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Abstract. This paper presents an efficient parallel 1-D FFT implementation
method based on the architecture features of multi-core vector processor. It
divides the parallel computation of large-point 1-D FFT into the (n-m)-level
parallel FFT computation and M-point parallel FFT computation according to
the number of data points M that can be accommodated in the global cache
(GC). The parallel FFT computation for each stage are performed using a shared
DDR data method in (n-m)-level FFT computation. In the M-point parallel FFT
computation, a parallel FFT computation method based on the matrix Fourier
algorithm is designed, it converts the original M-point 1-D FFT computation
into a 2-D FFT computation, and achieves parallel FFT computation using a
shared GC data method, which avoids multiple data transfers between GC and
AM and reduces data transmission overhead. Merge Column FFT computation
with factor matrix multiplication and column FFT computation results in the
AM, which further reduces the number of data transfer between AM and GC,
and can significantly improve the efficiency of M-point FFT computation. The
experimental results on Matrix show that the average speedup of the single-core
single-precision 1-D FFT is 8.26 times and the average speedup of the dual-core
single-precision 1-D FFT is 6.78 times compared with the TMS320C6678 with
the same frequency.
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Discrete Fourier Transform (DFT) is one of the most important algorithms for scientific
computing, especially in the field of signal processing systems, such as radar signal
processing, underwater acoustic signal processing, spectrum analysis, video image
algorithm, speech recognition, etc. With the increasingly prominent problems of power
consumption and heat dissipation, energy consumption has gradually become an
increasingly important factor affecting high-performance computing systems, and the
architecture of the processor is moving toward multi-core, many-core, heterogeneous
GPUs, embedded DSPs, etc. How to improve the computational performance of DFT
for novel architecture has been a research hotspot [1–7]. The fast Fourier transform
(FFT) algorithm proposed by Cooley and Turkey [8] significantly reduces the
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computational complexity of the N-point DFT algorithm from the original O(N2) to O
(Nlog2N). It can achieve high FFT computation performance if the FFT computation
data can be stored in the on-chip memory of processors. On the other hand, because the
FFT computation data of the same level is not reusable, the computation data needs to
be processed multiple times in the processor’s storage to complete the computing,
thereby greatly reducing the computation performance of the FFT. Therefore, the
computational performance optimization of large-point FFTs is very dependent on the
layout and migration methods of the data, and it needs to be performed according to the
processor architecture characteristics. Goedecker [9] and Karner [10] study how to use
FMA instructions to reduce the number of multiply-add operations to optimize FFT
computation performance for processors that provide FMA instructions. Liu [11]
proposed a vectorization method using FMA to accelerate FFT calculations for FMA
structured vector processors. HE [12] proposed a large point FFT optimization method
for GPU architecture. FFTW [13] is a widely used FFT math library on general-
purpose CPU platforms. It has good portability and can search for optimal FFT
implementation based on processor architecture features. Daisuke [14, 15] studied the
1-D parallel FFT implementation of distributed storage. Jongsoo [16] proposed a 1-D
FFT implementation method with low communication overhead for Intel’s Xeon Phi
coprocessor.

1 Matrix Architecture

As shown in Fig. 1, Matrix is a high-performance multi-core vector processor designed
for high-density computing. It is designed as Very Long Instruction Word (VLIW)
architecture and includes a Scalar Processing Unit (SPU) and a Vector Processing Unit
(VPU). The SPU is responsible for scalar task computing and flow control, and the
VPU is responsible for vector computing. Matrix includes a complex multi-level

Fig. 1. Matrix multi-core block diagram
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storage structure such as scalar register file, vector register file, scalar Level 1 cache,
large-capacity on-chip vector array memory (AM), multi-core shared global cache
(GC), and external shared DDR3. Matrix provides Fused Multiply-Add (FMA) in-
structions and its peak performance of single core is up to 100GFLOPS at 1 GHz. It
can not effectively unleash Matrix’s VLIW pipeline structure, vector computing and
multi-level storage characteristics using traditional FFT algorithm, and results in low
computing performance. Based on the architectural features of Matrix, this paper
presents an efficient large-point parallel one-dimensional FFT implementation method,
which can significantly improve the performance of large-point one-dimensional FFT
on Matrix.

