
Chapter 13
Dynamic Characterization of Soils Using
Various Methods for Seismic Site
Response Studies

Pradeep Kumar Dammala and A. Murali Krishna

13.1 Introduction

Effective seismic-resistant design of structures requires thorough investigation of
underlying soil’s response to dynamic loading conditions. Such dynamic behavior
of soils is governed by many factors and is represented in terms of strength and
stiffness properties [1]. The dynamic soil stiffness is traditionally represented using
the strain-dependent properties, often termed as dynamic soil properties: low-strain
shear modulus (Gmax), normalized shear modulus (G/Gmax), and damping ratio (D)
variation with shear strain (γ ). The low-strain (≤0.0001%) shear modulus (Gmax) is
the maximum dynamic shear stiffness a soil can possess and is linear elastic in nature
[2]. With increase in the induced strains, the nonlinearity prevails and plastic strains
are induced in the soil grains [3]. This result in the reduction of shear stiffness with
shear strains, however in contrast, due to the increased work done, material damping
increases [4]. Figure 13.1 illustrates the dynamic soil properties with typical strain
ranges and their expected stress–strain response. In addition, the dynamic strength of
saturated fine-grained soils is also represented using the ability to resist liquefaction
and can be assessed by various field and laboratory equipment [5–8].

The requirement of dynamic soil behavior is application specific for earthquake
geotechnical engineering studies. Some studies include liquefaction susceptibil-
ity analysis for effective mitigation applications [9]; Gmax estimation for elastic
ground response and fatigue analysis of foundations such as Offshore Wind Turbine
(OWT)—[10]; comprehensive dynamic soil properties for Dynamic Soil–Structure
Interaction (DSSI) analysis of deep foundations such as piles and caissons [11, 12]
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Fig. 13.1 Typical representation of strain-dependent dynamic soil properties

and studies involving nonlinear seismic ground response [13, 14]; earth retaining
structures [15, 16]; seismic requalification studies [17–19].

Several field and laboratory testing methods have been developed by many
researchers to investigate the dynamic behavior of soils [14, 20–24]. Field approaches
involve the determination of low-strain properties (shear wave velocity, Vs) while
the laboratory techniques yield the required properties over wide strain range. Some
of the available field tests include seismic cross/up/down-borehole testing; Multi-
channel Analysis of Surface Waves (MASW) [20]. Laboratory testing techniques
include Bender element meant for Gmax determination [22]; Resonant Column (RC)
for dynamic soil properties up to a strain range of 0.1% [25]; Dynamic Simple Shear
(DSS) for properties from 0.01 to 10% [26]; Cyclic Torsional Simple Shear (CTSS)
apparatus for properties at strain range of 0.01–10% [27]; and Cyclic Triaxial (CTX)
apparatus over strains >0.01% [28], see Fig. 13.1 for the testing techniques used to
obtain the strain-dependent dynamic soil properties. Each testing technique is unique
in its application with different advantages and inherent limitations [29].

The present article provides a description of some of the commonly used field and
laboratory testing techniques for dynamic characterization of soils. Typical results
obtained using the techniques are discussed and appropriate analytical formulations
are provided. Furthermore, a seismic ground response study is also presented demon-
strating the applicability of the proposed analytical formulations based on the test
results.
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13.2 Field Tests

Field tests generally involve themeasurement ofwave velocities propagating through
the soil or the response of soil structure systems to dynamic excitation [29]. They can
be grouped either into invasive or noninvasive techniques. Invasive methods require
at least one borehole while noninvasive techniques (also called surface wave or
refraction methods) are based on surface wave measurements. Invasive tests include
seismic cross/up/down-borehole survey. Surface wave tests include Spectral or Mul-
tichannel Analysis of SurfaceWaves (SASWorMASW) and seismic refraction tests.
This section describesMASWand cross-hole tests in detail with some typical results.

