
Chapter 4
Initialization of Network Parameters

A thought is a great big vector of neural activity and they have
causal powers.

Geoffrey Hinton

Abstract In this section, we will learn how initialization of the parameters affects a
neural network model. We will explore different initialization techniques and visu-
alize the results.

We will be using the following R packages:

library(ggplot2)
library(gridExtra)
library(InspectChangepoint)

4.1 Initialization

Weight initialization can have a profound impact on both the convergence rate and
the accuracy of our network. While working with deep neural networks, initializing
the network with the correct weights can make the difference between the network
converging in a reasonable time and the loss function “oscillating”, and not going
anywhere even after thousands of iterations.

To understand why is initialization a problem, let us consider the sigmoid function
represented in Fig. 4.1. The sigmoid activation function is approximately linear
when we are close to zero (represented by the red line in the figure). This means that
as the weights tend toward zero, there will not be any nonlinearity, which goes
against the very ethos and advantage of deep layer neural networks.
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Fig. 4.1 The sigmoid function becomes “flat”, at the extremes and “linear” in the middle

If the weights are too small, then the variance of the input signal starts diminishing
as it passes through each layer in the network and eventually drops to a very low
value, which is no longer useful.

If the weights are too large, then the variance of input data tends to increase with
each passing layer and at some point of time, it becomes very large. For very large
values, the sigmoid function tends to become flat (represented by the blue line in
the figure) as we can see in Fig. 4.1. This means that our activations will become
saturated and the gradients will start approaching zero.

Therefore, initializing the network with the right weights is very important if we
want our neural network to function properly and make sure that the weights are in
a reasonable range before we start training the network.

In order to illustrate this fact, let us use our DNN application with four different
weight initializations

(a) Initialize weights to zero.
(b) Initialize weights to a random normal distribution N (0, μ = 0, σ = 1).
(c) The weights are initialized to a random normal distribution but inversely propor-

tional to the square root of the number of neurons in the previous layer (Xavier
initialization).

(d) Initialize weights to a random normal distribution but inversely proportional
to the square root of the number of neurons in the previous layer and directly
proportional to the square root of 2 (He initialization).

A well-designed initialization can speedup the convergence of gradient descent and
increase the chances of a lower training and generalization error. Let us go through
four different types of parameter initializations and what difference do they make on
the cost and convergence.

Before we do that, let us create a spirally distributed planar data set.
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N <- 400 # number of points per class
D <- 2 # dimensionality
K <- 2 # number of classes
X <- data.frame() # data matrix (each row = single example)
Y <- data.frame() # class labels

set.seed(308)

for (j in (1:2)) {
r <- seq(0.05, 1, length.out = N) # radius
t <- seq((j - 1) * 4.7, j * 4.7, length.out = N) + rnorm(N,

sd = 0.3) # theta
Xtemp <- data.frame(x = r * sin(t), y = r * cos(t))
ytemp <- data.frame(matrix(j, N, 1))
X <- rbind(scale(X), Xtemp)
Y <- rbind(Y, ytemp)

}

data <- cbind(X, Y)
colnames(data) <- c(colnames(X), "label")

x_min <- min(X[, 1]) - 0.2
x_max <- max(X[, 1]) + 0.2
y_min <- min(X[, 2]) - 0.2
y_max <- max(X[, 2]) + 0.2

ggplot(data) + geom_point(aes(x = x,
y = y,
color = as.character(label)),

size = 1) +
theme_bw(base_size = 15) +
xlim(x_min, x_max) +
ylim(y_min, y_max) +
coord_fixed(ratio = 0.8) +
theme(axis.ticks=element_blank(),

panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.text=element_blank(),
axis.title=element_blank(),
legend.position = ’none’)

We will split the data set shown in Fig. 4.2, into training and testing data sets (Figs.
4.3 and 4.4).

