
Abhijit Ghatak

Deep Learning
with R

Deep Learning with R

Abhijit Ghatak

Deep Learning with R

123

Abhijit Ghatak
Kolkata, India

ISBN 978-981-13-5849-4 ISBN 978-981-13-5850-0 (eBook)
https://doi.org/10.1007/978-981-13-5850-0

Library of Congress Control Number: 2019933713

© Springer Nature Singapore Pte Ltd. 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-13-5850-0

I dedicate this book to the deep learning
fraternity at large who are trying their best,
to get systems to reason over longtime
horizons.

Preface

Artificial Intelligence

The term ‘Artificial Intelligence’ (AI) was coined by John McCarthy in 1956, but
the journey to understand if machines can truly think began much before that.
Vannevar Bush [1] in his seminal work—As We May Think,1—proposed a system
which amplifies people’s own knowledge and understanding.

Alan Turing was a pioneer in bringing AI from the realm of philosophical
prediction to reality. He wrote a paper on the notion of machines being able to
simulate human beings and the ability to do intelligent things. He also realized in
the 1950s that it would need a greater understanding of human intelligence before
we could hope to build machines which would “think” like humans. His paper titled
“Computing Machinery and Intelligence” in 1950 (published in a philosophical
journal called Mind) opened the doors to the field that would be called AI, much
before the term was actually adopted. The paper defined what would be known as
the Turing test,2 which is a model for measuring “intelligence.”

Significant AI breakthroughs have been promised “in the next 10 years,” for the
past 60 years. One of the proponents of AI, Marvin Minsky, claimed in
1967—“Within a generation…, the problem of creating “artificial intelligence” will
substantially be solved,” and in 1970, he quantified his earlier prediction by
stating—“In from three to eight years we will have a machine with the general
intelligence of a human being.”

In the 1960s and early 1970s, several other experts believed it to be right around
the corner. When it did not happen, it resulted in drying up of funds and a decline in
research activities, resulting in what we term as the first AI winter.

During the 1980s, interest in an approach to AI known as expert systems started
gathering momentum and a significant amount of money was being spent on

1https://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/.
2https://www.turing.org.uk/scrapbook/test.html.

vii

https://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/
https://www.turing.org.uk/scrapbook/test.html

research and development. By the beginning of the 1990s, due to the limited scope
of expert systems, interest waned and this resulted in the second AI winter.
Somehow, it appeared that expectations in AI always outpaced the results.

Evolution of Expert Systems to Machine Learning

An expert system (ES) is a program that is designed to solve problems in a specific
domain, which can replace a human expert. By mimicking the thinking of human
experts, the expert system was envisaged to analyze and make decisions.

The knowledge base of an ES contains both factual knowledge and heuristic
knowledge. The ES inference engine was supposed to provide a methodology for
reasoning the information present in the knowledge base. Its goal was to come up
with a recommendation, and to do so, it combined the facts of a specific case (input
data), with the knowledge contained in the knowledge base (rules), resulting in a
particular recommendation (answers).

Though ES was suitable to solve some well-defined logical problems, it proved
otherwise in solving other types of complex problems like image classification and
natural language processing (NLP). As a result, ES did not live up to its expecta-
tions and gave rise to a shift from the rule-based approach to a data-driven
approach. This paved the way to a new era in AI—machine learning.

Research over the past 60 years has resulted in significant advances in search
algorithms, machine learning algorithms, and integrating statistical analysis to
understand the world at large.

In machine learning, the system is trained rather than explicitly programmed
(unlike that in ES). By exposing large quantities of known facts (input data and
answers) to a learning mechanism and performing tuning sessions, we get a system
that can make predictions or classifications of unseen input data. It does this by
finding out the statistical structure of the input data (and the answers) and comes up
with rules for automating the task.

Starting in the 1990s, machine learning has quickly become the most popular
subfield of AI. This trend has also been driven by the availability of faster com-
puting and availability of diverse data sets.

A machine learning algorithm transforms its input data into meaningful outputs
by a process known as representations. Representations are transformations of the
input data, to represent it closer to the expected output. “Learning,” in the context of
machine learning, is an automatic search process for better representations of data.
Machine learning algorithms find these representations by searching through a
predefined set of operations.

To summarize, machine learning is searching for useful representations of the
input data within a predefined space, using the loss function (difference between the
actual output and the estimated output) as a feedback to modify the parameters
of the model.

viii Preface

Machine Learning and Deep Learning

It turns out that machine learning focuses on learning only one or two layers of
representations of the input data. This proved intractable for solving human per-
ception problems like image classification, text-to-speech translation, handwriting
transcription, etc. Therefore, it gave way to a new take on learning representations,
which put an emphasis on learning multiple successive layers of representations,
resulting in deep learning. The word deep in deep learning only implies the number
of layers used in a deep learning model.

In deep learning, we deal with layers. A layer is a data transformation function
which carries out the transformation of the data which goes through that layer.
These transformations are parametrized by a set of weights and biases, which
determine the transformation behavior at that layer.

Deep learning is a specific subfield of machine learning, which makes use of
tens/hundreds of successive layers of representations. The specification of what a
layer does to its input is stored in the layer’s parameters. Learning in deep learning
can also be defined as finding a set of values for the parameters of each layer of a
deep learning model, which will result in the appropriate mapping of the inputs to
the associated answers (outputs).

Deep learning has been proven to be better than conventional machine learning
algorithms for these “perceptual” tasks, but not yet proven to be better in other
domains as well.

Applications and Research in Deep Learning

Deep learning has been gaining traction in many fields, and some of them are listed
below. Although most of the work to this date are proof-of-concept (PoC), some
of the results have actually provided a new physical insight.

• Engineering—Signal processing techniques using traditional machine learning
exploit shallow architectures often containing a single layer of nonlinear feature
transformation. Examples of shallow architecture models are conventional
hidden Markov models (HMMs), linear or nonlinear dynamical systems, con-
ditional random fields (CRFs), maximum entropy (MaxEnt) models, support
vector machines (SVMs), kernel regression, multilayer perceptron (MLP) with a
single hidden layer, etc. Signal processing using machine learning also depends
a lot on handcrafted features. Deep learning can help in getting task-specific
feature representations, learning how to deal with noise in the signal and also
work with long-term sequential behaviors. Vision and speech signals require
deep architectures for extracting complex structures, and deep learning can
provide the necessary architecture. Specific signal processing areas where deep

Preface ix

learning is being applied are speech/audio, image/video, language processing,
and information retrieval. All this can be improved with better feature extraction
at every layer, more powerful discriminative optimization techniques, and more
advanced architectures for modeling sequential data.

• Neuroscience—Cutting-edge research in human neuroscience using deep
learning is already happening. The cortical activity of “imagination” is being
studied to unveil the computational and system mechanisms that underpin the
phenomena of human imagination. Deep learning is being used to understand
certain neurophysiological phenomena, such as the firing properties of dopa-
mine neurons in the mammalian basal ganglia (a group of subcortical nuclei of
different origin, in the brains of vertebrates including humans, which are
associated with a variety of functions like eye movements, emotion, cognition,
and control of voluntary motor movements). There is a growing community
who are working on the need to distill intelligence into algorithms so that they
incrementally mimic the human brain.

• Oncology—Cancer is the second leading health-related cause of death in the
world. Early detection of cancer increases the probability of survival by nearly
10 times, and deep learning has demonstrated capabilities in achieving higher
diagnostic accuracy with respect to many domain experts. Cancer detection from
gene expression data is challenging due to its high dimensionality and com-
plexity. Researchers have developed DeepGene,3 which is an advanced cancer
classifier based on deep learning. It addresses the obstacles in existing somatic
point mutation-based cancer classification (SMCC) studies, and the results
outperform three widely adopted existing classifiers. Google’s CNN system4 has
demonstrated the ability to identify deadline skin cancers at an accuracy rate on
a par with practitioners. Shanghai University has developed a deep learning
system that can accurately differentiate between benign and malignant breast
tumors on ultrasound shear wave elastography (SWE), yielding more than 93%
accuracy on the elastogram images of more than 200 patients.5

• Physics—Conseil Europeen pour la Recherche Nucleaire (CERN) at Geneva
handles multiple petabytes of data per day during a single run of the Large
Hadron Collider (LHC). LHC collides protons/ions in the collider, and each
collision is recorded. After every collision, the trailing particles—a Higgs boson,
a pair of top quarks, or some mini-black holes—are created, which leave a
trailing signature. Deep learning is being used to classify and interpret these
signatures.

• Astrophysics—Deep learning is being extensively used to classify galaxy
morphologies.6

3https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1334-9.
4https://www.nature.com/articles/nature21056.
5https://www.umbjournal.org/article/S0301-5629(17)30002-9/abstract.
6https://arxiv.org/abs/0908.2033.

x Preface

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1334-9
https://www.nature.com/articles/nature21056
https://www.umbjournal.org/article/S0301-5629(17)30002-9/abstract
https://arxiv.org/abs/0908.2033

• Natural Language Processing—There has been a rising number of research
papers (see Fig. 1) among the research community since 2012, as is reflected in
the paper titled Recent Trends in Deep Learning Based Natural Language
Processing by Young et al.

• Near human-level proficiency has been achieved in (a) speech recognition,
(b) image recognition, (c) handwriting transcription, and (d) autonomous driv-
ing. Moreover, super-human-level performance has been achieved by AlphaGo
(built by Google) when it defeated the world's best player Lee Sedol at Go.

Intended Audience

This book has been written to address a wide spectrum of learners:

• For the beginner, this book will be useful to understand the basic concepts of
machine/deep learning and the neural network architecture (Chaps. 1 and 2)
before moving on to the advanced concepts of deep learning.

• For the graduate student, this book will help the reader understand the behavior
of different types of neural networks by understanding the concepts, while
building them up from scratch. It will also introduce the reader to relevant
research papers for further exploration.

Fig. 1 Percentage of deep learning papers submitted for various conferences—Association for
Computational Linguistics (ACL), Conference on Empirical Methods in Natural Language
Processing (EMNLP), European Chapter of the Association for Computational Linguistics
(EACL), North American Chapter of the Association for Computational Linguistics (NAACL),
over the last 6 years since 2018. [2]

Preface xi

• For the data scientist who is familiar with the underlying principles of machine
learning, this book will provide a practical understanding of deep learning.

• For the deep learning enthusiast, this book will explain the deep learning
architecture and what goes on inside a neural network model.

An intermediate level of R programming knowledge is expected from the reader,
and no previous experience of the subject is assumed.

Kolkata, India Abhijit Ghatak

xii Preface

Acknowledgements

Acknowledgment is an unsatisfactory word for my deepest debts.
My father bequeathed to me a love for adventure and an interest in history,

literature, and mathematics.
My professors at the Faculty of Mechanical Engineering, Jadavpur University,

instilled an appetite for analysis and quantitative techniques in engineering; my
mentor and advisor at University of Pune, Prof. SY Bhave, motivated me to
interpret the algorithm and write a program using the C language on predicting
torsional vibration failures of a marine propulsion shaft using state vectors; and my
advisors at Stevens Institute of Technology helped me to transit from a career
submarine engineer in the Indian Navy to a data scientist.

My wife Sushmita lived through the slow gestation of this book. She listened
and engaged with me all the way. She saw potential in this work long before I did
and encouraged me to keep going.

I owe my thanks to Sunanda for painstakingly proofreading the manuscript.
I also have two old debts—Robert Louis Stevenson and Arthur Conan

Doyle. In Treasure Island, Mr Smollet is most eager to discover the treasure and
he says—“We must go on,” and in Case of Identity, Sherlock Holmes states—“It
has long been an axiom of mine that the little things are infinitely the most
important.” Both are profound statements in the realm of a new science, and the
litterateurs had inked their thoughts claiming no distinction, when there is not a
distinction between the nature of the pursuit.

I owe all of them my deepest debts.

Abhijit Ghatak

xiii

About This Book

• Deep learning is a growing area of interest to academia and industry alike. The
applications of deep learning range from medical diagnostics, robotics, security
and surveillance, computer vision, natural language processing, autonomous
driving, etc. This has been largely possible due to a conflation of research
activities around the subject and the emergence of APIs like Keras.

• This book is a sequel to Machine Learning with R, written by the same author,
and explains deep learning from first principles—how to construct different
neural network architectures and understand the hyperparameters of the neural
network and the need for various optimization algorithms. The theory and the
math are explained in detail before discussing the code in R. The different
functions are finally merged to create a customized deep learning application. It
also introduces the reader to the Keras and TensorFlow libraries in R and explains
the advantage of using these libraries to get a basic model up and running.

• This book builds on the understanding of deep learning to create R-based appli-
cations on computer vision, natural language processing, and transfer learning.

This book has been written to address a wide spectrum of learners:

• For the beginner, this book will be useful to understand the basic concepts of
machine/deep learning and the neural network architecture (Chaps. 1 and 2)
before moving on to the advanced concepts of deep learning.

• For the graduate student, this book will help the reader to understand the
behavior of different types of neural networks by understanding the concepts,
while building them up from scratch. It will also introduce the reader to relevant
research papers for further exploration.

• For the data scientist who is familiar with the underlying principles of machine
learning, this book will provide a practical understanding of deep learning.

• For the deep learning enthusiast, this book will explain the deep learning
architecture and what goes on inside a neural network model.

This book requires an intermediate level of skill in R and no previous experience
of deep learning.

xv

Contents

1 Introduction to Machine Learning . 1
1.1 Machine Learning . 1

1.1.1 Difference Between Machine Learning and Statistics . . . 2
1.1.2 Difference Between Machine Learning and Deep

Learning . 3
1.2 Bias and Variance . 4
1.3 Bias–Variance Trade-off in Machine Learning 4
1.4 Addressing Bias and Variance in the Model 5
1.5 Underfitting and Overfitting . 6
1.6 Loss Function . 6
1.7 Regularization . 7
1.8 Gradient Descent . 8
1.9 Hyperparameter Tuning . 10

1.9.1 Searching for Hyperparameters 11
1.10 Maximum Likelihood Estimation . 12
1.11 Quantifying Loss . 14

1.11.1 The Cross-Entropy Loss . 14
1.11.2 Negative Log-Likelihood . 15
1.11.3 Entropy . 16
1.11.4 Cross-Entropy . 18
1.11.5 Kullback–Leibler Divergence . 19
1.11.6 Summarizing the Measurement of Loss 20

1.12 Conclusion . 20

2 Introduction to Neural Networks . 23
2.1 Introduction . 23
2.2 Types of Neural Network Architectures 25

2.2.1 Feedforward Neural Networks (FFNNs) 25
2.2.2 Convolutional Neural Networks (ConvNets) 25
2.2.3 Recurrent Neural Networks (RNNs) 25

xvii

2.3 Forward Propagation . 26
2.3.1 Notations . 26
2.3.2 Input Matrix . 27
2.3.3 Bias Matrix . 28
2.3.4 Weight Matrix of Layer-1 . 29
2.3.5 Activation Function at Layer-1 30
2.3.6 Weights Matrix of Layer-2 . 30
2.3.7 Activation Function at Layer-2 32
2.3.8 Output Layer . 33
2.3.9 Summary of Forward Propagation 34

2.4 Activation Functions . 34
2.4.1 Sigmoid . 36
2.4.2 Hyperbolic Tangent . 37
2.4.3 Rectified Linear Unit . 37
2.4.4 Leaky Rectified Linear Unit . 38
2.4.5 Softmax . 39

2.5 Derivatives of Activation Functions . 42
2.5.1 Derivative of Sigmoid . 42
2.5.2 Derivative of tanh . 43
2.5.3 Derivative of Rectified Linear Unit 44
2.5.4 Derivative of Leaky Rectified Linear Unit 44
2.5.5 Derivative of Softmax . 44

2.6 Cross-Entropy Loss . 46
2.7 Derivative of the Cost Function . 49

2.7.1 Derivative of Cross-Entropy Loss with Sigmoid 49
2.7.2 Derivative of Cross-Entropy Loss with Softmax 49

2.8 Back Propagation . 50
2.8.1 Summary of Backward Propagation 53

2.9 Writing a Simple Neural Network Application 54
2.10 Conclusion . 63

3 Deep Neural Networks-I . 65
3.1 Writing a Deep Neural Network (DNN) Algorithm 65
3.2 Overview of Packages for Deep Learning in R 80
3.3 Introduction to keras . 80

3.3.1 Installing keras . 80
3.3.2 Pipe Operator in R . 80
3.3.3 Defining a keras Model . 81
3.3.4 Configuring the keras Model 81
3.3.5 Compile and Fit the Model . 82

3.4 Conclusion . 86

xviii Contents

4 Initialization of Network Parameters . 87
4.1 Initialization . 87

4.1.1 Breaking Symmetry . 91
4.1.2 Zero Initialization . 91
4.1.3 Random Initialization . 93
4.1.4 Xavier Initialization . 95
4.1.5 He Initialization . 97

4.2 Dealing with NaNs . 100
4.2.1 Hyperparameters and Weight Initialization 100
4.2.2 Normalization . 100
4.2.3 Using Different Activation Functions 101
4.2.4 Use of NanGuardMode, DebugMode,

or MonitorMode . 101
4.2.5 Numerical Stability . 101
4.2.6 Algorithm Related . 101
4.2.7 NaN Introduced by AllocEmpty 101

4.3 Conclusion . 102

5 Optimization . 103
5.1 Introduction . 103
5.2 Gradient Descent . 104

5.2.1 Gradient Descent or Batch Gradient Descent 104
5.2.2 Stochastic Gradient Descent . 105
5.2.3 Mini-Batch Gradient Descent . 105

5.3 Parameter Updates . 107
5.3.1 Simple Update . 107
5.3.2 Momentum Update . 107
5.3.3 Nesterov Momentum Update . 109
5.3.4 Annealing the Learning Rate . 110
5.3.5 Second-Order Methods . 111
5.3.6 Per-Parameter Adaptive Learning Rate Methods 112

