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18.1  Introduction

Piriformospora indica is a root endophytic fungus which belongs to the group 
Basidiomycota having growth-promoting effects in several hosts (Cordoba et  al. 
2009). In plant species, this fungus can be seen growing both inter- and intracellu-
larly by formation of pear shaped chlamydospores. It doesn’t enter endodermis and 
aerial parts of the plants (Cordoba et  al. 2009; McGarvey and Croteau 1995). 
Colonization of P. indica with roots of plant enhanced growth and development of 
host plant, disease resistance against biotic and abiotic stresses as well as phospho-
rus and nitrogen assimilation (Humphrey et al. 2006; Kumar et al. 2012). Fungal 
spore and culture filtrate of P. indica have beneficial effects on plant growth sug-
gesting better nutrient uptake or hormonal signaling by the fungus. Colonized plants 
of P. indica show morphological changes in the root and physiology suggesting the 
induction of regulatory pathways (Yuan et al. 2007). P. indica can be cultured axeni-
cally and has the capability to grow on a number of complex and semisynthetic 
media (Zuccaro et al. 2011). These multifaceted attributes of P. indica led research-
ers to investigate its symbiotic association with a wide range of host plants and 
study the association on molecular basis. Association of P. indica with medicinal 
plants is reported to enhance secondary metabolites production in plants. 
Commercially important bioactive compounds can be enhanced by the use of plant- 
fungus interaction. This symbiotic association of plant-fungus can pave way for an 
alternative way of enhancing the accumulation of secondary metabolites. Molecular 
mechanisms responsible for increasing secondary metabolite content in plants asso-
ciated with P. indica are presently unknown. The possible reason for enhanced accu-
mulation of metabolite could be better nutrient uptake by the host and activation of 
defense-related pathways and associated signaling networks. This chapter reviews 
the most recent literature focus on plant growth promotion, defense mechanisms 
and accumulation of plant bioactive compounds in a diverse variety of crops associ-
ated with P. indica. Both nutritional and non-nutritional factors have been taken into 
account to suggest the biomass enhancement and accumulation of plant secondary 
metabolites upon association with P. indica.

Metabolomic analysis by using high-throughput, gas-chromatography-based 
mass spectrometry observed that 549 metabolites out of 1126 total compounds were 
produced in colonized and uncolonized Chinese cabbage roots having hyphae of P. 
indica (Hua et al. 2017). HPLC analysis of P. indica culture supernatant showed 
seven peaks in the hyphae and one main peak in the culture filtrate. Major peak was 
identified as benzoic acid, but the function is still not clear. The nature of the stimu-
latory effect of P. indica is yet to be known (Adya et al. 2012). Several evidences 
have highlighted that P. indica hyphae secrete many secondary metabolites such as 
hydroxamic acid, indoleacetic acid (IAA), chlorohydroxamic acid, etc. In this 
review, we focus on the role of hydroxamic acid of P. indica in plant growth promo-
tion and defense mechanism.
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18.2  Mechanism of Enzymatic Synthesis of Hydroxamic Acid

Amidase has broad substrate specificity which converts amides to the corresponding 
carboxylic acids and ammonia. Amidase exhibits “Bi-bi Ping-pong” mechanism for 
acyl transfer activity. First the amides react with the enzyme to give acyl-enzyme 
complexes (E-S complexes) which form carboxylic acids. If hydroxylamine is pres-
ent instead of water (in case of acyl transfer activity) which is a strong nucleophilic 
agent, then its interaction with E-S complex results in the production of hydroxamic 
acids (Fig. 18.1). The enzyme retains its original state after the formation of the 
product and is ready to convert another molecule of amide and hydroxylamine to 
hydroxamic acid (Haron et al. 2011; Pandey et al. 2011; Sharma et al. 2012).

18.3  Levels and Effects of Hydroxamic Acid in Plants

Patanun et al. (2017) reported that histone deacetylase (HDAC) inhibitor suberoyl-
anilide hydroxamic acid (SAHA), which is a derivative of hydroxamic acid, can 
alleviate salt stress by decreasing sodium ion concentration in stems and increase 
survival rates under high salinity in cassava (Table 18.1). Transcriptomic analysis 
reveals that SAHA upregulated the expression of allene oxide cyclase which is a 
catalyzing agent and catalyzes important step in biosynthesis of JA. This study dem-
onstrated that the HDAC inhibitor is an effective small molecule for alleviating 
salinity stress in crops and could improve the understanding of the mechanisms by 
which histone acetylation regulates responses to abiotic stress in cassava. SAHA 
treatment can reduce Na+ concentration in both leaves and stems. Plants are able to 
survive high salinity stress conditions through the maintenance of K+ and Na+ 
homeostasis using several transporters (Patanum et al. 2017).

