
Chapter 3
Functional Correlation, Design
Information Entropy,
and the Dependency of Axiomatic
Design Axioms

Petter Krus

Abstract In this paper, the functional correlation derived from the design matrix is
introduced. It is shown how it can provide powerful insight into trade-offs in design.
It also shows how the functional range is limited by functional correlation, and that
this corresponds to a coupled design, although the converse is not true, i.e., a
coupled design does not necessarily limit design space. In this way the functional
correlation provides added insight into the design, compared to the design matrix.
One important feature is that it is invariant to coordinate transformations of the
design parameters. In this paper, the notion of design information entropy with
relation to a design space is also elaborated. It is shown that an uncoupled, and
functionally uncorrelated design, corresponds to a minimization of waste of design
space, and hence minimizes the information entropy needed to specify a design. In
this paper it is also shown that this is directly related to the determinant of the
design matrix. A consequence, of the results in this study, is that the independence
axiom and the information axiom, are not independent from each other, and
although it is true that an uncoupled design also tend to minimize the information
needed to specify a design, there are also coupled designs that also do so. It then
follows that the overriding axiom is, that the best design space formulation is the
one that minimize design information to specify a design.

3.1 Introduction

In Axiomatic Design, AD, was introduced by Suh [1]. It has been used in a wide
range of applications and in different ways. Here, the application is towards
parametrization of design, i.e., the selection of design parameters to produce an
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efficient parametrization where the designer can vary the design parameters to
efficiently navigate in the functional space, e.g., for design optimization.

A central concept in Axiomatic design is the design matrix that represents the
relationship between the design parameters, xD and the functional requirements f R.
The relationship can be written as

fR ¼ A� xD;

whereA is the systemmatrix and xD is a vector that is mapped onto f R throughA. This
does of course assume linear relationships to be true, although linearization can be
used for nonlinear system to illustrate the connectivity, and local behavior. The
relationship between two input variables and two output variables can be written as

fR1
fR2

� �
¼ a11

a21

�
a12
a22

�
xD1
xD2

� �

Axiomatic design is based on two axioms. The first is the independence axiom
which means that a good design is uncoupled and hence only has diagonal elements
in A. The second axiom is the information axiom that states that the design with the
lowest information content is to be preferred. In axiomatic design the information
content of a design is expressed as

I ¼ log2
1
ps

where ps is the probability of success. i.e., the probability that a random design in
the System range (design space) produce a solution that fulfill all the functional
requirements. In [2], and subsequently in [3] this is calculated for a general system
matrix A. in [4] it is discussed more in detail in respect to a system with two
functional requirements. In [5] Axiomatic design and the information axiom, and
the consequences of coupled design, is connected to TRIZ [6].

At this stage we also introduce the functional characteristics y. These are the
actual response to the design parameters, while the functional requirements are the
desired values for those functional characteristics. We also drop the index D on the
design parameters for convenience. The design relation can then be written as

y ¼ A� x

3.2 Design Space and Functional Space

Design space is here defined as the space within which design parameters can vary,
and where the design parameters are the axis. There is also a corresponding
Functional space where this is expressed in with the functional requirements as
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axis. There is also the requirement range that defines the constraints in the func-
tional space. In many cases there are no explicit bounds to the design parameters,
although when using design optimization, it is often the case that this is desirable.
Nevertheless, it is a useful notion, and even if there are no constraints on the design
parameters, the notion of design space is still useful when comparing different
designs or parameterizations.

According to the first axiom the best design is the design where functional
requirements and design parameters are uncoupled. That is, the matrix A is diag-
onal. This can be obtained in two ways. One is by having a system architecture
where this comes out naturally. There is also a choice regarding the design
parameters. A very important activity in design is the parametrization of the design.
With a good parametrization a higher degree of decoupling can be achieved, see [7].

In relation to [2–4] where a given system range is compared to a given design
range, we are here looking at what is the size of the required design space in order
to encompass all of the requirement range (or design range), which is the region in
the functional space that satisfies all of the functional requirements.