5.4 Vanishing Gradient . 122
5.5 Regularization . 126

5.5.1 Dropout Regularization . 127
5.5.2 ‘2 Regularization . 128
5.5.3 Combining Dropout and ‘2 Regularization? 144

5.6 Gradient Checking . 144
5.7 Conclusion . 147

6 Deep Neural Networks-II . 149
6.1 Revisiting DNNs . 149
6.2 Modeling Using keras . 156

6.2.1 Adjust Epochs . 158
6.2.2 Add Batch Normalization . 159

Contents xix

6.2.3 Add Dropout . 160
6.2.4 Add Weight Regularization . 161
6.2.5 Adjust Learning Rate . 163
6.2.6 Prediction . 163

6.3 Introduction to TensorFlow . 164
6.3.1 What is Tensor ‘Flow’? . 165
6.3.2 Keras . 166
6.3.3 Installing and Running TensorFlow 166

6.4 Modeling Using TensorFlow . 167
6.4.1 Importing MNIST Data Set from TensorFlow 167
6.4.2 Define Placeholders . 168
6.4.3 Training the Model . 169
6.4.4 Instantiating a Session and Running the Model 169
6.4.5 Model Evaluation . 170

6.5 Conclusion . 170

7 Convolutional Neural Networks (ConvNets) 171
7.1 Building Blocks of a Convolution Operation 171

7.1.1 What is a Convolution Operation? 171
7.1.2 Edge Detection . 173
7.1.3 Padding . 175
7.1.4 Strided Convolutions . 176
7.1.5 Convolutions over Volume . 177
7.1.6 Pooling . 179

7.2 Single-Layer Convolutional Network . 180
7.2.1 Writing a ConvNet Application 181

7.3 Training a ConvNet on a Small DataSet Using keras 186
7.3.1 Data Augmentation . 189

7.4 Specialized Neural Network Architectures 193
7.4.1 LeNet-5 . 193
7.4.2 AlexNet . 194
7.4.3 VGG-16 . 194
7.4.4 GoogleNet . 196
7.4.5 Transfer Learning or Using Pretrained Models 196
7.4.6 Feature Extraction . 198

7.5 What is the ConvNet Learning? A Visualization of Different
Layers . 200

7.6 Introduction to Neural Style Transfer . 203
7.6.1 Content Loss . 204
7.6.2 Style Loss . 204
7.6.3 Generating Art Using Neural Style Transfer 204

7.7 Conclusion . 206

xx Contents

8 Recurrent Neural Networks (RNN) or Sequence Models 207
8.1 Sequence Models or RNNs . 207
8.2 Applications of Sequence Models . 209
8.3 Sequence Model Architectures . 209
8.4 Writing the Basic Sequence Model Architecture 210

8.4.1 Backpropagation in Basic RNN 212
8.5 Long Short-Term Memory (LSTM) Models 215

8.5.1 The Problem with Sequence Models 215
8.5.2 Walking Through LSTM . 216

8.6 Writing the LSTM Architecture . 217
8.7 Text Generation with LSTM . 225

8.7.1 Working with Text Data . 225
8.7.2 Generating Sequence Data . 226
8.7.3 Sampling Strategy and the Importance of Softmax

Diversity . 226
8.7.4 Implementing LSTM Text Generation

(Character-Level Neural Language Model) 227
8.8 Natural Language Processing . 230

8.8.1 Word Embeddings . 230
8.8.2 Transfer Learning and Word Embedding 231
8.8.3 Analyzing Word Similarity Using Word Vectors 232
8.8.4 Analyzing Word Analogies Using Word Vectors 233
8.8.5 Debiasing Word Vectors . 234

8.9 Conclusion . 237

9 Epilogue . 239
9.1 Gathering Experience and Knowledge . 239

9.1.1 Research Papers . 240
9.2 Towards Lifelong Learning . 240

9.2.1 Final Words . 241

References . 243

Contents xxi

About the Author

Abhijit Ghatak is a Data Engineer and holds graduate degrees in Engineering and
Data Science from India and USA. He started his career as a submarine engineer
officer in the Indian Navy where he worked on multiple data-intensive projects
involving submarine operations and submarine construction. He has thereafter
worked in academia, IT consulting and as research scientist in the area of Internet of
Things (IoT) and pattern recognition for the European Union. He has authored
many publications in the areas of engineering, IoT and machine learning. He
presently advises start-up companies on deep learning, pattern recognition and data
analytics. His areas of research include IoT, stream analytics and design of deep
learning systems. He can be reached at abeghatak@gmail.com.

xxiii

mailto:abeghatak@gmail.com

Chapter 1
Introduction to Machine Learning

I believe that at the end of the century the use of words and
general educated opinion will have altered so much that one will
be able to speak of machines thinking without expecting to be
contradicted.

Alan Turing, 1950

Abstract This chapter will introduce some of the building blocks of machine learn-
ing. Specifically, it will touch upon

• Difference between machine learning, statistics and deep learning.
• A discussion on bias and variance and how they are related to underfitting and
overfitting.

• Different ways to address underfitting and overfitting, including regularization.
• The need for optimization and the gradient descent method.
• Model hyperparameters and different hyperparameters search methods.
• Quantifying and measuring loss functions of a model.

1.1 Machine Learning

Machine learning is a sub-domain of artificial intelligence (AI), which makes a sys-
tem automatically discover (learn) the statistical structure of the data and convert
those representations (patterns) to get closer to the expected output. The process
of learning is improved by a measure of the feedback, which compares the com-
puted output to the expected output. Unlike expert systems, the machine learning
system is not explicitly programmed; it automatically searches for patterns within
the hypothesis space and, uses the feedback signal to correct those patterns.

© Springer Nature Singapore Pte Ltd. 2019
A. Ghatak, Deep Learning with R,
https://doi.org/10.1007/978-981-13-5850-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-5850-0_1&domain=pdf
https://doi.org/10.1007/978-981-13-5850-0_1

2 1 Introduction to Machine Learning

To enable a machine learning algorithm to work effectively on real-world data,
we need to feed the machine a full range of features and possibilities to train on.

A typical machine learning workflow includes the following:

• Training the model on a training data set, tuning the model on a development set
and testing the model on an unseen test data set.

• Trying out the above on different yet, appropriate algorithms using proper perfor-
mance metrics.

• Selecting the most appropriate model.
• Testing the model on real-world data. If the results are not upto the speed, repeat
the above by revaluating the data and/or model, possibly with different evaluation
metrics.

We define data sets which we use in machine learning as follows:

• Training set: is the data on which we learn the algorithm.
• Development set: is the data on which we tune the hyperparameters of the model.
• Test set: is the data we use to evaluate the performance of our algorithm.
• Real-world set: is the data on which our selected model will be deployed.

Having data sets from different distributions can have different outcomes on the
evaluation metrics of some or all of the data sets. The evaluation metrics may also
differ if the model does not fit the respective data sets. We will explore these aspects
during model evaluation at a later section.

1.1.1 Difference Between Machine Learning and Statistics

Inmachine learning, we feed labeled data in batches into themachine learningmodel,
and themodel incrementally improves its structural parameters by examining the loss,
i.e., the difference between the actual and predicted values. This loss is used as a
feedback to an optimization algorithm to iteratively adjust the structural parameters.
Training a conventional machine learning model, therefore, consists of feeding input
data to the model to train the model to learn the “best” structural parameters of the
model. While machine learning focusses on predicting future data and evaluation of
the model, statistics is focussed on the inference and explanation cum understanding
of the phenomenon [10].

While a machine learning model is an algorithm that can learn from data without
being explicitly programmed, statistical modeling is a mathematical representation
of the relationship between different variables. Machine learning is a sub-domain of
AI whereas, statistics is a sub-domain of mathematics.

1.1 Machine Learning 3

1.1.2 Difference Between Machine Learning and Deep
Learning

Traditional machine learning techniques find it hard to analyze data with complex
spatial or sequence dependencies, and those that require analyzing data which need
a large amount of feature engineering like problems related to computer vision and
speech recognition. Perception or disambiguation is the awareness, understanding,
and interpretation of information through the senses. In reference [11], deep learn-
ing is proven to be better than conventional machine learning algorithms for these
“perceptual” tasks, but not yet proven to be better in other domains as well.

In deep learning, we use a similar procedure as in machine learning, by transform-
ing the input data by a linear combination of the weights and bias through each layer,
by a process known as forward propagation, which computes the predicted values. A
loss function compares the actual and predicted values and computes a distance score
between these values, thereby capturing howwell the network has done on a batch of
input data. This score is then used as a feedback to adjust the weights incrementally
toward a direction that will lower the loss score for the current input data through
an optimization algorithm. This update is done using a backpropagation algorithm,
using the chain rule to iteratively compute gradients for every layer.

A training loop consists of a single forward propagation, calculation of the loss
score and backpropagation through the layers using an optimizer to incrementally
change the weights. Typically, we would need many iterations over many examples
of input data to yield weight values that would minimize the loss to optimal values.

A deep learning algorithm can be thought of as a large-scale parametric model,
because it has many layers and scales up to a large amount of input data. Below is the
summarization of a grayscale image classification deep learning model having 1.2
million parameters. A model to classify color images can have close to 100million
parameters.

Layer (type) Output Shape Param #
===
dense_1 (Dense) (None, 100) 1228900

dense_2 (Dense) (None, 50) 5050

dense_3 (Dense) (None, 15) 765

dense_4 (Dense) (None, 1) 16
===
Total params: 1,234,731
Trainable params: 1,234,731
Non-trainable params: 0

4 1 Introduction to Machine Learning

1.2 Bias and Variance

The three major sources of error in machine/deep learning models are irreducible
error, bias, and variance.

(a) Irreducible Error—is the error which cannot be reduced and its occurrence is
due to the inherent randomness present in the data.

(b) Bias Error—creeps in deep learning when we introduce a simpler model for
a data set which is far more “complex”. To avoid bias error, we would need to
increase the capacity (consider a more complex model) to match up with the
complexity present in the data.

(c) Variance—on the contrary is present in deep learning models if we consider
an overly complex algorithm for a relatively less “complex” task or data set. To
avoid variance in models, we would need to increase the size of the data set.

1.3 Bias–Variance Trade-off in Machine Learning

In machine learning, we can define an appropriate trade-off point between bias and
variance by discovering the appropriate model complexity with respect to the data;
at which point, an increase in bias results in reduction of variance and vice-versa,
as shown by the darkgray circle in Fig. 1.1. Any model complexity short of this
trade-off point will result in an underfitted model and those beyond the trade-off
point, will result in an overfitted model.

Model Complexity

Er
ro

r

1 2 5 10 20

0.
0

0.
2

0.
4

0.
6

0.
8

Total error
Squared bias
Variance

Fig. 1.1 The squared bias keeps decreasing and the variance keeps increasing as the model com-
plexity goes up. The total error starts decreasing till it reaches a point where the model complexity
is optimal, and thereafter it starts increasing. The optimal balance between the squared bias and the
variance is represented by the dark gray circle

1.3 Bias–Variance Trade-off in Machine Learning 5

Bayes error, is the lowest possible prediction error that can be achieved and
is the same as irreducible error. If we have an exact knowledge of the data
distribution, then for a random process, there would still exist some errors. In
statistics, the optimal error rate is also known as the Bayes error rate. Inmachine
learning, the Bayes error can be considered as the irreducible error.
In deep learning, since we deal with problems related to human perception and
therefore, we consider Human-Level Error, as the lowest possible error.

1.4 Addressing Bias and Variance in the Model

One of the important things to understand before we know that our model suffers
from bias, variance, or a combination of both bias and variance, is to understand the
optimal error rate. We have seen earlier that the optimal error is the Bayes error rate.
The Bayes error is the best theoretical function for mapping x to y, but it is often
difficult to calculate this function.

In deep learning, since we are mostly dealing with problems related to human
perceptions like vision, speech, language, etc., an alternative to the Bayes error could
be the human-level performance because humans are quite good at tasks related to
vision, speech, language, etc. So we can ask this question—howwell does our neural
network model compare to human-level performance?

Based on the above, we can state the following:

(a) If there exists a large gap between human-level error and the training error, then
the model is too simple in relation to human-level performance and it is a bias
problem.

(b) If there is a small gap between the training error and human-level error and, a
large difference between training error and validation error, it implies that our
model has got high variance.

(c) If the training error is less than the human-level error, we cannot say for sure if
our model suffers from bias or variance or a combination of both. There are a
couple of domains where our model may surpass human-level performance and
they include product recommendations, predicting transit time (Google maps),
etc.

The actions we can take to address bias and variance are the following:

(a) Bias

(i) Train a more complex model.
(ii) Train for a longer duration.
(iii) Use better optimization algorithms—Momentum, RMSProp, Adam, etc.
(iv) Use different neural network architectures.
(v) Carry out better hyperparameter search.

6 1 Introduction to Machine Learning

x

y

0 20 40 60 80 100

2
4

6
8

True function
Underfitted model
Overfitted model

Fig. 1.2 Underfitting and Overfitting: An underfitted model is unable to capture the sinusoidal
pattern of the data which is represented by the straight-line linear regression model; an overfitted
model has memorized the training data and the noise and is therefore not able to generalize to the
data

(b) Variance

(i) Use more data to train.
(ii) Use regularization methods, �2, dropout, etc.
(iii) Use data augmentation
(iv) Use different neural network architectures.
(v) Carry out better hyperparameter search.

1.5 Underfitting and Overfitting

Underfitting occurs when there is high bias present in the model and therefore cannot
capture the trend in the data. Overfitting occurs when the model is highly complex
resulting in the model capturing the noise present in the data, rather than capturing
the trend in the data.

This is illustrated in Fig. 1.2, where truemodel is a fourth polynomialmodel repre-
sented by the green curve. The overfitted model oscillates wildly and the underfitted
model can barely capture the trend in the data set.

1.6 Loss Function

The objective function of every algorithm is to reduce the loss L(w), which can be
represented as

L(w) = Measure of fit + Measure of model complexity

In machine learning, loss is measured by the sum of

1.6 Loss Function 7

• the fit of the model.
• the complexity of the model.

The measure of the model’s fit is determined by

• the MSE (Mean Squared Error) for regression,
• CE (Classification Error) for classification.

Higher the model complexity, higher is the propensity for the model to capture the
noise in the data by ignoring the signal. A measure of the model complexity is
determined by

• the sum of the absolute values of the structural parameters of the model
(�1 regularization),

• the sum of the squared values of the structural parameters of the model
(�2 regularization).

1.7 Regularization

Regularization is the process used to reduce the complexity of the model.
In deep learning, we will use the �2 regularization technique

�2 = w2
0 + w2

1 + · · · + w2
n =

n∑

i=0

w2
i = ‖w‖22

Our objective is to select themodel’s structural parameterswi, such that weminimize
the loss function L(w), by using a weight decay regularization parameter λ on the
�2-norm of the parameters such that, it penalizes the model for larger values of the
parameters.

L(w) = Error metric + λ‖w‖22
When λ is zero, there is no regularization; values greater than zero force the

weights to take a smaller value. When λ = ∞, the weights become zero.
Since we are trying to minimize the loss function with respect to the weights, we

need an optimizing algorithm, to arrive at the optimal value of the weights. One of
the optimizing algorithms which we use in machine learning is the gradient descent.
Other popular optimization algorithms used in deep learning is discussed in Sect. 5.

Regularization, significantly reduces the variance of a deep learning model,
without any substantial increase in its bias.

8 1 Introduction to Machine Learning

Global minima

Local minima

Local minima

Local minima

Fig. 1.3 Gradient descent involves reaching the globalminima, sometimes traversing throughmany
local minima

1.8 Gradient Descent

Gradient descent is an optimization algorithm used to find the values of weights and
biases of the model with an objective to minimize the loss function.

Analogically, this can be visualized as “descending” to the lowest point of a valley
(the lowest error value), known as the global minima, as shown in Fig. 1.3. In the
process, the descent also has a possibility of getting stuck at a local minima and there
are ways to work around and come out of the local minima by selecting the correct
learning-rate hyperparameter.

The cost of the model is the sum of all the losses associated with each training
example. The gradient of each parameter is then calculated by a process known as
batch gradient descent. This is the most basic form of gradient descent because we
compute the cost as the sum of the gradients of the entire batch of training examples.

In Fig. 1.4, we consider the loss function with respect to one weight (in reality
we need to consider the loss function with respect to all weights and biases of the
model). To move down the slope, we need to tweak the parameters of the model by
calculating the gradient (∂J

∂W) of the loss function, which will always point toward
the nearest local minima.

Having found the magnitude and direction of the gradient, we now need to nudge
the weight by a hyperparameter known as the learning rate and then update the
value of the new weight (toward the direction of the minima). Mathematically, for
one iteration for an observation j and learning rate α, the weight update at time step
(t + 1) can be written as follows:

Repeat till convergence

w
(t+1)
j = w

(t)
j − α

∂J
∂w

(1.8.1)

Figure1.5 is a contour plot showing the steps of a gradient descent optimization
for a sigmoid activation neural network having an input with two features. In a real
model, the inputs may have many features and the loss function may have multiple
local minima. The gradients are calculated for all the parameters while iterating over

1.8 Gradient Descent 9

W

J(
W

)

Fig. 1.4 Gradient descent: Rolling down to the minima by updating the weights by the gradient of
the loss function

0

50

100

150

200

250

300

350

Fig. 1.5 A contour plot showing the cost contours of a sigmoid activation neural network and the
cost minimization steps using the gradient descent optimization function

all the training examples. This makes things way harder to visualize, as the plot will
have many multiple dimensions.

For large size data sets, batch gradient descent optimization algorithm can take a
long time to compute because it considers all the examples in the data to complete one
iteration. In such cases, we can consider a subset of the training examples and split
our training data into mini-batches. In the mini-batch gradient descent method, the
parameters are updated based on the current mini-batch and we continue iterating
over all the mini-batches till we have seen the entire data set. The process of looking
at all the mini-batches is referred to as an epoch.

When the mini-batch size is set to one we perform an update on a single training
example, and this is a special case of the mini-batch gradient descent known as
stochastic gradient descent. It is called “stochastic” because it randomly chooses
a single example to perform an update till all the examples in the training data set
have been seen.

