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Abstract. Web systems verification is a crucial activity throughout the systems
development life cycle, especially in the phase of service-component architectural
design. Indeed, this activity allows the detection and consequently the correction of
errors early in Web systems development life cycle. In this paper, we discuss the
behavioral verification problem on the SCDL/WS-BPEL service-component
architectures. To do so, the Wright formal ADL and the Ada concurrent language
were used as a target models. To achieve this, a set of systematic translation rules
are proposed. This allows the verification of the standard behavioral properties
using the Wr2fdr tool. In addition, using an Ada dynamic analysis tool, we could
detect the potential behavioral properties such as the deadlock of an Ada concur-
rent program.
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1 Introduction

Today, we witness a growing interest in the domain of service-component architecture
technologies. This interest is mainly motivated by the reduction of cost and develop-
ment time of complex Web systems. In the context, the Service Component Definition
Language (SCDL) and the Web Service Business Process Execution Language (WS-
BPEL) are the standards de-facto used in the modeling and implementing of Service-
Component Architecture (SCA). This SCDL language [14] is an XML based formatted
language which allows expressing all the relations in an SCA architectural element.
The WS-BPEL language (abbr. BPEL) [6] offers a standard based approach to build
flexible business processes by the orchestrating and choreographing of multiple Web
services. In addition, it aims to model the behavior of component processes by spec-
ifying both abstract and executable business processes. It also defines an interoperable
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integration model that should facilitate the expansion of automated process integration
both within and between businesses.

For several years now, these SCDL and WS-BPEL technologies appear as the
powerful complementary models for the development of service-component architec-
tures. However, they lack a formal foundation for the specification and verification of
their structural, behavioral and non-functional properties. As solutions for this problem,
several works have been proposed to translate these source models into another which
supports specific analyzers. For example, in our previous work [7] we proposed to map
SCA to Acme/Armani for the verification of the structural and non-functional prop-
erties of SCA software architecture. For the verification of the WS-BPEL behavioral
specifications, numerous works proposed to translate the WS-BPEL activities into a
formal technique. For example, the works presented in [3], [16] and [12] propose,
respectively, to translate the WS-BPEL activities into D-LOTOS, BPMN and PetriNet.

In this work, we target a formal verification of the behavioral properties of
SCDL/WS-BPEL service-component architectures. To achieve this, the model trans-
formation approach is used to translate the source architecture to an Ada concurrent
program. In this study, the Wright formal ADL is used as an intermediate modeling
language. The choice of these two languages in our verification approach is justified
mainly by the following three factors:

• The Wright ADL defines eleven standard properties related to the consistency of
software architecture among which four -assimilated to behavioral contracts- are
automated by the Wr2fdr tool [15]. The latter contracts can be checked with the
FDR2 model-checker.

• The semantics similarity of the Wright process and the Ada task favors the for-
malization of the Wright configuration by an Ada concurrent program.

• The presence of different analysis tools related to the detection of the dynamic and
specific behavioral problems of an Ada concurrent program. For example, using
FLAVERS, INCA or SPARK [11], we can detect the potential behavioural prop-
erties such as the deadlock of an Ada concurrent program. In addition, using an Ada
dynamic analysis tool such as GNAT Programming Studio (GPS) or its extension
GNATprove [10].

The remainder of this paper is structured as follows: Sect. 2 proposes an overview
of the main related works. Section 3 deals with our systematic rules allowing the
translation of SCDL/WS-BPEL source software architecture to the Wright target
software architecture; Sect. 4 exhibits the translation rules of the Wright software
architecture into an Ada concurrent program. An overview of the main results is
discussed in Sect. 5. Finally, Sect. 6 provides a conclusion and possible future work.

2 Related Work

The approach shared by most of the existing works in the field of Web services archi-
tectures consistency verification is the use of techniques and general tools such as B, LTS,
CSP and FSP. To do so, numerous works offer more or less systematic translations of
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source architecture to the target model. In this section, only the works related to the
behavioral verification of the SCDL/WS-BPEL architectures are mentioned.

