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14.1  Introduction

Growth of an organism is determined by mineral nutrient availability, and among all 
the mineral nutrients, nitrogen is the most crucial for plant growth as it is a compo-
nent of proteins, nucleic acids and other cellular constituents. Atmosphere com-
prises about 1015 tonnes of gaseous nitrogen out of which about 1.4 × 108 metric 
tonnes of nitrogen is fixed biologically all over the globe every year. This accounts 
for about 90% of the total nitrogen being fixed in terrestrial environment, and the 
rest 10% is fixed by lightning (Postgate 1982; Zahran 1999). An additional 1.4 × 108 
metric tonnes of nitrogen being fixed each year by utilization of nitrogenous fertil-
izers, fossil fuels and planting of legumes (Vitousek et al. 1997; Gage 2004). The 
prokaryotes are the so far only known source of biological nitrogen fixation being 
carried out by 87 species in 38 genera of bacteria, 2 genera of archaea and 20 genera 
of cyanobacteria (Dixon and wheeler 1986). Nitrogen fixation can be accomplished 
by both free living (Clostridium, Azotobacter, Beijerinckia, Rhodospirillum and 
Chromatium) and symbiotic nitrogen-fixing bacteria (Rhizobium, Bradyrhizobium, 
Mesorhizobium, Sinorhizobium, Azorhizobium and Frankia). Symbiotic nitrogen 
fixation in Leguminosae family is associated with class alphaproteobacteria, family 
Rhizobiaceae, whereas filamentous, gram-positive actinomycete, Frankia, induces 
nodules on a variety of woody plants from the family Betulaceae, Casuarinaceae, 
Rosaceae, Myricaceae, Rhamnaceae, Elaeagnaceae, Coriariaceae and Datiscaceae 
(Benson and Clawson 2000).

Rhizobium is a genus of gram-negative motile bacteria which has the ability to 
fix atmospheric nitrogen. Rhizobium species forms a symbiotic nitrogen-fixing 
association with roots of leguminous plants such as soybean, pea and alfalfa. An 
equivalent term used by other researchers is ‘root nodule bacteria’ (RNB) (Zakhia 
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et al. 2004; Howieson and Brockwell 2005). Soil-inhabiting bacteria, Rhizobium, 
form specific root structure, nodules generally of two types, determinate and inde-
terminate. Differ mainly in that indeterminate nodules are elongated in shape and 
have persistent meristem that continuously form new nodule (Handberg and 
Stougaard 1992).

14.2  Historical Perspective of Rhizobium

Beijerinck (1888) was the first to isolate and culture microorganism from root nod-
ules of different legume species and named it as Bacillus radicicola. Later on, the 
name Rhizobium was proposed by Frank (1889) for nitrogen-fixing bacteria of 
legumes. The word Rhizobia is derived from the Greek word rhíza, meaning “root”, 
and bios, meaning “life”. The term Rhizobium is usually used as a singular form of 
rhizobia. Genera other than Rhizobium were identified later; this includes 
Sinorhizobium (Chen et al. 1988), Bradyrhizobium (Jordan 1982) and Mesorhizobium 
(Jarvis et al. 1997). Nobbe and Hiltner (1896) developed the technology for inocula-
tion of legume with Rhizobium spp. and granted US patent for it (Das et al. 2017). 
Mass production of Rhizobium inoculants began in 1895  in the USA, mostly by 
employing peat-based inoculants (Roughley and Vincent 1967). Besides peat-based 
formulation used worldwide, vermiculite, mineral soil, bentonite, perlite and coal 
are used as rhizobial inoculants (Stephans and Rask 2000; Temprano et al. 2002; 
Das et al. 2017).

14.3  Rhizobial Genome

Rhizobium has a large and complex multipartite genome with genome size varying 
from 5.4 to 9.2 Mb and plasmid number ranges from 0 to 7 (MacLean et al. 2007). 
The genome organization reflects the adaptive potential and the lifestyle of species 
(MacLean et al. 2007; González et al. 2006). Comparative genomic studies reveal 
the evolutionary pattern of rhizobia-legume symbiosis. Outcomes of genome com-
parisons were quite interesting as it revealed that no gene is common and specific to 
all rhizobia (Amadou et al. 2008; Laranjo et al. 2014).