13.2.1 Multichannel Analysis of Surface Waves (MASW)

Multichannel Analysis of Surface Waves (MASW) is a noninvasive seismic survey
for evaluating the 1D, 2D, and 3D stiffness profile of the subsurface in terms of shear
wave velocity (Vs). This method has been widely used in professional practice due to
the speed of implementation and is also budget friendly compared to the other seismic
boreholemethods.MASWtest uses the dispersive characteristics of the surfacewaves
with multi-receiver approach for the stratification of, mostly, the assumed vertically
heterogeneous subsurface conditions. Active and passive MASW are different forms
which are classified based on the source considered for the generation of surface
waves [20]. Figure 13.2 schematically represents the active MASW test setup and
instrumentation.

MASW typically consists of three-dependent stages—data acquisition, disper-
sion analysis, and inversion. Data acquisition is related to acquiring the response of
subsurface due to the energy transmitted. Typical active MASW survey requires a
sledgehammer as a source of energy, geophones (12 or more) as receivers and data
acquisition system for recording and storing the data [30, 31]. Figure 13.3 shows a
typical MASW survey with all the steps briefly presented. Upon acquiring the data
using geophones at a specific location, data analysis (dispersion and inversion) is
performed using computer programs such as SURFSEIS, EasyMASW, and Geopsy.
Fixed standards have not been established in the surface wave methods due to the
complexities involved in the data interpretation process and the variety of possible
approaches to surface wave analysis [32]. However, reliable surface velocity strati-
fication can be achieved by proper parameter selection during the data analysis and
recommendations were proposed for efficient filtering techniques [30–32].

Two locations inside the IIT Guwahati campus were considered to provide the
subsoil stratification through Vs profile. An array of 24 geophones with 2 m spacing
in-between, a 10 kg sledgehammer, and 24-bit data acquisition system were used.
Time sampling parameters and data processing using SURFSEIS program can be
found in detail in Kashyap et al. [30]. Figure 13.4 presents the final obtained shear
wave velocity profile of the chosen locations in the IIT Guwahati campus.
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Fig. 13.2 Schematic representation of active MASW setup

Fig. 13.3 Overall procedure of MASW survey [32]

13.2.2 Cross-Hole (CH) Test

Seismic Cross-Hole (CH) survey is an invasive test, whereby the velocity (either
P wave or S wave) of the soil deposit is determined using two or more boreholes.
The seismic energy is generated at the bottom of a borehole while the sensors in the
adjoining borehole at same depth would act as receivers [33]. The mutual distance
is measured along with the arrival times of the waves, yielding the velocity profile.
Figure 13.5 a shows the essentials of the CH survey. The CH test typically requires
two or more boreholes arranged in a straight line array for a better accuracy [29].
Interpretation technique in CH survey is quite straightforward and does not require
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Fig. 13.4 Shear wave velocity variation with depth for the considered soil profiles [30]

Fig. 13.5 a Cross-hole scheme with three boreholes and instrumentation (modified after Garofalo
et al. [35]) b typical wave profile obtained from CH survey [36]

any complex inversion schemes unlike the surface wave methods and hence the
reliability of the results mainly depends on the accuracy of the measurement and in
the precision of the instrumentation [34].

Taipodia et al. [36] conducted CH tests at the IIT Guwahati campus to determine
the P and Swave velocity profile. The seismic source (aBallard shearwave generator)
is installed in one borehole while the 5D sensor (geophone) is lowered to the same
depth as the seismic source in the second borehole. Both the boreholes were 4m apart
and the experiments were conducted by striking the energy generator and recording
the signals using the 5D sensor. The P and S wave velocities were determined by
picking the “first-arrival time picking” method from the recorded signature [36].
Figure 13.5b presents the P and S wave velocities of the borehole. Further details on
arrival time picking and analysis can be found in Taipodia et al. [36].
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All the field tests (both invasive and noninvasive) provide the wave velocities
with a certain degree of uncertainty like any other geotechnical investigations. The
main drawbacks of the field tests are that only low-strain stiffness can be determined
and samples for further analysis cannot be arranged. However, one or two field tests
are always suggested for projects of relevant importance. The invasive test results
for one-dimensional wave profiles are considered relatively reliable compared to the
surface wave methods as the uncertainties involved in the testing and data analysis
are less. However, the use of borehole surveys is limited in the recent days as they
lead to the disturbance in the natural fabric of the soil, ineffective determination of
wave velocities in lateral heterogeneity and the requirement of deep borehole for
deeper wave velocity determination making it cost ineffective [20, 35].