Yeung proposes in [18] to translate the WS-BPEL web service to CSP to verify the
behavior properties of web services architecture. In this paper, formal verification can
be carried out based on the notion of CSP trace-refinement and can take advantage of
the FDR2 model checking. The authors of [4] propose to use the FSP formal language
to check if a web service composition implemented in WS-BPEL satisfies a web
service composition specification captured by Message Sequence Charts (MSCs). Both
the WS-BPEL process and the MSC are translated to FSPs. Each FSP represents a finite
labelled transition system. Using the LTSA model checking tool, this FSP target
specification can check the safety and progress properties as well as properties
expressed in the LTL logic. In [5], Foster et al. use this LTSA to check the compati-
bility of web service compositions in WS-BPEL. Since the semantics of Petri Nets is
formally defined by mapping each WS-BPEL process to a Petri net, a formal model of
WS-BPEL can be obtained. This approach has been followed in several works. For
example, in [12] Verbeek et al. formalize some WS-BPEL activities used for the
orchestration of Web services as a class of Petri Net called workflow nets. For this class
of Petri nets, a verification tool named Wolfan has been developed. This tool can verify
properties such as the termination of a workflow net and detection of nodes that can
never be activated. The authors of [17] propose to map most of the basic and structured
activities of WS-BPEL and the Web Service Choreography Interface (WSCI) to
Coloured Petri Nets (CPN). In [8] Hamel et al. propose to use the Event-B method to
check the structural and behavioural properties of an SCA component assembly. To
achieve this, the B-Invariant and B-Event are profitably used to formalize the patterns
proposed by Barros [1]. Using the ProB animator, Hamel et al. [8] validate their formal
approach on an event-B specification.

3 Translation of SCDL/WS-BPEL to Wright

In this section we propose a set of rules allowing the translation of SCA software
source architecture to a Wright target architecture. This allows the verification of
standard behavioral properties supported by the Wr2fdr tool accompanying the
Wright ADL.

Regarding the structural aspect, an SCA software architecture is generally descri-
bed in an XML SCDL file. The latter expresses all the relations in a composite. In this
context, a composite is an assembly of heterogeneous components. Each SCDL
component is based on a common set of abstractions such as services, references and
properties. In the context, services and references describe, respectively, what a
component provides and what a component requires from its external environment.
These services and references can be matched with bindings. Hence, each SCDL
markup can be specified in Wright as follows:

• An SCDL composite can be translated to a Wright configuration;
• An SCDL component can be translated to a Wright component;
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• An SCDL component’s reference can be translated to a Wright port with the same
name;

• An SCDL component’s service can be translated to a Wright port with the same
name;

• An SCDL wire connects two SCA components. Hence, we propose to translate an
SCDL wire to a Wright connector that proposes two roles.

Concerning the WS-BPEL behavioral descriptions, we propose to translate each
WS-BPEL process by a CSP process. In this translation, each primitive activity is
translated to a CSP event. Since WS-BPEL provides three kinds of activities, we
suggest translating each activity by a specific event as follows:

• An <invoke> activity is used to initialize an appeal of an operation Oper. This
activity can be modeled in CSP by an initialized event as follows: _invokeOper

• A <receive> activity is used to wait for a message from an external operation Oper.
This observed activity can be modeled in CSP by an observed event as follows:
receiveOper

• A <reply> activity is used to initialize a response to an external operation Oper.
This activity can be modeled in CSP by an initialized event as follows: _replyOper

In addition, WS-BPEL provides typical structured activities such as: <sequence>,
<flow>, <terminate>, <if>, <switch>, <while>, <repeatUntil>, etc. These control
structures can express a causal relationship between multiple invocations by means of
control and data flow links. For the WS-BPEL control structures, we propose the
following translation rules:

• The <sequence> construct is used in WS-BPEL wherever a series of activities needs
to occur sequentially, although they may be contained one or more times within
looping or concurrent construct activities. This <sequence> construct can be
modeled in CSP by a set of events separated by the prefixing operator (->).

