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Abstract
Soil is living medium and it acts as a precarious reserve in agriculture and food 
production. To enhance crop yields for ever-increasing human population, chem-
ical fertilizers are being applied in the soil. But, the haphazard usage of fertiliz-
ers, predominantly nitrogenous and phosphorus, headed to considerable 
contamination of soil, air and water. Moreover, unwarranted consumption of 
these agrochemicals also cause lethal effects on soil microorganisms and dis-
turbs the soil fertility. Due to current public apprehensions about the side effects 
of these agrochemicals, understanding plant and rhizospheric microbial interac-
tions is gaining momentum. It is considered to be important to effectively man-
age level of nitrogen in soil through biological nitrogen fixation (BNF) to 
maintain agricultural sustainability. The fixed N is directly taken up in the plants 
and is less vulnerable to volatilization, denitrification and leaching. Thus, mutu-
alistic symbiosis amongst legume plant and nodulating rhizobia plays a key role 
in ecological environments. Legume-rhizobia symbioses provide approximately 
45% of N used in agriculture and contributions of BNF from the symbiotic asso-
ciation accounts for at least 70 million metric tons per year into terrestrial  
ecosystems. In agricultural systems, about 80% of BNF contributed by symbi-
otic association made between leguminous plants and species of Rhizobium, 
Bradyrhizobium, Sinorhizobium, Azorhizobium, Mesorhizobium and 
Allorhizobium. The populations of these root-nodule forming bacteria can be 
changed ecologically, agronomically, edaphically and genetically to increase 
legume production and soil productivity. Moreover, legume-rhizobia symbioses 
also provide non-polluting and economical ways to augment N2-fixing potential 
under stress conditions. Scientists have identified numerous symbiotic systems 
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tolerant in harsh situations of salinity, alkalinity, acidity, drought, toxic metals 
have been recognized and alteration in rhizobial population under stressed 
environments can be an indicator of soil fertility. Moreover, interactions among 
rhizobia, plant growth-promoting rhizobacteria (PGPR) and mycorrhiza as well 
show significant part in increasing soil fertility and crop yields. In this chapter, 
significance of biological nitrogen fixation in persistent food supply, influence of 
extreme environments on legume-rhizobia symbiosis as well as interaction of 
rhizobia with belowground microbial species are discussed. The eco-friendly 
approach to increase crop production and soil health by inoculation of symbiotic 
bacteria as biofertilizers is described for sustainable agriculture.
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7.1	 �Introduction

Legumes can be considered as key source of proteins in vegetarian diet in develop-
ing countries (Nedumaran et  al. 2015). Therefore there is a need to improve the 
yield of legumes and to sustain soil fertility. Legumes utilized for human feed com-
prise of dry and green beans, broad beans, dry and green peas, chickpeas, lentils, 
soybeans, lupins, mung beans and peanuts. Nitrogen (N) and phosphorus (P) are 
major regulating nutrients for growth of leguminous plants. Replenishment of these 
nutrients to the legume crops is mostly done through application of inorganic nitrog-
enous and phosphate fertilizers to soil. Addition of nitrogenous fertilizers is the 
major external input for maximizing crop yield in agriculture. Inadequate usage of 
these chemical fertilizers has contaminated environment and causes various health 
hazards. Moreover, due to the low use efficiency of nitrogen fertilizers among plant 
nutrients and their continuous use leads to slow deterioration in soil health 
(Newbould 1989; Bockman 1997) and a decline in crop yield (Bohlool et al. 1992). 
Additional drawbacks of N-fertilizers include speeding up the depletion of non-
renewable energy resources. Along with high usage of N fertilizers in developed 
countries, volatilization of N oxides (greenhouse gases) into environment and leach-
ing of NO3

− into ground water, is also a major threat for global N cycle.
Due to exponential growth of population, its demand of the day to implement 

new means of improving food production that are well-suited with sustainability 
and preservation of environmental quality (Sindhu and Dadarwal 1995b; Sharma 
et al. 2018a, b). Moreover, rates of nitrogenous and phosphatic fertilizers is continu-
ously increasing in developing countries and these fertilizers are not only unafford-
able or unavailable in many countries but also have other drawbacks. Therefore, it 
is actually critical task for farmers to add-on N and P fertilizers in soil to escape the 
nutrient insufficiencies. Viable agriculture consist of effective management of agri-
cultural assets to fulfill shifting human requirements, while preserving or increasing 
environmental superiority and safeguarding natural assets. Thus sustainability 
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deliberations requires substitutes to nitrogen fertilizer. Biological nitrogen fixation 
can be considered as substitute in farming practices as it uses capability of several 
nitrogen-fixing bacteria to transform atmospheric nitrogen into the plant usable, 
ammonia using the nitrogenase enzyme (Bohlool et al. 1992).

Legumes are grown approximately on 252 million hectares of land, leading to 
about 90 Tg of dinitrogen being fixed per year, with major contributors to overall N2 
fixation through legume–Rhizobium symbiosis (Smith and Giller 1992). The growth 
of grain legumes such as field pea (Pisum sativum L.), followed by the subsequent 
decomposition of N rich residues helps to replenish N removed by harvesting. This 
leads to savings of fertilizer N and brings about enrichment of soil N, which is avail-
able to subsequent crops (Jensen and Hauggaard-Nielsen 2003). By using nitrogen-
fixing species of microorganisms in cropping systems dependency of agricultural 
crops on chemical nitrogenous fertilizers can be reduced. Moreover, biologically 
fixed nitrogen resides within soil organic matter in bounded form and hence it is 
considerably less vulnerable to chemical alterations as well as physical losses like 
volatilization and leaching. Considering adverse environmental effects of chemical 
fertilizers and growing prices, use of plant growth promoting rhizobacteria (PGPR) 
and rhizobia is valuable for sustainable agricultural system (Fernández et al. 2007; 
Shiri-Janagard et al. 2012; Uribe et al. 2012; Sindhu et al. 2018). A lot of informa-
tion exists on the positive influence of Rhizobium and Bradyrhizobium on legumes 
in terms of biological nitrogen fixation (Werner 2005) and in cereal–legumes crop 
rotation systems. Moreover, coinoculation of symbiotic bacteria with PGPR is 
another approach which has been found to improve root and shoot weight, plant 
vigour, nitrogen fixation and grain production in legumes (Valverde et  al. 2006; 
Yadegari et al. 2008; Verma et al. 2013; Sindhu et al. 2017).

This chapter describes diversity detected among different symbiotic bacteria and 
contribution of different rhizobia in increasing the growth and yield of legume crops 
as well as various biotechnological approaches undertaken for improving biological 
nitrogen fixation. The various limitations faced to improve crop productivity by 
inoculation with bacterial strains and opportunities of getting anticipated profits by 
confirming the establishment and survival of inoculated microbes in soil has also 
been discovered.

7.2	 �Role of Nitrogen Fixation by Bacteria in Cereal 
and Legume Crops

Majority of naturally augmented nitrogen in soils is from symbiotic or asymbiotic 
biological fixation carried out by microorganisms. As per  an estimate annually 
roughly 100  Tg N, is needed for production of world’s grain and oilseed crops 
(David and Ian 2000). Legume crops possess remarkable potential for biological 
nitrogen fixation in soil ecosystems (Brockwell et al. 1995). There exist roughly 700 
genera and around 13,000 species of legumes and from such a large variety of 
legumes only a small part was studied for nodulation and nitrogen fixation effi-
ciency (Sprent and Sprent 1990). Assessments showed that symbiotic association of 
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Rhizobium with approximately 100 agriculturally significant legumes, add roughly 
half the annual amount of BNF inflowing soil ecosystems (Tate 1995). Legume 
symbioses add approximately 70 million metric tonnes of N per yea, from which 
half is derived from cool and warm temperature zones and rest is resulting from 
tropics (Brockwell et al. 1995; Freiberg et al. 1997).

The success and sustainability of many food crops, forage and green manure 
legumes is mainly obligated to their symbiotic association with particular nitrogen-
fixing rhizobia (Menna et al. 2006). A peculiar characteristic that distinguishes rhi-
zobia from other nitrogen-fixing bacteria is their unique ability to elicit the 
development of a specialized nodule to form a symbiotic association with their 
legume host (Lindstrom et  al. 2006) (Fig.  7.1). This association converts atmo-
spheric inert N2 to a renewable source of fixed N for agriculture with expected val-
ues falling in range of 57–600 kg of N ha−1 year−1 (Zahran 1999; Ramankutty et al. 
2018). In contrast to application of inorganic N-fertilizers. N input through the pro-
cess of BNF not only maintains the soil’s N reserves but can also conserve natural 
resources. In that way, BNF plays significant role in nourishing throughput of soils.

Fig. 7.1  Nodulation and nitrogen fixation is illustrated in chickpea plant. The coordinated 
and controlled expression of nodulation genes of rhizobia in response to plant-released flavonoids 
synthesize the nodulation factor that leads to nodule organogenesis. The differentiated bacteroids 
in the nodules utilize nitrogenase enzyme to convert atmospheric nitrogen into ammonia.
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Some bacteria and cyanobacteria have developed capacity to convert atmo-
spheric nitrogen in to ammonia using nitrogenase enzyme and supply this important 
nutrient into agricultural soils. BNF take place in the free-living state, in association 
with or in symbiosis with plants (Table 7.1). Inoculation of various strains of diazo-
trophic bacteria carried out to increase amount of nitrogen as nutrients to several 
leguminous and non-leguminous crops. Vast areas of aerable land in Australia, 
India, Russia and United Kingdom inoculated with non-symbiotic N2-fixing bacte-
ria such as Azotobacter, Azospirillum, Bacillus and Klebsiella spp. with the goal of 
improving plant yield (Lynch 1983; Sloger et al. 1992; Di Benedetto et al. 2017). In 
symbiotic system, Rhizobium species have been effectively utilized globally as a 
bioinoculant leading to effective establishment of N2-fixing symbiosis with legumi-
nous crops (Eaglesham 1989; Thies et al. 1991; Dahale et al. 2016). Other N2-fixing 
symbionts, such as Frankia spp. have also been successfully introduced into soil 
(Sougoufara et al. 1989; Clawson et al. 1998).

Another approach to improve nitrogen budget of crops is to inoculate symbiotic 
bacteria with PGPR in leguminous crops to improve root and shoot weight, plant 
vigour, nitrogen fixation and grain yield in several legumes (Valverde et al. 2006; 
Yadegari et al. 2008; Verma et al. 2013; Sindhu et al. 2017). By modulating balance 
of deleterious vis a vis beneficial microbial activities in rhizosphere, PGPR are 

Table 7.1  Average biological nitrogen fixation by various plant microbe associations

Nitrogen-fixing system Microorganisms/plants
Rate of nitrogen fixation (kg 
ha−1 year−1)

Free-living microorganisms Cyanobacteria (blue-green 
algae)

7−80

Azotobacter 0.3−15
Clostridium pasteurianum 0.1−0.5

Grass-bacteria associative 
symbioses

Azospirillum 15−36
Acetobacter diazotrophicus 150–200

Plant-cyanobacterial 
associations

Gunnera 12−21
Azolla-Anabaena 45−450
Lichens 39−84

Rhizobium–legume 
symbioses

Soybeans (Glycine max 
L. Merr.)

57–94

Cowpea (Vigna, Phaseolus and 
others)

84

Clover (Trifolium pratense L.) 104–160
Alfalfa (Medicago sativa L.) 128–600
Lupines (Lupinus sp.) 150–169

Nodulated non-legumes Alnus (alders, e.g. red and black 
alders)

40–300

Hippophae (sea buckthorn) 2–179
Coriaria (‘tutu’ in New 
Zealand)

60–150

Casuarina (Australian pine) 58

Adapted and modified from Stevenson (1982)
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known to encourage plant growth directly by producing phytohormones, by improv-
ing nutrient accessibility and acquisition or eliciting plant defense mechanisms, 
which in turn, leads to increased nutrient acquisition and growth (Sindhu et al. 2014, 
2016) or induce systemic resistance against harmful microorganisms (Liu et  al. 
1995a, b). Therefore, synergistic consortia of microbes having various metabolic 
abilities (N2 fixation, P mobilization, synthesis of plant growth hormones and bioac-
tive molecules) can definitely perform better than single inoculations. However, 
type of inoculums, method of inoculation and agricultural practices can influence 
the effect of the inoculation. The effect of multiple inoculants with symbiotic N2 
fixing rhizobia, asymbiotic free-living N2 fixing bacteria and phosphate solubilising 
bacteria or cyanobacteria found to stimulate plant biomass in different legumes.

Symbiotic association between leguminous plants and Rhizobium is the best 
comprehensively studied nitrogen-fixing system. This symbiotic association fixes 
around 70–80% of the total BNF per year (Ishizuka 1992). Nitrogen fixation capac-
ity of symbiotic rhizobia range from 57 to 600  kg  N  ha−1 yearly (Elkan 1992). 
Among legumes, soybean is leading crop legume, comprising of 50% of the global 
crop legume area and soybean was reported to fix 16.4 million tones N annually, 
representing 77% of the nitrogen fixed by the crop legumes (Herridge et al. 2008). 
Increase in legume production are usually equal to those estimated from inoculation 
of 30–80 kg of fertilizer-N ha−1. Inputs of fixed N for alfalfa, red clover, pea, soy-
bean, cowpea and vetch are expected to be nearly 23–335 kg of N ha−1 year−1 (Tate 
1995; Wani et al. 1995). Thus, efficiency of various legume species and their micro-
symbionts has been found variable (Table 7.1). In general, faba bean (Vicia faba) 
and pigeon pea (Cajanus cajan) have been found to be very efficient; soybean 
(Glycine max), ground nut (Arachis hypogaea) and cowpea (Vigna unguiculata) to 
be average; and common bean (Phaseolus vulgaris) and pea (Pisum sativum) less 
efficient for nitrogen fixation (Hardarson 1993; Pinto et  al. 2007). The Azolla-
Anabaena symbiotic system proved to add 45–450  kg  N  ha−1 and Frankia-
actinorhizal symbiosis deliver 2–362 kg N ha−1 (Elkan 1992).

Sindhu and Dadarwal (1992) carried out experiment to evaluate comparative 
efficiency of nitrogen fixed by Rhizobium strains in chickpea using non-nodulat-
ing genotype PM233 obtained from wild type nodulating genotype ICC640. Due 
to nitrogen fixation by Rhizobium strains Ca534 and Ca219 in nodulating geno-
type ICC640, significant increase in plant dry weight was obtained over applica-
tion of 80 kg N ha−1 through urea in non-nodulating mutant PM233. The results 
reveal the fact that effective symbiosis between rhizobia and chickpea can supple-
ment more than 80 kg N ha−1. Profits of nitrogen fixation in legume crops to suc-
ceeding cereal crops are considerable and carry on for several years as a result of 
gradually slow mineralization. In green manuring crops greater amount of bene-
fits of rhizobia and plant symbiosis were observed and about 532 kg N could be 
assimilated by 60 days with nitrogen N accumulation rate of 10.8 kg N ha−1 day−1 
(Peoples and Herridge 1990).

Fixed nitrogen is also made accessible to an intercrop or succeeding crop. 
Generally more than 50% of the crops grown in Africa, India and Latin America are 
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either intercropped or rotated with nitrogen-fixing crops (Fujiata et al. 1992). Hence 
biological nitrogen fixation assists as an efficient way to reduce reliance on chemi-
cal fertilizers by supplying nitrogen to symbiont as well as builds up soil nitrogen 
for subsequent crops. However, numerous soil environmental causes viz. tempera-
ture, moisture, acidity, available nitrogen, phosphorus, calcium and molybdenum 
content affect nitrogen fixation (Somasegaran and Bohlool 1990; Zhang et al. 1996). 
Application of efficient strain of rhizobia on legumes generally resulted in substan-
tial rise in production of several legume crops (Eaglesham 1989; Thies et al. 1991) 
(Table 7.2). Although, numerous reports also showed unpredictability in attaining 
the yield increases ensuing application of rhizobial strains (Miller and May 1991).

