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Abstract. Security strings are often needed in identity authentication mecha-
nism. Security strings recovery is a reverse process, which does much calcu-
lations on a large amount of possible strings to find the right one, so that we can
recover lost or forgotten strings and regain access to valuable information. In
this reverse process, we need first process basic strings based on transformation
rules, so as to generate new ones quickly. Rule processing is complex, which
has high requirements for computing power, processing time, especially system
power consumption. In response to the above requirements, this work puts
forward the idea of accelerating the processing of rules using hardware for the
first time, and a domain specific rule engine is designed and implemented on the
existing FPGA platform. The experimental results show that the performance of
the rule engine on a single Xilinx Zynq 7z030 FPGA is better than that of CPU,
its performance power ratio is 3 times higher than that of GPU, and 50 times
higher than that of CPU. The speed and energy efficiency of the rule processing
is improved effectively.
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1 Introduction

With the development of computer technology and the expansion of Internet scale,
identity authentication mechanism has gradually become an important way for people
to protect their information [1]. The authentication process requires an identity infor-
mation consists of a username and a security string. The HASH algorithm is usually
used to calculate the digests of secure strings and the digests are stored together with
user credentials. When the user authenticates his identity, the authentication system
receives the security string inputed by the user and uses the HASH algorithm to convert
the string into a digest and compares it with the digest value stored in the system to
complete the authentication process. The forgetting of security strings can cause
inconvenience and loss [2]. The analysis technology of authentication protocol is just to
solve this problem.

In the analysis of authentication protocol, a large number of to-be-tested strings
need to be quickly generated in a short period of time for the subsequent HASH
algorithm to calculate the digest value. And the digest value is then compared with the
stored digest, so that the correct string can be found. In the process of generating of
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possible strings, using dictionary and transformation rules is a very accurate and
effective way [3–5]. Based on transformation rules and existing dictionaries consisted
of basic strings, it is possible to generate a large number of strings with a higher
probability, which in turn can increase the speed of analysis and improve accuracy.

As there are many kinds of transformation rules, and the calculation is complex,
rule processing is a task with great demand for computation power and processing time.
To the best of our knowledge, the public implementation methods are all based on CPU
and GPU now [6, 7], which have many shortcomings in processing speed and system
power consumption. Aiming at the rule processing in analysis of authentication pro-
tocol, this article presents a hardware-implemented, energy-efficient, reconfigurable
rule processing architecture, and implements a domain specific rule processing engine.
The research in this article is based on Xilinx Zynq FPGA. The experimental results
show that the engine performs well in terms of processing performance and system
power consumption.

2 Rule and Its Implementation Platform

2.1 Rules in the Analysis of Identity Authentication Protocal

When setting a secure string, people often set up a new string based on a simple
transformation, such as adding a prefix, adding a suffix, etc., this transformation is
called a transformation rule [6, 7]. This rule-based approach provides an idea for the
analysis of identity authentication protocols. By collecting known security strings, a
dictionary can be formed. The analysis can be attempted in the dictionary. Compared to
the full-character search space, the amount of calculation here can be significantly
reduced and a higher probability of hits can be ensured. At the same time, by applying
rules to the dictionary, new strings can be generated, which expands the coverage of the
dictionary, and improves the hit rate. The exquisitely set dictionaries and rules can
significantly increase the hit rate of the analysis when satisfying the limitations of
search scale, time limit, and the like.

In the analysis of authentication protocol, there are many string transformation rules
accumulated. Multiple tools have their own supported rules and provide a dictionary
plus rule analysis mode.

John the Ripper [6] is an open source and free analysis software, its main purpose is
to analyze the weak Unix passwords. It now supports more than 100 kinds of algo-
rithms, and provides support for many different types of system architectures, including
Unix/Linux, Windows/DOS and OpenVMS. It supports dictionary analysis mode, and
supports more than 40 kinds of string transformation rules and their handling. The rules
are processed on CPU.