13.3 Laboratory Element Testing Techniques

Field tests provide dynamic stiffness properties only in the low-strain range and
their application is often limited due to the large scale of testing involved. However,
laboratory element testing of the collected field samples would provide the desired
dynamic properties over a wide strain range. In addition, different field conditions
(varying void ratio, plasticity index, confining pressure, etc.) can be explored in the
element testing. This section details some of the widely used laboratory element
testing techniques to investigate the dynamic soil behavior.

13.3.1 Bender Element Testing

Bender element test is a low-strain test in which the maximum shear modulus (Gmax)
of the soil sample is estimated by transmitting and recording a shear/compressional
wave through the sample. Lawrence [37], initially, used the shear plates formeasuring
the shear wave velocity in sands, and later Shirley and Hampton [38, 39] adopted
bender elements formeasuring shearwave velocity formarine sediments. Arulnathan
et al. [40] recommended methods for effective analysis of bender test results. A
bender element is an electro-mechanical transducer which can either bend by change
in the induced voltage or generates a voltage as it bends [22]. Two benders are
installed on the sample—one at the top plate and the latter at the bottom plate to
act as transmitter and receiver, respectively. Figure 13.6 shows a pictorial view of
the bender element apparatus, schematic view of the sample conditions and the
piezoelectric bender elements used for the testing. These benders can be installed on
triaxial, shear, or one-dimensional compressional apparatus and both the tests can
be done on the same sample.

A high-frequency electrical pulse (input signal) applied to the transmitter at the
bottom platen will deform the bender rapidly resulting in a stress wave, transmitting
through the sample toward the receiver. Upon reaching the receiver, the stress wave
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Fig. 13.6 a Bender element apparatus b schematic view of loading on the sample and c view of
transmitting bender at the base
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Fig. 13.7 Typical input and output signals for a bender element test

generates a voltage pulse which can be measured. Figure 13.7 illustrates the input
pulse transmitted and the output signal received at the receiver. The time the stress
wave travels through the sample to reach the receiver element is recorded (Fig. 13.7).
The velocity (Vs) can be estimated using the effective height of the sample (distance
between the two benders at transmitter and receiver—Hs) and the time the stress
wave travels (Ts). Using the shear wave velocity and the density of the sample (ρ),
maximum shear modulus (Gmax) can be estimated.
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Fig. 13.8 Variation of Gmax
with confining pressure for
BP sand at two relative
densities
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Once the velocity is estimated at a particular confining pressure on the sample, the
same sample can be used for determiningwave velocities at other confining pressures.
This is due to the low strains induced in the sample which are not expected to disturb
the natural fabric [22]. Figure 13.8 presents the Gmax results obtained from bender
element test on Brahmaputra sand (BP) at two relative densities (Rd) and varying
confining pressures. The index and engineering properties of BP sand can be found
in the literature [14, 41]. It can be obvious that the increase in the confining pressure
and relative density increases the stiffness of the sample.

13.3.2 Resonant Column (RC) Testing

Resonant column (RC) test is used to measure the shear modulus and damping
characteristics of soils from low to intermediate strain levels (<0.1%). The basic
principle involved in RC testing is the theory of wave propagation in prismatic rods
[2], where a cylindrical soil specimen is harmonically excited till it reaches the state
of resonance (peak response). The RC technique was initially used for soils by Iida
[42], following which the method was further developed by many researchers [43,
44] and was also standardized in ASTM D 4015 [45].

