictive Control of Wind Energy Conversion Systems 129

Fig. 9 Block diagram of PTC scheme for MSC and PCC scheme GSC in SCIG WECS

• Stator and rotor time constants: τs = Ls
Rs

(s) and τr = Lr
Rr

(s)

• Total leakage inductance, σ Ls = Ls Lr−L2
m

Lr
.

The stator (or MSC) voltages are expressed in terms of DC-link voltage and
switching signals in αβ-frame as follows:

[
v
p
αs(k)

v
p
βs(k)

]
= vdc(k)

[
s pαr (k)
s pβr (k)

]
. (20)
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The predicted α- and β-axis stator flux linkages at (k + 1) sampling instant are
obtained from the predicted α- and β-axis stator current components and α- and
β-axis rotor flux linkage components in (19), that is,

[
ψ

p
αs(k + 1)

ψ
p
βs(k + 1)

]
=

[
σ Ls 0 kr 0
0 σ Ls 0 kr

]
⎡

⎢⎢
⎣

i pαs(k + 1)
i pβs(k + 1)
ψ

p
αr (k + 1)

ψ
p
βr (k + 1)

⎤

⎥⎥
⎦ . (21)

From the above equation, the peak value of stator flux linkage is given as

ψ p
s (k + 1) =

√
[ψ p

αs(k + 1)]2 + [ψ p
βs(k + 1)]2. (22)

Similarly, the predicted electromagnetic torque is calculated byusing the predicted
α- and β-axis stator current components and stator flux linkage components in (19)
and (21), respectively. The model of T p

e (k + 1) is given as,

T p
e (k + 1) = 1.5 Pp

[
ψ p

αs(k + 1) i pβs(k + 1) − ψ
p
βs(k + 1) i pαs(k + 1)

]
. (23)

A single cost function is employed to control the generator electromagnetic torque,
generator stator flux, and the MSC switching frequency simultaneously as,

gr (k) = λT
[
T̂ ∗
e (k + 1) − T p

e (k + 1)
]2 + λψ

[
ψ̂∗
s (k + 1) − ψ p

s (k + 1)
]2

+ λsw,r

∑

x=a, b, c

[
s pxr (k) − sopxr (k)

]2 (24)

where λT , λψ , and λsw,r are the weight factors for torque, flux, and switching fre-
quency control, respectively. These weight factors are defined as,

λT = Te,R
Te,R

= 1, λψ = Te,R
ψs,R

(25)

where Te,R and ψs,R represent the rated torque and rated stator flux, respectively.
Finally, the cost function is evaluated for all possible eight switching states and

the optimum switching states which gives the least cost value is selected and applied
to the MSC.

5.2 Control of GSC

The control structure of GSC in SCIG WECS and PMSG WECS is quite identical
(Fig. 7). A comprehensive analysis and description on GSC control has already been
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presented in Sect. 4.2. The SCIGs require three-stage gearbox to operate at higher-
speeds. Therefore, the storage of surplus energy inWT-SCIG rotor inertia during grid
faults is not feasible. The DC chopper dissipates surplus energy in DC-link during
grid faults. Hysteresis control is used to ensure that average DC voltage Vdc never
exceeds the maximum threshold voltage V th

dc.

5.3 Results and Analysis

The transient performance of SCIG WECS with the PTC scheme is verified during
a step change in wind speed (Fig. 10). A 3.0 MW, 3000 V, and 60 Hz SCIG WECS
with Rs = 18.885 m�, Rr = 21.404 m�, Lls = Llr = 0.815 mH, Lm = 27.168 mH, ψr

= 6.198 Wb (peak), Pp = 2, and nm = 1814 rpm is considered. The GSC and control
parameters are ri = 30 m� (0.01 pu), Li = 1.6 mH (0.2 pu), v∗

dc = 5304 V (3.062 pu),
Q∗

g = 0 MVAR, and Ts = 100 µs.
The transient performance of SCIG WECS with PTC scheme is validated by

changing thewind speed from 12m/s (1.0 pu) to 7.2m/s (0.6 pu). This change reflects
in the generate reference speedω∗

m and it varies from 1.0 pu to 0.6 pu. Due to the large
moment of inertia, the generator actual speed will not change instantaneously due to
the slow response of the speed control loop (Fig. 10a). The speed controller provides
a reference torque command T ∗

e corresponding to the square of the reference speed.
The PTC scheme ensures that Te follows T ∗

e with a small steady state error (Fig. 10b),
whereas the stator flux is maintained constant at its rated value (Fig. 10c). The torque
and flux values vary proportional to the q- and d-axis stator current components (Fig.
10d). The change in wind speed also effects the DC-link voltage control loop and
exhibits oscillation in the DC-link voltage vdc of GSC (Fig. 10e). The magnitude of
GSC current decreases with the reduction in generator active power output (Fig. 10f).
During rated operating condition, the THD of stator currents, THD of grid currents,
average switching frequency of MSC, and average switching frequency of GSC are
noted as 6.9%, 5.8%, 1560 Hz, and 1780 Hz, respectively. The presented results
validate the fast dynamic response and decoupled control of the PTC scheme.

6 Predictive Power Control of DFIG WECS

Figure 11 shows the structure of PPC scheme for RSC and PCC scheme for GSC in
DFIG WECS. For simplicity, the DFIG stator terminals are assumed to be directly
connected to the wind farm collection point (WFCP) and the rotor terminals are
connected to the WFCP by BTB VSC and a step-up transformer with a step-up ratio
of 1:Vs/Vr . Vs and Vr are the rated rms stator and rotor voltages, respectively. The
stator reactive power reference Q∗

s is defined such that the RSC controls the overall
WECS reactive power Qo. For unity power factor operation of WFCP, the Q∗

s value
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Fig. 10 Simulated waveforms for PTC scheme of SCIG WECS during step change in wind speed

is set to zero. On the other hand, the active power is regulated through the MPPT
algorithm.

6.1 Control of RSC

The RSC control is implemented in dq-reference frame and uses stator voltage angle
θs to transform the stator voltage and current variables from abc-frame to dq-frame.
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Fig. 11 Block diagram of PPC scheme for RSC and PCC scheme GSC in DFIG WECS
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On the other hand, the rotor circuit variables are converted into dq-frame by using the
slip angle θsl . The reference active power P∗

s is calculated by WTPCMPPT control.
The reference active and reactive powers are extrapolated to (k + 1) state using the
models in (12). The rotor current dynamic model is given as [3]:

[
i pdr (k + 1)
i pqr (k + 1)

]
= �(k)

⎡

⎢⎢
⎣

ids(k)
iqs(k)
idr (k)
iqr (k)

⎤

⎥⎥
⎦ + �b

⎡

⎢⎢
⎣

vds(k)
vqs(k)
v
p
dr (k)

v
p
qr (k)

⎤

⎥⎥
⎦ (26)

where

�(k) ≈ kσ

[
Rs Lm Ts −ωr (k) Ls Lm Ts 1 − Rr Ls Ts −ωr (k) Lr Ls Ts + kφ

ωr (k) Ls Lm Ts Rs Lm Ts ωr (k) Lr Ls Ts − kφ 1 − Rr Ls Ts

]

�b ≈ kσ

[−Lm Ts 0 Ls Ts 0
0 −Lm Ts 0 Ls Ts

]
(27)

with

kσ =
(

1

σ Ls Lr

)
, kω = ωs σ Ls Lr , kφ ≈ kω Ts ≈ ωs σ Ls Lr Ts . (28)

The rotor voltages in the aforementioned expression are predicted by using the
switching states in dq-frame and actual DC-link voltage. The model is defined by
the following:

[
v
p
dr (k)

v
p
qr (k)

]
=

[
cos θsl(k) sin θsl(k)

−sin θsl(k) cos θsl(k)

]
vdc(k)

[
s pαr (k)
s pβr (k)

]
(29)

The future value of stator powers are predicted in terms of rotor currents and stator
voltages, that is,

P p
s (k + 1) = −

(
3 vds(k) Lm

2 Ls

)
i pdr (k + 1)

Qp
s (k + 1) =

(
i pqr (k + 1) + vds(k)

ωs Lm

)
2 Ls

3 vds(k) Lm
.

(30)

In the PPC scheme for RSC, the stator active and reactive powers and switching
frequency reduction are the main control objectives. Accordingly, the cost function
is formulated as follows:

gr (k) = [
P̂∗
s (k + 1) − P p

s (k + 1)
]2 + [

Q̂∗
s (k + 1) − Qp

s (k + 1)
]2

+ λsw,r

∑

x=a, b, c

[
s pxr (k) − sopxr (k)

]2
.

(31)
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The cost function is evaluated for all possible eight switching states, which leads
to eight predictions of idr , iqr correspondingly Ps and Qs . During each sampling
interval, the best suited switching states for RSC are selected on the basis of the
minimum cost function value, which ensures the accurate tracking of stator powers
to their respective reference powers. The optimal switching states is applied to the
RSC during the (k + 1) state.

6.2 Control of GSC

The control of GSC in DFIG WECS is similar to the control of GSC in PMSG
and SCIG WECS (Figs. 7 and 9). The average DC-link voltage is maintained at its
reference through the control of GSC-side currents, whereas the Q∗

g is set to zero. The
voltage in the rotor circuit is only a fraction of the WFCP (or DFIG stator) voltage.
The DC chopper is employed to dissipate surplus energy in DC-link during grid
faults, and it is controlled using a hysteresis control. The AC crowbar uses another
hysteresis controller to ensure that rotor currents do not exceed the threshold value
during grid faults.

6.3 Results and Analysis

The operation of DFIG WECS during a transition from 0.7 pu rotor speed (sub-
synchronous mode) to 1.0 pu rotor speed (super-synchronous mode) is analyzed. 3.0
MW, 690 V, 60 Hz DFIG WECS parameters are given as follows: Vs = 398.4 V, Vr

= 91.63 V, Rs = 1.443 m�, Rr = 1.125 m�, Lls = 0.094 mH, Llr = 0.085 mH, Lm =
0.802 mH, ψs = 1.5057 Wb (peak), ψr = 1.7576 Wb (peak), Pp = 2, and nm = 2160
rpm. The GSC parameters are as follows: ri = 0.34 m�, Li = 0.02 mH, and v∗

dc =
281 V. The reference stator reactive power is zero (Q∗

s = 0). The sampling time used
in the implementation of PPC scheme is Ts = 100 µs.

In this study, the wind speed vw profile with a gradual change from 8.4 m/s (0.7
pu) to 12 m/s (1.0 pu) is considered. Accordingly, the rotor speed linearly increased
from 0.7 pu to 1.0 pu with in the time duration of 1 s. The WTPC MPPT produces a
cubic reference power P∗

s (cubic of vw) for the RSC PPC scheme. The outer speed
control loops maintains the rotor speed ωm at its reference value ω∗

m (Fig. 12a). The
change in speed effects the torque Te developed by the DFIG, and it varies from –0.49
pu to –1.0 pu and follows the T ∗

e trajectory (Fig. 12b). During transient interval, the
mechanical input torque Tm is greater than Te. Hence, the DFIG accelerates and its
the rotor speed ωm increases until Te is equal to Tm .

TheDFIG slip dynamically changes from 0.16 to –0.2 during the transient interval
and reach zero at t = 0.63 s. The changes in d-axis rotor current are in proportion
to the Te profile, whereas the q-axis rotor current varies proportionally with the Q∗

s
value. The PPC method ensures that measured dq-axis rotor currents to follow the
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Fig. 12 Transient waveforms for DFIG WECS during transition from sub-synchronous to super-
synchronous mode of operation

dynamically changing reference rotor currents such that the rotor speed and torque
are controlled. The PPC scheme exhibits an excellent dynamic performance with low
tracking error. During sub-synchronous mode, the slip value becomes positive which
can be seen in the phase relation between three-phase rotor currents (iar leads ibr ,
and ibr leads icr ), whereas the slip value becomes negative in the super-synchronous
mode. Hence, the phase relation becomes reverse (Fig. 12c).
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During the entire transient interval, the DC-link voltage vdc is maintained constant
at the v∗

dc value by the DC voltage PI controller (Fig. 12d). In PMSG and SCIG
WECS, the GSC controls the WECS reactive power but the RSC influences the
reactive power in DFIGWECS. The magnitude of generator output current increases
in proportion to the active power extracted from wind. The output d-axis current
ido follows the envelop of three-phase output currents, whereas the q-axis output
current iqo is regulated at zero value to obtain the UPF operation (Fig. 12e). The
WT output active power Po follows the ωm spectrum and the WT output reactive
power Qo is maintained zero by the PPC scheme employed for RSC (Fig. 12f).
During sub-synchronous mode, the THD of rotor currents, THD of output currents,
average switching frequency of RSC, and average switching frequency of GSC are
noted as 1.4%, 6.4%, 1960Hz, and 1770Hz, respectively. The THDof rotor currents,
THD of output currents, average switching frequency of RSC, and average switching
frequency ofGSCduring suer-synchronousmode are 0.9%, 2.4%, 1730Hz, and 1690
Hz, respectively. The presented results prove the effectiveness of the PPC scheme
for DFIG WECS.

7 Summary

This book chapter provides a comprehensive analysis on the power converters and
predictive control schemes for PMSG, SCIG, and DFIG based high-power WECS.
The PCC scheme for PMSGWECS, PTC scheme for SCIGWECS, and PPC scheme
for DFIG WECS are analyzed. The discrete-time models of complete WECS are
developed by combining the models of wind generators, MSC/RSC, GSC, harmonic
filter, and a three-phase grid. The predictive control schemes eliminate the PI con-
trollers,modulation stage, hysteresis controllers and lookup tables in the inner control
loop of MSC/RSC and GSC, thereby providing a fast dynamic response for control
variables such as generator and grid currents, generator electromagnetic torque and
stator flux, and generator active and reactive powers. The discrete and nonlinear
nature of power converters in high-power WECS is naturally handled by the MPC,
thus leading to an excellent steady-state and fast dynamic response. TheMPC scheme
has been demonstrated to be simple and intuitive yet powerful tool to control high-
powerWECS. The technical details given in this chapter are also applicable for other
power conversion applications, such as active power filters, variable-speed electric
drives, and photovoltaic energy, which employ a digital control structure with an
inner current control loop.
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Adaptive Guaranteed Performance
Control of Wind Energy Systems

Wenchao Meng and Qinmin Yang

Abstract In this chapter, we present an adaptive guaranteed performance controller
for wind energy conversion system (WECS) equipped with doubly fed induction
generator (DFIG). The proposed controller consists of outer loop control concerning
the aeroturbine mechanical subsystem, and inner loop control concerning the elec-
trical subsystem. As opposed to most existing studies, we are capable of quantifying
and further guaranteeing the system performance on both transient and steady state
stages with the help of error transformation techniques. The stability is guaranteed
via standard Lyapunov synthesis. Finally, the effectiveness of the proposed scheme is
validated on a 1.5 MWDFIG-based wind turbine using the FAST (Fatigue, Aerody-
namics, Structures, and Turbulence) simulator developed by the National Renewable
Energy Laboratory (NREL).

Nomenclature

ρ Air density
V Wind speed
R Rotor radius
Cp Power coefficient
Cq(λ, β) Torque coefficient
β Pitch angle
λ Tip-speed ratio
Pr Rotor power
Ta Aerodynamic torque
Jr , Jg Rotor and generator inertias
Kr , Kg Rotor and generator external damping
Ths, Tls High-speed and low-speed torque
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Tem Electromagnetic torque
nra Gearbox ratio
Ωr Rotor speed
Φd,qs Stator flux
Φd,qr Rotor flux
Ud,qs Stator winding voltage
Ud,qr Rotor winding voltage
Id,qs, Id,rq Stator and rotor winding currents
Ls, Lr Self-inductance of the stator and rotor
Lm Mutual inductance between windings
Rs, Rr Resistance of the stator and rotor
Ωs Frequency of the grid
p Number of pole pairs
Vcut-in Cut-in wind speed
Vcut-off Cut-off wind speed
Vrated Rated wind speed

1 Introduction

In recent years, the wind energy conversion systems have received more and more
attentions from both academic and industrial communities due to the depletion of
tradition energy source and increasing environment pollution [1, 2]. Because of this,
theWECS has experienced the fastest growth and this tendency is expected to endure
for a long time [3, 4]. However, it is still provide a very small share in the global
energy market due to its high costs, and developing advanced control algorithms is
considered to be a promising way to reduce its costs.

Linear control methods have been commonly used for control of wind energy
conversion systems [5, 6]. The linear methods only deliver satisfactory performance
when the plant works around the corresponding operation point, whereas the opera-
tion point of WECS changes frequently because of the random wind. Therefore, the
system performance will be impaired if the linear method is enforced.

In order to avoid the drawbacks of linearmethods,manynonlinear controlmethods
have been studied [7, 8]. However, in previous studies, only steady state performance
of the control system has been taken into account, while the more essential transient
performance has been rarely considered.

Therefore, in this chapter, an adaptive guaranteed performance control is proposed
for WECS equipped with DFIG. The proposed controller includes two loops [9, 10],
i.e., the outer loop control and inner loop control. The outer loop control concerns
the aeroturbine mechanical subsystem while the inner loop control concerns the
electrical subsystem. Compared with most existing studies, performance indexes
including steady-state error, convergence rate and overshoot are guaranteed.
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Fig. 1 Wind energy conversion system

2 Wind Energy Conversion System

Thewind energy conversion system includes themechanical subsystemand electrical
subsystem as depicted in Fig. 1. For the mechanical subsystem, the rotor power
extracted from wind can be formulated as [11]

Pr = 1

2
ρπR2Cp(λ, β)V 3 (1)

The tip-speed ratio λ is defined by

λ = RΩr

V
(2)

The rotor power Pr can also be formulated as

Pr = Ωr Ta . (3)

with

Cq(λ) = Cp(λ)

λ
(4)

Invoking (3), (4) and (1), we have

Ta = 1

2
ρπR3Cq(λ)V 2 (5)

The rotor dynamics together with the generator dynamics can be written as

JrΩ̇r = Ta − KrΩr − Tls (6)

JgΩ̇g = Ths − KgΩg − Tem (7)
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The gearbox ratio nra is defined as

nra = Ωg

Ωr
= Tls

Ths
(8)

Substituting (8) into the generator dynamic (7), we have

n2ra JgΩ̇r = Tls − (
n2raKg

)
Ωr − ngTem (9)

Thereafter, a simple model of the mechanic subsystem can be obtained as

JoΩ̇r = Ta − KoΩr − Tg (10)

where ⎧
⎨

⎩

Jo = Jr + n2ra Jg
Ko = Kr + n2raKg

Tg = nraTem
(11)

The generator power can be formulated as

Pg = TgΩr (12)

For the electrical subsystem, we consider the doubly-fed induction generator
which connects directly to the grid through the stator, while the rotor winding is inter-
faced through a bidirectional power electronic converter. In this kind of wound-rotor
machine, the power system electrical frequency and the rotor mechanical frequency
can be decoupled, which makes a variable speed operation of the wind turbine pos-
sible. One of the main advantages is that it can generate and deliver electrical power
at the frequency and voltage demanded by the grid. Inspired by [12], the model of
DFIG in the Park d − q frame is given by

⎧
⎪⎪⎨

⎪⎪⎩

Φ̇d,s = Ud,s − Rs Id,s + ΩsΦq,s

Φ̇q,s = Uq,s − Rs Iq,s − ΩsΦd,s

Φ̇d,r = Ud,r − Rr Id,r + (
Ωs − pΩg

)
Φq,r

Φ̇q,r = Uq,r − Rr Iq,r − (
Ωs − pΩg

)
Φd,r

(13)

with

Φd,s = Ls Id,s + Lm Id,r

Φq,s = Ls Iq,s + Lm Iq,r

Φd,r = Lr Id,r + Lm Id,s

Φq,r = Lr Iq,r + Lm Iq,s (14)

Inspired by [12], a simplified generator model can be given by
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İd,r = (
Ωs − pΩg

)
Iq,r − Ls Rr

Le
Id,r + Ls

Le
Ud,r + �d(t) (15)

İq,r = − Ls Rr

Le
Iq,r − (

Ωs − pΩg
) (

Id,r + LmVs

LeΩs

)
+ Ls

Le
Uq,r + �q(t) (16)

where Vs is the grid voltage and Le = Ls Lr − L2
m . The terms �d(t),�q(t) are

added to represent bounded disturbances [13]. Thereafter, the currents of stator can
be algebraically calculated as

Id,s = Vs

Ωs Ls
− Lm

Ls
Id,r

Iq,s = − Lm

Ls
Iq,r (17)

The electromagnetic torque along with reactive power is given by

Tem = −3

2
p
Vs Lm

Ωs Ls
Iq,r (18)

Q = 3V 2
s

2Ωs Ls
− 3VsLm Id,r

2Ls
(19)

3 Problem Formulation

There are two operation regions for the wind turbine, namely, below the low-speed
region and high-speed region as given in Fig. 2 [14, 15].

• Low-speed region: where Vcut-in ≤ V < Vrated and Pg < Prated .
• High speed region: where Vrated ≤ V ≤ Vcut-off and Pg = Prated .

In low-speed region, the desired power is given by

P∗
g = np P

max
r (20)

with

Pmax
r = 1

2
ρπR2Cmax

p V 3 (21)

Notice that the response of the WT electrical subsystem is much faster than that
of the mechanical part of the WT. Hence, the controller design for the electrical
subsystem and mechanical subsystem is usually decoupled and a cascaded control
structure containing two control loops is usually adopted as shown below

• The outer control loop concerns the aeroturbine mechanical subsystem.
• The inner control loop concerns the electrical subsystem.
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Fig. 2 Generator desired power curve

Because the aeroturbine runs much slower than electrical subsystem, the state
of the outer loop can be seen as a slow changing disturbance while calculating the
control signal for the inner loop. In the meantime, the outer loop controller is usually
designed based on the assumption that the inner electrical control loop is able to
track the reference T ∗ timely. It implies that the stability analysis in the outer control
loop and inner control loop can be addressed separately in literature [16].