14.4  Rhizobium: Plant Symbiosis

The bacteria colonize plant cells within root nodules and convert atmospheric nitro-
gen into ammonia, a process known as nitrogen fixation (O’Gara and Shanmugam 
1976). The ammonia is used by the plants as a nitrogen source. In turn the rhizobia 
are supplied with nutrients (Lodwig and Poole 2003) and are protected inside the 
nodule structure (van Rhijn and Vanderleyden 1995). However, in ineffective nod-
ules no nitrogen is fixed, yet rhizobia are still supplied with nutrients, and in this 
case, the rhizobia could be considered parasitic (Denison and Kiers 2004). Other 
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genera of rhizobium such as Azorhizobium, Mesorhizobium, Sinorhizobium and 
Bradyrhizobium have also got the ability to fix nitrogen. The rhizobium-legume 
association is unique and specific in that each rhizobial strain has definite host range 
varying from narrow to exceptionally wide (Perret et al. 2000).

14.4.1  Mechanism of Root Nodule Formation

The process of nodule formation involves a complex series of steps (Vincent 1974; 
Newcomb 1981a, b). Plants of Leguminosae family usually secrete a variety of 
organic compounds such as amino acids and flavonoids which are recognized by 
bacterial NodD protein. Rhizobium is generally chemotactic towards the plant roots 
due to the secretion of such compounds (Bergman et  al. 1988; Caetano-Anolles 
et al. 1988; Kurrey et al. 2016). Nodulation takes place due to specific and complex 
interaction between the plant and the Rhizobium. The initial attachment usually 
involves a protein called “rhicadhesin” which is found on the surface of all legumi-
nous plants. Upon binding of these compounds with NodD protein, nodulation 
genes get activated. Rhizobium secretes Nod factors, lipochito-oligosaccharides 
which get recognized by the leguminous plant, and triggers early step of nodulation 
(Pawlowski and Bisseling 1997; Spaink 1992). Host specificity of rhizobia is deter-
mined by terminal sugar residues of lipochito-oligosaccharides secreted by rhizobia 
(Denarie and Cullimore 1993; Fisher and Long 1992; Stokkermans and Peters 
1994). When the root hair of the plant comes in contact with bacterium, the growing 
root hairs get curled and form a pocket for the particular rhizobia (Mylona et al. 
1995). The bacteria invade the plant by forming a new infection thread. The infec-
tion threads progress towards the primordium, and the bacteria are released into the 
cytoplasm of the host cells, surrounded by a plant-derived peribacteroid membrane 
(PBM) (Verma and Hong 1996). This separation usually occurs to suppress plant 
defence responses which are likely to harm the bacteria. The bacteria produce cyto-
kinin which facilitates division of plant cells to form nodules and the nodule forma-
tion initiates on the root hairs. Afterwards, the nodule primordium develops into a 
mature nodule. The bacteria differentiate into their endosymbiotic form, which is 
usually known as bacteroid. Bacteroids, altogether with the surrounding PBMs, are 
called symbiosomes (Roth and Stacey 1989; Guan et al. 1995).

Rapid cell division starts in the infected tissue. The area of N2 fixation is usually 
pink or red in colour due to the presence of “leghaemoglobin” required for active 
oxygen transport (Appleby 1984; Kannenberg and Brewin 1989). The formed nod-
ule establishes a direct vascular connection with the host for nutrient uptake. In the 
process of nodule formation, certain genes called nod genes are involved and are 
known as nodulin genes (van Kammen 1984). The “early nodulin genes” encode 
products which get expressed before the commence of N2 fixation and are involved 
in infection and nodule development. However, the “late nodulin genes” interact 
with the bacterium and aid in metabolic specialization of the nodule (Nap and 
Bisseling 1990).
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14.4.2  The Infection Thread

The invasion of root tissues is initiated by intracellular ‘tunnels’ known as infection 
threads, which initially arise in root hair cells (Callaham and Torrey 1981). In unin-
fected root hairs, the nucleus is paired to the tip by microtubules which facilitate 
new wall material to the growing apex (Lloyd et al. 1987; Ridge 1988). The bacte-
rial infection usually removes the nucleus from the tip and facilitates the pathway 
for incorporation of wall precursors. Initially, the infection thread develops as an 
invagination of root hair wall, and the nucleus migrates towards the base of the root 
hair. The new wall material synthesized is thereafter directed to the tip of the invagi-
nation to produce an interior growing cylinder of wall material bounded by a mem-
brane, and the bacteria embedded in a matrix (Gage 2004). Infection thread 
structures develop subsequently in the underlying cortical cell layers and facilitate 
the bacteria in the infection thread to spread from one cell to adjacent cell (Libbenga 
and Harkes 1973). During this process of tissue invasion, the wall of the infection 
thread limits the rhizobia to the extracellular space, thus preventing its contact with 
the plant plasma membrane (VandenBosch et al. 1989). Cell invasion can only arise 
by endocytosis from unwalled infection droplets that evolve from infection threads 
at a particular stage of development.