7.3	 �Rhizobial Diversity

Phylogenetically rhizobia are very different, demonstrating numerous lineages. 
Rhizobia presently comprise of 12 genera and beyond 113 species of α- and 
β-proteobacteria (Sawada et  al. 2003). Rhizobia are distributed in the following 
genera: Aminobacter (1), Azorhizobium (3), Bradyrhizobium (15), Devosia (1), 
Mesorhizobium (29), Methylobacterium (1), Microvirga (3), Ochrobactrum (2), 
Phylobacterium (1), Rhizobium (43), Sinorhizobium/Ensifer (13) and Shinella (1). 
Additionally, there are 9 species of β-rhizobia, namely Burkholderia (6), Cupriavidus 
(2) and Herbaspirillum (1). Many new species of rhizobia are described each year 

Table 7.2  Growth promoting substances synthesized by rhizobia involved in stimulating plant 
growth

Rhizobia
Growth promoting substances 
synthesized References

Rhizobium and 
Bradyrhizobium

Siderophores, P-solubilization, 
IAA, HCN

Abd-Alla (1994a, b), Antoun et al. 
(1998), Duhan et al. (1998), Khan 
et al. (2002), Deshwal et al. (2003a) 
and Tank and Saraf (2010)

Rhizobium sp. Growth hormones, IAA, 
siderophores, HCN, ammonia, 
exopolysaccharides

Ahemad and Khan (2009a, 2012a), 
Joseph et al. (2007), Wani et al. 
(2007b) and Zafar-ul-Hye et al. (2013)

R. phaseoli IAA Arora et al. (2001)
R. ciceri Siderophores Berraho et al. (1997)
R. leguminosarum Cytokinin Zahir et al. (2010)
M. ciceri IAA, siderophores Wani et al. (2007c)
Mesorhizobium sp. IAA, siderophores, HCN, 

ammonia, exopolysaccharides, 
antifungal activity

Ahemad and Khan (2009b, 2012c), 
Ahmad et al. (2008), Khan et al. 
(2002) and Wani et al. (2008a)

B. japonicum IAA, siderophores Wittenberg et al. (1996) and 
Shaharoona et al. (2006)

Bradyrhizobium 
sp.

IAA, HCN, ammonia, 
siderophores, 
exopolysaccharides

Khan et al. (2002), Wani et al. (2007a) 
and Ahemad and Khan (2011, 2012b)

R. meliloti Siderophores Prabha et al. (2013)
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and even strains from non-typical rhizobia genera are included to list of rhizobia, as 
strains from the Burkholderia genus (Chen et al. 2003, 2008). In general, rhizobia 
are heterotrophic and aerobic non-sporulated rods, however, there are Bradyrhizobium 
strains having ability of anaerobic growth (Polcyn and Luciński 2003), photosyn-
thetic bradyrhizobia (So et al. 1994) and methylotrophic Methylobacterium strains 
(Sy et al. 2001). The complete genomic sequence of photosynthetic bradyrhizobia 
able to induce both root and stem nodules revealed that these strains lack the canoni-
cal nodABC genes required for Nod factor synthesis (Giraud et al. 2007).

Crook (2013) isolated Rhizobium sp. IRBG74 and A. caulinodans from Sesbania 
aculeata and Sesbania rostrata and capable of colonizing rice roots. Endophytic 
strain of Rhizobium sp. IRBG74 was also isolated from Sesbania cannabina, but it 
lacks nifV gene required for nitrogen fixation and hence unable to fix nitrogen. 
Rhizobium sp. IRBG74 initially grouped as Agrobacterium but as it do not possess 
Ti plasmid it was re-categorized as Rhizobium. This bacterium contain sym-plasmid 
having nifH together with nodA genes and it colonizes a wide range of Sesbania 
plants. Similarly, A. caulinodans ORS571 is capable of nitrogen fixing endophytic 
colonization (Chen and Zhu 2013; Venkateshwaran et al. 2013).

Plant genotype was also found to have effect on existence and dissemination of 
rhizobial species in soil. For example, Phaseolus vulgaris and Mimosa affinis show 
difference in rhizobial nodulation specificity. P. vulgaris is can be nodulated by six 
rhizobial species, viz. R. etli, R. giardinii, R. gallicum, R. tropici, R. leguminosarum 
bv. phaseoli and Bradyrhizobium spp., whereas Mimosa affinis showed nodulation 
specificity for R. etli alone (Wang et  al. 1999). Genistoid legumes (brooms) in 
Canary Islands, Morocco and Spain are nodulated by four distinct rhizobial strains 
viz. B. japonicum, B. canariense and two unidentified species (Vineusa et al. 2005).

Abiotic factors like pH, rainfall, soil type and temperature also influence diver-
sity of rhizobial species, whereas soil types may influence composition of rhizobial 
community which is ascertained from the fact that legumes grown in different geo-
graphical locations nodulated by different rhizobial species/genera. For example, 
Glycine max (soybean) generally nodulated by B. japonicum; but surprisingly soy-
bean grown in Xinjiang region of China showed colonization of root by 
Mesorhizobium tianshanense and Sinorhizobium fredii. Sameway, R. leguminosa-
rum bv. viciae and bv. trifolii geberallly nodulates beans in Leon, France, but beans 
grown in Andalucia region showed presence of R. etli, R. gallicum and S. fredii in 
addition to R. leguminosarum bv. viciae and bv. trifolii (Velázquez et  al. 2001). 
Conventionally, Mesorhizobium ciceri and Mesorhizobium mediterranean isolated 
form nodules of Cicer arietinum, but Cicer arietinum grown under water deficient 
conditions in Tunisia showed colonization by Ensifer meliloti (formerly 
Sinorhizobium meliloti) (Romdhane et  al. 2009). Similarly, E. meliloti also been 
isolated from C. arietinum plants growing in Almora and Terai region of Uttarakhand 
Himalayas (Rajwar et al. 2013). Type of soil also restricts distribution and diversity 
of rhizobia which was clearly confirmed by characterization of different rhizobial 
species from Caragana plant growing in three eco-regions of China differing in soil 
types. Mesorhizobium genospecies I, II, IV, VI and VII were identified from 
Caragana plants growing in sandy soils of Mongolia. M. temperatum, M. 
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tianshanense, M. septentrionale, M. genospecies III, R. yanglingense and Rhizobium 
sp. IV were isolated form Caragana plants grown in saline/alkaline soils and M. 
plurifarium, M. genospecies V and VII, and Rhizobium sp. IV in fertile/forest soils 
of Northwestern Yunnan region (Lu et al. 2009).

Delamuta et  al. (2017) evaluated phylogenetic relationship between 45 
Bradyrhizobium strains isolated from different legumes i.e., Arachis hypogaea, 
Acacia auriculiformis, Glycine max, Lespedeza striata, Lupinus albus, Stylosanthes 
sp. and Vigna unguiculata, based on nodY/K and nifH genes of and compared their 
16S rRNA gene phylogeny and genetic diversity by rep-PCR. 16S rRNA tree 
revealed that strains were dispersed into two clusters – B. japonicum and B. elkanii – 
with numerous strains being alike within each clade. The rep-PCR examination also 
discovered high intra-species diversity. Grouping of strains in the nodY/K and nifH 
trees was undistinguishable. Thirty nine strains obtained from soybean grouped 
with Bradyrhizobium type species and five others in distinct positions. Only one 
strain isolated from Stylosanthes sp. displayed similar nodY/K and nifH sequences 
to soybean strains and it also nodulated soybean. nodC sequences comparison 
showed same clusters as observed in the nodY/K and nifH phylograms. The analysis 
of symbiotic genes showed that a large group of strains from the B. elkanii super-
clade contained new symbiovar sojae, whereas for alternative group, comprising B. 
pachyrhizi, the symbiovar pachyrhizi could be projected.

7.4	 �Nodulation of Legume Roots

Mutualistic, nitrogen-fixing relations amongst Fabaceae family plants and soil 
bacteria Azorhizobium, Bradyrhizobium, Mesorhizobium and Rhizobium (as a 
group designated rhizobia) contribute considerably to crop yield. This symbiosis 
between legume plants and rhizobia also offers an interesting model to study the 
intricacy of various mechanisms that control plant cell partition and nodulation. 
In the absence of the host, free-living rhizobia are in their saprophytic phase and 
compete with other soil microflora for limited nutrient resources. The population 
densities of rhizobia are usually low when legumes are not a large component of 
the plant community (Woomer et al. 1988; Kucey and Hynes 1989), demonstrat-
ing that symbiotic form is crucial for formation of a considerable saprophytic 
inhabitants of rhizobia in the soil. Natural rhizobial population as well as inocu-
lated rhizobia was found to be different in their tolerance to key environmental 
clues and thereby influence persistence and existence of distinct species in soil 
(Vidor and Miller 1980; Defez et al. 2017).

Nodulation (nod) genes of rhizobia required for infection and nodulation are 
classified as universal, host-specific and regulatory nod genes (Fig. 7.2). Nodulation 
genes are principally classified into three classes: (a) regulatory nodD and nodVW 
genes enabling activation of and host specific nod gene transcription, (b) the com-
mon nodABC, nodM and nodIJ genes, which are functionally and physically con-
served amongst different rhizobia, and (c) host specific nod genes, which are 
variable with bacterial species and strains. Alteration of host specific nod genes 
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generally do not counterpart with cloned genes from other rhizobia. The structural 
arrangement and regulation of nodulation genes of Rhizobium, Bradyrhizobium and 
Azorhizobium has been reviewed recently (Long 1996; Spaink 1996; Hanin et al. 
1999; Appelbaum 2018). Expression of structural nod genes was governed by flavo-
noid signals from plants transcription of nodD regulatory gene is regulated by speci-
ficity of flavanoids and hence believed to be partial determining factor of strain/host 
specificity. The common nod genes are involved in manufacturing of basic 
lipochitin-oligosaccharide molecule and host specific nodulation genes add various 
substituents at reducing or non-reducing ends of Nod factors (Perret et al. 2000; 
Sindhu and Dadarwal 2001a, b, c). Alteration of host specific nod genes may end in 
either a postponement in nodulation or a variation in host range (Denarie et  al. 
1992). Expression of structural nod genes results in synthesis of specific extracel-
lular lipo-oligosaccharide compounds termed as nodulation factors (NF) which 
stimulate root-hair deformation, cortical cell division and other responses in prone 
legume root.

Legume roots release flavonoids in the root exudates and rhizobia which colo-
nize soil in neighborhood of root hair are attracted through chemotaxis in response 
to the flavonoids. The flavonoids and isoflavonoids secreted by roots of legumes 
bind with the regulatory protein NodD, which subsequently bind to conserved nod-
box in the promoters of bacterial nodulation genes to encourage their expression. 
The nod genes code for enzymes for synthesis of Nod factors. Strain-specific com-
binations of nodulation genes (nod, nol or noe) code for addition of several decora-
tions to core structure (Sindhu et al. 1999a, b). Examples of NF substituents are 

Fig. 7.2  Nodulation genes (nod, nol, noe) of Sinorhizobium meliloti and Bradyrhizobium 
japonicum are represented. Universal nodulation genes are depicted in yellow colour and regula-
tory nodulation genes are shown in light blue colour, whereas host-specific nodulation genes are 
shown in light green colour. Regulatory nodD product interact with specific flavonoids, then binds 
with nod boxes (n′) and cause activation of transcriptional operon of other nodulation genes
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hydrogen (R1–R6), carbamoyl (R1–R3), acetyl (R1–R4), sulfate (R4), fucose (R4) 
and arabinose (R6) (Fig. 7.3). The perception of NFs by the plant in turn triggers 
several early symbiotic reactions in the plant root, for example ion fluxes, calcium 
spiking, root hair deformation, cortical cell division and synthesis of an infection 
thread that directs the bacteria to the emerging primordium. Several elements of 
signaling pathway leading to nodulation have been characterized: the putative NF 
receptors (which belong to the lysine motif receptor-like kinase family, LysM–
RLK), a cation channel, a leucine-rich repeat receptor kinase (LRR–RK), a calcium/
calmodulin-dependent protein kinase (CCaMK), a cytokinin receptor and various 
transcriptional factors. Transmembrane Nod factor receptors recognize Nod factor 
in a strain- and ecotype-specific manner. Alteration of Nod factor such as the length 
and saturation of the acyl group determine host specificity. Nod factor receptor acti-
vation stimulates root hair deformation enabling them to lodge small number of 
bacteria which further grow in to a colony within nodule. Modulation of host range 
was also done through surface polysaccharides such as EPS from S. meliloti. 
Recognition of polysaccharides by R genes present in some ecotypes or varieties of 
plants restricts host range which culminate in the transcriptional activation of other 
nod genes (Downie 1994; Russelle et al. 2008).

Rhizobia encourage formation of nodules on legumes by either a NF-dependent 
or a NF-independent process. Gully et al. (2017) reported whole genome sequence 
of Bradyrhizobium sp. strain ORS285, capable of nodulating Aeschynomene 
legumes using two different approaches that vary in requisite of Nod factors. In NF 
strategy, plant signals of the flavonoid family are received by bacterial NodD regu-
latory proteins that encourage synthesis of lipochitooligosaccharidic NFs that acti-
vate nodule organogenesis (Oldroyd and Downie 2008). Some steps of this process 
are subject to variation: (i) alternative plant compounds (e.g. betaines, jasmonate, 
xanthones, vanillin, etc.) can start nod gene expression but these compounds usually 
act at higher concentrations than (iso) flavonoids (Cooper 2007); (ii) beside NodD, 
additional regulators can modulate expression of nod genes like NolR (in some 
Rhizobium and Sinorhizobium species) or NolA and the two component system 
NodV/NodW (in Bradyrhizobium japonicum); and (iii) synthesis of the Nod factor 
support is regulated by canonical nodABC genes existing in all rhizobia.

The rhizobia adhere to root hairs all over the root but root hairs that are most 
responsive to Rhizobium infection are just behind the apical meristem at the site of 

Fig. 7.3  Nodulation factor synthesized by Rhizobium strains. Host specific nodulation genes 
(nod, nol or noe) results in several decorations or modifications on the basic core structure
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emergence of root hairs. In the infectible root zone, rhizobia adhere to surface of 
root hair either through an acidic extracellular polysaccharide or via definite 
calcium-dependent protein, rhicadhesin, cellulose fibrils (Mateos et al. 1995; Smit 
et al. 1987) and legume root lectin (Kijne et al. 1988). Lipooligosaccharides (Nod 
factors) produced by the infecting rhizobia cause characteristic curling and defor-
mations of root hair and cortical cell divisions in well-suited host (Lerouge et al. 
1990; Broughten et al. 2000). The deformed root hairs in various legumes may form 
different structures, including corkscrews, branches, twists, spirals and shepherd’s 
crooks. Cao et al. (2017) described that a stable regulation of innate immunity is 
probably essential during process of nodulation starting from rhizobial infection, 
symbiotic establishment and maintenance. Following initial infection processes, 
plant immune responses can also be stimulated in nodules and expected to result in 
nodule senescence. Mutualism believed to be derived from a pathogenic relation-
ship that reduced over time to a condition in which both partners can benefit. 
Generally rhizobia overcome host immune response by actively suppressing it to 
permit infection and symbiosis establishment. Whereas plants developed mecha-
nisms to limit nutrient supply to symbiont and thereby checking number of nodules 
on plant so that protecting themselves form overburden.

In Medicago sativa, nodule development is closely linked to Nod factor (NF) 
synthesis by S. meliloti (Lerouge et  al. 1990). S. meliloti starts two analogous, 
nodule-specific, procedures to develop unspecified nodules nearby root proto-xylem 
ends: (i) rhizobial colonization pathway, that includes infection thread development 
in root hairs and cortical cells, and (ii) nodule organogenesis pathway, that includes 
stimulation of cell divisions in root cortical, endodermal and pericycle cell layers to 
generate a nodule primordium and then, a nodule meristem (Timmers et al. 1999; 
Xiao et al. 2014; Djordjevic et al. 2015). Rhizobial NFs hurriedly trigger nuclear 
calcium oscillations in root hair cells (Levy et al. 2004; Miwa et al. 2006), which 
transcriptionally activates central symbiotic (SYM) genes e.g. nodule commence-
ment (MtNIN), nodulation signaling pathway 1 and 2 (MtNSP1 and 2) (Kaló et al. 
2005; Smit et al. 2005) and MtCLV3/ESR-related 12 and 13 (MtCLE12 and 13) 
(Mortier et al. 2010; Saur et al. 2011). Nodulation is also positively and negatively 
controlled by complex communications with numerous hormones and peptides 
(Mortier et al. 2010, 2012; Larrainzar et al. 2015; van Zeijl et al. 2015). Together, 
these signals, along with NF/SYM pathway, control nodulation process and fre-
quency on root system (Oldroyd 2013). A large number of infection threads will not 
result in to nodule formation (Djordjevic et al. 1986) which shows effect of negative 
regulatory routes facilitated by ethylene-related and CLE-related pathways (Kassaw 
et al. 2015).

