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Abstract. With the popularity of GPU which has the high perfor-
mance computing feature, more and more algorithms have been suc-
cessfully transplanted to the GPU platform and achieved high efficiency.
But existing videos or images processing methods, such as demosaicing
algorithm, have not fully exploited the parallel computing capacity of
heterogeneous processing platform and the video frame rates can’t meet
real-time requirements. In order to take full advantage of the computing
power of GPU under the heterogeneous processing platform, an optimiza-
tion scheme is proposed in this paper. We use the demosiacing algorithm
as a case and modify the algorithm. By exploiting the GPU’s memory
hierarchy, the optimization scheme improves the parallelism of the algo-
rithm while reducing the memory access latency, and greatly reduces
the execution time. Then we achieve the zero-copy at the same time.
The experimental results show that optimization version has a signifi-
cant performance improvement, the optimized OpenCL version is up to
6x comparing with the basic OpenCL version about kernel execution.
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1 Introduction

Digital cameras are increasingly widespread, and camera modules are now
embedded in a variety of handheld devices including mobile phones and tablet
PCs. Due to the cost of imaging, most digital camera imaging chips only have
one CMOS or CCD sensor chip, each sensor surface is covered with a color filter
array [1,2] (Color Filter Array, CFA), such as Fig. 1. The conventional color filter
array limits the arrival of only one base light per pixel location, capture only
one color component at each spatial location. The remaining components must
be reconstructed by interpolation from the captured samples. So that the other
two colors of the color image will be interpolated with the sampling result of the
adjacent pixels of the sampling matrix in the case of single block inductive chip
samples [3]. This color plane interpolation algorithm is called image to mosaic.
In the early stage of the computer technology, graphics processing and comput-
ing are relatively simple, we can use the CPU to achieve graphics processing.
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Fig. 1. Bayer CFA

But with the development of computer technology, especially the requirements
on the quality of graphics processing and computing speed continue to improve,
this needs to find new ways to meet the increasing requirements.

Nowadays, parallel computers are not expensive and exquisite because almost
all PCs have multicore hardware. Basically, there are two main multi-core
approaches: integrating some of the core into a single microprocessor (multi-core
CPU), or integrating a large number of cores to the current graphics processing
unit (GPU) as an example [4]. The GPU was originally designed specifically for
graphics applications and image rendering required during the rasterization pro-
cess. Over time the computational resources of modern graphics processing units
became suitable for certain general parallel computations because of the inher-
ent parallel processing capabilities of the architecture [5]. By starting multiple
execution threads, we can take advantage of all of these multicore hardware.

So, heterogeneous computing of CPU and GPU become the mainstream plat-
form of high performance computing, which has great advantages in computing
energy efficiency compared with multi-core processors and has been well verified
by the parallelization of multiple algorithms.

In this paper, we propose an optimization scheme for demosaicing algorithm.
The objective of this implementation is to demosaic image as fast as possible,
so that the video editing workflow will be accelerated. To achieve this, we first
introduce the parallel processing of the algorithm as the base method. Then we
propose two implementation methods, one is reducing input and output trans-
fer between global and shared memory when data transmission between GPU
and CPU, another is reducing the number of work items and queuing time by
changing the distribution of working groups. Finally, we come to the conclusion.

2 Related Work

[6] proposed an improved linear interpolation for demosaicking of Bayer-
patterned color filter array (CFA) images. An efficient edge-based technique for
color filter array demosaicking is presented in [2]. The authors in [1] introduce an
efficient demosaicking method based on an advanced nonlocal mean filter using
adaptive weight with consideration of both neighborhood similarity and patch
distance.

Meanwhile, several works have been dedicated to implement demosaicing
using GPU. An efficient implementation of Bayer demosaic filtering on GPUs was
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published in [7]. McGuire accelerated MalvarHe-Cutlere [8] image demosaicing
algorithm using OpenGL in real-time speed.

OpenCL is the first open, free standard for parallel programming for general
purpose heterogeneous systems and a unified programming environment, which
is used to program multiple devices, including GPU and CPU, as well as other
computing devices as part of a single computing platform. OpenCL uses parallel
execution SIMD (single instruction, multiple data) engines found in General Pur-
pose Graphics Processing Units (GPGPU) and Compute Cores(CC) to enhance
data computational density by performing massively parallel data processing on
multiple data items, across multiple compute engines. Each compute unit has
its own ALUs, including pipelined floating-point (FP) units, integer (INT) units
that can perform computations as well as transcendental operations.