Ideally, in any optimization algorithm, our objective is to find the global minimum
of the function, whichwould represent the best possible parameter values. Depending
on where we start in the parameter space, it is likely that we may encounter local
minima and saddlepoints along the way. Saddlepoints are a special case of local
minima where the derivatives in orthogonal directions are both zero. While dealing

10 1 Introduction to Machine Learning

Training data−
 optimize

 model parameters

Development data−
 optimize

 model hyperparameters

Testing data−
 evaluate

 trained model

Fig. 1.6 The training process involves optimizing the cost to arrive at the optimal structural pa-
rameters using the training data, optimization of the hyperparameters using the development data,
and evaluating the final model using the testing data

with high-dimensional spaces, the chances of discovering the global minima is quite
low (Fig. 1.3).

There aremany approaches to overcome this problem—use amoving average gra-
dient (Momentum), adaptively scaling the learning-rate in each dimension according
to the exponentiallyweighted average of the gradient (RMSProp) and by using a com-
bination of the moving average gradient and adaptive learning rates (Adam). These
methods have been discussed in Sects. 5.3.6. Figure 1.6 is a schematic of how the
model deals with different sections of the available data.

1.9 Hyperparameter Tuning

During the model training process, our training algorithm handles three categories
of data:

• The input training data—is used to configure our model to make accurate predic-
tions from the unseen data.

• Model parameters—are the weights and biases (structural parameters) that our
algorithm learnswith the input data. These parameters keep changing duringmodel
training.

• Hyperparameters—are the variables that govern the training process itself. Before
setting up a neural network, we need to decide the number of hidden layers,
number of nodes per layer, learning rate, etc. These are configuration variables
and are usually constant during a training process.

Structural parameters like the weights and biases are learned from the input
dataset, whereas the optimal hyperparameters are obtained by leveraging mul-
tiple available datasets.

A hyperparameter is a value required by our model which we really have very little
idea about. These values can be learned mostly by trial and error.

While the model (structural) parameters are optimized during the training process
by passing the data through a cycle of the training operation, comparing the resulting
predictionwith the actual value to evaluate the accuracy, and adjusting the parameters
till we find the best parameter values; the hyperparameters are “tuned” by running
multiple trials during a single training cycle, and the optimal hyperparameters are
chosen based on the metrics (accuracy, etc), while keeping the model parameters

1.9 Hyperparameter Tuning 11

unchanged. In both the cases, we are modifying the composition of our model to find
the best combination of the model parameters and hyperparameters.

1.9.1 Searching for Hyperparameters

In standard supervised learning problems, we try to find the best hypothesis in a given
space for a given learning algorithm. In the context of hyperparameter optimization,
we are interested in minimizing the validation error of a model parameterized by a
vector of weights and biases, with respect to a vector of hyperparameters. In hyper-
parameter optimization, we try to find a configuration so that the optimized learning
algorithm will produce a model that generalizes well to new data. To facilitate this,
we can opt for different search strategies:

• A grid search is sometimes employed for hyperparameter tuning.With grid search,
we build amodel for each possible combination of all of the hyperparameter values
in the grid, evaluate each model and select the hyperparameters, which give the
best results.

• With random search, instead of providing a discrete set of values to explore, we
consider a statistical distribution of each hyperparameter, and the hyperparameter
values are randomly sampled from the distribution.

• A greedy search will pick whatever is the most likely first parameter. This may
not be a good idea always.

• An exact search algorithm as its name signifies, searches for the exact value.
Algorithms belonging to this search methodology are BFS (Breadth First Search)
and DFS (Depth First Search).

• In deep learning for Recurrent Neural Networks, we apply what is known as the
Beam Search.

We also have the Bayesian optimization technique belonging to a class of (SMBO)
Sequential Model-Based Optimization [8] algorithms, wherein we use the results
of our search using a particular method to improve the search for the next method.
The hyperparameter metric is the objective function during hyperparameter tuning.
Hyperparameter tuning finds the optimal value of this metric (a numeric value),
specified by the user. The user needs to specify whether this metric needs to be
maximized or minimized.

For most data sets, only a few of the hyperparameters really matter but different
hyperparameters are important for different data sets. Thismakes the grid search
a poor choice for configuring algorithms for new data sets. [6]

12 1 Introduction to Machine Learning

1.10 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is a method used to determine parameter
values of the model. The parameter values are found such that they maximize the
likelihood that the process described by the model produces the data that were actu-
ally observed. We would, therefore, pick the parameter values which maximizes the
likelihood of our data. This is known as the maximum likelihood estimate. Mathe-
matically, we define it as

argmax
θ

P(y | x; θ) (1.10.1)

To arrive at the likelihood over all observations (assuming they are identical and
independent of one another, i.e., i.i.d.), we take the product of the probabilities as

argmax
θ

n∏

i=1

P(y(i) | x(i); θ) (1.10.2)

We assume that each data point is generated independently of the others, because if
the events generating the data are independent, then the total probability of observing
all our data is the product of observing each data point individually (the product of
the marginal probabilities).

We know that the probability density of observing a single data point generated
from a Gaussian distribution is given by

P(x;μ, σ) = 1√
2πσ 2

e−(
(x−μ)2

2σ2
) (1.10.3)

To obtain the parameters μ and σ 2 of a Gaussian distribution, we need to solve the
following maximization problem:

max
μ,σ 2

log(μ, σ 2; x1, . . . , xn)

The first-order conditions to obtain a maximum are

∂

∂μ
log(μ, σ 2; x1, . . . , xn) = 0

and,
∂

∂σ 2
log(μ, σ 2; x1, . . . , xn) = 0

The partial derivative of the log-likelihood with respect to the mean is

1.10 Maximum Likelihood Estimation 13

∂

∂μ
(logP(x;μ, σ)) = ∂

∂μ
log(μ, σ 2; x1, . . . , xn)

= ∂

∂μ
log

{
1√
2πσ 2

e−(
(x−μ)2

2σ2
)

}

= ∂

∂μ

⎧
⎨

⎩−n

2
ln(2π) − n

2
ln(σ 2) − 1

2σ 2

n∑

j=1

(xj − μ)2

⎫
⎬

⎭

= 1

σ 2

n∑

j=1

(xj − μ)

= 1

σ 2

⎧
⎨

⎩

n∑

j=1

xj − nμ

⎫
⎬

⎭
(1.10.4)

Solving for μ in Eq.1.10.4

μ = 1

n

n∑

j=1

xj (1.10.5)

Similarly, the partial derivative of the log-likelihood with respect to the variance is

∂

∂σ 2
(logP(x;μ, σ)) = ∂

∂σ 2
log(μ, σ 2; x1, . . . , xn)

= ∂

∂σ 2
log

{
1√
2πσ 2

e−(
(x−μ)2

2σ2

}

= ∂

∂σ 2

⎧
⎨

⎩−n

2
log(2π) − n

2
log(σ 2) − 1

2σ 2

n∑

j=1

(xj − μ)2

⎫
⎬

⎭

= − n

2σ 2
−

⎛

⎝1

2

n∑

j=1

(xj − μ)2

⎞

⎠
(

− 1

(σ 2)2

)

= 1

2σ 2

⎛

⎝ 1

σ 2

n∑

j=1

(xj − μ)2 − n

⎞

⎠

(1.10.6)
Assuming σ 2 �= 0, we can solve for σ 2

σ 2 = 1

n

n∑

j=1

(xj − μ̂)2 (1.10.7)

14 1 Introduction to Machine Learning

x

y

0 2 4 6−8 −6 −4 −2

0.
0

0.
1

0.
2

0.
3

0.
4

N(= 2, 2 = 1)
N(= 0, 2 = 1)
N(= 1, 2 = 1)
N(= 0.325, 2 = 5.52)

Fig. 1.7 The four data points and the possible Gaussian distributions from which they were drawn.
The distributions are normally distributed with (μ = −2, σ 2 = 1), (μ = 0, σ 2 = 1), and (μ =
1, σ 2 = 1). Themaximum likelihood estimation predicts that the data points belong to the Gaussian
distribution defined with (μ = 0.325, σ 2 = 5.52) by maximizing the probability of observing the
data

Let us consider four data points on the x-axis. We would want to know which curve
was most likely responsible, for our observed data points. We will use MLE to find
the values of μ and σ 2 to discover the gaussian distribution, that best fits our data
(Fig. 1.7).

points <- c(-3, -0.7, 2, 3)
(mu = sum(points)/length(points)) # Refer Eq. 1.10.5

[1] 0.325

(var = (1/length(points))*sum((points-mu)ˆ2)) # Refer Eq. 1.10.7

[1] 5.516875

1.11 Quantifying Loss

1.11.1 The Cross-Entropy Loss

When we develop a machine learning model for probabilistic classification, we try to
map the model inputs to probabilistic predictions by an iterative method of training
the model (by adjusting the model’s parameters), so that our predictions are close to
the true probabilities.

To arrive at our computed predictions, which are close to the true predictions, we
need to reduce the loss (Mean Squared Error/Classification Error). In this section,
we will try to define this error in terms of the Cross-Entropy(CE) Loss. But before
that, we will revisitMLE, define Entropy of a model, its follow up to Cross-Entropy
and, its relation to the Kulback–Liebler Divergence.

1.11 Quantifying Loss 15

In Sect. 1.10, we have seen that the maximum likelihood is that which maximizes
the product of the probabilities of a data distribution, which most likely gave rise to
our data. Since logarithms reduce potential underflow, due to very small likelihoods,
they convert a product into a summation and finally, the natural logarithmic function
being a monotonic transformation (if the value on the x-axis increases, the value on
the y-axis also increases); it is but natural to apply the log function to our likelihood
Eq. (1.10.2), to obtain the log-likelihood

log P(y | x; θ) = log
n∏

i=1

P(y(i) | x(i); θ)

=
n∑

i

log P(y(i) | x(i); θ)

(1.11.1)

1.11.2 Negative Log-Likelihood

The maximazition of the negative log-likelihood of the estimated data distribution
reduces the error of our machine learning model.

In Linear Regression, we maximize the log-likelihood (Eq. 1.11.1) of the Gaus-
sian distribution. We may recall that θT x = μ

log[P(y | x; θ)] =
n∑

i

log P(y(i) | x(i); θ)

=
n∑

i

log
1

σ
√
2π

exp− (y(i)−θT x(i))2

2σ2

=
n∑

i

log
1

σ
√
2π

+
n∑

i

log

(
exp− (y(i)−θT x(i))2

2σ2

)

= n log
1

σ
√
2π

− 1

2σ 2

n∑

i=1

(y(i) − θT x(i))2

= k1 − k2

n∑

i=1

(y(i) − θT x(i))2

(1.11.2)

We can state that minimizing the negative log-likelihood is equivalent to maximizing
the likelihood estimation since

arg max(x)
x

= arg min(−x)
x

16 1 Introduction to Machine Learning

Maximizing Eq.1.11.2 implies that we need to minimize the mean- squared error
between the observed y and the predicted ŷ; therefore, minimizing the negative log-
likelihood of our data with respect to θ is also the same as minimizing the mean
squared error.

In Logistic Regression, we define φ = 1
1+exp−θT x , and the negative log-likelihood

can be written as

−log P(y | x; θ) = −log
n∏

i=1

(φ(i))y
(i)
(1 − φ(i))(1−y(i))

= −
n∑

i=1

log((φ(i))y
(i)
(1 − φ(i))(1−y(i)))

= −
n∑

i=1

y(i)log(φ(i)) + (1 − y(i))log(1 − φ(i))

(1.11.3)

In Eq.1.11.3, minimizing the negative log-likelihood of the data with respect to θ

is the same as minimizing the binary log loss (binary cross-entropy, discussed in
the following section) between the observed y values and the predicted probabilities
thereof.

In a Multinoulli Distribution, the negative log-likelihood can be written as

−log P(y | x; θ) = −log
n∏

i=1

K∏

k=1

π
yk
k

=
n∑

i=1

K∑

k=1

yk log(πk)

(1.11.4)

In Eq.1.11.4 minimizing the negative log-likelihood of the data with respect to θ is
the same as minimizing the multi-class log loss (categorical cross-entropy), between
the observed y values and the predicted probabilities thereof.

1.11.3 Entropy

Entropy in heat engineering and classical thermodynamics, is a measure of “dis-
order” based on the second law of thermodynamics, which states that a system’s
entropy never decreases spontaneously. From the concept of thermodynamics, it is
the (log of) number of microstates or microscopic configurations. Intuitively, if the
particles inside a system have many possible positions to move around, then the
system has high entropy, and if they stay rigid, then the system has low entropy.

1.11 Quantifying Loss 17

x

lo
g(

x)

0 2 4 6 8 10

−6
−4

−2
0

2

Fig. 1.8 The natural logarithm is a monotonically increasing function

In Information theory, entropy is a measure of uncertainty involved in making
a prediction. Intuitively, we can describe entropy as how “surprised” would we be
of the outcome, after we have made our initial prediction. If we consider an unfair
coin that actually turns up a head 99% of the time it is tossed, we would be indeed
very surprised if a particular toss turns up a tail. If we can average out the amount
of surprise, the mean value of surprise is a measure for how uncertain we are. This
measure of uncertainty is called entropy. Entropy therefore defines randomness; it is
like describing how unpredictable something is.

If we consider a set of possible events with known probabilities of occurrence
being y1; y2; . . . yn, as per [9] entropy is a means to find a measure of how much
‘choice’ is involved in the selection of the event or of how uncertain we are of the
outcome. This measure, H (y1; y2; . . . yn) would then be defined by the following
properties

• H should be continuous in the yi.
• If all the yi are equal, yi = 1

n , then H should be a monotonic increasing function
of n. The natural logarithm is a monotonically increasing function, implying that
if the value on the x-axis increases, the corresponding value on the y-axis also
increases (see Fig. 1.8).

• If a choice be broken down into two successive choices, the original H should be
the weighted sum of the individual values of H .

The only H satisfying the three above assumptions is of the form

H =
n∑

i=1

yilog(yi) (1.11.5)

Interpretation of Entropy

If we consider two events with probabilities p and 1-p the entropy H can be written
as

H = −[p log(p) + (1 − p) log(1 − p)] (1.11.6)

18 1 Introduction to Machine Learning

p

H

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 1.9 Plot of Entropy with probabilities p and 1 − p

Entropy can be easily interpreted from Fig. 1.9 as

• When p = 1, H = 0 implies that we are certain of the outcome and if we are
not certain of the outcome, H is positive. Intuitively when p = 0, an event never
occurs, it cannot contribute to the entropy, as it is never expected to occur and
therefore H = 0.

• H ismaximumwhen all the pi are equal, i.e., 1n . This is themost uncertain situation.

Entropy is the weighted average of the log probability of the possible events, which
measures the uncertainty present in their probability distribution. The higher the
entropy, the less certain are we about the value.

1.11.4 Cross-Entropy

Cross-entropy (CE) loss, or log-loss, measures the performance of a classification
model whose output has a probability value between 0 and 1. As the predicted prob-
ability diverges from the actual value the CE loss consequently increases. Therefore
say, predicting a probability of 0.021 when the true observed value is 1 would result
in a high CE loss. A perfect model, therefore, should have a CE loss of 0.

How close is the predicted probability distribution to the true distribution, i.e., to
find the cross-entropy loss, we use

H (y, ŷ) =
∑

i

yilog
1

ŷi
= −

∑

i

yilog(ŷi) (1.11.7)

where,
∑

i yi is the true probability distribution and
∑

i ŷi is the computed probability
distribution

Let us go through an example where we have three training items with the fol-
lowing computed outputs and target outputs

1.11 Quantifying Loss 19

Table 1.1 Target values and computed probabilities of a neural network

Class A Class B Class C

Target 0.000 1.000 0.000

Computed probability 0.128 0.719 0.153

For the data in Table1.1, we can calculate the cross-entropy, using Eq.1.11.7 as
equal to 0.475, and it gives us a measure of how far away is our prediction from the
true distribution.

H = -(0.0 * log2(0.128) + 1.0 * log2(0.719) + 0.0 * log2(0.153))
H

[1] 0.4759363

In binary classification, where the number of output class labels are two, CE is
calculated as

CELoss = H (y, ŷ) = −(y log(ŷ) + (1 − y)log(1 − ŷ)) —for binary classification
(1.11.8)

In multi-class classification, where the number of output class labels are more than
two, i.e., n-labels, CE is calculated as

CELoss = H (y, ŷ) = −
n∑

1

yi log(ŷi) —for multi-class classification (1.11.9)

1.11.5 Kullback–Leibler Divergence

Kullback–Leibler1 Divergence (KLDivergence) from ŷ to y is the difference between
CE (Eq.1.11.7) and entropy (Eq.1.11.5). It quantifies the additional uncertainty in y
introduced by using ŷ to approximate y

KL(y || ŷ) =
∑

i

yi log
1

ŷi
−

∑

i

yi log
1

yi

= H (y, ŷ) − H (y)

=
∑

i

yilog
yi
ŷi

(1.11.10)

1Named after Solomon Kullback and Richard Leibler in 1951.

20 1 Introduction to Machine Learning

In information theory, the KL Divergence measures the number of bits required
on average to encode symbols from y according to ŷ. The KL Divergence is never
negative, and it is zero only when y and ŷ are the same. Minimizing CE is the same
as minimizing the KL Divergence from ŷ to y.

1.11.6 Summarizing the Measurement of Loss

Let us consider the empirical true distribution to be p and, the predicted distribution
(the model we are trying to optimize) to be q.

From the above discussions,we can state that KL divergence allows us tomeasure
the difference between two probability distributions.

• The entropy, H (p) of a distribution p, gives us an estimate of the uncertainty
present in the distribution or, how certain can we be of the outcome.

• The Cross-Entropy H (p, q) between two distributions p and q, quantifies the
difference between the two probability distributions; i.e., how close is the predicted
distribution to the true distribution. In machine learning classification problems,
the Cross-Entropy loss, i.e., log-loss, measures the Cross-Entropy between the
empirical distribution of the labels (given the inputs) and the distribution predicted
by the model. In binary classification, the cross-entropy is proportional to the
negative log- likelihood, and therefore minimizing the negative log-likelihood is
equivalent to maximizing the likelihood.

• The difference, i.e., KL(p || q), measures the average number of extra bits per
message, whereasH (p, q) measures the average number of total bits per message.

• If the empirical distribution p is fixed it would be equivalent to say that we are
minimizing theKL divergence between the empirical distribution and the predicted
distribution. As we can see in the expression above, the two are related by the
additive termH (p), i,e, the entropy of the empirical distribution. Because p is fixed,
H (p) does not change with the parameters of the model, and can be disregarded
in the loss function. This may not be true where p may also vary.

