
Chapter 1
Introduction to Machine Learning

I believe that at the end of the century the use of words and
general educated opinion will have altered so much that one will
be able to speak of machines thinking without expecting to be
contradicted.

Alan Turing, 1950

Abstract This chapter will introduce some of the building blocks of machine learn-
ing. Specifically, it will touch upon

• Difference between machine learning, statistics and deep learning.
• A discussion on bias and variance and how they are related to underfitting and
overfitting.

• Different ways to address underfitting and overfitting, including regularization.
• The need for optimization and the gradient descent method.
• Model hyperparameters and different hyperparameters search methods.
• Quantifying and measuring loss functions of a model.

1.1 Machine Learning

Machine learning is a sub-domain of artificial intelligence (AI), which makes a sys-
tem automatically discover (learn) the statistical structure of the data and convert
those representations (patterns) to get closer to the expected output. The process
of learning is improved by a measure of the feedback, which compares the com-
puted output to the expected output. Unlike expert systems, the machine learning
system is not explicitly programmed; it automatically searches for patterns within
the hypothesis space and, uses the feedback signal to correct those patterns.
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To enable a machine learning algorithm to work effectively on real-world data,
we need to feed the machine a full range of features and possibilities to train on.

A typical machine learning workflow includes the following:

• Training the model on a training data set, tuning the model on a development set
and testing the model on an unseen test data set.

• Trying out the above on different yet, appropriate algorithms using proper perfor-
mance metrics.

• Selecting the most appropriate model.
• Testing the model on real-world data. If the results are not upto the speed, repeat
the above by revaluating the data and/or model, possibly with different evaluation
metrics.

We define data sets which we use in machine learning as follows:

• Training set: is the data on which we learn the algorithm.
• Development set: is the data on which we tune the hyperparameters of the model.
• Test set: is the data we use to evaluate the performance of our algorithm.
• Real-world set: is the data on which our selected model will be deployed.

Having data sets from different distributions can have different outcomes on the
evaluation metrics of some or all of the data sets. The evaluation metrics may also
differ if the model does not fit the respective data sets. We will explore these aspects
during model evaluation at a later section.

1.1.1 Difference Between Machine Learning and Statistics

Inmachine learning, we feed labeled data in batches into themachine learningmodel,
and themodel incrementally improves its structural parameters by examining the loss,
i.e., the difference between the actual and predicted values. This loss is used as a
feedback to an optimization algorithm to iteratively adjust the structural parameters.
Training a conventional machine learning model, therefore, consists of feeding input
data to the model to train the model to learn the “best” structural parameters of the
model. While machine learning focusses on predicting future data and evaluation of
the model, statistics is focussed on the inference and explanation cum understanding
of the phenomenon [10].

While a machine learning model is an algorithm that can learn from data without
being explicitly programmed, statistical modeling is a mathematical representation
of the relationship between different variables. Machine learning is a sub-domain of
AI whereas, statistics is a sub-domain of mathematics.
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1.1.2 Difference Between Machine Learning and Deep
Learning

Traditional machine learning techniques find it hard to analyze data with complex
spatial or sequence dependencies, and those that require analyzing data which need
a large amount of feature engineering like problems related to computer vision and
speech recognition. Perception or disambiguation is the awareness, understanding,
and interpretation of information through the senses. In reference [11], deep learn-
ing is proven to be better than conventional machine learning algorithms for these
“perceptual” tasks, but not yet proven to be better in other domains as well.

In deep learning, we use a similar procedure as in machine learning, by transform-
ing the input data by a linear combination of the weights and bias through each layer,
by a process known as forward propagation, which computes the predicted values. A
loss function compares the actual and predicted values and computes a distance score
between these values, thereby capturing howwell the network has done on a batch of
input data. This score is then used as a feedback to adjust the weights incrementally
toward a direction that will lower the loss score for the current input data through
an optimization algorithm. This update is done using a backpropagation algorithm,
using the chain rule to iteratively compute gradients for every layer.