The amount of hydroxamic acid (Hx) concentration in plant varies from species 
to species. There is no evidence available about level of hydroxamic acid in cereal 
seeds (Epstein et al. 1986), but concentration of Hx continuously increased as dis-
cussed above in wheat and maize. It reaches maximum after germination in maize 

Fig. 18.1 Types of reactions catalyzed by amidase. (Modified from Bhatia et al. 2013)
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and wheat (Argandona et al. 1980). Thus, the level of Hx depends upon the cultiva-
tion of crops (Klun and Robinson 1969). Hydroxamic acid is synthesized in all the 
plant species, but relative levels of Hx in roots and aerial part of plants are altered 
within species and cultivar (Argandona et al. 1981). The amount of Hx is predomi-
nantly more in stems as compared to leaf tissue. However, no significant concentra-
tion of Hx was reported in xylem exudates or guttation drops in maize and wheat 
(Argandona and Corcuera 1985; Guthrie et al. 1986). Subsequently, Hx level also 
varies within leaves. Younger leaves contain more Hx as compared to older leaves. 
Hx levels are more in the vascular bundles as compared to the leaves of maize 
(Argandona and Corcuera 1985) and wheat (Agandona et al. 1987). Furthermore, 
lateral veins contain higher amount of Hx as compared to the central vein of maize 
leaves (Argandona and Corcuera 1985). But Hx could not be detected in lower epi-
dermal tissues of wheat leaves. Steler region contains more Hx level as compared to 
cortex in maize seedlings.

Broad spectrum of hydroxamic acid application has been studied in Chilean cul-
tivars where the amount of hydroxamic acid levels was reported maximum at fourth 
or fifth days after seed germination. Interestingly, the level of DIBOA continuously 
decreased, and it became unmeasurable in some cultivars after tenth day of develop-
mental stage, while conversion of benzoxazinoid hydroxamic acids derived from 

Table 18.1 List of hydroxamic acid derivatives and their applications

Hydroxamic acids derivatives Applications References
Benzohydroxamic acid Antitumor, antineoplastic Bhatia et al. (2012)
Acetohydroxamic acid 
(Lithostat)

To treat ureaplasma, anemia, 
anti-HIV agent

Pandey et al. (2011)

Fatty hydroxamic acids Anti-inflammatory to treat chronic 
asthma

Haron et al. (2012)

Deferoxamine B (Desferal) Antimalarial Giannini et al. 2015)
α-Aminohydroxamic acid Anti-HIV agent, psoriasis inhibitor Munster et al. (2001)
Marimastat To treat small cell lung cancers Muri et al. (2002)
Inhibitor of LTA4 Anti-inflammatory
Idrapril Render cardioprotective effects
N-formyl hydroxylamine 
BB-3497

Antibacterial agent

Cyclic hydroxamic acids Provide resistance against pathogen 
and insects

Copaj et al. (2006)

Unsaturated and middle-chain 
hydroxamic acid

Wastewater treatment,nuclear 
technology

Haron et al. (2012)

Nicotinyl hydroxamic acid Tyrosinase and melanin inhibitor Chen et al. (2011) and 
Bhatia et al. (2014)

Spiropiperidine hydroxamic 
acid (SAHA)

Anticancerous Bosiack et al. (2011)

Long-chain hydroxamic acids As surfactants in detergent industry Jahangirian et al. 
(2011a, b)

Poly hydroxamic acid Used for gravimetric analysis and 
scavenging of heavy metal ions

Hassan et al. (2011)
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2-hydroxy-2H-1,4-benzoxazin-3(4H) fluctuated in cereals and wheat callus culture 
(Zuiiiga et  al. 1990). Prospective controls of hydroxamic acids in breeding pro-
grams for developing aphid-resistant cereal cultivation have been studied. 
Hydroxamic acid level in wheat (Triticum aestivum L.) reduced aphid correlation, 
but performance of aphid effect had considerably decreased in primitive diploid and 
tetraploid wheat (Thackray et al. 1990; Copaja et al. 1991).