indexes <- sample(1:800, 600)
train_data <- data[indexes, ]
test_data <- data[-indexes, ]
trainX <- train_data[, c(1, 2)]
trainY <- train_data[, 3]
testX <- test_data[, c(1, 2)]
testY <- test_data[, 3]
trainY <- ifelse(trainY == 1, 0, 1)
testY <- ifelse(testY == 1, 0, 1)

We need to be sure about the dimensions of the training set data and test set data.
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Fig. 4.2 A spiral planar data
set created to visualize the
effects of different parameter
initializations

Fig. 4.3 Spiral planar
training data set

dim(train_data)

[1] 600 3

dim(test_data)

[1] 200 3
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Fig. 4.4 Spiral planar
testing data set

4.1.1 Breaking Symmetry

During forward propagation, each unit in the hidden layer gets signalai = ∑n
i W · xi .

When we initialize all the weights to the same value, each hidden unit receives the
same signal, i.e., if all the weights are initialized to a number n, each unit gets the
same signal every time and would not be able to converge during gradient descent.

If all weights are initialized randomly, then each time the model would search for
a different path to converge and there would be a better chance to find the global
minima. This is what is meant by breaking symmetry. The initialization is asym-
metric, i.e., it is different and the optimization algorithm will find different solutions
to the same problem, thereby seeking a faster convergence.

4.1.2 Zero Initialization

Zero initialization does not serve any purpose because the neural network model
does not perform symmetry breaking. If we set all the weights to be zero, then all
the neurons of all the layers perform the same calculation, giving the same output.
When the weights are zero, the complexity of our network reduces to that of a single
neuron.

layers_dims <- c(2, 100, 1)

init_zero <- n_layer_model(t(trainX), trainY, t(testX), testY,
layers_dims, hidden_layer_act = "relu", output_layer_act = "sigmoid",
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Fig. 4.5 Zero initialization: loss versus iteration

learning_rate = 0.03, num_iter = 5000, initialization = "zero",
print_cost = T)

Cost after iteration 0 = 0.693147
Cost after iteration 1000 = 0.693008
Cost after iteration 2000 = 0.693008
Cost after iteration 3000 = 0.693008
Cost after iteration 4000 = 0.693008
Cost after iteration 5000 = 0.693008
Cost after iteration 5000, = 0.693008;

Train Acc: 50.833, Test Acc: 47.500,
Application running time: 43.305 minutes

From Fig. 4.5 , we can see that zero initialization serves no purpose. The neural
network does not break symmetry.

Let us look at the decision boundary for our zero-initialized classifier on the train
and test data sets (Fig. 4.6).

step <- 0.01

x_min <- min(trainX[, 1]) - 0.2
x_max <- max(trainX[, 1]) + 0.2
y_min <- min(trainX[, 2]) - 0.2
y_max <- max(trainX[, 2]) + 0.2

grid <- as.matrix(expand.grid(seq(x_min, x_max, by = step), seq(y_min,
y_max, by = step)))

Z <- predict_model(init_zero$parameters, t(grid), hidden_layer_act = "relu",
output_layer_act = "sigmoid")

Z <- ifelse(Z == 0, 1, 2)

g1 <- ggplot() + geom_tile(aes(x = grid[, 1], y = grid[, 2],
fill = as.character(Z)), alpha = 0.3, show.legend = F) +
geom_point(data = train_data, aes(x = x, y = y, color = as.character(trainY)),
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Fig. 4.6 Decision boundary with zero initialization on the training data set (left-hand plot) and the
testing data set (right- hand plot)

size = 1) + theme_bw(base_size = 15) + coord_fixed(ratio = 0.8) +
theme(axis.ticks = element_blank(), panel.grid.major = element_blank(),

panel.grid.minor = element_blank(), axis.text = element_blank(),
axis.title = element_blank(), legend.position = "none")

x_min <- min(testX[, 1]) - 0.2
x_max <- max(testX[, 1]) + 0.2
y_min <- min(testX[, 2]) - 0.2
y_max <- max(testX[, 2]) + 0.2

grid <- as.matrix(expand.grid(seq(x_min, x_max, by = step), seq(y_min,
y_max, by = step)))