Three different versions ofRCapparatus are available, based on the end conditions
to constraint the specimen. They are: (a) Fixed-free condition [46], in which the
bottom end is fixed against rotation while the top end is free to rotate under applied
torsion. A knownmass is added at the free end to obtain uniform distribution of strain
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Fig. 13.9 a Photographic and b schematic view of RC apparatus [14]

throughout the length of the sample, (b) Spring-base [47], in which an equivalent
spring of stiffness is present at the bottom end of the sample and depending on the
stiffness of the spring relative to the stiffness of the soil, the base end condition can
be fixed or free, (c) Fixed-partially restrained [48], in which the bottom end is fixed
while the top cap is partially restrained by springs acting against an inertial mass.

Figure 13.9 shows a fixed-free type of RC apparatus with the instrumentation
details. In brief, the soil specimen is excited under a harmonic torsional vibration,
induced in the form of electric voltage through the electromagnetic drive system,
consisting of four magnets (Fig. 13.9). Initially, a small amount of electric current
(say 0.001 V) is passed through the magnetic coils and a broad and fine sweep is
conducted to find the exact resonant frequency of the sample [14]. Using this resonant
frequency (f nz), height of sample (H), and the instrument constant (β) which can
be obtained by calibration of the instrument [45], the shear wave velocity (Vs) and
corresponding shear modulus (G) of the sample is determined (Eq. 13.2).

Gmax � ρ · V 2
s � ρ ·

(
2π fnz H

β

)2

(13.2)

Once the resonant frequency is obtained at a particular input voltage, the input
current to the coils is switched off to perform a free vibration test. The response of
the accelerometer with time is recorded from which the amplitude decay curve is
obtained. The peak amplitude of each cycle (A1—An+1 with n as number of cycles of
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Fig. 13.10 Variation of f nz with input voltage, shear modulus and damping ratio with shear strain
for BP sand at 100 kPa effective confining pressure [49]

free vibration) is determined and the corresponding damping ratio (D) is evaluated
as suggested by ASTM D 4015 [45].

D �
(
1

n

)
ln

(
A1

An+1

)
(13.3)

Once the shearmodulus and damping ratio at a particular strain (particular voltage)
are obtained, then the input voltage to the system is increased to obtain resonant
frequency and free vibration response at higher strains. Thus, the voltage is gradually
increased at some intervals till the strains reach 0.1% to yield the variation of shear
modulus and damping ratio. Figure 13.10 shows the typical variation of resonant
frequency with the input voltage, shear modulus, and damping variation with shear
strain for BP sand at 30% relative density and 100 kPa effective confining pressure.
It can be noted that the increase in the voltage increases the strains induced in the
sample resulting in reduced shear stiffness and higher damping ratio [14].

Figures 13.11 presents the variations of shear modulus with shear strain for sam-
ples at different confining pressures for BP sand at 30% relative density which were
further presented in Fig. 13.12 as modulus ratio along with damping ratio curve. It is
obvious that the increase in confining pressure (meaning-overburden depth) increases
the stiffness of the sample while damping ratio decreases. Normalized stiffness (ratio
of shear modulus to Gmax) also increases with the confining pressure indicating that
the depth of overburden decreases the rate of reduction of the stiffness of sands.



13 Dynamic Characterization of Soils Using Various Methods … 283

1E-3 0.01 0.1

20

40

60

80

100

120

50 kPa
100 kPa
300 kPa

Sh
ea

r m
od

ul
us

, M
Pa

Shear strain, %
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confining pressures for 30% relative density [14]

13.3.3 Cyclic Triaxial (CTX) Testing

Cyclic Triaxial (CTX) test is a high strain test, which can be used for determining
both the dynamic soil properties and liquefaction potential of soils [6, 41]. The strain
range typically tested in this apparatus is 0.01–10%. Seed and Lee [6], initially,
used CTX apparatus for assessing liquefaction potential of saturated sands while
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many researchers [28, 41, 50] adopted the apparatus for determining high-strain
dynamic soil properties. Kumar et al. [51] utilized CTX apparatus for determining
the dynamic behavior of northeast Indian cohesive soil and also for assessing its
liquefaction potential. Lombardi et al. [52] used CTX apparatus to investigate the
post-liquefaction behavior of silica sands for application in pile foundations sub-
jected to liquefaction-induced stresses. Both the dry and saturated samples can be
tested using the apparatus [53]. Irregular dynamic excitations can also be applied to
investigate the effect of realistic earthquake motions [41]. The apparatus can be used
for both the stress- and strain-controlled testing [54, 55].