2 Parallel 1-D FFT Computing Method

The basic principle of the Decimation-In-Frequency (DIF) radix-2 FFT algorithm is as
follows. Let x0, …. , xN − 1 be N = 2n points complex numbers. The 1-D DFT is
defined by the formula:

XðkÞ ¼
XN�1

i¼0

xðiÞWik
N k ¼ 0; . . .. . .;N� 1ð Þ

Where 0 � k < n, Wik
N ¼ e�jð2p=NÞikðj ¼ ffiffiffiffiffiffiffi�1

p Þ (known as the twiddle factor).
Decompose the output sequence X(k) into two sequences by parity, then

Xð2kÞ ¼ PN=2�1

i¼0
ðxðiÞþ xðiþN=2ÞWik

N=2

Xð2kþ 1Þ ¼ PN=2�1

i¼0
ððxðiÞ � xðiþN=2ÞÞWi

NÞWik
N=2

8>>><
>>>:

ð1Þ

After N/2 butterfly computation as shown in Fig. 2, the N-point DFT is decom-
posed into two N/2-point DFT. This process can continue until N/2 2-point DFT
computation.

In the above-mentioned one-dimensional FFT computation method, for each stage
of FFT computation, N point data needs to be transferred from the off-chip DDR
memory to the on-chip vector array memory. After the computation, the computation

Fig. 2. Butterfly operation
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result is transferred from the on-chip vector array memory to the off-chip DDR
memory. In the next stage of FFT computation, repeat the above process until all stages
of FFT computation are completed. For large-point FFT, at each stage of FFT com-
putation, because the total computation data far exceeds the capacity of the global
cache (GC), the data in the GC is continuously replaced, but there is no hit, and the data
transmission time cannot be reduced. The N = 2n point FFT computation, including
n-level FFT butterfly unit calculation, requires 2n data transmissions back and forth.
The data transmission time is very expensive; the data transmission time is much longer
than the computation time, which results in low overall FFT computation efficiency.

Assume that the global cache (GC) can accommodate M = 2m point FFT com-
putation data. After the (n-m)-level FFT butterfly unit computation, instead of com-
puting all the FFT butterfly units step by step, 2n−m M-point FFT computations are
computed in sequence. In each M-point FFT computation, since the data is completely
cached in the GC, it is not necessary to fetch computation data from off-chip DDR
memories, which significantly reduces the data transfer time. It can effectively reduce
the computation time of the M-point FFT, thus greatly improving the overall FFT
computation efficiency. Therefore, the parallel computing of large-point 1-D FFT is
divided into parallel computing of the (n-m)-level FFT and parallel computing of the
M-point FFT.

2.1 (n-m)-Level Parallel FFT Computation Method

In the (n-m)-level FFT computation, each stage of FFT computation needs to transfer
N-point data from the off-chip DDR memory to the on-chip vector array memory AM.
Since the computation data are all one-time consumption, the data cached in the GC
cannot be reused, and the test data indicates that the transmission time spent for
transmitting data from the DDR to the AM is greater than the total computation time of
the butterfly computation of each level. So parallel FFT computation is performed
using a shared DDR data method, which can reduce the total computation time in the
(n-m)-level FFT computation. As shown in Fig. 3, taking the first-stage FFT compu-
tation as an example, the core 0 computes the butterfly computation of the first and
third 1/4-section data and the core 1 computes the butterfly computation of the 2nd and
4th 1/4-section data. After each stage is computed, the cores synchronize once to ensure
data consistency. In the (n-m)-level FFT computation, the amount of data read each
time is significantly greater than the length of the vector. Therefore, the data blocks
computed by the butterfly unit are all continuously accessed in DDR, which improves
the efficiency of DDR data access. The data transmitted to the AM is also a continuous
data block, which facilitates vector data access and is easy to be vectorized.
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2.2 m-Level Parallel FFT Computation Method

After the (n-m)-level FFT butterfly computation, 2n−m M-point FFT computations need
to be computed in turn. In each M-point FFT computation, although the computation
data of the M-point FFT can be completely accommodated in the GC, it cannot be fully
accommodated in the vector array storage AM, and which requires 2 m data trans-
mission processes. In order to facilitate vector computation and continuous data block
transmission to improve FFT computation efficiency, it is still necessary to modify the
original computation method. For this reason, the FFT vectorization computation
method based on the matrix Fourier algorithm is designed, and the original M-point 1-
D FFT is converted into a two-dimensional FFT computation. This method can sig-
nificantly improve the computational efficiency of the M-point 1-D FFT.