Hashcat [7] is a widely used multiplatform free analysis kit, which supports various
platforms with OpenCL runtime, including CPU, GPU (supporting NVIDIA GPU and
AMD GPU), DSP, FPGA, etc. It supports multiple operating systems, including Linux,
Windows, MacOS, etc. It supports distributed processing, nearly 200 algorithms, and
multiple analysis modes. It supports the processing of dictionaries and rules, and its
rules are processed mainly on CPU and GPU.
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Based on the rules used by Hashcat, this article studies 41 common basic trans-
formation rules and implements their acceleration engine. Table 1 lists several typical
transformation rules. Each rule takes a visible character as its mnemonic, some rules
need parameters, and the number of parameters varies from 0 to 3. Table 1 illustrates
the transformation results of the rule by taking the string p@ssW0rd as an example.

In actual use, several individual rules can be combined together to carry out one
transform, such as uD3ss$3, which is combined of 3 individual rules. A new string is
generated after all 3 rules are processed

2.2 Rule Processing Platform with High Efficiency

The analysis process of identity authentication protocol needs to search and calculate
the string space made up of visible characters to find the correct string. When the length
of the string increases, the space of search and the amount of computation all increase
exponentially [8, 9]. Moreover, the analysis and calculation include a large number of
computationally intensive modules. The computational power of a single computing
node cannot meet the requirements. Even in the dictionary and rules mode which is a
certain targeted analysis pattern, the number of rules and basic strings is also very large.
Take a dictionary file with 50 million entries and a rule file with 100 thousand entries as
an example, only the processing of rules will need to generate 5 � 1013 to-be-tested
new strings, which contains huge amount of computation. Even we use MD5, the
simplest HASH algorithm an example, it still takes more than ten days to finish the
analysis process on a single common CPU. It can be seen that the computing power of
a single computing node is still far from the analysis task of identity authentication
protocol. The usual practice is to build large-scale computing clusters, divide the search
space into different computing tasks, and each node conducts search and calculation in
its own task space to speed up the entire analysis process [10].

Table 1. Rules and their meanings

Mnemonic Description Example Transform result

u Uppercase all letters u P@SSW0RD
r Reverse the entire word r dr0Wss@p
pN Append duplicated word N times p2 p@ssW0rdp@ssW0rdp@ssW0rd
{ Rotates the word left { @ssW0rdp
DN Deletes character at position N D3 p@sW0rd
iNX Inserts character X at position N i4! p@ss!W0rd
sXY Replace all instances of X with Y ss$ p@$$W0rd
*XY Swaps character at position X with

character at position Y
*34 p@sWs0rd

+N Increment character @ N by 1 ascii
value

+2 p@tsW0rd
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When constructing large-scale analysis clusters, performance and power con-
sumption are two main concerns. Rule processing and authentication protocol analysis
are both computationally complex tasks. Common CPUs have encountered bottlenecks
in performance improvement, and their computational capabilities have fallen far short
of the requirements. The advent of GPU acceleration units has made them clearly
superior in performance. And the theoretical computational performance in dealing
with high integration, computationally intensive issues, etc. has substantially exceeded
that of general-purpose processors [11, 12]. However, the GPU also has problems as an
acceleration device. Especially when building a large-scale computing system, its
construction cost, frequency wall, power-consumption wall, and storage wall have
made the GPU’s high cost and high power consumption intolerable [13].

The dedicated ASIC has a high degree of integration and high processing performance.
However, the development is complex and the cost is high. Once the function is imple-
mented, it cannot be changed, and it is not suitable for the acceleration of rule processing.

FPGA has the characteristics of low power consumption and high parallelism. It
can not only accelerate the computing speed, but also keep power consumption within
acceptable range [13–15]. Its wide application and reconfigurable characteristics pro-
vide a basis for its application in accelerating rule processing. Its low power con-
sumption, high parallelism and strong expansibility make it suitable for accelerating the
processing of rules and the analyzing of identity authentication protocol. Focusing on
processing performance and energy efficiency. This article studies the rule processing
techniques, designs and implements a rule engine with FPGA.