1.12 Conclusion

We have touched upon the basic facets, which define a machine learning algorithm.
Machine learning belongs to the domain of AI and it endeavors to develop mod-
els (statistical programs) from exposure to training data. The process of training a
machine learning algorithm results in a model, and is therefore called a learning
algorithm.

1.12 Conclusion 21

Deep learning is another subset of AI, where models represent geometric trans-
formations over many different layers.

In both machine learning and deep learning, the real knowledge are the structural
parameters, i.e., the weights and biases of themodel. The common ground, therefore,
is to discover the best set of parameters, which will define the best model.

Chapter 2
Introduction to Neural Networks

Just as electricity transformed almost everything 100years ago,
today I actually have a hard time thinking of an industry that I
don’t think AI (Artificial Intelligence) will transform in the next
several years.

Andrew Ng

Abstract In this chapter, we will discuss the basic architecture of neural networks
including activation functions, forward propagation, and backpropagation. We will
also create a simple neural network model from scratch using the sigmoid activa-
tion function. In particular, this chapter will discuss:

• Neural network architecture.
• Activation functions used in neural networks.
• Forward propagation.
• Loss function of neural networks.
• Backpropagation.

2.1 Introduction

Structured data refers to any data that resides in a fixed field within a record or a
file. Unstructured data is information, in many different forms, i.e., e-mail mes-
sages, text documents, videos, photographs, audio files, presentations, webpages,
etc. Whereas humans are good at interpreting unstructured data, neural networks can
deal with both structured and unstructured data.

The most basic neural network consists of an input layer, an hidden layer and an
output layer as shown in Fig. 2.1. The inputs to the neural network consist of two
independent variables X = [x1, x2]. The output will be determined by the nodes in
the hidden layer, which compute the activation function of the weighted input. The
output of the activation function from the hidden layer is transmitted to the output
layer, which calculates the predicted output.

© Springer Nature Singapore Pte Ltd. 2019
A. Ghatak, Deep Learning with R,
https://doi.org/10.1007/978-981-13-5850-0_2

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-5850-0_2&domain=pdf
https://doi.org/10.1007/978-981-13-5850-0_2

24 2 Introduction to Neural Networks

layer Input Hidden Output

w2

w1

w4

w3

w6

w5

w8

w7
x2

x1

z1

z2

z3

z4

g(Z)
g(W

TX
b)

Fig. 2.1 Left: A simple neural network representation with an input layer, an hidden layer and an
output layer. Right: The hidden layer calculates the summation of the input and the parametrized
weights and the bias and calculates its activation function

The input layer of a neural network are the features of the input data. The features
of the input data are defined by the number of nodes in the input layer. The output
layer contains the predicted values. In between the input and output layers, there are
hidden layers, through which the input data is propagated forward. The hidden layers
also have nodes and the edges between the nodes are the weights (as shown in the
right hand plot of Fig. 2.1).

Based on the predictions in the output node, the cost is computed with respect to
the actual labels/values.

At each iteration, we adjust the weights to minimize the cost by a process known
as backward propagation to calculate the gradients. This is achieved by calculating
the partial derivatives of all the computations with respect to the output layer or the
previous hidden layer. First, the partial derivatives of the weights of the hidden layer
with respect to the output layer are calculated. The sequence of calculation of the
partial derivatives then proceeds towards the input layer. The gradients obtained are
then used to update the weights and we start the process (with forward propagation)
all over again. With each pass, which is also called an epoch, we get closer to the
optimal parameter weights.

2.2 Types of Neural Network Architectures 25

2.2 Types of Neural Network Architectures

2.2.1 Feedforward Neural Networks (FFNNs)

These are the most commonly used types of neural network, where the first layer
is the input layer and the last layer is the output layer and the in-between layers
are the hidden layers. These networks compute a series of transformations between
their input and their output resulting in a new representation of the input at each
successive layer. This is achieved by a nonlinear transformation of the activities in
the layer below.

These are therefore multilayered classifiers having many layers of weights sepa-
rated by nonlinearities (sigmoid, tanh, rectified linear units (ReLU), scaled exponen-
tial linear units (selu), softmax). They are also known as Multilayered Perceptrons.
FFNNs can be used for classification and unsupervised feature learning as autoen-
coders.

2.2.2 Convolutional Neural Networks (ConvNets)

Almost any state of the art vision based deep learning result in the world today has
been achieved using Convolutional Neural Networks.1 ConvNets are composed of
convolutional layers which act as hierarchical feature extractors. They are mostly
used for image classification, text classification, object detection, and image seg-
mentation.

2.2.3 Recurrent Neural Networks (RNNs)

This is amuchmore interesting kind architecture inwhich information canflow round
in cycles. RNNs model sequences by applying the same set of weights recursively
on the aggregator state at a time t and, input at a time t (if the sequence has inputs at
times 0 . . . t . . . T , and has a hidden state at each time t which is the output from t-1
step of the RNN).

They are deep networks having one hidden layer per time slice. They use the
same weights at every time slice and receive an input at every time slice as shown
in Fig. 2.2. These networks can store past information for a long time and are much
more difficult to train. However, a lot of progress has been made in training recurrent
neural networks, and they can now do some fairly impressive things.

The counterparts of RNN are Long Short-Term Memory Networks or LSTMs
(capable of learning long-term dependencies) and Gated Recurrent Networks or

1CNNs are attributed to its inventor, Yann LeCun.

26 2 Introduction to Neural Networks

Hidden
(t + 1) State

Input

Output

Hidden
(t)

Hidden
(t − 1)

Fig. 2.2 A simple RNN architecture. They have distributed hidden states which allow them to
efficiently store past information, indicated by the time step ‘t’

GRUs (they aim to solve the vanishing gradient problem; vanishing gradients is dis-
cussed in Sect. 5.4). Both are state-of-the-art networks in most sequence modeling
tasks. RNNs may be used for any sequence modeling task especially text classifica-
tion, machine translation, language modeling, etc.

Let us have a look at the different components of a simple feedforward neural
network.

2.3 Forward Propagation

Aneural network’s input could be anything. They could, for example, be the grayscale
intensity (between 0 and 1) of a 20 pixel by 20 pixel image that represents a bunch
of handwritten digits. In this case, we would have 400 input units (features).

Figure2.3 depicts a typical neural network flow diagram with an input layer, two
hidden layers, and an output layer.

Figure 2.4 is a representation of a hidden layer having as input (in this case) the
input layer.

As stated in Sect. 1.1.2, forward propagation computes the predicted values by
successively transforming the data through the layers upto the output layer, where
the output of each layer is the input for the next successive layer.

A loss function compares the predicted values from the output layer to the actual
values and computes a distance score between these values, thereby capturing how
well the network has done on a batch of input data.

2.3.1 Notations

In neural networks, the notation representation which we will follow is as follows:

1. For inputs x ∈ R
nx (n features):

2.3 Forward Propagation 27

x1

x2

x3

x4

h1
[1]

h2
[1]

h3
[1]

h1
[2]

h2
[2]

h3
[2]

ŷ

Hidden Layer h[1] Hidden Layer h[2] Output Layer

Input Layer

Fig. 2.3 A representation of a neural network with four input features, two hidden layers with three
nodes each, and an output layer

x1

x2

x3

x4

Z =
i 1

n
wixi bias (Z) ŷ

w 4

w3

w2

w
1

Inputs Weights Summation and Bias Activation

Fig. 2.4 The hidden layer carries out a geometric transformation function of the data which goes
through that layer

• superscript (i): is a reference to the ith observation; i.e., x(1) is the input value
of the first observation.

• subscript n: is a reference to the nth feature number; i.e., x(1)
2 is the first

observation of the second feature.

2. For network layers:

• superscript [l]: refers to layer l; i.e., z[1] is the linear function at layer 1.
• subscript n: is a reference to the node number; i.e., z[1]

1 is the linear function
consisting of the weighted inputs plus the bias, at the first node in layer 1.

2.3.2 Input Matrix

Let us consider a set of m linear equation with n features:

y(i) = w0 + w1x
(i)
1 + w2x(i)

2 + · · · + wnx(i)
n + ε

(i)
i for i = 1, . . . , m (2.3.1)

We can represent Eq.2.3.1 in matrix notation as

28 2 Introduction to Neural Networks

⎡
⎢⎢⎢⎣

y1
y2
...

ym

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 x(1)
1 x(1)

2 · · · x(1)
n

1 x(2)
1 x(2)

2 · · · x(2)
n

...

1 x(m)
1 x(m)

2 · · · x(m)
n

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

w0

w1
...

wm

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

ε0
ε1
...

εm

⎤
⎥⎥⎥⎦

= [
w0 w1 w2 · · · wm

]

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1
x(1)
1 x(2)

1 · · · x(m)
1

x(1)
2 x(2)

2 · · · x(m)
2

...
... · · · ...

x(1)
n x(2)

n · · · x(m)
n

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

ε0
ε1
...

εm

⎤
⎥⎥⎥⎦

(2.3.2)

If we ignore the error terms ε, we write Eq.2.3.2 as

Y = WTX (2.3.3)

The dimensions of the input matrix in Eq.2.3.3 are (num features, num observa-
tions). In Fig. 2.3, there are four features in the input matrix X. Let us assume that
there are only two observations, in which case the dimensions of the input matrix
will be (4, 2). In matrix form, we can represent our input as:

X = [
X1 X2

] =

⎡
⎢⎢⎢⎢⎣

x(1)
1 x(2)

1

x(1)
2 x(2)

2

x(1)
3 x(2)

3

x(1)
4 x(2)

4

⎤
⎥⎥⎥⎥⎦

(2.3.4)

2.3.3 Bias Matrix

The dimensions of the bias matrix b[1] are (number of nodes in l[1],1). For our input
matrix X, the dimensions of the bias matrix are therefore (3, 1), as there are 3 nodes
in hidden layer 1. In matrix form, we can represent the bias matrix as:

b[1] =
⎡
⎣

r
s
t

⎤
⎦ (2.3.5)

The dimensions of the bias matrix b[2] are (number of nodes in l[2], 1) and can be
written as:

b[2] =
⎡
⎣

u
v

w

⎤
⎦ (2.3.6)

2.3 Forward Propagation 29

2.3.4 Weight Matrix of Layer-1

For a data set with m observations and n input features if we need wn weights to
perform a dot product for a single observation; with n[�] nodes in the �th layer, we
need n × w[�]

n number of weights. Referring to Fig. 2.3, there are four input features
and three nodes in the first hidden layer. Therefore, we have 12 weights for each
observation.

For the first hidden layer, the dot product for an input data set X = x1, x2, . . . , xm

(m observations) having a corresponding set of weights W [1] is

Z [1] =
m∑

i=1

w
[1]T
i xi + bias[1]

In our example, we have considered two observations each having four features.
Therefore, we need four sets of weights for each observation, at each node.

For two observations, having four features each and considering three nodes, we
require 24 weights at hidden layer 1.

If we denote the weights by its (feature number, node number),w11 will represent
the weight of the first feature at node number 1.

The weights matrix can be represented as

W [1] =

⎡
⎢⎢⎣

w11 w12 w13

w21 w22 w23

w31 w32 w33

w41 w42 w43

⎤
⎥⎥⎦

and the dot product represented as

W [1]T · X =

⎡
⎢⎢⎣

w11 w12 w13

w21 w22 w23

w31 w32 w33

w41 w42 w43

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

x(1)
1 x(2)

1

x(1)
2 x(2)

2

x(1)
3 x(2)

3

x(1)
4 x(2)

4

⎤
⎥⎥⎥⎦ (2.3.7)

If there are n[1] nodes in the first hidden layer, the dimensions of the first hidden layer
weight matrix will be (features, n[1]). In our example case, the first hidden layer has
3 nodes and there are 4 input features (they can also be thought of as the input layer
nodes), and hence our weight matrix W [1] has the dimension (4, 3).

To generalize, the weight matrix for subsequent hidden layers � having n[�] nodes
will have the dimension (n[�−1], n[�]).

30 2 Introduction to Neural Networks

2.3.5 Activation Function at Layer-1

After adding the bias term, Eq.2.3.7 above can be generalized as

Z[�] = W [�]TA[�−1] + b[�] (2.3.8)

The activation at layer-1 can be written as

Z[1] = W [1]TX + b[1] (2.3.9)

where, X is the input to the first hidden layer and, Z [�−1] is the input to subsequent
hidden layers.

Z[1] has the dimension (n[1], num observations). In our example case, the dimen-
sion of Z[1] is (3, 2).

Equation2.3.9 can be expanded to the matrix form as

Z[1] =

⎡
⎢⎢⎣

w11 w12 w13

w21 w22 w23

w31 w32 w33

w41 w42 w43

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

x(1)
1 x(2)

1

x(1)
2 x(2)

2

x(1)
3 x(2)

3

x(1)
4 x(2)

4

⎤
⎥⎥⎥⎦ +

⎡
⎣

r
s
t

⎤
⎦

=
⎡
⎢⎣

z[1]
1,1 z[1]

1,2

z[1]
2,1 z[1]

2,2

z[1]
3,1 z[1]

3,2

⎤
⎥⎦

(2.3.10)

The activation function A[1] has the same dimension as Z[1] and is written as

A[1] =
⎡
⎢⎣

g(z[1]
1,1) g(z[1]

1,2)

g(z[1]
2,1) g(z[1]

2,2)

g(z[1]
3,1) g(z[1]

3,2)

⎤
⎥⎦ (2.3.11)

where g is an activation function (i.e., sigmoid, etc.)
For our example case, the first row of A[1] belongs to node-1, the second row

belongs to node-2, and the third row belongs to node-3 of layer-1, respectively.
The activations in the first hidden layer nodes is depicted in Fig. 2.5.

2.3.6 Weights Matrix of Layer-2

The output from the first hidden layer (A[1]) are the inputs to the second hidden layer.
For our example case, these are the activations from the three nodes in the first

hidden layer. The second hidden layer also has three nodes. We therefore need 9
weights for the second hidden layer.

2.3 Forward Propagation 31

Fig. 2.5 Input and
activations represented in the
nodes of hidden layer 1

Node−1
z1,1

[1]

z1,2
[1]

g(z1,1
[1])

g(z1,2
[1])

Node−2
z2,1

[1]

z2,2
[1]

g(z2,1
[1])

g(z2,2
[1])

Node−3
z3,1

[1]

z3,2
[1]

g(z3,1
[1])

g(z3,2
[1])

Hidden Layer h[1]

You may also recall that the dimensions of the weight matrix for subsequent
hidden layers � (other than the first hidden layer), having n[�] nodes are (n[�−1], n[�]).
In our example case, the dimensions of the weight matrix will be (3, 3) and we can
represent the weights matrix as follows:

W [2] =
⎡
⎣

w11 w12 w13

w21 w22 w23

w31 w32 w33

⎤
⎦ (2.3.12)

The dot product for the second hidden layer can be represented as

Z[2] = W [2]TA[1] + b[2]

=
⎡
⎣

w11 w21 w31

w12 w22 w32

w13 w23 w33

⎤
⎦

⎡
⎢⎣

g(z[1]
1,1) g(z[1]

1,2)

g(z[1]
2,1) g(z[1]

2,2)

g(z[1]
3,1) g(z[1]

3,2)

⎤
⎥⎦ + bias[2] (2.3.13)

The dimensions of the Z[2] matrix will be (n[l], num observations). In our example
case, n[2] = 3 and the number of observations remains the same, i.e., 2. Therefore,
the dimensions of our Z[2] matrix is (3, 2), which is evident from Eq.2.3.13.

32 2 Introduction to Neural Networks

2.3.7 Activation Function at Layer-2

From the above discussion, we can write

A[2] =
⎡
⎢⎣

g(z[2]
1,1) g(z[2]

1,2)

g(z[2]
2,1) g(z[2]

2,2)

g(z[2]
3,1) g(z[2]

3,2)

⎤
⎥⎦ (2.3.14)

Each row of A[2] corresponds to a node of the hidden layer. For our example
case, the first row of A[2] belongs to node-1, the second row to node-2, and the
third row to node-3 of the second hidden layer.

The activation function A[2] has the same dimension as Z[2] and is written as

A[2] =
⎡
⎢⎣

g(z[2]
1,1) g(z[2]

1,2)

g(z[2]
2,1) g(z[2]

2,2)

g(z[2]
3,1) g(z[2]

3,2)

⎤
⎥⎦ (2.3.15)

Please note that the activation functions at hidden layer 2 could be different from
that at hidden layer 1, i.e., they may not be the same.

The layer-2 nodes is depicted in Fig. 2.6.

Fig. 2.6 Input and
activations represented in the
nodes of hidden layer 2

Node−1
z1,1

[2]

z1,2
[2]

g(z1,1
[2])

g(z1,2
[2])

Node−2
z2,1

[2]

z2,2
[2]

g(z2,1
[2])

g(z2,2
[2])

Node−3
z3,1

[2]

z3,2
[2]

g(z3,1
[2])

g(z3,2
[2])

Hidden Layer h
[2]

2.3 Forward Propagation 33

2.3.8 Output Layer

Suppose,we are considering abinary classification example (say, using thesigmoid
activation in the output layer). Then, the input to the output layer will have a dimen-
sion of A[2], i.e., (3, 2). Each column of this matrix represents an observation. The
sigmoid activation function maps the output from A[2] to values between 0 and 1.

The label for each observation is selected based on the probability threshold (in
most cases this could be 0.5, though this value may be altered, especially where we
are interested to reduce the False Positives or the False Negatives). The first column
may represent a “Yes” and the second column a “No” or vice versa.

If any of the values in either of the columns exceeds the defined probability
threshold, that observation (represented by the respective column) is either a “Yes”
prediction or otherwise.

Let us assume that A[2] outputs the following matrix:

⎡
⎣
0.7 0.3
0.4 0.6
0.1 0.5

⎤
⎦

and the sigmoid function at the output layer gives the following matrix:
⎡
⎣
0.66 0.57
0.59 0.64
0.52 0.62

⎤
⎦

Considering that the first column represents a 1 (“Yes”) and the second column
represents a 0 (“No”), then our network outputs a 0.66% probability that the first
observation is 1 and 0.64% probability that the second observation is 0, (assuming a
probability value > 0.5 is 1 and, ≤ 0.5 is 0).