The rhizobia occupy root hair cell by means of host-derived infection thread, 
which is usually initiated from the most acutely curled region, starting as invagina-
tion of root hair cell membrane (Fig. 7.4). Rhizobia move down in root hair to corti-
cal cell layers by interiorly budding tube-like infection thread. Rhizobia in infection 
thread are surrounded by mucigel composed of cell wall polysaccharides, plant-
derived matrix glycoprotein and rhizobial exopolysaccharides (Callaham and Torrey 
1981; Broughten et al. 2000). Growth of infection thread continues towards newly 
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synthesized nodule primordium which is produced by stimulation of mitotic activity 
in root cortex as a result of rhizobial Nod factors that afterward develops into the 
nodule meristem (Dudley et al. 1987). Infection thread branches and leads towards 
cortex and a clearly apparent nodule grow on root. Nodules may have one or more 
rhizobial strains and can be either determinant (lack a persistent meristem and are 
spherical) or indeterminate (situated at distal end of cylindrically shaped lobes) 
(Russelle et al. 2008). Many infections are terminated due to a failure in communi-
cation between rhizobia and the host plant leading to strict regulation of nodule 
number by the plant. In the root cortex, infection threads branch and enter in to 
individual nodule cells and a new structure, infection droplet, is formed and rhizo-
bia get released into nodule tissue cells by a process that is similar to endocytosis 
(Roth and Stacey 1989a) and then occupy an organelle-like cytoplasmic compart-
ment, designated as “symbiosome”, which is surrounded by a plant-derived perib-
acteroid membrane (Roth and Stacey 1989b). This process keeps microbes “outside” 
the plant where rhizobia are intracellular but extracytoplasmic. Peribacteroid 
membrane-enclosed bacteria divide until cytoplasm of every infected plant cell 
comprises several thousand rhizobial cells. In late symbiotic zone, infected cells are 
entirely occupied with bacteria that have differentiated into their pleomorphic endo-
symbiotic bacteroids (Brewin 1991) especially express nitrogen fixation genes. The 
plant uses the fixed nitrogen as nitrogen source and delivers bacteroids with photo-
synthates and amino acids as carbon, energy and nitrogen sources.

In the nodule primordium, rhizobia are released from infection droplet which 
gets differentiated into nitrogen-fixing bacteroids.

Fig. 7.4  Nodulation factor secreted by rhizobia cause root hair deformation. Rhizobia occupy 
root hair cell by means of a host-derived infection thread
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The preset senescence of nitrogen-fixing bacteroids is fundamental portion of 
growth sequence in indeterminate nodules (Vasse et al. 1990). At this stage, growth 
and division of bacteroids is ceased and lysis of N2-fixing bacteroids as well as host 
cells occurs. In recent times some papain-like and legumain-like cysteine proteases, 
also known as vacuolar processing enzymes (VPEs), were recognized that were 
intensely expressed throughout the development of nodule senescence (van Wyk 
et al. 2014). In nodules, papain-like cysteine proteases have known functions in the 
regulation of bacterial symbiosis, nitrogen fixation and leghemoglobin synthesis 
(Vande Velde et al. 2006; Li et al. 2008). Inhibition of papain-like cysteine protease 
activity was found to increase soybean tolerance to drought and favoured increased 
nodulation (Quain et al. 2014, 2015). VPEs found to be a part in age-linked senes-
cence and triggering of pre-proteases. With their caspase-like activity, they addi-
tionally play significant part in programmed cell death (Hara-Nishimura et al. 2005; 
Roberts et al. 2012). At the death of a nodule, the bounded rhizobia are exclusively 
positioned to obtain the plant nutrients from senescing nodule tissues to proliferate 
rapidly. The number of nodule-derived rhizobia entering the soil population, 
becomes low as numerous rhizobial cells get destroyed together with plant cells 
during nodule senescence (Pladys et al. 1991) and also, differentiated bacteroids 
could not easily shift from biotrophic to saprotrophic life in soil (Quispel 1988).

7.5	 �Mechanisms of Plant Growth Promotion by Rhizobia

Rhizobia acts through direct and indirect mechanisms for improvement of crop 
growth and yield (Fig. 7.5). Direct mechanisms for plant growth promotion includes 
nitrogen fixation (Machado et al. 2013), nutrient solubilization/mobilization or min-
eralization (Reimann et al. 2008; Yu et al. 2012; Abd-Alla 1994a; Kumar and Ram 
2014; Prasad et al. 2015), production of phytohormones, vitamins etc. (Sahasrabudhe 
2011; Ghosh et al. 2015; Jangu and Sindhu 2011) (Table 7.2). In addition to symbi-
otic N2 fixation, rhizobia also carry out non-symbiotic N2 fixation in association 
with non-legume plants. Nitrogen fixation by photosynthetic bradyrhizobia was 
observed in association with wild rice (Chaintreuil et al. 2000). In indirect mecha-
nism rhizobia produces bioactive molecules which inhibits phytopathogens (Datta 
and Chakrabartty 2014; Sindhu et  al. 2014, 2017). Functionally different plant 
growth promoting rhizobacteria under variable environmental situations and in crop 
cultivation systems may enable growth and development of plants using either one 
or multiple mechanisms of plant growth promotion.

7.5.1	 �Biological Nitrogen Fixation

Fixation of atmospheric nitrogen by microorganisms is significant constituent of 
sustainable agriculture systems (Sessitsch et  al. 2002; Karunakaran et  al. 2009). 
Rhizobium are well known for establishment of symbiotic association with legumi-
nous crops (Patriarca et  al. 2002; Gage 2004) forming nodules to transforms 
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atmospheric nitrogen in to ammonia and make it available to plants. In symbiotic 
relationship leguminous plants provides energy and photosynthetic materials to 
bacteria and bacteria in turn provide nitrogen to plants for incorporation into cellu-
lar constituents like amino acids, proteins and other essential nitrogenous com-
pounds (Gresshoff 2003).

Nodules are generally termed as nitrogen fixation factories and millions of bac-
teroids inside the nodules fix the atmospheric nitrogen continually. Moreover, num-
ber of nodules formed on host plant is usually linked with amount of nitrogen fixed 
in particular Rhizobium-legume association. However, the number of nodules 
formed on a particular legume plant varies in different Rhizobium-legume systems. 
For example, the number of nodules formed ranges from 25–50 under sterilized 
chillum jar conditions in summer legumes such as green gram (Vigna radiata 
L. Wilczek), cow pea [Vigna ungulculata (L.) (Wilczek)], black gram [V. mungo 
(L.) (Hepper)]. Usually, 5–20 nodules are formed on cluster bean [Cyamopsis 
tetragonoloba (L.) (Taub)] and pigeon pea (Cajanus cajan). On the other hand, 
30–60 nodules are usually formed under sterilized conditions on winter legume 
chick pea [Cicer arietinum (L.)] (Fig. 7.6). Large number of small nodules (50–120) 
is formed in ground nut (Arachis hypogea). Various environmental factors such as 
addition of nitrogenous fertilizers to the legume crops and level of ethylene formed 
due to hydrolysis of ACC in the root environment has been found to adversely affect 
nodulation under field conditions. Varin et al. (2009) reported that N fertilisation 
repressed nitrogen fixation in clover but N2 fixation was improved by addition of 
sulphur (S). Sulfur fertilization improved the nodule length and number of nodules 
containing leghaemoglobin. Sulphur fertilization, improved photosynthesis and 
vegetative reproduction in white clover directly and indirectly through increase in 

Fig. 7.5  Diagrammatic representation illustrating the direct and indirect mechanisms of plant 
growth promotion by rhizobia
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nitrogen fixation. Sulfur dependent response allows plants to adapt to variety of 
abiotic conditions but its sensitivity to S nutrition would be a shortcoming for rivalry 
in a state of soil sulphur poverty. Whereas, S fertilization could help sustain such 
plants under nitrogen limiting status.

Mathews and Carroll (2018) reported that many edaphic factors such as pH, 
nutrient deficiencies and toxicities, water, and temperature affect nodulation, but 
nitrate is unique in that it is generally not inhibitory to plant growth. Estimates of 
energy costs are generally greater for nitrogen fixation than for nitrate assimilation. 
Besides this, there are other developmental and ecological considerations which 
may have resulted in natural selection for nitrate inhibition of nodulation. Nitrate 
can be assimilated in either, or both, root and shoot tissue of plant, whereas nitrogen 
fixation needs development of a specific organ, root or stem nodule. In young white 
clover seedlings, for example, maximum activities of nitrate reductase precede the 
highest rates of nitrogenase activity by a matter of weeks. Indeed, plants that are 
dependent on nitrogen fixation as the sole nitrogen source do not grow as well as 
those which are supplemented with low noninhibitory or larger levels of nitrate. In 
the ecological context, it can be assumed that nitrate utilization by legumes decreases 
the amount of soil nitrate available to adjacent nonsymbiotic plants that are compet-
ing for other nutrients. Thus, preferential utilization of nitrate may be advantageous 
for legume species by decreasing the competitive ability of other plants that are 
unable to form a nitrogen-fixing symbiosis.

Sindhu and Dadarwal (2001c) evaluated efficiency of mutant Rhizobium strains 
for nodulation on chick pea (Cicer arietinum) grown in sterilized chillum jars. 
Mutants of strains Ca85 and Ca401 showed no nodulation efficiency whereas 
mutants of strains Ca181 and Ca534 were not able to nodulate the roots and also 
unable to fix nitrogen. Further mutants also displayed reduced nodulation and nitro-
genase activity which in turn showed decreased shoot dry weight as compared to 
inoculation of wild type strains. Overall, it was concluded that acquirement of strep-
tomycin resistance in Rhizobium sp. Cicer strains showed decreased symbiotic effi-
ciency of the microbial strain in chick pea.

Fig. 7.6  Nodules formed 
on chick pea (Cicer 
arietinum) plant under 
sterilized chillum jar 
conditions
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Nitrogen fixation capacity of the Rhizobium strains is usually deliberated as one 
of the key character affecting plant growth. Nitrogen fixation is detected either by 
growth of the organisms to grow on nitrogen free medium and can be measured via 
15N incorporation (15N enrichment) and acetylene reduction. Urban et  al. (1986) 
prompted Rhizobium trifolii strain 0403  in nitrogen free medium by treating the 
cells with 16.6 mM succinic acid and other nutrients and observed that organisms 
grew luxuriously on semisolid or liquid medium and fix nitrogen to satisfy their own 
requirement. Nitrogen fixation was determined through 15N incorporation (18% 15N 
enrichment in 1.5 doublings) and acetylene reduction. Nitrogen-fixing cells showed 
a maximum specific nitrogenase activity of 5 nmol of acetylene reduced/min/mg of 
protein at 0.04 atm (ca. 4.05 kPa) and 3% oxygen concentration in liquid medium. 
The generation time of organisms in liquid medium at 30 °C was 1–5 days, depend-
ing on oxygen concentration. Nodulation studies by Rhizobium trifolii strain 0403 in 
the white clover showed in vitro nitrogenase activity indicating that at least portion 
of population retained characteristics of wild-type strain 0403.

During nitrogen fixation, enzyme nitrogenase catalyzes reduction of nitrogen to 
ammonia concomitant reduction of protons to hydrogen. The energy loss in proton 
reduction leading to H2 evolution varies from 40 to 60% in the absence of an active 
uptake hydrogenase. Some of the Rhizobium strains have been identified, which has 
the capability to oxidize the evolved H2 leading to more nitrogen fixation. Dadarwal 
et  al. (1985) surveyed Rhizobium strains nodulating summer legumes cow pea 
[Vigna ungulculata (L.) (Wilczek)], black gram [V. mungo (L.) (Hepper)] and clus-
ter bean [Cyamopsis tetragonoloba (L.) (Taub)] and a winter legume chick pea 
[Cicer arietinum (L.)] in Northern Plains of India and screened for hydrogenase 
activity to determine distribution of Hup character in the native ecosystem. Around 
56% of Rhizobium strains of summer legumes were Hup+ winter legume, chick pea, 
was all Hup−. Ex planta acetylene reduction activity was observed in most of the 
Hup+ but not in the Hup− strains of any of the host species. In summer legume, 
mixed inoculation of Hup+ and Hup− strains under sterilized as well as unsterilized 
soil conditions, showed that the host species were predominantly nodulated with 
Hup+ strain.

Sindhu and Dadarwal (1986) reported that reduction of triphenyl tetrazolium 
chloride and methylene blue dyes reduction tests were ambiguous for detection of 
Hup character in Rhizobium strains isolated from green gram, black gram, cow pea, 
pigeon pea, cluster bean and chick pea. Hup+ Rhizobium strains isolated from these 
legumes except Hup− strains obtained from chick pea (Cicer arietinum) invariably 
expressed nitrogenase activity under cultural conditions. Characterization of native 
Rhizobium strains on the basis of ex planta nitrogenase induction showed that 94% 
of the ex planta nitrogenase positive isolate were of Hup+ phenotype, whereas all 
the ex planta nitrogenase negative isolates were of Hup- phenotype in nodules. The 
expression of nitrogenase under cultural conditions was therefore, found to be a 
reliable method for identification of Rhizobium strains for Hup+ phenotype among 
the rhizobia of the “cowpea miscellany”. Mutants were derived from Rhizobium 
strains of cowpea miscellany Vigna group i.e., S24 and GR4 having ability to 
express ex-planta acetylene reduction activity (ARA) after mutagenesis with 
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nitrosoguanidine (Sindhu and Dadarwal 1992). Approximately, 70% of the mutants 
of strain S24 and 82% mutants of strain GR4 were found to have increased ex-
planta ARA in comparison to their respective parent strains. Six mutants of strain 
S24 and four of GR4 strain with increased ex-planta ARA were selected to study in 
planta H2 uptake and symbiotic performance in two host species: green gram (Vigna 
radiata) and black gram (Vigna mungo). Most of mutants showed increased H2 
uptake in nodules and symbiotic affectivity of these selected mutants was also 
higher than the parent strain in both the legumes. The authors suggested that it is 
possible to obtain symbiotically superior mutants by mutagenesis taking desirable 
ex-planta character for initial selection followed by plant test.

Saini et al. (1996) isolated native rhizobia from root nodules of Sesbania bispi-
nosa and from root and stem nodules of S. rostrata. Rhizobium strains were studied 
for occurrence of hydrogen uptake system (Hup), nitrate respiration (NR), ex planta 
expression of nitrogenase and relative symbiotic efficiency in relation to Hup and 
NR activities. The rhizobia of both the host species were found to have two types of 
uptake hydrogenases: (i) recycling hydrogenase activity expressed ex planta as well 
as in planta in nodules and (ii) hydrogenase activity expressed only in nodules but 
not under cultural conditions. Dissimilatory nitrate reduction leading to complete 
denitrification was found to be common among both Hup+ as well as Hup− isolates. 
Ex planta nitrogenase activity was not observed in any isolates from both the 
Sesbania species. Symbiotic effectivity of Hup+ isolates was at par with Hup iso-
lates. There was no specificity with regard to host infectivity and the stem nodulat-
ing rhizobia from S. rostrata formed root nodules on S. bispinosa as well as on S. 
rostrata.

The amount and type of carbon sources, nitrogen level in growth medium, tem-
perature and growth conditions have been found to affect expression of nitrogenase 
and hydrogenase enzymes. Sindhu and Dadarwal (1988) observed influence of tem-
perature on nitrogenase and uptake hydrogenase activities in nodules of green gram 
(Vigna radiata L. Wilczek), black gram (V. mungo L. Hepper) and chick pea (Cicer 
arietinum L.), inoculated with different Rhizobium strains at three different tem-
peratures. The optimum temperature for nodule nitrogenase activity was 35 °C in 
green gram and black gram (summer legumes), while it was below 25 °C, in the 
case of chick pea (winter legume). A majority of the Hup+ Rhizobium strains of the 
summer legumes had H2 recycling ability that recycled the evolved H2 produced in 
nodules by nitrogenase. With increase in temperature from 15 to 35  °C, the H2 
uptake rates also increased in nodules. In nodules formed with Hup− strains, 
although the H2 evolution rates increased with increase in temperature in all the 
three legumes, however, green gram and black gram nodules (summer legumes) 
evolved significantly higher amounts of H2 than chickpea (winter legume). Also, 
irrespective of temperature optima for ARA, at lower temperature, the relative effi-
ciency was high in all the three legumes. Sindhu and Dadarwal (1995a) determined 
nodule nitrogenase and H2 uptake activities in normal (undecapitated) and decapi-
tated plants (removal of shoot 24 h before measurements) of green gram and black 
gram inoculated with two Hup+ Rhizobium strains which had H recycling ability in 
excess to the rates of H2 produced by nitrogenase in nodules. A significant decline 
in nodule nitrogenase activity was observed in decapitated plants as compared to 
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uncut control plants at 40 and 50 days of plant growth. However, nodules of both, 
control and decapitated plants, of both host species showed hydrogen supported 
enhanced acetylene reduction activity (ARA). The H2 uptake rates of the two strains 
varied depending on host as well as on stage of plant growth. However, based on the 
relative ratio of H consumed per mole of C2H2 reduced in case of normal photosyn-
thate supply as well as from the interruption of photosynthate supply (decapitated 
plants), it appears that photosynthate supply remains a limiting factor in nitrogen 
fixation under normal conditions of plant growth during symbiosis.