A training loop consists of a single forward propagation, calculation of the loss
score and backpropagation through the layers using an optimizer to incrementally
change the weights. Typically, we would need many iterations over many examples
of input data to yield weight values that would minimize the loss to optimal values.

A deep learning algorithm can be thought of as a large-scale parametric model,
because it has many layers and scales up to a large amount of input data. Below is the
summarization of a grayscale image classification deep learning model having 1.2
million parameters. A model to classify color images can have close to 100million
parameters.

___________________________________________________________________________
Layer (type) Output Shape Param #
===========================================================================
dense_1 (Dense) (None, 100) 1228900
___________________________________________________________________________
dense_2 (Dense) (None, 50) 5050
___________________________________________________________________________
dense_3 (Dense) (None, 15) 765
___________________________________________________________________________
dense_4 (Dense) (None, 1) 16
===========================================================================
Total params: 1,234,731
Trainable params: 1,234,731
Non-trainable params: 0
___________________________________________________________________________
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1.2 Bias and Variance

The three major sources of error in machine/deep learning models are irreducible
error, bias, and variance.

(a) Irreducible Error—is the error which cannot be reduced and its occurrence is
due to the inherent randomness present in the data.

(b) Bias Error—creeps in deep learning when we introduce a simpler model for
a data set which is far more “complex”. To avoid bias error, we would need to
increase the capacity (consider a more complex model) to match up with the
complexity present in the data.

(c) Variance—on the contrary is present in deep learning models if we consider
an overly complex algorithm for a relatively less “complex” task or data set. To
avoid variance in models, we would need to increase the size of the data set.

1.3 Bias–Variance Trade-off in Machine Learning

In machine learning, we can define an appropriate trade-off point between bias and
variance by discovering the appropriate model complexity with respect to the data;
at which point, an increase in bias results in reduction of variance and vice-versa,
as shown by the darkgray circle in Fig. 1.1. Any model complexity short of this
trade-off point will result in an underfitted model and those beyond the trade-off
point, will result in an overfitted model.
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Fig. 1.1 The squared bias keeps decreasing and the variance keeps increasing as the model com-
plexity goes up. The total error starts decreasing till it reaches a point where the model complexity
is optimal, and thereafter it starts increasing. The optimal balance between the squared bias and the
variance is represented by the dark gray circle



1.3 Bias–Variance Trade-off in Machine Learning 5

Bayes error, is the lowest possible prediction error that can be achieved and
is the same as irreducible error. If we have an exact knowledge of the data
distribution, then for a random process, there would still exist some errors. In
statistics, the optimal error rate is also known as the Bayes error rate. Inmachine
learning, the Bayes error can be considered as the irreducible error.
In deep learning, since we deal with problems related to human perception and
therefore, we consider Human-Level Error, as the lowest possible error.

1.4 Addressing Bias and Variance in the Model

One of the important things to understand before we know that our model suffers
from bias, variance, or a combination of both bias and variance, is to understand the
optimal error rate. We have seen earlier that the optimal error is the Bayes error rate.
The Bayes error is the best theoretical function for mapping x to y, but it is often
difficult to calculate this function.

In deep learning, since we are mostly dealing with problems related to human
perceptions like vision, speech, language, etc., an alternative to the Bayes error could
be the human-level performance because humans are quite good at tasks related to
vision, speech, language, etc. So we can ask this question—howwell does our neural
network model compare to human-level performance?

Based on the above, we can state the following:

(a) If there exists a large gap between human-level error and the training error, then
the model is too simple in relation to human-level performance and it is a bias
problem.

(b) If there is a small gap between the training error and human-level error and, a
large difference between training error and validation error, it implies that our
model has got high variance.

(c) If the training error is less than the human-level error, we cannot say for sure if
our model suffers from bias or variance or a combination of both. There are a
couple of domains where our model may surpass human-level performance and
they include product recommendations, predicting transit time (Google maps),
etc.