In this chapter, we consider the low-speed operation region. For the outer control
loop, our main goal is to design appropriate generator torque Tg such that Pg can
track P∗

g . For the inner control loop, the control objective is to design input voltages
Ud,r ,Uq,r such that: (1) the electromagnetic torque Tem tracks its reference T ∗, and
(2) the reactive power Q follows its desired value Q∗.

For analysis convenience, we define the following tracking errors

	o = P∗
g − Pg (22)

	i,T = Tem − T ∗ (23)

	i,Q = Q − Q∗ (24)

4 Outer Loop Control

In the outer control loop, both the transient and steady state performance will be
considered. Specifically, the imposed performance requirements on 	o(t) are

P1:

• The steady tracking error 	o(∞) is required to be within −ηo�o(∞) ≤ 	o(∞) ≤
�o(∞).

• It converges faster than the signal �o(t).
• The maximum overshoot is required to be smaller than ηo�o(0).
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For evaluating the prescribed performance, the following performance function is
firstly introduced.

Definition 1 ([17]) A performance function is a smooth function �o(t) : �+ +
{0} → �+ that satisfies |	o(0)| < �o(0) and limt→∞ �o(t) = �o(∞) > 0.

Assume 0 ≤ 	o(0) < �o(0), if the tracking error satisfies

− ηo�o(t) < 	o(t) < �o(t) (25)

with 0 ≤ ηo ≤ 1 being a design parameter, the prescribed performance P1 can be
attained.

To proceed the prescribed performance design, an error transformation in [17],
which can convert the original error with imposed performance requirements into a
new error without imposed performance requirements, will be introduced. Specifi-
cally,

	o(t) = �o(t)Mo(γo) (26)

or

γo(t) = Mo
−1

(
	o(t)

�o(t)

)
(27)

with γo being the new error, and Mo(·) is a function that is smooth and strictly
increasing. The function Mo(·) is required to satisfy

{
limγo→−∞ Mo(γo) = −ηo
limγo→∞ Mo(γo) = 1

(28)

where Mo
−1(·) is the inverse function of Mo(·). There exist many choices for the

function Mo(γo), and a typical choice can be given as

Mo(γo) = dγo
o − ηodo

−γo

do
γo + do

−γo
(29)

with do > 1. The function Mo(γo) is demonstrated in Fig. 3.
The following fact holds as long as γo(t) exists

− ηo < Mo(γo) < 1 (30)

The above fact implies (25). It means that the imposed performance requirements in
P1 are achieved. Thence, the control task becomes finding a control law to ensure
the boundedness of γo. For this, by recalling (12), the time derivative of 	o is

	̇o = Ṗ∗
g − Ṗg = Ṗ∗

g − TgΩ̇r − ṪgΩr (31)
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Fig. 3 Graphical illustration of the Mo(γo) function

Thereafter, by differentiating (27) with respect to time, we have

γ̇o = ∂Mo
−1

∂
(

	o(t)
�o(t)

)
1

�o(t)

(

	̇o(t) − 	o(t)�̇o(t)

�o(t)

)

= αo
(
Ṗ∗
g − TgΩ̇r − ṪgΩr − βo

)

= αo Ṗ
∗
g − αoṪgΩr − αo

Tg
Jo

(
Ta − KoΩr − Tg

) − αoβo

= αo

[
Ṗ∗
g − 1

Jo

(
TgTa − T 2

g

) + Ko

Jo
TgΩr − ṪgΩr − βo

]
(32)

where αo = ∂Mo
−1

∂
(

	o(t)
�o(t)

) 1
�o(t)

and βo = 	o(t)�̇o(t)
�o(t)

. Both αo and βo are known signals since

	o(t),Mo
−1(·), �o(t) and �̇o(t) are all available. An ideal desired control law is firstly

presented to assist the controller design. With the known knowledge of the system
dynamics, consider the following ideal controller

Ṫg = 1

Ωr

[
koγo
αo

+ Ko

Jo
TgΩr + Ṗ∗

g − 1

Jo

(
TgTa − T 2

g

) − βo

]
(33)

where ko > 0 is a positive constant. Then, we can easily obtain that

γ̇o = −koγo (34)

It means that the ideal controller (33) can ensure the exponential convergence of
the transformed tracking error γo to zero. Notice that the expression of Ṗd is Ṗd =
1
2npρπR2Cmax

p 3V 2V̇ based on (21) and (20). In order to avoid the knowledge of
V̇ , we use a robust term sgn(αoγo)B to replace Ṗd in (33), and obtain the following
desired controller
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Ṫg = 1

Ωr

(
koγo
αo

− βo + τo
T ξo

)
(35)

where τo = [−1/Jo, Ko/Jo, B]T , ξo = [TgTa − T 2
g , TgΩr , sgn(αoγo)]T , and we

have used the upper bound of Ṗd . The main results of this ideal controller are sum-
marized in the following lemma.

Lemma 1 For the transformed error dynamics (32), the transformed tracking error
γo will converge to zero asymptotically if a desired controller is taken as (35).

Proof A Lyapunov function candidate is built as

Vγo = 1

2
γo

2 (36)

By recalling (32) and (54), its time derivative can be given

V̇γo ≤ γoαo

[
−ṪgΩr − Tg

Jo

(
Ta − KoΩr − Tg

) − βo

]
+ |γoαo| Bo

= γoαo
[−ṪgΩr + τo

T ξo − βo
]

≤ −koγo
2 (37)

which implies that γo converges to zero asymptotically [18].

However, the desired controller has two main defects which should be avoided in
practice

• The chattering phenomena may appear because the sgn(·) function is discontinu-
ous. In WECS, the chattering phenomena is undesirable because it will reduce the
lifetime of wind turbines.

• A priori knowledge of τo is needed, which may increase the operation costs.

Aimed at mitigating the chattering phenomena, we use the continuous hyperbolic
tangent function tanh(αoγo/ε1) to replace the discontinuous sgn(αoγo). Notice that
the following inequality holds [19]

0 ≤ |αoγo| − αoγo tanh

(
αoγo

εo

)
≤ κεo for αoγo ∈ � (38)

where κ = 0.2758. Furthermore, since τo is unknown, let its estimate be τ̂o, and the
following implementable controller is proposed as

Ṫg = 1

Ωr

(
koγo
αo

− βo + τ̂ T
o δo

)
(39)

where δo =
[
TgTa + T 2

g , TgΩr , tanh(
αoγo
εo

)
]T

. The adaptive law for τ̂o is given by
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Fig. 4 Controller scheme of the outer loop controller

˙̂τo = Λo
(
γoαoδo − σoτ̂o

)
(40)

where Λo ∈ �3×3, σo > 0.
Figure4 depicts the control structure of the outer loop controller.

Theorem 1 For the mechanical subsystem (10) and (12), if we design the outer
controller as (39) while the parameter is updated as (40), the imposed performance
given in P1 can be achieved.

Proof Consider the following Lyapunov function candidate

Vo = 1

2
γo

2 + 1

2
τ̃ T
o Λo

−1τ̃o (41)

where τ̃o = τ̂o − τo. By recalling (10), (32) and inequality (38), one has

V̇o = γoαo
(
Ṗ∗
g − TgΩ̇r − ṪgΩr − βo

) + τ̃ T
o Λo

−1 ˙̂τo
≤ γoαo

[
−ṪgΩr − Tg

Jo

(
Ta − KoΩr − Tg

) − βo

]
+ |γoαo| Bo + τ̃ T

o Λo
−1 ˙̂τo

≤ γoαo
[−ṪgΩr + τo

T δo − βo
] + κεoBo + τ̃ T

o Λo
−1 ˙̂τo (42)

Substituting the outer loop controller (39) and adaptive law (40) into above equation
yields

V̇o ≤ −koγo
2 + (τo

T − τ̂ T
o )γoαoδo + τ̃ T

o γoαoδo + κεoBo − σoτ̃
T
o τ̂o

= −koγo
2 + κεoBo − σoτ̃

T
o τ̂o (43)

Moreover, by completion of squares, one has

V̇o ≤ −koγo
2 − σo‖τ̃o‖2

2
+ Δo (44)
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whereΔo = σo‖τo‖2/2 + κεoBo. Hence, V̇o < 0 when |γo| >

√
Δo
ko

or ‖τ̃o‖ >

√
2Δo
σo

Therefore, based on the standard Lyapunov extension theorem [20, 21], it can be
concluded that γo and τ̃o are uniformly ultimately bounded (UUB).

Furthermore, since γo is bounded, αo, βo are also bounded. τ̂o is bounded because
of τ̂o = τ̃o + τo and the boundedness of τo. Hence, from (39), we have that the control
input Tg is also bounded. Finally, the boundedness of γo implies that the imposed
performance requirements as given in P1 are achieved.

5 Inner Loop Control

In the inner loop control, the prescribed transient and steady-state performance are
also considered. Specifically, the tracking errors are required to satisfy user-defined
conditions as

	i,T (t) < 	i,T < 	̄i,T (t) (45)

	i,Q(t) < 	i,Q < 	̄i,Q(t) (46)

where 	̄i,T (t), 	i,T (t) are lower and upper bounds of the tracking error 	i,T with
	i,T (t) < 0 < 	̄i,T (t), and 	̄i,Q(t), 	i,Q(t) are lower and upper bounds of the track-
ing error 	i,Q with 	i,Q(t) < 0 < 	̄i,Q(t).

Aimed at achieving the goal of guaranteed transient performance, we introduce
an improved error transformation technique inspired by [22] that can transform the
original constrained errors into new unconstrained errors. Specifically, we define

	i = 	̄i (t) − 	i (t)

π
arctan(γi ) + 	̄i (t) + 	i (t)

2
(47)

or

γi (t) = tan

(
π

2
× 2	i − 	̄i (t) − 	i (t)

	̄i (t) − 	i (t)

)
, (48)

where tan(·), arctan(·) are the tangent function and inverse tangent function, respec-
tively, γi (t) is the transformed error. It can be easily verified that the original tracking
error 	i strictly increases with respect to the transformed error γi , and thus we have
∂	i
∂γi

> 0. Furthermore, from (47), we have

⎧
⎨

⎩

lim
γi→−∞ 	i = 	i (t)

lim
γi→∞ 	i = 	̄i (t)

(49)

From (49), it can be concluded that if γi exists, the following fact holds
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Fig. 5 Graphical illustration of the map from 	i to γi

	i (t) < 	i < 	̄i (t) (50)

which further implies that the guaranteed transient performance in terms of tracking
errors is achieved. Therefore, the control objective is converted to finding an inner
loop controller that can ensure the boundedness of the transformed error γi . The
nonlinear mapping between 	i and γi is shown in Fig. 5.

Aimed at extracting power from wind as much as possible, the electromagnetic
torque should be designed to follow its desired value T ∗. The corresponding trans-
formed error of 	i,T is denoted as γi,T . Differentiating γi,T with respect to time and
recalling (18), (22) generate

γ̇i,T = ∂γi,T

∂	i,T

(
−3

2
p
UsLm

Ωs Ls
İq,r − Ṫ ∗

)
+ ∂γi,T

∂	̄i,T (t)
˙̄	i,T (t) + ∂γi,T

∂	i,T (t)
	̇i,T (t)

= αi,T

(
−3

2
p
UsLm

Ωs Ls
İq,r − Ṫ ∗

)
+ βi,T (51)

where αi,T = ∂γi,T
∂	i,T

and βi,T = ∂γi,T

∂	̄i,T (t)
˙̄	i,T (t) + ∂γi,T

∂	i,T (t) 	̇i,T (t). Because signals γi,T , 	i,T ,

	̄i,T (t),
˙̄	i,T (t), 	i,T (t), 	̇i,T (t) are known, we can easily compute the values of αi,T and

βi,T .
Substituting the dynamics of Iq,r given by (16) into (51) and taking the modeling

error into account, one has
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γ̇i,T = αi,T
(
fi,T (Zi,T ) + gi,TUq,r + di,T (t)

)
(52)

with

fi,T (Zi,T ) = 3

2
pLm

Us Rr

Ωs Le
Iq,r − Ṫ ∗ + βi,T

αi,T

+3

2
pLm

Us

Ωs Ls

(
Ωs − pΩg

) (
Id,r + LmUs

LeΩs

)

Zi,T = [Iq,r , Id,r ,Ωg, Ṫ
∗, γi,T , αi,T ]T

gi,T = −3

2
pLm

Us

Ωs Le
(53)

with di,T (t) = − 3
2 p

Us Lm
Ωs Ls

�q(t) being the system unknown disturbances. Similar to
most studies [13], we assume the disturbance term di,T is bounded.

If the systemparameter is available and di,T (t) = 0, a desired control input voltage
U ∗

q,r can be given as

U ∗
q,r = ki,T

γi,T

αi,T
+ τi,T

T ξi,T (54)

where τi,T = −
[
1.5pLmUs Rr

Ωs Le
,
1.5pLmUs

Ls
,
1.5pL2

mU
2
s

Ωs Le Ls
, − 1.5p2LmUs

Ωs Ls
,

−1.5U2
s L

2
m p2

Ω2
s Ls Le

, −1, 1
]T

/gi,T ,

and ξi,T = [Iq,r , Id,r , 1,Ωg Id,r ,Ωg, Ṫ ∗, γi,T/αi,T ]T , ki,T is a positive constant. There-
after, following lemma shows the system stability with the desired control inputU ∗

q,r .

Lemma 2 Consider the dynamics of γi,T in (52) with di,T (t) = 0. The transformed
tracking error γi,T will converge asymptotically to zero if the desired control input
U ∗

q,r is chosen as (54).

Proof Consider the following Lyapunov candidate

V ∗
i,T = −1

2

γ 2
i,T

gi,T
(55)

Taking its time derivative and recalling (52) with di,T = 0, we have

V̇ ∗
i,T = −γi,Tαi,T

(
fi,T (Zi,T )

gi,T
+Uq,r

)
= γi,Tαi,T

(
τi,T

T ξi,T −Uq,r
)

(56)

Substituting the desired controller (54) into the above equation, we have

V̇ ∗
i,T = −ki,Tγ

2
i,T (57)

which implies that γi,T converges to zero asymptotically.
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Thevalueof τi,T is always distinct for differentwind turbine systems, andobtaining
its value usually needs substantial human and technological efforts. Because of this,
it is not economical to extend the proposed controller to various wind turbines. In
order to circumvent such issues, the actual value of τi,T is supposed to be unknown
in the following adaptive controller design. Further, the bounded disturbance term
di,T is assumed to satisfy

∣∣∣
∣
di,T (t)

gi,T

∣∣∣
∣ ≤ Bi,T (58)

with Bi,T being a positive unknown constant and | · | being the absolute value operator.
Since both τi,T and Bi,T are unknown, let their estimates to be τ̂i,T and B̂i,T , and we
are ready to present the following adaptive control law

Uq,r = ki,T
γi,T

αi,T
+ τ̂ T

i,Tξi,T + tanh

(
αi,Tγi,T

εi,T

)
B̂i,T (59)

with tanh(·) being the hyperbolic tangent function. The adaptive law for τ̂i,T is chosen
as

˙̂τi,T = Λi,T
(
γi,Tαi,Tξi,T − σi,T 1τ̂i,T

)
(60)

where the learning rateΛi,T ∈ �7×7 is a positive definitematrix, and σi,T 11 is a positive
constant. Further, the adaptive law for B̂i,T is chosen as

˙̂Bi,T = li,T

(
γi,Tαi,T tanh

(
αi,Tγi,T

εi,T

)
− σi,T 2 B̂i,T

)
(61)

where li,T , σi,T 2 > 0.

Theorem 2 Consider the inner loop dynamics characterized by (13) and (14). If the
control input voltage Uq,r is selected as (59) with adaptive laws (60) and (61), the
electromagnetic torque Tem can track its desired value T ∗ with guaranteed perfor-
mance in terms of tracking error ei,T satisfying (45).

Proof Consider the following Lyapunov function candidate

V ∗
i,T = −1

2

γ 2
i,T

gi,T
+ 1

2
τ̃ T
i,TΛ

−1
i,T τ̃i,T + 1

2li,T
B̃2
i,T (62)

with τ̃i,T = τ̂i,T − τi,T , and B̃i,T = B̂i,T − Bi,T . Taking the time derivative of V ∗
i,T gen-

erates

V̇ ∗
i,T = γi,Tαi,T

(
− fi,T (Zi,T )

gi,T
−Uq,r − di,T (t)

gi,T

)
+ τ̃ T

i,TΛ
−1
i,T

˙̂τi,T + 1

li,T
B̃i,T

˙̂Bi,T

(63)
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Using the inequality (38), we have

−γi,Tαi,T
di,T (t)

gi,T
≤ |γi,Tαi,T |Bi,T ≤ γi,Tαi,T tanh

(
γi,Tαi,T

εi,T

)
Bi,T + κεi,T Bi,T (64)

Substituting (64) and (59) into (63) yields

V̇ ∗
i,T ≤ γi,Tαi,T

(
τi,T

T ξi,T −Uq,r + tanh

(
γi,Tαi,T

εi,T

)
Bi,T

)

+ τ̃ T
i,TΛ

−1
i,T

˙̂τi,T + 1

li,T
B̃i,T

˙̂Bi,T + κεi,T Bi,T

≤ −ki,Tγ
2
i,T + τ̃ T

i,T

(
Λ−1

i,T
˙̂τi,T − γi,Tαi,Tξi,T

)
+ κεi,T Bi,T

+ B̃i,T

(
1

li,T
˙̂Bi,T − γi,Tαi,T tanh

(
γi,Tαi,T

εi,T

))
(65)

Substituting the adaptive laws (60), (61) and by completion of squares, we have

V̇ ∗
i,T ≤ −ki,Tγ

2
i,T − σi,T 1τ̃

T
i,T τ̂i,T − σi,T 2 B̃i,T B̂i,T + κεi,T Bi,T

≤ −ki,Tγ
2
i,T − σi,T 1‖τ̃i,T‖2

2
− σi,T 2 B̃2

i,T

2
+ Δi,T (66)

with Δi,T = κεi,T Bi,T + σi,T 1‖τi,T‖2/2 + σi,T 2B2
i,T/2. Hence, the V̇ ∗

i,T will become
negative as long as

∣∣γi,T
∣∣ >

√
Δi,T

ki,T
(67)

or

∥
∥τ̃i,T

∥
∥ >

√
2Δi,T

σi,T 1
(68)

or

∣∣
∣B̃i,T

∣∣
∣ >

√
2Δi,T

σi,T 2
(69)

Based on the standard Lyapunov theorem extension [23], γi,T , τ̃i,T and B̃i,T are
bounded.

According to the properties of error transformation, the boundedness of γi,T con-
cludes that the guaranteed performance described by (45) is achieved, and thus ei,T
is bounded. The reference T ∗ generated by the MPPT algorithm is bounded. It thus
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follows that Tem is bounded. Since τ̂i,T = τ̃i,T + τi,T , and τi,T is bounded from def-
inition, we have that τ̂i,T is bounded as well. Since B̂i,T = B̃i,T + Bi,T , and Bi,T is
bounded from definition, we have that B̂i,T is also bounded.

The value of desired reactive power Q∗ is determined by grid needs, e.g., a spec-
ified amount of reactive power compensated in grid can improve the role of the grid
power factor, lower power transformer and transmission line losses. In this chapter,
for analysis convenience, the desired reactive power Q∗ is assumed to be a known
signal, and the control objective is to track a desired Q∗ with guaranteed perfor-
mance, i.e., to obtain the tracking error ei,Q satisfying (46). By recalling (19), the
time derivative of γi,Q can be obtained as

γ̇i,Q = ∂γi,Q

∂	i,Q

(
−3UsLm

2Ls
İd,r − Q̇∗

)
+ ∂γi,Q

∂	̄i,Q(t)
˙̄	i,Q(t) + ∂γi,Q

∂	i,Q(t)
	̇i,Q(t)

= αi,Q

(
−3UsLm

2Ls
İd,r − Q̇∗

)
+ βi,Q (70)

where αi,Q = ∂γi,Q
∂	i,Q

and βi,Q = ∂γi,Q

∂	̄i,Q(t)
˙̄	i,Q(t) + ∂γi,Q

∂	i,Q(t) 	̇i,Q(t), which are available as

feedback signals.
By recalling (15), (70) and considering the modeling error, we have

γ̇i,Q = αi,Q
(
fi,Q(Zi,Q) + gi,QUd,r + di,Q(t)

)
(71)

with

fi,Q(Zi,Q) = 3UsLm Rr

2Le
Id,r − 3UsLm

2Ls

(
Ωs − pΩg

)
Iq,r − Q̇∗ + γi,Q

αi,Q

Zi,Q = [Iq,r , Id,r ,Ωg, Q̇
∗, γi,Q, αi,Q]T

gi,Q = −3UsLm

2Le
(72)

with di,Q(t) = − 3Us Lm�d (t)
2Ls

being the bounded disturbance term embodyingmodeling
errors in the dynamics of 	i,Q . To facilitate the reactive power control design, it can
be observed that

− fi,Q(Zi,Q)

gi,Q
= τi,Q

T ξi,Q (73)

where τi,Q = −[1.5UsLm Rr/Le,−1.5UsLmΩs/Ls, 1.5UsLm p/Ls,−1, 1]T /gi,Q ,
and ξi,Q = [Id,r , Iq,r ,Ωg Iq,r , Q̇∗, γi,Q/αi,Q]T . Moreover, assume that the disturbance
term di,Q(t) is bounded such that

∣∣∣∣
di,Q(t)

gi,Q

∣∣∣∣ ≤ Bi,Q (74)
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Since both τi,Q and Bi,Q are unknown, let their estimates to be τ̂i,Q and B̂i,Q , we
propose the following input Ud,r

Ud,r = ki,Q
γi,Q

αi,Q
+ τ̂ T

i,Qξi,Q + tanh

(
αi,Qγi,Q

εi,Q

)
B̂i,Q (75)

with ki,Q being a user-defined positive constant. The adaptive laws for τ̂i,Q and B̂i,Q

are given by

˙̂τi,Q = Λi,Q
(
γi,Qαi,Qξi,Q − σi,Q1α̂o

)

˙̂Bi,Q = li,Q

(
γi,Qαi,Q tanh

(
αi,Qγi,Q

εi,Q

)
− σi,Q2 B̂i,Q

)
(76)

where the learning rate Λi,Q ∈ �5×5 is a positive definite matrix, and li,Q is a positive
constant.