Let M = RS, R = 2r, S = 2 s. The sequence x(i) is grouped into R subsequences of
length S, that is, 1-D sequence x(i) is converted into a 2-D array sequence of the
following form:

xð0Þ xð1Þ � � � xðS� 1Þ
xðSÞ xðSþ 1Þ � � � xð2S� 1Þ
..
. ..

. � � � ..
.

xððR� 1ÞSÞ xððR� 1ÞSþ 1Þ � � � xðRS� 1Þ

2
6664

3
7775

Fig. 3. Parallel 1-level FFT computing based on sharing DDR data
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Let i and k be mapped as follows:

i ¼ Si1 þ i2;
0� i1 �R� 1
0� i2 � S� 1

�

k ¼ k1 þRk2;
0� k1 �R� 1
0� k2 � S� 1

�
8>><
>>:

Then X(k) can be transformed as follows:

XðkÞ ¼Xðk1 þRK2Þ

¼
XS�1

i2¼0

XR�1

i1¼0

xðSi1 þ i2ÞW k1 þRk2ð Þ Si1 þ i2ð Þ
M

¼
XS�1

i2¼0

XR�1

i1¼0

xðSi1 þ i2ÞWk1i2
R

" #
Wk1i1

M

( )
Wk2i2

S

ð2Þ

As can be seen from the above equation, the 1-D FFT computation of M-point can
be converted into a computation similar to 2-D FFT. That is, first compute the S R-
point column FFT computation by column, then multiply the result of the computation
with a factor matrix, then compute the R S-point row FFT computation by row. Where,
the computation data of R-point column FFT and S-point row FFT can be accom-
modated in the AM. It only need to design a suitable data layout method, convenient
vector data access and computation, and it can achieve efficient computation efficiency.

In the M-point FFT computation, the parallel FFT computation is performed using
the shared GC data method. As shown in Fig. 4, the first computation is the S R-point
column FFT computation by column. The core 0 computes the first half of the S/2 R-
point column FFT computation, and the core 1 computes the second half of the S/2 R-
point column FFT computation. The cores synchronize once before performing row
FFT computation to ensure that all data has completed column FFT computation.

Fig. 4. Parallel M-points FFT computing based on sharing GC data
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If directly performing computation according to the above formula (2), you need to
complete all column FFT computation before multiplying the result data with a factor
matrix. In order to avoid multiple data transmission between GC and AM and reduce
data transmission overhead, after the column FFT computation in the AM is computed,
the column FFT computation result in this section is multiplied by the factor matrix. It
makes the column FFT computation and the column FFT computation result and the
factor matrix multiplication only need one traversal computation, and no longer
requires multiple data transmission between AM and GC, which improves the com-
putation efficiency of the M-point FFT.

To further overlap the computation time into the data transmission time and reduce
the total computation time, a computation method based on the DMA double buffering
mechanism is adopted in each stage of the above-mentioned FFT computation, column
FFT and row FFT computation.

2.3 FMA Optimized Buttery Computation

The FMA instruction provided by Matrix can further improve the computational effi-
ciency of the FFT butterfly computation. Assume that the two inputs of a butterfly
computation of the DIF radix-2 FFT are A and B respectively, the outputs are Y1 and
Y2 respectively, the butterfly factor is W, and the subscripts r and i respectively
represent the real and imaginary parts of the complex, according to the formula (1),
there are

Y1
Y2

� �
¼ 1 1

W �W

� �
A
B

� �
¼ 1

W

� �
1 1
1 �1

� �
A
B

� �

Expand the formula:

Y1i

Y1r

Y2i

Y2r

2
666664

3
777775 ¼

1 0 0 0

0 1 0 0

0 0 Wr 0

0 0 0 Wr

2
6664

3
7775

1 0 1 0

0 1 0 1

1 �Wi=Wr �1 Wi=Wr

Wi=Wr 1 �Wi=Wr �1

2
6664

3
7775

Ar

Ai

Br

Bi

2
666664

3
777775

¼

1 0 0 0

0 1 0 0

0 0 Wr 0

0 0 0 Wr

2
6664

3
7775

2 0 1 0

0 2 0 1

0 0 �1 Wi=Wr

0 0 �Wi=Wr �1

2
6664

3
7775

1 0 0 0

0 1 0 0

�1 0 1 0

0 �1 0 1

2
6664

3
7775

Ar

Ai

Br

Bi

2
666664

3
777775

Derive from the above formula, a butterfly computation requires 4 fusion multiply-
add operations, 2 real multiplications and 2 real additions, and a total of 8 floating-point
operations. It reduces 2 floating point operations compared to traditional FFT butterfly
computation.
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3 Performance Testing and Analysis

The parallel 1-D FFT algorithm proposed in this paper was tested and analyzed in the
RTL-level test environment of the multi-core vector processor Matrix. The system
frequency of Matrix in the test is 1 GHz, the frequency of DDR3 is 1600 MHz, and the
single and dual core peak performances are 100GFLOPS and 200GFLOPS, respec-
tively. The single-core and dual-core peak performance of the same frequency
TMS320C6678 tested at the same time is 16GFLOPS and 32GFLOPS, respectively.
Statistical experimental data is averaged over multiple experiments.

First, as shown in Fig. 5, single-core and dual-core performance of a single-
precision 32k, 64k, 128k, 256k, 512k, and 1024k-point radix-2 FFT is tested on Matrix
respectively. The speedups from 32k to 1024k are 1.61, 1.69, 1.74, 1.8, 1.53, 1.39,
respectively, and the average speedup is 1.63. As shown in Fig. 6, single-core and
dual-core performance of a double-precision 32k, 64k, 128k, 256k, 512k, and 1024k-
point radix-2 FFT is tested on Matrix respectively. The speedups from 32k to 1024k are
1.66, 1.72, 1.67, 1.48, 1.35, 1.26, and the average speedup is 1.52. It can be seen that
when the computed data exceeds the GC capacity (single-precision 256k, double-
precision 128k), the computation performance and speedup decreased significantly
because of the limited DDR bandwidth.

Second, we compared the single- and dual-core single-precision 1-D FFT perfor-
mance of the Matrix and TMS320C6678, respectively. As shown in Figs. 7 and 8, the
test data shows that the computation time of the single-core single-precision 32k points
radix-2 FFT is only 0.11 ms, and the corresponding performance of the TMS320C6678
at the same frequency is 0.915 ms. The performance ratios from 32k to 1024k are 8.29,
8.54, 9.26, 9.85, 7.61, 6.03, respectively, and the average ratio is 8.26.

Fig. 5. The computation performance of single-precision 1-D FFT in matrix
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Fig. 6. The computation performance of double-precision 1-D FFT in matrix

Fig. 7. Performance comparison of single-core single-precision 1-D FFT on matrix and
TMS320C6678
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The computation time of the dual-core single-precision 32k points radix-2 FFT is only
0.0686 ms, and the corresponding performance of the TMS320C6678 at the same
frequency is 0.478 ms. The performance ratios from 32k to 1024k are 6.97, 7.18, 7.86,
8.72, 5.78, and 4.19, respectively and the average ratio is 6.78. However, the peak
performance ratio of the two is 6.25. It shows that the proposed 1-D FFT vector and
parallel algorithm have higher computational efficiency and efficiently exploit the
computing performance of Matrix.

4 Conclusions

With the rapid development of microprocessor technology, the architecture is
becoming more and more novel and complex. The computation performance opti-
mization of large-point FFT depends more on the mining of processor architecture
features. The computation performance of large-point FFT is not only related to the
processor’s peak computational performance, but more importantly depends on the
data storage layout and migration method. This paper proposes a large-point parallel
1-D FFT implementation method based on matrix Fourier algorithm for the indepen-
dently developed vector processor Matrix. Experimental results show that the proposed
parallel 1-D FFT implementation method based on multi-core vector processors has
significant advantages. It can efficiently exploit the computing performance of multi-
core vector processors. Compared with the TMS320C6678 with the same frequency,
the average speedup of the single-core single-precision 1-D FFT is 8.26 times, and the
average speedup of the dual-core single-precision 1-D FFT is 6.78 times.

Fig. 8. Performance comparison of dual-core single-precision 1-D FFT on matrix and
TMS320C6678
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