• Concurrency in WS-BPEL permits us to model the concurrent transitions in the
message sequence charts. In WS-BPEL, this is specified using the <folw> construct.
However, the concurrency in CSP is modeled by the parallel composition operator (|
|). Hence, using the CSP parallel operator (| |), we can model the WS-BPEL flow
activities by a set of concurrent processes.

• In WS-BPEL, the conditional branching introduces decision points to control the
execution flow of a process. Each conditional structure such as <if> or <switch> can
be modeled in CSP by the adequate choice operator:
– ([ ]) deterministic choice operator: if the choice between these activities is an

external choice. In other words, if these activities are observed (receive activity).
– (|*|) nondeterministic choice operator: if the choice between these activities is

an internal choice. In other words, if these activities are initialized (invoke or
reply activity).

• In WS-BPEL, as in most programming languages, loops are used to repeat activ-
ities. Each looping structure such as <forEach>, <while> or <repeatUntil> can be
modeled in CSP by a recurrent process as follows: P = … ->P.
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4 Translation of Wright to Ada

The main structural concepts treated in this section are: configuration, component,
connector, port, role, computation, glue, attachments, process, initialized event,
observed event, successfully terminated event, prefixing operator, deterministic choice
operator and nondeterministic choice operator. To achieve this, we proposed an Ada
package called ArchWright allowing the representation in Ada of the main structural
concepts coming from the Wright ADL. Hence, a Wright configuration can be trans-
lated to an Ada concurrent program using the ArchWright package. For traceability
reasons, we keep the same identifiers used in the Wright specification.

The Wright ADL is one of the first approaches allowing the description of the
behavioral aspect of architectural elements. Indeed, the behavior of a Wright compo-
nent (respectively of a connector) is described locally through the ports (respectively
roles) and, generally, through a computation (glue respectively) using a CSP process
algebra. Hence, in this work, we propose to implement each:

• Wright configuration by an Ada concurrent program using the ArchWright package.
• Wright component by an Ada record compound with two fields: (1) Ports that

represents the component’s ports. It is modeled by an array of CSPTask, where the
CSPTask is the task type proposed to implement in Ada the CSP process;
(2) Computation that represents the component computation. This field can be
modeled by a single CSPTask.

• Wright connector by an Ada record compound with two fields: (1) Roles that
represents the connector roles. It is modeled by an array of CSPTask; (2) Glue that
represents the glue of this connector. This field can be modeled by a single
CSPTask.

Table 1 illustrates the principle of the translation of the main Wright architectural
elements into Ada. For traceability reasons, we keep the same identifiers used in the
Wright specification.

Regarding the CSP behavioral concepts, a simple CSP process can be compound
with a set of observed and initialized events separate with the specific CSP prefixing
operator. However the Ada concurrent language defines a powerful behavioral tasking
model. An Ada task represents the basic element of each Ada concurrent program. It
consists of two parts: task specification (declaration) and task body. This task speci-
fication can provide a set of services (called entries). These entries can have in, out
or in out formal parameters. Each entry exported by an Ada task indicates the possi-
bilities of an Ada rendezvous. Based on the similarity between the CSP process and the
Ada task, we offer an intuitive correspondence provided below for translating a CSP
process to an Ada task:

• A CSP process leads to an Ada task;
• A CSP event naturally corresponds to an Ada entry. In order to differentiate

between an observed and an initialized event, we propose to use the same prefixed
notation used in CSP: an observed event is denoted by (e) and an initialized event is
denoted by (_e)

• The recursion operator can be translated by an Ada loop;
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• The CSP prefixing operator (->) can be specified by the Ada sequential instruction;
• The CSP successfully terminated event (denoted by TICK or §) can be implemented

with the Ada “terminate” instruction.
• The CSP internal choice operator (denoted byP or |*|) allows the future evolution

of a process to be defined as a choice between two sub-processes, but does not
allow the environment any control over which one of the component processes will
be selected. This internal choice can be implemented in Ada with a simple con-
ditional structure (if). If we have multiple composite processes, the Ada conditional
structure (case) can be used.