Due to the good cross platform and parallelism of OpenCL, in recent years,
OpenCL has also been widely used in image processing and algorithm accel-
eration. For example, [5] proposes a parallel implementation and optimization
method for the real-time dehazing of the high definition videos based on a single
image haze removal algorithm.

In this paper, we further modified and optimized the demosaicing algorithm.
The presented OpenCL implementation in paper is 6 times faster than the GPU
implementation in [7] using the same filter. And we use the 4th Generation
Intel R© CoreTM Processor family which includes complex SoCs integrating mul-
tiple CPU Cores, Intel R© Processor Graphics, and potentially other fixed func-
tions all on a single shared silicon die. And the GPU and CPU share the Last
Level Cache (LLC).

3 Parallel Implementation and Optimization of
Demosiacing Algorithm Based on OpenCL

In an OpenCL execution model, the host program is responsible for manag-
ing and scheduling OpenCL-supported computing devices. When the host side
submits the kernel to computing devices, serial code defines the organization
structure of the work item through the global index space (NDRange) and the
operation mode of the kernel on the computing device through the mapping
method on the computing device, as shown in Fig. 2.

Figure 3 shows that the OpenCL memory architecture is divided into four
parts: global memory, constant memory, local memory, and private memory, as
shown in the figure. The sizes and corresponding access speeds of these memory
types are different. Data can flow along the channel of host memory, global
memory, local memory, private memory. When optimizing the OpenCL kernel
program, it‘s an important part to fully tap the potential of the GPU’s storage
hierarchy based on the characteristics of the algorithm.

3.1 Algorithm Modification

The Intel Graphics device is equipped with several Execution Units (EUs).
EUs are Simultaneous Multi-Threading (SMT) compute processors that drive
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Fig. 2. OpenCL platform model

multiple issuing of the Single Instruction Multiple Data Arithmetic Logic Units
(SIMD). Compiler generates SIMD code to map several work-items to be exe-
cuted simultaneously within a given hardware thread. The SIMD-width for ker-
nel is a heuristic driven compiler choice. Therefore, the basic algorithm version
suffers a significant performance improvement.

[6] presented an OpenGL implementation of the Malvar-HeCutler filter. [7]
also provide a GPU Filters which includes the filter coefficients. And the GPU
Filters can achieve SIMD such as MADD and ADD on 4-vectors at the same
speed as on scalars. For example, when calculating the float4 value PATTERN,
we use the following formula:

PATTERN+ =(kA.xyz ∗ (float3)(value.x, value.x, value.x)).xyzx+
(kE.xyw ∗ (float3)(value.z, value.z, value.z)).xyxz

(1)

There are many similar formulas in the kernel to adapt to the characteristics
of SIMD. This will make the most advantage of SIMD and reduce the amount
of calculation steps and running time.

For a given SIMD-width, if all kernel instances within a thread are execut-
ing the same instruction [12], then the SIMD lanes can be maximally utilized.
Moreover, the GPU instruction execution is SIMD, the GPU Vector ALU hard-
ware is more flexible and can efficiently use the floating-point hardware [13].
In this paper, we modified the algorithm code, a lot of uchar8 and float8 data
types are used to further speed up the program running time, including addition,
multiplication, dot times and other operations. So we can make full use of the
SIMD-width. For example:

uchar8 lineA = (uchar8)(vload8(0, psrc + mad24(j − 2, 1920, i ∗ 4 − 2))) (2)
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Fig. 3. OpenCL memory architecture

out =(uchar16)(lineC.s2, convertuchar2(PATTERN One.xy), 255,
PATTERN Two.z, lineC.s3, PATTERNTwo.w, 255,
lineC.s4, convertuchar2(PATTERN Three.xy), 255,
PATTERN Four.z, lineC.s5, PATTERN Four.w, 255);

(3)

Due to the SIMD-width is fully occupied when operations execute, an obvious
performance improvement when executed on GPU environment [12]. In addition,
by doing so, we can handle four pixels at a time. Algorithm 1 shows the steps of
the modified version.

3.2 Data Transmission Optimization

When mapping OpenCL on CPUs, the host and device share the same memory
space [4]. Since OpenCL requires explicit data transfers but does not impose
restrictions on memory access patterns, it is up to the compiler and to the device
driver to select whether or not to actually replicate the data or just read it from
already allocated space, and Fig. 4 is the traditional mode of data transmission.
To overcome this irregularity, we applied the so called zero copy technique.