3 Design of the Rule Engine

The rule engine accelerates the parsing of the rules in a fully hardware-implemented
manner. When processing, the software only needs to configure the size and location of
the rule and dictionary files. The rule engine can automatically obtain rules and dic-
tionaries from the off-chip, parse them, and generate new strings. The newly generated
strings can be written back to the off-chip memory space through a high-speed bus for
use by other applications. It can also integrate HASH authentication algorithms on-chip
to directly verify the correctness of the string and complete the analysis of the entire
identity authentication protocol.

3.1 Structure of the Hardware Platform

The rule engine of this article is based on an identity authentication protocol analysis
system. This analysis system is a large-scale reconfigurable computing cluster. Its
computing power comes from a large number of low-power reconfigurable Xilinx Zynq
XC7Z030 chips. The chip is a hybrid core processor that includes a general-purpose
embedded computing core (a dual-core ARM CortexTM-A9 processor running at
1 GHz) and an FPGA-based reconfigurable compute core [16]. The two heterogeneous
computing resources are tightly coupled through a high-speed interconnection bus,
which can support the parallel collaborative execution of general-purpose computing
tasks and accelerated computing tasks. The hybrid processing platform integrates 1 GB
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of low-power DDR memory, 32 GB of flash memory, Gigabit Ethernet interfaces, and
high-speed ring network interfaces and so on. The structure diagram of the computing
platform based on Zynq XC7Z030 is shown in Fig. 1. The platform is visible in Fig. 2.

The rule engine is implemented on the reconfigurable FPGA of a single Zynq
XC7Z030, and the engine can be integrated in each FPGA in the large-scale system.
Rule files and dictionary files are divided into smaller parts according to computing
tasks, and stored in off-chip low-power DDR memories.
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Fig. 1. Structure of the hardware platform

Fig. 2. Physical picture of the hardware platform
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3.2 Design of the Data Format

Rule-based identity authentication protocol analysis requires that a large number of
transformation rules be organized into rule files and common strings be organized into
dictionary files for storage and usage. In the hardware implementation of the rule
engine, expansion requirements, storage space limitations, and the readability of the
rules should be considered. Each rule is coded with a specific length of 8 bits. We
directly encode the rules with ASCII code of their mnemonic. The 8-bit code can
theoretically support up to 256 rules, leaving room for new extensions for future rules.
The rules are coded and stored by ASCII code, which ensures the readability of rule
files and reduces the workload of translation and conversion between hardware and
software.

When performing string transformation in reality, several individual rules are often
combinated together to perform one transform. In designing the hardware storage
space, considering the rule combination and its parameters, 40 bytes of storage space is
allocated for each transformation. Generally, the length of the string in each dictionary
file is the same. In the hardware logic, 32 bytes of storage space is allocated for each
dictionary entry, that is, the length of the string is a maximum of 32. The rule file and
dictionary file format, as well as its storage form in hardware, are shown in Fig. 3.

3.3 Design of the Engine Core

Rule processing is the process of decoding the rules, and then transforming the strings to
get new ones. Because different transformation rules will change the length of the string,
even if the input string has the same length, the output string will still be of different
lengths, which will cause difficulties for subsequent usage. The solution is to categorize
the dictionary files, and each time the processed dictionary file has the same string
length. When processing, all the dictionary entries in the dictionary file are first looped
for one rule, and thus, these new generated strings are of a same length, which facilitates

Fig. 3. The storage format of rule file and dictionary file
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the use for subsequent HASH pipelines. Then we use another rule, reacquire dictionary
file and loop through it. This process continues, change another rule, reacquire dic-
tionary and loop through the dictionary until all rules in the rule file are processed.