It may also be noted that the sigmoid output does not represent a probability
distribution, i.e., the sum of the probabilities is not unity.

This is illustrated by the following define_sigmoid function below:

define_sigmoid <- function(Z){
output = 1/(1 + exp(-Z))

return(output)
}

output_matrix <- define_sigmoid(matrix(c(0.7, 0.4, 0.1, 0.3, 0.6, 0.5), nrow = 3))
output_matrix

[,1] [,2]
[1,] 0.6681878 0.5744425
[2,] 0.5986877 0.6456563
[3,] 0.5249792 0.6224593

sum(output_matrix)

[1] 3.634413

34 2 Introduction to Neural Networks

Table 2.1 Summary of dimensions of the components in a neural network

Dim W Dim b Activation Dim Activation

Layer 1 (num features, n[1]) (n[1], 1) Z [1] = W [1]X + b[1] (n[1], num obs)

Layer � (n[�−1], n[�]) (n[�], 1) Z [�] = W [�]A[�−1] + b[�] (n[�], num obs)

Layer L (n[L−1], n[L]) (n[L], 1) Z [L] = W [L]A[L−1] + b[L] (n[L], num obs)

Please note that the output in this case is not a probability distribution (i.e.,
sigmoid activation function does not sum to 1, unlike the softmax activation
function, which we will discuss in detail in a later section).

2.3.9 Summary of Forward Propagation

The forward propagation equations for a three-layer network for a single observation
can be represented as

z[1](i) = w[1]x(i) + b[1](i)

a[1](i) = g[1](z[1](i))

z[2](i) = w[2]a[1](i) + b[2](i)

a[2](i) = g[2](z[2](i))

z[3](i) = w[3]a[2](i) + b[3](i)

a[3](i) = g[3](z[3](i))

(2.3.16)

The vectorized form for Eq.2.3.16 is

for �in1, 2, 3, . . . ,L

Z [�] = W [�]A[�] + b[�]

A[�] = g[�](Z [�])

(2.3.17)

The dimensions at different layers for the weight matrix, bias, and activation matrix
are summarized in Table2.1.

2.4 Activation Functions

An activation function is a mathematical function which transforms the input data
from the previous layer into a meaningful representation, which is closer to the
expected output. Figure 2.7 depicts sigmoid activations in the two hidden layers and
as well in the output layer.

2.4 Activation Functions 35

W[1] W[2] W[3]
Input (Z[1]) = A[1] (Z[2]) = A[2] (Z[3]) = A[3] J = (y − A[3])

Fig. 2.7 A two hidden layer neural network with sigmoid activation. The output is the activation
A[3] and J is the cost computed for a single epoch of the computation

x

lin
ea

r(x
)

−10 −5 0 5 10

−
4

−
2

0
2

4

Fig. 2.8 A linear function

Activation Functions can be

• Linear Activation Function
• Nonlinear Activation Functions

Linear Activation Function

The linear activation function is a straight line (linear) and the output of these func-
tions will range from −∞ to +∞. Linear functions do not help with the complexity
of data and the parameters present in neural networks. With linear activation func-
tions, we can stack up as many hidden layers in the neural network, and the final
output will still be a linear combination of the input data (Fig. 2.8).

Nonlinear Activation Function

Most real-world problems are nonlinear in nature and therefore we resort to a nonlin-
earmapping (function) called activation functions in deep learning. A neural network
must be able to take any input from −∞ to +∞, and map it to an output that ranges
between [0, 1] or [−1, 1], etc. Nonlinear activation functions are used in the hidden
layers of neural networks and are only segregated on the basis of their range or the
degree of nonlinearity. The output layers use either the sigmoid or softmax acti-
vation, depending on the classification task, i.e., binary classification or multi-label
classification.

36 2 Introduction to Neural Networks

z

(z
)

−6 −4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(z) =
1

1 exp z

Fig. 2.9 The sigmoid function

2.4.1 Sigmoid

The sigmoid function is widely used in machine learning for binary classification
in logistic regression and neural network implementations for binary classification.
The sigmoid activation of the linear function Z is represented as

σ(Z) = 1

1 + exp−Z
(2.4.1)

As we have seen earlier, the sigmoid function maps the linear input to a nonlinear
output.

From Fig. 2.9 above, it can seen that the sigmoid function takes in values
between −∞ and +∞ and outputs a value between 0 and 1; the nature of the output
values is a useful representation of the predicted probability of an binary output. The
sigmoid function is a monotonically increasing function. However, the sigmoid
function has the propensity to get “stuck”, i.e., the output values would be very near
0 when the input values are strongly negative and vice versa.

Since the parameter gradients are calculated on the activations, this can result in
model parameters getting updated less regularly than desired, and therefore getting
“stuck” in their current state, during training.

An undesirable property of the sigmoid activation is that it saturates at either
tail with a value of 0 or 1. When this happens, the gradient at these regions is
almost near to zero. During backpropagation (discussed later), the local gradient
will be multiplied to the gradient of sigmoid activation function and, if the
local gradient is very small, it will effectively make the gradient “vanish” and,
no signal will flow through the neuron to its weights.

2.4 Activation Functions 37

z

(z
)

−6 −4 −2 0 2 4 6

−1
.0

−0
.5

0.
0

0.
5

1.
0

Sigmoid
tanh

Fig. 2.10 tanh versus Sigmoid Function

2.4.2 Hyperbolic Tangent

Like the sigmoid function, the tanh function is also sigmoidal (“S”-shaped), but
outputs values between −1 and +1, as shown in Fig. 2.10. Large negative inputs to
the tanh function will give negative outputs. Further, only zero-valued inputs are
mapped to near-zero outputs. These properties does make the network less likely to
get “stuck”, unlike the sigmoid activation.

The tanh activation of Z can be represented by

g(Z) = expZ − exp−Z

expZ + exp−Z
(2.4.2)

The gradient of tanh is stronger than sigmoid (i.e., the derivatives are steeper).
Like sigmoid, tanh activation also has the vanishing gradient problem.

2.4.3 Rectified Linear Unit

The rectified linear unit, relu is the most used activation function for the hidden
layers. The relu function is half rectified, as shown in Fig. 2.11. A rectified linear
unit has an output of 0 if the input is less than 0, and if the input is greater than 0,
the output is the same as the input. The range of the relu activation function is
therefore between 0 and +∞ and can be represented by

g(Z) = max(Z, 0) (2.4.3)

38 2 Introduction to Neural Networks

z

(z
)

(z) =
1

1 exp z

z

R
eL

U
(z

)

−6 −4 −2 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−6 −4 −20 2 4 0 2 4 6

3
0

1
2

4
5

6

ReLU(z) = max(0,z)

Fig. 2.11 Sigmoid Function versus ReLU

Fig. 2.12 leakyRelu function

relu often results in much faster training for large networks [12]. Most frameworks
like TensorFlow and TFLearnmake it simple to use relu on the hidden layers.
However the issue is, all the negative values become zero, which in turn affects
the resulting graph by not mapping the negative values appropriately; further, it
also decreases the ability of the model to fit or train from the data properly. The
leakyrelu tries to rectify this drawback.

2.4.4 Leaky Rectified Linear Unit

The leaky rectified linear unit, lrelu is represented in Fig. 2.12.
The range of the lrelu is −∞ to +∞. The lrelu can be written as

2.4 Activation Functions 39

Table 2.2 Weight distribution for different labels as an example case

a b c

x1 0.6 0.4 0.2

x2 0.2 0.7 0.4

x3 0.5 0.2 0.1

x4 0.4 0.1 0.7

g(Z) =
{

Z ifZ > 0

aZ otherwise
(2.4.4)

The “leak’ increases the range of the relu function. In Fig. 2.12, a is normally
assigned a value of 0.01. When a is not 0.01, this function is called Randomized
relu.

2.4.5 Softmax

Sigmoid function can only handle two classes for classification problems. For
multi-class classification, softmax is the preferred function. The softmax func-
tion calculates the probabilities of each target class over all possible target classes.
The output range of the softmax activation function is between 0 and 1 and the
sum of all the probabilities is equal to 1.

It computes the exponential of the given input value and the sum of exponential
values of all the input values. The ratio of the exponential of the input value and the
sum of exponential values is the output of the softmax function.

Let us derive the softmax function from ground up.
Suppose we have an input vector x = [x1, x2, x3, x4] having 3 labels a, b, c. Our

objective is to predict the probability of producing each output conditional on the
input, i.e., P(a | x), P(b | x), P(c | x), respectively. The weights for our model are
as depicted in Table2.2.

The unnormalized probabilities can be calculated by the summation of weights
for each label. Let us assume they are

za =
3∑

i=1

wi,axi = 0.71

zb =
3∑

i=1

wi,bxi = 0.7

40 2 Introduction to Neural Networks

zc =
3∑

i=1

wi,cxi = 0.44

We convert the unnormalized probabilities to normalized probabilities

P(a | x) = 0.71

(0.71 + 0.7 + 0.44)
= 0.383

P(b | x) = 0.7

(0.71 + 0.7 + 0.44)
= 0.378

P(c | x) = 0.44

(0.71 + 0.7 + 0.44)
= 0.237

For a valid probability distribution, all numbers must sum to 1:

0.383 + 0.378 + 0.237 ≡ 1.0

We are aware that a probability lies within the range [0, 1].
Now let us consider a case where due to some negative values in the weights,

we get a negative value for the unnormalized probability, i.e., za = −0.71. In this
situation, we cannot have a valid probability distribution because,P(a | x) = −0.383
and this is outside the range [0, 1].

To ensure that all unnormalized probabilities are positive, we must transform the
input to a strictly positive real number and we choose the Euler’s number exp to carry
out the transformation

za = exp−0.71 = 0.4916

zb = exp0.7 = 2.0137

zc = exp0.44 = 1.5527

Recalculating for the normalized probabilities, we get

P(a | x) = 0.4916

(0.4916 + 2.0137 + 1.5527)
= 0.1211

P(b | x) = 2.0137

(0.4916 + 2.0137 + 1.5527)
= 0.4962

P(c | x) = 1.5527

(0.4916 + 2.0137 + 1.5527)
= 0.3826

And the sum of the probabilities is

2.4 Activation Functions 41

0.1211 + 0.4962 + 0.3826 ≡ 1.0

To generalize our function, we can write

P(y | x) = expzj

∑n
k=1 expzk

∀j ∈ 1, . . . n (2.4.5)

Intuitively, the softmax function is a “soft” version of the maximum function.
Instead of selecting one maximal element, it breaks the vector into parts of a whole
with the maximal input element getting a proportionally larger value, and the other
elements getting a lesser proportion of the value. The property of outputting a
probability distribution makes the softmax function suitable for probabilistic
interpretation in classification tasks.

Let us consider z as a vector of inputs to the output layer. The output layer units
are the number of nodes in the output layer and therefore, the length of the z vector
is the number of units in the output layer (if we have ten output units, there are ten z
elements).

For an n-dimensional vector Z = [z1, z2, . . . zn], the softmax function produces
another n-dimensional vector with values in the range [0, 1].

Z =

⎡
⎢⎢⎢⎣

z1
z2
...

zn

⎤
⎥⎥⎥⎦ and , p(Z) →

⎡
⎢⎢⎢⎣

p1
p2
...

pn

⎤
⎥⎥⎥⎦

pj = expzj

∑n
k=1 expzk

∀j ∈ 1, 2, . . . , n (2.4.6)

Let us examine the softmax transformation of the 3-element vector (5, 3, 9). The
softmax activation transforms the vector by the relative size of the vector, and they
add up to 1, as is shown in the following code. In the code, we create a random array
of dimension = (2, 4), calculate the softmax activation of the vector, and sum the
outputs of the activation

X = array(rnorm(8), dim = c(2,4))

softmax <- function(X){
exps <- exp(X)

return (exps / rowSums(exps))
}

X

[,1] [,2] [,3] [,4]
[1,] -0.1182523 0.9972326 -0.1697167 0.9321687
[2,] -0.1896131 2.2139245 -1.8058676 0.8105641

42 2 Introduction to Neural Networks

output <- softmax(X)

rowSums(output)

[1] 1 1

The probabilities do add up to unity.

Softmax is predominantly used in the output layer for multi-class
classification- The softmax activation function is used to represent a prob-
ability distribution over multiple possible values of a variable, mostly in the
output layer. Using this activation function in the hidden layer may cause the
hidden nodes to be linearly dependent, whereas we would like to keep them as
much linearly independent. In some cases, using this activation function in the
hidden layer may also decrease the accuracy and the speed of learning.

However, if we wish that the network needs to choose between one of the
possible values for some internal variable, wemay use the softmax activation
function in one of the hidden layers. This is more of an exception than the rule.

2.5 Derivatives of Activation Functions

The derivative of a function is the rate of change of one quantity over another. What
this implies is that we can measure the rate of change of the output error (loss) with
respect to the network weights. If we know how the error changes with the weights,
we can change those weights in a direction that decreases the error.

The partial derivative of a function is the rate of change of one quantity over
another, irrespective of another quantity if more than two factors are in the function.
Partial derivatives come into play because we train neural networks with gradient
descent, where we deal with multiple variables.

2.5.1 Derivative of Sigmoid

The sigmoid function outputs a probability score for a specific input and we nor-
mally use it as the final layer in neural networks for binary classification. During
backpropagation (discussed in Sect. 2.8), we need to calculate the derivative (gra-
dient), so that we can pass it back to the previous layer. The first derivative of the
sigmoid function will be positive if the input is greater than or equal to zero or
negative, if the number is less than or equal to zero, as is shown in Fig. 2.13.

The gradient of the sigmoid function is derived below

σ(Z) = 1

1 + exp−Z

2.5 Derivatives of Activation Functions 43

Z

(Z
)

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sigmoid
Derivative of the Sigmoid

Fig. 2.13 Plot of the Sigmoid activation function and its gradient

d

dZ
σ(Z) = d

dZ

1

1 + exp−Z

= d

dZ
(1 + exp−Z)−1

= −(1 + exp−Z)−2(−exp−Z)

= exp−Z

(1 + exp−Z)2

= 1

1 + exp−Z

(
1 + exp−Z

1 + exp−Z
− 1

1 + exp−Z

)

= 1

(1 + exp−Z)

(
1 − 1

1 + exp−Z

)

= σ(Z)(1 − σ(Z)) (2.5.1)

2.5.2 Derivative of tanh

The hyperbolic tangent function is represented as

g(Z) = tanh(Z) = sinh(Z)

cosh(Z)
= expZ − exp−Z

expZ + exp−Z

The derivative of the hyperbolic tangent function is derived as below

44 2 Introduction to Neural Networks

d

dZ
tanh(Z) = d

dZ

sinh(Z)

cosh(Z)

=
d

dZ sinh(Z) × cosh(Z) − d
dZ cosh(Z) × sinh(Z)

cosh2(Z)

= cosh2(Z) − sinh2(Z)

cosh2(Z)

= 1 − sinh2(Z)

cosh2(Z)

= 1 − tanh2(Z)

(2.5.2)

2.5.3 Derivative of Rectified Linear Unit

We are aware that relu function is represented as

relu(Z) = g(Z) = max(Z, 0)

The derivative of relu is

d

dZ
relu(Z) =

{
1 ifZ > 0

0 otherwise
(2.5.3)

2.5.4 Derivative of Leaky Rectified Linear Unit

lrelu(Z) = g(Z) =
{

Z ifZ > 0

aZ otherwise

Similarly the derivative of lrelu is

d

dZ
lrelu(Z) =

{
1 ifZ > 0

a otherwise
(2.5.4)

2.5.5 Derivative of Softmax

We have discussed why the softmax function is often used in the output layer in
neural networks. Since it is used in the output layer for multi-class classification,

2.5 Derivatives of Activation Functions 45

we need to calculate the derivative so as to pass it back to the previous layer during
backpropagation.

From Eq.2.4.6, softmax function is

pi = expzi

∑n
k=1 expzk

∀ i ∈ 1, . . . n

Since softmax takes multiple inputs in the form of a vector and produces multiple
outputs in the form of an output vector we need to specify, which output component
of softmax we are seeking to find the derivative of.

The softmax equation can be interpreted as pi = P(y = i | z),
where the output class is represented as y ∈ 1, . . . n and z is a n-dimensional vector.

The partial derivative of the ith output pi with respect to the jth input zj can be
represented as ∂pi

∂zj
.

The derivative matrix (which is a Jacobian matrix),2 can be represented as

∂p

∂z
=

⎡
⎢⎢⎢⎢⎣

∂p1
∂z1

∂p1
∂z2

. . .
∂p1
∂zn

∂p2
∂z1

∂p2
∂z2

. . .
∂p2
∂zn

...
...

...
...

∂pn

∂z1
∂pn

∂z2
. . .

∂pn

∂zn

⎤
⎥⎥⎥⎥⎦

(2.5.5)

For an arbitrary i and j, the derivative ∂pi

∂zj
is

∂pi

∂zj
=

∂
expzi∑n

k=1 expzk

∂zj
(2.5.6)

We know from the partial rule in calculus, that if f (x) = g(x)
h(x) -

f ′(x) = g′(x)h(x) − h′(x)g(x)

(h(x))2

In our case, g(x) = expzi and h(x) = ∑n
k=1 expzk

∂h(x)

∂(expzj)
= ∂

∑n
k=1 expzk

∂(expzj)
= expzj ∀ j

and,
∂g(x)

∂(expzj)
= ∂(expzi)

∂(expzj)
= expzj -only when i = j

We therefore have two situations to calculate the derivative

2In vector calculus, a Jacobian matrix is computed from the first-order partial derivatives of a vector
function. When the output is a square matrix, it is named as a Jacobian.