The actions we can take to address bias and variance are the following:

(a) Bias

(i) Train a more complex model.
(ii) Train for a longer duration.
(iii) Use better optimization algorithms—Momentum, RMSProp, Adam, etc.
(iv) Use different neural network architectures.
(v) Carry out better hyperparameter search.
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Fig. 1.2 Underfitting and Overfitting: An underfitted model is unable to capture the sinusoidal
pattern of the data which is represented by the straight-line linear regression model; an overfitted
model has memorized the training data and the noise and is therefore not able to generalize to the
data

(b) Variance

(i) Use more data to train.
(ii) Use regularization methods, �2, dropout, etc.
(iii) Use data augmentation
(iv) Use different neural network architectures.
(v) Carry out better hyperparameter search.

1.5 Underfitting and Overfitting

Underfitting occurs when there is high bias present in the model and therefore cannot
capture the trend in the data. Overfitting occurs when the model is highly complex
resulting in the model capturing the noise present in the data, rather than capturing
the trend in the data.

This is illustrated in Fig. 1.2, where truemodel is a fourth polynomialmodel repre-
sented by the green curve. The overfitted model oscillates wildly and the underfitted
model can barely capture the trend in the data set.

1.6 Loss Function

The objective function of every algorithm is to reduce the loss L(w), which can be
represented as

L(w) = Measure of fit + Measure of model complexity

In machine learning, loss is measured by the sum of
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• the fit of the model.
• the complexity of the model.

The measure of the model’s fit is determined by

• the MSE (Mean Squared Error) for regression,
• CE (Classification Error) for classification.

Higher the model complexity, higher is the propensity for the model to capture the
noise in the data by ignoring the signal. A measure of the model complexity is
determined by

• the sum of the absolute values of the structural parameters of the model
(�1 regularization),

• the sum of the squared values of the structural parameters of the model
(�2 regularization).

1.7 Regularization

Regularization is the process used to reduce the complexity of the model.
In deep learning, we will use the �2 regularization technique

�2 = w2
0 + w2

1 + · · · + w2
n =

n∑

i=0

w2
i = ‖w‖22

Our objective is to select themodel’s structural parameterswi, such that weminimize
the loss function L(w), by using a weight decay regularization parameter λ on the
�2-norm of the parameters such that, it penalizes the model for larger values of the
parameters.

L(w) = Error metric + λ‖w‖22
When λ is zero, there is no regularization; values greater than zero force the

weights to take a smaller value. When λ = ∞, the weights become zero.
Since we are trying to minimize the loss function with respect to the weights, we

need an optimizing algorithm, to arrive at the optimal value of the weights. One of
the optimizing algorithms which we use in machine learning is the gradient descent.
Other popular optimization algorithms used in deep learning is discussed in Sect. 5.

Regularization, significantly reduces the variance of a deep learning model,
without any substantial increase in its bias.
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Fig. 1.3 Gradient descent involves reaching the globalminima, sometimes traversing throughmany
local minima

1.8 Gradient Descent

Gradient descent is an optimization algorithm used to find the values of weights and
biases of the model with an objective to minimize the loss function.

Analogically, this can be visualized as “descending” to the lowest point of a valley
(the lowest error value), known as the global minima, as shown in Fig. 1.3. In the
process, the descent also has a possibility of getting stuck at a local minima and there
are ways to work around and come out of the local minima by selecting the correct
learning-rate hyperparameter.

The cost of the model is the sum of all the losses associated with each training
example. The gradient of each parameter is then calculated by a process known as
batch gradient descent. This is the most basic form of gradient descent because we
compute the cost as the sum of the gradients of the entire batch of training examples.

In Fig. 1.4, we consider the loss function with respect to one weight (in reality
we need to consider the loss function with respect to all weights and biases of the
model). To move down the slope, we need to tweak the parameters of the model by
calculating the gradient ( ∂J

∂W ) of the loss function, which will always point toward
the nearest local minima.