As cell divisions in the plant root facilitate the formation of body of the nodule, 
the infection threads start penetrating individual target cells within the nodule. The 
bacteriods are released into the plant cytoplasm itself, enveloped in plasma mem-
brane of the plant (Robertson et al. 1978). Thereafter, the bacteria and plant cells 
differentiate and initiate symbiotic nitrogen fixation and metabolite exchange 
(Sutton et al. 1981; Verma and Long 1983) (Fig. 14.1).

14.5  Rhizobia as Biocontrol Agent and Biofertilizer

Rhizobium spp. has boosted legume production worldwide by enhanced nitrogen 
fixation, plant growth promotion and suppression of soilborne pathogens such as 
Rhizoctonia solani, Pythium spp., Fusarium spp., and Macrophomina phaseolina in 
both legumes and nonlegumes (Table) (Antoun et al. 1978; Malajczuk et al. 1984; 
Chakraborty and Purkayastha 1984; Ehteshamul-Haque and Ghaffar 1993; Nadia 
et al. 2007; Das et al. 2017). Ehteshamul-Haque and Ghaffar (1993) deployed bio-
control potential of Rhizobium leguminosarum, Sinorhizobium meliloti and 
Bradyrhizobium japonicum by soil drenching and seed coating of sunflower, okra, 
mung bean and soybean. Antimicrobial activity of Rhizobium spp. strains ORN 24 
and ORN 83 has been exploited against Pseudomonas savastanoi, olive knot dis-
ease (Maurad et al. 2009). Buonassisi et al. (1986), inoculated seeds of snap bean 
with Rhizobium leguminosarum bv. phaseoli (isolated from nodules of commercial 
snap bean) to control fusarium foot rot of beans caused by Fusarium solani f. sp. 
phaseoli. Inoculation of pea and sugar beet seeds with R. leguminosarum bv. vicieae 
strain R12 significantly reduced the occurrence of pythium damping-off (Bardin 
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et al. 2004). Different strains of Rhizobium were reported to reduce incidence of 
root rot of chickpea, Rhizoctonia solani, and increased the nitrogen fixation, phos-
phorus uptake and plant growth (Hemissi et al. 2011). Seed treatment of chickpea 
with PGPR + Mesorhizobium ciceri provided enhanced plant growth (seedling 
emergence and shoot length) and reduced fusarium wilt of chickpea significantly 
over their single treatment (Kumari and Khanna 2014). Co-inoculation of common 
bean with Rhizobium and Pseudomonas strains was reported to have increased num-
ber of nodules and produce higher yield (Sancheza et al. 2014) (Table 14.1).

14.6  Mechanism of Biological Control by Rhizobia

The mechanism associated with biological control of phytopathogens by rhizobia 
consists of antibiotic production, siderophore production, HCN production, produc-
tion of lytic enzymes, phosphate solubilization, competition and induction of plant 
defence (Arora et al. 2001; Huang and Erickson 2007). Antagonistic activity against 
a wide range of pathogens is due to its ability to produce wide range of secondary 
metabolites such as HCN, siderophore, rhizobitoxin, lytic enzymes, IAA production 
and phosphate solubilization (Antoun et al. 1978; Presmark et al. 1993; Nautiyal, 
1997; Biswas et al. 2000; Deshwal et al. 2003; Pandey and Maheshwari 2007).

Fig. 14.1 Mechanism of nodule formation in rhizobium-legume symbiosis
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Table 14.1 Biological control potential of Rhizobium spp.

S. N. Producer Host
Target plant 
pathogen

Disease 
manage References

1 Rhizobium 
japonicum

Glycine max Fusarium solani Root rot Al-Ani et al. 
(2012)Macrophomina 

phaseolina
Charcoal rot

2 Rhizobium sp. Cicer 
arietinum

Fusarium 
oxysporum f. sp. 
ciceris

Wilt Arfaoui et al. 
(2005)

3 Rhizobium 
meliloti

Arachis 
hypogaea

Macrophomina 
phaseolina

Root rot Arora et al. 
(2001)

Pythium sp. Brown rot of 
groundnut

Bardin et al. 
(2004)

Fusarium solani 
f. sp. phaseoli

Wilt Buonassisi 
et al. (1986)

4 Mesorhizobium 
loti MP6

Brassica 
juncea

Sclerotinia 
sclerotiorum

Sclerotinia 
rot

Chandra et al. 
(2007)

Rhizoctonia 
solani

Root rot Dubey and 
Maheshwari 
(2011)Fusarium 

oxysporum
F. solani

Wilt

Fusarium 
oxysporum f. sp. 
lentis

Wilt Essalmani and 
Lahlou (2002)

5 Rhizobium sp. Phaseolus 
vulgaris

Fusarium solani 
f. sp. phaseoli

Wilt Estevez de 
Jensen et al. 
(2002)