7.5.2	 �Production of Plant Growth Regulators

Plant growth regulators are organic compounds like plant hormones that stimulates 
plant’s physiological response at lower concentration and hence effect plant devel-
opment. Based on chemical structures and mode of action, plant growth regulators 
are grouped into six different categories i.e., auxins; cytokinins; gibberellins; ethyl-
ene; inhibitors (abscisic acid, phenolics and alkaloids) (Ferguson and Lessenger 
2006; Mishra et al. 2006); and brassinosteroids (Rao et al. 2002; Bajguz and Tretyn 
2003). Concentration of plant growth regulators produced by PGPR may vary from 
organism to organism. Majority of PGPR and symbiotic rhizobia influence plant 
growth by production of auxins, cytokinins and gibberellins, strigolactones, abscisic 
acid and brassinosteroids.

7.5.2.1	 �Auxins
About 80 % of the PGPRs and rhizobia produces most efficient biomolecule for 
plant growth promotion i.e. auxins (Antoun et al. 1998; Schlindwein et al. 2008; 
Bhagat et al. 2014). Major classes of auxins synthesized by soil microbes includes 
indole acetic acid (IAA), indole butyric acid or analogous compounds resulting 
from tryptophan metabolism (Loper and Schroth 1986; Malik and Sindhu 2008; 
Solano et al. 2008). Auxins are phyto-hormones that encourage cell division and 
elongation. Vargas et al. (2009) reported a considerable difference in auxin produc-
tion amongst rhizobial isolates from arrow leaf clover (Trifolium vesiculosum) 
white clover (T. repens) nodules. Arrow leaf clover isolates showed IAA production 
frequency in more than 90% isolates whereas only 15% isolates showed IAA pro-
duction. IAA producing rhizobia showed more intense nodule formation as auxins 
was reported to influence nodulation process (Boiero et al. 2007). IAA alters root 
morphology by increasing number of secondary roots and thereby increasing sur-
face area as well as size and weight of roots. Which ultimately results in to improve-
ment of more extensive root architecture of legume plants (Dazzo and Yanni 2006). 
Inoculation with auxin-producing bacteria may also result in the formation of 
adventitious roots (Solano et al. 2008). Modification in root architecture by rhizo-
bacterial IAA enhance nutrient absorption by plants which ultimately results in to 
enhancement of plant growth (Probanza et al. 1996). Similarly, Biswas et al. (2000) 
reported that inoculation of rice with R. trifolii improved dry matter and grain pro-
duction, in addition to augmentation in N, P, K and Fe content in plant tissue.
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7.5.2.2	 �Cytokinins and Gibberellins
Cytokinins influence cell division and cell enlargement, in addition to influencing 
seed dormancy, flowering, fruiting and plant senescence (Ferguson and Lessenger 
2006). Certain strains of Rhizobium synthesize cytokinins in culture but is quantifi-
cation and characterization was not possible (Sturtevant and Taller 1989; Wang 
et al. 1982) but it is found to be involved in nodule formation by rhizobia (Frugier 
et al. 2008) via an unknown mechanism. Gamas et al. (2017) reviewed that cytoki-
nins were involved in the precise identification of symbiotic associates, beginning 
of bacterial infection in root hair cells and commencement of nodule in root cortex. 
Progressively multifaceted regulatory networks was found in which cytokinin (CK) 
play critical functions in various phases of primary symbiotic stages. Interestingly, 
these parts can be positive or negative, cell independent or non-cell independent, 
and differ, relying on time, root tissues and probably legume species. Current pro-
gresses showed interconnected role of cytokinines in establishment of symbiotic 
relationship with other signaling pathways during nodule initiation. Gibberellins 
improve seed germination (Miransari and Smith 2009), encourage general growth 
of plants and postpones aging (Ferguson and Lessenger 2006). Production of lower 
concentration of gibberellins documented from Rhizobium (Solano et  al. 2008). 
Several reports showed free-living rhizobial strains can produce small quantity of 
gibberellin like substances. Gibberellin was also believed to play a key role in 
Rhizobium-legume symbiosis that may be significant suggestions to endophytic 
colonization of non-legumes by rhizobia. For example, infection of A. caulinodans 
in S. rostrata was through intercellular crack entrance facilitated by gibberellins 
which is key process of endophytic colonization of non-legumes by rhizobia and 
gibberellins produced by bacteria may simplify this process (Lievens et al. 2005).

7.5.2.3	 �Strigolactones
Strigolactones (SLs) play a key part in governing root growth, shoot branching and 
plant-symbionts interaction (Rehman et al. 2018). Strigolactones produced by rhi-
zobia and PGPRs have been found to affect nodule development. The presumed 
constituents of SL synthesis enzymes GmMAX1a and GmMAX4a with tissue 
expression patterns were identified and governed by rhizobia infection and modified 
throughout nodule formation. Knockdown transgenic hairy root soybean lines of 
GmMAX1a and GmMAX4a displayed reduced nodule number due to less expres-
sion of numerous nodulation genes necessary for nodule formation. Hormone anal-
ysis showed that GmMAX1a and GmMAX4a knockdown hairy roots showed 
increased level of ABA and JA but considerably reduced auxin content. This study 
showed close interactions between SL and other hormone signaling in controlling 
plant development and legume-rhizobia interaction.

7.5.2.4	 �Abscisic Acid and Brassinosteroids
ABA produced by certain strains of rhizobia like B. japonicum USDA110 (Boiero 
et  al. 2007) can provide drought tolerance to plants to some extent. However, 
increase of ABA concentration also showed negatively effect on nodule develop-
ment in Trifolium repens and Lotus japonicas. Suzuki et  al. (2004) showed 
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inhibition of nodulation in plants inoculated with R. trifolii and latter supplemented 
with ABA. Inoculation of L. japonicus mutant that has lesser sensitivity to ABA, 
(Tominaga et al. 2010) caused improved nodulation in M. loti inoculated plants.

Brassinosteroids are the new group of hormones and having steroidal substances 
which enables plants to resist abiotic stresses. Brassinosteroids generally found to 
affect processes such as seed germination, rhizogenesis, flowering, senescence, 
abscission and maturation (Rao et al. 2002). Vardhini and Ram Rao (1999) showed 
that treatment of brassinosteroids in groundnut gave better nodule formation and 
nitrogen fixation (Arachis hypogaea) developed in natural soil (without inoculation 
of Rhizobium).

7.5.3	 �Amelioration of Abiotic and Biotic Stress by Rhizobia

Climate change is the greatest threat to world’s agricultural sustainability in the 
twenty-first century. Drastic changes in various climatic conditions increase the 
incidence of abiotic and biotic stresses, which can tremendously influence the 
global decrease in productivity of agricultural and horticultural crops (Grover et al. 
2011; Papworth et al. 2015). Global warming and alteration in precipitation pat-
terns, lead to several abiotic stresses like extremes temperatures, drought, flooding, 
salinity, metal stress and nutrient stress that creates harmful effects on food produc-
tion (Barrios et al. 2008; Selvakumar et al. 2012). The probability of occurrence of 
extreme climatic events has increased in the last couple of decades and farmers lack 
the management options to sustain the agricultural productivity (Kalra et al. 2013). 
Abiotic stress hamper growth and production of crop, causing land degradation by 
making soil nutrient deficient and more stress prone. The abiotic stresses are usually 
interconnected with one another and function as a chain due to climatic variations 
(Grover et al. 2011).

The improvement in crop yields under unfavourable conditions by classical 
breeding or gene transfer techniques pose certain limitations in terms of ethical 
issues and time requirements (Ashraf and Akram 2009; Fleury et al. 2010). Again, 
drought stress tolerance is often a complicated phenomenon involving clusters of 
gene networks. Apart from classical breeding and transgenic approaches, applica-
tion of plant growth promoting rhizosphere (PGPR) bacteria is an alternative eco-
friendly strategy for improving plant fitness under understressed environments 
(Kim et  al. 2012) (Table 7.3). Application of beneficial rhizosphere bacteria has 
recently been found to alleviate the abiotic stresses. Some bacterial species such as 
P. polymyxa, Achromobacter piechaudii and R. tropici provide tolerance to drought 
stress in Arabidopsis, tomato (Solanum lycopersicum) and common bean (Phaseolus 
vulgaris), respectively through accumulation of abscisic acid and due to degrada-
tion of reactive oxygen species and ACC (1-aminocyclopropane-1-carboxylate) 
(Mayak et al. 2004b; Yang et al. 2008). Salinity tolerance in plants is conferred by 
application of A. piechaudii and B. subtilis (Mayak et al. 2004a; Zhang et al. 2006).

Figueiredo et  al. (2008) identified enhanced antioxidant enzymatic activity in 
common bean plants (Phaseolus vulgaris L.) coinoculated with R. tropici and P. 
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Table 7.3  Inoculation effect of rhizobia on ameliorating the influence of various stresses in dif-
ferent crops

Rhizobium spp. Host plant
Proposed mechanism(s)/
plant response References

Drought stress
Rhizobium spp. Zea mays, Triticum 

aestivum
Encouraged drought 
tolerance by catalase 
enzyme, 
exopolysaccharide and 
IAA production

Hussain et al. 
(2014a, b)

Rhizobium spp., 
Glomus mosseae, 
Glomus intraradices

Phaseolus. vulgaris, 
Zea. mays

Enhanced growth, yield 
and relieved moderate 
drought stress

Franzini et al. 
(2013)

Rhizobium gallicum 
8a3

Phaseolus vulgaris Controlled water relations 
in plant

Sassi-Aydi et al. 
(2012)

Mesorhizobium 
tianshanense, G. 
intraradices

Lotus tenuis Variation of proline and 
polyamine

Echeverria et al. 
(2013)

Rhizobium galegae 
HAMBI 1141, 
Pseudomonas 
trivialis 3Re27

Galega officinalis Enhanced root tip 
colonization

Egamberdieva 
et al. (2013)

Rhizobium strains 
RhOF4 and RhOF6

Vicia. faba Regulated enzymes of 
ascorbate-glutathione 
cycle and decreased 
glutathione

Oufdou et al. 
(2014)

Temperature stress
Rhizobium sp. Prosopis juliflora Enhanced symbiosis and 

nitrogen fixation
Kulkarni and 
Nautiyal (2000)

Bradyrhizobium 
strains

Glycine max Effective nitrogen fixation 
at high temperatures

Rahmani et al. 
(2009)

Mesorhizobium sp. – Improved transcriptional 
induction of chaperone 
genes

Alexandre and 
Oliveira (2011)

Heavy metal stress
B. japonicum E109 Glycine max Decreased symbiosis due 

to arsenic toxicity
Talano et al. 
(2013)

Rhizobium, 
Sinorhizobium spp.

Lathyrus sativus, Lens 
culinaris, Medicago 
truncatula, M, minima

Phytoremediation of 
Cd-contaminated soil

Guefrachi et al. 
(2013)

Cupriavidus necator Leucaena 
leucocephala, Mimosa 
pudica, Mimosa 
caesalpiniaefolia

Bioremediation of Zn-, 
Cu-, Pb-, and 
Cd-contaminated soils

Ferreira et al. 
(2013)

Rhizobium spp. Lens culinaris Reduced uptake of Ni in 
contaminated soil and 
enhanced plant growth

Wani and Khan 
(2013)

Rhizobium MuJs10A Vigna radiata Improved nodulation 
efficiency

Mondal et al. 
(2017)

(continued)
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polymyxa under drought stress conditions. Treatment of pea plants with Pseudomonas 
spp. containing ACC deaminase somewhat removed effects of drought stress 
(Arshad et al. 2008). Similarly, treatment of tomato (Solanum lycopersicum L.) and 
pepper (Capsicum annuum L.) seedlings with A. piechaudii ARV8 decreased the 
production of ethylene (ET) that may have contributed to the observed drought tol-
erance (Mayak et al. 2004b). Lim and Kim (2013) showed that pepper plants treated 
with B. licheniformis K11 withstand drought stress and had better survival com-
pared to non-treated plants. The observed drought tolerance was attributed to ACC 
deaminase production by PGPR that reduced ET concentrations by cleaving ACC.

Efficiency of Bradyrhizobium strains for alleviating effect of water stress was 
assessed in peanut genotypes through determination of antioxidant enzymes activi-
ties, leaf gas exchanges and vegetative growth in greenhouse with three peanut 
genotypes (BRS Havana, CNPA76 AM and 2012-4) (Barbosa et al. 2018). In exper-
iment two Bradyrhizobium strains (SEMIA6144 and ESA123) under two levels of 
irrigations i.e. with and without irrigation were used. Plants grown under water 
deficiency showed alteration in leaf gas exchange as well as antioxidant activities 
and reduction of vegetative growth parameters. The plants inoculated with 
Bradyrhizobium strains SEMIA6144 and ESA123 showed increase in vegetative 
growth parameters, especially those inoculated with Bradyrhizobium sp. ESA123 
strain obtained from the semi-arid region of Northeast Brazil. At in silico analyzes, 
ESA123 presented 98.97% similarity with the type strain of B. kavangense. The 
results uncovered beneficial effects of the peanut-Bradyrhizobium interaction under 
water stress condition.

Similarly, the consortium effect of three ACC-deaminase producing rhizobacte-
ria - Ochrobactrum pseudogrignonense RJ12, Pseudomonas sp. RJ15 and Bacillus 
subtilis RJ46 was evaluated on drought stress alleviation in Vigna mungo L. and 
Pisum sativum L (Saikia et al. 2018). Consortium treatment significantly increased 

Table 7.3  (continued)

Rhizobium spp. Host plant
Proposed mechanism(s)/
plant response References

Biotic stress
Mesorhizobium loti Brassica campestris Suppression of white rot 

disease/Sclerotinia 
sclerotiorum

Chandra et al. 
(2007)

Rhizobia Cicer arietinum Suppression of 
Rhizoctonia solani

Hemissi et al. 
(2013)

R. leguminosarum 
strain RhOF4

Vicia faba Reduction in influence of 
cyanotoxin biohazard

Lahrouni et al. 
(2013)

Rhizobium sp. cicer 
strain Ca181

Cicer arietinum Improved nodulation and 
growth of chickpea along 
with decrease in wilt 
frequency

Khot et al. 
(1996)

Mesorhizobium 
ciceri

Cicer arietinum Suppression of F. 
oxysporum, synthesis of 
IAA and siderophores

Yadav et al. 
(2015)
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seed germination percentage, root length, shoot length and dry weight of treated 
plants. An elevated synthesis of reactive oxygen species scavenging enzymes and 
cellular osmolytes, higher leaf chlorophyll content, increase in relative water con-
tent and root recovery intension were observed after consortium treatment in com-
parison with the uninoculated plants under drought conditions. The consortium 
treatment decreased the ACC accumulation and down-regulated ACC-oxidase gene 
expression, suggesting that the consortium could be an efficient bio-formulator for 
crop health improvement in drought affected acidic agricultural fields.

Rhizobial species has also been found to differ in their intrinsic osmotolerance 
measured by capacity to tolerate and grow under variable concentration of NaCl. B. 
japonicum, R. etli and R. leguminosarum showed sensitivity to salt by complete 
growth inhibition at 100 mM NaCl (Boncompagni et al. 1999); whereas growth of 
Mesorhizobium huakuii, R. tropici IIB and S. fredii inhibited at 200  mM NaCl 
showing moderate sensitivity, but S. meliloti and A. tumefaciens found to be highly 
salt tolerant and grow at 300 mM NaCl (Bernard et al. 1986). Rhizobium spp. from 
nodules of Acacia, Hedysarum, Leucaena and Prosopis plants can withstand salt 
concentration up to 500  mM NaCl (Zhang et  al. 1991). Rhizobia tolerate stress 
because of accumulation osmoprotectants, improved production of exopolysaccha-
rides, ROS-scavenging enzymes and heat shock proteins and chaperons through 
expression of NaCl-responsive loci (Vriezen et al. 2007). Choudhary and Sindhu 
(2017) found fifty five rhizobacterial strains from the chickpea rhizosphere soil and 
selected for their salt tolerance. At 3% NaCl concentration, 41.8% rhizobacterial 
isolates formed colonies and only 10.9% isolates showed growth at 4% NaCl 
concentration.