3.3 Sensitivity Analysis

Sensitivity analysis is an excellent tool to study relationships between system
parameters and functional characteristics in a quantitative way. In this way
numerical values of the design matrix A can be obtained [8].

If there is a model for the system, sensitivity analysis can quickly give an
overview of the couplings in the design and over what parts of the design that are of
importance for the desired behavior. This can be obtained either through analytical
or numeric differentiation. It can be used to study the influence of disturbances and
uncertainties in parameters and constants. Assuming the system

y ¼ f xð Þ;

where f is a nonlinear function. However, using linearization around a nominal
point, this can be written as

y0 þDy0 ¼ DxJþ f x0ð Þ;

where J is the Jacobian, where the elements are defined as

kij ¼ @yi
@xj

This is hence an analytical representation of the design matrix A. If the system is
complex and the sensitivity matrix large, it may be difficult to get an overview of
the system since the different parameters may have values of different orders of
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magnitude. The functional characteristics are normally also of different orders of
magnitude. In order to make it easier to get an overview of the sensitivities, some
kind of normalized dimensionless sensitivities are needed. The first approach to
normalize the sensitivities with respect to the nominal values and to employ the
following definition:

k0ij ¼
xj
yi

@yi
@xj

In this way a nondimensional value is obtained, that indicates how many percent
a certain functional characteristic is changed when a system parameter is changed
one percent. In this way it is much easier to assess the relative importance of the
different system parameters. The normalized version of the system matrix A is
hereafter denoted A0.

Example: Electric Motorcycle
As a very simple example, an electric vehicle is used. It has the functional
requirements range (at constant speed 70 km/h) and acceleration time (0–70 km/h)
and the design parameters battery size, mb, and engine power, Pm.

The range can be under some assumptions (only air resistance and constant
speed) calculated as

R ¼ 2kbmbg
CdA0qv2

Here: kb is the battery energy density, mb is the mass of the battery. η is the
combined efficiency of battery and motor. Cd is the aerodynamic drag coefficient.
A0 is the frontal area and v being the vehicle speed. The acceleration time can be
calculated as (assuming no air and rolling resistance, and constant power inde-
pendent of speed)

ta ¼ mv2

2Pga
;

where the total weight is: m = m0 + mb. The design matrix is

R
ta

� �
¼ K � mb

Pm

� �

The normalized sensitivity matrix K0 can be calculated as

K0 ¼
mb
R

@R
@mb

Pm
R

@R
@Pm

mb
ta

@ta
@mb

Pm
Rta

@ta
@Pm

 !
¼ 1 0

rm �1

� �
;
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where

rm ¼ mb

m0 þmb

Most of the elements get trivial. It can be seen that increasing the battery mass
will have a direct proportional effect on the range through element K0

11.
Furthermore, acceleration time is inversely proportional on motor size. If the battery
mb is small compared to the rest of the vehicle m0 the first element on the second
row also becomes small, and the system is almost decoupled.

3.4 Design Information

The second axiom in axiomatic design is regarding the minimization of informa-
tion. There is a definition of design information in Suh [9], but to have a better
understanding of design information we turn to the information theory as intro-
duced by Shannon [10]. This provides a tool for quantitatively describe information
content in general. For the case of continuous variables, it can be written

Hc ¼ � Z1

�1
p xð Þlog2 p xð Þð Þdx

This gives a measure of the average information content of a variable x. Here p
(x) is the probability density function. One problem with this expression is that it
does not make sense unless x is dimensionless, since the probability density
function has the unit of the inverse of x.

the probability density function p(x) needs to be related to another distribution m
(x). The result is called the Kullback–Leibler divergence [11] from the distribution
m(x). This is the relative entropy, and it is defined as

Hrel ¼ Z1

�1
p xð Þlog2

p xð Þ
m xð Þ
� �

dx

This is the difference in entropy between having information that a random
variable is within m(x) and knowing that it is within the distribution p(x).
Furthermore, it represents a measure of information in bits. It can also be gener-
alized to any dimensionality.