Z <- predict_model(init_zero$parameters, t(grid), hidden_layer_act = "relu",
output_layer_act = "sigmoid")

Z <- ifelse(Z == 0, 1, 2)
g2 <- ggplot() + geom_tile(aes(x = grid[, 1], y = grid[, 2],

fill = as.character(Z)), alpha = 0.3, show.legend = F) +
geom_point(data = test_data, aes(x = x, y = y, color = as.character(testY)),

size = 1) + theme_bw(base_size = 15) + coord_fixed(ratio = 0.8) +
theme(axis.ticks = element_blank(), panel.grid.major = element_blank(),

panel.grid.minor = element_blank(), axis.text = element_blank(),
axis.title = element_blank(), legend.position = "none")

grid.arrange(g1, g2, ncol = 2, nrow = 1)

As expected, zero initialization is not able to find any decision boundary.

4.1.3 Random Initialization

One of the ways is to assign the weights from a Gaussian distribution which would
have zero mean and some finite variance. This breaks the symmetry and gives better
accuracy because now, every neuron is no longer performing the same computation.
In this method, the weights are initialized very close to zero.
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Fig. 4.7 Random initialization loss versus iteration

layers_dims <- c(2, 100, 1)

init_random <- n_layer_model(t(trainX),
trainY,
t(testX),
testY,
layers_dims,
hidden_layer_act = ’relu’,
output_layer_act = ’sigmoid’,
learning_rate = 0.03,
num_iter = 5000,
initialization = "random",
print_cost = T)

Cost after iteration 0 = 0.693335
Cost after iteration 1000 = 0.603099
Cost after iteration 2000 = 0.378896
Cost after iteration 3000 = 0.293113
Cost after iteration 4000 = 0.218871
Cost after iteration 5000 = 0.172451
Cost after iteration 5000, = 0.172451;

Train Acc: 96.333, Test Acc: 97.500,
Application running time: 43.305 minutes

The random (Gaussian normal) initialization yields a decreasing cost and returns a
training accuracy of 96.3% and a corresponding testing accuracy of 97.5% albeit, it
takes 43.3 minutes to converge (Fig. 4.7).

Let us look at the decision boundary and plot our random (Gaussian normal)
initialized classifier on the train and test data sets (Fig. 4.8).
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Fig. 4.8 Decision boundary with random initialization on the training data set (left-hand plot) and
on the testing data set (right-hand plot)

4.1.4 Xavier Initialization

Let us consider a linear neuron represented as y = w1x1 + w2x2 + · · · + wnxn . We
would want the variance to remain the same with each passing layer. This helps us
to keep the activation values from exploding to a high value or vanishing to zero. We
would therefore need to initialize the weights in such a way that the variance remains
the same for both x and y, by a process known as Xavier initialization. For this
purpose, we can write

var(y) = var(w1x1 + w2x2 + · · · + wnxn)

The right-hand side of the above equation can be generalized as

var(wi xi ) = E[xi ]2var(wi ) + E[wi ]2var(xi ) + var(wi )var(xi )

Considering that the input values and the weight parameter values are coming from
a Gaussian distribution with zero mean, the above equation reduces to

var(wi xi ) = var(xi )var(wi )

or,

var(y) = var(w1)var(x1) + var(w2)var(x2) + · · · + var(wn)var(xn)

Since they are all identically distributed, we can represent the above equation as

var(y) = n × var(wi ) × var(xi )
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If the variance of y needs to be the same as that of x , then the term n × var(wi )

should be equal to 1, or

var(wi ) = 1

n

We therefore need to pick the parameter weights from a Gaussian distribution with
zero mean and a variance of 1/n, where n is the number of input neurons.