• The CSP external choice operator ([ ]) allows the future evolution of a process to be
defined as a choice between two sub processes, and allows the environment to
resolve the choice by communicating an initial event for one of the processes. This
deterministic choice can be implemented with the Ada “select” instruction.

Table 2 illustrates these proposed rules allowing the translation of a CSP specifi-
cation to Ada.

Each attachment of a component’s port with a connector’s role can be implemented
in Ada by a sequence of entries call of the events specified in the interconnected
port/role. The general form of the entries call (event) is specified as follows:

• If the port entry corresponds to an initialized event: we call this entry, then we call
the similar entry of role (Component.port._event; Connector.role._event;).

• Else, if this entry corresponds to an observed event, we call this entry after the call
of the similar entry in the role (Connector.role.event; Component.port.event;).

Table 1. Ada formalization of the Wright concepts

Wright adA
Component type CompWright (portsNumber : natural)

is record
  Ports: array (portsNumber) of CSPTask;
  Computaion: CSPTask;

 end record;
Connector type ConnectorWright (rolesNumber : natural)

 is record
  Roles: array (rolesNumber) of CSPTask;
  Glue: CSPTask;

 end record;
Configuration with ArchWright;

use ArchWright;
procedure Configuration is

…
begin

…
end Configuration ;
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5 Discussions and Results Summary

The means to establish connections between software architecture and a concurrent
language like Ada are limited. For example, Naumovich et al. [13] offer a manual
translation of Wright into Ada without explanation rules. In our previous work [2] we
established a set of simple rules allowing translating Wright software architecture into
Ada. In this study, a significant improvement of our translation rules was proposed.

Our verification approach is validated on several uses cases available at our
SourceForge repository [9]. The main advantage of our verification approach can be
summary as follows:

• The first translation (SCDL/WS-BPEL to Wright): allows the verification of eleven
standard properties related to the consistency of software architecture, among which
four, assimilated to behavioral contracts, are automated by our Wr2fdr tool [15].
The latter contracts can be checked with the FDR2 model checker.

• The second translation (Wright to Ada): can be used in the verification of the
specific behavioral properties of the source description using static and dynamic
analysis tools associated with Ada such as test data generator and debugging. In
addition, the refinement of the abstract architecture, allows step by step obtaining a
coherent concrete architecture vis-à-vis the verified abstract architecture. The cor-
rection of each refinement step can be ensured by the static analysis tools associated
with Ada: the refined concurrent program must keep the same properties checked on
the abstract concurrent program.

6 Conclusion

In this paper, an approach for verifying the behavioral coherence of SCDL/WS-BPEL
component-service architectures has been proposed. To achieve this, it has been pro-
posed to map SCDL/WS-BPEL to the Wright ADL, thus allowing the checking of the

Table 2. Ada formalization of the CSP process

CSP Ada

P = _request ->
result -> §

task P is
entry _request; entry  result;
end P ;
task body P is
accept _request; accept  result;
end P;

P1 | |P2
if internCondition then   P1  
else     P2 
end if;

P1 [ ] P2 [ ] TICK 
select P1; or P2; or terminate ;
end select;
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standard properties supported by this ADL. As a second step, a set of exogenous
translation rules allowing the translation from the Wright specification to an Ada
concurrent program has been put forward. The choice of this Ada language is justified
by the presence of many Ada analysis tools able to detect several error types. Versus
the properties to be checked, we must choose the adequate Ada analysis tool. For
example, FLAVERS and INCA tools promote the property-oriented trace, while the
SPIN and SMV tools promote the property-oriented state.

Currently, we are extending this work by an automation of these translation rules
using the Xtext, ATL and Xpand model transformation languages.
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