The stability and control performance of the reactive power closed-loop system
is given in the following theorem.

Theorem 3 Consider the inner loop control characterized by (13) and (14). If the
control voltage Ud,r is designed by (75) with adaptive laws (76), the reactive power
Q can track its desired value Q∗ with guaranteed performance in terms of tracking
error 	i,Q satisfying (46).

Proof The proof is similar to Theorem 2 and thus omitted here.

6 Validation Results

To validate the proposed inner loop control and outer loop control, we have conducted
numerical analysis using NREL FAST code [24] on the NREL WP 1.5MW wind
turbine, which has three blades on a horizontal axis [25, 26]. The parameters of the
wind turbine are given in Table1.

We use the FAST module in the Simulink environment as shown in Fig. 6.
We choose the following system parameters in our validation: air density ρ =

Table 1 Parameters of wind turbine

Number of blades 3

Rotor radius 35 m

Hub height 84.3m

Rated power 1.5 MW

Turbine total inertia 4.4532 × 105 kgm2
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Fig. 6 FAST simulator block

Fig. 7 Wind profile for outer loop control

1.225 kg/m3, ratio np = 0.9, maximum power ratio Cmax
p = 0.412. The controller

parameters are listed as follows: ko = 5,Λo = diag(10−25, 10−15, 10−3), σo = 10,
εo = 10.

The wind speed used in this test is given in Fig. 7. It is generated by the TurbSim
[27] with the mean wind speed as 9.5m/s and turbulence intensity as 15%.

The tracking error performance is depicted in Fig. 8, which can be observed that
our proposedouter loop controller can ensure the imposedperformance requirements.
Figure9 shows the output power trajectory of the generator. It can be observed that the
power output can follow the maximum available power from wind. Finally, Fig. 10
depicts the generator torque input.

For the inner loop control, in order to consider the external noises, two Gaussian
distribution noises with standard deviations 0.1 and 0.5 are added in the dynamics
of Id,r and Iq,r . In this case study, the generated wind speed is shown in Fig. 11,
which is also created using the Kaimal turbulence model with a mean value of 6m/s
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and turbulence intensity of 10%. To be more realistic, the temporal evolution of the
electrical parameters (resistances, inductances), varying from their nominal values
is considered as shown in Fig. 12.

One of the control goal is to drive electromagnetic torque Tem to track T ∗ by
setting kopt = 0.2357, with tracking error 	i,T satisfying predefined constraints. The
corresponding upper bound 	̄T (t) is determined as 9 × exp(−2t) + 1 along with the
lower bound as −149 × exp(−3t) − 1. Moreover, control parameters in control of
electromagnetic torque are listed as follows: ki,T = 3 × 10−4,Λi,T = diag{10−6, 2 ×
10−6, 1, 2 × 10−10, 10−5, 3 × 10−7, 3 × 10−7}, σi,T 11 = 2 × 10−5, li,T = 0.01,
σi,T 2 = 3, εi,T = 2.
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Fig. 11 Wind speed profile

Figure13depicts the electromagnetic torque and its desired value T ∗, which shows
good tracking performance. The tracking error 	i,T with its performance bounds is
given in Fig. 14. It can be observed that the prescribed performance is achieved.

The desired reactive power is given by Q∗ = 1000 + 30 sin(0.1t). One of the
control goals is to drive the the reactive power to follow this desired power with
tracking error 	i,Q satisfying predefined constraints. The corresponding upper bound
	̄Q(t) is determined as 3.5 × exp(−2t) + 1 along with the lower bound as −118.5 ×
exp(−5t) − 1. Moreover, control parameters in control of reactive power are listed
as follows: ki,Q = 4 × 10−7, Λi,Q = diag{10−7, 9 × 10−8, 4 × 10−12, 0.001, 10−5},
σQ1 = 2, li,Q = 5 × 10−7, σQ2 = 1, εQ = 5.
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Fig. 12 Temporal evolution of the electromagnetic parameters

Figure15 shows the reactive power and its desired valueQ∗, and the corresponding
tracking error 	i,Q along with its performance bounds is plotted in Fig. 16. It can be
observed that the corresponding prescribed performance can also be ensured.
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Fig. 14 Tracking error 	i,T along with its bounds

Fig. 15 Reactive power and its reference
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Fig. 16 Tracking error 	i,Q along with its bounds

7 Conclusion

Wehaveproposed an adaptive guaranteedperformance controller forWECSequipped
with DFIG. The WECS comprises the outer loop control concerning the aeroturbine
mechanical subsystem, and the inner loop control concerning the electrical sub-
system. Because the aeroturbine runs much slower than electrical subsystem, the
stability analysis in the outer control loop and inner control loop is addressed sep-
arately. With the help of error transformation, our proposed method is capable of
quantifying and further guaranteeing the system performance on both transient and
steady state stages.
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Machine Learning and Meta-heuristic
Algorithms for Renewable Energy: A
Systematic Review

Essam H. Houssein

Abstract The demand for energy is become essential due to industrial activities and
increasing agricultural of any nation.According to the aforementioned, the renewable
energy resources available are very suitable to meet the ever-growing requirement
of energy by the humanity rather causing any harmful effects to nature. Therefore,
several research studies have been introduced in the renewable energy field such as
solar, wind, biomass, and biogas due to the clean and sustainability. To better scheme
and utilize this energy resource, good forecasting and optimization are necessary and
intrinsic. So, this review introduces an overview of the renewable energy forecasting
techniques that have been utilized in this field based on meta-heuristic optimization
algorithms and machine learning (ML). In addition, several challenges have been
addressed, recommendations for future research are provided, and a comprehen-
sive bibliography is conducted. Eventually, in general speaking, this comprehensive
review of renewable energy resources may help the researchers, energy planners, and
policymakers.

1 Introduction

Sustainable development and global economic growth lead to increased demand for
energy. Approximately 80% of global energy requirements were supplied by fossil
fuels [1]. Regarding to the rapid rate and exhausting of the fossil fuelswhich simulates
the supplement of renewable energy resources such as biomass, solar, hydropower,
biogas, biodiesel, wind power, etc. A rapid increase in global energy demand is due.
To the rate of population growth, high rate of industrialization, and socio-economic
development [2]. The world population growth, energy consumption, and manufac-
turing activities effect on the human activities around all nations. So, the renewable
energy resources are regrading as the most effective and effectiveness solutions.
Therefore, the traditional energy resources in the most of the growing countries has
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been provided extra than 90% of total energy used to set off rapid deforestation,
reducing soil fertility, etc. [3].

The rest of this review is organized in the following sections. Preliminaries for
the meta-heuristic optimization algorithms and machine learning techniques are pre-
sented in Sect. 2. Several types of renewable energy resources also are introduced
in Sect. 3. Then, the existing studies of meta-heuristic optimization algorithms and
machine learning techniques applied in renewable energy are discussed in Sect. 4.
Section 5 address some challenges and open problems. Finally, Sect. 6 concludes
this systematic review and provide some future directions.

2 Preliminaries

2.1 Machine Learning Techniques

2.1.1 Artificial Neural Networks

In a wide range of applications, ANN models have been widely used such as simu-
lation, optimization, pattern recognition, classification, forecasting (prediction), etc.
Also, a large number of cite technologies was introduced [4]. In the last decade,
ANN excels on classical and traditional statistical methods for classification and
prediction. ANN is a powerful tool in several application fields and the advantages
of ANN are; (1) no need for any assumptions; (2) extrapolating from historical data
to generate expectations; and (3) solving complex nonlinear problems respectively.
On the other hand, ANN chooses the important weights during the training phase
and estimates the output retained for the following use [5]. The ability to design a
multivariate problem is regrading the big advantage that merits the ANN models. In
general speaking, ANN consists of many nodes and consists of an input layer, some
hidden layers, and an output layer. Therefore, ANNs are parallel arithmetic mod-
els widely used for information processing and data representation. In dealing with
most simulation and prediction problems, NN have characteristics that make them
potentially successful because they are capable of learning the complex nonlinear
relationships and relationships of a large set of data due to their adaptability, intrinsic
nonlinearity, circularity, and robustness [6].

2.1.2 Support Vector Machines

SVM is regarding as one of the most popular and powerful tool under classification
problems suggested in biomedical science, pattern recognition and classification, etc.
[7–9]. The advantages of SVMs are; (1) classify two different sets in their relevant
class; (2) deal with nonlinear and high-dimensional data. To improve the learning
ability and accuracy of classification for SVM, specifying features and improving
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the parameter for SVM is a critical problem. SVM parameters and kernel parameters
effect strongly on the final results defined as follows:

ϕ(X) : X ⊂ Rk → Rm, k ≤ m (1)

Hyperplane selection is donewith the help of a set of functions in the formof universal
approximation for the linearly separable hyperplanes as shown by the following
Equation:

f (x) =
n∑

i=1

wi xi + b (2)

The following Equations represents the hyperplane targeted by SVMs in order to
obtain linear separability in feature space.

f (x) =
n∑

i=1

wiϕ(xi ) + b ≥ 1∀i : yi = (+1) (3)

f (x) =
n∑

i=1

wiϕ(xi ) + b ≤ −1∀i : yi = (−1) (4)

Eventually, linear kernel, polynomial kernel, Redial Basis Function (RBF) and Sig-
moid is regrading as the most popular four kernels functions used with SVM.

2.2 Meta-heuristic Optimization Algorithms

In computer science and mathematical optimization, “Meta-heuristics” is regarding
as a higher-level procedure applied to search, create, define a search algorithm inorder
to provide a an optimal solution to an specific problem, especially with incomplete
complete information or ability to account is limited. Four important categories in
the meta-heuristics optimization algorithms are; Swarm Intelligence (SI) and bio-
inspired optimization algorithms, chemical/physics and other algorithms. The first
and second type may termed as natural inspired algorithms. In this chapter, we will
focus on SI algorithms that related to the behavior of many interacting clients who
follow the same rules. Although each agent may be considered unwise, the whole
system shows some self-organization behavior and is seen as collective intelligence.
Depending on the inspiration of the SI systems in nature, several algorithms have
been suggested. Therefore, SI is a set of nature-inspired algorithms under the large
umbrella of Evolutionary Computation (EC). SI is a population-based algorithm that
interacts with each other and is statistically better across generations and ultimately
finding good enough solutions. All swarm intelligence algorithms uses the concept



168 E. H. Houssein

Table 1 Brief list for existing meta-heuristic optimization algorithms

Ref. Algorithm Year Ref. Algorithm Year

[10] Chaotic bird swarm
optimization

2018 [11] Water evaporation
optimization

2016

[12] Sperm whale algorithm 2016 [13] Sine cosine algorithm 2016

[14] Water wave optimization 2015 [15] Dragonfly algorithm 2016

[16] Elephant herding
optimization

2015 [17] Grey wolf optimizer 2014

[18,
19]

Whale optimization
algorithm

2019 [20] Salps algorithm 2017

[21] Grasshopper optimization
algorithm

2017 [22] Opposition learning
algorithm

2018

[23] Elephant herding
optimization

2018 [24] Swarm optimizer 2018

[25] Spotted hyena optimizer 2017 [26] Chemotherapy science
algorithm

2017

[27] Artificial flora 2018 [28] Emperor penguin optimizer 2018

[29] Intelligent water drops
algorithm

2009 [30] Ions motion algorithm 2015

[31] Water wave optimization 2017 [32] Binary whale optimization
algorithm

2017

[33] Whale optimization
algorithm

2017 [34] Vortex search algorithm 2017

of multiple factors that mimics the behavior of social insects like bees, ants, termites,
wasps, birds, fish, etc. A brief overview of analytical meta-optimization algorithms
is presented in Table 1.

3 Overview of Renewable Energy Resources

Despite the availability improvement of power in the worldwide, but demand has
orderly overridden the supply. Therefore, non-traditional energy resources such as
renewable energy have become vital desirable. Wind energy system is regrading as
the most recognized resource for renewable energy and has achieved a rapid growth
recently [35]. Also, by 2020, it is estimated about 12% of the worlds electricity will
be available through wind generation [36]. In the following subsections, we will
introduce a brief overview of the different renewable energy resources.
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3.1 Wind Energy

Wind data for analysis was introduced by theNational Renewable Energy Laboratory
(NREL). Also, a Western wind resources data collection is a large regional study on
solar andwind energy in theUnited States [37]. Data extracted from theWesternwind
resources data collection were generated in part with the help of numerical weather
forecasts and sampling every 10 min every 2 km and 1.2 million network points were
aggregated to 32,043 locations. Also, the graphical user interface for the west wind
data permits to download the corresponding string data times and identify network
points. For more details, Potter et al. [38] shows how NREL data were sampled.
The two vertical (row) and horizontal (line) components of the training package are
as follows; (1) Rows means the vertical axis demonstrates the grid points and the
number of grid points. (2) Lines addresses the horizontal axis determines the window
time.

3.2 Biomass Energy

Biomass is regarding as a one of the renewable sources of energy and is produced
from plant crops. Biomass measurement is directly destructive and costly. The most
recent estimates are based on remote sensing data, such as Vegetation Indicators
(VIs) [39]. Also, Gnyp et al. [40] shows that the soil-adjusted vegetation index has
stronger relationships with rice biomass at the conjugation stage than at the time of
takeoff. In addition, Gao et al. [41] prove that the accuracy of wheat biomass is higher
when using Chinese environmental satellite (HJ) images and Radar Polarimetric
Parameters (RPPs) rather than using VIs or RPPs individually [42].

3.3 Solar Energy

Solar energy is now a negligible contribution to the world of electricity production
mix. Accordingly to the level of solar radiation is high and stable this make the solar
energy has been grown in many regions [43, 44].

3.4 Other Energy Resources

In isolated islands, the inspired energy from fossil fuels is regarding very expensive
due to the cost of transportation. Therefore, to avoid this economic cost of fuel
electricity, wind and solar are considered the proper solution as mentioned in [45,
46]. Also, greenhouse gases are introduced as a new source of renewable energy.
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Nowadays, a considerable attention has gotten to the biodiesel production andbecame
a hopeful alternative fuel to conventional diesel [47, 48]. Nevertheless, biomass
exchange to methane in biogas plants has achieved an increasing the worldwide
energy production in large-scale government aid. According to the complexity of
anaerobic digestion processes, the biogas plant operation faces various difficulties
[49, 50]. Various techniques have been developed for biogas prediction as presented
in [51, 52].

4 Applications of Machine Learning and Meta-heuristic
Algorithms

4.1 Machine Learning in Wind Energy

Various researchers have been applied the ANNs and SVMs tools to develop many
techniques which are useful to solve complicated systems, various types of control,
fault diagnosis and prediction/estimation specifically in the wind speed.

4.1.1 Artificial Neural Networks

In [53], a soft computing methodology of wind speed has been figured out the best
fitting circulation. In order to foresee the wind speed, the authors have been utilized
Adaptive Neuro-Fuzzy Inference System (ANFIS). ANFIS is utilized to optimize
wind speed parameters. In [54], a hybrid forecasting model has been presented by
combining GA and ANN and it is called GANN. ANN is utilized to determine the
amount of power output with good accuracy. the proposed GANN model has been
applied on Taiwan wind power and the results revealed that GANN has predicted
the power output with a maximum difference 6.52% less than the real output val-
ues. Also, Peng et al. in [55] a short-term wind prediction for a wind farm have
proposed two different prediction methods. To train the two models, wind direction,
wind speed, and temperature from 40 wind turbines in Mongolia has been used for
data collected. In addition, in [56], for wind speed prediction, a control algorithm
using ANN is introduced. Moreover, the dynamic performance in all evaluation tests
revealed that the proposed model demonstrated superior results. Also, a short-term
prediction method based on Differential Evolution (DE) and Particle Swarm Opti-
mization (PSO) has proposed using two well-known prediction models such as NN
and the K-Nearest Neighbor (KNN) by Jursa and Rohrig [57]. Ten wind farms in
Germany in the period 2004–2007 was used to evaluate the proposed method. The
best result obtained is about 5% for RMSEmeasure for wind farms 9 and 42. Further,
Chen et al. [58], in order to predict the average hourly wind speed, a novel technique
based on Orthogonal Least-Squares (OLS) algorithm using Radial Basis Function
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(RBF) has been proposed. The results showed that a good performance especially
with the RBF better than Multi-Layer Perceptron (MLP).

In the same regard, Fonte et al. in [59], in order to estimate the average wind speed
per hour, ANNwas applied. For the proposed technical evaluation, the data collected
was used in the period from 2003 to 2004 and was divided into training, validation
and test data. The proposed technique was also trained using the back-propagation
algorithm. In addition, Li et al. in [60], an approach based on three NNs and an
Bayesian model to improve the performance of wind speed prediction has presented.
The data set used is compiled from two sites in North Dakota, USA. The Bayesian
model achieved better results than the NN model in terms of absolute error rate.
Further, Zhao et al. in [61] introduced new models based on ANN and Numerical
Weather Prediction (NWP) to evaluate the performance of wind energy predictions
for China’s wind farm. The proposed performance error was evaluated in the terms of
the Normalized Mean Square Error(NRMSE) and the results obtained were 16.47%
for NRMSE. Also, Rasit Ata in [62] provided an overview of several ANN-based
applications used in wind power systems.

To find wind speed profile, a clustering algorithm using neuro-fuzzy has proposed
by Mohandes et al., in [63]. Also, an approach based on fuzzy logic and ANN has
proposed by Monfared et al., in [64]. Furthermore, a three-layered feed-forward
ANN for short-term wind power forecasting in Portugal has presented in [65]. Gopi
and Palanisamy in [66], to model the class-conditional Probability Density Function
(pdf), a NN approach was proposed. In order to evaluate the proposed approach, two
techniques called Gaussian based Kernel and fisher’s Linear Discriminant Analysis
(LDA) are used. Also, fuzzy rough sets to predict wind speed based on a FuzzyRough
Regression Prediction Algorithm (FRRPA) has been proposed in [67]. In addition,
a hybrid computing model based on multilayer perceptron network to predict wind
speed has presented and tested on real-time wind data was presented by Sheela et
al., in [68]. Also, in order to classify raw wind data, a Probabilistic Neural Network
(PNN) model was introduced by Liu et al., in [69]. Further, a short-term prediction
approach based on ANFIS for wind velocity forecasts has introduced by Ernesto
et al., in [70].

4.1.2 Support Vector Machines

Recently, a lot of forecasting techniques have been presented. SVM classifier is
widely known and has been applied in the renewable energy domain. This section
will review some studies were performed to detect wind speed based on SVM.

Prediction techniques based on the Support Vector Regression (SVR) and Recur-
rence Plot (RP) have proposed by Wang et al., in [71]. In order to analyzed the wind
speed series, RP is used also, SVM using kernel function RBF is applied to fore-
cast wind speed. To optimize gamma and penalties factor of the kernel function RBF,
threemeta-heuristic algorithms such as Cuckoo Search (CS), PSO andGenetic Algo-
rithm (GA) are utilized. Also, a hybrid approach for wind speed forecasting is pro-
posed based on SVR in [72]. An autoregressive model using time delay coordinates
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Table 2 Brief list for existing machine learning techniques

Ref. Technique Year Ref. Technique Year

[76] ANN 2009 [83] SVM & ANN 2014

[86] SVM 2009 [85] ANN 2014

[88] ANN 2009 [77] NN 2015

[80] SVM 2010 [84] ANN 2015

[81] NN 2010 [75] Autoregressive 2016

[79] NN 2012 [87] SVR 2017

[78] NN 2013 [89] SVR 2017

[82] SVR 2013 [90] TSVR 2017

is applied for feature selection and hence univariate wind speed time series is used to
train SVR model. To optimize the SVR parameters, GA is applied. Further, in [73],
PSO and Programming Algorithm (EP) have been applied to optimize the hyper-
parameters estimation problem in SVR and tested on real wind speed data collected
from wind turbines of a Spanish wind farm. In addition, CS, PSO and GA have been
used to proposes an ensemble approach based on SVR and NN model by Chen et
al., in [74]. The experimental results revealed that the CS has achieved a superior
results compared with both PSO and GA in terms of global searching capacity and
convergence.

As a summary, according to all the aforementioned studies, it can be concluded a
brief overview of machine learning techniques in Table 2.

4.2 Meta-heuristic Optimization Algorithms in Renewable
Energy

a hybrid model based on PSO and SVM called PSO-SVM to improve the classifi-
cation accuracy is proposed in [94]. Also, a hybrid forecasting technique based on
SVR and RP to forecast short-term wind speed series is proposed by Chen et al., in
[74]. Further, PSO, GA and CS to optimize both of SVR and the kernel function RBF
parameters. Also, a forecasting technique using SVR to estimate the short wind speed
has been proposed in [95, 96]. A forecasting model based on Whale Optimization
Algorithm (WOA) was presented in [97].