Capacity of rhizobia to tolerate abiotic stresses like heavy metals and pesticides, 
aids rhizobia to accomplish their advantageous PGP activities in stress environ-
ments. Plant responses to various environmental stress is equally dependent on host 
plant reaction and symbiosis procedure of rhizobial symbiosis (Yang et al. 2010). 
Grover et al. (2011) revise importance of microorganisms in adaptation of crops to 
different abiotic stresses. There are widespread reports on tolerance and nodule 
forming efficiency of Rhizobium and Bradyrhizobium to soil acidity, salinity, alka-
linity, temperature and osmotic stress conditions (Graham 1992; Kulkarni and 
Nautiyal 2000; Defez et al. 2017). Osmoprotectants, compatible solutes/osmolytes, 
similarly perform a multiple functions as showed in S. meliloti by proline-betaine 
that helps as both osmoprotectant (under high osmotic stress) and energy source 
(under low osmotic stress) (Miller-Williams et al. 2006).

Plants being sessile, their growth and yield are strongly influenced by biotic 
stress. Biotic stress is caused by various pathogens, such as bacteria, viruses, fungi, 
nematodes, protists and insects. Common impacts of these biotic factors include 
imbalanced hormonal regulation, nutrient imbalance and physiological disorder 
results in a substantial decrease in agricultural production (Haggag et  al. 2015). 
Microbial diseases cause malfunction in plants which result in decrease in ability of 
plant to live and preserve its ecological niche. Plant diseases result either in death or 
may greatly impair growth and yield of the plant. Pathogenic microorganisms gen-
erally deteriorate or extinguish plant tissues and decrease crop production ranging 
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from 25 to 100% (Choudhary and Sindhu 2015). Among the different kind of dis-
eases, root diseases are projected to give 10–15% yield losses globally. Biotic stress 
also has adverse impacts on plants co-evolution, population dynamics, ecosystem 
nutrient cycling, natural habitat ecology and horticultural plant health (Gusain et al. 
2015). Global crop yields are reduced by 20–40% annually due to pests and dis-
eases (Strange and Scott 2005).

Yadav et al. (2015) obtained 207 strains of M. ciceri, from root nodules of chick-
pea plants and selected for antagonistic influence against F. oxysporum f. sp. ciceri. 
Seven strains (MC69, MC84, MC96, MC99, MC180, MC183 and MC190) showed 
antagonistic effects against F. oxysporum f. sp. ciceri, but none of them was observed 
to produce antibiotic or solubilized tricalcium phosphate. Three isolates i.e., MC84, 
MC96 and MC99 showed siderophore production. MC99 was found to be best 
antagonistic strain as it manufactured maximum quantity of siderophore.

7.5.4	 �Bioremediation of Organic Pollutants by Rhizobia

Many free-living rhizobial strains in the genera Rhizobium, Sinorhizobium and 
Bradyrhizobium showed resistance to polycyclic aromatic hydrocarbon (PAHs), 
polychlorinated biphenyl (PCBs), aromatic heterocycles (i.e., pyridine) or other 
toxic organic compounds (Keum et al. 2006; Poonthrigpun et  al. 2006; Tu et  al. 
2011). Ahmad et al. (1997) isolated and characterized a different R. meliloti strains 
from soils polluted with aromatic/chloroaromatic hydrocarbons. Moreover, ace-
naphthylene and phenanthrene are omnipresent polycyclic hydrocarbons in the 
environment. Rhizobium sp. strain CU-A1 can completely degrade acenaphthylene 
(600 mg  l−1) within three days of inoculation via naphthalene- 1, 8-dicarboxylic 
acid metabolism pathway (Poonthrigpun et  al. 2006). Sinorhizobium sp. C4 can 
consume phenanthrene as a only carbon source and 16 intermediary metabolites 
engaged in degradation pathway have been recognized (Keum et al. 2006).

Polychlorinated biphenyls are classified as persistent organic pollutants (POPs) 
varying in the number of chlorine atoms (1–10) bound to their biphenyl rings 
(Passatore et al. 2014). Tu et al. (2011) reported degradation of more than 70% of 2, 
4, 4-TCB (PCB28) by S. meliloti ACCC17519. In trials under aerobic conditions, 
2- hydroxy-6-oxo-6-phenylhex-2, 4-dienoic acid (HOPDA), the meta cleavage 
product in typical PCBs-degradative pathway, was recognized as principal interme-
diate using GC-MS during the biotransformation of 2, 4, 4-TCB by S. meliloti. 
Certain toxic aromatic acids and their hydroaromatic biosynthetic intermediates 
(i.e., quinate and shikimate) usually disseminated in plants and rhizosphere found to 
encourage growth of rhizobia (Parke et  al. 1985). Mimosine [β-N-(3-hydroxy-4-
pyrid-one)-amino propionic acid], an aromatic toxin manufactured by the roots of 
Leucaena sp., is toxic to both bacteria and eukaryotic cells (Awaya et al. 2005). 
Several Rhizobium strains forming nodules on Leucaena reported to have ability to 
use mimosine as a source of carbon and nitrogen (Soedarjo et al. 1995; Soedarjo and 
Borthakur 1998), emphasizing catabolic efficiency of aromatic compounds in 
rhizobia.
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7.5.5	 �Impacts of Grain Legumes and Rhizobia on Atmosphere 
and Soil Quality

Inclusion of legumes into agricultural cycles helps in decreasing usage of fertiliz-
ers and energy in arable systems and subsequently reducing GHG (greenhouse 
gases) productions (Reckling et  al. 2016). N fertilizer savings across Europe 
(Reckling et  al. 2016), in cycles comprising leguminous crops, range around 
277 kg ha−1 of CO2 annually (Jensen et al. 2012). In view of an effectiveness of 
2.6–3.7 kg CO2 produced per kilogram of N synthesized, annual global fertilizer 
results in emission of 300 Tg of CO2 into the atmosphere annually (Jensen et al. 
2012). Moreover, the CO2 exhaled from nodule containing roots of leguminous 
plants derives from atmosphere by photosynthetic activities. On the other hand, all 
CO2 released in process of N-fertilizer production comes from fossil energy, thus 
defining a net influence on atmospheric concentration of CO2 (Jensen et al. 2012). 
N2O accounts for 5–6% of the total atmospheric GHG (Crutzen et al. 2007) and 
agriculture represents chief source about 60% of mane-made N2O emissions; 
(Reay et al. 2012), because of both animal and crop production. A major quantity 
of these productions derives from use of nitrogenous fertilizers. Application of 
100 kg of N fertilizer emits 1.0 kg of N2O (Jensen et al. 2012) though various quan-
tities of emission rely on number of factors viz. nitrogen application rate, soil 
organic carbon content, soil pH and texture (Peoples et al. 2009; Rochester 2007). 
Denitrification reaction is prime source of N2O in majority of cropping and pasture 
systems (Peoples et al. 2004; Soussana et al. 2010).

In latest years, numerous experiments focussed on role of legumes to decrease 
GHG productions. Jeuffroy et al. (2013) proved that legumes produce about 5–7 
times less GHG per unit area in comparison to other crops. Measurement of nitrous 
oxide fluxes showed that peas released 69 kg N2O ha−1 which was far less than win-
ter wheat emitting 368 kg N2O ha−1 and rape producing 534 kg N2O ha−1. Clune 
et al. (2017) studied various life cycle assessment (LCA) experiments on GHG pro-
duction for the period of 2000 to 2015 world over showing Global Warming 
Potential (GWP) values of pulses was very low (0.50–0.51 kg CO2 eq kg−1 produce 
or bone-free meat). Schwenke et al. (2015) taken us two field trials in black Vertosol 
in sub-tropical Australia, showed 385 g N2O-N ha−1 which was significantly higher 
as compared to emission from chickpea (166  g N2O-N ha−1), faba bean (166 g 
N2O-N ha−1) and field pea (135 g N2O-N ha−1). Similarly they have also reported 
that grain legumes showed significantly lower emission factor proving that nitrogen 
fixed by legumes is less emissive form of nitrogen input as compared to fertilizer 
nitrogen. However, the key factor determining effect of legumes for reducing green-
house gas emission governed by management of agro-ecosystems in which they are 
incorporated. Senbayram et al. (2016) reported that mono cropping of faba bean 
showed threefold higher collective N2O release (441 g N2O ha−1) as compared to 
unfertilized wheat (152 g N2O ha−1). On the other hand, intercropping of faba bean 
with wheat gave 31% less N2O emissions fluxes as compared to nitrogen fertilized 
wheat. Nevertheless, benefits obtained by addition of legumes in crop rotations turn 
out to be noteworthy when market charges of Nitrogenous fertilizer are considered 
(Jensen et al. 2012).
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7.6	 �Influence of Rhizobium Application on Yield 
of Leguminous Crops

Rhizobium was extensively studied because of its importance in agriculture and 
environment (Karaman et  al. 2013; Nyoki and Ndakidemi 2014). Application of 
efficient strains of Rhizobium showed significant increase in nodulation, nitrogen 
absorption and crop yield (Thies et al. 1991; Wani et al. 2007a; Franche et al. 2009) 
(Table 7.4). Elsheikh (1998) inoculation of five guar (Cyamopsis tetragonoloba) 
cultivars, namely, HFG-75, HFG-182, HFG-363, HFG-408 and WB-195 with 
Bradyrhizobium strains TAL 169 and TAL 1371 (introduced) and strains ENRRI 
16A and ENRRI 16C (local) significantly enhanced yield, protein, crude fibre and 
mineral content in guar under field conditions. Indigenous isolates showed higher 
influence on nodulation and plant growth parameters as compared to exogenous 
strains. Karasu and Dogan (2009) reported that seed treatment of chick pea (Cicer 
arietinum) seeds with R. cicero showed significantly higher seed yield, plant height, 
first pod height, number of pods per plant, number of seeds per plant, harvest index 
and 1000 seed weight as compared to treatments receiving various doses of nitrogen 
through ammonium nitrate (0, 30, 60, 90 and 120 kg ha−1). Native genotype as crop 
material provided maximum yield (2149.1 kg ha−1) among three chick pea geno-
types utilized. Various mixtures of microorganisms utilized looking to the further 
research needs in this area (Gopalakrishnan et al. 2015). Utilization of appropriate 
species of microbes as an inoculant in N exhausted environments might be a supe-
rior method to increase legume growth and development.

Table 7.4  Growth improvement of various legumes by inoculation of selected Rhizobium strains

Rhizobium species Contributions in growth improvement References
Bradyrhizobium 
spp.

Increased nodulation, shoot and root 
growth in legumes. Enahancing plants’ 
tolerance to drought and synthesis of 
indole-3-acetic acid

Shaharoona et al. (2007), 
Uma et al. (2013) and 
Gopalakrishnan et al. (2015)

Rhizobium strain 
MRPI

Stimulated nodulation, leghaemoglobin 
concentration, seed protein and seed 
harvest in pea plant

Ahemad and Khan (2011)

Rhizobium spp. Significant increase in height, pod 
number, length and seed weight of Vigna 
mungo and Vigna radiate

Ravikumar (2012)

Rhizobium sp. 
RL9

Improved development, nitrogen content, 
seed protein content and seed yield of 
lentil plant under heavy metal stressed 
conditions

Wani and Khan (2013)

Sinorhizobium 
meliloti

Enhanced biomass diversity in black 
medic plant exposed to copper stress

Gopalakrishnan et al. (2015)

Bradyrhizobium 
strain S24

Improved nodulation, nitrogen fixation 
and plant biomass

Sindhu and Dadarwal (1986, 
1992, 1995a)

Mesorhizobium 
strain Ca181

Improved nodulation, nitrogen fixation 
and shoot dry weight

Sindhu and Dadarwal 
(2001a) and Goel et al. 
(2002)
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The response of treatment of various rhizobial species on legumes under various 
stress conditions depends on the host plant response (Table 7.5), but this response 
can also be affected by rhizobia and progression of symbiosis (Yang et al. 2010). 
Grover et al. (2011) has reviewed the job of microbes in adaptation of crops to dif-
ferent abiotic stresses. Moreover, soil acidity, salinity, alkalinity, temperature and 
osmotic stress conditions have been found to affect the resistance and nodulation 
capacity of Rhizobium and Bradyrhizobium in the soil (Graham 1992; Kulkarni and 
Nautiyal 2000; Defez et al. 2017).

Table 7.5  Inoculation effect of rhizobia exerted against abiotic stress on host plants

Rhizobia
Crop 
species

Growth 
condition Remarks References

Drought stress
R. tropici 
coinoculated with 
Paenibacillus 
polymyxa

Kidney 
bean

Greenhouse Increased plant height, 
shoot dry weight and 
nodulation

Figueiredo 
et al. (2008)

M. mediterraneum 
LILM10

Chick pea Field study Higher nodulation, shoot 
dry weight and grain yield

Romdhane 
et al. (2009)

R. elti (engineered 
for enhanced 
trehalose-6-
phosphate synthase)

Kidney 
bean

Pot studies Superior nodulation, 
nitrogenase activity and 
biomass yield

Suárez et al. 
(2008)

Bradyrhizobium sp. – In vitro and 
pot culture

Improved drought 
resistance, IAA and EPS 
production, nodule 
numbers, nitrogenase 
activity in nodules and 
nitrogen content of 
nodules

Uma et al. 
(2013)

Temperature stress
Acacia rhizobia (40 
strains)

– In vitro Occurrence of small and 
large plasmids, buildup of 
free glutamate, three 
rhizobia strains tolerated 
1.4M NaCl

Gal and 
Choi (2003)

M. ciceri, M. 
mediterraneum and 
S. medicae

Chick pea Glass house M. ciceri improved 
nodulation and CAT 
activity, reduction in 
nodule protein and SOD 
activity

Mhadhbi 
et al. (2004)

M. ciceri ch-191 Salt 
resistant 
and 
sensitive 
chick pea 
cultivars

In vitro Reduced plant dry weight 
and nitrogenase activity in 
sensitive cultivars, normal 
nodule weight and shoot 
K/Na ratio and decreased 
foliar increase of Na in 
tolerant cultivars

Tejera et al. 
(2006)

Rhizobial strains Lentil Field study Increased plant biomass, 
nodule number and nodule 
dry weight

Islam et al. 
(2013)
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Mfilinge et al. (2014) reported that inoculation of soybean (Glycine max L.) with 
Rhizobium showed significant increase in crop growth and yield components viz. 
number of branches bearing pod per plant, total number of pods per plant and seed 
number per pods. Seed treatment of R. leguminosarum in pea and lentil showed 
increased pea nodulation, shoot/root diversity and pea seed yield (Bourion et  al. 
2017). Likewise, seedling height, nodule and shoot biomass of lentil were increased. 
Bourion et al. (2017) reported increase in nodulation of chickpea by inoculation of 
Rhizobium species with significantly higher plant growth, root dry weight and num-
ber of nodules in greenhouse and field. Ravikumar (2012) reported significantly 
higher plant height, fresh weight, roots, nodules, leaves, shoots and pods number, 
pod length and seed weight of Vigna mungo and Vigna radiata inoculated with 
Rhizobium as compared to uninoculated control. Height of soybean plants treated 
with Rhizobium under field conditions was significantly higher and stem girth was 
also improved in greenhouse and field experiments (Tairo and Ndakidemi 2013). 
Likewise, Nyoki and Ndakidemi (2014) showed inoculation of cowpea with rhizo-
bial isolates gave significantly higher plant height as compared to control 
treatment.

7.7	 �Coinoculation Effect of PGPR with Rhizobium Strains

The plant growth promoting effects of Rhizobium species are boosted when coin-
oculated with other microbes (Table 7.6). In coinoculation, some microbes function 
as assistant to improve the efficiency of the other microorganisms. Therefore, coin-
oculation of certain bacteria with Rhizobium spp. Improve efficiency of the rhizo-
bial spp. Which ultimately results in increased crop productivity. Recently, 
coinoculation of Pseudomonas, Enterobacter, Serratia and Bacillus spp. with 
Rhizobium/Bradyrhizobium showed increase in number of nodules, nitrogen fixa-
tion and plant biomass of green gram, chickpea and other legumes (Sindhu et al. 
1999a, b, 2002a, b; Goel et al. 2000). Therefore, combined inoculation of nitrogen 
fixing bacteria and PGPR could be explored for enhancing nitrogen fixation in rhi-
zosphere of cereal and legume crops.