46 2 Introduction to Neural Networks

• when i = j
∂

expzi∑n
k=1 expzk

∂zj
= expzi

∑n
k=1 expzk − expzj expzi

(∑n
k=1 expzk

)2

= expzi

∑n
k=1 expzk

(∑n
k=1 expzk

) − expzj

∑n
k=1 expzk

= expzj

∑n
k=1 expzk

(∑n
k=1 expzk

) − expzj

∑n
k=1 expzk

= pi(1 − pj)

(2.5.7)

• when i 	= j
∂

expzi∑n
k=1 expzk

∂zj
= 0 − expzj expzi

(∑n
k=1 expzk

)2

= − expzj

∑n
k=1 expzk

expzi

∑n
k=1 expzk

= −pjpi

(2.5.8)

To summarize above, the derivative of the softmax function is

∂pi

∂zj
=

{
pi(1 − pj) if i = j

−pipj if i 	= j
(2.5.9)

It is left to the reader to think what happens when i = j.

2.6 Cross-Entropy Loss

As we have seen in Sect. 1.11.4, Cross-Entropy (CE) measures the divergence
between two probability distributions. If the CE is large it means that the differ-
ence between the two distributions is large and, if the CE is small, it implies that
the two distributions are similar to each other. CE therefore gives us an estimate of
the distance between what the model believes the output distribution should be, and
what the original distribution really is.

Loss function is usually a function defined for a observation (data point) and,
it measures the penalty (difference between a single label and the predicted
label).

2.6 Cross-Entropy Loss 47

Cost function is usually more general. It is more generally a sum of the loss
functions over the training data set and the penalty for model complexity, i.e.,
regularization.

However, they are sometimes used interchangeably.

CE is used as a loss function in NNs (neural networks), which have sigmoid/
softmax activation in the output layer and is defined as

H (Y , p) = −
∑

i

yilog(pi)

Suppose we have a neural network model, (known as the hypothesis), which predicts
n classes 1, 2, . . . , n having probability of occurrences as ŷ1, ŷ2, . . . , ŷn and having
ki instances for each of the n classes, i.e., k1 + k2 + · · · + kn = m, where m is the
total number of observations.

As per our hypothesis (i.e. model), the likelihood of this happening can be repre-
sented as

P(data | model) = ŷk1
1 ŷk2

2 ..ŷkn
n

Using the negative log-likelihood,

−logP(data | model) = −
∑

i

kilog(ŷi)

Denoting the empirical probabilities as yi = ki/m, we can write the generalized CE
loss function as

− 1

m
logP(data | model) = − 1

m

∑
i

kilog(ŷi) = −
∑

i

yilog(ŷi) (2.6.1)

As we have discussed in the section on entropy, the log-likelihood of a data set, given
a model, can be interpreted as “how surprised we would be if we get an outcome
after we made our initial prediction”. From the view point of information theory, it
is the number of bits we would expect to spend to encode this information if our
encoding scheme is based on our hypothesis. Intuitively, given true y(i), we would
like to optimize our model to get the predicted ŷ(i) as close as possible to y(i).

Generally speaking, it is not agood idea to userelu,lreluor tanh activations
on the output layer, in combination with a CE loss. This is because CE is a cost
function, which attempts to compute the difference between two probability
distribution functions.

The output of a neural network needs to satisfy the following criteria to represent
a probability distribution function such that each of the categories in the distribution
can be represented using a probability value and, summing to one

48 2 Introduction to Neural Networks

• The probability value of each output is between zero and one.
• The sum of all probability values equals one.

Generally, we use softmax activation instead of sigmoid with CE loss because
softmax activation distributes the probability throughout each output node.

But, for binary classification, sigmoid activation is the same as softmax.
Most often, the output layer of a neural network is activated using a softmax

or sigmoid function, which forces the output of the network to satisfy the above-
mentioned criteria.

Using a relu, lrelu or tanh activation function in the output, with a CE loss
is therefore unreliable as these activation functions do not generate values that can
be interpreted as probabilities, whereas CE requires its inputs to be interpreted as
probabilities.

We therefore derive the CE loss function for the sigmoid and softmax acti-
vations functions only.

The prediction at the final layer activation can be written as ŷ(i) = A[L](i). For
binary classification using sigmoid function, we can assume the value of ŷ(i) to be
either 0 or 1.

For a network with one output predicting two classes, i.e., an output of 1 for
positive class membership and 0 for negative class membership, the (i) in ŷ(i) may
have only one value.

Therefore, in Eq.2.6.1, for the sigmoid, ŷ(i) and y(i) can be interpreted as the
corresponding binary distributions (ŷ(i), 1 − ŷ(i)) and (y(i), 1 − y(i)).

The CE loss function for sigmoid is represented as

Jsigmoid (w) = −
∑

i

yilog(ŷi)

= − 1

m

m∑
i=1

(y(i) log
(
ŷ(i)

) + (1 − y(i)) log
(
1 − ŷ(i)

)
)

(2.6.2)

and the CE loss for the complete data set with m observations and K classes for
softmax is

Jsoftmax = −
m∑
i

K∑
k

y(k)log(ŷ(k)) [form observations andKclasses] (2.6.3)

While using the sigmoid function, there is a danger if ŷ = 0. In that case, we
will get NaN values.

But for a randomly initialized softmax layer, it is extremely unlikely to output
an exact zero for any class, but it may still be possible.

A recommended solution while using the sigmoid function, could be to avoid
calculating log(ŷ) when ŷ = 0 (while calculating the cost); or coerce the ŷ

2.6 Cross-Entropy Loss 49

value to a nonzero number before backpropagation, (by using something like
log(max(ŷ, 1e-15))).

Please also to refer to Sect. 4.2 on dealing with NaNs.

2.7 Derivative of the Cost Function

For reasons mentioned in section above, we will endeavor to find the gradient of the
sigmoid and the softmax activation functions only (as they are mostly used in
the output layer).

2.7.1 Derivative of Cross-Entropy Loss with Sigmoid

The derivative of the CE loss function for the sigmoid activation function is rela-
tively simple (refer Eq.1.11.6)

Jsigmoid (w) = − 1

m
(Y log (A) + (1 − Y) log (1 − A))

∂Jsigmoid (w)

∂w
= −Y

A
+ (1 − Y)

1 − A

(2.7.1)

2.7.2 Derivative of Cross-Entropy Loss with Softmax

In Sect. 2.4.5, we had defined the softmax function in R. Let us now define the
CE loss of softmax in R. (This is only a coded representation of the softmax
cross-entropy loss; albeit with no output.)

cross_entropy_softmax <- function(X, y){
m = length(y)
p = softmax(X)
log_likelihood = -log(p[m, y])
loss = sum(log_likelihood) / m

return(loss)
}

The derivative of the CE loss of the softmax function requires a little more math
and is derived as under (o represents the output)

50 2 Introduction to Neural Networks

J = −
∑

i

yk log(ŷk)

∂J
∂oi

= −
∑

k

yk
∂log(ŷk)

∂oi

= −
∑

k

yk
∂log(ŷk)

∂ ŷk

∂ ŷk

∂oi

= −
∑

k

yk
1

ŷk

∂ ŷk

∂oi

= −yi(1 − ŷi) −
∑
k 	=i

yk
1

ŷk
(−ŷk ŷi)

= −yi(1 − ŷi) +
∑
k 	=i

yk ŷi

= −yi + yiŷi +
∑
k 	=i

yk ŷi

= ŷi(yi +
∑
k 	=i

yk) − yi

y is a one-hot encoded vector of the labels, where the rows sum to one, therefore⎛
⎝∑

k

yk = 1

⎞
⎠ and

⎛
⎝yi +

∑
k 	=i

yk = 1

⎞
⎠

∂J
∂oi

= ŷi − yi

(2.7.2)

2.8 Back Propagation

Backpropagation was first applied to the task for optimizing neural networks by
gradient descent in a paper titled Learning Internal Representations by Error Propa-
gation, 1985 by [3]. Later, work was done in the late 80’s and 90’s by [56], who first
applied it to convolutional neural networks. The success of neural networks is largely
attributed to them for their groundbreaking efforts, including Geoffrey E. Hinton,
who was one of the first researchers who demonstrated the use of the generalized
backpropagation algorithm for training multilayer neural networks.

Backpropagation is usually seems to be the most complex and most mathematical
part in deep learning, but it is relatively simple if we look at it piecewise.

We have seen earlier that a neural network propagates forward through the layers
by a set of connections known as weights and to the final hidden layer and on to the
output layer to make a prediction. Like in any machine learning algorithm as well
in deep learning, the important part is to estimate the correct weights. The metric to

2.8 Back Propagation 51

evaluate the weights is the accuracy of prediction or the loss function of the network.
We try to arrive at the minimum cost and the only way we can change the cost is by
changing the weights, as the loss function is parameterized by the weights of each
layer.

How do we optimize our loss function?
Minimizing any function involves finding the derivative of the function and set-

ting it to zero, i.e., ∂J
∂w

= 0. However, in the case of neural networks (unlike most
conventional machine learning models), we are faced with some difficulties to find
the local minima of the loss function, which are

• We are dealing with weights from different layers, therefore multiple equations
need to be optimized.

• Each layer may have different number of nodes, therefore number of weights for
each layer will be different.

• There exists multiple local minima and we have to settle at a global minima.

To perform backpropagation, we need to first establish an objective (cost) function
to measure performance. For regression problems, this is often the mean squared
error (MSE) and for classification problems it is the binary and multi-categorical
CE. Neural networks can have multiple loss functions but we will focus on using
one.

On each forward pass the network will measure its performance based on the
chosen cost function. The network will then work backwards through the layers,
compute the gradient of the cost with respect to the network weights, adjust the
weights a little in the opposite direction of the gradient, and repeat till the loss
function is minimized.

Let us revisit the network represented in Fig. 2.7.

Calculation of Cost of Sigmoid Activation in Output Layer

The CE cost function using sigmoid activation for the network, represented in
Fig. 2.7, is mathematically represented as

J = −(Y · logA[3] + (1 − Y) · log(1 − A[3]))

We had earlier derived the derivative of the above as-

∂J
∂A[3] = − Y

A[3] + (1 − Y)

(1 − A[3])
(2.8.1)

The backpropagation equations for the network layers are

dZ3 = ∂J
∂Z [3] = ∂J

∂A[3]
∂A[3]

∂Z [3]

=
(

− Y

A[3] + (1 − Y)

(1 − A[3])

)
A[3](1 − A[3])

= A[3] − Y

(2.8.2)

52 2 Introduction to Neural Networks

d W3 = ∂J
∂W [3] = ∂J

∂Z [3]
∂Z [3]

∂W [3]

= ∂J
∂Z [3] A[2]

= (A[3] − Y)A[2]

= dZ3 A[2]

(2.8.3)

db3 = ∂J
∂b[3] = ∂J

∂Z [3]
∂Z [3]

∂b[3]
= (A[3] − Y) ∗ 1

= dZ3

(2.8.4)

dA2 = ∂J
∂A[2] = ∂J

∂Z [3]
∂Z [3]

∂A[2]
= (A[3] − Y) W [3]

= [dZ3[][W [3]]
(2.8.5)

dZ2 = ∂J
∂Z [2] = ∂J

∂A[3]
∂A[3]

∂Z [3]
∂Z [3]

∂A[2]
∂A[2]

∂Z [2]

= [A[3] − Y][W [3]]∂σ(Z [2])
∂Z [2]

= [dA2][A[2](1 − A[2])]

(2.8.6)

d W2 = ∂J
∂W [2] = ∂J

∂Z [2]
∂Z [2]

∂W [2]
= [(A[3] − Y)W [3]A[2](1 − A[2])]A[1]

= dZ2 A[1]

(2.8.7)

∂J
∂b[2] = ∂J

∂Z [2]
∂Z [2]

∂b[2]
= (A[3] − Y)W [3]A[2](1 − A[2]) ∗ 1

= dZ2

(2.8.8)

2.8 Back Propagation 53

dA1 = ∂J
∂A[1] = ∂J

∂Z [2]
∂Z [2]

∂A[1]
= [(A[3] − Y)W [3]A[2](1 − A[2])][W [2]]
= dZ2 W [2]

(2.8.9)

dZ1 = ∂J
∂Z [1] = ∂J

∂A[2]
∂A[2]

∂Z [2]
∂Z [2]

∂A[1]
∂A[1]

∂Z [1]

= [(A[3] − Y)W [3]][A[2](1 − A[2])][W [2]]∂σ(Z [1])
∂Z [1]

= dA1[A[1](1 − A[1])]

(2.8.10)

d W1 = ∂J
∂W [1] = ∂J

∂Z [1]
∂Z [1]

∂W [1]
= [(A[3] − Y)W [3]A[2](1 − A[2])W [2]A[1](1 − A[1])]X
= dZ1 X

(2.8.11)

db1 = ∂J
∂b[1] = ∂J

∂Z [1]
∂Z [1]

∂b[1]
= dZ1

(2.8.12)

2.8.1 Summary of Backward Propagation

The backpropagation equations for a single observation can be generalized as

dz[�] = da[�] g′[�](z[�])

dw[�] = dz[�] a[�−1]

db[�] = dz[�]

da[�−1] = w[�+1]T dZ [�]

dz[�] = w[�+1]T dz[�+1] g′[�](z[l]) (2.8.13)

The vectorized form to include all observations is

54 2 Introduction to Neural Networks

dZ [�] = dA[�] σ ′[�](Z [�])

d W [�] = 1

m
dZ [�] A[�−1]T

db[�] = 1

m
rowSums(dZ [�])

dA[�−1] = W [�] dZ [�]

(2.8.14)

2.9 Writing a Simple Neural Network Application

We are now ready to write a composite code to:

• define the architecture of a neural network,
• initialize its parameters,
• calculate the the predictions using forward propagation,
• calculate the loss,
• correct the loss using a backpropagation algorithm (wewill use the simple gradient
descent method),

• iterate the same procedure, till we arrive at a negligible cost.

We will construct a single hidden layer with a single node and a sigmoid activation
neural network.

The sigmoid activation function can be written as below

sigmoid <- function(x){
1/(1+exp(-x))

}

The following function creates a vector of zeros by initializing our weight vector
and bias scalars to zero.

initialize_with_zeros <- function(dim){
w = matrix(0, nrow = dim, ncol = 1)
b = 0

return(list(w, b))
}

After initializing our parameters above, we will carry out the forward
propagation of the network to learn our parameters. The propagate() func-
tion below calculates the cost and its gradient. This is the negative log-likelihood
cost of the logistic regression, defined in Eq.1.11.3. We then find the gradient of the
cost as follows:

2.9 Writing a Simple Neural Network Application 55

A = σ(wT X + b) = (a(1), a(2), . . . , a(m))

J = − 1

m

m∑
i=1

y(i)log(a(i) + (1 − y(i))log(1 − a(i)))

∂J
∂w

= ∂J
∂z

∂z

∂w
= (a(i) − y(i)) ∗ x(i)

∂J
∂w

= 1

m
X

m∑
i=1

(a(i) − y(i))T

∂J
∂b

= 1

m

m∑
i=1

(a(i) − y(i))

dw is the gradient of the cost with respect to w and therefore shares the same
dimension as w. Similarly, db is the gradient of the cost with respect to b and has the
same dimension as b.

The propagate function returns the gradients dw, db and the cost in the form
of a list.

propagate <- function(w, b, X, Y){

m = ncol(X)

Forward Propagation
A = sigmoid((t(w) %*% X) + b)
cost = (-1 / m) * sum(Y * log(A) + (1 - Y) * log(1 - A))

Backward Propagation
dw = (1 / m) * (X %*% t(A - Y))
db = (1 / m) * rowSums(A - Y)

grads <- list(dw, db)

return(list(grads, cost))
}

In the following function optimize, we run the gradient descent algorithm to
update the structural parameters of the neural network, w and b.

We run the gradient descent algorithm for a finite number of times defined by
the hyperparameter, num_iter, and learning_rate, which is the learning step for the
gradient descent.

The function prints the cost, J for every 500th iteration. The cost for every iteration
is stored in a list named costs.

This function returns the updated weights and bias w and b in a list called params
and the gradients dw and db in a list called grads.

The dimensions of the input vector X are (number of features, number of
observations), i.e., (12287, 200) and, that of the Y vector is (1, number of
observations), i.e., (1, 200), respectively.

optimize <- function(w, b, X, Y, num_iter, learning_rate, print_cost = FALSE) {

cost <- list()

56 2 Introduction to Neural Networks

for (i in 1:num_iter) {
Cost and gradient calculation
grads = propagate(w, b, X, Y)[[1]] # grads is a list
cost[i] = propagate(w, b, X, Y)[[2]]

Retrieve the derivatives
dw = matrix(grads[[1]])
db = grads[[2]]

Update the parameters
w = w - learning_rate * dw
b = b - learning_rate * db

Record the cost
if (i%%100 == 0) {

costs <- cost
}

Print the cost every 500th iteration
if ((print_cost == T) & (i%%500 == 0)) {

cat(sprintf("Cost after iteration %d: %06f\n", i,
cost[[i]]))

}

params <- list(w, b)
grads <- list(dw, db)

}

return(list(params, grads, costs))
}

Having computed the optimized structural parameters w and b, we are now in a
position to predict the output as either 0 or 1.

m is the number of observations and the probability threshold is defined as 0.5.

pred <- function(w, b, X) {

m = ncol(X)
Y_prediction <- matrix(0, nrow = 1, ncol = m)

Activation vector A to predict the probability of a dog/cat
A = sigmoid((t(w) %*% X) + b)

for (i in 1:ncol(A)) {
if (A[1, i] > 0.5) {

Y_prediction[1, i] = 1
} else Y_prediction[1, i] = 0

}

return(Y_prediction)
}

In the above code segments, we have completed the following:

• Coded the sigmoid activation function
• Initialized the structural parameters w and b of our neural network
• Coded the forward propagation function to predict the labels and the cost, (the
difference between the true and predicted labels)

• Predicted the labels with our latest structural parameters w and b

2.9 Writing a Simple Neural Network Application 57

• Reused the parameters to backpropagate, to calculate the gradient of the structural
parameters w and b

We are now poised to agglomerate the above functions in our neural network appli-
cation to iterate the above procedure.