To achieve zero copy, the Intel Processor Graphics has a congenital advan-
tage. Intel� Processor Graphics architecture shares DRAM physical memory
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Algorithm 1. Optimization demosiacing algorithm
Input: input A 8-bit gray 1920 × 1080 image
Output: output A 32-bit color 1920 × 1080 image

1: Using vload8 instruction to obtain the pixels and assigned to lineA˜ lineE
2: Calculate the filter coefficients
3: Calculate the pattern 4-vector of filter terms
4: Using the pattern to restore the four color pixels A,B,C,D
5: return out = (uchar16)(A,B,C,D)

GPU
(Device)

Last Level CacheCPU
(Host)

R/W R/WL3

Fig. 4. The original data transfer method

with the CPU like Fig. 5. Thus, the advantage is that shared physical memory
enables zero-copy buffer transfers between CPUs and Gen7.5 compute archi-
tecture. Moreover, the architecture further augments the performance of this
sharing with shared caches. This reduces the overhead of the data transfer.

All data into and out of the samplers and data ports flows through the L3
data cache in units of 64-byte wide cachelines. This includes read and write
actions on general purpose buffers. L3 cache bandwidth efficiency is highest for
read/write accesses that are cacheline aligned and adjacent within cacheline.
Compute kernel instructions that miss the subslice instruction caches also flow
through the L3 cache. A kernel should access at least 32-bits of data at a time,
from addresses that are aligned to 32-bit boundaries.

In order to improve performance, we use the vload8 and vstore8 to read data
from shared memory. On one hand, this will reduce the data transfer time. On
the other hand, this also allows four pixels are restored at one time in kernel like
Fig. 6.
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Fig. 6. Vload data to cache at once

3.3 Memory Management and Indexes Memory

There are global memory and local memory in INTEL R© PROCESSOR GRAPH-
ICS. How to manage the memory will influence the data progress. In this paper,
we use a 1920 × 1080 image as an example.

In general, we will allot the size of the image as global memory. Because
our kernel will use vload8 to read data, this will waste the memory. So we can
shrank a quarter in size and shorten the time about a half. Further, we can set
the local memory a multiple of 32, which is the SIMD-width. This is because the
work-item will share the local memory, and a SIMD-width size can be suitable
the data width.

To optimize performance when accessing global memory, a kernel must
minimize the number of cache lines that are accessed [11]. If a kernel indexes
memory, where index is a function of a work-item global id(s), the following
factors have big impact on performance:

i The work-group dimensions
ii The function of the work-item global id(s)

The work-group dimensions can affect memory bandwidth. We call a “row” work-
group: <16, 1, 1>. With the “row” work-group, get global id(1) is constant for
all work-items in the work-group, myIndex increases monotonically across the
entire work-group, which means that the read from, and myArray comes from a
single L3 cache line (16 x sizeof(int) = 64 bytes) like Fig. 7. This will make full
use of the bandwidth to read data from cache line.

Also, the function of the work-item global ids can affect memory bandwidth
[11]. In our kernel, we use the following way to get work-item ids.

int i = get global id(0);
int j = get global id(1);
int src idx = mad24(j, 1920, i ∗ 4);
int x = psrc[src idx];

(4)
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Fig. 7. The read is cache-aligned, and the entire read comes from one cache line. This
case should achieve full memory bandwidth

The read is cache-aligned, and the entire read comes from one cache line.
This case should achieve full memory bandwidth. This will get full the memory
performance. The read from psrc comes from same L3 cache line for 16 work-
items. This means a single L3 cache line (16 x sizeof(int) = 64 bytes) will full
used.

4 Experimental Results and Performance

We implement the demosiacing algorithm by three ways. First, we use a straight-
forward CPU implementation with the filter in [8] using C++ programming.
Second, we first implement the basic OpenCL version using the GPU filter in
[7]. And the final implementation is the optimized OpenCL version. And the
time are divided into three parts: write data to device, read Data from device
and kernel execution.

The tests reported in this study were performed on a multiprocessor PC with
an Intel(R) HD Graphics 4600 and an Intel core i7-4590 3.30 GHz CPU. Each
CPU of the pc has 4 physical cores. As each physical core hosts two virtual
cores. The C++ development environment is Microsoft Visual Studio 2017. The
OpenCL development environment is an intel sdk with OpenCL version 1.2.