Coinoculation of N2-fixing A. vinelandii with Rhizobium spp showed increased 
number of nodules in soybean, pea (Pisum sativum) and clover (Trifolium pratense) 
(Burns et  al. 1981). Sameway, combined inoculation of A. brasilense with 
Rhizobium resulted in higher efficiency in soybean and groundnut (Iruthayathas 
et  al. 1983; Raverkar and Konde 1988). Coinoculation of Rhizobium spp. and 
Azospirillum spp. showed increased root hair formation, number of root nodules 
and flavonoid content in root exudates in comparison to individual application of 
Rhizobium spp. (Itzigsohn et al. 1993, Burdman et al. 1997; Remans et al. 2007, 
2008). Efficiency of Azospirillum on the legume-Rhizobium symbiosis was also 
observed to be genotype dependent. Azospirillum – Rhizobium combined inocula-
tion in common bean (Phaseolus vulgaris L.) cv. DOR364 showed increase in rate 
of nitrogen fixation and yield at all sites in field trials (Remans et  al. 2008). 
Coinoculation of A. lipoferum and R. leguminosarum bv. trifolli showed enhanced 
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nodule formation in white clovers (Tchebotar et al. 1998). The mechanisms behind 
enhanced efficacy was believed to be increase in infection sites for Rhizobium spp. 
by Azospirillum which in turn leads to improved nodule formation while applica-
tion of Rhizobium and Azospirillum was found to increase siderophore, vitamins 
and phytohormones biosynthesis (Cassan et  al. 2009; Dardanelli et  al. 2008). 
Azotobacter came out as a potential coinoculant for Rhizobium as it increases vita-
mins and phytohormones synthesis which ultimately results in increase in nodule 
formation (Akhtar et al. 2012).

Coinoculation of R. phaseoli with P. putida showed increased nodulation of 
beans (Phaseolus vulgaris) under greenhouse and field trial conditions but no sig-
nificant increase in bean yield was observed indicating increase in nodule numbers 
and Rhizobium infection has not direct correlation with crop yield (Grimes and 
Mount 1984). Bolton et al. (1990) also observed that coinoculation of Rhizobium 

Table 7.6  Effect of combined inoculation of rhizobia with rhizobacteria or arbuscular mycorrhi-
zal fungi on legumes

Rhizobia Coinoculants Host plant

Proposed 
mechanism(s)/plant 
response References

Rhizobium sp. Pseudomonas sp. 
LG, Bacillus sp. 
Bx

Paikiniana 
vulgaris

P solubilization, IAA, 
ammonia and 
siderophore production

Stajkovic 
et al. (2011)

R. leguminosarum 
strain PR1

Pseudomonas sp. 
strain NARs1

Lens 
culinaris

Better growth and 
nutrient uptake

Mishra et al. 
(2011)

B. japonicum 
strains MN-S and 
TAL-102

AM fungi, 
Glomus 
intraradices

Vigna 
radiata

Significant increase in 
plant biomass and N 
contents

Yasmeen 
et al. (2012)

R. leguminosarum PGPR, enriched 
compost

Lens 
culinaris

ACC deaminase 
activity of PGPR and 
symbiotic proficiency 
of rhizobia

Iqbal et al. 
(2012)

Rhizobium spp. 
strain Mg6

PGPR strains A1 
and A2

Phaseolus 
vulgaris

ACC deaminase 
activity

Aamir et al. 
(2013)

Rhizobium sp. 
strain PK20

Pseudomonas sp. 
strain M9

Vigna 
radiata

ACC deaminase 
activity of 
Pseudomonas sp. M9

Ahmad et al. 
(2011, 2013)

R. leguminosarum Pseudomonas 
spp.

Vicia faba P solubilization, 
phytohormone and 
siderophore production

Saidi et al. 
(2013)

Mesorhizobium sp. 
BHURC03

Pseudomonas 
aeruginosa 
BHUPSB02

Cicer 
arietinum

Increased P and Fe 
uptake, nodulation as 
well as IAA synthesis

Verma et al. 
(2013)

Rhizobium sp. PGPR, 
Phosphorus-
enriched 
compost

Cicer 
arietinum

Increased growth and 
nodulation by ACC 
deaminase activity

Shahzad 
et al. (2014)

Rhizobium 
leguminosarum bv. 
viciae

Arbuscular 
mycorrhizal 
fungi

Vicia faba Mobilization of P, Fe, 
K and other minerals

Abd-Alla 
et al. (2014)
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and Pseudomonas spp. increases nodulation of pea but no significant difference 
were observed in shoot dry matter. On the contrary, combined inoculation of rhizo-
bia with other rhizobacteria showed increase in nodule number, root length, plant 
biomass and yield in various legume crops. For example, Chanway et al. (1989) 
reported that individual inoculation of nine PGPR strains showed no significant 
impact on pea growth in field, whereas it gave against significant increase in emer-
gence, vigour, nodule development, nitrogen fixation and root weight in lentil under 
field conditions. Combined inoculation of these nine strains of PGPR along with 
Rhizobium sp. cicer strain Ca181 showed increase in nodule numbers and growth of 
chickpea with simultaneous reduction of wilt disease (Khot et al. 1996).

Coinoculation of the five strains of fluorescent pseudomonad and R. leguminosa-
rum biovar viciae enhances shoot and root length as well as dry weight of Pisum 
sativum L. cv. Capella (Dileep Kumar et al. 2001). Goel et al. (2002) reported that 
coinoculation of chickpea with Pseudomonas strains MRS23 and CRP55b, and 
Mesorhizobium sp. Cicer strain Ca181 showed 68.2–115.4% increase in nodule 
numbers at 80 and 100 days after planting, respectively as compared to inoculation 
of Mesorhizobium sp. Cicer strain Ca181 alone under sterile conditions. Treatments 
receiving combined inoculation showed 1.18–1.35 times higher shoot ratio as com-
pared to that of Mesorhizobium inoculation and 3.25–4.06 times higher shoot ratio 
as compared to uninoculated control. Sameway combined inoculation of B. japoni-
cum and P. fluorescens showed increase in nodule numbers and growth of soybean 
(Li and Alexander 1988; Nishijima et al. 1988; Dashti et al. 1998), R. meliloti with 
Pseudomonas in alfalfa (Li and Alexander 1988; Knight and Langston-Unkefer 
1988), R. leguminosarum with P. fluorescens strain F113  in pea (Andrade et  al. 
1998) and Mesorhizobium/Bradyrhizobium strains with Pseudomonas sp. in green 
gram [Vigna radiata (L.) wilczek] and chickpea (Sindhu et al. 1999a, b; Goel et al. 
2000, 2002). Fox et al. (2011) reported that coinoculation of Medicago truncatula 
with Pseudomonas fluorescens WSM3457 and Sinorhizobium showed increase in 
number of infection sites number of root hairs. Moreover, coinoculation of P. aeru-
ginosa and Mesorhizobium sp. showed significantly higher shoot and root dry 
weight, nodule numbers, grain and straw yield as well as phosphorus uptake in 
chickpea (Verma et al. 2013). Besides growth promotion chickpea plants receiving 
inoculation of consortium comprising of A. chroococcum, Trichoderma harzianum, 
Mesorhizobium and P. aeruginosa showed antagonistic activities against Rhizoctonia 
solani and Fusarium oxysporum (Verma et al. 2014).

Holl et  al. (1988) stated that inoculation of Bacillus species to seeds or roots 
changed configuration of rhizosphere which ultimately increase growth and yield of 
various legumes. For example, Halverson and Handelsman (1991) concluded that 
under field conditions seed treatment with B. cereus UW85 gave 31 to 133% higher 
nodules than untreated soybeans after 28 and 35 days of planting. In soybean plant 
grown in sterilized soil-vermiculite mixtures, application of UW85 through seed 
treatment showed 34 to 61% increase in nodulation at 28 days after planting. It was 
suggested that UW85 influenced nodule formation afterward planting by encourag-
ing bradyrhizobial colonization or by defeating the termination of colonization pro-
cess. In another experiment, Turner and Backman (1991) showed that seed treatment 
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of peanut seeds with B. subtilis enhance germination and seedling emergence, 
improved nodulation by Rhizobium spp., enriched plant nutrition, decreased inci-
dence of root cankers caused by Rhizoctonia solani AG-4 and increased root growth. 
Srinivasan et al. (1997) reported increase in nodule numbers in Phaseolus vulgaris 
by combined inoculation of R. etli strain TAL182 and B. megaterium S49 as it 
increased root hair propagation and lateral root development. Podile (1995) reported 
increase in nodule numbers, plant dry matter and grain yield of pigeon pea by com-
bined inoculation of Bacillus sp. and rhizobia. Similar effects were observed in 
white clover (Holl et al. 1988). Sindhu et al. (2002a) reported that combined inocu-
lation of Bacillus strains with efficient Bradyrhizobium strain S24 gave 1.28–3.55 
times increase in dry mass at 40 days after sowing. Reports suggest that Bacillus 
strains can increase nodulation and nitrogen fixation at 40  days of plant growth 
(Mishra et al. 2009; Singh et al. 2011; Stajkovic et al. 2011). Elkoca et al. (2007) 
also showed increase in root weight and yield of chickpea by coinoculation of 
Rhizobium and Bacillus spp. Increase in nitrogen fixation and nodule formation was 
observed in the pigeon pea plants receiving combined inoculation of Azospirillum, 
Bacillus spp. and Rhizobium (Remans et al. 2008; Rajendran et al. 2008) (Table 7.6).

Mishra et al. (2009) showed that coinocualtion of R. leguminosarum-PR1 and 
PGPR B. thuringiensis-KR1, obtained from the nodules of Kudzu vine (Pueraria 
thunbergiana), promoted plant growth of field pea and lentil (Lens culinaris L.) 
under Jensen’s tube, growth pouch and non-sterile soil, respectively. Combined 
inoculation of R. leguminosarum-PR1 and B. thuringiensis-KR1 (106 cfu. ml−1) 
showed 85 and 73% increase in nodulation in pea and lentil, respectively as com-
pared to individual treatment of R. leguminosarum-PR1. Similarly there was also 
higher shoot weight, root weight and total biomass was observed in combined inoc-
ulation treatments as compared to rhizobial application alone. There was 1.04 to 
1.15 times and 1.03 to 1.06 times increase in shoot dry weight of pea and lentil, 
respectively by combined inoculation of different cell density of B. thuringiensis-
KR1 as compared to inoculation of R. leguminosarum-PR1 alone at 42 days of sow-
ing. Cell population of 106 cfu. ml−1 was found to be critical as higher cell density 
displayed inhibitory effects on plant growth and nodulation whereas lower one 
showed reduced cell retrieval and plant growth. Sameway increased nodule number 
and biomass yield were obtained upon combined inoculation of B. japonicum SB1 
and B. thuringiensis-KR1 in soybean (Mishra et al. 2009).

Coinoculation of Rhizobium and P-solubilizing bacteria improved more plant 
growth as compared to individual applications (Morel et al. 2012; Walpola and Yoon 
2013). Bai et al. (2003) stated that coinoculation of Bacillus strains with B. japoni-
cum in soybean showed significant increases in nodulation, nodule weight, shoot 
weight, root weight, total biomass, total nitrogen and grain yield. Tariq et al. (2012) 
reported improvement in nodulation efficiency and grain yield by combined inocu-
lation of plant growth promoting bacteria with crop specific rhizobia in legumes. 
Remans et  al. (2007) showed Rhizobium isolates can effectively nodulate bean 
plants when coinoculated with phosphate solubilizing bacteria. Barbosa et al. (2007) 
showed that coinoculation of Bradyrhizobium sp. and Paenibacillus polymyxa 
Loutit (L) and Bacillus sp. (LBF410) can induce nodulation and increased root dry 
matter in Vigna unguiculata. Sameway, synergistic promotion of nitrogen fixation 
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was observed upon coinoculation of endophytic PGPB and Rhizobium species in 
lentils (Khanna and Sharma 2011; Saini and Khanna 2012). In certain cases, PGPR 
strain which showed ability to increase efficiency of the Rhizobium strains in one 
legume does not showed same impact with another legume. For instance, Bacillus 
sp. strain CECT450 showed ability to improve nodule formation on common bean 
upon coinoculation with R. tropici CIAT 899, whereas it decreased nodule forma-
tion in soybean upon coinoculaion with B. japonicum USDA 110 (Camacho et al. 
2001). Sameway, Elkoca et al. (2007) showed dual and triple mixtures of PGPR 
with Rhizobium OSU-142 and M-3 displayed no substantial result on common bean 
yield as compared to single inoculations of these bacteria except for B. subtilis 
strain OSU-142 + B. megaterium strain M-3, inoculation. Difference in response of 
coinoculation displayed necessity to develop suitable blends of rhizobia strain and 
PGPR for specific sites to improve growth of common bean.

Choudhary and Sindhu (2017) reported that coinoculation of chickpea with ACC 
deaminase producing Mesorhizobium strain MBD26 and rhizobacterial isolate 
RHD18 produced 59 nodules per plant and showed 112.9% increase in plant dry 
weight in comparison to untreated plants at 50 days of sowing. In presence of salt, 
bacterial inoculation displayed 31.2% increase in plant dry weight in comparison to 
untreated plants under in vitro conditions. At 80 days of sowing, combined inocula-
tion of Mesorhizobium isolate MBD26 with rhizobacterial isolate RHD18 showed 
significant increase in nodule number (78 nodules/plant) and 141.9% increase in 
shoot dry weight in comparison to uninoculated controls.

7.8	 �Strategies for Improving N2 fixation

Research efforts for improving nitrogen fixation ability of various strain of nitrogen 
fixing free living or symbiotic microorganisms were intensified recently as they 
could provide an alternative source of chemical fertilizers and thereby reduce our 
reliance on chemical nitrogenous fertilizers. Selection of appropriate approach for 
improving nitrogen fixation ability of microbial strains depends largely on state in 
which microbial strain carry out nitrogen fixation either free-living or symbiotically 
and genes to be targeted for strain improvement i.e. either nitrogen fixation (nif, fix) 
or nodulation (nod, nol, noe) genes. Till date, efforts to improve nitrogen fixation 
capacity of symbiotic nitrogen fixers of genus Rhizobium and Bradyrhizobium were 
intensively done as they form symbiotic relations with agronomically significant 
legumes (Shantharam and Mattoo 1997; Schmidt et al. 2017).

Numerous approaches were projected to enhance nitrogen fixation in legume 
crops either by (i) improvement of nodulation and extending host range by transfer 
of symbiotic plasmid or cloning of nodulation genes; (ii) enrichment of nitrogen 
fixation; (iii) breeding of legume cultivars for improved nodulation with efficient 
strains and (iv) nodulation and nitrogen fixation in non-legume crops. Another 
methodology used comprises the genetic management of non-legumes to integrate 
nif genes from bacteria (Dixon et al. 1997; Gough et al. 1997) or expansion of host 
range for symbiosis amongst rhizobia and non-legumes (Trinick and Hadobas 1995; 
Sindhu and Dadarwal 2001b).
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7.8.1	 �Intensification of Nodulation and Expansion of Host 
Range

Rhizobium-legume relations are frequently host specific and there exist concept of 
cross inoculation groups wherein specific Rhizobium strain can efficiently colonize 
specific host plant which make them restricted to colonize narrow range of crops 
(Brewin 1991). Some particular rhizobia linked with the families Cicereae, 
Trifolieae and Vicieae have limited host ranges (Broughten and Perret 1999). In 
other symbiotic relationships, host specificity differs significantly between the sym-
biontic partners. A. caulinodans nodulates only Sesbania rostrata and R. meliloti 
nodules found on Medicago, Melilotus and Trigonella plants, while Rhizobium sp. 
NGR234, nodulates above 137 genera of legumes and non-legumes like Parasponia 
andersonii (Young and Johnston 1989).

In actual field situations, legumes encounter large number of rhizobial strains 
and there are chances of legume facilitated genetic interchange amongst rhizobia or 
genetic altercation between rhizobia and other types of rhizosphere bacteria (Osborn 
2006). Kinkle et al. (1993) showed that exchange of plasmid among populations of 
R. leguminosarum bv. viciae and B. japonicum respectively, in non-sterile soil. 
Souza et  al. (1994) provided indication that gene transfer was regular between 
native soil populations of R. etli. Because of genetic recombinations occurring in 
nature, rearrangements of genetic material between bacteria in soil occurs which 
ultimately results in evolution of new rhizobial populations dissimilar from that of 
inoculated one (Sullivan et al. 1995; Vlassak et al. 1996). Many times such genetic 
manipulations could develop greatly adaptable rhizobial population that will govern 
nodule development in succeeding years.