In the same regard, several studies have been proposed to dealwith thewind power.
In [98], a long termwind speed forecasting based onhybridSVRandWOA.Ren et al.,
in [99], have proposed an approach called PSO-BP that combines Back Propagation
Neural Network (BPNN) based on Particle SwamOptimization (PSO-BP)with Input
parameter Selection (IS). Based on Bayesian theory and structural break for short-
term wind speed forecasting and tested with actual wind speed data, a time series
forecasting model has been proposed by Jiang et al., in [100]. Sheng-wei and Yong
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in [101], a hybrid model of Artificial Bee Colony algorithm-based Relevance Vector
Machine (ABCRVM) has been proposed for wind speed estimation to improve the
estimation ability ofRelevanceVectorMachine (RVM) forwind speed. In addition, in
[102] a hybrid forecastingmodel has proposed based onGaussian and SVM(g-SVM)
and Chaotic Particle Swarm Optimization to investigate its feasibility in forecasting
regional electricity in China. Carneiro et al. [103] proposed a novel approach for
estimation of Weibull parameters based on PSO. Data are collected form 80 tower
are distributed in a different area in Brazilian. Also based on SVR, a long-term
wind speed prediction has been presented in [87]. Finally, a wind speed forecasting
approach based on PSO combined with Twin Support Vector Regression (TSVR) has
been introduced in [104]. Also, [105, 106] have been introduced somemeta-heuristic
algorithm related to renewable energy.

Regarding to photovoltaic (PV), Soon and Low in [107] have proposed a method
for a single diode PV model based on PSO to identify the unknown parameters.
Moreover, various maximum power point tracking (MPPT) based on PSO have been
presented in [108]. Also, Kashif et al. have used the PSO to track the MPP of PV
system. The results have revealed that the proposed method regarding tracking speed
and steady state oscillations superior the traditional hill climbingmethod as presented
in [109]. Further, MPPT based on PSO have proposed by Tumbelaka and Miyatake
[110]. Fu and Tong in [111] have presented several PV prediction based on PSO.
Also, a new control method is proposed using PSO to extract MPPT from an PV
panel has presented in [112]. A hybrid approach consists of a resistive load based on
PSO has introduced in [113].

4.3 Hybrid Meta-heuristic with Machine Learning
in Renewable Energy

4.3.1 Wind Energy

Table 3 summarize some previous studies in the filed of wind speed forecasting based
on hybrid machine learning and meta-heuristic optimization algorithms.

4.3.2 Biomass Energy

Wang et al., [114], Random Forest (RF) regression have used for remotely estimating
wheat biomass and the performance evaluation of the proposed model is compared
with SVR and ANN. Also, Lpez et al., in [115], have proposed binary PSO approach
for an electric system using biomass to determine the supply area and best location.
Also, the strategic planning of the biomass supply chain was investigated using PSO
by Izquierdo et al., in [116], and the model has been applied to the Mountain, Italy.
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Table 3 Summary of existing studies for wind energy prediction

Studies Model Measure metric Results

[64] Fuzzy and ANN Root mean square errora (RMSE) NA

[65] Bees Algorithm and PSO Objective function NA

[66] PSO-BP Mean absolute error (MAE) 15.51%

Mean square error (MSE)

MAPE

[67] ANN False positive rate (FPR) 0.08

[68] Time series method MAE 1.385

MSE 2.996

RMSE 2.996

[69] NN and Bayes classifier Accuracy 89.24%

[70] Artificial Bee colony (ABC) MAPE 19.83

[91] ANN Absolute relative error (ARE) 35%

[92] ANN Mean absolute percentage error
(MAPE)

19.05%

[93] Fuzzy rough sets Correlation coefficients 0.8945

RMSE 0.0318

[98] Hybrid NN RMSE 0.0828

[99] PNN MAE 14.691

RMSE 18.584

MAPE 29.192

[100] ANFIS MSE 1.569

[101] Kernel ridge regression (KRR) RMSE 1.7835

MAE 1.3559

Normalized mean square error (NMSE) 0.8775

[102] Gaussian-SVM MAE 18.75

MAPE 0.135

MSE 1.486

[103] PSO RMSE NA

Relative bias (RB)

In addition, Sedighizadeh et al., in [117] have combined GA and PSO to determine
the optimal power plant size and biomass supply area hat offer the best profitability.

Table 4 summarize some previous studies in the filed of biomass based on hybrid
machine learning and meta-heuristic optimization algorithms.

4.3.3 Solar Energy

In 2016, according to [118], the solar PV has reached nearly 50%, per hour, more
than 31,000 solar panels installed. A long-term analysis of four concentrating solar
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Table 4 Summary of previous studies on Biomass

Studies Model Measure metric Results

[114] Emerging random forest
(RF)

RMSE 45%

[115] Binary PSO Fitness function 76%

[116] PSO NA NA

[117] GA and PSO NA NA

Table 5 Summary of previous studies on solar systems

Studies Technique Results

[119] CSP and SAM As the result of SAM, the lowest for the Greece site and the
highest values in Egypt

[120] Fuzzy-neural Obtained performance of the hybrid fuzzy-neural is 99%

[121] SVM and FFA RMSE is 0.6988, R2 is 0.8024, and MAPE is 6.1768

[122] Bat algorithms On average improved by 14.71% over K-means

power plants using SAM software have been presented by Polo et al., in [119]. ANN
is applied with system advisor model for the plant output. Also, Alireza andMajid in
[120] have proposed a novel fuzzy-neural combinedwithMPPTmethod to obtain the
maximum power for intelligent PV system. Also, the experimental results revealed
that the proposed method superior by 2% points in comparison with the conventional
methods. In [121], a hybrid approach has introduced for solar radiation prediction
based on Firefly Algorithm (FA) and SVMs called SVM-FFA approach. In [122],
Munshi et al., have applied theBat algorithm to select the efficient pattern in grouping
PV power data with different objective functions in clustering PV power patterns.

Table 5 summarize some previous studies in the filed of solar based on hybrid
machine learning and meta-heuristic optimization algorithms.

In the past decade, the research into solar energy has gained momentum. There-
fore, there are a great challenge in choosing the mathematical parameters model
“extraction/estimation” of PV cells and modules for finding suitable PV parameter.
Two common approaches for the PV parameter estimation techniques have been
categorized; (1) analytical and (2) numerical extraction method.

As a summary, according to all the aforementioned, it can be concluded a brief
overview of meta-heuristic algorithms for PV system as shown in Table 6.

Eventually, the challenge of power losses for PV ability have addressed in several
researchworks and all have proved that the use of a power optimizer known asMPPT.
Most of the MPPT techniques has been inspired to receive the same irradiance. In
last few decades, several research studies on MPPT have been proposed concluded
in Table 7.



176 E. H. Houssein

Table 6 Brief list for PV systems

Ref. Technique Year Ref. Technique Year

[123] Parameter estimation 2017 [124] Parameter extraction 2016

[125] Parameter extraction 2017 [126] Parameter extraction 2017

[127] Parameter estimation 2016 [128] Parameter extraction 2018

[129] Parameter extraction 2016 [130] Parameter identification 2016

[131] Parameters identification 2016 [132] Parameters extraction 2016

[133] Parameter estimation 2016 [134] Parameter estimation 2017

[135] Parameter extraction 2016 [136] Predict the performance 2017

[137] Parameter estimation 2016 [138] Parameter estimation 2018

[139] Parameter estimation 2017 [140] Parameters extraction 2017

[141] Parameter estimation 2017 [142] Performance evaluation 2018

[143] Parameter estimation 2018 [144] Parameter estimation 2018

[123] Parameter estimation 2017 [145] Parameters extraction 2017

[146] Parameters estimation 2017 [147] Parameters optimization 2016

[148] Parameters estimation 2016 [149] Monitoring platform for solar 2017

[150] Determine the dynamic
parameters

2016 [151] Parameter estimation 2016

[152] Parameters extraction 2016 [153] Parameters identification 2017

[154] Parameter estimation 2015 [155] Parameter estimation 2017

[156] Parameters identification 2017 [157] Optimal power flow solution 2018

Table 7 Brief list for maximum power point tracking (MPPT) technology

Ref. Technique Year Ref. Technique Year

[158] Partial shading conditions 2017 [159] Ant colony optimization
algorithm

2017

[160] Partial shaded conditions 2018 [161] Particle swarm optimization 2015

[162] Artificial bee colony
algorithm

2015 [163] Flower pollination
algorithm

2017

[164] Particle swarm optimization 2016 [165] Particle swarm optimization 2015

[166] Particle swarm optimization 2015 [167] Cuckoo search 2017

[168] Cuckoo search 2014 [169] Bird mating optimizer 2013

4.3.4 Other Energy Resources

One of the main points to reduce the energy consumption is to decrease the energy
demand. Otherwise the aforementioned discussing for the renewable energy in the
previous section, several energy resources existing such as; (1) Geothermal energy
[170]. (2) Hydro plants (HP) [171]. (3) the CO2 processes of energy production
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[172]. (4) Biodiesel [173]. Also, (5) Biogaswhich considered an important renewable
energy resource based on producing of a group of gases such as methane gas and
carbon dioxide as introduced in [174].

5 Challenges and Open Problems

Recently, one of the most promising renewable sources of energy, wind power has
attracted increasing global attention. According to the World Wind Energy Associa-
tion [175] by the end of 2010, global wind power reached 2.5% of world electricity
consumption. The major challenge for wind power production is determined by the
wind speed of the wind farm. Due to their dependence on temperature, atmospheric
pressure, altitude and terrain, wind is irregular and evaporates. As well as, solar
energy became one of the biggest resources for the renewable energy in the world
and still an open problem that need more effort and researches.

The price of the wind established descend by more than 20 over the last 30 years.
Therefore, Table 8 show the average wind power marketing signed in 2012 [176].

In the worldwide, wind power is now the cheapest one of renewable energy
resources. In generally speaking, Figure 1 demonstrates the amount of wind power
that has gained by a 10x around over the last ten years [176].

Due to the volatility of diesel prices and government pressure to reduce energy
costs, hence relying on a renewable energy became an urgent demand. Regarding to
Navigant Research report [177] predict the following:

Table 8 Wind cost per kWh (US) from the year 1980–2012

Year US cents per
kWh

Year US cents per
kWh

Year US cents per
kWh

1980 55 1981 51 1982 45

1983 42 1984 38 1985 32

1986 28 1987 25 1988 22

1989 18 1990 17 1991 15

1992 13 1993 12 1994 11

1995 9 1996 8 1997 7

1998 6 1999 5 2000 4

2001 3 2002 2 2003 2.5

2004 3 2005 3.5 2006 4

2007 5 2008 7 2009 8

2010 7 2011 5 2012 4
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Fig. 1 Global wind power cumulative capacity

Fig. 2 Renewable energy for the mining industry revenue by technology

• Renewable energy will participate by the end of 2022 around between 5 and 8%
of the worlds industry power consumption as shown in Fig. 2.

• Due to the increasing the energy resources and its low cost, the natural gas gener-
ators will be utilized widespread.

• In order to encourage widespread adoption by mining companies, energy costs
must come down enough and this limited through 2022.

In addition, due to the great evolution of renewable energy prediction, therefore,
almost trends and prospects can be drawn as follows:

• Study methods that improve the training algorithm such as ANN that aim at more
accurate results.

• In the long and short term forecasting, the need to combine different physical and
statistical models for good results.

• More researches on the practical application, not only in theory based on new
mathematical methods.
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• Hybridization of machine learning techniques can be developed with other meta-
heuristic optimization algorithms may be vital research point.

• Improving the stability of wind generators using machine learning and meta-
heuristic algorithms may be vital research point, which needs more detailed atten-
tion.

Eventually, with regard to the above discussion, this review attempts to give a clear
idea of renewable energy, especiallywind speed and solar system. It is clear that some
of the topics that have not been identified are an urgent need for the feasibility of
operational tools, such as:

• Three-dimensional measurements of wind speed and wind turbines are an urgent
need.

• Machine learning techniques such asANNcan be used to predict energy for energy
allocation of the country as well as improvement the performance accuracy of
existing models.

• Integrationbetween themathematical/statistical andphysical/meteorologicalmod-
els have been becoming a desirable task.

• The goal of a MPPT is to satisfy the precision, accuracy, speed, and robustness.
Therefore, meta-heuristic optimization algorithms may regarded a superior alter-
native over traditional methods to achieve this goal.

6 Conclusions

Our main focus in this review was on renewable energy resources. In general, wind
energy is regarding as one of the significant sources of sustainable renewable energy.
To support wind energy it is important to estimate the generation of wind power.
According to, the continuous inconstancy of wind resources represents a great chal-
lenge for accurate and reliable short-term forecasts of wind speed. The current state
of the biogas and biomass market shows the growing need for new developments
in the areas of measurement, analysis, control and optimization. All these areas are
still a hot topics and need more effort and research. In addition, there are increasing
demands for manufacturers of solar systems to create a sustainable energy resource
with greater efficiency. In this regard, we summarize the results of many renewable
energy resource technologies. This review shows that machine learning as well as
meta-heuristic optimization algorithms plays important roles in renewable energy
and produces high resolution results. The main findings of this review concluded as
follows; (1) ANN is regarding as one of the most famous machine learning tools that
has been used to forecast/estimate renewable energy systems. (2) GA and PSO are
regrading the most popular meta-heuristic algorithms applied in this field. (3) Hybrid
meta-heuristic algorithms with machine learning tools seems to be a more efficient.
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Design of a Supervisory Control System
Based on Fuzzy Logic for a Hybrid
System Comprising Wind Power, Battery
and Ultracapacitor Energy Storage
System
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Carlos Andrés García-Vázquez and Francisco Jurado

Abstract Hybrid configurations involving renewable energies and storage devices
pose certain challenges regarding their energy management strategies, such as the
intermittent and fluctuating power generation from renewable sources, the time-
varying available energy in the storage systems, or their maximum charge and dis-
charge limitations. Observing these aspects is mandatory in order to develop a smart
energymanagement strategywithin the hybrid system.This chapter presents a control
strategy for the coordinated operation of a wind power generator and two different
energy storage devices. The proposed control scheme is based on fuzzy logic to mon-
itor the state of charge of the storage systems, while defining their power references
to comply with an imposed grid demand. The control strategy has been evaluated
through simulation under different operating conditions, proving a satisfactory regu-
lation of the monitored parameters and an adequate supply of the grid requirements.
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1 Introduction

The increasing penetration of renewable sources poses certain inconveniences. For
instance, the intermittency and variability of wind speed may lead to undesired fluc-
tuations of power, voltage or frequency in power systems [2, 4, 15]. Large-scale
ESSs are often presented as an adequate alternative to mitigate the risks of a grow-
ing participation of renewable energy generation [4, 38]. Detailed reviews of the
most interesting ESSs potentially applicable for such tasks have been carried out [8,
11, 13]. It is frequently highlighted a clearly differentiated performance among the
storage technologies, what makes them more or less valid for a specific application.
In this sense, the ability to respond quickly to fluctuating charge/discharge cycles
has been attributed to UCs [10, 16]. Regarding electrochemical batteries, a slower
response compared with the UCs has been noted in the literature [10]. Nevertheless,
longer charge or discharge cycles can be achieved with BESSs [12]. The main qual-
ities of both ESSs have been regarded to design a control strategy that enhances the
operation of the WECS in the hybrid scheme proposed in this chapter.

An additional option to mitigate the uncertainty of wind power generation is the
use of wind speed forecasting techniques to estimate the future power production
of a wind farm [40]. Such studies can be carried out with different time spans to
pursue different objectives, such as daily scheduling [14, 22], or hourly forecasting
for day-ahead predictions [26]. The concept presented in [26] can be seen as a valid
option for the wind speed prediction considered in this configuration. Nonetheless,
the aim of this work is to develop a control strategy that uses this prediction as a
known parameter. Therefore, a forecasting algorithm is not implemented herein.

The feasible alternatives regarding the design of a SCS in a hybrid system com-
prising several power sources are numerous and varied. In this sense, intelligent
control techniques have a key role to play. A hybrid system using hydrogen fuel cells
as the main power source to supply domestic loads is presented in [18]. The hybrid
scheme includes a UC as an auxiliary source to cover the quick changes in demand
that the hydrogen system cannot deliver due to its slower dynamics. The authors
designed a power control algorithm to manage the different power flows within the
hybrid system. A similar approach is presented in [24], where a gas-fuelled microtur-
bine is added to ensure continuous power supply. Wind power generation is added to
this hybrid configuration as the main power source in [19]. Again, implementing an
adequate control management system is crucial to achieve a satisfactory coordinated
operation of several power sources. A DC microgrid with wind power and ESSs is
evaluated in [17]. Power from the different sources is managed in [17] using fuzzy
logic to provide an optimal operation of the system and fulfil load demand. Further-
more, the SOC of the battery is also considered as an input to the fuzzy controller.
A supervisory controller based on fuzzy logic for a hybrid system with wind power
and ESS is also used in [23]. The ESS improves the power quality of the wind power
generation. Nonetheless, the hybrid system proposed does not have the ability to
follow load variations. An advanced droop control with fuzzy rules for an isolated
microgrid is presented in [30]. The authors claim amore accurate, adaptive and robust
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control of power sharing among several distributed generators in the microgrid due
to the inclusion of the fuzzy method. An isolated microgrid with renewable energy,
diesel generator and energy storage is also studied in [5]. The frequency of the AC
power supply is regulated against changes in load or generation through a fuzzy gain
scheduling of a PID controller, achieving a better transient response compared to the
classic PID controller structure. However, the SOC of the storage devices was not
monitored in the control strategy proposed. In the literature, fuzzy controllers have
also been applied to WECS to regulate parameters such as DC voltage [31], pitch
angle [20, 25, 35], rotor speed [7], or active and reactive power [27, 32]. Never-
theless, in such cases the focus was particularly put on the operation of the WECS,
rather than using the fuzzy controller as a smart decision-maker in a hybrid system
with various power sources.

In this chapter, a hybrid system comprising a WECS and two different ESSs is
evaluated. The main objective of this hybrid scheme is to provide a controlled active
power to the grid. Due to the fluctuating and uncontrolled power generation of the
WECS, theESSswill be responsible for absorbing or providing the power imbalances
between generation and demand. Therefore, it becomes crucial to monitor the SOC
of both ESSs. For this purpose, an intelligent SCS has been designed. The SCS is
based on fuzzy logic to generate a compensating active power term that is exchanged
between both ESSs to regulate their SOC according to the instantaneous operating
conditions. This hybrid system has been tested under simulation and compared to
other alternatives.

2 Configuration of the Hybrid System

A wind turbine coupled to a DFIG is the primary power source in this configura-
tion. Additionally, two different storage technologies are considered. BESS and UC
have been chosen for their distinctive characteristics to develop two complementary
duties in the hybrid system. Due to their fast response and large rated power, UCs
can achieve a satisfactory performance when operating under quick and frequent
charge/discharge cycles with potentially large power boosts or sags. Nonetheless,
they are less adequate to store or provide a large amount of power for a long time.
On the other hand, such tasks can be successfully carried out by electrochemical
batteries, whereas their response to large and fast power peaks is poorer than that
of the UCs. The qualities of each of the storage technologies considered have been
taken into account to define their role in the hybrid system. The decision between
the use of BESS or UC is made by the active power SCS specifically implemented
for this purpose. Furthermore, the availability of these two ESSs has also been used
to develop a smart control of their SOC.

Power conversion stages are needed to accommodate the BESS and the UC in
the hybrid system. A bidirectional DC/DC converter allows regulating their active
power exchange. Then, AC/DC converters must be used to connect the bidirectional
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Fig. 1 Schematic of the hybrid system configuration

DC/DC converter to the AC output of the DFIG. The DC link voltage and their
reactive power exchange is controlled in these converters.

A complete scheme of the hybrid configuration is shown in Fig. 1, where the
control parameters are also illustrated.

3 Modelling of the WECS

The WECS is the prime power source in the hybrid scheme. The power harnessed
in the wind turbine is typically given by (1) [21].

PWT = ρ

2
· Ar · u3 · Cp (1)

The factor Cp is a dimensionless parameter that defines the fraction of the incom-
ing wind energy that can be collected by the wind turbine. It depends on the aerody-
namics of the wind turbine, and it can be expressed in a set of curves as a function
of the blade pitch angle and the tip-speed ratio.

The torque of the wind turbine can be calculated dividing the wind turbine power
by its angular speed. This torque is transmitted along the powertrain to the rotor of
the electric generator. This mechanical system can bemodelled by twomasses linked
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through a flexible coupling characterized by its stiffness and damping. This is the
well-known two-masses model [36], which is given by (2)–(4).

TWT − Tpt = JWT · dωWT

dt
(2)

Tpt = Dpt (ωWT − ωr ) + Kpt

∫
(ωWT − ωr ) dt (3)

Te − Tpt − ωr · F = Jr · dωr

dt
(4)

The wind turbine drives a DFIG that has been modelled through the equations of
the stator and the rotor voltages expressed in a reference frame where the d and the q
axes rotate at synchronous speed. These voltages can be expressed as in (5)–(6) [28]:

uds = Rs · ids + d

dt
ϕds − ω · ϕqs

uqs = Rs · iqs + d

dt
ϕqs + ω · ϕds (5)

udr = Rr · idr + d

dt
ϕdr − (ω − ωr ) · ϕqr

uqr = Rr · iqr + d

dt
ϕqr + (ω − ωr ) · ϕdr (6)

The electromagnetic torque used as an input in the powertrain model can be
derived from (7).

Te = 1.5 · p (
ϕds · iqs − ϕqs · ids

)
(7)

The rotor windings of the DFIG are fed through a back-to-back power converter
based on VSC. It provides the capacity to adjust the frequency of the rotor currents
by decoupling the mechanical speed at the rotor shaft and the electrical frequency
of the grid [3], thus allowing the regulation of the wind turbine rotating speed. A
switched model has been used for the two-level VSCs, where the three-phase AC
voltage can be derived from (8) [42]:

Va = VDC

2
(s1 − s4) , Vb = VDC

2
(s2 − s5) , Vc = VDC

2
(s3 − s6) (8)

Based on the power balance that must be maintained in the lossless converter, the
performance of the converter at the DC side can be obtained from (9):

VDC · iDC = Va · ia + Vb · ib + Vc · ic (9)
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Three control systems are implemented in the WECS. First, the pitch angle of
the blades is responsible for limiting the angular speed of the wind turbine to a
reference value. For above rated wind speeds, the pitch angle increases to reduce
the power capture. Subsequently, the angular speed of the rotor remains regulated at
the reference value. On the other hand, the pitch angle is set at 0◦ for below rated
wind speeds, thus optimizing the power extracted from the wind. This performance
can be achieved with a PI on a feedback control loop, as depicted in Fig. 2, where
the mechanical limitations of the actuators, such as maximum speed of variation and
maximum/minimum angle, have been included.