18.4  Applications of Hydroxamic Acid

18.4.1  Histone Deacetylation by Hydroxamic Acid

Histone deacetylase (HDAC) is a class of enzymes that remove the acetyl groups 
from the histone proteins having an ε-N-acetyl lysine amino acid. This elimination 
of acetyl group allows DNA strand to wrap histone more tightly and regulates acety-
lation and deacetylation, thereby affecting the expression of DNA. Any change in 
the expression and mutations in HDACs gene leads to the development of tumor due 
to uncontrolled cell proliferation, cell cycle, and apoptosis (Giannini et al. 2015).

18.4.2  Effect of Hydroxamic Acid Against Antibiotic-Resistant 
Bacteria

Since pathogenic strains are becoming resistant to existing antibiotics, new 
approaches have to be explored. One such approach is the use of peptide deformy-
lase (PDF). These are important enzymes which play a crucial role in bacteria for 
the synthesis of cell wall and plasma membrane. They belong to metallohydrolases 
family which is the most studied enzyme and an attractive target for drug design 
(Wei et al. 2000). These enzymes require Fe2+ ion for their catalytic activity. In PDF 
ferrous ions bond loosely and hence can easily oxidized into ferric ion, resulting in 
the inactivation of enzyme. Therefore, in order to develop new PDF inhibitor moi-
eties to counteract the pathogenic bacteria, new strategies and chemical compounds 
must be developed. PDF can be used as antibacterial drug design because (1) it is 
present in all bacteria (2), the gene present with this activity is important for bacte-
rial growth in vitro, and (3) it closely resembles with various metallohydrolases. 
Since PDF is a metallohydrolase, hydroxamic acid can potentially inhibit this 
enzyme. Actinonin is a known hydroxamate-containing inhibitor of various metal-
lohydrolases and acts as a chelating group that binds metal ion of the enzyme and 
inhibits its activity (Jayasekera et al. 2000; Wei et al. 2000).

18.4.3  Antibacterial Activity of Hydroxamic Acids

Hydroxamic acids play an important role in defense mechanism of several plants 
and thus function as natural pesticides. The cyclic hydroxamic acids 2, 

18 Synthesis and Application of Hydroxamic Acid: A Key Secondary Metabolite…



396

4-dihydroxy-1, 4-benzoxazin-3-one (DIBOA) and 2, 4-dihydroxy-7-methoxy-1, 
4-benzoxazin-3-one (DIMBOA) act as a defense molecule in cereals against insects 
and pathogenic microorganisms. Erwinia spp. cause soft rot disease in maize, but 
maize protects itself by secreting DIMBOA. DIMBOA is also secreted for the man-
agement of Staphylococcus epidermidis, Enterococcus faecalis, Piriformospora 
aeruginosa, Pseudomonas indica, and Yersinia enterocolitica (Varma et al. 2001; 
Pepeljnjak et al. 2005).

18.4.4  Insecticidal Property of Plant-Derived Hydroxamic Acid

Hydroxamic acids reduced the survival and reproduction of aphids. Different variet-
ies of cereals like wheat, maize, and rye produce different types of hydroxamic 
acids that hamper the growth of aphids (Metopolophium dirhodum). It has been 
reported that aphids fed with DIMBOA have poor survival rate as compared to 
aphids fed with diets lacking DIMBOA. Copaj et al. (2006) reported that a high 
hydroxaminic acid level in maize has similar relation with the resistance to the 
European corn borer Ostrinia nubilalis. Indeed, secondary metabolites can act as 
shielding agents in plants against insects either causing direct toxicity or as repel-
lent (Janzen et al. 1977). A different concentration of hydroxamic acids can have 
diverse effect of aphid interaction in several gramineae. Some of the derivatives of 
hydroxamic acids, in particular DIMBOA-l, have been demonstrated to be inhibi-
tory against insects (Klun et al. 1967; Long et al. 1977), fungi, and bacteria (Corcuera 
et al. 1978; Lacy et al. 1979).

18.4.5  Hydroxamic Acid in Wastewater Treatment and Nuclear 
Technology

Hydroxamic acids have also been reported to have potential use in wastewater treat-
ment and nuclear technology to evolve new methods to reduce contaminating metal 
ions. This serves as a promising approach to clean wastewater contaminated with 
heavy metal ions (Haron et al. 2012).

18.4.6  Hydroxamic Acid in Analytical Chemistry and Detergent 
Industry

Hydroxamic acids have important role in analytical chemistry as reagents for gravi-
metric and spectrophotometric analysis of metal ions (Hassan et al. 2011). Owing to 
their ability to form complex with metal ions, long-chain hydroxamic acids are also 
used as surfactants in the detergent industry (Jahangirian et al. 2011a, b).