In the original paper, the authors [14], take the average of the number input neurons
and the output neurons. So the formula becomes

var(wi ) = 1

navg

where,n[avg] = (n[l − 1] + n[l])/2

wi =
√

2

n[l−1] + n[l] (4.1.1)

Since it is computationally expensive to implement, we only take the number of input
neurons of the previous layer and therefore, Eq.4.1.1 can be written as

wi =
√

2

n[l−1] (4.1.2)

layers_dims <- c(2, 100, 1)

init_Xavier <- n_layer_model(t(trainX),
trainY,
t(testX),
testY,
layers_dims,
hidden_layer_act = ’relu’,
output_layer_act = ’sigmoid’,
learning_rate = 0.03,
num_iter = 5000,
initialization = "Xavier",
print_cost = T)

Cost after iteration 0 = 0.911371
Cost after iteration 1000 = 0.237626
Cost after iteration 2000 = 0.157498
Cost after iteration 3000 = 0.126888
Cost after iteration 4000 = 0.111465
Cost after iteration 5000 = 0.102719
Cost after iteration 5000, = 0.102719;

Train Acc: 97.667, Test Acc: 99.000,
Application running time: 1.090 minutes
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Fig. 4.9 Xavier initialization: loss versus iteration

Fig. 4.10 Decision boundary with Xavier initialization on the training data set (left-hand plot) and
the testing data set (right- hand plot)

The Xavier initialization yields a decreasing cost and returns a higher training
accuracy of 97.66% and testing accuracy is 99%. The time to converge has dropped
from 55min to just about a minute (Fig. 4.9). The decision boundary for our data set,
using Xavier initialisation is shown in Fig. 4.10.

4.1.5 He Initialization

He initialization is named after the first author of [15], 2015. The underlying idea
behind both, He and Xavier initialization is to preserve the variance of activation
values between layers. In this method, the weights are initialized as a function of
the size of the previous layer, which helps in attaining a global minimum of the loss
function faster and more efficiently. The weights are still random but differ in range



98 4 Initialization of Network Parameters

Iteration

lo
ss

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 4.11 He initialization loss: versus iteration

depending on the size of the previous layer of neurons thus providing a controlled
initialization and hence, a faster and more efficient gradient descent. Both the He and
Xavier initializationmethods are able to converge faster than random initialization,
but with He initialization, the errors start to reduce earlier (Fig. 4.11).

layers_dims <- c(2, 100, 1)

init_He <- n_layer_model(t(trainX),
trainY,
t(testX),
testY,
layers_dims,
hidden_layer_act=’relu’,
output_layer_act = ’sigmoid’,
learning_rate = 0.03,
num_iter = 5000,
initialization = "He",
print_cost = T)

Cost after iteration 0 = 1.235932
Cost after iteration 1000 = 0.212091
Cost after iteration 2000 = 0.142321
Cost after iteration 3000 = 0.116169
Cost after iteration 4000 = 0.103672
Cost after iteration 5000 = 0.097017
Cost after iteration 5000, = 0.097017;

Train Acc: 97.333, Test Acc: 99.000,
Application running time: 1.038 minutes

The He initialization yields a steeper decline of the cost and returns a training accu-
racy of 97.33%with a corresponding testing accuracy of 99%. The decision boundary
for our data set, using He initialization is shown in Fig. 4.12. The time to converge
is also lower than all other initializations (Fig. 4.13 and Tables 4.1, 4.2).
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Fig. 4.12 Decision boundary with He initialization on the training data set (left-hand plot) and the
testing data set (right- hand plot)
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Fig. 4.13 Convergence pattern of different initialization methods

Table 4.1 Time to converge for different initializations

Random Xavier He

Cost 0.172 0.102 0.097

Time (minutes) 43.300 1.090 1.030

There is no specific rule for selecting any specific initialization method, though
the He initialization works well for networks with relu activations. Our learnings
are the following:

(a) Different initializations lead to different results.
(b) A well-chosen initialization can speedup the convergence of gradient descent.
(c) Awell-chosen initializationmethod can increase the odds of the gradient descent

converging to a lower training (and generalization) error.
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Table 4.2 Train and test accuracies with different initializations

Initialization Train accuracy Test accuracy

Zero 50.83 47.5

Random 96.30 97.5

Xavier 97.60 99.0

He 97.30 99.0

(d) The parameter weightsW [l] should be initialized randomly to break the symme-
try and makes sure that different hidden units can learn different things.