As a reminder, the input layer consists of 12287 nodes (features), with each node
having 200 observations.
simple_model <- function(X_train,

Y_train,
X_test,
Y_test,
num_iter,
learning_rate,
print_cost = FALSE){

initialize parameters with zeros
w = initialize_with_zeros(nrow(X_train))[[1]]
b = initialize_with_zeros(nrow(X_train))[[2]]

Gradient descent
optFn_output <- optimize(w,

b,
X_train,
Y_train,
num_iter,
learning_rate,
print_cost)

parameters <- optFn_output[[1]]
grads <- optFn_output[[2]]
costs <- optFn_output[[3]]

Retrieve parameters w and b
w = as.matrix(parameters[[1]])
b = parameters[[2]]

Predict test/train set examples
pred_train = pred(w, b, X_train)
pred_test = pred(w, b, X_test)

Print train/test Errors
cat(sprintf("train accuracy: %#.2f \n", mean(pred_train == Y_train) * 100))

cat(sprintf("test accuracy: %#.2f \n", mean(pred_test == Y_test) * 100))

res = list("costs"= costs,
"pred_train" = pred_train,
"pred_test"= pred_test,
"w" = w,
"b" = b,
"learning_rate" = learning_rate,
"num_iter" = num_iter)

return(res)
}

For our training and testing data sets, we will use the “Dogs vs. Cats” data set.3

3downloaded from https://www.kaggle.com/c/dogs-vs-cats/data on April 02, 2018, 07:40 IST.

https://www.kaggle.com/c/dogs-vs-cats/data

58 2 Introduction to Neural Networks

library(EBImage)
file_path_train <- "˜/data/train"
file_path_test <- "˜/data/test"

library(pbapply)
height = 64
width = 64
channels = 3

extract_feature <- function(dir_path, width, height) {
img_size <- width * height

images <- list.files(dir_path)
label <- ifelse(grepl("dog", images) == T, 1, 0)
print(paste("Processing", length(images), "images"))

feature_list <- pblapply(images, function(imgname) {

img <- readImage(file.path(dir_path, imgname))
img_resized <- EBImage::resize(img, w = width, h = height)
img_matrix <- matrix(reticulate::array_reshape(img_resized, (width *

height * channels)), nrow = width * height * channels)
img_vector <- as.vector(t(img_matrix))

return(img_vector)
})

feature_matrix <- do.call(rbind, feature_list)

return(list(t(feature_matrix), label))
}

Reshape the images

data_train <-extract_feature(file_path_train,width = 64,height = 64)

[1] "Processing 200 images"

trainx <-data_train[[1]]
trainy <-data_train[[2]]
dim(trainx)

[1] 12288 200

data_test <-extract_feature(file_path_test,width = 64,height = 64)

[1] "Processing 50 images"

testx <-data_test[[1]]
testy<- data_test[[2]]
dim(testx)

[1] 12288 50

Let us have a look at the actual image and the resized image (Figs. 2.14 and 2.15).

par(mfrow = c(1, 2))

images <- list.files(file_path_train)
img <- readImage(file.path(file_path_train, images[101]))

2.9 Writing a Simple Neural Network Application 59

Fig. 2.14 An image from the train set is shown in the left along with the resized image having
dimensions 64 × 64 × 3 on the right

EBImage::display(img, method = "raster")
EBImage::display(matrix(as.matrix(trainx[, 101]),

c(64, 64, 3),
byrow = TRUE),

method = ’raster’)

par(mfrow = c(1, 2))

images <- list.files(file_path_test)
img <- readImage(file.path(file_path_test, images[18]))

EBImage::display(img, method = "raster")
EBImage::display(matrix(as.matrix(testx[, 18]),

c(64, 64, 3),
byrow = TRUE),

method = ’raster’)

60 2 Introduction to Neural Networks

Fig. 2.15 An image from the test set is shown in the left along with the resized image having
dimensions 64 × 64 × 3 in the right

Data normalization is important in neural networks. When we apply the
sigmoid function to our hypothesis, the output probabilities can take val-
ues which are approximately all 0’s or all 1’s rendering the cost function a NaN
value. This in most cases is likely due to the widely different ranges of each
feature rendering the weighted sum of x × w to assume very large negative or
positive values. When we apply the sigmoid function to these values, we run
the risk of ending up with values very close to 0 or 1, rendering NaN values to
the gradient.

One way to combat this problem is to normalize the data with zero mean and
unit variance, before performing training using gradient descent.

trainx <- scale(trainx)
testx <- scale(testx)

Time to run our simple neural network model (Fig. 2.16 and 2.17).

model = simple_model(trainx,
trainy,
testx,

2.9 Writing a Simple Neural Network Application 61

Iterations

C
os

t

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Learning rate = 0.01

Fig. 2.16 Cost of our sigmoid activation neural network with a learning rate of 0.001

Iterations

C
os

t

0 1000 2000 3000 4000 5000

0.0
0.2

0.4
0.6

0.8
1.

0 Learning rate = 0.01
Learning rate = 0.002
Learning rate = 0.005

Fig. 2.17 Plot of Cost versus iteration with different learning rates

testy,
num_iter = 5000,
learning_rate = 0.01,
print_cost = TRUE)

Cost after iteration 500: 0.011374
Cost after iteration 1000: 0.005671
Cost after iteration 1500: 0.003772
Cost after iteration 2000: 0.002825
Cost after iteration 2500: 0.002257
Cost after iteration 3000: 0.001880
Cost after iteration 3500: 0.001610
Cost after iteration 4000: 0.001408
Cost after iteration 4500: 0.001251
Cost after iteration 5000: 0.001126
train accuracy: 100.00
test accuracy: 62.00

Plot Cost vs Iteration
x = c(1:5000)
y = model$costs
smoothingSpline = smooth.spline(x, y, spar = 0.35)

plot(NULL, type = "n",
xlab = "Iterations", ylab = "Cost",
xlim = c(1, 5000), ylim = c(0, 1),

62 2 Introduction to Neural Networks

xaxt = "n", yaxt = "n",
cex.lab = 0.7)

lines(smoothingSpline, col = ’deepskyblue4’)
axis(side = 1, col = "black", cex.axis = 0.7)
axis(side = 2, col = "black", cex.axis = 0.7)

legend(1550, 0.9, inset = 0.001, c(’Learning rate = 0.01’), cex = 0.6)

Let us play around with the learning rate hyperparameter and plot the cost with
different learning rates:

learning_rates = c(0.01, 0.002, 0.005)
models = list()
smoothingSpline <- list()

plot(NULL, type = "n",
xlab = "Iterations", ylab = "Cost",
xlim = c(1, 5000), ylim = c(0, 1),
xaxt = "n", yaxt = "n",
cex.lab = 0.7)

for(i in 1:length(learning_rates)){
cat(sprintf("Learning rate: %#.3f \n", learning_rates[i]))
models[[i]] = simple_model(trainx,

trainy,
testx,
testy,
num_iter = 5000,
learning_rate = learning_rates[i],
print_cost = F)

cat(’\n---\n’)

x = c(1:5000)
y = unlist(models[[i]]$costs)
smoothingSpline = smooth.spline(x, y, spar = 0.35)

lines(smoothingSpline, col = i + 2, lwd = 2)
}

Learning rate: 0.010
train accuracy: 100.00
test accuracy: 62.00

Learning rate: 0.002
train accuracy: 100.00
test accuracy: 60.00

Learning rate: 0.005
train accuracy: 100.00
test accuracy: 62.00

axis(side = 1, col = "black", cex.axis = 0.7)
axis(side = 2, col = "black", cex.axis = 0.7)

legend("topright", inset = 0.001,
c(’Learning rate = 0.01’,

’Learning rate = 0.002’,

2.9 Writing a Simple Neural Network Application 63

’Learning rate = 0.005’),
lwd = c(2, 2, 2),
lty = c(1, 1, 1),
col = c(’green3’, ’blue’, ’cyan’),
cex = 0.6)

Although ourmodel is highly overfitted,we have constructed a simple neural network
model up from scratch.

In the following chapters, we will explore how we can improve the predictive
power by constructing a deep neural network with different activations.

2.10 Conclusion

We now have a fair idea about the basic neural network architecture, the activation
functions used in neural networks and their limitations, and the forward propagation
and backward propagation procedures.

We have also constructed a simple neural network using sigmoid activation and
explored the outcomes using different learning rates.

In the next chapter, we will delve further into deeper neural networks.

Chapter 3
Deep Neural Networks-I

It is not complicated, it is just a lot of it.
Feynman

Abstract In this section we will learn the foundations of deep learning and how
deep learning actually works. In particular, we will discuss

• How to build, train and apply a fully connected deep neural network.
• Understand the key parameters in a neural network’s architecture.
• Introduction to keras

We will also construct a deep learning algorithm from scratch.

3.1 Writing a Deep Neural Network (DNN) Algorithm

We will be using the following packages:

library(dplyr)
library(ggplot2)
library(reticulate)
library(keras)

Let us first write down the different activation functions.
The following four functions compute the sigmoid, relu, tanh, and

softmax activations of the input vector.

sigmoid <- function(Z) {
A <- 1/(1 + exp(-Z))
cache <- Z

return(list(A = A, Z = Z))
}

© Springer Nature Singapore Pte Ltd. 2019
A. Ghatak, Deep Learning with R,
https://doi.org/10.1007/978-981-13-5850-0_3

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-5850-0_3&domain=pdf
https://doi.org/10.1007/978-981-13-5850-0_3

66 3 Deep Neural Networks-I

relu <- function(Z) {
A <- pmax(Z, 0)
cache <- Z

return(list(A = A, Z = Z))
}

tanh <- function(Z) {
A <- sinh(Z)/cosh(Z)
cache <- Z

return(list(A = A, Z = Z))
}

softmax <- function(Z) {
get unnormalized probabilities
exp_scores = exp(t(Z))
get the normalized probabilities
A = exp_scores/rowSums(exp_scores)

return(list(A = A, Z = Z))
}

The following four functions compute the gradient (derivative) of the activations as
discussed in Sect. 2.5.

d

dZ
σ(Z) = σ(Z)(1− σ(Z))

derivative_sigmoid <- function(dA, cache) {
Z <- cache
s <- 1/(1 + exp(-Z))
dZ <- dA * s * (1 - s)

return(dZ)
}

d

dZ
relu(Z) =

{
1 if Z > 0

0 otherwise

derivative_relu <- function(dA, cache) {
Z <- cache
dZ <- dA
a <- (Z > 0) # Find which values of Z are greater than zero
dZ <- dZ * a # when Z <= 0, dZ is set to zero

return(dZ)
}

d

dZ
tanh(Z) = 1− tanh2(Z)

3.1 Writing a Deep Neural Network (DNN) Algorithm 67

derivative_tanh <- function(dA, cache) {
Z = cache
a = sinh(Z)/cosh(Z)
dZ = dA * (1 - aˆ2)

return(dZ)
}

derivative_softmax <- function(dA, cache, X, Y, num_classes) {
y.mat <- matrix(Y, ncol = 1)
y <- matrix(0, nrow = length(Y), ncol = num_classes)

for (i in 0:(num_classes - 1)) {
y[y.mat[, 1] == i, i + 1] <- 1

}

Z <- cache
exp_scores = exp(t(Z))
probs = exp_scores/rowSums(exp_scores)
dZ = probs - y

return(dZ)
}

In the following function, we initialize the structural parameters of our network. To
do so, we need to define the number of layers and the number of nodes in each layer
by a parameter layer_dims defined by a list. The length of this list is the sum
of the number of the input layer, the hidden layers and the output layer. The first
entry in the list is the number of input nodes (i.e., features of the input vector); the
last entry is the number of nodes in the output layer (which is normally one) and the
in-between entries are the number of nodes in the respective hidden layers.

The function returns the initialized values set of the parameters in the form of a
vector.

The dimensions of the parameters are: dim(W [�]) = (num nodes at layer �,

num nodes at layer � − 1) and dim(b[�]) = (num nodes at layer �, 1).
We have defined four different types of initializations in the function, however

we will only use random initialization, i.e., choose the parameters from a random
gaussian distribution.

We will discuss the other initialization techniques and their effect on convergence
in the next chapter.

initialize_params <- function(layers_dims, initialization){
set.seed(2)
layerParams <- list()
for(layer in 2:length(layers_dims)){

if(initialization == ’zero’){
n = 0 * rnorm(layers_dims[layer] * layers_dims[layer - 1])

layerParams[[paste(’W’, layer - 1, sep = "")]] =
matrix(n,

nrow = layers_dims[layer],
ncol = layers_dims[layer - 1])

layerParams[[paste(’b’, layer - 1, sep = "")]] =

68 3 Deep Neural Networks-I

matrix(rep(0, layers_dims[layer]),
nrow = layers_dims[layer],
ncol = 1)

}
else if(initialization == ’random’){

n = rnorm(layers_dims[layer] * layers_dims[layer - 1],
mean = 0,
sd = 1) * 0.01

layerParams[[paste(’W’, layer - 1, sep = "")]] =
matrix(n,

nrow = layers_dims[layer],
ncol = layers_dims[layer - 1])

layerParams[[paste(’b’, layer - 1, sep = "")]] =
matrix(rep(0, layers_dims[layer]),

nrow = layers_dims[layer],
ncol = 1)

}
else if(initialization == ’He’){

n = rnorm(layers_dims[layer] * layers_dims[layer - 1], mean = 0, sd = 1) *
sqrt(2/layers_dims[layer - 1])

layerParams[[paste(’W’,layer - 1, sep = "")]] =
matrix(n,

nrow = layers_dims[layer],
ncol = layers_dims[layer - 1])

layerParams[[paste(’b’,layer - 1,sep = "")]] =
matrix(rep(0, layers_dims[layer]),

nrow = layers_dims[layer],
ncol = 1)

}
else if(initialization == ’Xavier’){

n = rnorm(layers_dims[layer] * layers_dims[layer - 1], mean = 0, sd = 1) *
sqrt(1 / layers_dims[layer - 1])

layerParams[[paste(’W’,layer - 1, sep = "")]] =
matrix(n,

nrow = layers_dims[layer],
ncol = layers_dims[layer - 1])

layerParams[[paste(’b’,layer - 1, sep = "")]] =
matrix(rep(0, layers_dims[layer]),

nrow = layers_dims[layer],
ncol = 1)

}
}

return(layerParams)
}

We are now ready to compute our activations in the hidden layers. The activation of
the previous layer is defined by the parameter A_prev. For the first hidden layer,
A_prev is the input X values.

For the in-between hidden layers it is either relu or the tanh activations,
depending on our design of the network.

The output layer will have sigmoid activation for binary classification and
softmax activation for multi-class classification.

3.1 Writing a Deep Neural Network (DNN) Algorithm 69

The linear function Z is the weighted combination of the inputs, defined as Z [l] =
W [l]A[l] + b[l], where A[1] = X .

The linear function Z is activated by the activation function as

• tanh(Z) = tanh(W A + b).
• relu(Z) = pmax(W A + b, 0).

This function returns the activation at layer (Aprev + 1) and a cache containing the
values (X,W, b, Z)

f_prop_helper <- function(A_prev, W, b, hidden_layer_act){

Z <-sweep(W %*% A_prev, 1, b, ’+’)

forward_cache <- list("A_prev" = A_prev, "W" = W, "b" = b)

if(hidden_layer_act == "sigmoid"){
act_values = sigmoid(Z)

}
else if (hidden_layer_act == "relu"){

act_values = relu(Z)
}
else if(hidden_layer_act == ’tanh’){

act_values = tanh(Z)
}
else if(hidden_layer_act == ’softmax’){

act_values = softmax(Z)
}
cache <- list("forward_cache" = forward_cache,

"activation_cache" = act_values[[’Z’]])

return(list("A" = act_values[[’A’]], "cache" = cache))
}

Having computed the activation at each layer, we are now in a position to compute
the forward propagation for all the layers. The length of the parameters defined by
L is the number of layers (except the input layer).

The inputs to the function are X (input features), W, b (weights and biases). The
function returns the activation AL (output layer) and a cache containing the values
of (X,W, b, Z) in a list.

forward_prop <- function(X, parameters, hidden_layer_act, output_layer_act) {

caches <- list()
A <- X
L <- length(parameters)/2

Loop through from layer 1 to upto layer L-1
for (l in 1:(L - 1)) {

A_prev <- A
W <- parameters[[paste("W", l, sep = "")]]
b <- parameters[[paste("b", l, sep = "")]]
actForward <- f_prop_helper(A_prev, W, b, hidden_layer_act[[l]])
A <- actForward[["A"]]
caches[[l]] <- actForward

}

70 3 Deep Neural Networks-I

W <- parameters[[paste("W", L, sep = "")]]
b <- parameters[[paste("b", L, sep = "")]]

actForward = f_prop_helper(A, W, b, output_layer_act)
AL <- actForward[["A"]]
caches[[L]] <- actForward

return(list(AL = AL, caches = caches))
}

Forward propagation is akin to a prediction function. When the data set has been
passed through the layers in the network, we get an output that can be compared to
the actual label.

The purpose of the cost function is to determine how far the output is from the
target value.

We will only consider the sigmoid and softmax activation for the output
layer, for reasons stated in Sect. 2.6.

compute_cost <- function(AL, X, Y, num_classes, output_layer_act){

if(output_layer_act == "sigmoid"){
m = length(Y)
cross_entropy_cost = -(sum(Y * log(AL) + (1 - Y) * log(1 - AL))) / m

}
else if(output_layer_act == "softmax"){

m = ncol(X)
y.mat <- matrix(Y, ncol = 1)
y <- matrix(0, nrow = m, ncol = num_classes)
for (i in 0:(num_classes - 1)) {

y[y.mat[, 1] == i, i+1] <- 1
}
correct_logprobs <- -log(AL)
cross_entropy_cost <- sum(correct_logprobs * y) / m

}

return(cross_entropy_cost)
}

The notation commonly used in deep learning coding to represent the gradients is

• dW1 = ∂J
∂W1

.

• db1 = ∂J
∂b1

.

• dW2 = ∂J
∂W2

.

• db2 = ∂J
∂b2

.

We now need to backpropagate through the layers, i.e., calculate the gradients of the
weights dW , the bias db and the linear function dZ of each layer with respect to
the loss. Backpropagation is used to calculate the error contribution of each weight
with respect to cost. The idea is to backward engineer the derivative or slope of every
computation and update the weights so that the cost will decrease at each iteration.

We first calculate dZ [L], which will give us dW [L] and db[L].
Having calculated dZ [�] = ∂J

∂Z [�] , we would want to find dW [�], db[�], d A[�−1].