6 Rhizobium sp. Arachis 
hypogaea

Sclerotium rolfsii Stem rot Ganesan et al. 
(2007)

7 Rhizobium sp. Glycine max Cylindrocladium 
parasiticum

Red crown 
rot

Gao et al. 
(2012)

8 Rhizobium 
leguminosarum 
bv. viciae

Pisum sativum
Lens culinaris

Pythium spp. Root rot Huang and 
Erickson 
(2007)

9 Rhizobium sp. Olea europaea Pseudomonas 
savastanoi

Olive knot Kacem et al. 
(2009)

10 Sinorhizobium 
fredii KCC5

Cajanus cajan Fusarium udum Wilt Kumar et al. 
(2010)

11 Ensifer meliloti, 
Rhizobium 
leguminosarum

Trigonella 
foenum- 
graecum

Fusarium 
oxysporum

Wilt Kumar et al. 
(2011)

Phytophthora 
cinnamomi

Root rot Malajczuk 
et al. (1984)

12 Rhizobium sp. 
NBRI9513

Cicer 
arietinum

Fusarium spp. Wilt Nautiyal 
(1997)Rhizoctonia 

bataticola
Dry root rot

Pythium sp. Damping-off

(continued)
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14.6.1  Antibiotic Production

Antibiotic production is one of the major mechanisms of biological control of phy-
topathogens. Several workers have reported different rhizobial strains to produce 
variety of antibiotics (Ligon et al. 2000; Raaijmakers et al. 2002; Deshwal et al. 
2003; Bardin et  al. 2004; Chandra et  al. 2007; Das et  al. 2017). Hirsch (1979) 
reported that 97 strains of R. leguminosarum produces bacteriocins, characterized 
as small and medium based on their size. R. leguminosarum plasmid pRL1J1 carries 
genes for nodulation and bacteriocin production, encodes for medium bacteriocin 
(Hirsch et al. 1980). R. leguminosarum bv. trifolii T24 produces a potent antibiotic, 
trifolitoxin that promote clover nodulation have been reported by Triplett and Barta 
(1987). Different strains of R. leguminosarum bv. viciae, R. leguminosarum bv. tri-
folii, R. meliloti, B. japonicum and S. meliloti have been reported to secrete diverse 
group of antibiotics having potential for inhibition of phytopathogens (Chakraborty 

Table 14.1 (continued)

S. N. Producer Host
Target plant 
pathogen

Disease 
manage References

13 Rhizobium sp. Glycine max Macrophomina 
phaseolina

Charcoal rot Omar and 
Abd-Alla 
(1998)

14 Bradyrhizobium 
sp.

Helianthus 
annuus

Rhizoctonia 
solani

Collar rot Siddiqui et al. 
(2000)

15 Rhizobium sp. Macrophomina 
phaseolina

Charcoal rot Romesh 
Sagolshemcha 
et al. (2017)

16 Rhizobium sp. Vicia faba, 
Cicer 
arietinum, 
Lupinus albus

Fusarium 
oxysporum
Fusarium solani,

Wilt Shaban and 
El-Bramawy 
(2011)

Macrophomina 
phaseolina

Charcoal rot

Rhizoctonia 
solani

Rot

Sclerotium rolfsii Collar rot
17 Bradyrhizobium 

japonicum
Solanum 
lycopersicum

Macrophomina 
phaseolina

Charcoal rot Siddiqui and 
Shaukat (2002)

Fusarium solani Wilt
Rhizoctonia 
solani

Damping- 
off, root rot, 
stem rot and 
stem canker

18 Rhizobium 
leguminosorum

Cicer 
arietinum

Fusarium 
oxysporum f. sp. 
ciceris

Wilt Singh et al. 
(2010)

19 Rhizobium sp. 
RS12

Cicer 
arietinum

Macrophomina 
phaseolina

Dry root rot Smitha and 
Singh (2014)
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and Purkayastha 1984; Bardin et al. 2004; Deshwal et al. 2003; Hafeez et al. 2005; 
Chandra et al. 2007; Gopalakrishnan et al. 2015) (Table 14.2).