In the CTX apparatus, the soil sample is enclosed inside a triaxial cell through
which harmonic axial loads using the servo-controlled actuator at the top can be
applied andnecessary instrumentation is installed tomeasure the deformations (axial)
and pressures (cell pressure and pore pressure). Figure 13.13 shows a picture of
typical CTX setup and various parts associated with it. The details about sample
preparation, CTX setup, and testing methodology can be found in the literature [24,
41]. Figure 13.14 presents the typical results of liquefaction potential of BP sand
using the CTX system. The stress-controlled test results are presented in Fig. 13.14,
which shows a cyclically varying deviatoric stress of ±20 kPa on the sample applied
at 1 Hz frequency (Fig. 13.14a). Liquefaction susceptibility of a soil sample can
be represented using the pore water pressure ratio (ru) which is the ratio of excess
pore pressures (Δu) to the mean effective confining pressure (σ ′

c). Figure 13.14b
shows the variation of axial strain and ru with loading cycles. It can be noted that the
sudden increase of axial strain was attributed to the full liquefaction condition. Also,
the stress–strain response of the BP sand is presented in terms of deviatoric stress
and axial strain (Fig. 13.14c) and also shear stress and shear strain (Fig. 13.14d). The
possible limitation in the CTX apparatus is that the shear strains have to be estimated
from the axial strains by assuming a Poisson’s ratio, unlike the DSS apparatus,
whereby the shear displacements can directly be applied to the specimens.

Figure 13.15 presents the variation of average pore water pressure ratio with
loading cycles forBP sand at 30% relative density. The results are related to the strain-
controlled tests performed at 100 kPa effective confining pressure. An increase in the
pore pressure ratio can be observed with increase in the input strains and the BP sand
did not show complete liquefaction for low strains (<0.075%) even up to 40 cycles
of loading. However, with the strains beyond 0.075%, increased the tendency toward
liquefaction has been noticed with the input strains. Liquefaction was even observed
below five loading cycles for high strains (0.75%) which shows that high-intensity
ground motions would lead to rapid liquefaction in the sandy deposits [41].

13.3.4 Dynamic Simple Shear (DSS) Testing

Dynamic Simple Shear (DSS) apparatus can be used to investigate the dynamic
behavior of soils from intermediate (0.01%) to high strains (up to 10%). Simple Shear
device dates back almost half a decade (1950s). The device was initially developed
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Fig. 13.13 Cyclic triaxial setup and components [41]

in the UK by Roscoe [56], Scandinavia at SGI [57], and at NGI [26]. Later, Peacock
and Seed [58] extended the simple shear to assess the liquefaction potential and
cyclic strength of soils and named as Dynamic Simple Shear (DSS). A pictorial
view of the apparatus and a schematic view of the soil sample during loading are
shown in Fig. 13.16. The device is similar to a simple shear except that the provision
for cyclic loading through servo-controlled actuator. Axial and lateral displacements
during the testing can be monitored using the LVDTs attached over the sample. The
main advantage of DSS over the triaxial apparatus is that a shear stress/strain can
be directly simulated with the two-way controlled shearing [59]. The soil specimen
is contained using laminated circular rings and during shearing, the rings follow the
movement of soil specimen, see Fig. 13.16 for details. The confinement is provided
through the constant axial stress.