Having found the magnitude and direction of the gradient, we now need to nudge
the weight by a hyperparameter known as the learning rate and then update the
value of the new weight (toward the direction of the minima). Mathematically, for
one iteration for an observation j and learning rate α, the weight update at time step
(t + 1) can be written as follows:

Repeat till convergence

w
(t+1)
j = w

(t)
j − α

∂J
∂w

(1.8.1)

Figure1.5 is a contour plot showing the steps of a gradient descent optimization
for a sigmoid activation neural network having an input with two features. In a real
model, the inputs may have many features and the loss function may have multiple
local minima. The gradients are calculated for all the parameters while iterating over
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Fig. 1.5 A contour plot showing the cost contours of a sigmoid activation neural network and the
cost minimization steps using the gradient descent optimization function

all the training examples. This makes things way harder to visualize, as the plot will
have many multiple dimensions.

For large size data sets, batch gradient descent optimization algorithm can take a
long time to compute because it considers all the examples in the data to complete one
iteration. In such cases, we can consider a subset of the training examples and split
our training data into mini-batches. In the mini-batch gradient descent method, the
parameters are updated based on the current mini-batch and we continue iterating
over all the mini-batches till we have seen the entire data set. The process of looking
at all the mini-batches is referred to as an epoch.

When the mini-batch size is set to one we perform an update on a single training
example, and this is a special case of the mini-batch gradient descent known as
stochastic gradient descent. It is called “stochastic” because it randomly chooses
a single example to perform an update till all the examples in the training data set
have been seen.

Ideally, in any optimization algorithm, our objective is to find the global minimum
of the function, whichwould represent the best possible parameter values. Depending
on where we start in the parameter space, it is likely that we may encounter local
minima and saddlepoints along the way. Saddlepoints are a special case of local
minima where the derivatives in orthogonal directions are both zero. While dealing



10 1 Introduction to Machine Learning
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Fig. 1.6 The training process involves optimizing the cost to arrive at the optimal structural pa-
rameters using the training data, optimization of the hyperparameters using the development data,
and evaluating the final model using the testing data

with high-dimensional spaces, the chances of discovering the global minima is quite
low (Fig. 1.3).

There aremany approaches to overcome this problem—use amoving average gra-
dient (Momentum), adaptively scaling the learning-rate in each dimension according
to the exponentiallyweighted average of the gradient (RMSProp) and by using a com-
bination of the moving average gradient and adaptive learning rates (Adam). These
methods have been discussed in Sects. 5.3.6. Figure 1.6 is a schematic of how the
model deals with different sections of the available data.

1.9 Hyperparameter Tuning

During the model training process, our training algorithm handles three categories
of data:

• The input training data—is used to configure our model to make accurate predic-
tions from the unseen data.

• Model parameters—are the weights and biases (structural parameters) that our
algorithm learnswith the input data. These parameters keep changing duringmodel
training.

• Hyperparameters—are the variables that govern the training process itself. Before
setting up a neural network, we need to decide the number of hidden layers,
number of nodes per layer, learning rate, etc. These are configuration variables
and are usually constant during a training process.

Structural parameters like the weights and biases are learned from the input
dataset, whereas the optimal hyperparameters are obtained by leveraging mul-
tiple available datasets.

A hyperparameter is a value required by our model which we really have very little
idea about. These values can be learned mostly by trial and error.

While the model (structural) parameters are optimized during the training process
by passing the data through a cycle of the training operation, comparing the resulting
predictionwith the actual value to evaluate the accuracy, and adjusting the parameters
till we find the best parameter values; the hyperparameters are “tuned” by running
multiple trials during a single training cycle, and the optimal hyperparameters are
chosen based on the metrics (accuracy, etc), while keeping the model parameters
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unchanged. In both the cases, we are modifying the composition of our model to find
the best combination of the model parameters and hyperparameters.

1.9.1 Searching for Hyperparameters

In standard supervised learning problems, we try to find the best hypothesis in a given
space for a given learning algorithm. In the context of hyperparameter optimization,
we are interested in minimizing the validation error of a model parameterized by a
vector of weights and biases, with respect to a vector of hyperparameters. In hyper-
parameter optimization, we try to find a configuration so that the optimized learning
algorithm will produce a model that generalizes well to new data. To facilitate this,
we can opt for different search strategies:

• A grid search is sometimes employed for hyperparameter tuning.With grid search,
we build amodel for each possible combination of all of the hyperparameter values
in the grid, evaluate each model and select the hyperparameters, which give the
best results.