B. N. Singh et al.
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18.4.7  Regulation of Hydroxamic Acid Derivatives in Plant 
Signaling

Allene oxide cyclase (AOC) plays a key rate determining step in JA biosynthesis 
and JA derivatives such as methyl jasmonate (MeJA) which have reduced salinity 
stress in soybean (Yoon et al. 2009). Similarly, accumulation constitutive transcripts 
of AOCs elevated plant tolerance capability against salinity stress in tobacco cell 
lines (Yamada et al. 2002) and wheat (Zhao et al. 2014). Interestingly, SAHA treat-
ment sturdily induced the mRNA expression level of MeAOC4. These findings sug-
gested that SAHA application in plant can help JA signaling pathways which 
improves the plants tolerance ability against salinity stress. Another plant hormone 
which involves abscisic acid (ABA) inhibits seed germination, and the regulation of 
ABA biosynthesis has a role in the maintenance of seed dormancy. 9-Cis- 
epoxycarotenoid dioxygenase (NCED) catalyzes the reaction and is considered as a 
rate-limiting enzyme during ABA biosynthesis. Previously, in vitro study has argued 
that two hydroxamic acids, i.e., D4 and D7, used as inhibitors of carotenoid cleav-
age dioxygenase (CCD) and NCED of decrease germination time of tomato 
(Solanum lycopersicum L.) seeds constitutively by greater expression of NCED1 
(Awan et al. 2017). Further, no effect on seedling growth of tomato was observed in 
terms of height, dry weight, and fresh weight post-seed germination. Moreover, 
effect of chemical on seed germination in a tetracycline-inducible LeNCE D1 trans-
gene of tobacco was highlighted where seed germination was controlled through 
chemical induction of NCED gene expression and the chemical inhibition of the 
NCED protein. Application of tetracycline increased germination timing and 
delayed hypocotyl emergence as similar to exogenous application of ABA and 
opposite to the D4 treatment (Awan et al. 2017). Similar effect was also monitored 
where D4 application improved germination percentage in lettuce seeds under 
thermo-inhibitory temperatures.

18.5  P. indica Symbiosis Association with Plant Roots 
Modulated Phytohormone Signaling

Promotion of plant growth is most evident in P. indica infected plants. It is reported 
that phytohormones released by plants under colonization with endophytes leads to 
plant growth promotion (Khatabi et al. 2012). P. indica is reported to promote initial 
stage of plant vegetative growth, thus leading to an early switch to the generative 
stages of host development (Vahabi et al. 2013). Plant root system is a direct target 
of colonizing endophytes. Auxin is a key chemical signal for root development dur-
ing plant-microbe interactions (Hilbert et al. 2012; Franken 2012). Promotion of 
root growth by beneficial microbes is widely studied (Das et al. 2012). Associated 
microbes change the root architecture by interfering with the plant-auxin pathways 
(Rajasekaran et al. 2007). The culture filtrate of P. indica produces substances like 
IAA. This helps in regulation of plant growth and lateral root development (Swanson 
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et al. 1992). A higher level of IAA was found in colonized roots of 3-day-old barley 
seedlings when compared to control. P. indica strains with silenced piTam1 gene 
were reported to have compromised IAA production and decreased colonization of 
barley roots in biotrophic phase (Modi et al. 2014).

Ethylene has an important role in plant development, germination, flower and 
fruit ripening, leaf senescence, and programmed cell death (Vahabi et al. 2015). In 
Arabidopsis, colonization with P. indica interferes with ethylene signaling compo-
nents resulting in increased root colonization and inhibition of growth promotion 
(Pal et  al. 2015). It is reported that repression of ethylene-responsive genes is 
involved in barley when colonized by P. indica. Regulation of host-microbe associa-
tion and root physiology is induced by phytohormones such as cytokinin, gibberel-
lins, jasmonate, salicylic acid, and strigolactone. These are how the associated 
signaling networks and phytohormones work together to generate compatible 
fungus- host interaction. This processes lead to root growth promotion and greater 
biomass accumulation (Kilam et al. 2017).