Ix ¼ Hrel ¼ Z1

�1
. . .

Z1

�1
p x1. . .xnð Þlog2

p x1. . .xnð Þ
m x1. . .xnð Þ
� �

dx1. . .dxn

A rectangular distribution of m(x) in the bounded interval x 2 xmin; xmax½ �, with
xR ¼ xmax � xmin would mean that the distribution of the design space is a space of
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equal possibilities, where no particular region can be considered more likely than
another a priori. For the rectangular probability distributions this can simply be
written as

Ix ¼ log2
S1
S2

;

where S1 could be the design space and S2, e.g., the region of the design space that
fulfills the requirement range. Hence, the amount of information needed to define a
design relative to a design space can be calculated. According to this relates to the
part of the design range Sx that falls outside of Sc, here called Sw.

Iw ¼ log2
Sx
Sc

In axiomatic design this is seen as a measure of robustness, since a design with
zero Iw have all of the design range within the constraint (system) range. An
alternative use is when a flexible design is made, e.g., with a parametrization that
makes it easy to change the design to different functional requirements.

3.5 Functional Correlation

A measure of dependencies is the correlation of the functional characteristics, as
discussed in [8]. It is limited to the interval [− 1, 1], and it is symmetric matrix, so
there is no information regarding the dominant direction of dependency. The cor-
relation is a measure of the angle (cosine) between two row vectors in the sensi-
tivity matrix. If the correlation is one, they are completely aligned. If it is zero they
are orthogonal and if it is minus one, they are pointing in the opposite direction. The
elements in the correlation matrix are calculated as (n is the number of rows in the
design matrix)

cik ¼
1
n

Pn
j¼1 k

0
ijk

0
kj

sisk

Here the standard deviations in the sensitivities are

si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
j¼1

k0ij
� �2vuut
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With mb = m0/4 the correlation matrix for the electric motorcycle becomes

C ¼ 1 0:196
0:196 1

� �

This means that there is some correlation between range and acceleration. Note
that the diagonal elements in the correlation matrix are always one, since it cor-
responds to the correlation of a variable to itself. Furthermore, the matrix is always
symmetric.

3.6 System Determinant and Design Controllability

The determinant, introduced here for the design matrix A0, has an interesting
property. A geometric interpretation of the determinant is that it is a hyper volume
in N dimensional space (or an area in the case of two dimensions) where the input
vector is a unit hyper cube (or square), i.e., a set of vectors of length N with
coordinates 0 or 1 in each spot. A small determinant means that the functional space
resulting from a design space is smaller, which means that less precision in the
design parameters is needed. On the other hand, this also means that there is less
possibilities to change the functional characteristics. In [10] the information channel
it is described in the same way as the design relation, that is

y ¼ A� x

The total information in y can then according to [10] be calculated as

Hy ¼ � log2 detAþHx

Assuming a rectangular probability distribution and normalized design variables
as inputs. This can be written as

Iy ¼ detA0 þ Ix

or

Iy ¼ IA þ Ix;

where IA = det A0 is the information added or subtracted by the nature of the system
matrix.

This indicates that the value of the determinant of A0 should be of interest also in
the context of design. The value of the determinant represents the area, in the case
of two variables, and a volume of higher dimension for other cases. To have a high
degree of controllability, it should be desirability to have a high value of IA.
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A decoupled design is also the design that maximizes the size of the functional
space. There are, however, coupled designs that can have the same size. This can,
e.g., be realized if the coordinate system of the design parameters is rotated 45°.
Consider the following system matrix

A0 ¼ 1 0
0 1

� �

If each element the input vector is varied between 0 and 1 to span a design space
the left polygon in Fig. 3.1 is obtained in the output variables. The determinant:
detA0 ¼ 1. If the system matrix is rotated 45° (p/4) it becomes

A0 ¼ 1=
p
2 �1=

p
2

1=
p
2 1=

p
2

� �

This is a fully coupled system. However, the determinant is still: detA0 ¼ 1 so
the size of design space is the same as of the original uncoupled system, see the
right figure in Fig. 3.1.