14.6.2  Production of Antimicrobial Secondary Metabolites

14.6.2.1  HCN Production
HCN are volatile, secondary metabolite produced during the early stationary phase 
of rhizobacteria (Rezzonico et al. 2007; Knowles and Bunch 1986). HCN is inhibi-
tor of various metalloenzymes such as cytochrome C oxidases of respiratory elec-
tron transport. It disrupts the energy supply to the cell and is highly toxic; even at 
low concentration, it has deleterious effect on growth and development of aerobic 
plant pathogens (Corbett 1974; Gehring et al. 1993; Deshwal et al. 2003; Siddiqui 
et  al. 2006; Martínez-Viveros et  al. 2010). Beauchamp et  al. (1991) and Antoun 
et al. (1998) have reported that 12.5 and 3% of the total strains of rhizobia screened 
were HCN producers, respectively. HCN production has also been reported in 
Mesorhizobium loti MP6, retarding the growth and development of S. sclerotiorum 
causing white rot in Brassica campestris (Chandra et al. 2007). Six Rhizobium spp. 
strains (an isolate from root nodules of chickpea) has been reported to produce 
HCN, reducing the incidence of chickpea wilt by Fusarium oxysporum f. sp. ciceris 
(Arfaoui et al. 2006).

14.6.2.2  Siderophore Production
Iron is one of the key components of metabolic molecules such as ribonucleotide 
reductase, cytochromes, etc. (Guerinot 1994). Some microbes are equipped with the 
ability to produce siderophores, an iron-binding compound of low molecular weight 
(Matzanke 1991; Andrews et  al. 2003). Siderophores scavenges iron (Fe3+) from 
environment under iron stress condition which in turn determines the colonization 
of bacteria on plant roots leaving pathogens (Crowley and Gries 1994; Siddiqui 
2006; Martínez-Viveros et al. 2010). Rhizobia has been endowed with the ability to 
produce a range of siderophores varying from catechol and hydroxamate type (Modi 
et al. 1985; Roy et al. 1994; Persmark et al. 1993), rhizobactin type (Smith et al. 
1985), citrate type (Guerinot et al. 1990), phenolate type (Patel et al. 1988), vicibac-
tin type (Carson et al. 1992), anthranilic acid (Rioux et al. 1986) to dihydroxamate 
type (Carson et al. 2000). Arora et al. (2001) reported that M. phaseolina causing 
charcoal rot of groundnut was inhibited by siderophore-producing strains of 
Rhizobium meliloti under in vitro condition. Seed treatment with hydroxamate sid-
erophore producer, Mesorhizobium loti MP6, reduced the occurrence of white rot of 
Brassica campestris (Chandra et al. 2007).

14.6.3  Lytic Enzyme Production

Chitinases, cellulases, β-1,3-glucanase β-1,4-glucanase, β-1,6-glucanase, proteases, 
pectinase and amylases are some of the lytic enzymes produced by microorganisms 

P. Singh et al.



273

Ta
bl

e 
14

.2
 

R
ep

re
se

nt
at

iv
e 

lis
t o

f 
se

co
nd

ar
y 

m
et

ab
ol

ite
s 

of
 im

po
rt

an
t R

hi
zo

bi
um

 s
pe

ci
es

 (
K

E
G

G
 d

at
ab

as
e 

ac
ce

ss
ed

 o
n 

A
pr

il 
25

, 2
01

8)

R
hi

zo
bi

um
 s

pe
ci

es
Ty

pe
 o

f 
se

co
nd

ar
y 

m
et

ab
ol

ite
B

io
sy

nt
he

si
s 

pa
th

w
ay

St
ru

ct
ur

al
 f

or
m

ul
a

1.
 R

hi
zo

bi
um

 le
gu

m
in

os
ar

um
 b

v.
 

vi
ci

ae
 3

84
1

a)
 M

et
hy

lb
en

zo
at

e
X

yl
en

e 
de

gr
ad

at
io

n

b)
 M

et
hy

lc
at

ec
ho

l
B

en
zo

at
e 

de
gr

ad
at

io
n

O

O

H

H

c)
 3

-O
xo

ad
ip

at
e

C
at

ec
ho

l o
rt

ho
 c

le
av

ag
e

e)
 

3,
4-

D
ih

yd
ro

xy
be

nz
oa

te
Te

re
ph

th
al

at
e 

de
gr

ad
at

io
n

(c
on

tin
ue

d)

14 A Deeper Insight into the Symbiotic Mechanism of Rhizobium spp…



274

R
hi

zo
bi

um
 s

pe
ci

es
Ty

pe
 o

f 
se

co
nd

ar
y 

m
et

ab
ol

ite
B

io
sy

nt
he

si
s 

pa
th

w
ay

St
ru

ct
ur

al
 f

or
m

ul
a

f)
 P

el
ar

go
ni

di
n

Fl
av

on
oi

d 
bi

os
yn

th
es

is

H
O

O
H

O
H

O
H

O
+

g)
 N

ar
in

ge
ni

n
Fl

av
an

on
e 

bi
os

yn
th

es
is

h)
 P

as
pa

lin
e

Pa
sp

al
in

e 
bi

os
yn

th
es

is

H
O

O
H

O
H

O
H

O
+

2.
 M

es
or

hi
zo

bi
um

 o
pp

or
tu

ni
st

um
a)