• With random search, instead of providing a discrete set of values to explore, we
consider a statistical distribution of each hyperparameter, and the hyperparameter
values are randomly sampled from the distribution.

• A greedy search will pick whatever is the most likely first parameter. This may
not be a good idea always.

• An exact search algorithm as its name signifies, searches for the exact value.
Algorithms belonging to this search methodology are BFS (Breadth First Search)
and DFS (Depth First Search).

• In deep learning for Recurrent Neural Networks, we apply what is known as the
Beam Search.

We also have the Bayesian optimization technique belonging to a class of (SMBO)
Sequential Model-Based Optimization [8] algorithms, wherein we use the results
of our search using a particular method to improve the search for the next method.
The hyperparameter metric is the objective function during hyperparameter tuning.
Hyperparameter tuning finds the optimal value of this metric (a numeric value),
specified by the user. The user needs to specify whether this metric needs to be
maximized or minimized.

For most data sets, only a few of the hyperparameters really matter but different
hyperparameters are important for different data sets. Thismakes the grid search
a poor choice for configuring algorithms for new data sets. [6]
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1.10 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is a method used to determine parameter
values of the model. The parameter values are found such that they maximize the
likelihood that the process described by the model produces the data that were actu-
ally observed. We would, therefore, pick the parameter values which maximizes the
likelihood of our data. This is known as the maximum likelihood estimate. Mathe-
matically, we define it as

argmax
θ

P(y | x; θ) (1.10.1)

To arrive at the likelihood over all observations (assuming they are identical and
independent of one another, i.e., i.i.d.), we take the product of the probabilities as

argmax
θ

n∏

i=1

P(y(i) | x(i); θ) (1.10.2)

We assume that each data point is generated independently of the others, because if
the events generating the data are independent, then the total probability of observing
all our data is the product of observing each data point individually (the product of
the marginal probabilities).

We know that the probability density of observing a single data point generated
from a Gaussian distribution is given by

P(x;μ, σ) = 1√
2πσ 2

e−(
(x−μ)2

2σ2
) (1.10.3)

To obtain the parameters μ and σ 2 of a Gaussian distribution, we need to solve the
following maximization problem:

max
μ,σ 2

log(μ, σ 2; x1, . . . , xn)

The first-order conditions to obtain a maximum are

∂

∂μ
log(μ, σ 2; x1, . . . , xn) = 0

and,
∂

∂σ 2
log(μ, σ 2; x1, . . . , xn) = 0

The partial derivative of the log-likelihood with respect to the mean is
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∂

∂μ
(logP(x;μ, σ)) = ∂

∂μ
log(μ, σ 2; x1, . . . , xn)

= ∂

∂μ
log

{
1√
2πσ 2

e−(
(x−μ)2

2σ2
)

}

= ∂

∂μ

⎧
⎨

⎩−n

2
ln(2π) − n

2
ln(σ 2) − 1

2σ 2

n∑

j=1

(xj − μ)2

⎫
⎬

⎭

= 1

σ 2

n∑

j=1

(xj − μ)

= 1

σ 2

⎧
⎨

⎩

n∑

j=1

xj − nμ

⎫
⎬

⎭
(1.10.4)

Solving for μ in Eq.1.10.4

μ = 1

n

n∑

j=1

xj (1.10.5)

Similarly, the partial derivative of the log-likelihood with respect to the variance is

∂

∂σ 2
(logP(x;μ, σ)) = ∂

∂σ 2
log(μ, σ 2; x1, . . . , xn)

= ∂

∂σ 2
log

{
1√
2πσ 2

e−(
(x−μ)2

2σ2

}

= ∂

∂σ 2

⎧
⎨

⎩−n

2
log(2π) − n

2
log(σ 2) − 1

2σ 2

n∑

j=1

(xj − μ)2

⎫
⎬

⎭

= − n

2σ 2
−

⎛

⎝1

2

n∑

j=1

(xj − μ)2

⎞

⎠
(

− 1

(σ 2)2

)