Typical results obtained from the DSS apparatus are presented briefly in this
section. Figure 13.17 presents the cyclic stress–strain response (also called hys-
teresis loops) of BP sand prepared at a medium relative density at normal stress of
100 kPa. The cyclic shear loadswere applied for 1000 cycles (N), however, Fig. 13.16
shows only the first 10 cycles for brevity. Using the hysteresis loops, one can cal-
culate the strain-dependent dynamic shear stiffness and damping ratio [41, 59]. An
important aspect of hysteresis loops needs to be noted: at high shear strain or larger
loading cycles, an asymmetricity in the shape of the loop is observed [41], please see
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Fig. 13.14 Typical results of CTX apparatus for liquefaction assessment on BP sand
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Fig. 13.16 Pictorial and schematic of DSS apparatus

Fig. 13.17 Hysteresis loops
for BP sand at three
confining pressures for
medium density sample
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Fig. 13.17 for details. As the dynamic soil behavior is strain dependent, the dynamic
soil properties should also be based on the realistic asymmetric loops rather than
the traditional symmetric loop calculations. In this view, Kumar et al. [41] presented
a method to calculate the strain-dependent properties using the realistic asymmet-
ric loop. Figure 13.18 describes the methodology followed and the corresponding
formulations.

Figure 13.19 presents the variation of shear modulus and damping ratio of BP
sand evaluated using the asymmetric loop formulations proposed by Kumar et al.
[41]. Reduction in shear modulus with shear strains is obvious with increase in shear
strain, however, an untraditional trend of increase and decrease of damping ratio with
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Fig. 13.18 A typical asymmetric loop with formulations for dynamic soil properties determination
(modified after Kumar et al. [41])
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Fig. 13.19 Variation of shear modulus and D with shear strain for BP sand at 60% relative density
[49]

shear strain has been observed. This uncommon damping behavior is attributed to
the realistic asymmetric loops considered for the evaluation [41].

Once the dynamic soil properties at different shear strains are determined using
independent apparatus, the data needs to be combined for a comprehensive data
over wide strain range. Figures 13.20 and 13.21 provide the data determined using
RC and DSS for BP sand at different relative densities and confining pressures,
respectively. Also, the literature suggested [60, 61] ranges of modulus and damping
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curves for sands are presented (Figs. 13.20 and 13.21). It can be observed that the
modulus values fall rightwards in the low-strain range than the Seed and Idriss [60]
suggested ranges and follow the suggested range in the high strain levels. Similarly,
damping ratio values fall below the suggested ranges, meaning-damping ratio would
be overestimated if the site-specific data is not utilized for earthquake geotechnical
applications [14, 62].

13.4 Analytical Comparisons

Analytical formulations are required in cases where laboratory data is insufficient for
the required conditions. This section describes the analytical comparisons fitted to the
laboratory data of dynamic soil properties to the literature suggested formulations.

13.4.1 Gmax

Several forms of Gmax estimation are available in the literature [63]. Out of the
existingGmax formulations, the equation (Eq. 13.4) proposed by Hardin [64] is being
considered most often in the earthquake geotechnical applications [63, 65, 66] due
to its dimensional consistency and application even to soils of large void ratio [21].
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Fig. 13.21 Modulus ratio variation for BP sand determined from RC and DSS testing

Fig. 13.22 Fitted Gmax
results in Eq. 13.4
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where Pa is atmospheric pressure (101 kPa), A is a constant depending on the type
of soil, and m is a stress-dependent factor. The bender element tests performed on
BP sand were considered for the regression analysis to obtain the best-fit parameters
based on the equation (Eq. 13.4). Figure 13.22 shows the regression analysis of the
bender data and the obtained best-fit parameters—A � 586.5, m � 0.469 with a
correlation coefficient of R2� 0.981.
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Fig. 13.23 Variation of normalized modulus to the normalized shear strain for BP sand

13.4.2 G/Gmax and Damping

Similarly, analytical formulations are required for modulus reduction and damp-
ing ratio variation with shear strain. Hyperbolic and modified hyperbolic stress-
dependent equations were proposed by various researchers in order to model both
the modulus degradation and damping variation [60, 61, 67–71]. Matasovic and
Vucetic [71] formulation (Eq. 13.5) was found to be satisfactorily simulating the
modulus degradation behavior.