 C
ar

ba
pe

ne
m

C
ar

ba
pe

ne
m

 b
io

sy
nt

he
si

s

Ta
bl

e 
14

.2
 

(c
on

tin
ue

d)

P. Singh et al.



275
R

hi
zo

bi
um

 s
pe

ci
es

Ty
pe

 o
f 

se
co

nd
ar

y 
m

et
ab

ol
ite

B
io

sy
nt

he
si

s 
pa

th
w

ay
St

ru
ct

ur
al

 f
or

m
ul

a
b)

 M
on

ob
ac

ta
m

M
on

ob
ac

ta
m

 b
io

sy
nt

he
si

s

c)
 A

ca
rb

os
e

A
ca

rb
os

e 
bi

os
yn

th
es

is

d)
 V

al
id

am
yc

in
V

al
id

am
yc

in
 b

io
sy

nt
he

si
s

O
O

O
H

O
H

O
H

O
H

O
H

O
H

O
H

O
H

H
O

H
O H

O

H
N

e)
 N

ov
ob

io
ci

n
N

ov
ob

io
ci

n 
bi

os
yn

th
es

is
O

O

O
O
H

O
H

O
H

O
O

O

N H

O

C
H

3

C
H

3 C
H

3

C
H

3

C
H

3

H
3C

O

H
2N

(c
on

tin
ue

d)

14 A Deeper Insight into the Symbiotic Mechanism of Rhizobium spp…



276

R
hi

zo
bi

um
 s

pe
ci

es
Ty

pe
 o

f 
se

co
nd

ar
y 

m
et

ab
ol

ite
B

io
sy

nt
he

si
s 

pa
th

w
ay

St
ru

ct
ur

al
 f

or
m

ul
a

f)
 P

he
na

zi
ne

Ph
en

az
in

e 
bi

os
yn

th
es

is

3.
 A

zo
rh

iz
ob

iu
m

 c
au

li
no

da
ns

a)
 C

ar
ba

pe
ne

m
C

ar
ba

pe
ne

m
 b

io
sy

nt
he

si
s

b)
 M

on
ob

ac
ta

m
M

on
ob

ac
ta

m
 b

io
sy

nt
he

si
s

Ta
bl

e 
14

.2
 

(c
on

tin
ue

d)

P. Singh et al.



277

(c
on

tin
ue

d)

R
hi

zo
bi

um
 s

pe
ci

es
Ty

pe
 o

f 
se

co
nd

ar
y 

m
et

ab
ol

ite
B

io
sy

nt
he

si
s 

pa
th

w
ay

St
ru

ct
ur

al
 f

or
m

ul
a

c)
 S

tr
ep

to
m

yc
in

St
re

pt
om

yc
in

 b
io

sy
nt

he
si

s

d)
 A

ca
rb

os
e

A
ca

rb
os

e 
bi

os
yn

th
es

is

d)
 V

al
id

am
yc

in
V

al
id

am
yc

in
 b

io
sy

nt
he

si
s

O
O

O
H

O
H

O
H

O
H

O
H

O
H

O
H

O
H

H
O

H
O H

O

H
N

14 A Deeper Insight into the Symbiotic Mechanism of Rhizobium spp…



278

R
hi

zo
bi

um
 s

pe
ci

es
Ty

pe
 o

f 
se

co
nd

ar
y 

m
et

ab
ol

ite
B

io
sy

nt
he

si
s 

pa
th

w
ay

St
ru

ct
ur

al
 f

or
m

ul
a

e)
 N

ov
ob

io
ci

n
N

ov
ob

io
ci

n 
bi

os
yn

th
es

is
O

O

O
O
H

O
H

O
H

O
O

O

N H

O

C
H

3

C
H

3 C
H

3

C
H

3

C
H

3

H
3C

O

H
2N

f)
 P

he
na

zi
ne

Ph
en

az
in

e 
bi

os
yn

th
es

is

4.
 S

in
or

hi
zo

bi
um

 m
el

il
ot

i 1
02

1
a)

 C
ar

ba
pe

ne
m

C
ar

ba
pe

ne
m

 b
io

sy
nt

he
si

s

b)
 M

on
ob

ac
ta

m
M

on
ob

ac
ta

m
 b

io
sy

nt
he

si
s

Ta
bl

e 
14

.2
 

(c
on

tin
ue

d)