= 1

2σ 2

⎛

⎝ 1

σ 2

n∑

j=1

(xj − μ)2 − n

⎞

⎠

(1.10.6)
Assuming σ 2 �= 0, we can solve for σ 2

σ 2 = 1

n

n∑

j=1

(xj − μ̂)2 (1.10.7)
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Fig. 1.7 The four data points and the possible Gaussian distributions from which they were drawn.
The distributions are normally distributed with (μ = −2, σ 2 = 1), (μ = 0, σ 2 = 1), and (μ =
1, σ 2 = 1). Themaximum likelihood estimation predicts that the data points belong to the Gaussian
distribution defined with (μ = 0.325, σ 2 = 5.52) by maximizing the probability of observing the
data

Let us consider four data points on the x-axis. We would want to know which curve
was most likely responsible, for our observed data points. We will use MLE to find
the values of μ and σ 2 to discover the gaussian distribution, that best fits our data
(Fig. 1.7).

points <- c(-3, -0.7, 2, 3)
(mu = sum(points)/length(points)) # Refer Eq. 1.10.5

[1] 0.325

(var = (1/length(points))*sum((points-mu)ˆ2)) # Refer Eq. 1.10.7

[1] 5.516875

1.11 Quantifying Loss

1.11.1 The Cross-Entropy Loss

When we develop a machine learning model for probabilistic classification, we try to
map the model inputs to probabilistic predictions by an iterative method of training
the model (by adjusting the model’s parameters), so that our predictions are close to
the true probabilities.

To arrive at our computed predictions, which are close to the true predictions, we
need to reduce the loss (Mean Squared Error/Classification Error). In this section,
we will try to define this error in terms of the Cross-Entropy(CE) Loss. But before
that, we will revisitMLE, define Entropy of a model, its follow up to Cross-Entropy
and, its relation to the Kulback–Liebler Divergence.
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In Sect. 1.10, we have seen that the maximum likelihood is that which maximizes
the product of the probabilities of a data distribution, which most likely gave rise to
our data. Since logarithms reduce potential underflow, due to very small likelihoods,
they convert a product into a summation and finally, the natural logarithmic function
being a monotonic transformation (if the value on the x-axis increases, the value on
the y-axis also increases); it is but natural to apply the log function to our likelihood
Eq. (1.10.2), to obtain the log-likelihood

log P(y | x; θ) = log
n∏

i=1

P(y(i) | x(i); θ)

=
n∑

i

log P(y(i) | x(i); θ)

(1.11.1)

1.11.2 Negative Log-Likelihood

The maximazition of the negative log-likelihood of the estimated data distribution
reduces the error of our machine learning model.

In Linear Regression, we maximize the log-likelihood (Eq. 1.11.1) of the Gaus-
sian distribution. We may recall that θT x = μ

log[P(y | x; θ)] =
n∑

i

log P(y(i) | x(i); θ)

=
n∑

i

log
1

σ
√
2π

exp− (y(i)−θT x(i))2

2σ2

=
n∑

i

log
1

σ
√
2π

+
n∑

i

log

(
exp− (y(i)−θT x(i))2

2σ2

)

= n log
1

σ
√
2π

− 1

2σ 2

n∑

i=1

(y(i) − θT x(i))2

= k1 − k2

n∑

i=1

(y(i) − θT x(i))2

(1.11.2)

We can state that minimizing the negative log-likelihood is equivalent to maximizing
the likelihood estimation since

arg max(x)
x

= arg min(−x)
x
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Maximizing Eq.1.11.2 implies that we need to minimize the mean- squared error
between the observed y and the predicted ŷ; therefore, minimizing the negative log-
likelihood of our data with respect to θ is also the same as minimizing the mean
squared error.