The correlation matrix is also invariant, and is for both cases

C ¼ 1 0
0 1

� �

Changing the sign in of the element A01;2 means that the determinant becomes
zero. A quick inspection the system matrix shows that the system is strongly
coupled. This is, however, deceptive without examining the determinant, since their
properties are entirely different.

In Fig. 3.2 a value of 2¼ 0:1, is subtracted from the off-diagonal elements of A0

to create a small but nonzero determinant to show the effect.

Fig. 3.1 Left: Projection in functional space of design space of uncoupled design. Right:
Projection in functional space of the design space of a coupled design but with low correlation
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A0 ¼ 1=
ffiffiffi
2

p �1=
ffiffiffi
2

p � 2
1=

ffiffiffi
2

p � 2 1=
ffiffiffi
2

p
� �

The determinant for this case is small, detA0 ¼ 0:131. This clearly shows, that
the nature of the coupling is as important as whether it is uncoupled or not, and it is
a property that is invariant under coordinate transformation of the design parame-
ters. The correlation matrix becomes

C ¼ 1 0:988
0:988 1

� �

Which is an indication of a strong coupling. The size of the projection in the
functional space (gray polygon in the left of Fig. 3.2) is

SFx ¼ detASx

Considering, e.g., a parametrized model that should be capable to reach all the
points of the requirement space. This would, e.g., be desirable if an optimization is
to be performed to search the best point in the functional space.

For this case a very large design space (gray area) is needed to reach all parts of
the requirement range. In this example, the design space has to be increased until
the requirement range is totally enclosed by the projection of the design space. In
this case it has to be increased with a factor 1= 2 in each dimension. This means
that this design space with two dimensions has to be increased by a factor
S0x ¼ Sx= 22. The ratio between the projection of the adjusted design space and the
requirement range now becomes

Fig. 3.2 Left: Projection in functional space of a design space of unit dimensions of a coupled
design with high correlation. Right: Design space is increased to include the whole requirement
range (of unit dimensions)
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S0Fx
SFR

¼ detA
22

which means that a lot of the search might be wasted in areas outside of the range of
the functional requirements. The ratio of the areas is 0.131. This means that the
wasted information entropy is

Iw ¼ log2
S0Fx � SFR

SFR
¼ log 2

detA
22 � 1

� �
¼ log212:14 ¼ 3:60 bit

This can be seen as the mismatch between requirement space and design space.

3.7 Discussion

A foundation for the argument of decoupling is that the functional characteristics
are uncorrelated. However, in design there are certainly a great deal of correlation
between functional requirements. For example, in a product family there might be
several product variants of different sizes, each with their functional characteristics
that are more or less correlated to the size. For example, transport aircraft that are
designed for a high passenger capacity also tend to be designed for a long range,
indicating a correlation between these requirements.

An analytical approach to produce a parametrization is to establish a set of
sample designs that spans the important parts of the design space and analyze them
using principle component analysis that best can be performed using singular value
decomposition. This was demonstrated in [7].

3.8 Conclusions

In this paper, the functional correlation matrix and the system determinant of the
design matrix has been shown to provide valuable insights about the coupling of a
system. That is, in an uncoupled system the correlation matrix only has zero
off-diagonal elements. However, there are also coupled systems that have only zero
off-diagonal elements but that could be made uncoupled by rotating the coordinate
system for the design parameters. Furthermore, it is shown that using information
theory there is a strong relationship between the two axioms in axiomatic design.
That is, an uncoupled system will have a low amount of wasted design space and
require less design information compared to the coupled ones. That is, the shape of
the requirement range does not fit to the design space.
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