7.8.1.1	 �Transfer of Symbiotic Plasmid
Large number of Rhizobium strains own plasmids containing genes influencing 
nodulation (nod, nol and noe genes), nitrogen fixation (nif and fix genes) as well as 
additional cellular functions (Denarie et al. 1992; Fischer 1994). Symbiotic (sym) 
plasmids of R. leguminosarum and R. meliloti differ in size from 140 kb to 1500 kb 
(Beynon et al. 1980; Long 1989). Number and size of these plasmids differs between 
various strains. Transfer of sym plasmid of R. leguminosarum to other closely 
related rhizobia belonging to either bv. trifolii, bv. viciae or bv. phaseoli normally 
induce development of normal nitrogen-fixing nodules on host plants of donor 
strains (Beynon et al. 1980; Brewin et al. 1980) but when the sym plasmid of R. 
leguminosarum was transferred to distantly related species of R. meliloti, the trans-
conjugants induce non-nitrogen fixing root nodules on pea and vetch (Kondorosi 
et  al. 1980; Young and Johnston 1989). Similarly, Kondorosi et  al. (1982) also 
observed that transconjugants of Lotus rhizobia or tropical cowpea miscellany rhi-
zobia, carrying the symbiotic megaplasmid pRme41b of R. meliloti strain 41, 
formed white non-nitrogen-fixing nodules on Medicago sativa. When the sym 
megaplasmid (pRme41b) of R. meliloti was mobilized into Agrobacterium tumefa-
ciens by cloning a mob region into the sym megaplasmid (Kondorosi et al. 1982), 
the transconjugants were capable to induce ineffective nodule like deformations on 
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alfalfa roots. Introduction of R. leguminosarum or R. trifolii sym plasmid into 
Agrobacterium tumefaciens conferred the ability to nodulate pea and clover, respec-
tively but the nodules formed were ineffective without formation of bacteroids 
(Hooykaas et al. 1981, 1982). Djordjevic et al. (1983) showed that transfer of plas-
mid pBRIAN (encoding clover specific nodulation and nitrogen fixation functions) 
to A. tumefaciens strain ANU109 enabled the strain to nodulate white clovers, 
whereas the same strain carrying the plasmid pJB5JI (encoding pea-specific nodula-
tion and nitrogen fixation) failed to nodulate peas.

Truchet et al. (1984) mobilized the sym megaplasmid of R. meliloti strain 2011 
into A. tumefaciens with the help of plasmid RP4 or PGM142. The consequential 
transconjugants encouraged root distortions on homologous hosts Medicago sativa 
and Melilotus alba but not on the heterologous hosts Trifolium repens and T. 
pratense. Cytological interpretations showed that bacteria entered only in shallow 
layers of host tissue by an uncommon infection progression. Sindhu and Dadarwal 
(1993) constructed recombinant strains by protoplast fusion between R. sp. Vigna 
and R. sp. Cicer that formed effective nodules on green gram but ineffective 
pseudonodules on chickpea. These results indicated that infection and nodule com-
mencement genes could be expressed in heterologous rhizobia which leads to 
expansion of host range but bacteroid formation and formation of efficient nitrogen 
fixing nodules is challenging to attain.

A cryptic plasmid, pRmeGR4b, reported to affect nodulation capacity and com-
petitiveness in R. meliloti GR4 (Sanjuan and Olivares 1989). Mutations in the rele-
vant locus, spanning 5  kb region, delayed nodule formation and also reduced 
nodulation competitiveness. Nucleotide sequence analysis revealed the occurrence 
of two neighboring genes, nfe1 and nfe2 (nodule development proficiency), pre-
ceded by a functional σ54 and a NifA-dependent promoter (Soto et al. 1993). The 
nfe genes were not present in four other strains of R. meliloti and transfer of nfe 
genes by conjugation in these strains was found to increase nodulation efficiency in 
two of strains (Sanjuan and Olivares 1991a). Expression of both nfe1 and nfe2 is 
perhaps triggered in infection and nodule formation by alteration to microaerobic 
situations that trigger NifA synthesis. Adding of several replicas of nifA from 
Klebsiella pneumoniae correspondingly conferred improved nodulation effective-
ness of constructed R. meliloti strains (Sanjuan and Olivares 1991b). However, 
Dillewijn et al. (1998) reported that this observed increase in nodulation was not 
reliant on plasmid-borne nifA activity however it was dependent on sensitivity of 
non-resistant strains to streptomycin carried over from growth cultures. Rogel et al. 
(2001) revealed that Ensifer adhaerens ATCC 33499, could not form nodules on 
Phaseolus vulgaris (bean) and Leucaena leucocephala. Transferring symbiotic 
plasmid of R. tropici CFN299 into E. adhaerens enables it to form nitrogen fixing 
nodules on both hosts. R. tropici was carefully chosen as donor as its sym plasmids 
deliberated nitrogen fixing nodule formation ability to A. tumefaciens on Phaseolus 
vulgaris and Leucaena leucocephala (Martinez et al. 1987). The plasmids “a” and 
“b” were co-transferred from R. tropici CFN299 together with plasmid “c” (carry-
ing nod-nif genes) into A. tumefaciens. A. tumefaciens recombinant strains compris-
ing three plasmids showed better nodulation and nitrogen fixation as compared to 
recombinant with only plasmid “c”.
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7.8.1.2	 �Transfer of Cloned Nodulation Genes
Rhizobia possess coordinately regulated operons containing nodulation genes either 
one on symbiotic plasmids (psym) or one on chromosome. Till date, above 60 
diverse nodulation genes were described in various rhizobia (Sindhu and Dadarwal 
2001a, b, c; Loh and Stacey 2003; Delamuta et al. 2017). Spaink et al. (1989) cre-
ated chimeric nodD gene, containing 75% of nodD1 gene of R. meliloti at the 5′ end 
and 27% of nodD gene from R. leguminosarum bv. trifolii. Its expression in R. 
leguminosarum bv. trifolii and R. meliloti lead to expansion of host range for nodu-
lation up to tropical legumes Macroptilium atropurpureum, Lablab purpureus and 
Leucaena leucocephala. Expression of chimeric nodD gene in R. leguminosarum 
bv. trifolii and R. leguminosarum bv. viciae similarly lead to substantial escalation 
of nitrogen fixation rates during symbiosis with Vicia sativa and Trifolium repens. 
Bender et al. (1988) moved nodD1 gene from Rhizobium strain NGR234 to a lim-
ited host range R. leguminosarum bv. trifolii strain and this exchange widened nodu-
lation ability of beneficiaries to new hosts comprising non-legume Parasponia 
andersonii. Point mutations in nodD of R. leguminosarum bv. trifolii showed expan-
sion of host range even to non-legume Parasponia (McIver et al. 1989).

The transfer of a 14 kb HindIII fragment on recombinant plasmid pRt032 (car-
rying nodABC and nodD genes from sym plasmid of R. leguminosarum bv. trifolii 
strain ANU843) to other Rhizobium species or to A. tumefaciens provide capacity 
to nodulate clover by recipients (Schofield et al. 1984). The conjugative transfer 
of 14  kb HindIII fragment on plasmids pRt032 and pRKR9032, to R. fredii 
USDA192 strain, extended the host range of R. fredii even to clover (Yamato et al. 
1997). Transconjugant strain NA102 and YA101 produce non nitrogen fixing 
small and whitish nodules on clover. The Nod factors synthesized by the transcon-
jugants in presence of apigenin and genistein flavonoids also varied from those of 
their receiver strains. Concurrent inoculation of Glycine max and Vigna unguicu-
lata roots with NodNGR factors and nodABC mutants of strain NGR234 or B. 
japonicum USDA110 enabled bacteria to produce nitrogen fixing nodules on cor-
responding hosts (Relic et al. 1994). NodNGR factors also enabled entrance of R. 
fredii USDA257 into the roots of non-host Calopogonium caeruleum (Relic et al. 
1994) and of nodABC mutant of NGR234 into Macroptilium atropurpureum 
(Relic et al. 1993).

The allocation of the host-specific nodFEGHPQ genes of R. meliloti to strains of 
R. leguminosarum bv. trifolii or bv. viciae provided capacity of nodule formation on 
alfalfa (Putnoky and Kondorosi 1986) but intensely repressed nodulation on usual 
host plants, white clover and vetch, respectively (Debelle et al. 1988; Faucher et al. 
1989). Mutations in the nodH gene of R. meliloti (involved in transfer of sulfate on 
lipo-oligosaccharide Nod factor) intensely repressed nodulation on common host 
Medicago sativa and directed to hindered nodulation on Melilotus alba but provided 
capacity to nodulate non-host plant, vetch (Faucher et al. 1988; Roche et al. 1991). 
Mutation in nodQ gene also expanded host range of R. meliloti to vetch (Schwedock 
and Long 1992). Transfer of R. meliloti nodHPQ genes into R. leguminosarum bv. 
trifolii or R. leguminosarum bv. viciae, none of which owns these genes, indicates 
production of sulphated Nod signals and prolonged the host range of these strains to 
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alfalfa (Denarie et al. 1996; Long 1996). Mutation of strain NGR234 noeE gene 
(involved in fucose-specific sulfotransferase) obstructed nodulation of Pachyrhizus 
tuberosus, while its overview into closely linked strain USDA257 prolonged host 
range of R. fredii to encompass Calopogonium caeruleum (Hanin et al. 1997).

NodL gene is essential for accumulation of an O-acetyl residue at terminal non-
reducing glucosamine remainder in R. meliloti Nod factors (Ardourel et al. 1994). 
In strain NGR234, interruption of flavonoid-inducible nolL gene results in synthesis 
of NodNGR factors that lack 3-O- or 4-O- acetate group (Berck et al. 1999). The 
transconjugants of R. fredii strain USDA257 comprising nolL of NGR234 formed 
acetylated Nod factors and nodulated non-hosts Calopogonium caeruleum, L. leu-
cocephala and L. halophilus. Acetylation of Nod factors’ fucose of R. etli similarly 
deliberated effective nodulation on some P. vulgaris cultivars and on different host 
Vigna umbellata (Corvera et al. 1999). NodZ gene, encodes a fucosyltransferase, 
which is essential for nodulation of legume siratro by B. japonicum, but alteration 
in nodZ of B. japonicum does not affect nodulation in soybeans considerably 
(Nieuwkoop et al. 1987; Stacey et al. 1994). NodZ− mutants of NGR234 vanished 
the ability to nodulate Pachyrhizus tuberosus (Quesada-Vincens et  al. 1997). 
Allocation of nodZ gene to R. leguminosarum bv. viciae lead to in synthesis of 
fucosylated Nod signals and widen host range to comprise Macroptillium (Lopez-
Lara et al. 1996). Inactivation of gene nodS, involved in methylation of Nod factors 
of A. caulinodans, NGR234 and R. tropici eliminated nodulation of Leucaena leu-
cocephala and Phaseolus vulgaris (Lewin et  al. 1990; Waelkens et  al. 1995). 
Transfer of either nodS or nodU gene into R. fredii USDA257 expanded host range 
to include Leucaena spp. (Krishnan et al. 1992; Jabbouri et al. 1995). These out-
comes shown that numerous replacements or alterations at reducing or non-reducing 
terminus of Nod factors could broaden the host range.

Castillo et al. (1999) utilized precise DNA amplification (SDA) approach to cre-
ate S. meliloti strains CFNM101 and CFNM103, that demarcated 2.5 to 3 copies of 
symbiotic region (containing nodD1, nodABC and nifN of psym plasmid). 
Application of these strains to alfalfa created escalation in nodulation, nitrogen fixa-
tion and growth of alfalfa plants in environmentally controlled situations. Likewise, 
Mavingui et al. (1997) employed random DNA amplification (RDA) in symbiotic 
plasmid of R. tropici to get strains with improved competency for nodulation.

7.8.2	 �Improvement of Nitrogen Fixation

Structural or regulatory nif genes of the nitrogenase enzyme complex can be altered 
to enhance efficiency of nitrogen fixation. It was proposed that increasing NifA 
construction, which is the transcriptional activator of other nif genes, could improve 
expression of entire N2-fixing system (Szeto et  al. 1990). Initially greenhouse 
experiments showed that certain R. meliloti strains with higher nifA gene expres-
sion exhibited a 7–15% rise in alfalfa plant biomass in comparison to parents 
(Williams et al. 1990). Meanwhile regulatory stage in nitrogen fixation appears to 
be process of attaching reduced dinitrogenase reductase (Fe-protein, the nifH gene 
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product) to dinitrogenase (MoFe-protein) followed by one electron transfer. It was 
observed that increase in copy numbers of nifH gene and its products result in 
increase in throughput rate of nitrogenase which seems to be reason for occurrence 
of more than one copy of the nifH gene in certain diazotrophs such as A. vinelandii 
(Jacobson et al. 1986), Rhizobium phaseoli (Quinto et al. 1985) and A. sesbaniae 
(Norel and Elmerich 1987).

Alteration in expression of the C4- dicarboxylate transport (dct) genes could 
increase substrate transport which in turn increase nitrogen fixation efficiency 
(Ronson et  al. 1990). Root nodules contains photosynthetic energy and utilize 
roughly 10% of the plant’s net photosynthates for nitrogen fixation. Therefore, 
nitrogen fixation in the Rhizobium-legume symbiosis is supposed to be partial by 
amount of plant-derived photosynthetic outputs accessible to bacteroids (Hardy and 
Havelka 1975; Sindhu et al. 2003). Birkenhead et al. (1988) proposed that increas-
ing efficiency of endosymbiont to use photosynthate in nodule may results in 
improved nitrogen fixation rates. Recombinant strains of R. meliloti and B. japoni-
cum with better expression of dctA (structural gene for dicarboxylate transport) and 
nifA genes exhibited 15% escalation in nitrogen fixation rates (Ronson et al. 1990).

Certain nitrogen fixing bacteria like Rhizobium, Azotobacter, Azospirillum etc. 
found to increase efficacy of nitrogen fixation by oxidizing hydrogen by means of 
hydrogenase enzyme, that concurrently formed and developed during nitrogen fixa-
tion (Sindhu et al. 1994; Garg et al. 1985). This oxidation of hydrogen enhance ATP 
biosynthesis. Improved nitrogen fixation efficiency described in nodules and bacte-
roids of soybean, pea and Vigna group of hosts designed by application of Hup+ 
strains (Emerich et al. 1979; Dadarwal et al. 1985; Evans et al. 1987). Improved 
hydrogenase activity in root nodule bacteroids showed increase in soybean yield by 
use of near isogenic strains of B. japonicum (Hanus et  al. 1981; Hungaria et  al. 
1989). Second strategy to increase yields could be to increase the activity of the 
hydrogenase in bacterial strains that previously own it. Mutants of Hup+ B. japoni-
cum strains (Merberg and Maier 1983) or Rhizobium sp. strains (Sindhu and 
Dadarwal 1992) were developed with enhanced hydrogenase activity. Inocualtion 
of mutants of Rhizobium sp. strains showed higher in dry matter yield of green gram 
and black gram. The hup genes, coding biosynthesis of uptake hydrogenase was 
cloned and utilized to transform Hup- strains. These Hup+ recombinants exhibited 
increased nitrogen fixation (Pau 1991).

7.8.3	 �Breeding for Enhanced Nodulation

Changing the genetic make-up of plants to influence both endophytic and external 
populations suggest likelihood of creating favorite rhizosphere communities 
(O’Connell et al. 1996; Sindhu et al. 2018). Plant breeding strategy could be used to 
combine preference traits from several sources to generate plant genotypes capable 
of excluding nodulation by ineffective indigenous rhizobia. Hardarson et al. (1982) 
showed that the selection of alfalfa for physiological and morphological traits asso-
ciated with nitrogen fixation capability altered the preference of the host plant for 

S. S. Sindhu et al.



139

effective strains of R. meliloti. Nutman (1984) reported that red clover bred for 
improved nitrogen fixation maintained its superiority against a range of R. legumi-
nosarum bv. trifolii strains. These studies illustrated the potential for developing 
broad-spectrum effectiveness for genetically diverse indigenous rhizobia in some 
legume species. Mytton et al. (1984) assessed genetic variation in nitrogen fixation 
in different cultivars of M. sativa inoculated with diverse strains of R. meliloti; one 
of these cultivars was found relatively insensitive to changes in Rhizobium genotype 
and maintained high average yield.