P. Singh et al.



279

R
hi

zo
bi

um
 s

pe
ci

es
Ty

pe
 o

f 
se

co
nd

ar
y 

m
et

ab
ol

ite
B

io
sy

nt
he

si
s 

pa
th

w
ay

St
ru

ct
ur

al
 f

or
m

ul
a

c)
 S

tr
ep

to
m

yc
in

St
re

pt
om

yc
in

 b
io

sy
nt

he
si

s

d)
 A

ca
rb

os
e

A
ca

rb
os

e 
bi

os
yn

th
es

is

e)
 N

ov
ob

io
ci

n
N

ov
ob

io
ci

n 
bi

os
yn

th
es

is
O

O

O
O
H

O
H

O
H

O
O

O

N H

O

C
H

3

C
H

3 C
H

3

C
H

3

C
H

3

H
3C

O

H
2N

14 A Deeper Insight into the Symbiotic Mechanism of Rhizobium spp…



280

for disease reduction (Chatterjee et al. 1995; Diby et al. 2005; Gupta et al. 2006; 
Ruiz Duenas and Martinez 1996; Szekeres et al. 2004). There are reports of rhizo-
bial isolates producing chitinase to inhibit pathogenic microbes (Chernin et  al. 
1955; Mazen et al. 2008). Mazen et al. (2008) reported that seed treatment with 
chitinase-producing Rhizobium spp. alone or co-inoculated with mycorrhizal fungi 
leads to reduction of damping-off of fababean. Rhizobium strains isolated from 
Sesbania sesban has been reported to be produce chitinase (Sridevi and Mallaiah 
2008). R. leguminosarum isolate TR2 and Ensifer meliloti isolate TR1 and TR4 
showed β-1,3-glucanase and chitinase activity, respectively, and inhibited fusarium 
wilt of fenugreek (Kumar et al. 2011). Rhizobium sp. Strain RS12, with chitinase- 
producing ability, suppresses diseases of chickpea caused by F. oxysporum, S. 
sclerotiorum and M. phaseolina by preventing mycelia growth and development 
(Smitha and Singh 2014).

14.6.4  Phosphate Solubilization

Phosphorus is present in soil in immobile for and thus become unavailable to 
microbe and plant (Gyaneshwar et al. 2002). Group of rhizobia have been reported 
to be potent phosphate solubilizers, some of them as R. leguminosarum mobilizes 
phosphorus making it available to plant (Rodriguez and Fraga 1999; Mehta and 
Nautiyal 2001). Rhizobium inoculated P. vulgaris showed significant difference in 
acid phosphatase activity in its rhizospheric zone (Makoi et al. 2010). Bradyrhizobium 
strains that have been reported by Deshwal et al. (2003) for their ability to produce 
siderophores, phosphate solubilization and IAA, conferring it strong root coloniz-
ing, growth promotion and vigorous antagonistic activity against M. phaseolina 
(charcoal rot of peanut). Co-inoculation of Rhizobium and phosphate solubilizing 
bacteria have been reported to have synergistic effect increasing nodulation, shoot 
and root nitrogen and phosphorus content (Rugheim and Abdelgani 2009).

14.7  Induction of Plant Defence Mechanisms

Systemic resistance in host is induced by up regulating the expression of defence-
related genes encoding for antioxidant enzymes, hydrolytic enzymes and pathogen-
esis-related proteins. Defence-related enzymes such as polyphenol oxidase, 
L-phenylalanine ammonia lyase, peroxidase, chalcone synthase and isoflavone 
reductase play crucial role in induction of plant defence to pathogenic attack 
(Arfaoui et  al. 2005; Dutta et  al. 2008). Rhizobia have ability to induce defence 
arsenal by triggering production of plant defensive enzymes, phytoalexins, pheno-
lics and flavonoids (Mavrodi et al. 2001; Yu et al. 2002). Phenolics plays a crucial 
role in plant defence by activating plant defence genes, acting directly as structural 
barriers and modulating the pathogenicity, preventing growth and spread of patho-
gens (Ramos et al. 1997 and Dihazi et al. 2003). Mishra et al. 2006 reported that 
inoculation of rice with strains of Rhizobium leguminosarum bv. phaseoli and R. 
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leguminosarum bv. trifolii induces production of phenolics such as ferulic acid, gal-
lic acid and tannic and cinnamic acids, reducing infection by Rhizoctonia solani. 
Induction and accumulation of phytoalexins such as medicarpin and maackiain in 
response to Rhizobium species in planta, protect it from phytopathogens (Weigand 
et al. 1986; Weidemann et al. 1991). A phytoalexin, glyceollin have been reported 
to be produced by Rhizobium and Bradyrhizobium sp. in soybean, which has anti-
microbial activity against plant pathogens (Phillips and Kapulnik 1995) (Fig. 14.2).