G

Gmax
� 1

1 + β
(

γ

γre f

)α (13.5)

where γre f is the reference shear strain (shear strain atG/Gmax value of 0.5 according
to Darendeli [61] and α and β are the curve-fitting parameters adjusting the shape
of the modulus curve. As the shape of modulus curve is soil specific and hence,
the corresponding α and β needs to be determined from the regression analysis of
experimental data. Figure 13.23 presents the regression analysis results in terms of
variation of normalized modulus to the normalized shear strain for BP sand. The
obtained best-fit parameters are also mentioned—α � 1.163 and β � 1.298 with
a correlation coefficient of 0.957. Similar simplified regression analysis has been
performed by Dammala et al. [14].
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Similar to the modulus reduction, analytical expressions for evaluating damping
ratio at a given shear strain was also proposed by several researchers [61, 67–69].
Darendeli [61] related damping ratio (Eq. 13.6) with the modulus reduction and
achieved reasonable estimates.

D(%) � b × Dmas ×
(

G

Gmax

)p

+ Dmin (13.6)

where b and p are the scaling coefficients adjusting the high-strain damping ratio
(p considered as 0.1), Dmas is the masing damping (function of shear strain and the
curvature coefficient (α)), and Dmin is the minimum damping ratio at the lowest
possible shear strain (0.5% based on the experimental results). A regression model
is run to find the best fit values of b. A b value of 0.83 is found with an R2 of 0.803.
Figure 13.24 presents the simplified regression analysis for damping ratio.

Thefinal stiffness curves (bothmodulus and damping) ofBP sand can be estimated
using the regression coefficients (α, β, and b) at any required σ ′

c [14]. Such stiffness
curves can act as a ready-made tool for design engineers, especially during the design
of important structures or the seismic requalification works in the northeastern Indian
region.
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Fig. 13.25 Pore water
pressure ratio variation of BP
sand [49]
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13.4.3 Liquefaction Potential

Liquefaction resistance or susceptibility of soils can be modeled reliably using the
pore water pressure (PWP) formulations. The PWP models simulate the generation
and dissipation of excess pore pressures during cyclic loading. Numerous PWPmod-
els, ranging from simple to complex nature, are available in the literature, see for
example—Hashash et al. [72], Dobry et al. [73], Martin et al. [74], Byrne et al. [75].
However, to perform nonlinear effective stress analysis, some commercial programs
such as DEEPSOIL [76], employ extended Dobry et al. [73] PWP model as the
required input parameters can be efficiently obtained by performing stress/strain-
controlled CTX/DSS tests on saturated soil samples. Based on the strain-controlled
CTX tests on sandy soil, Vucetic and Dobry [77] extended the basic PWP model
developed by Dobry et al. [73] (Eq. 13.7). The model emphasizes the generation of
PWP with the number of cycles (N) and applied cyclic shear strain.

ru,N � p . N . F . (γ − γt )S

1 + N . F. (γ − γt )S
(13.7)

where ru, N � excess PWP ratio at N number of cycles; γ � cyclic shear strain
amplitude; p, F, and s are the curve-fitting parameters; and γ t is the threshold shear
strain below which no significant PWP is generated and is considered as 0.01%
[3]. The fitting parameters (p, F, and s) are obtained by best fitting of the pore
pressure model on the obtained experimental data of BP sand. Figure 13.25 depicts
the obtained results of the PWPmodel with the fitting parameters. Since the dynamic
properties (shear modulus and damping ratio) of BP were evaluated for the first cycle
(N � 1), the fitting parameters of the PWP model have also been evaluated for the
first loading cycle (N � 1).
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Fig. 13.26 Modulus ratio of Indian sandy soils

13.5 Indian Soil Data

Modulus and damping ratio of Indian sandy soils has been collected from the litera-
ture and is shown in Figs. 13.26 and 13.27, respectively, along with the boundaries
proposed for BP sand. Data of four sandy soils determined by various laboratory ele-
ment tests was presented––Bongaigaon sand from northeast India [14], Kasai sand
of eastern India (Kolkata) [65], Saloni sand of northern India [78, 79], and sandy soil
from southern India (Hyderabad region) [80]. Though the proposed modulus and
damping boundaries for BP sand are close to the other sands data, however, there is
still some gap exists in both the damping and modulus.