For the case where rules are combined together to apply a transformation to a
string, the processing of the latter rules depends on the processing result of the pre-
ceding ones, the rules can only be executed in order. During the design process, this
article optimized the execution time of each rule, and processed each rule within one
clock cycle, including the analysis of the rule and the transformation of string. In this
way, one rule is processed every clock cycle. Figure 4 depicts the detailed processing
of 3 transformations, each time the transformation is a combination of 3 rules and the
number of dictionary entries is k. Because each transformation is made up of 3 basic
rules, 1 new string can be generated in every 3 clock cycles.

The brief structure of the engine core is demonstrated in Fig. 5. Each of the 41
basic rules is designed as a single rule processing element (RPE). The periphery is a
preprocessing circuit, a rule decoding circuit, and a memory management circuit. The
preprocessing circuit is responsible for dividing the continuously stored rule and dic-
tionary files into entries. The rule decoding circuit decodes the basic rules of each
transformation one by one, and then selects the corresponding rule acceleration unit to
perform operations. Each RPE completes the transformation according to the input
string and the string length, and calculates the length of the newly generated string. The
storage management circuit is responsible for using the high-speed bus to obtain rule
and dictionary files from off-chip, form on-chip caches at various levels, and output the
generated new strings off-chip as needed. All of this work is done automatically by
hardware.

Fig. 4. The procedure of rule processing. The horizontal axis is the time axis and represents the
clock period. string1, string2, string3, …… stringk are k entries of 1 dictionary. rule1_1,
rule1_2, rule1_3 are 3 basic rules, which together constitute 1 transformation. rule2_1, rule2_2,
rule2_3, rule3_1, rule3_2, rule3_3 are similar to this. string1_o, string2_o,……, stringk_o are k
outputs of the transformations. The clock cycles 1 to n complete the first transformation of the k
dictionary entries, and n + 1 to m, m + 1 to l complete the second and third transformations,
respectively.
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The processing logic of 41 basic rules constitutes a processing core. According to
the limitation of hardware resources, one or more processing cores can be placed at the
same time within the rule engine, and each core takes its own rule and dictionary to
transform.

3.4 The Storage Architecture

The rules engine automatically accesses rules and dictionaries. To meet the speed
requirements of the high-speed engine for rules and dictionaries, a total of three levels
of storage structures are set.

The first level of storage: off-chip DDR. The rule and dictionary files are stored in
DDR. The CPU in Zynq configures the start address and size information of the rule
and dictionary files in DDR to the FPGA logic, and the hardware automatically obtains
the rules and dictionary. At the same time, if the new strings generated by the rule
engine need to be passed off-chip for use by other applications, they are also auto-
matically transferred to the DDR memory by the rule engine.

Second level storage: On-chip RAM. The rule engine in FPGA pre-fetches the rules
and dictionary into the FPGA through the AXI (Advanced eXtensible Interface) bus
and caches them in the on-chip RAM. The four high-performance AXI_HP interfaces
of the AXI bus can achieve a total bandwidth of 4.8 GB/s when operating at 150 MHz,
which can guarantee the speed demand of the rule engine. As processing logic con-
tinues to consume data in RAM, the rule engine continuously acquires data from off-
chip and guarantees the demand.
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Fig. 5. Brief structure of the engine core
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Third-level storage: On-chip FIFO. The processing logic acquires dictionary data
from the on-chip RAM and performs preprocessing, and then stores the dictionary in
the on-chip FIFO buffer for high-speed processing by the core processing logic.

4 Experiments and Results

In order to verify the correctness and performance of the designed rule engine, this
article develops and implements it on the hardware platform based on Zynq 7z030 chip,
through the Vivado (v2015.2) tool suite. The number of different processing cores,
different string lengths, and different combinations of rules were tested, and their
performance and power consumption were analyzed. The results were compared and
analyzed with those of other platforms.

4.1 Results of the Implementation

The design is synthesized and implemented through the Vivado tool. Based on the
constraints of hardware resources, the number of processing cores that can be placed
and the overall performance are analyzed. Performance is calculated as the number of
new strings that can be generated per second when the transformation is combined of
1 rule.