14.8  Microbial Secondary Metabolites and Its Importance

Microbial secondary metabolites are low molecular weight compounds, indispens-
able for growth of producing microbes but play an important role in nutrition, health 
and economy of the society (Berdy 2005; Ruiz et al. 2010). Microbial secondary 
metabolites varied widely in its chemical nature from peptides, polyketides, lipids, 
steroids, terpenoids and carbohydrate to alkaloids (O’Brien and Wright 2011). They 
include pigments, toxins, antibiotics, pheromones, antitumor agents, enzyme inhibi-
tors, effectors of ecological competition and symbiosis, receptor antagonist and ago-
nists, immunomodulating agents, pesticides, cholesterol-reducing drugs and growth 
promoters of plants and animals (Demain 1998). These metabolites are not synthe-
sized during logarithmic growth phase but are synthesized during subsequent 

Fig. 14.2 Multifaceted role of Rhizobium sp.
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production stages; stationary phase (idiophase) and metabolites known as idiolites 
(Demain and Fang 2000; Gonzalez et al. 2003; O’Brien and Wright 2011). Production 
of secondary metabolites are brought about by addition and biosynthesis of an 
inducer or exhaustion of nutrients, generate signal which regulate metabolic path-
ways leading to chemical differentiation (Bibbs 2005; Ruiz et al. 2010). Microbial 
secondary metabolites are major source of essential agricultural products and con-
tributes to about half of the pharmaceutical market (Demain and Sanchez 2009). In 
addition to its use as anti-infective drugs, they are used as immunosuppressants to 
facilitate organ transplantation (Verdine 1996; Barber et  al. 2004; Demain and 
Sachez 2009). Autoinducers of secondary metabolites includes oligopeptides of 
gram-positive bacteria, N-acylhomoserine lactone of gram-negative bacteria and 
butanolides of the actinomycetes (Kawaguchi et al. 1988; Demain 1998).

14.9  Rhizobial Formulations

Field applicability of rhizobium for its better exploitation at large scale is deter-
mined by a formulation with appropriate inoculum load. Survivability in higher 
number and for longer period in commercial formulation is major objective of 
developing an inoculants formulation. Mainly two types of commercial formulation 
of Rhizobium are available in market, they are solid and liquid. Solid inoculants are 
prepared by blending broth culture with an appropriate carrier material. Selection of 
carrier material is determined by a number of factors such as survivability of rhizo-
bial cells on carrier material, cost-effectiveness and accessibility, pH buffering 
moisture absorbing capacity, etc. (Date and Roughley 1977; Brockwell and 
Bottomley 1995). Peat-based application of rhizobial inoculants is the most widely 
used method for application of rhizobia worldwide since 1895. A diverse range of 
carriers such as soil material (peat, clay, charcoal) (Chao and Alexander 1984; Beck 
1991; Temprano et al. 2002), perlite (Ronchi et al. 1997; Khavazi et al. 2007), ver-
miculite (Graham-weis et al. 1987), plant by-products (sawdust, peanut shell, corn 
cobs) (Sparrow and Ham 1983) and composts (Kostov and Lynch 1998) are used all 
over the world (Singh et al. 2016; Singh et al. 2017).

Other formulations such as liquid, granular and biofilm-based formulation have 
been studied, but of all formulations only solid- and liquid-based formulations have 
been exploited commercially. Liquid formulations are based on broth culture with 
oil in water suspensions or mineral and organic oil as carriers (Albareda et al. 2008; 
Bashan 1998). Granular formulations such as peat prills (Fouilleux et al. 1996), peat 
inoculants coated on sand (Chamber 1983), perlite/alginate beads (Bashan 1986; 
Hedge and Brahmaprakash 1992) and polymer-coated beads (Brockwell et al. 1980) 
have been studied. Biofilm-based formulation is latest and efficient one having 
greater stability under abiotic and biotic stresses. Bacteria may be grown on carrier 
material to form biofilm or trapped by a fungal matrix (Seneviratne 2003; Seneviratne 
et  al. 2008; Triveni et  al. 2013; Prasanna et  al. 2013; Jayasinghearachchi and 
Seneviratne 2004).
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14.10  Conclusion and Future Prospects

Currently, there is an increasing threat to agricultural sustainability, soil and ground-
water contamination. Biofertilizer and biocontrol agents are used as a highly effi-
cient alternative to chemical fertilizers and chemical pesticides, respectively. 
Rhizobium with promising biofertilization and biocontrol ability can be exploited 
for increasing legume and nonlegume production. Studies regarding secondary 
metabolites of Rhizobium need to be explored for its greater benefit for agriculture. 
Genetic engineering approaches can also be used to incorporate genes for secondary 
metabolites in rhizobial strains lacking it but have potential for biocontrol. Although 
a number of rhizobial biofertilizer such as solid and liquid formulations are avail-
able, better commercial formulations such as polymer and biofilm based need to be 
urgently introduced in the market.
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