The investigation of P. indica mycelium extracts showed that mycelium extracts 
(1% v/v) reduced the hairy root growth, while treatment by podophyllotoxin (PTOX) 
and 6-methoxy podophyllotoxin (6MPTOX) after 2 h of production significantly 
stimulated root dry weight (Tashachori et al. 2016). It also has the ability to synthe-
size hydroxamic acid a secondary metabolite, which functions like a natural pesti-
cide (Varma et al. 2001). It has been strongly advocated that P. indica has significance 
as a biofertilizer and biocontrol agent (Waller et al. 2005; Varma et al. 2012). P. 
indica reveals several positive consequences on diverse crop plants and has become 
an important candidate in biotechnological and microbiological research (Barazani 
and Baldwin 2013). It was reported that P. indica induce methionine synthase activ-
ity which facilitates methionine cycle of ethylene biosynthetic pathway (Peškan 
Berghöfer et al. 2004) during its colonization with plant roots via immune suppres-
sion, surprisingly explains the broad host range of the fungus (Schäfer et  al. 
2007; Jacobs et al. 2011).

Ethylene was reported to be involved in P. indica-plant interaction which modu-
lates the interaction between them via signal molecules of fungi as well as plant 
receptors at the root cell surface after the fungal spore reside to attain the desired 
compatibility. Interestingly, ethylene signal magnitude contributes to the coloniza-
tion of plant roots by P. indica where ethylene signaling either inhibits or enhances 
the growth of hyphae depending on the magnitude of signaling (Camehl et al. 2013). 
It is now confirmed that to establish symbiotic relationship, ethylene signaling net-
work requires definite biochemical or genetic role to establish a communication 
across the symbionts as well as host plants to promote physiological benefits to each 
partner (Ansari et al. 2013).

B. N. Singh et al.
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18.6  Symbiosis Association Elevated Nutrient Uptake

The mutual interaction with P. indica and host plant provides enhanced nitrate/
nitrogen uptake (Sherameti et al. 2005; Yadav et al. 2010). Increase in endogenous 
content of N, P, and K was observed in chickpea and black lentil plants colonized 
with P. indica (Nautiyal et al. 2010). In contrast, deficiency of Fe and Cu was sur-
passed when inoculated with P. indica (Gosal et  al. 2011). Kumar et  al. (2011) 
reported that P. indica-treated plants were able to uptake and transport P which may 
be related to increased plant growth and development via their various regulatory, 
structural, and energy transfer processes (Fig. 18.2). Further, Z. mays inoculated 
with P. indica mutant where, a phosphate transporter was knocked out; there was a 
reduction in endogenous content of phosphate (Yadav et al. 2010; Ngwene et al. 
2013).

Further, it has been highlighted that iron deficiency in the growth medium could 
induce Hx level in maize (Manuwoto and Scriber 1985a, b), while lower tempera-
ture reduces Hx levels in maize roots (Thompson et al. 1970). Nitrogen application 
has more impact on Hx level. In gramineae cultivars, nitrogen application increased 
Hx level, while no significant effect of nitrogen was reported in some maize culti-
vars (Manuwoto and Scriber 1985a, b).

Fig. 18.2 P. indica association with host roots and its role in host development. The first step 
shows colonization of hyphae with roots (a). After successful colonization, several secondary 
metabolites are secreted by P. indica hypha (b). Secondary metabolites promote symbiosis, induc-
tion of host genes, and hyperparasitism (c). Subsequently, P. indica balances nutrients level in 
plants through elevated efficacy of different nutrient transporters (d), and activation of JAs/ET 
signaling pathways leads to regulation of defense response (e)

18 Synthesis and Application of Hydroxamic Acid: A Key Secondary Metabolite…
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18.7  Conclusion and Future Prospects

Piriformospora indica synthesizes secondary metabolites including hydroxamic 
acid having multifunctional roles in growth, protection, stress tolerance, and plant 
disease management of agricultural crops. It has the potential to manipulate physio-
chemical properties of the roots and might genetically reprogram root proliferation 
through mutualistic association. Hydroxamic acids can be synthesized naturally as 
well as enzymatically. Enzymatic approach can be used directly for medicinal pur-
poses, plant growth and protection, and nutrient acquisition through hormonal regu-
lation. Several hydroxamic acid derivatives have been chemically synthesized 
which can be applied in the agricultural field for improved disease control and man-
agement leading to improved crop protection. Hydroxamic acid derivatives are used 
as antibacterial agent, biocontrol agent, gene regulator in plant metabolism, and 
mineral uptake. Hydroxamic acid being an effective metal chelator, its role in iron 
chelation in agricultural soil needs to be investigated at molecular and cellular level 
in greater details, especially in those scenarios where severe iron deficiency exists 
in soil. Moreover, symbiotic relationship with phytohormone and P. indica colo-
nized roots needs further investigation. Owing to these advantages of hydroxamic 
acids, research in mass production of P. indica in bioreactors using plant tissue 
culture technique can be a step closer toward commercialization of this agricultur-
ally important compound.
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