13.6 Application of Established Soil Properties

A one-dimensional nonlinear (NL) time-domain effective stress GRA, incorporat-
ing the PWP generation and dissipation, has been performed to demonstrate the
applicability of proposed dynamic soil properties and liquefaction parameters. The
computer program DEEPSOIL [76] has been used for the analysis as it is a widely
used nonlinear time-domain site response analysis program which utilizes a dis-
cretized multi-degree-of-freedom lumped parameter model of the 1D soil column.
The hysteretic soil response is captured by a pressure-dependent hyperbolic model
that represents the backbone curve of the soil along with the modified extended
unload–reload Masing rules [72, 81]. Further details about the theoretical back-
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ground of the methodology can be found in [76, 82]. Similar GRA studies for typical
sites in Guwahati city were conducted by [14, 83, 84].

Soil profile considered for the present study is located near the shore of Brahma-
putra river in Guwahati, which is considered as one of themost active seismic regions
of the country with 0.36 g as the expected Peak Bed Rock Acceleration (PBRA) [85].
Figure 13.28 presents the location of the soil profile considered and the seismicity
of the region. Dammala et al. [14, 19] details the soil stratigraphy and further details
regarding the parameters considered for the analysis. In the wake of prior warnings
issued by the seismologists that this region is prone to a pounding seismic event in
the near future, several requalification studies were conducted in this region [19, 86].
Four recorded ground motions of varying ground motion parameters have been used
for the analysis (Table 13.1).

Figure 13.29 presents the ground response analysis results in terms variation of
Peak Ground Acceleration (PGA), peak shear strain, and PWP ratio along the depth
of the profile. Amplification for low-intensity ground motions was observed while
deamplification/attenuation for high-intensity motions was noticed. This pattern of
amplification/attenuation can be justified through the damping characteristics of the
soil sediments, whereby the surficial stratumwhich is loose is expected to experience
high shear strains (Fig. 13.29b) leading to high damping, thereby resulting in attenu-
ation of the incoming waves. In contrast, the low-intensity motions induce less strain
for which the damping is also low leading to high amplifications [88, 89]. In addition,
the ground motions with PBRA > 0.10g liquefy the surficial stratum which is also
justified through the results obtained using the semi-empirical approach proposed by
Idriss and Boulanger [7].
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(a) (b)

Fig. 13.28 a Seismic zonation map of India [85] b seismotectonic faults in the northeastern India
[87]

Table 13.1 Strong motion parameters of the considered ground motions (modified from Dammala
et al. [49])

Earthquake parameters Sikkim 2011
earthquake

Sonitpur 2009
earthquake

Indo-Burma
1988
earthquake

Indo-Burma
1988
earthquake

Short name SKM 0.02g SONIT 0.03g INDBUR
0.18g

INDBUR
0.33g

Date of occurrence 18-09-2011 19-08-2009 06-08-1988 06-08-1988

Moment magnitude 6.8 4.9 7.2 7.2

Epicenter 27.52° N
88.04° E

26.60° N
92.50° E

25.15° N
95.13° E

25.15° N
95.13° E

Recording station IIT Guwahati Guwahati Diphu Diphu

Distance from source
(km)

378 424 193 193

PBRA (g) 0.02 0.031 0.18 0.330

Depth (km) 20 20 91 91

13.7 Summary and Concluding Remarks

Determining the dynamic behavior of soil is a prerequisite for an efficient earthquake-
resistant foundation design. Dynamic behavior of soil can be represented using low-
strain shear modulus, modulus, and damping variation with shear strain along with
the liquefaction potential. Several laboratory and field techniques are available and
this article describes some of the widely used field and laboratory tests for assessing
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the dynamic behavior of soils. Typical results using each test are also presented
for a comprehensive understanding of the reader. As the field test can only provide
the low-strain dynamic stiffness characteristics, it is therefore, necessary to perform
laboratory element tests to completely understand the dynamic behavior of soils over
wide strain range.Analytical formulationswere proposed based on the laboratory test
results and the data is compared to the data collected from literature for Indian sandy
soils. Finally, a seismic ground response study has been conducted to demonstrate
the applicability of proposed formulations.
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