The control strategy implemented on the RSC allows an independent regulation
of the active and reactive power generation through the dq components of the rotor
voltage. Hence, Pg is regulated using a cascaded PI control loop. The reference is
set using the optimal speed vs. power curve of the WECS, receiving the angular
speed as an input. The reactive power exchange through the stator is also controlled
in the RSC, and it can be expressed as a function of the stator operating conditions.
This structure is illustrated in Fig. 3. As seen, the voltage references are obtained
from the controller of the rotor currents in the inner loops, while the outer loops are
responsible for setting the current references. Finally, a PWM generator provides the
trigger signals to the VSC model.

In the GSC, the d component of voltage controls the DC voltage, whereas the q
component regulates the reactive power exchange through the converter. The config-

Fig. 2 Pitch angle control scheme

Fig. 3 RSC control scheme
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Fig. 4 GSC control scheme

uration of this controller is depicted in Fig. 4. As seen, the control strategy consists of
two cascaded PI control loops, one for each control parameter. The GSC is respon-
sible for controlling the DC bus voltage close to a constant reference.

4 Modelling of the ESSs

The BESS model consists of the updated version of the Shepherd model proposed
in [39], which can reproduce the dynamic performance of different battery types.
Hence, Ebatt is a function of the nominal parameters of the device and the operating
conditions, as calculated in Fig. 5. Then,Ubatt is computed with a series resistor that
models the internal losses of the device [39].

Another key aspect of the battery model is the calculation of its SOC. This param-
eter is continuously calculated by (10) [39].

Fig. 5 Scheme of the BESS model
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SOCBESS (%) = 100

(
1 −

∫
ibatt (t) dt

Q

)
(10)

The parameters of themodel have been obtained froma commercial reference. The
discharge curves of productD121000BD fromDiscover Battery [9] have been used to
extract the necessary parameters of the battery model. In the proposed configuration,
288 cells are connected in series to reach a nominal voltage of 576 V. Three of these
branches are connected in parallel for an energy rating of 100 kWh. These values
show the actual capacity of the BESS considered in this hybrid configuration.

Regarding the UC, a reduced UC model has been found a valid alternative in
previous studies of the electrical performance of hybrid systemswith wind energy [1,
41]. Therefore, the UC model implemented consists of an ideal capacitor in series
with a resistor that models the internal losses of the UC, and SOCUC is given by
(11).

SOCUC (%) = 100 · vUC (t)

VUC rated
(11)

The parameters of the UC model have been obtained for validation purposes
from Maxwell Technologies’ product BMOD0063 P125 [29]. Parallel and series
association of several UC modules is necessary to achieve a 2.5 kWh capacity, with
a fully-charged voltage of 625 V.

For both ESSs, a DC/DC converter is needed to connect the storage device at the
PCC through the corresponding inverters. The configuration chosen for this purpose
is the classical bidirectional buck-boost converter widely used in renewable energy
applications [33, 37]. This converter presents two electronic switches based on IGBT
and diodes, as well as an inductor and capacitors to reduce current and voltage ripple
respectively. An averaged model of this DC/DC converter has been implemented on
the hybrid configuration.

The DC/DC converters are controlled to track the active power reference that the
SCS defines for each ESS. In this context, PI controllers are able to provide a satis-
factory performance. The control scheme developed for the ESS DC/DC converters
consists of a single loop based on a PI controller that generates the duty cycle for the
converter model, as shown in Fig. 6.

Finally, a DC/AC converter is needed to complete the conversion of the power
exchanged between each ESS and the PCC. The GSC converter model and con-
trol strategy have been used also for these DC/AC converters, and they have been
described in Sect. 3.

Fig. 6 DC/DC converter control scheme
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5 Design of the SCS

Aproper coordination between the three power sources in the hybrid system is crucial
in order to achieve a satisfactory operation. TheWECS is considered the main power
source. The DFIG is controlled under a MPPT strategy, which can be developed
autonomously by the DFIG controllers without the participation of the SCS, since
the power reference is calculated through the speed vs. power characteristic curve
of the WECS. The measured rotating speed of the wind turbine is used as an input
to the optimal power curve. Then, the maximum power that can be generated at
that speed is obtained from the optimal curve and used as a reference in the RSC
controller, as shown in Fig. 3. This controller is responsible for regulating the total
power generation of the DFIG to this optimal reference, thus achieving the MPPT
operation of the WECS.

The secondary power sources are the energy storage devices selected. Two differ-
ent technologies contribute as an active power backup for the system. This offers a
wide range of possibilities regarding their operation and use. In this case, the BESS
supports the WECS with active power exchanges (either storage or supply) main-
tained for longer intervals compared to the UC. On the other hand, the UC covers
fast peaks of active power that switch frequently from generation to consumption
and vice versa. The active power SCS has been designed under these premises.

According to the previous description, the active power SCS is structured into
two stages. The first stage sets the primary references for the BESS and the UC. The
distinctive performance and characteristics of both ESSs are observed here. A second
stage of the SCS includes a fuzzy-logic controller that supervises the SOCof theESSs
and modifies the primary active power references accordingly. The aim is to use the
BESS to avoid SOCUC exceeding certain operating boundaries. Similarly, the UC
can support SOCBESS when necessary. Figure7 shows a schematic of the described
two-stages SCS for the active power references and SOC regulation. As seen, three
parameters are used as inputs on the first stage. The total active power provided by
the hybrid system must equal the active power demanded by the grid. In traditional
power plants, this demand is typically set according to the requirements of the TSO
or to commercial agreements on a day-ahead market. Thanks to the ESSs, the hybrid
system can operate similarly to traditional power plants responding to changes in
the power demanded by the TSO. Obviously, the limited capacity of the ESSs poses
certain boundaries to the flexible generation of the hybrid system, but with these
storage devices, the WECS undoubtedly gains the capacity to manage energy with
higher efficiency. Since Pdem corresponds to the orders of the TSO, and could be
agreed in a day-ahead market, this parameter can be expected to remain stable for
relatively long periods, experience ramps, and be set either above or below the rated
power of the WECS. Additionally, it is not expected to show quick fluctuations.

Another input signal of the SCS is Pprediction . The power generation of a wind
turbine can be estimated using a wind speed forecast and the speed versus power
curve of the generator [26]. Wind speed forecasting techniques for different time
spans have been addressed in the literature and are not within the scope of this
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Fig. 7 Structure of the proposed SCS

study. Therefore, Pprediction is considered a known value and used as an input in
the SCS. With this power forecast available, the wind farm operator can provide a
future power production estimation and participate in electric markets similarly to
traditional power plants. Certainly, this power prediction is subject to inaccuracies
due to forecasting errors on the wind speed. Nonetheless, when kept within certain
SOC and capacity limits, the ESSs can participate to guarantee that the total genera-
tion of the hybrid power systems equals the time-ahead power prediction. The result
is not only an instantly controlled active power output, but also a power generation
that matches the commitment agreed in time-ahead electric markets. In this sense,
the hybrid configuration of WECS with ESS reproduces the operation of traditional
power generators. The power prediction signal can remain stable for long periods.
For instance, a wind speed forecast with hourly average values is presented in [26].
Under such conditions, the active power prediction can be considered constant for
intervals of one-hour duration, and that is the time variation used herein for this
parameter.

The third signal inputted to the SCS is Pg , calculated as the sum of the stator
and rotor active power. This parameter will vary with the wind speed fluctuations
for winds below the rated value. Hence, Pg can present relatively fast and frequent
fluctuations due to instantaneous wind sag and gusts.

The first stage of the active power SCS sets PrimaryBESS and PrimaryUC

according to the characteristics of the input signals. As described in the preceding
paragraphs, the grid demand could be set by the TSO either higher or lower than
Pg , and remain constant for long periods. Since it is not necessarily linked to the
wind speed conditions, this demand can be notably different from the active power
prediction, which shows an hourly variation pattern. This means that a significant
amount of energy must be delivered or absorbed by an ESS during time intervals
ranging from minutes to hours in order to supply the grid with the demanded active
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power. Such performance is suitable for the BESS, which presents a higher capacity
thanUCs. Subsequently, PrimaryBESS is defined as the difference between Pdem and
Pprediction . Therefore, the BESS gives the hybrid system the ability to adapt its active
power generation to an external requirement. Nevertheless, the instantaneous SOC
and maximum capacity of the BESS are boundaries to this improved performance.

The primary active power reference for the BESS relies on a power generation
prediction. Within the time span considered for the power prediction there will be
deviations of the actual generation above and below this mean value because of wind
speed gusts and sags. These deviations can show a rapidly changing profile, due to
the inherent characteristics of wind. The fast response to power peaks of the UC is
adequate for this duty, and they can be used to compensate these rapid fluctuations.
Therefore, PrimaryUC is calculated in the SCS as the difference between Pprediction

and Pg . Subsequently, the power generation resulting from the WECS plus the UC
equals the power prediction forecasted time ahead, and it can be considered that
the power prediction used to calculate the BESS primary reference is always true,
subject to the limitations of the UC capacity and SOC.

Ideally, the operation of the hybrid system given the primary active power refer-
ences calculated as described is analogous to that of a traditional power plant, where
the hourly active power production can be anticipated to participate in day-ahead
electric markets. The role of the two ESSs is clearly differentiated here. The UC
ensures that the power prediction is accurately provided the day after, whereas the
BESS allows time shifting the WECS power generation. Nonetheless, this ideal per-
formance is constrained by the limited capacity of the ESSs and their instantaneous
SOC variation. The first limitation can be addressed by evaluating the size of the
ESS. This has been studied in the literature and it is not within the scope of this
work. Alternatively, a smart control of the SOC of the BESS and the UC is proposed
here as a strategy to enhance the contribution of both ESSs in the hybrid system and
provide a controlled power supply.

BESSs and UCs present maximum and minimum SOC boundaries that should
not be passed in normal operation in order to avoid damaging these storage devices.
In the control scheme proposed herein, the SOC of both ESSs is supervised in the
second stage of the active power SCS bymeans of a fuzzy logic-based controller. The
smart regulation of the SOC is performed through the calculation of an additional
compensating active power term that modifies the primary active power references.
This compensating term is conceived as an active power that virtually flows from one
ESS to the other. Since the active power balance between the whole hybrid system
and the grid must be ensured at the PCC, all the additional power injected by the UC
that breaks this power balance must be absorbed by the BESS to recover the power
balance. The same applies to an additional power injection by the BESS that breaks
the power balance. Hence, Pcomp can be considered a direct active power exchange
between the UC and the BESS. The main task of the second stage of the SCS is
to compute the magnitude and direction of this power exchange to compensate the
SOC variations of both ESSs and reduce the risk of exceeding their maximum and
minimum recommended values.
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The compensating power term Pcomp is calculated by a controller based on fuzzy
logic as illustrated in Fig. 7. The inputs for this fuzzy logic controller are the SOC
and primary active power references of both ESSs, and Pcomp is obtained as output. A
positive value of Pcomp indicates an additional power injection of the UC to support
the SOC recovery of theBESS.Analogously, a negative value indicates that theBESS
supports the UC. Implementing a fuzzy controller on the SCS requires the definition
of the MFs for inputs and outputs, as well as the rules that describe the input/output
relations. Usually, these parameters are derived based on the expertise of the designer
and on empirical experiences. Under this perspective, the configuration of the fuzzy
controller has been designed as described below:

• The MFs for the SOC of the ESSs have been divided into three possible levels,
namely ‘High’, ‘Normal’ or ‘Low’. The ‘Normal’ SOC range is considered when
the ESS operates with a SOC between its maximum and minimum boundaries.
Consequently, the ‘High’ and ‘Low’ SOC are defined for SOC values above or
below the corresponding limits. Preferably, the ESSs would work on the ‘Normal’
SOC region. The maximum and minimum SOC limits depend on the storage
technology, and they have been set at different values for the BESS and the UC in
Fig. 8.

• The primary active power references forUC andBESS are classified into one of the
following four situations: Deep charge (‘DC’), soft charge (‘SC’), soft discharge
(‘SD’) and deep discharge (‘DD’). Under a soft charge/discharge cycle, the ESS
is receiving/releasing a low or medium amount of active power and the SOC is
expected to vary slowly. Nonetheless, a deep charge/discharge implies a faster
variation of SOC that can drive the ESS to a limiting situation more rapidly.

Fig. 8 MFs for the inputs and output of the fuzzy controller
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• The compensating active power outputted from the fuzzy controller will be
included in one of the following five possibilities: Negative high (‘NH’), neg-
ative low (‘NL’), zero (‘Z’), positive low (‘PL’) and positive high (‘PH’). The
positive and negative ranges are distributed symmetrically around the zero output,
when no compensation is needed between the ESSs. The positive and negative
values of Pcomp determine which storage device receives support from the other to
avoid limiting SOC situations, whereas the high and low alternatives define how
strong this support needs to be, which is reflected on the amount of active power
exchanged between them.

The MFs for the inputs and the output of the fuzzy controller are shown in Fig. 8,
and have been derived through an experience-based design procedure. It can be
observed that the same MFs are used for PrimaryBESS and PrimaryUC . Nonethe-
less, the MFs of their SOC differ, which is justified by the fact that both devices
typically show a different recommended depth of discharge.

The SOC inputs vary in the range of [0, 100]%, and normalization was not consid-
ered necessary for these parameters. Regarding the active power inputs and output,
they are expressed in p.u., using the rated power of the WECS as the base power.
Therefore, their variation is already in the range of [−1, 1] p.u., and no additional
normalization gains were needed in the fuzzy controller.

Some initial parameters of the MFs, such as their number, shape and their range
of variation, were chosen based on the knowledge and the desired performance of the
system. A second step consisted on the fine adjustment of the initial set of MFs. This
was carried out through simulation of the control system under various scenarios,
and observation of the responses obtained (i.e.: SOC variation of the ESSs). This
stage led to the complete definition of the MFs finally implemented on the fuzzy
controller. Nevertheless, other alternatives were evaluated and rejected during this
process. For instance, a control system with less MFs was tested. This configuration
showed a limited controllability of the SOC of both ESSs, difficulty to discrimi-
nate between deep/soft charge/discharge cycles, or steep and sudden changes on the
compensating power term among other undesired effects, and it was not considered
valid for this application. Opposite, a configuration with moreMFs than those finally
selected was also studied, observing a higher precision on the compensating power
outputted from the fuzzy controller. However, the complexity of the system (number
of fuzzy rules needed) and the computational time increased notably. Hence, it was
considered that the accuracy gained in the SOC controllability did not justify the
inconveniences derived from the increased number of MFs. In conclusion, the set of
MFs presented in this work provided satisfactory results, and it was considered an
adequate configuration for the purpose pursued herein.

Together with theMFs, the fuzzy rules are also responsible for defining the output
of the fuzzy controller depending on the value of the inputs. In this configuration,
144 fuzzy rules are implemented on the fuzzy controller. The list of fuzzy rules
is presented in Table1. With this configuration, the compensating active power is
adequately defined to support the SOC regulation between both ESSs. Certainly,
the computation of inputs and outputs in a system with 144 fuzzy rules can pose a
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Table 1 Tables of the fuzzy rules (Note that PrimaryBESS and PrimaryUC have been shortened
to PrimBESS and PrimUC respectively for the sake of conciseness)

SOCBESS : High SOCBESS : Normal SOCBESS : Low

SOCUC : High SOCUC : High SOCUC : High

PrimUC DC SC SD DD
PrimUC DC SC SD DD

PrimUC DC SC SD DD
PrimBESS PrimBESS PrimBESS

DC Z Z NL NH DC PL PL Z NL DC PH PL Z Z

SC PL PL NL NH SC PL PL Z NL SC PH PL PL PL

SD PH PL Z NL SD PH PL PL Z SD PH PH PH PL

DD PH PL Z Z DD PH PH PL Z DD PH PH PH PH

(a) (b) (c)

SOCUC : Normal SOCUC : Normal SOCUC : Normal

PrimUC DC SC SD DD
PrimUC DC SC SD DD

PrimUC DC SC SD DD
PrimBESS PrimBESS PrimBESS

DC NL NL NH NH DC Z Z NL NH DC Z Z Z Z

SC NL NL NH NH SC Z Z NL NL SC PL PL Z Z

SD Z Z NL NH SD PL Z Z NL SD PH PH PL PL

DD Z Z NL NL DD PL PL Z Z DD PH PH PH PH

(d) (e) (f)

SOCUC : Low SOCUC : Low SOCUC : Low

PrimUC DC SC SD DD
PrimUC DC SC SD DD

PrimUC DC SC SD DD
PrimBESS PrimBESS PrimBESS

DC NH NH NH NH DC NH NH NH NH DC Z Z NL NL

SC NH NH NH NH SC NL NH NH NH SC Z Z NL NL

SD NL NL NH NH SD NL NL NH NH SD PL PL Z Z

DD Z NL NL NH DD Z Z NL NH DD PL PL Z Z

(g) (h) (i)

challenge. Nevertheless, these rules were necessary to achieve sufficient accuracy
in the controller and to avoid abrupt fluctuations of the output. The system was
tested with a lower number of MFs obtaining a significantly poorer performance.
Furthermore, other studies have used fuzzy controllers with a similar number of
rules in applications with renewable energies and hybrid systems [5, 6, 17, 27],
thus supporting its adequacy for such purposes. A flowchart of the decision-making
process in the SCS is shown in Fig. 9.

As a final step in the SCS, another active power term is added to the UC power
reference. It consists of the high frequency components of the power reference for
the BESS. Due to its slower dynamic response, the BESS will not be able to react
quickly to steep changes on its power reference. Therefore, the UCwill be demanded
to provide a fast response to compensate this deficiency of the BESS. This opera-
tion increases the coordination between both ESSs and enhances the benefits of
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Fig. 9 Flowchart of the proposed SCS

implementing a configuration with two storage technologies with differentiated char-
acteristics.

The fuzzy controller consists of four inputs and one output. Asymmetric Gaussian
MFs have been chosen for the extreme SOC values, whereas a generalized bell dis-
tribution is used for the ‘Normal’ range. The SOC is considered ‘Low’ below 10%
for the UC and 20% for the BESS, ‘Normal’ between 25% and 75% for the UC, and
between 30% and 70% for the BESS, and ‘High’ above 90% and 85% for UC and
BESS respectively. These values have been considered to define the corresponding
MFs. For the primary active power references, the MFs for UC and BESS show the
same characteristics. These input variables are expected to vary between ±1 p.u.
The extreme ranges (i.e. DC and DD) have been modelled as asymmetric Gaussian
MFs, reaching the maximum point of the curve at ±0.9 p.u. On the other hand, the
intermediate values (i.e. SC and SD) are represented by generalized bell MFs, with
a peak at ±0.3 p.u., in order to achieve a symmetrical performance. For primary
active power references near 0 p.u., no specific MFs have been defined. Regarding
the output, a similar approach was used. Asymmetric Gaussian MFs are used for
the extreme values of the output (i.e. ±0.8 p.u.), whereas generalized bell MFs are
considered for the intermediate values. The NL and PL curves are defined symmet-
rically with the maximums at ±0.45 p.u., and the Z output is defined as a sharp peak
at 0 p.u.
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The output MF is defined, depending on the values of the inputs, through a set of
if-then rules. For instance, in a particular situation, the output could be defined
by the following sentence: if SOCUC is Low & SOCBESS is High & PrimaryUC

is SD & PrimaryBESS is DC then Pcomp is NH, that is, a large amount of power
flows from the BESS to the UC to help increase its SOC.

The fuzzy system implemented is based on the Mamdani-type inference, accord-
ing towhich each rule is computed as in (12), and the output is then generated through
a min-max algorithm described by (13)–(14) [27]:

fi = min

{
μ (SOCUC ) , μ (SOCBESS) ,

μ
(
PrimaryUC

)
, μ

(
PrimaryBESS

)
}

(12)

Di = min
{
fi , MF

(
Pcomp

)}
(13)

MF
(
Pcomp

) = max {Di } for i = 1, 2, 3, . . . (14)

Hence, through (14), the rule with maximum membership value is selected to
deliver the output with a maximum possibility distribution. Once the adequate MF
of the output is chosen, it is delivered out of the fuzzy system as Pcomp.

6 Results and Discussion

Three alternative options for the SCS are compared in this section. The first one
corresponds to the SCS including the fuzzy controller proposed herein. A second
alternative is the proposed SCS without the fuzzy controller, where PrimaryBESS

and PrimaryUC are directly delivered to the respective ESS. Therefore, the SOC of
both devices is not monitored in this second SCS. Finally, the third benchmark is a
SCS based on a state machine that monitors the SOC of the ESSs and their primary
active power references, and defines the active power references for both storage
devices accordingly. The state machine SCS is based on our previous work for a
hybrid system with a single ESS [34].