The results show that the maximum implementation frequency is 150 MHz and the
maximum number of cores that can be put on chip is 2, so the maximum processing
performance is to process 300M basic rules and generate 300M new strings per second.
In the case of placing a single processing core on chip, the resource occupancy is 42%,
and there are still enough resources to place the HASH algorithm pipeline, which can
be used for on-chip verification. If two engine cores are placed on the chip, the resource
consumption is about 80%, at this time, the HASH algorithm pipeline cannot be placed
on the chip, and the rule engine can be used to transfer the generated new strings to the
off-chip for other applications.

4.2 Comparison with Other Platforms

As far as we know, this is the first work that realizes the work of rule processing using
hardware.

The comparisons of performance and power consumption are mainly performed
with the software implementations on the CPUs and GPUs. The same rule and dic-
tionary files are run on CPU and GPU, respectively. And the results are compared with
this work. The two aspects of comparison are performance and power consumption.

Software implementation uses the latest hashcat 4.1.0, which is the industry’s
fastest analysis tool and supports both CPU and GPU platforms [5]. The result of
software has a great relationship with its running platform, for example, in NVIDA
GPUs, its desktop products and products specifically designed for high-performance
computing have a huge gap in computing power. This work selects two mainstream
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product platforms for experimentation. The adopted CPU is: Intel(R) Core(TM)
i7-6700 CPU @ 3.40 GHz with 32G memory. The adopted GPU is: NVIDIA GeForce
GTX 970, with 1664 processing cores, running at 1.18 GHz. The performance com-
parison results are shown in Fig. 6.

Through analysis, it can be found that for different string lengths, the processing
performance of the three platforms is not affected. The processing performance is
greatly affected by the combination of rules. The more rules are combined, the more
complex the processing is. Our rule engine can achieve the performance of 300M per
second when the transformation is combined of 1 rule. The performance of this work is
better than that of the CPU implementation, and is worse than that of the GPU
implementation. However, when using the rule engine of this article to build a large-
scale, low-power computing cluster, its computing power will increase significantly.
But this is not the work of this article.

In actual operation, the running power consumption of the rule engine and the GPU
platform is observed in real time. The power consumption of the CPU is calculated as
65 W and the performance power ratio is calculated (the number of rules that can be
processed per second per watt). The results are shown in Fig. 7. The operating power
of the rule engine is only 2 W, and its performance power ratio is 3 times higher than

Fig. 6. The comparison of performance between different platforms. For the rule combination,
we tested the combination of 1 rule, 3 rules and 9 rules on each platform. For the length of the
strings in the dictionary, we tested the situation of 8 bytes and 12 bytes on each platform.
Performance is calculated as the number of new strings generated per second.
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that of the GPU, and it is 50 times higher than that of CPU. We can see that the
processing speed of the rule engine is fast enough, and its power consumption is not
large, which is very suitable for building large-scale processing systems.

5 Conclusion

The processing of rules is an important part of identity authentication protocol analysis.
Its process is complex, and it has high requirements for processing performance and
system power consumption. This work proposes the acceleration of the rule processing
with all hardware approach for the first time. We build a domain-specific rule engine
using FPGA’s high parallelism and low power consumption, and implement it on Zynq
7z030 FPGA. The experimental results show that the running performance of the rule
engine is better than that of Intel i7-6700 CPU. The performance power ratio is 3 times
higher than that of NVIDIA GeForce GTX 970 GPU, and about 50 times higher than
that of CPU platform.

It effectively improves the speed and energy efficiency of rule processing. The rule
engine designed in this paper has high processing performance, low system cost and
low operating power consumption. It is particularly suitable for constructing large-
scale, distributed, and reconfigurable rule processing systems, thereby providing a basis
for the design and implementation of the entire identity authentication protocol analysis
system.
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