In our paper, we use the 8-bit gray images of three size including 640 × 480,
1024 × 768 and 1920 × 1080. To evaluate the performance on GPU, all versions
were run 50 times. Table 1 shows the execution times.

Table 1. Execution times for three image sizes

Image size Version Write data (ms) Read data (ms) Kernel execution (ms)

640 × 480 CPU version NULL NULL 52.8441

1024 × 768 NULL NULL 81.4833

1920 × 1080 NULL NULL 131.3766

640 × 480 Basic OpenCL 0.6958 0.8429 0.7288

1024 × 768 0.8958 1.3232 1.0784

1920 × 1080 1.2533 2.0968 1.9415

640 × 480 Optimized OpenCL 0.0154 0.0123 0.2876

1024 × 768 0.0165 0.0133 0.4249

1920 × 1080 0.0167 0.0143 0.7473
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Table 2. Execution times for three platforms

GPU type Version Write data (ms) Read data (ms) Kernel execution (ms)

HD4600 CPU version NULL NULL 131.3766

HD530 NULL NULL 108.4523

HD630 NULL NULL 90.5148

HD4600 Basic OpenCL 1.2533 2.0968 1.9415

HD530 1.0542 1.3376 1.1365

HD630 0.9856 1.1232 0.9147

HD4600 Optimized OpenCL 0.0167 0.0143 0.7473

HD530 0.0163 0.0145 0.5173

HD630 0.0158 0.0139 0.3473

From Table 1, we can see that the Optimized version has a very significant
speedup relatively to the basic OpenCL version, including data transfer and
kernel execution no matter which size. The speed of the optimized OpenCL
version is improved approximately 200% compared with the CPU version.

In the optimized OpenCL version, the data copy spend little time in memory
access and time can be ignored. This result highlight the importance of that
GPU and CPU share Last Level Cache (LLC). Due to this reason, data transfer
between devices can easily achieve the really zero-copy.

Moreover, the data-width has the fastest kernel execution time. It has
improved roughly 60% faster than the basic OpenCL version. This is reason
that we make full use of the SIMD optimization. The entire SIMD-width size
is fully filled with the data at once, and this reduces the problem of repeated
reading of data and cache miss. No matter basic OpenCL version or optimization
version, we already use the SIMD instructions, but we can see that the speedup
can be greatly improved by make full use of the SIMD-width size.

To further verify the generality of the optimization scheme, we continue to
test two multiprocessor PCs. One has an Intel(R) HD Graphics 530 and an Intel
core i7-6700 3.40 GHz CPU and another has an Intel(R) HD Graphics 630 and
an Intel core i7-7700 3.6 GHz CPU. Other environments are consistent with
previous tests. To evaluate the performance on GPUs, we use the 8-bit gray
image of 1920 × 1080, and all versions were run 50 times. Table 2 shows the
execution times.

As can be seen from the table, the optimization scheme greatly improves the
execution speed of the algorithm comparing with the CPU version and basic
OpenCL version. Because of zero-copy, the read and write actions take almost
no time in the optimized OpenCL version no matter which platform. Due to the
improvement in GPU performance, the PC with an Intel(R) HD Graphics 530
is about 40% faster in the basic OpenCL version and about 40% faster in the
optimized OpenCL than the PC with HD4600 about kernel execution. The PC
with an Intel(R) HD Graphics 630 has the less execution time in all OpenCL
versions. In the optimized version, the kernel execution speed is improved by
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53% than the PC with HD4600 and 32% than the PC with HD530. This also
shows that our scheme is possessed of stronger applicability and generality.

5 Conclusion

The paper presents an optimized scheme about a parallel implementation of
demosaicing algorithm using OpenCL. We detailed describe each step about how
the original algorithm is implemented, parallelized and optimized. In addition,
we introduce how the algorithm executes on the GPU. Specifically, our opti-
mized scheme makes full advantage the modern parallel computing architecture,
which increases the parallelism of the process and reduces the computational
complexity and the execution time. We implement a basic OpenCL version and
further optimized this version. The results show that optimization version has
a significant performance improvement about kernel execution, the optimized
OpenCL version is up to 6x and the data transmission time is almost zero. And
experimental results shows the good applicability of the optimized scheme.

It confirms that the algorithm should be adapted to OpenCL codes accord-
ingly to the hardware execution environments. Indeed, by optimizing the
OpenCL code, a 6 speedup yielded by the Optimized OpenCL version comparing
with the basic OpenCL version. For some algorithms, it can be well optimized.
OpenCL can play a greater role in heterogeneous computing.
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