6.1 Case Study 1: SOCUC = 25%–SOCBESS = 50%

This first simulation addresses the case when the UC starts with a ‘Low’ SOC situa-
tion, and the BESS is in a ‘Normal’ state. Additionally, the grid demand is defined in
three levels throughout the simulation. An initial level as 1 p.u. during the first 20 s
of the simulation. Then, it decreases to 0.7 p.u. from 20 to 40 s. Finally, it is set at
1.2 p.u. until the end of the simulation. Furthermore, the wind speed varies as shown
in Fig. 10a, and Pprediction is set at a constant value of 0.92 p.u.
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Fig. 10 Case study 1. a Wind speed; b total WECS active power; c total active power output of the
hybrid system; d BESS active power; e SOC of the UC; f SOC of the BESS

Under the conditions described, Pg is illustrated in Fig. 10b. As seen, the genera-
tion of the WECS varies with the incoming wind speed. Furthermore, the three con-
figurations evaluated show the same response for this parameter. This is an expected
result, since the performance of the WECS should not be affected by the power
exchange of the ESSs. On the other hand, the contribution of the ESSs in each con-
figuration is clearly distinguished when Pt is represented. As seen in Fig. 10c, the
proposed SCS is able to supply Pdem throughout the whole simulation period, even
though the UC starts with a low SOC condition. This can be achieved due to the
support of the BESS, which provides an additional active power injection to avoid an
increased discharge of the UC. For instance, in the interval 4.6–7.8 s the demand is
not fully satisfied by the ‘without fuzzy’ and the ‘state machine’ configurations. Dur-
ing this same period, a deeper discharge can be observed in the BESS active power
(Fig. 10d) of the ‘with fuzzy’ SCS compared to the other two alternatives. This addi-
tional discharge of the BESS compensates the difference between the forecasted and
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the actual generation, and relieves the UC from having to provide this power. Subse-
quently, SOCUC (Fig. 10e) does not decrease as much as for the ‘without fuzzy’ and
the ‘state machine’ SCSs in this interval. A better regulation of SOCUC for the ‘with
fuzzy’ SCS compared to the other two alternatives is observed, as it remains clearly
higher all along the simulation. As a counterpart, SOCBESS is slightly reduced for
the ‘with fuzzy’ SCS (Fig. 10f). This consequence could be expected from the pre-
vious results. Nevertheless, this parameter never falls in a low SOCBESS situation,
and the slight differences observed are not a potentially risky situation for the BESS.

It must be highlighted that, as seen in Fig. 10e, the ‘without fuzzy’ SCS causes
the UC to reach a minimum value of 5% for SOCUC , while the ‘state machine’
maintains this parameter around 25% (limiting region between ‘Low’ and ‘Normal’
SOC) for most of the simulation. On the other hand, the ‘with fuzzy’ configuration
proves a better regulation of this parameter.

6.2 Case Study 2: SOCUC = 50%–SOCBESS = 50%

The second simulation analyses ‘Normal’ SOC conditions for both ESSs under the
same wind speed and grid demand as in the previous case study. Regarding Pt
(Fig. 11a), it can be seen that, although the UC starts with a 50% SOC, the config-
urations ‘without fuzzy’ and with ‘state machine’ SCS are not able to fulfil Pdem in
two short periods reaching the end of the simulation. On the other hand, when the
fuzzy controller is included, Pdem is adequately supplied along the whole simulation.
These two unsatisfied load intervals are due to low SOC conditions for the UC in
the ‘without fuzzy’ and ‘state machine’ configurations, as observed in Fig. 11b. In
this figure, it can be also appreciated that the ‘with fuzzy’ SCS accomplishes a better
regulation of SOCUC , while being able to comply with the grid requirements at all
times. By the end of the simulation, a 41% SOCUC has been registered for the ‘with
fuzzy’ SCS, whereas 26% is measured for the ‘state machine’ option, which borders
the low SOC operation. In the case of the ‘without fuzzy’ SCS, SOCUC falls below
20% at time 60 s, and records two minimum sags around 5%, which is an undesired
situation for the device.

Regarding SOCBESS , no relevant differences can be observed in Fig. 11c. Amax-
imum difference of around 0.4% (lower for the ‘with fuzzy’ SCS) is registered at
40 s, but this is not a significant value. Furthermore, almost the same SOCBESS is
registered at the end of the simulation, despite the fact that a notable improvement
of the ‘with fuzzy’ SCS was observed for SOCUC .

The active power exchange between both ESSs is illustrated in Fig. 11d. As seen,
this parameter varies between positive and negative values. For a negative Pcomp, the
BESS supports the UC to increase its SOC. Hence, a certain energy that otherwise
would remain unused in the BESS is delivered to the UC, thus increasing SOCUC .
This can be seen in Fig. 11c, d from 20 to 40 s.With a higher SOC, the UC has enough
capacity to cover the difference between the power prediction and the generation
whennecessary, thus avoiding unmet grid demand situations. If Pcomp is not generated
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Fig. 11 Case study 2. a Total active power output of the hybrid system; b SOC of the UC; c SOC
of the BESS; d compensating active power term

(i.e. ‘without fuzzy’ and ‘state machine’ SCSs), SOCUC decreases throughout the
simulation and Pdem cannot be addressed at some intervals. On the other hand,
positive values of Pcomp indicate that the UC backs the recovery of SOCBESS when
the combination of primary active powers and SOCs allows it.

6.3 Case Study 3: SOCUC = 85%–SOCBESS = 30%

A third case study has been developed to present the situationwith a ‘Low’ SOCBESS

and ‘High’ SOCUC . The incoming wind speed and grid demand were maintained
as in the previous experiences. In this case, the aim is to illustrate that, with the
proposed fuzzy controller, the UC can support the operation of the BESS when it has
a ‘Low’ SOC by assuming a part of the primary active power reference requested to
the battery. Therefore, SOCBESS can be monitored while the hybrid system supplies
Pdem for longer. This can be clearly noticed in Fig. 12a. With a ‘Low’ SOCBESS at
the beginning of the simulation, the ‘state machine’ SCS prevents the battery from
discharging. Subsequently, Pdem , which is above the power prediction, cannot be met
during the first 20 s for this SCS. For the last 20 s of the simulation, SOCBESS has not
recovered to a ‘Normal’ SOC region yet, the BESS cannot release any active power,
and the load is unmet from 40 to 60 s again. On the other hand, SOCBESS (Fig. 12b)
does not decrease during these intervals for this SCS. Regarding the ‘without fuzzy’
SCS, it can be seen that Pdem is addressed during the whole simulation (Fig. 12a).
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Fig. 12 Case study 3. a Total active power output of the hybrid system; b SOC of the BESS; c SOC
of the UC; d UC active power

However, this can only be made at the cost of reducing SOCBESS to a lower value,
which might eventually damage the device if this situation was maintained. On the
contrary, the ‘with fuzzy’ SCS allows addressing Pdem throughout the simulation
while increasing SOCBESS for someperiods.The result is that this SCScomplieswith
the two main objectives of meeting the grid requirements and avoiding excessively
low charge/discharge of the ESSs.

Due to the design of the ‘with fuzzy’ SCS, the energy needed to fulfil Pdem
with a ‘Low’ SOCBESS must be obtained from the UC. Hence, a large reduction in
SOCUC can be observed for this SCS compared to the ‘without fuzzy’ and the ‘state
machine’ alternatives (Fig. 12c). By the end of the simulation, the hybrid system faces
a situation of both ESSs approaching a ‘Low’ SOC. If the external conditions (i.e.
wind or grid demand) do not change, the system might have to leave some demand
unmet in order to avoid a potentially risky over discharge of the ESSs. On the other
hand, the ‘without fuzzy’ and ‘statemachine’ SCSs havemaintained a higher SOCUC

in this period. However, the energy management has not been adequate since either
the SOCBESS has been decreased excessively, or the load has not been met for long
periods. Hence, the UC has been storing energy that was more necessary in other
elements of the hybrid system in order to support the BESS or to be supplied to the
grid. Therefore, it can be stated that the ‘with fuzzy’ SCS has performed a smarter
use of the available energy.

Figure12d shows the active power exchanged by the UC. As seen, the UC releases
more power in the ‘with fuzzy’ SCS compared to the other two alternatives, which
could be expected from Fig. 12c. This additional power supplied by the UC is useful
to meet the grid demand and support SOCBESS . Moreover, it can be appreciated that
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PUC changes rapidly and moves frequently from charge to discharge cycles. This
was consciously pursued when defining PrimaryUC and PrimaryBESS , as this type
of behaviour is better suited for an UC than for a BESS.

7 Conclusions

This chapter presents a control strategy designed for the coupled operation of several
power sources in a hybrid system. The proposed SCS is in charge of calculating
the references for the active power to be stored in or delivered by the ESSs. These
references are defined on a primary stage according to a time-ahead wind power
generation prediction, the instantaneous grid demand, and the actual wind power
generation. On a second stage, a compensating power term is defined to supervise
excessively low or high SOC conditions on the ESSs that may jeopardize their perfor-
mance. A fuzzy logic controller has been used to compute this power compensating
term. The fuzzy controller decides the amount of power exchanged between the ESSs
to support their SOC mutually, while attempting to fulfil the demanded active power
as long as possible. Therefore, the ESSs included in the hybrid system are used with
a double purpose. Firstly, they add flexibility and capacity to control and regulate
the active power generation of the hybrid system, adapting to changes on the grid
demand. Secondly, they offer mutual support for their SOC regulation to avoid or
reduce the risk of exceeding the maximum and minimum recommended boundaries.
Such performance improves the exploitation of the ESSs in the hybrid system.

In the simulations carried out, it could be observed that the inclusion of the ESSs
in the hybrid system allowed delivering a controlled active power generation from
a fluctuating and intermittent resource such as wind power. This was feasible in
most cases, only interrupted in those situations when the ESSs were depleted and no
additional energy could be released. This inconvenience remarks the importance of
regulating adequately the SOC of the ESSs in a hybrid system.

Furthermore, the results showed that the configuration with the fuzzy controller
can comply with the grid specifications longer than the other two alternatives con-
sidered. This can be achieved due to a smarter use of the available energy between
the ESSs. The storage devices support each other on their SOC regulation. As a
consequence of this improved energy management, a better regulation of the SOC
of the ESSs was observed in the simulations for the SCS with the fuzzy controller.
In general, the BESS finds it easier to support the UC due to the larger capacity of
the former. Nonetheless, the UC also proved its capacity to take charge of the BESS
power demand when it experiences low SOC, thus preventing the battery from a
deeper discharge.

Apart from the better SOCmonitoring accomplished with the fuzzy controller, the
proposed SCS also takes advantage of the main qualities of the ESSs used. The pri-
mary active power references are computed in theSCSconsidering the quick response
and ability to change rapidly between charge and discharge cycles of the UC, and
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the larger capacity and slower dynamics of the BESS. Subsequently, from different
perspectives, an improved exploitation of the ESSs available has been achieved with
the proposed SCS based on a fuzzy controller.
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Neural-Based P-Q Decoupled Control for
Doubly Fed Induction Generator in Wind
Generation System

Moulay Rachid Douiri

Abstract This chapter describes an Artificial Neural Network (ANN) approach for
active and reactive decoupled control based Direct Power Control (DPC) in Doubly
Fed Induction Generator (DFIG) for Wind Generation System (WGS) by using the
suitable voltage vectors on the rotor side. To avoid the computational complexity of
DPC, we develop a neuronal approach using an individual training technique with
fixed weight and supervised networks. For this, the neural system is split into 5 sub-
networks namely: reactive and real power measurement sub-networks with dynamic
neurons and fixed-weight; reactive calculation and reference real sub-networks with
square neurons and fixed-weight; reference stator current computation sub-network
with logarithmof sigmoid, tangent sigmoid neurons and supervisedweight; reference
rotor current computation sub-network with recurrent neurons and fixed-weight; and
reference rotor voltage calculation sub-networks with dynamic neurons and fixed-
weight. Under transient conditions, and for step changes of the real and the reactive
power references, the DFIG is capable of tracking the references with a response
time of less than 1s. This is fast enough for changes made by the power system
operator, and for tracking wind speed variations. Thus, the sensorless measurement
of the position is effective in controlling P and Q.

1 Introduction

The Doubly Fed Induction Generator (DFIG) is a very promising candidate forWind
Turbine (WT) application. The direct connection of DFIG to the grid forces the
rotation speed to remain constant so that the machine remains close to synchronism
[1]. This restriction results in reduced efficiency for wind turbine applications at high
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wind speeds. The introduction of the power converter between the stator and the grid
gives rise to a decoupling between the frequency of the electrical grid and the speed
of rotation of the machine which makes it possible to operate at variable speed [2].
However, this converter must be sized to pass all the power generated by themachine.
The Voltage Source Converter (VSC) connected to the slip-ring terminals can control
at the rotor-side the active and reactive power from the stator-side [3]. A second VSC
(Front End Converter) is connected back-to-back on its dc side to a rotor-side VSC
which transmits the rotor slip frequency power to 60 Hz power of the distribution
grid [2–4]. A power transformer is usually necessary to step up the low voltages of
the VSC to ac grid voltages.

In fact, several studies related to decoupled control of P-Q power algorithms
for DFIG in Wind Generation System(WGS)such as sliding mode control [5], non-
linear control [6] and model-based predictive control [7]; which have afterwards
been proven its instability in handling various changes in weather conditions.

In Ref. [8] the author suggests a distributed coordinated control of P-Q power
scheme for WGS using the model predictive control (MPC), wherein the distributed
reactive/voltage control of WGS is coordinated and realized with the real power
control.

A H∞ control algorithm was adopted in [9] to regulate and decouple both active
and reactive powers of wind energy conversion system considering the uncertainties
in the permanent magnet synchronous generator dynamics.

Others [10] present a decoupling control approach for the P-Q power of DFIG
to improve the performance of wind turbines, which relies on proportional-integral
(PI) controllers. This method has the disadvantage of being less precise and less
stable as the coordination between these regulators is based on classical trial and
error parameter tuning techniques a very difficult and challenging task.

Conventional techniques used for P-Q power decoupling control are generally
less robust, also, these techniques face a major drawback with functions that include
noisy experimental data. Therefore, researchers thought of finding new different
algorithm techniques for solving these problems, such asMetaheuristic Optimization
Algorithms, Fuzzy Logic (FL), and Artificial Neural Networks (ANNs), which can
easily integrate human intelligence into complex control system based on human
knowledge and experience. They can also be used for curve fitting with experimental
data as they can find the global minimum even if many local minima exist [11, 12].

The authors in [13] develop an energy conversion structure integrate a combined
control mode with three different methods: a conventional PI regulators, a FL con-
troller and a matrix inverter. This technique ensures the system transient stability and
the accuracy, but it does not improve the voltage quality supplied on the DFIG level.

A technique has been proposed by [14] using a Flywheel Energy Storage System
control based on a FL supervisor capable of reducing the active power oscillation
caused by the random wind speed fluctuations and generate to the grid a cleaner
power. The command law ensures reactive power by providing a smooth reactive
power to the load supplied by the DFIG in WGS.

Others [15] present an artificial neural network controllers replacing the conven-
tional regulators in the vector control of the DFIG systems. Also, the authors in [16]
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trained an ANN-based power controllers applying back-propagation approach for
decoupled control of DFIG wind turbine system in different wind speed conditions,
machine parameters and faults.

An approach metaheuristic reactive power planning active power dispatch is pre-
sented in [17] to maximize the profit of the utility while satisfying the operating
constraints of the power system in the presence of DFIG wind turbines and various
uncertainties loads.

In this situation, the principal contribution of this chapter is a controlled the P-Q
power of a wind-driven DFIG using ANN under fault conditions and varying wind
speed conditions. The power estimators based on Neural networks are trained by
back-propagation method and is divided into five sub-nets namely: real and reactive
power measurement; reference P-Q computation; reference stator current computa-
tion; reference rotor current computation; and reference rotor voltage computation.

The rest of this chapter is organized as follows. Section 2 describes an overview of
the developed control algorithm of WGS and DFIGMathematical model. In Sect. 3,
the ANN-based wind speed estimation is presented. In Sect. 3, the optimal active and
reactive control using ANN controller of DFIG system is proposed. The numerical
results are presented and discussed in Sect. 4, followed by conclusions.

2 WGS and DFIG Mathematical Model

The wind speed is always fluctuating, and thus the energy content of the wind is
always changing. The Cp − λ − β curves characterize the aerodynamic model of a
WT, where Cp is the performance factor, which is a non-linear function of both tip-
speed-ratio λ and the blade pitch angle β. It can be calculated through the following
expression [18, 19]:

Cp(β, λ) =
4∑

i=0

4∑

j=0

αi jβ
iλ j , (1)

The model is found to be accurate for the range 2 < λ < 13, λ is defined as the ratio
of rotor tip speed to free wind speed [20]:

λ = ωt Rt

νω

, (2)

where Rt and νω is the rotor radius and the incoming wind speed respectively.
Together ωt Rt make up the blades linear speed at the outer tip. Taking into account
the performance coefficient, the mechanical power (Pm) that the WT extracts from
the wind is given by [20]:

Pm = f (νω, ωt , β) = 1

2
ρArν

3
ωCp(λ, β) , (3)
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where Pm , Ar and ρ is the mechanical power in the moving mass of air, swept
area by the rotor and air density respectively. Power factor characteristic of a WT
can be calculated through analytical models using non-linear functions if actual
measurements from a wind turbine manufacturer are not available. One such model
is given [18, 20] as follows:

Cp(λ, β) = 0.22

(
116

λi
− 0.4β − 5

)
exp

(−12.5

λi

)
, (4)

with
1

λi
= 1

λ + 0.08β
− 0.035

β3 + 1
, (5)

Equations used to model DFIG are similar to those used for modelling a squirrel
cage induction generator with just one exception, the rotor windings are not shorted,
hence rotor voltages (vdr , vqr ) are not equal to zero. The induction generator used in
doubly-fed configuration can be modelled through a full 5th order stator and rotor
voltage equations in d-q reference frame using generator convention as below [21,
22]:

vds = −Rsids − ωsψqs + dψds

dt
, (6)

vqs = −Rsiqs + ωsψds + dψqs

dt
, (7)

vdr = −Rr idr − slωsψqr + dψdr

dt
, (8)

vqr = −Rr iqr − slωsψdr + dψqr

dt
, (9)

where sl is the slip, defined as:

sl = 1 − pωm

2ωs
, (10)

Stator and rotor flux linkages are given as:

ψds = −(Lsσ + Lm)Ids − Lm Idr , (11)

ψqs = −(Lsσ + Lm)iqs − Lmiqr , (12)

ψdr = −(Lrσ + Lm)idr − Lmids , (13)

ψqr = −(Lrσ + Lm)iqr − Lmiqs , (14)
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The difference between mechanical and electrical torque results in change of gener-
ator speed that can be calculated from the following expression [18]:

dωm

dt
= 1

2Hm
(Tm − Te) , (15)

Te = ψdsiqs − ψqsids = ψqr idr − ψdr iqr , (16)

where Te is the electric torque of the generator. The equations for active and reactive
power exchangewith the grid are similar to that of a squirrel cage induction generator,
except the rotor windings can also be accessed in a DFIG hence the rotor component
in Eqs. (21) and (22). Converters can consume or produce reactive power but they
cannot produce or consume active power, thus total active power fed into the grid by
a DFIG can be expressed by Ptotal . However, reactive power fed into the grid is not
the same as Qtotal in Eq. (22) because it is affected by the converter [18].

Ps = vdsids + vqsiqs , (17)

Qs = vqs Ids − vdsiqs , (18)

Pr = vdr Idr + vqr iqr , (19)

Qr = vqr idr − vdr iqr , (20)

Ptotal = Ps + Pr = vdsids + vqsiqs + vdr idr + vqr iqr , (21)

Qtotal = Qs + Qr = vqsids − vdsiqs + vqr idr − vdr iqr , (22)

where p is the number of poles, I is the current,R is the resistance of the corresponding
rotor or stator, ψ is the flux linkage, Lm is the mutual inductance, Lσ is the leakage
inductance, Hm is inertia constant of the generator rotor, Tm is the mechanical torque
and ωm is the angular frequency of the generator rotor. The indices s and r indicate
stator or rotor side, d and q stand for direct and quadrature components, respectively.
Ptotal is the active power fed into the grid by aDFIG. If, however, converter efficiency
has to be taken into account the terms with rotor subscript in this expression must
be multiplied with converter efficiency to access total power injected into the grid,
Qtotal is the reactive power but is not necessarily the amount fed into the grid because
the converters can generate or consume reactive power which thus affects the total
amount of reactive power fed into the grid. The algorithm scheme of machine-side
converter is illustrated in Fig. 1.
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Fig. 1 Algorithm scheme of machine-side converter

3 DFIG based ANN Controller

It is possible to control the rotor speed of the DFIG, the torque as well as the power
factor at the stator terminals by means of the converter on the machine side. As men-
tioned earlier, the machines DFIGs have the capacity of reactive power control and
decoupling of P-Q powers. Given that DFIGs can be magnetized by the converter
of the rotor circuit and not perforce from the power grid, there are two possibilities
of reactive power exchange. The Doubly Fed Induction Generator system will only
produce active power and exchange some reactive power with the grid since it is
magnetized by the rotor circuit where there is no reactive power exchange with the
power system, and also because the machine is connected to a high power power
system with a voltage equal, or near to, 1 p.u. On the contrary, the DFIG system
can be controlled to produce or absorb a quantity of reactive power, once connected
to a weak power system where the voltage can fluctuate. In this case the machine
will generate active power and exchange some reactive power with the grid, that
is, it has the voltage control ability [18]. The entire system is illustrated in Fig. 1
The PWM three-phase inverter is able to shape and control the three-phase out-
put voltages in magnitude and frequency using sinusoidal pulse-width modulation
(SPWM), depending on the reference voltages. The P-Q powers are measured by
the stator current and d-q voltage components, while the reference P-Q powers are
calculated by DFIG rotor speed and wind speed υ. The reference stator currents
and the reference rotor currents can be calculated from the comparison between the
reference and actual P-Q powers and with the stator voltages. At last, the reference
rotor voltages are calculated by analyzing the active and reference rotor currents.
The complete algorithm blocks are explained in the Fig. 2. The proposed ANN of
DFIG machine-side system uses the individual training strategy with fixed weight
and supervised models. For this, the neural system is divided into 5 sub-networks
namely: reactive and real power measurement sub-networks with dynamic neurons
and fixed-weight; reactive calculation and reference real sub-networks with square
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neurons and fixed-weight; reference stator current computation sub-network with
logarithm of sigmoid, tan-sigmoid neurons and supervised weight; reference rotor
current calculation sub-networks with recurrent neurons and fixed-weight; and refer-
ence rotor voltage calculation sub-networks with dynamic neurons and fixed-weight.