The specific compatibility between nodX of R. leguminosarum bv. viciae strain 
TOM and sym2 of Pisum sativum cv. Afghanistan could be utilized to avoid native 
rhizobia from nodulating and to permit inoculated strains to nodulate. The sym2 
gene has already been crossed into a desirable pea cultivar (Trapper) and nodX was 
transferred in effective N2-fixing Rhizobium strain. Performance of these manipu-
lated host cultivar and rhizobial strains appeared promising enough under field stud-
ies (Fobert et al. 1991). A similar combined approach involving alteration of both 
soybean host and Bradyrhizobium strains has also been carried out to improve sym-
biotic N2 fixation in soybean-B. japonicum symbiosis (Cregan et al. 1989; Sadowsky 
et al. 1991). This strategy involves use of soybean genotypes that restrict the nodula-
tion of indigenous competitive strains and allow nodulation only with desired added 
strains (Sadowsky et al. 1995). In this way, improved strains produced by genetic 
engineering or other techniques can be targeted to specifically improve soybean 
varieties. Thus development of legume cultivars with broad-spectrum effectiveness 
for genetically diverse indigenous rhizobia could be an alternative beneficial plant 
breeding strategy to obviate the requirement for legume inoculation (Brockwell and 
Bottomley 1995). This requires an understanding of the genetics of host and rhizo-
bia, and offers real promise for genetically well-defined systems such as alfalfa and 
soybean.

Alternative approach of improving number of nodules by alteration of host 
genome is also utilized to increase nitrogen fixation ability in symbiotic microbes. 
Proposed strategy is based on hypothesis that nodule formation in legume is subop-
timal and obviously increase in nodule numbers results into increased rate of nitro-
gen fixation. Hypernodulating mutants of soybean developed 100 times more 
nodules as compared to parent plant (Carroll et al. 1985; Betts and Herridge 1987). 
Scientists have isolated number of soybean mutants with the higher nodulation effi-
ciency even in presence of nitrate (Carroll et  al. 1985) which can produce 3–40 
times higher number of nodules as compared to parent crop and demonstrated 
improved nitrogen fixation capacity (Hansen et al. 1989). Unluckily, these mutants 
were found to be poor agronomic performers (Pracht et al. 1994) due to fact that 
plant used up large extent of energy in hosting root nodules and thereby restricting 
energy required for the nitrogen fixation (Kennedy et al. 1997). Sato et al. (1999) 
altered source-sink association in hypernodulating soybeans by reducing infection 
dose so that nodulation is optimized to standard level and resolved that autoregula-
tory control may play crucial role in improving the number of nodules in soybeans 
and total nitrogen fixation activity.
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7.8.4	 �Nodulation and Nitrogen Fixation in Nonlegume Hosts

Certain non-legume plants are able to establish nitrogen-fixing symbiosis. The 
Frankia are of great importance which nodulates woody angiosperms like Alnus or 
Casuarina. These nodules have simple, branched structures; indicative of solidified 
lateral roots, however their capability to fix nitrogen is comparable to that in legumes 
(Clawson et al. 1998). Likewise, non-legume nodulation and nitrogen fixation was 
seen with Bradyrhizobium application in Parasponia (Trinick and Hadobas 1995; 
Webster et al. 1995) with high capacity of nitrogen fixation and structurally related 
to actinorhizal nodules.

NodD gene of rhizobia proved to regulate the initial level of host specificity 
(Denarie et al. 1992). Transfer of nodD1 gene from NGR234 into R. leguminosarum 
bv. trifolii expanded host range to nodulate non-legume Parasponia andersonii 
(Bender et al. 1988). Plasmids containing nodDABC genes of R. leguminosarum bv. 
trifolii were reassigned to A. tumefaciens, P. aeruginosa, Lignobacter sp., A. brasi-
lense, E. coli and different non-nodulating mutant rhizobia (owning sym plasmid 
deletions) which enabled them to perform root hair curling and alterations on clover 
and large number of other non-host legumes (Plazinski et al. 1994), proposing man-
ifestation of nodDABC genes in varied array of soil bacteria may spread or effect 
normal growth of plant root hairs of a varied kind of host and non-host legumes. 
Attempts to enhance nitrogen fixation by modification of macrosymbiont host plant 
have been done with leguminous crops such as soybean and alfalfa. In recent times, 
two model legumes Medicago truncatula and Lotus japonicus are identified for 
genetic examination of nodule formation and operational facts of root nodules, by 
which transgenics can usually be produced. These legumes will perform as tools for 
the identification and genetic characterization of plant genes engaged in nodule 
development as well as provides idea about mechanisms controlling root nodule 
formation.

Present studies to transfer the nitrogen fixation capability to nonleguminous 
plants showed nodule like structures could be formed on rice and wheat roots with 
Rhizobium strains in artificial conditions by means of hormones or cell wall degrad-
ing enzymes (Al-Mallah et al. 1989; Cocking et al. 1994). A precise investigation of 
these nodule-like structures shown accumulation of bacteria at the spot of lateral 
root formation and get enter through cracks. Rhizobium strains obtained from 
Aeschynomene indica (strain ORS310) and Sesbania rostrata (strain ORS571) were 
observed to produce nodule like structures on developing secondary roots of rice, 
wheat and maize (Cocking et al. 1994) and displayed considerable nitrogen fixation 
activity. Wheat plants inoculated with A. caulinodans showed higher nitrogen fixa-
tion activity whereas uninoculated plants as well as those inoculated with nif - strain 
of A. caulinodans showed absence of nitrogen fixation (Sabry et al. 1997). A. cau-
linodans strain ORS571 having lacZ reporter gene was found to be present in cracks 
of developing lateral roots in rice and wheat (Webster et al. 1997). Sameway, lacZ 
containing A. caulinodans strain ORS571 could enter Arabidopsis thaliana roots 
through cracks developed during lateral root formation. The flavonoids, naringenin 
and diadzein at low concentration considerably roused incidence of lateral root 
cracks and intercellular colonization of A. thaliana roots by A. caulinodans.
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Tchan and Kennedy (1989) reveled induction of ‘para nodules’ on wheat by 
application of 2, 4-dichlorophenoxyacetic acid (2, 4-D) or with auxins IAA and 
NAA (Naphthyl-acetic acid), along with inoculation of rhizobia or Azospirillum. 
Rolfe and Bender (1991) demonstrated formation of paranodules on rice roots by 
inoculation of Rhizobium having nodD allele whose gene product interacts with rice 
root exudate but could not display nitrogenase activity. It was discussed that trans-
formation of rice may induce new genes and thereby provides great chance to exam-
ine the probability for nitrogen fixation in rice. In addition, certain early nodulin 
homologous genes in legumes were detected in rice genome which is yet to be 
studied in depth.

In depth research understanding about different physiological and genetic pro-
cesses in legume plants and bacteria as well as detection of key characters for nodu-
lation in legumes might provide opportunity to enable nonlegumes like rice and 
wheat to be engaged in symbiosis with nitrogen fixing bacteria (Kennedy and Tchan 
1992). Consequently, widespread fundamental studies are required to realize rela-
tions between Rhizobium and cereal plants with specific weightage on signal 
exchange mechanisms. Additionally, these altered nodule like structures on lateral 
roots of cereals must develop microaerobic environment for protection of oxygen 
sensitive nitrogenase. To develop oxygen protection mechanism, plant could be 
engineered to accumulate polysaccharides or other O2 eliminating material within 
intercellular space upon infection. Plentiful efforts and management are needed in 
genetics, molecular biology and developmental biology to attain a comprehensive 
understanding of the Rhizobium legume symbiosis and to discover future opportuni-
ties for attaining final objective of expressing active nitrogenase in cereal crops 
(Dixon et al. 1997; Shantharam and Mattoo 1997).

7.9	 �Rhizobium Based Commercially Available Inoculants

Strategies to improve crop production by inoculating plant growth promoting bac-
teria is accelerated as developing technology because of their environment friendly 
potentials. Bioinoculants like biofertilizers has been popularized since many years 
to get advantage positive effects of various soil microbes to boost plant growth and 
yields. Biofertilizers are microbial inoculants comprising of microbial strains hav-
ing capacity of nitrogen fixation, phosphate solubilization/mineralization, phyto-
hormone production and biocontrol activities. Rhizobial strains generally utilized as 
biofertilizers (singly or in mixture) contain a number of genera: Allorhizobium, 
Azorhizobium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium 
(Table 7.7). Prime focus points for development of rhizobial biofertilizer technol-
ogy are development of appropriate formulation with suitable carrier and adoption 
of appropriate application methods. Rhizobia-based inoculants generally used for 
improvement of growth and yield of leguminous crops, whereas Azotobacter and 
Azospirillum for enhancement of cereal growth. On contrary Bacillus and 
Pseudomonas are utilized as biocontrol agents (as biopesticides) against plant dis-
eases (Fravel 2005; Bravo et  al. 2011). Table  7.7 displays certain selected 
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commercially existing rhizobial inoculants with their producers/trade name. The 
development of mass production technology for commercial manufacturing of 
microbial inoculants like biofertilizers is the key point to be considered for spread-
ing wide use of biofertilizers.

7.10	 �Performance and Limitations of Inoculant Strains

Rhizobial inoculation in soil have showed colonization of soil as well as plant roots 
to a extent adequately high for proposed aim. In majority of the cases expected 
effect of biofertilizers inoculation is not witnessed under field conditions in legume 
or cereal plants and frequently fails to increase crop yield (van Elsas and Heijnen 
1990; Akkermans 1994). Regulating factors for performance of microbial strains 
under field conditions includes abiotic soil factors such as texture, pH, temperature, 
moisture content and substrate accessibility which should be determined crucially 
as they showed great influence on survival and activity of inoculated microorgan-
isms (Hegazi et al. 1979; Sindhu and Lakshminarayana 1982; van Veen et al. 1997; 
Hansena et  al. 2018). Efficiency of inoculated nitrogen fixing bacterial strain is 
determined by genetic and physiological efficiency of bacterial strain (Brockwell 
et al. 1995). Insertion of genetic markers viz. antibiotic resistance genes or other 
metabolic markers could assist to mark out introduced strains, whether it is rhizobia, 
cyanobacteria, azotobacter or azospirilla (Wilson et al. 1995).

Table 7.7  Marketed Rhizobium-based biofertilizers

Bacteria Product Company
Rhizobia VAULT® HP plus 

INTEGRAL®

Becker Underwood Corporate, 
USA

Delftia acidovorans and 
Bradyrhizobium

BioBoost Brett Young Seeds Ltd., Canada

Rhizobium sp. SeedQuest® Soygro (Pty) Ltd., South Africa
Rhizobium sp. Legumefix Legume Technology Ltd., UK
Bacillus subtilis and 
Bradyrhizobium japonicum

HiStick N/T, Turbo-N Becker Underwood Corporate, 
USA

B. subtilis and B. japonicum Patrol N/T United Agri Products (UAP) Inc., 
Canada

Burkholderia cepacia type 
Wisconsin

Deny Market VI LLC, Vern Illum 6613 
Naskins Shawnee KS 66216, 
USA

Rhizobium spp. Fasloon Ka Jarasimi 
Teeka

AARI, Faisalabad, Pakistan

Rhizobium spp. BioPower NIBGE, Faisalabad, Pakistan
Rhizobium spp. Biozote NARC, Islamabad, Pakistan
Rhizobium spp. and PGPR Rhizogold ISES, UAF, Faisalabad, Pakistan
Bradyrhizobium spp. 
Mesorhizobium sp. ciceri and 
PGPR

Rhizoteeka, Azoteeka 
and phosphoteeka

CCS Haryana Agricultural 
University, Hisar, India
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A main factor limiting feat of rhizobial inoculants is its inability to survive under 
competitive stress with the native strains for nodulation (Sindhu and Dadarwal 
2000; Sindhu et al. 2003). Rhizobia produces bacteriocins which can inhibit growth 
of and nodulation by the native ineffective strains (Goel et al. 1999; Sindhu and 
Dadarwal 2000). Transfer and expression of genes involved in trifolitoxin synthesis 
i.e. tfx genes in rhizobia resulted in to constant synthesis of trifolitoxin and con-
trolled nodulation by indigenous trifolitoxin-sensitive strains on many leguminous 
crops (Triplett 1988, 1990). Though, efforts to manipulate some rhizobial genes in 
particular legume rhizosphere places for improving competence failed to show 
notable results (Nambiar et al. 1990; Sitrit et al. 1993; Krishnan et al. 1999).

Biotechnological methods for improving nitrogen fixation and crop production 
having narrow utility in field conditions. For example, recombinant strain of R. 
meliloti and B. japonicum showed higher expression of nifA and dctA genes indicat-
ing intensification in rate of N2 fixation but in field conditions, recombinant strains 
didn’t performed well for nitrogen fixation or yield enhancement (Ronson et  al. 
1990). Alteration of nodulation genes to increase bacterial competence generally 
resulted in either no nodulation, delayed nodulation or inefficient nodulation 
(Devine and Kuykendall 1996). Mendoza et al. (1995) improved NH4

+ assimilating 
enzymes in R. etli by adding an extra copy of glutamate dehydrogenase (GDH), 
ultimately showed retardation of nodulation on bean plants. Such inhibitory effect 
was minimized by NifA and thereby postponing the inception of GDH activity after 
nodule formation (Mendoza et  al. 1998). In the same way, efforts to manipulate 
hydrogen uptake (Hup+) ability by cloning hydrogenase genes into Hup- strains of 
Rhizobium showed success only in parts where soybeans are cultivated under 
restricted photosynthetic energy (Evans et  al. 1987). Efforts to construct self-
fertilizing crops for nitrogen was also disappointment due to complex nature of 
nitrogenase enzyme system under unavailability of oxygen safeguard system in 
eukaryotes (Dixon et al. 1997). Stimulation of nodule formation (pseudonodules) in 
wheat and rice crops by lytic enzyme of hormonal treatment displayed nitrogenase 
activity and nitrogen integration in plants. However, the activity expressed is >1% 
of the significance seen in legumes (Cocking et al. 1994).

7.11	 �Conclusion

Biological nitrogen fixation provides nitrogen to leguminous crops and hence con-
sidered to be significant process for improving yield. Symbiotic nitrogen fixing sys-
tems like rhizobia and legumes can fix significant quantity of nitrogen by 
acclimatizing with varied ecological conditions. So that, influence of rhizobia on 
legumes cannot be ascertained exactly under harsh environment and there is need to 
isolate stress tolerant rhizobial strains to act under stress in soil ecosystem which in 
turn ensures survival and growth of inoculated legumes in challenging soil. We are 
enriched with the research about molecular mechanism of nitrogen fixation but it is 
yet to be involved in applied aspects under field studies. As a way out of issue 
regarding establishment of microbes after inoculation, diazotrophic inoculants 
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should be chosen from native ecological boundaries and re-inoculated in similar 
environment for ensuring anticipated benefits. Forthcoming research should con-
centrate on unveiling in situ physiology of inoculant and means to manipulate the 
same. On applied side, idea development of mixed inoculum with ecologically dif-
ferent strains having same roles should be tested as an alternative of monoculture. 
The coinoculation of diazotrophic bacteria with rhizosphere bacteria or the inocula-
tion of microbial consortia is preferable because these microorganisms might 
express beneficial functions more frequently in a soil or rhizosphere system, even 
under ecologically diverse and/or variable circumstances. Hence, both customary 
and biotechnological methodologies can be used to improve nitrogen fixation effi-
ciency and crop production in sustainable agriculture.

In general, inoculative application of Rhizobium provide 10–15% yield increase 
in leguminous crops. On the other hand, anticipated effect of biofertilizer applica-
tion on legumes is generally not attained in field conditions. Commercial inoculants 
generally fails under field condition because of incompetence to strive with the 
native, ineffective microbes, which offers a competitive obstruction to inoculated 
strains. Efforts to operate some rhizobial genes in particular legume rhizosphere 
environment to improve survival under competitive stress were not successful up to 
mark. This chapter emphasize potential of plant growth promoting rhizobia for sus-
tainable agriculture as well as highlighted exceptional characteristics to cope up 
with various biotic and abiotic stresses on a various agricultural crops. Thus, devel-
opment of broad knowledge on screening approaches and concentrated selection of 
superlative Rhizobium strains for rhizosphere competence and survival is required 
to improve field efficiency of applied strains. Characterization of such prospective 
rhizobial strains and evolving a strong technology for farmers is still in developing 
phase. Current developments of ‘omics’ technologies provided prospects to exploit 
genomic, transcriptomic, proteomic and metabolomic means to alter the characters 
of ‘biological designers’ to maximize their plant growth promotion proficiency. 
Bioengineering could possibly be used to operate the tolerance, accumulation and 
degradation potentials of plants and microbes against pollutants.
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