In Logistic Regression, we define φ = 1
1+exp−θT x , and the negative log-likelihood

can be written as

−log P(y | x; θ) = −log
n∏

i=1

(φ(i))y
(i)
(1 − φ(i))(1−y(i))

= −
n∑

i=1

log((φ(i))y
(i)
(1 − φ(i))(1−y(i)))

= −
n∑

i=1

y(i)log(φ(i)) + (1 − y(i))log(1 − φ(i))

(1.11.3)

In Eq.1.11.3, minimizing the negative log-likelihood of the data with respect to θ

is the same as minimizing the binary log loss (binary cross-entropy, discussed in
the following section) between the observed y values and the predicted probabilities
thereof.

In a Multinoulli Distribution, the negative log-likelihood can be written as

−log P(y | x; θ) = −log
n∏

i=1

K∏

k=1

π
yk
k

=
n∑

i=1

K∑

k=1

yk log(πk)

(1.11.4)

In Eq.1.11.4 minimizing the negative log-likelihood of the data with respect to θ is
the same as minimizing the multi-class log loss (categorical cross-entropy), between
the observed y values and the predicted probabilities thereof.

1.11.3 Entropy

Entropy in heat engineering and classical thermodynamics, is a measure of “dis-
order” based on the second law of thermodynamics, which states that a system’s
entropy never decreases spontaneously. From the concept of thermodynamics, it is
the (log of) number of microstates or microscopic configurations. Intuitively, if the
particles inside a system have many possible positions to move around, then the
system has high entropy, and if they stay rigid, then the system has low entropy.
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Fig. 1.8 The natural logarithm is a monotonically increasing function

In Information theory, entropy is a measure of uncertainty involved in making
a prediction. Intuitively, we can describe entropy as how “surprised” would we be
of the outcome, after we have made our initial prediction. If we consider an unfair
coin that actually turns up a head 99% of the time it is tossed, we would be indeed
very surprised if a particular toss turns up a tail. If we can average out the amount
of surprise, the mean value of surprise is a measure for how uncertain we are. This
measure of uncertainty is called entropy. Entropy therefore defines randomness; it is
like describing how unpredictable something is.

If we consider a set of possible events with known probabilities of occurrence
being y1; y2; . . . yn, as per [9] entropy is a means to find a measure of how much
‘choice’ is involved in the selection of the event or of how uncertain we are of the
outcome. This measure, H (y1; y2; . . . yn) would then be defined by the following
properties

• H should be continuous in the yi.
• If all the yi are equal, yi = 1

n , then H should be a monotonic increasing function
of n. The natural logarithm is a monotonically increasing function, implying that
if the value on the x-axis increases, the corresponding value on the y-axis also
increases (see Fig. 1.8).

• If a choice be broken down into two successive choices, the original H should be
the weighted sum of the individual values of H .

The only H satisfying the three above assumptions is of the form

H =
n∑

i=1

yilog(yi) (1.11.5)

Interpretation of Entropy

If we consider two events with probabilities p and 1-p the entropy H can be written
as

H = −[p log(p) + (1 − p) log(1 − p)] (1.11.6)
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Fig. 1.9 Plot of Entropy with probabilities p and 1 − p

Entropy can be easily interpreted from Fig. 1.9 as

• When p = 1, H = 0 implies that we are certain of the outcome and if we are
not certain of the outcome, H is positive. Intuitively when p = 0, an event never
occurs, it cannot contribute to the entropy, as it is never expected to occur and
therefore H = 0.

• H ismaximumwhen all the pi are equal, i.e., 1n . This is themost uncertain situation.

Entropy is the weighted average of the log probability of the possible events, which
measures the uncertainty present in their probability distribution. The higher the
entropy, the less certain are we about the value.

1.11.4 Cross-Entropy

Cross-entropy (CE) loss, or log-loss, measures the performance of a classification
model whose output has a probability value between 0 and 1. As the predicted prob-
ability diverges from the actual value the CE loss consequently increases. Therefore
say, predicting a probability of 0.021 when the true observed value is 1 would result
in a high CE loss. A perfect model, therefore, should have a CE loss of 0.