3.1 P and Q Power Measurement Sub-networks

The active power at the stator depends on the direct component (d) of the stator
current, the reactive power at the stator depends on the quadrature component (q) of
the stator current. The stators-side P and Q powers are given by:

Ps = 3

2
vsd isd , (23)

Qs = −3

2
vsd isq , (24)

The P-Q power measurement has been constructed using 2 layer fixed-weight
neural networkwith 8 static neurons composed of a tan-sigmoid and linear-activation
function respectively, thus, 4 random inputs of the vector [isd , isq , vsd , vsq ] generated
byMatlab are generated, theEqs. (23) and (24) allows to obtain the target outputs. The
convergence can be achieved in relatively few training epochs seen that the network
is linear. Figure 3 exhibit the P and Q power measurement sub-network. The weights
and biases for the P-Q power measurement have been obtained as follows:

Fig. 3 P and Q power
measurement sub-networks,
block diagram (A)
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w1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0.123 0.621 −0.552 1.008
−1.092 −0.411 0.657 0.746
0.209 −0.341 0.881 1.091

−1.554 −0.279 −1.240 1.009
1.541 2.008 −0.602 −1.268
1.560 −2.776 0.554 −2.781

⎞

⎟⎟⎟⎟⎟⎟⎠
, (25)

β1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

−1.444
2.091
0.550

−3.509
−0.333
1.088

⎞

⎟⎟⎟⎟⎟⎟⎠
, (26)

w2 =
(
0.098 −1.908 0.882 −1.934 −1.880 0.356
0.077 1.504 −0.615 1.033 −0.773 −1.761

)
, (27)

β2 =
(

1.888
−0.973

)
, (28)

3.2 Reference P and Q Calculation Sub-networks

In order to set the values of the reference P and Q power, a technique consists in
modifying the generator speed according to the wind velocity υ in order to optimize
the output power of the DFIG-WT as indicated in Fig. 4. According to the power
system is weak or strong, the power Q is modified to any value (positive, negative
or zero), in our case is set to zero. In order to avoid training difficulties, as there
are two inputs υ and ωm the data of all training models will be enormous if high
accuracy is required, the fixed weight technique is chosen. A 3 layer fixed weight
neural networks is directly associated with 20 neurons as illustrated in Fig. 5. The
1st layer is a tangent-sigmoid active function with the weight is w1 and bias is β1,
2nd layer is a square activation function with the weight is w2 and bias is β2 while
the 3rd layer is a linear active function with the weight is w3 and bias is β3.

Fig. 4 Speed regulator
based reference power
calculation
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Fig. 5 Reference P and Q
calculation sub-networks,
block diagram (B)

w1 =
( −1.123 −0.122 2.761 −0.475 0.076 −2.121 0.555 0.654 1, 120 0.371 1.664 −2.090

0.089 −1.332 1.729 −0.113 0.774 1.101 −0.443 1.934 −2.109 1.554 −1.030 0.886

)t

,

(29)

β1 = ( −0.009 0.045 0.998 0.645 −1.009 0.332 1.035 0.878 −0.679 1.320 0.445 −0.221
)t

, (30)

w2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

−0.339 1.634 2.092 −1.360 1.564 −0.561 −1.113 0.915 0.007 2.245 −1.799 1.228
−2.333 0.831 0.231 0.067 −2.419 −1.404 0.099 −2.341 2.303 −0.567 −0.354 −0.335
1.409 0.991 −0.121 1.309 −2.345 0.553 −1.221 0.330 −2.991 1.660 −1.310 1.450
1.231 −0.241 1.538 −0.440 1.440 −2.001 1.556 0.508 2.599 −0.341 1.495 1.224

−2.309 3.076 0.045 2.309 −0.092 1.449 −1.564 −0.244 2.231 0.551 −0.433 −2.577
1.300 −1.201 −2.336 −1.209 1.490 0.724 −2.591 −0.117 −0.591 2.058 −0.665 −3.002

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

(31)

β2 = (
1.129 2.265 −0.774 −2.487 1.204 −2.300

)t
, (32)

w3 =
(

0.331 −0.359 1.145 −3.091 −0.855 1.449
−0.993 −3.322 1.302 −3.334 0.089 −1.454

)
, (33)

β3 =
(
0.172
0.389

)
, (34)
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Fig. 6 Reference stator current, block diagram (C)

Fig. 7 Reference stator
current sub-networks, block
diagram (C)

3.3 Reference Stator Current Sub-networks

Knowing that the P-Q control is decoupled, the d-q reference components of the
stator currents are obtained by the comparison the real and reference powers as
shown in Fig. 6. To implement the calculation of the reference stator current we use
an ANN constituted of 3 layers with a total of 20 neurons with strict limit as shown
in Fig. 7. The first layer has 11 tansig activation function neurons, the 2nd layer has
7 purelin-activation function neurons, and 3rd layer has 2 linear activation function
neurons. The 4 random inputs of the reference stator current are [Ps , P∗

s , Qs , Q∗
s ],

the ANN is trained by a supervised technique with perception training rule [23, 24].
After 62 training epochs, the sum squared error E converges to the zero value.

w1 =

⎛

⎜⎜⎝

−1.443 1.442 2.566 1.332 −2.980 1.639 −0.995 0.323 0.671 −1.439 3.609
2.099 −0.677 −1.564 2.435 −3.859 2.492 1.111 2.447 −0.509 1.441 0.783

−1.322 2.768 −1.342 −0.543 1.548 −1.099 1.555 −1.344 −3.678 0.712 1.951
−0.765 1.239 −3.712 −2.881 0.878 1.089 0.775 1.114 −1.554 −2.611 0.671

⎞

⎟⎟⎠

t

,

(35)
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Fig. 8 Reference rotor
current sub-networks, block
diagram (D)

β1 = (
1.331 −2.850 −0.403 1.392 −2.554 −0.655 −1.098 2.756 −1.443 0.675 −1.093

)
,

(36)

w2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.564 −2.098 −1.856 1.564 0.474 −2.055 1.500 −1.574 −0.578 −3.009 0.384
2.509 −0.498 3.317 −0.403 1.309 0.083 1.309 2.509 −1.451 0.419 −3.889
1.092 −0.009 −2.880 1.709 −1.248 0.980 −2.678 0.577 −0.990 1.234 2.456

−3.291 1.554 0.707 −1.093 2.094 −1.543 −1.509 −1.099 −0.883 1.302 0.509
−1.392 −2.453 −1.758 2.904 3.001 2.484 −0.034 2.098 1.667 −2.498 −1.447
0.449 1.449 2.904 −1.495 −3.494 1.495 −0.433 −1.598 1.007 −0.443 −1.303

−1.345 1.099 −3.009 −1.309 2.992 −0.941 1.958 −1.354 −2.750 1.329 2.440

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(37)

β2 = (−3.344 0.009 1.503 −2.812 −1.808 −2.109 0.221
)t

, (38)

w3 =
(

2.192 −4.182 −3.093 1.123 −2.712 −1.092 −0.219
−1.298 2.001 1.271 0.271 −1.929 −3.022 2.832

)
, (39)

β3 =
(
1.221
2.034

)
, (40)
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3.4 Reference Rotor Current Sub-networks

According to the d-q components of the stator voltages and reference currents we can
determine the reference rotor currents from the steady state DFIG system equations.
The reference rotor d-q currents equations are provided as follows:

i∗rd = −ωs Lssi∗sd Rsi∗sq + vsq

ωs Lm
, (41)

i∗qr = Rsi∗sdωs Lssi∗sq − vsd

ωs Lm
, (42)

We use a sub-networks consisting of 3 layer fixed-weight with 15 neurons. The 1st
layer is a tansig-active function with the weight is w1 and bias is β1, the 2nd layer is
a square-activation function with the weight is w2 and bias is β2 while the 3rd layer
is a linear-active function with the weight is w3 and bias is β3 as illustrated in Fig. 8.
The 4 random inputs of the reference rotor current are [vsd , vsq , i∗sd , i∗sq ], the ANN
is trained by a supervised technique with perception training rule [23, 24]. After 12
training epochs, the sum squared error E converges to the zero value.

w1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1.332 4.009 2.896 −1.430
−0.853 1.665 −2.155 0.344
3.800 2.767 −1.409 −2.669
3.298 −1.546 −2.669 1.420
1.935 0.513 −3.981 2.773
0.273 −1.453 −2.512 −1.445

−2.563 −1.475 3.445 0.648
1.009 1.475 −4.551 −1.342
0.645 −3.876 1.938 −2.424

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (43)

β1 = (
0.545 −2.187 −1.667 2.833 0.919 −1.364 0.334 −1.202 3.909

)t
, (44)

w2 =

⎛

⎜⎜⎝

0.553 −3.193 −2.471 1.485 4.008 2.587 1.480 −2.814 3.823
−2.556 0.764 −1.495 1.366 0.445 2.565 −1.342 4.551 0.568
1.345 0.341 −3.281 −2.445 −0.366 1.379 0.778 1.112 0.994

−2.173 −2.336 1.366 0.993 −3.412 −2.615 1.887 3.710 0.815

⎞

⎟⎟⎠ ,

(45)

β2 = (
1.665 −3.288 0.981 1.282

)t
, (46)

w3 =
(
2.199 −4.120 −4.773 2.188
1.309 1.312 −3.557 1.365

)
, (47)
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Fig. 9 Reference rotor voltage with PI controller, block diagram (E)

β3 =
(

1.662
−3.312

)
, (48)

3.5 Reference Rotor Voltage Sub-networks

In order to obtain the reference rotor voltages we compared the actual and reference
d-q rotor voltages as presented in Fig. 9. Owing to the signals noise and harmonic
problem, the proportional integral controllers were fine tuned for decrease of the
produced noise in the feed-back circuit, ensure stable steady state running, quick and
accurate tracking of the reference values and neither steady error. The PI estimator is
capable to separate the active and reactive powers and therefore does not need feed
forward control. The sub-net of reference rotor voltage computation is built of 2 layer
networkswith a overall of 12 hard limit neurons as presented in Fig. 10. The first layer
has 10 purlin-activation function neurons, and the 2nd layer has 2 linear neurons.
The 4 random inputs of the reference rotor voltage calculation are [ird , irq , i∗rd , i∗rq ],
the ANN is trained by a supervised technique with perception training rule [23, 24].
After 38 training epochs, the sum squared error E converges to the zero value.

w1 =

⎛

⎜⎜⎝

−3.551 −2.129 3.281 3.201 2.199 1.006 −2.385 −0.234 3.294 4.004
0.574 2.509 −4.384 0.467 −1.354 2.471 2.496 3.299 −1.357 −3.699

−2.290 −0.619 3.571 0.223 −4.382 1.384 −3.299 2.487 0.224 −3.455
1.391 −3.991 −1.206 0.498 0.998 2.476 −3.580 −0.375 1.375 2.193

⎞

⎟⎟⎠

t

,

(49)

β1 = (−4.390 2.131 3.288 −2.183 0.221 −1.263 1.340 1.008 −3.378 2.222
)t

,

(50)

w2 =
(−1.366 −4.050 2.298 0.264 0.908 −3.293 −2.480 3.193 3.821 1.302

3.093 2.476 1.388 −2.477 1.384 1.310 −2.384 4.391 −3.199 −3.209

)
,

(51)

β2 =
(−1.352

0.089

)
, (52)

Figure 12 show a comparison of Root Mean Square Error (RMSE) between block
(A), (B), (C), (D) and (E) after 150 iterations. For the grid-side estimator, it was built
a block diagrams (A-B-C-D-E) ANNs configuration as is illustrate in Fig. 11 with
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Fig. 10 Reference rotor
voltage sub-network, block
diagram (E)

the principal parameters in Appendix. To test the claims of the wind speed estimation
based on ANN facing different wind speed will be operating at different operating
point, the dynamic behavior of a DFIG machine is simulated at two different wind
speeds i.e. at below rated wind speed and at rated wind speed. A 3-phase fault is
applied at the cable connecting the wind turbine with the grid (infinite bus) at 2.4 s
and cleared after 280 ms. A comparison of our approach to that of the Ref. [25] is
illustrated in the Figs. 13, 14 and 15, these latter shows the difference in dynamic
response of awind turbine operating at two different operating pointswhen it receives
two different wind speeds. In steady state condition, the per unit generator rotor speed
estimated by the neural network is slightly higher for the turbine facing the ratedwind
speed because it is operating at ωmax whereas at lower wind speed the rotor speed
is below ωmax. It can be seen from these figures that the neural rotor speed, neural
active power and neural reactive power dynamic response are more stable even when
the turbine is facing rated wind speed as compared to when it is facing below rated
wind speed.

Another comparison of our approach to that described in the [26] has been ana-
lyzed in the Figs. 16 and 17. in fact, in the test of the Neural P-Q decoupled control
with the DFIG system, the reference value of Vdc is set as 1500 V and the reference
value of the reactive power Q∗ = 0.00 p.u. Figure 16 shows the system response to
a step change in which V ∗

dc is changed from 1500 to 1550 V. The simulation Fig. 16
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Fig. 12 Representation of the error trend between block (A), (B), (C), (D) and (E) after 150
iterations

Fig. 13 Response of a DFIG machine under two wind speeds—Generator rotor speed
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Fig. 14 Response of a DFIG machine under two wind speeds—Active power

Fig. 15 Response of a DFIG machine under two wind speeds—Reactive power
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Fig. 16 Step change of Vdc from 1500 to 1550 V at t = 1080 s

Fig. 17 ANN decoupled P-Q in step change of Vdc from 1500 to 1550 V at t = 1080 s

shows fast response in Vdc that settles to the desired value in 0.01 s. Figure 17 shows
the P∗ and Q∗ during this transient.

The comparison proves that our approach neural can accurately estimate the wind
speed, grid-side and rotor-side converters reference voltages under any wind con-
dition. The use of ANN estimator will save simulation time while carrying out the
transient stability studies.

4 Conclusion

This chapter has successfully simulated robust decoupled active and reactive control
using artificial neural networks as part of a wind turbine driven doubly-fed induction
generator, in a situation where the wind velocity is given a variable fluctuation in
time, and in the case of changes of machine parameters. Indeed, the simulation and
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experimental results show there is no steady-state errors for the real and reactive
powers compared to their reference values and the control of the real and reactive
power are independent (decoupled control). The control remains effective for changes
in machine parameters. Under transient conditions, and for step changes of the real
and the reactive power references, theDFIG is capable of tracking the referenceswith
a response time of less than 1 second. This is fast enough for changes made by the
power system operator, and for tracking wind speed variations. Thus, the sensorless
measurement of the position is effective in controlling P-Q.

Appendix

Doubly Fed Induction Generator Parameters:
Rated power = 1 MVA
Stator/rotor turns ratio = 1:1
Stator resistance (Rs) = 0.00662 p.u.
Rotor resistance (Rr ) = 0.01 p.u.
Stator inductance (Ls) = 3.185 p.u.
Rotor inductance (Lr ) = 3.21 p.u.
Mutual inductance (Lm) = 3.1 p.u.
Base impedance (Zbase) = 10.98�

Pole pairs (p) = 3
Frequency ( f ) = 50 Hz

Filter and Grid Parameters:
Inductor L = 0.005 H
Resistor R = 0.25�

Capacitor C = 4400µF

Turbine Parameters:
Radius of the turbine Rt = 13.5 m
Gain multiplier G = 65
Inertia total moment J = 10Kgm2

Air density ρ = 1.22Kg/m2

Coefficient of viscous friction f = 0.0001
Optimal tip speed ration λopt = 8.5
Maximal power coefficient Cpmax = 0.5
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for Wind Generation Systems
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Abstract Globally, there has been a significant evolution in the development ofwind
energy. Nevertheless, the major difference between the highly stochastic nature of
wind speed and the desired demands regarding the electrical energy quality and
system stability is the main concern in wind energy system. Hence, wind energy
generation according to the standard parameters imposed by the power industry is
unachievablewithout the essential involvement of advanced control technique. In this
book chapter, a novel indirect adaptive control for wind energy systems is proposed
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considering real load demand and weather parameters. The performance of existing
neuro-fuzzy scheme is improved further using a Hermite wavelet in the proposed
architecture. The parameters of the controller are trained adaptively online via back-
propagation algorithm. The proposed control law adopts the free direct control model
which shorten the weight of the lengthy pre-learning, and memory requirements for
real time application. Various computer simulation results and performance compar-
ison indexes are given to show that the proposed control law is better in terms of
efficiency, output power and steady-state performance over the existing state-of-the-
art.

1 Introduction

Globally, the contribution of renewable energies to modern power generation sys-
tem has increased significantly due to continuous fast depletion of petroleum usage,
adversarial environmental effects, and economical benefits [1]. In this context, wind
energy has received a substantial jump in the power industry and currently the fastest-
growing (about 30% annually) energy sourceworldwide as compared to other renew-
able energy sources [2, 3]. This worldwide exploration of wind energy has happened
due to the its mature nature, and low maintenance costs [4]. Though, due to the
stochastic nature of the primary source (wind speed), its penetration creates volatil-
ity, and stability concerns in the system [5].

Due to the stochastic nature of wind, many control schemes are fast growing to
increase the efficiency of wind power generation in energy conversion applications
[6]. In wind system, the kinetic energy of wind is captured via wind-turbine blades
and then convert it into electrical energy using an appropriate generator. Wind tur-
bines are divided into constant and variable speed turbines. Many designers prefer
variable speed Wind Turbine (WT) systems due their operation and efficiency (i.e.,
yield an increase of 38% in efficiency) [7]. Further, Permanent Magnet Synchronous
Generator (PMSG) based wind generation systems have high power factor due to
the absence of magnetizing current in PMSG. Therefore, the use of PMSG system
has a high influence in the development of wind power applications. Since WT is a
highly nonlinear and uncertain, and whatever the kind of the WT is used, the control
methodology has a major effect on the wind power generation [8, 9]. Consequently,
an optimal control methodology is required to harvest the maximum power with
maximum dynamic efficiency.

In the literature, many researchers have developed Maximum Power Point Track-
ing (MPPT) control strategies forwind energy systemswhich includeOptimalTorque
Control (OTC) [10], Power Signal Feedback (PSF) [11], Tip Speed Ratio (TSR) [12]
and Hill Climbing Search (HCS) [13, 14], and its modifications [15, 16]. The OTC
control technique works on the trajectory of the optimum torque, calculated from a
quadratic function of turbine speed. Though, the implementation of OTC algorithm
is simple but the efficiency obtained from this technique is below the standard due to
indirectmeasurement of thewind speed [10, 17]. For high-scalewind energy systems
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(e.g., multi megawatt wind turbines) PSF is observed as the most auspicious control
algorithm. In PSFmethod, the control ofMaximum Power Point (MPP) is performed
through a turbine characteristic curve or a through adjusting electrical power/torque.
Nevertheless, in PSF control the extraction of maximum power is difficult due to the
dependency of tracking speed on the rotor inertia of a WT [18]. This issue is also
well highlighted by many authors in [19–22]. Furthermore, in PSF MPPT control,
5% error usually exists between real wind power coefficient curves and ideal ones as
reported by National Renewable Energy Laboratory [23]. This error reduces over-
all MPPT performances and causes 1–3% energy loss, which cannot be avoided in
wind energy industries applications [24]. Some authors have also proposed modified
adaptive adjust electrical torques based PSF MPPT control to increase the efficiency
of Wind Energy Conversion Systems (WECS) [25, 26].

Anemometers are commonly essential in TSR MPPT scheme to calculate wind
speeds [27], but its efficiency highly depends on the performance of sensors. This
problem is addressed by researchers usingwind speed estimation such as in [28]. Sim-
ilarly, HCS algorithm is simple in implementation and does not need any prior infor-
mation of theWT [29].MPPT is accomplished when dP/dw = 0, through tuning rotor
speed or duty cycle of a converter. Though, this technique needs many online com-
putations and, therefore, it is challenging to accomplish MPPT for rapid-fluctuating
wind speeds, which significantly reduces its performance. In [30], the authors have
developed an improved HCS to capture MPPT procedures. The improvement of
the algorithm is that it can instantly search the optimum operating point, therefore,
decreasing the operation time. Nevertheless, better performance of the scheme needs
anemometer accuracy.

Moreover, some researchers have control WECS through non-linear advanced
control methodologies such as sliding mode [31, 32], fuzzy control [33, 34], neu-
ral control [35], evolutionary computation [36, 37], predictive control [38], and
neuro-fuzzy [39] among others. Though, the sliding mode is a popular scheme for
high-order nonlinear systems in terms of robustness, but chattering the undesirable
phenomenon of oscillations limits its real-world applications [40]. Likewise, some
authors have proposed evolutionary computation (i.e., genetic algorithm, particle
swarm optimization, etc.), approaches for wind generation, but choice of genetic
encoding, convergence speed, and appropriate selection of control parameters are
some obstacles regarding these techniques [41]. Predictive control has own concerns
such as high computation efforts need to solve online the optimization problem
[42]. Similarly, both fuzzy and neural techniques in the literature have exposed their
importance in the control of wind. Nevertheless, the implementation of fuzzy needs
a-priori-knowledge, while neural networks are computationally intensive to train,
hence, their limitations are versatility [43]. Some researchers have preferred neuro-
fuzzy control of wind, however, neuro-fuzzy controller fails to differentiate local
minima of the search space [44]. In the literature, many researchers have addressed
the local minima concern of the neuro-fuzzy structure by wavelets in its consequent
part [45]. The integration of wavelets in neuro-fuzzy structure substantially enhances
its computational speed [46]. Wavelet transform offers a time-frequency localization
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of the non-stationary signals. In wavelet transform, the basis functions are used to
preserve the maximum energy of the signal [47].