(e) We should not initialize the parameter weights to large values.
(f) He initialization works best for networks with relu activations.
(g) It is appropriate to initialize the biases b[l] to zeros. Symmetry is still broken so

long as W [l] is initialized randomly.

4.2 Dealing with NaNs

Having amodelwhichyieldsNaNsor Infs is quite common if someof the components
in the model are not set properly. NaNs are hard to deal with because, it may be
caused by a bug or an error in the code or because of the numerical stability in the
computational environment (including libraries, etc.). In some cases, it could relate
to the algorithm itself. Let us outline some of the common issues which can cause
the model to yield NaNs, and some of the ways to get around this problem.

4.2.1 Hyperparameters and Weight Initialization

Most frequently, the cause would be that some of the hyperparameters, especially
learning rates, are set incorrectly. A high learning rate can result in NaN outputs so
the first and easiest solution is to lower it. One suggested method is to keep halving
the learning rate till the NaNs disappear.

The penalty (λ) in the regularization term can also play a part where the model
throws up NaN values. Using a wider hyperparameter space with one or two training
epochs, each could be tried out to see if the NaNs disappear.

Some models can be very sensitive to the weight initialization. If the weights are
not initialized correctly, the model can end up yielding NaNs.
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4.2.2 Normalization

Sometimes, this may be obviated by normalizing the input values (though, normal-
ization is a norm which must be strictly followed).

4.2.3 Using Different Activation Functions

Try using other activation functions like tanh. Unlike ReLUs, the outputs from tanh
have an upper bound in value and may be a solution. Adding more nonlinearity can
also help.

4.2.4 Use of NanGuardMode, DebugMode, or MonitorMode

If adjusting the hyperparameters do not work help, it can be still be sought from
Theano’s NanGuardMode, by changing the mode of the Theano function. This
will monitor all input/output variables in each node, and raise an error if NaNs are
detected. Similarly, Theano’s DebugMode and MonitorMode can also help.

4.2.5 Numerical Stability

This may happen due to zero division or by any operation that is making a number(s)
extremely large. Some functions like, 1

log(p(x)+1) could result inNaNs for those nodes,
which have learned to yield a low probability p(x) for some input x . It is important
to find what are the function input values for the given cost (or any other) function
are and why we are getting that input. Scaling the input data, weight initialization,
and using an adaptive learning rate is some of the suggested solutions.

4.2.6 Algorithm Related

If the above methods fail, there could be a good chance that something has gone
wrong in the algorithm. In that case, we need to inspect the mathematics in the
algorithm and try to find out if everything has been derived correctly.
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4.2.7 NaN Introduced by AllocEmpty

AllocEmpty is used by many operations such as scan to allocate some memory
without properly clearing it. The reason for that is that the allocated memory will
subsequently be overwritten. However, this can sometimes introduce NaN depend-
ing on the operation and what was previously stored in the memory it is working
on. For instance, trying to zero out memory using a multiplication before applying
an operation could cause a NaN if NaN is already present in the memory, since
0 * NaN → NaN.

4.3 Conclusion

We have explored different initialization techniques used in neural networks and
learnt how they affect both convergence time and accuracy. In deep neural networks
where it takes a long time to train a model, initialization of the parameters makes a
big difference.

We have also learnt the hazards of encountering NaN values and how to counter
them.

In the next chapter, we will discuss different optimization techniques which will
further enhance the performance of the deep neural network models.
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