How close is the predicted probability distribution to the true distribution, i.e., to
find the cross-entropy loss, we use

H (y, ŷ) =
∑

i

yilog
1

ŷi
= −

∑

i

yilog(ŷi) (1.11.7)

where,
∑

i yi is the true probability distribution and
∑

i ŷi is the computed probability
distribution

Let us go through an example where we have three training items with the fol-
lowing computed outputs and target outputs
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Table 1.1 Target values and computed probabilities of a neural network

Class A Class B Class C

Target 0.000 1.000 0.000

Computed probability 0.128 0.719 0.153

For the data in Table1.1, we can calculate the cross-entropy, using Eq.1.11.7 as
equal to 0.475, and it gives us a measure of how far away is our prediction from the
true distribution.

H = -(0.0 * log2(0.128) + 1.0 * log2(0.719) + 0.0 * log2(0.153))
H

[1] 0.4759363

In binary classification, where the number of output class labels are two, CE is
calculated as

CELoss = H (y, ŷ) = −(y log(ŷ) + (1 − y)log(1 − ŷ)) —for binary classification
(1.11.8)

In multi-class classification, where the number of output class labels are more than
two, i.e., n-labels, CE is calculated as

CELoss = H (y, ŷ) = −
n∑

1

yi log(ŷi) —for multi-class classification (1.11.9)

1.11.5 Kullback–Leibler Divergence

Kullback–Leibler1 Divergence (KLDivergence) from ŷ to y is the difference between
CE (Eq.1.11.7) and entropy (Eq.1.11.5). It quantifies the additional uncertainty in y
introduced by using ŷ to approximate y

KL(y || ŷ) =
∑

i

yi log
1

ŷi
−

∑

i

yi log
1

yi

= H (y, ŷ) − H (y)

=
∑

i

yilog
yi
ŷi

(1.11.10)

1Named after Solomon Kullback and Richard Leibler in 1951.
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In information theory, the KL Divergence measures the number of bits required
on average to encode symbols from y according to ŷ. The KL Divergence is never
negative, and it is zero only when y and ŷ are the same. Minimizing CE is the same
as minimizing the KL Divergence from ŷ to y.

1.11.6 Summarizing the Measurement of Loss

Let us consider the empirical true distribution to be p and, the predicted distribution
(the model we are trying to optimize) to be q.

From the above discussions,we can state that KL divergence allows us tomeasure
the difference between two probability distributions.

• The entropy, H (p) of a distribution p, gives us an estimate of the uncertainty
present in the distribution or, how certain can we be of the outcome.

• The Cross-Entropy H (p, q) between two distributions p and q, quantifies the
difference between the two probability distributions; i.e., how close is the predicted
distribution to the true distribution. In machine learning classification problems,
the Cross-Entropy loss, i.e., log-loss, measures the Cross-Entropy between the
empirical distribution of the labels (given the inputs) and the distribution predicted
by the model. In binary classification, the cross-entropy is proportional to the
negative log- likelihood, and therefore minimizing the negative log-likelihood is
equivalent to maximizing the likelihood.

• The difference, i.e., KL(p || q), measures the average number of extra bits per
message, whereasH (p, q) measures the average number of total bits per message.

• If the empirical distribution p is fixed it would be equivalent to say that we are
minimizing theKL divergence between the empirical distribution and the predicted
distribution. As we can see in the expression above, the two are related by the
additive termH (p), i,e, the entropy of the empirical distribution. Because p is fixed,
H (p) does not change with the parameters of the model, and can be disregarded
in the loss function. This may not be true where p may also vary.

1.12 Conclusion

We have touched upon the basic facets, which define a machine learning algorithm.
Machine learning belongs to the domain of AI and it endeavors to develop mod-
els (statistical programs) from exposure to training data. The process of training a
machine learning algorithm results in a model, and is therefore called a learning
algorithm.
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Deep learning is another subset of AI, where models represent geometric trans-
formations over many different layers.

In both machine learning and deep learning, the real knowledge are the structural
parameters, i.e., the weights and biases of themodel. The common ground, therefore,
is to discover the best set of parameters, which will define the best model.
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