All the above discussed control methodologies are modelled and designed for a
certain operating condition. During high fluctuation (i.e., sudden change in load or
wind speed) the systemconstraintsmay go out of bounds,whichmay cause instability
in the system.An adaptive control paradigm is highly effective to handle non-linearity
and unpredictable fluctuations. Roughly, there are types of adaptive control, i.e.,
direct and indirect [48]. In direct adaptive control, the systems stability sometimes
uncertain due to the absence of the explicit identification of the unknown plant [49],
while in indirect adaptive control, the closed-loop system stability achieves due the
adaptation signal which is directly generated from a predefined control criterion.

In this chapter, Hermite wavelet based modified neuro-fuzzy indirect adaptive
control technique is design to acquire maximum power from variable speed wind-
turbine. The modeling of the proposed controller starts from the fuzzy control via
expert knowledge which initialize the parameters. Then the parameters are updated
adaptively online using backpropagation algorithm. Then, the comparison has been
made in terms of efficiency, and output power with other maximum power tech-
niques, i.e., Proportional Integral (PI) based HCS MPPT and conventional fuzzy
based MPPT. Finally, the superior performance of the proposed controller is shown
through simulation.

The layout of this chapter is given as follows. Background of wind energy gen-
eration system is given in Sect. 2. Section3 provides the designing of the proposed
controller. Comparison through results is covered in Sect. 4. Finally, conclusions are
provided in Sect. 5.

2 Wind Energy Conversion System (WECS)

Typically, WECS consists of a WT, a generator, power electronics converters, inter-
connection apparatus, filter circuitry and control system. WT is the most important
part in WECS which generates electrical energy from the kinetic energy associated
with wind speed. The WECS global strategy is given in Fig. 1. The aerodynamic
power produced by wind is given as:

Pα = 0.5πρR2�(ς)ν3
w (1)

where νo > νw > νi. ς is the tip speed ratio and given as:

ς = Rωr

νw
(2)
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Fig. 1 Wind energy
conversion system

The rotor power and aerodynamic torque (Tα) are calculated as:

Pα = ωrTα (3)

Tα = πR3�(ς)ν2
w

2ς
(4)

The Tα runs the wind-turbine at the ωr (speed). Th is the high speed torque, Tl is
the low speed torque, Tem is the generator electromagnetic torque. The rotor speed is
increased by the gear box. The gear box ratio, ηg to attain the generator speed, ωg ,
while the Tl is augmented. For certain wind speed, the output power is calculated as:

Pα = zω2
r (5)

where z = 0.5ρA�(R
ς
)3 and the optimal power obtained by rotational speed is illus-

trated in Fig. 2. For a certain wind speed, the optimal power is:

Pα,o = zoω
3
r (6)

where zo = 0.5ρA�o(
R
ςo

)3.
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Fig. 2 Wind turbine output power at different speeds

2.1 Permanent Magnet Synchronous Generator Model

The rotor dynamics based on the generator inertia are given as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

id
dt

= −Ra

Ld
id + Lq

Ld
Pωr iq + 1

Lq
vd

id
dt

= −Ra

Lq
iq − Ld

Lq
Pωr id − 1

Lq
Pωrϕm + 1

Jq
vq

dωr

dt
= 1

Jt
(Tα − Tg − ktwr − Btθr)

(7)

The d-axis and q-axis circuits of PMSG are shown in Fig. 3. The gear box ratio is
defined as:

ηg = ωg

ωr
= Tl

Th
(8)

where

Jt = Jr + η2
gJgkt = kr + η2

gkgBt = Br + η2
gBgTg = ηgTe (9)

Te = −3

2
pn(Ld − Lq)id iq + ϕmiq (10)

where vd , vq and id , iq are the stator d-axis and q-axis voltage and current components,
respectively. Ra, ω and ϕm represent the stator resistance, frequency and flux linkage,
respectively. The torque, Tg of the PMSG is defined as:
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Fig. 3 The d-axis (a) and q-axis (b) circuits of PMSG

Fig. 4 Drive train as a single
lumped mass

Tg = −3

2
pnηg(Ld − Lq)id iq + ϕmiq (11)

where pn represents the number of pole pairs. Finally, the generated power is calcu-
lated as:

Pg = Tgωr (12)

As the external stiffness, Bt is quite small, it can be neglected. So, the drive train
can be shown as a single lumped mass as shown in Fig. 4. The q-axis component of
the stator current is written in-terms of d-axis component as follows:

iq = −2Tg

3pnηg(Ld − Lq)id iq + ϕmiq
(13)

The maximum efficiency of the PMSG is obtained by reducing the copper losses,
Pcn and core losses, Pcore which are calculated as:

Pcn = Ra(i
2
d + i2q) (14)

Pcore = ω2{(Ld id + ϕm)2 + (Lqiq)2}
Rc

(15)
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where Rc represents the core loss component. Therefore, the output power of the
PMSG is calculated as:

Pout = Pa − Pcn − Pcore = Tgωr − Rs(i
2
d + i2q) − ω2{(Ld id + ϕm)2 + (Lqiq)2}

Rc
(16)

The 3φ terminal voltages of the PMSG are:

⎡

⎣
va(t)
vb(t)
vc(t)

⎤

⎦ = 1√
3

⎡

⎢
⎢
⎢
⎣

√

v2d + v2q cos(ωt + φa)
√

v2d + v2q cos(ωt + φa − 2
3π)

√

v2d + v2q cos(ωt + φa + 2
3π)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

√
2Vrms cos(ωt + φa)√

2Vrms cos(ωt + φa − 2
3π)

√
2Vrms cos(ωt + φa + 2

3π)

⎤

⎥
⎥
⎦

(17)

where Vrms = v2d+v2q√
6

and phase angle is φa = tan−1(
vq
vd

).

2.2 3φ Diode Bridge Rectifier

Usually, a two-stage conversion (bridge rectifier and boost converter) is used to
produceDC from the generatedAC ofWECS, i.e., AC is processed into DC via diode
rectifier and the DC/DC power conversion is performed through boost converter to
obtain the required voltage levels. Figure5 shows 3φ bridge rectifier. The 3φ voltages
at the terminal of bridge rectifier are:

v1 = vm cos(ωat) (18)

v2 = vm cos(ωat − 2π

3
) (19)

v3 = vm cos(ωat − 4π

3
) (20)

Fig. 5 3φ diode bridge
rectifier
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where vm = vp,rms
√
2. Suppose Iout is greater for the entire periods. The maximum

phase voltages across two diodes at any instant is written as:

vA = max(va, vb, v3) (21)

and the minimum phase voltages are calculated as follows:

vB = min(va, vb, v3) (22)

Fourier series expansion for the output voltage at terminals A and B can be calculated
as:

vA = vin
3
√
3

π

[

0.5 +
+∞∑

−∞

(−1)n + 1

9n2 − 1
cos(3nωot)

]

(23)

vB = vin
3
√
3

π

[

−0.5 +
+∞∑

−∞

1

9n2 − 1
cos(3nωot)

]

(24)

The output voltage of bridge rectifier is calculated as:

vout = vA + vB (25)

2.3 DC–DC Boost Regulator

The boost regulator is illustrated in Fig. 6. The input currents and voltages across
inductor and capacitor at any instant can be calculated as:

vi = vo(t)L
diL
dt

⇒ iL(t) = 1

L

∫

(vi(t) − v0(t))dt (26)

ic(t) = C
dv0(t)

dt
⇒ v0(t) = 1

C

∫

iC(t)dt (27)

vL(t) = vi(t) × F + ((vi(t) − v0(t)) × F × sign(iL(t)) (28)

iC(t) = −i0(t) × F + (iL(t)) × F × sign(iL(t)) = C
dv0
dt

(29)

The voltage at the output terminal of boost regulator is written as:

vo(t) = 1

C

∫

(ic(t)dt) = 1

C

∫

(−i0(t) × F + iL(t) × F × sign(iL(t))dt (30)
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Fig. 6 Boost converter

Finally, the output voltage is simplified through Fourier series expansion as follows:

v0 = vin
3
√
3

3

[

1 −
+∞∑

k=1

2

36k2 − 1
cos(6kω0t)

]

(31)

The DC component voltage is calculated as:

v0,dc = vm
3
√
3

π
≈ 1.65vm ≈ 2.34vp,rms (32)

Similarly, the voltage AC component is calculated as:

vo,ac = vm
3
√
3

π

[

1 −
+∞∑

k=1

2

36k2 − 1
cos(6kωot)

]

(33)

The voltage across capacitor is calculated as:

vC = −vA − vB (34)

Fourier series expansion for vC is given as:

vC = vm
3
√
3

π

+∞∑

k=1

2

(6k − 3)2 − 1
cos((6k − 3)ωot) (35)

The currents of the diodes are:

iDk = dk(ωot)Io for k ∈ {1, 2, 3, 4, 5, 6} (36)

ID = 1

3
Io (37)
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Fig. 7 Average model of the DC voltage regulator

The output power of rectifier is calculated as follows:

Po = VoIo = vmIo
3
√
3

π
= Pin (38)

2.4 Average Model of DC–DC Boost Regulator

The average model of DC voltage regulator is illustrated in Fig. 7. The regulator
output voltage, VDC is calculated as:

VDC = d2VConv (39)

IRC = IL − d1IDC (40)

VDC = d2VConv (41)

where d1 and d2 are duty cycles which can be calculated using Kirchhoff’s voltage
law:

VConv − VL = IRCR + 1

C

∫

IRCdt ⇒ VConv = VL + IRC

(

R + 1

C

∫

dt

)

(42)

Putting VConv in (39), the value of VDC is calculated as:

VDC = d2

{

VL + IRC

(

R + 1

C

∫

dt

)}

(43)
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From (40) put the value of IRC in (43), we get the final value of VDC as follows:

VDC = d2

{

VL + IL − IDCd1

(

R + 1

C

∫

dt

)}

(44)

The output power at the DC bus is:

PDC = VDC × IDC (45)

Finally, the maximum power injected by WECS is calculated as:

Pmpp = VmppImpp (46)

where Pmpp = VDC and Vmpp = IDC are the voltage and current at MPP.

3 Indirect Adaptive Hermite-Wavelet Based Controller
(IAHWBC)

For WECS, the maximum power of point extraction is carried out via an indirect
adaptive Hermite-wavelet based algorithm. The WECS system model fIAHWBC−WT

(�(n)) is first identified online as shown in Fig. 8,where�(n) = y(n − 1), . . . , y(n −
p), u(k − 1), . . . , u(k − q). The nonlinear subsystem dynamic model, fIAHWBC−WT

(�(n)) for WECS is identified by using the following general objective function:

Fig. 8 WECS-PMSG subsystem closed-loop and adaptive control model
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Fig. 9 Neurofuzzy structure of the proposed controller

Min Awind−id = 1

2

[
Iwind (n) − Îwind (n)

]
(47)

s.t.

Pwind (n) =
⎧
⎨

⎩

0 (WT − stall) if νw < νi or νw > νo

ZgrZgnkwind�(ς,B)
ρA
2 ν3

w if νi < νwνr
ZgrZgnkwindPr if νr < νwνo

where νr, νo, νi and νw are the reference, cut-out, cut-in and current wind speed,
respectively. Zgn and Zgr are the generator and gearbox efficiencies, respectively.
Similarly, A and B are the turbine swept area and blade pitch angle, respectively.
There are seven layers in the proposed structure as shown in the Fig. 9. IF-THEN
rules are defined as follows:

Ri : if t1 is Ui
1, t2 is U

i
2 and tip is U

i
p, then y = Ypq

These seven layers are described as follows:

Layer 1: This is input layer which collects the input from the plant. These inputs are
directly sent to the fuzzification layer (i.e., layer 2) using nodes.
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Layer 2: Here the linguistic terms and their degree of membership are allocated to
each input. The linguistic terms using Gaussian membership function for each input
as follows:

Ui
j = e

−1
2

[
tj−Ci

j

ði
j

]2

(48)

Layer 3: The firing intensity of each rule is determined using product T-norm in this
layer.

Ūi
j =

q∏

i=1

Ui
j (49)

Layer 4: This is wavelets layer. Hermite wavelet functions are integrated in this
layer. The weighted consequent value after applying Hermite wavelet of each rule is
determined as follows:

℘ i =
2n−1
∑

j=1

κ
i
jYpq(t) (50)

where, ℘ i is the output of this layer and κ represents weighting factor.

Layer 5: The output of layer 3 which is the last layer of antecedent part and layer 4
which is first layer of consequent part are multiplied for each input and then they are
sum.

Layer 6: This layer provides the sum of output of layer 3.

Layer 7: The final output of neurofuzzy structure is calculated and given as:

u(t) =
∑p

j=1 Ū
i
j℘

i

∑p
j=1 Ū

i
j

(51)

Where i = 1, . . . , q and j = 1, . . . , p.

The above derivedwavelet based neurofuzzy stricture is proven as a universal approx-
imator for continuous functions over compact sets. For optimizing adaptive function
fIAHWBC−WT (�(n)), it needs the adaptation of several parameters, ℵi

j ∈ {Ci
j, ð

i
j, κ

i
j}

which is based onAwind−id . Where Ci
j is the mean of the Gaussian membership func-

tion for jth input, ith rule, ði
j is the variance of the Gaussian membership function for

jth input, ith rule and κ
i
j is the weight of the Gaussian membership function for jth

input, ith rule. Parameters for training algorithm are Ci
j, ð

i
j and κ

i
j . Gradient descent

method is used to tune the parameters, the generalized update equation is written as
follows:

ℵi
j(n + 1) = ℵi

j(n) + ϒwindεid
∂ Îwind (n)

∂ℵi
j(n)

(52)
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whereϒwind and εid = Iwind (n) − Îwind (n) denotes the learning rate and identification
error. The update equations for all parameters are:

Ci
j(n + 1) = Ci

j(n) + ϒwindεid

[{
℘j − Îwind (n)

∑p
j=1 Uj

}

Uj

{
tj − Ci

j

ð
i2
j

}]

(53)

ð
i
j(n + 1) = ð

i
j(n) + ϒwindεid

[{
℘j − Îwind (n)

∑p
j=1 Uj

}

Uj

{
(tj − Ci

j)
2

ð
i3
j

}]

(54)

κ
i
j(n + 1) = κ

i
j(n) + ϒwindεid

[{
Uj

∑p
j=1 Uj

}

Ypq(tj)

]

(55)

where tj is the jth input, ℘j = κ
i
j × Ypq(tj) andYpq(tj) is the Hermite wavelet which

is taken from the interval, [0, 1] as follows [50]:

Ypq(tj) =
{
2

l
2

√
1

p!2p√π
Hq(2l tj − p̂), p̂−1

2l ≤ tj ≤ p̂+1
2l

0 Otherwise
(56)

where p = 1, 2, . . . , 2l−1, p̂ = 2p − 1 which explains the translation parameter and
q = 0, 1, . . . ,Q − 1 defines the order of polynomial. Where Hq denotes an orthog-
onal related to the weight function as:

∫ ∞

−∞
e−t2

HqHp =
{

0, q 
= p
p!2p√π q = p

(57)

where Hq are Hermite polynomials which can be calculated as:

H0 = 1, H1 = 2tj and Hq+1 = 2tjHq − 2qHq−1 (58)

The cost function is given as:

Min Awind−cn = 1

2
[Iwind (n) − Iwind−ref (n)] (59)

The control law u(n) = uwind (n) for WECS is:

uwind (n) =
∑p

j=1 U
i
j℘

i

∑p
j=1 U

i
j

=
∑p

j=1

([
∏p

j=1 exp

(
−1
2

[
tj−Ci

j

ði
j

]2)]

× [κi
j × Ypq(tj)]

)

∑p
j=1

[
∏p

j=1 exp

(
−1
2

[
tj−Ci

j

ði
j

]2)]

(60)
In general the update equation for control law uwind (n) is written as:
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Ki
j(n + 1) = Ki

j(n) + ζwind
∂Λwind (n)

∂Ki
j(n)

+ ζwind�εcn(n + 1) (61)

The εcn = Iwind (n) − Iwind−ref (n) is used to tune the parameters Ki
j ∈ {

�
i
j, �

i
j, τ

i
j

}
of

the controller. Where �εcn(n + 1) = εcn(n) − εcn(n − 1), ζwind is the learning rate,
�
i
j is the mean of the Gaussian fuzzy function for jth input, ith rule, �i

j is the variance
of the Gaussian fuzzy function for jth input, ith rule and τ i

j is the weight of the
Gaussian membership function for jth input, ith rule. The term, Λwind (n) can be
determined as:

Λwind (n) = 1

2

[
εcn(n) + ζwindu

2
wind (n)

]
(62)

where ∂Λwind (n)
∂Ki

j(n)
can be simplified as:

∂Λwind (n)

∂Ki
j(n)

=
[

εcn(n)
∂ Îwind (n)

∂uwind (n)
− ζwinduwind (n)

]
∂uwind (n)

∂Ki
j(n)

(63)

The term, ∂ Îwind (n)
∂uwind (n)

can be simplified as:

∂ Îwind (n)

∂uwind (n)
=

∑p
j=1 Uj

[

−
(

uwind (n)−Ci
j

ði2
j

)

(℘j − Îwind (n)) + 2
√

2
π

{
8rj11 + rj12(128uwind (n) − 0.5)

}
]

∑p
j=1 Uj

(64)

where rj11 and rj12 are wavelet coefficients for jth input. The update equations for
control law, uwind (n) are:

�
i
j(n + 1) =�

i
j(n) + ζwind

(

εcn(n)
∂ Îwind

∂uwind (n)
− ζwinduwind (n)

)

[
℘j − uwind (n)

∑p
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)
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2

(65)

�i
j(n + 1) =�i

j(n) + ζwind

(
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(66)

τ ij (n + 1) = τ ij (n) + ζwind

(

εcn(n)
∂ Îwind

∂uwind (n)
− ζwind uwind (n)

)[
Uj

∑p
j=1 Uj

Ypq(tj)

]

(67)
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Table 1 System modelling parameters

Name Values

Working mode Network connection

Sweep area 1810m2

Cut in wind speed 3 m/s

Nominal wind speed 12 m/s

Cut out wind speed 25 m/s

Rotor diameter 48 m

Nominal output power 500 kW

Generator used PMSG

Nominal rotor speed 30 rpm

Rotor speed range 10–30 rpm

Generator nominal output 250 kW

Generator nominal cycle 1,500 rpm

Gear box rate 01:50

Blade number 3

Generator number 2

Generator voltage 690 V

4 Simulation Results

To demonstrate the accuracy of the proposed control method (denoted as IAHWBC
in the figures) over other existing methods, PI, Fuzzy Logic Controller (FLC) and
IAHWBC are dynamically modelled in MATLAB/Simulink. Then detailed simu-
lations are performed for each controller under the same operating conditions (i.e.,
same type and number of input variable such as different wind speed and load param-
eters). Different parameters which are adopted during the modelling of wind model
are given in Table1.

The real time wind speed for Islamabad, Pakistan is recorded for 12 July, 2018
and used for simulation. The wind speed in m/s is shown in Fig. 10a. In Fig. 10b–d,
the output power with PI, FLC and proposed IAHWBC is shown. From Fig. 10, it is
observed that the maximum overshoots reaches 760 kW in case of PI controller, 619
kW using FLC and 528 kW with proposed controller. The zoomed figures of output
power comparison at different intervals are shown in the Fig. 11.

In order to compare the performance of proposed IAHWBC, two different control
schemes, i.e., PI, and FLC are used. Figure12 shows that the spider plot for efficiency,
overshoot, undershoot, steady state error and MPPT error with proposed and all
other control schemes. The overshoot, MPPT error and percentage overshoot of PI
controller is very high followed by FLC. The steady state error of FLC is also very
high. The proposed IAHWBC shows best performance in all aspects over other
controllers.
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Fig. 12 Spider chart
(efficiency, overshoot,
undershoot, steady state
error, MPPT error) for
various controllers

To test further the dynamic performance of all three controllers, various performance
indexes, i.e., Mean Relative Error (MRE), Integral Squared Error (ISE), Integral
Time-weighted Absolute Error (ITAE), Integral Absolute Error (IAE), and Integral
Time-weighted Squared Error (ITSE) are calculated below and are shown in Fig. 13.

ITAE =
∫ t

0
|tewind |dt (68)

IAE =
∫ t

0
|ewind |dt (69)

ISE =
∫ t

0
e2winddt (70)

ITSE =
∫ t

0
te2winddt (71)

where
ewind (t) = Pwind−ref − Pwind (72)

MRE = 1

T

T∑

t=1

Pwind−ref − Pwind

Pwind
(73)

It is seen fromFig. 13 that all index values are quite smallwith IAHWBCas compared
to other two control methods.
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Fig. 13 Spider chart (MRE,
ITAE, IAE, ISE, ITSE) for
various controllers

5 Conclusion

A wind system was controlled considering real load and weather parameters via a
modified neural-fuzzy controller in this book chapter. The performance of wind sys-
tem in terms of efficiency, output power and steady-state characteristics (i.e., small
overshoot and short settling time) was considerably improved by the hybridization
of wavelet (Hermite) in the conventional neural-fuzzy structure. The new developed
controller has maintained its self adaptively behavior under uncertainties generating
from various load disturbances and wind speed variation. The approximating capa-
bility of Hermite wavelet decomposition enhanced the adaptive capability further
of the IAHWBC. Simulation results were given to demonstrate the superiority over
PI/fuzzy controllers under similar operating conditions. In future work, the applica-
tion of proposed controller will modify to be applied to inverter to raise the reliability
of the grid connected system.
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