3.1 Writing a Deep Neural Network (DNN) Algorithm 71

The general equation for calculating the gradients are the following:

• dW [�] = ∂J
∂W [�] = 1

m dZ
[�]A[�−1]T

• db[�] = ∂J
∂b[�] = 1

m

m∑
i=1

dZ [�](i)

• d A[�−1] = ∂J
∂A[�−1] = W [�]T dZ [�]

back_prop_helper <- function(dA, cache, Y, hidden_layer_act, num_classes){

forward_cache <-cache[[’forward_cache’]]
Get Z
activation_cache <- cache[[’activation_cache’]]
A_prev <- forward_cache[[’A_prev’]]
m = dim(A_prev)[2]

if(hidden_layer_act == "relu"){
dZ <- derivative_relu(dA, activation_cache)

}
else if(hidden_layer_act == "sigmoid"){

dZ <- derivative_sigmoid(dA, activation_cache)
}
else if(hidden_layer_act == "tanh"){

dZ <- derivative_tanh(dA, activation_cache)
}
else if(hidden_layer_act == "softmax"){

dZ <- derivative_softmax(dAL, activation_cache, X, Y, num_classes)
}

W <- forward_cache[[’W’]]
b <- forward_cache[[’b’]]
m = dim(A_prev)[2]

if(hidden_layer_act == ’softmax’){
dW = 1 / m * t(dZ) %*% t(A_prev) #+ (lambd / m) * W
db = 1 / m * colSums(dZ)
dA_prev = t(W) %*% t(dZ)

}
else{
dW = 1 / m * dZ %*% t(A_prev)
db = 1 / m * rowSums(dZ)
dA_prev = t(W) %*% dZ
}

return(list("dA_prev" = dA_prev, "dW" = dW, "db" = db))
}

In the function forward_prop, we had stored (X,W, b, Z) in the cache. We will
use these values in back_prop, to calculate the gradients. We will iterate through
all the hidden layers backward, starting from the final layer L . At each layer, we will
use the cached values for that layer to backpropagate through that layer.

We know that the output at layer L is A[L] = σ(Z [L]).Wewill have to calculate the
post activation gradient d AL = ∂J

∂A[L] . For sigmoid activation at the output layer,
the derivative d AL = ∂J

∂A[L] is −(Y
AL − (1−Y)

(1−AL)
).

72 3 Deep Neural Networks-I

back_prop <- function(AL,
Y,
caches,
hidden_layer_act,
output_layer_act,
num_classes){

gradients = list()
L = length(caches)
m = dim(AL)[2]

if(output_layer_act == "sigmoid"){
dAL = -((Y/AL) - (1 - Y)/(1 - AL))

}
else if(output_layer_act == ’softmax’) {

y.mat <- matrix(Y, ncol = 1)
y <- matrix(0, nrow = length(Y), ncol = num_classes)
for (i in 0:(num_classes - 1)) {

y[y.mat[, 1] == i, i + 1] <- 1
}
dAL = (AL - y)

}

current_cache = caches[[L]]$cache
loop_back_vals <- back_prop_helper(dAL, current_cache,

Y,
hidden_layer_act = output_layer_act,
num_classes)

gradients[[paste("dA", L, sep = "")]] <- loop_back_vals[[’dA_prev’]]
gradients[[paste("dW", L, sep = "")]] <- loop_back_vals[[’dW’]]
gradients[[paste("db", L, sep = "")]] <- loop_back_vals[[’db’]]

for(l in (L - 1):1){
current_cache = caches[[l]]$cache
loop_back_vals = back_prop_helper(gradients[[paste(’dA’, l + 1, sep = "")]],

current_cache,
Y,
hidden_layer_act[[l]],
num_classes)

gradients[[paste("dA", l, sep = "")]] <- loop_back_vals[[’dA_prev’]]
gradients[[paste("dW", l, sep = "")]] <- loop_back_vals[[’dW’]]
gradients[[paste("db", l, sep = "")]] <- loop_back_vals[[’db’]]

}

return(gradients)
}

Update each of the structural parameters by subtracting the product of the parameter
gradient and the learning rate from the parameter for each propagation.

update_params <- function(parameters, gradients, learning_rate) {
L = length(parameters)/2

for (l in 1:L) {
parameters[[paste("W", l, sep = "")]] = parameters[[paste("W",

l, sep = "")]] - learning_rate * gradients[[paste("dW",
l, sep = "")]]

3.1 Writing a Deep Neural Network (DNN) Algorithm 73

parameters[[paste("b", l, sep = "")]] = parameters[[paste("b",
l, sep = "")]] - learning_rate * gradients[[paste("db",
l, sep = "")]]

}

return(parameters)
}

The predict_model function makes use of the forward_prop function to
compute the final layer activation. The probability threshold is kept at 0.5 (the thresh-
old however, could be different than 0.5).

predict_model <- function(parameters, X, hidden_layer_act, output_layer_act){

pred <- numeric()
scores <- forward_prop(X,

parameters,
hidden_layer_act,
output_layer_act)[[’AL’]]

if(output_layer_act == ’softmax’) {
pred <- apply(scores, 1, which.max)

}
else{
for(i in 1:ncol(scores)){

if(scores[i] > 0.5) pred[i] = 1
else pred[i] = 0
}

}

return (pred)
}

We are now ready to combine the above functions to write a n layer deep neural
network algorithm.

n_layer_model <- function(X,
Y,
X_test,
Y_test,
layers_dims,
hidden_layer_act,
output_layer_act,
learning_rate,
num_iter,
initialization,
print_cost = F){

set.seed(1)
costs <- NULL
parameters <- initialize_params(layers_dims, initialization)
num_classes <- length(unique(Y))
start_time <- Sys.time()

for(i in 0:num_iter){
AL = forward_prop(X,

parameters,
hidden_layer_act,

74 3 Deep Neural Networks-I

output_layer_act)[[’AL’]]

caches = forward_prop(X,
parameters,
hidden_layer_act,
output_layer_act)[[’caches’]]

cost <- compute_cost(AL,
X,
Y,
num_classes,
output_layer_act)

gradients = back_prop(AL,
Y,
caches,
hidden_layer_act,
output_layer_act,
num_classes)

parameters = update_params(parameters,
gradients,
learning_rate)

costs <- c(costs, cost)

if(print_cost == T & i %% 1000 == 0){
cat(sprintf("Cost after iteration %d = %05f\n", i, cost))

}
}

if(output_layer_act != ’softmax’){
pred_train <- predict_model(parameters,

X,
hidden_layer_act,
output_layer_act)

Tr_acc <- mean(pred_train == Y) * 100
pred_test <- predict_model(parameters,

X_test,
hidden_layer_act,
output_layer_act)

Ts_acc <- mean(pred_test == Y_test) * 100
cat(sprintf("Cost after iteration %d, = %05f;

Train Acc: %#.3f, Test Acc: %#.3f, \n",
i, cost, Tr_acc, Ts_acc))

}
else if(output_layer_act == ’softmax’){

pred_train <- predict_model(parameters,
X,
hidden_layer_act,
output_layer_act)

Tr_acc <- mean((pred_train - 1) == Y)
pred_test <- predict_model(parameters,

X_test,
hidden_layer_act,
output_layer_act)

Ts_acc <- mean((pred_test - 1) == Y_test)
cat(sprintf("Cost after iteration , %d, = %05f;

Train Acc: %#.3f, Test Acc: %#.3f, \n",

3.1 Writing a Deep Neural Network (DNN) Algorithm 75

i, cost, Tr_acc, Ts_acc))
}

end_time <- Sys.time()
cat(sprintf("Application running time: %#.3f minutes",

(end_time - start_time) / 60))

return(list("parameters" = parameters, "costs" = costs))
}

Howmany layers, nodes, and layers?There is no specific rule to estimate the
number of hidden layers and nodes of a neural network, however, the number
of hidden nodes is often based on a relationship between

• Number of input and output nodes.
• Amount of training data.
• Complexity of the learning function.
• Type of hidden unit activation function.
• Regularization.

Too few nodes might result in a simple model resulting in a higher error. Too
many nodes will overfit the training data and may not generalize well with
unseen data. Typically, the number of hidden nodes should be able to capture
70%–90% of the variance of the input data set. If the NN is a classifier with
sigmoid activation in the output layer, the output layer has a single node. If
it is softmax activation, the output layer has one node per class label.

We will use the same image classification data which we used in the previous chapter
and use a small network to get our application up and running. Let us see how it
performs (Fig. 3.1).

layers_dims = c(12288, 3, 1)

two_layer_model = n_layer_model(trainx,
trainy,
testx,
testy,
layers_dims,
hidden_layer_act = ’tanh’,
output_layer_act = ’sigmoid’,
learning_rate = 0.01,
num_iter = 1500,
initialization = "random",
print_cost = T)

Cost after iteration 0 = 0.693167
Cost after iteration 1000 = 0.060350
Cost after iteration 1500, = 0.038142;

76 3 Deep Neural Networks-I

Train Acc: 99.500, Test Acc: 62.000,
Application running time: 2.834 minutes

Let us plot the cost.
Our neural network starts with an initial cost of 0.693 and monotonically reduces

to 0.038 after 1500 iterations. The training accuracy of our application is 99.5% and
the testing accuracy is 62%, respectively.

Working on our training model above, we will now adjust some hyperparameter
settings (i) number of layers, (ii) number of nodes per hidden layer, and (iii) the
learning rate.

We will now train a three-layer (deeper) network, with different nodes per hidden
layer and a different learning rate; this is our development model.

layers_dims = c(12288, 50, 30, 1)

three_layer_model = n_layer_model(trainx,
trainy,
testx,
testy,
layers_dims,
hidden_layer_act = c(’relu’, ’relu’),
output_layer_act = ’sigmoid’,
learning_rate = 0.045,
num_iter = 1500,
initialization = "random",
print_cost = T)

Cost after iteration 0 = 0.693108
Cost after iteration 1000 = 0.000377
Cost after iteration 1500, = 0.000200;

Train Acc: 100.000, Test Acc: 72.000,
Application running time: 16.995 minutes

0.2

0.4

0.6

0 500 1000 1500
Iterations

Lo
ss

Fig. 3.1 Loss versus iteration for a two-layer neural network with a learning rate of 0.01

3.1 Writing a Deep Neural Network (DNN) Algorithm 77

0.0

0.2

0.4

0.6

0 500 1000 1500
Iterations

Lo
ss

Fig. 3.2 Loss versus iteration for a three-layer neural network with a learning rate of 0.045

Our model happens to give us a better result and the training accuracy has gone up
to 100% and the test accuracy has improved by 10% (Fig. 3.2).

Though this is a marginal improvement, we can try to obtain better accuracies by
a better initialization of the parameters, searching for the optimal hyperparameters
of our network and using better optimization algorithms which we will explore in
the subsequent chapters.

Finally, let us train the network using the softmax activation in the output layer,
and use different activations in the hidden layers.Deeper networkswill tend to overfit.
Let us see how our deep neural network model performs (Fig. 3.3).

layers_dims = c(nrow(trainx), 50, 20, 7, 2)

four_layer_model = n_layer_model(trainx,
trainy,
testx,
testy,
layers_dims,
hidden_layer_act = c(’relu’, ’relu’, ’tanh’),
output_layer_act = ’softmax’,
learning_rate = 0.15,
num_iter = 1500,
initialization = "random",
print_cost = T)

Cost after iteration 0 = 0.693144
Cost after iteration 1000 = 0.001124
Cost after iteration , 1500, = 0.000510;

Train Acc: 1.000, Test Acc: 0.640,
Application running time: 17.556 minutes

The function compute_Proba computes the probability of an image to be a dog.
We are using a probability threshold of 50%, i.e., if the computed probability is above
the threshold, it predicts the image to be a dog, else it predicts a cat (Fig. 3.4).

78 3 Deep Neural Networks-I

0.0

0.2

0.4

0.6

0 500 1000 1500
Iterations

Lo
ss

Fig. 3.3 Loss versus iteration for a four-layer neural network with a learning rate of 0.15

Fig. 3.4 Test data images depicting the predicted probabilities and the predicted labels (cat/dog).
The errors are labeled in color red

compute_Proba <- function(parameters,
test_X,
hidden_layer_act,
output_layer_act){

score <- forward_prop(test_X,
parameters,
hidden_layer_act,
output_layer_act)[[’AL’]]

3.1 Writing a Deep Neural Network (DNN) Algorithm 79

Probs <- list(round(score * 100, 2))

return (Probs)
}

Prob <- compute_Proba(two_layer_model$parameters,
testx,
hidden_layer_act = c(’relu’, ’relu’),
output_layer_act = ’sigmoid’)

labels = ifelse(testy == 1, "dog", "cat")

predicted <- ifelse(
predict_model(two_layer_model$parameters,

testx,
hidden_layer_act = c(’relu’, ’relu’),
output_layer_act = ’sigmoid’) == 0, ’cat’, ’dog’)

error <- ifelse(predicted == labels, ’No’, ’Yes’)

index <- c(1:length(labels))

Probs <- as.vector(unlist(Prob[index]))

par(mfrow = c(5, 10), mar = rep(0, 4))

for(i in 1:length(index)){
image(t(apply(matrix(as.matrix(testx[, index[i]]),

c(64, 64, 3),
byrow = TRUE), 1, rev)),

method = ’raster’,
col = gray.colors(12),
axes = F)

legend("topright", legend = predicted[i],
text.col = ifelse(error[i] == ’Yes’, 2, 4),
bty = "n",
text.font = 1.5)

legend("bottomright", legend = Probs[i], bty = "n", col = "white")
}

3.2 Overview of Packages for Deep Learning in R

With the rise in popularity of deep learning with R, CRAN has introduced quite a few
deep learning packages. An overview of these packages are presented in Table 3.1
below.

In addition, there are twonewpackageskerasR andkeras. Both these packages
provide an R interface to the Python deep learning package Keras, which offers
Python users a high-level neural networks API, written in Python and is capable
of running on top of either TensorFlow, Microsoft Cognitive Toolkit (CNTK), or
Theano.

80 3 Deep Neural Networks-I

Table 3.1 Different R packages for deep learning

R. Package Description

nnet Package for feedforward neural networks with a single hidden layer and
multinomial log-linear models

neuralnet Training of neural networks using backpropagation

h20 Scripting functionality for H2O

RSNNS Interface to the Stuttgart Neural Network Simulator (SNNS)

tensorflow Interface to TensorFlow

deepnet Deep learning toolkit in R

darch Package for Deep Architectures and Restricted Boltzmann Machines

rnn Package to implement Recurrent Neural Networks

FCNN4R Interface to the FCNN library that allows user-extensible ANNs

rcppDL Implementation of basic machine learning methods with many layers, including
dA (Denoising Autoencoder), SdA (Stacked Denoising Autoencoder), RBM
(Restricted Boltzmann machine), and DBN (Deep Belief Nets)

deepr Package to streamline the training, fine-tuning and predicting processes for deep
learning based on darch and deepnet

MXNetR Package for flexible and efficient GPU computing and state-of-the-art deep
learning in R

https://cran.r-project.org/web/views/MachineLearning.html

keras, is an interface to the Python Keras allowing us to enjoy the benefit of R
programming while having access to the capabilities of the Python Keras package.

3.3 Introduction to keras

Keras means horn in Greek. It is a reference to a literary image from ancient Greek
and Latin literature, first found in theOdyssey, where dream spirits (Oneiroi, singular
Oneiros) are divided between those who deceive men with false visions who arrive
on Earth through a gate of ivory and those who announce a future that will come to
pass and arrive through a gate of horn.

keras was initially developed as part of the research effort of project ONEIROS
(Open-ended Neuro-Electronic Intelligent Robot Operating System). It is a high-
level neural networks API developed to enable fast experimentation, and it supports
multiple backends, like TensorFlow, Microsoft Cognitive Toolkit (CNTK) and
Theano. It has a built-in support for CNNs and RNNs and any combination of both.

The keras R package is compatible with R versions 3.2 and higher.

https://cran.r-project.org/web/views/MachineLearning.html

3.3 Introduction to keras 81

3.3.1 Installing keras

The keras package uses the Python Keras library. The package can be installed
in R using the install.packages("keras").

install.packages("keras")

The Keras to R interface uses the TensorFlow backend engine by default. To
install both the core Keras library as well as the TensorFlow backend, we use the
install_keras() function.

library(keras)
install_keras()

A typical keras workflow in R includes

• Defining the data.
• Defining the network.
• Selecting the loss function, the optimizer, and the metrics to be monitored.
• Fit the model.

3.3.2 Pipe Operator in R

The keras package uses the pipe operator (% > %) to connect functions or oper-
ations together. In the kerasR package, the pipe operator is replaced with the $
operator.

We will be using the pipe (% > %) operator from the magrittr package in R
to add layers in the network. The pipe operator is very useful as it allows us to pass
the value on its left as the first argument to the function on its right.

We would need to fit the model to our data. In this case, we train our model for
50 epochs over all the samples in batches of 32 samples, respectively.

3.3.3 Defining a keras Model

We will be using same data consisting of pictures of cat and dogs. In the target
variable, a cat image is reflected with a value of 0 and a dog image as 1 value,
respectively.The next step is to define our network.

We will use a fully connected neural network, i.e., build a stack of fully connected
layers to all nodes.Wewill use the same activations,whichweused in our application,
i.e., relu for the the hidden layers and the sigmoid activation for the output layer so
that the output is between 0 and 1, depicting predicted probabilities. The model
needs to know the input shape (features) it should expect. The first layer, therefore,

82 3 Deep Neural Networks-I

in a sequential model needs to be fed this information. The following layers will
automatically infer the shape.

Our hidden layerswith relu activationwill have 100, 50, and 15 nodes respectively.
The input layer has 12288 nodes (i.e., features).

To start constructing a model, we have to first initialize a sequential model
with the help of the keras_model_sequential() function. The sequential
model is a linear stack of layers. We create a sequential model by calling the
keras_model_sequential() function then a series of layer functions. We
can use the summary() function to print a summary representation of our model.
You may use help(package = keras) for more details.

In practice, the output layer consist of 1 neuron for regression and binary clas-
sification problems and n neurons for a multi-class classification, where n is the
number of classes in the target variable. We also specify the activation function in
each layer.Keras supports a number of activation functions such asrelu,softmax,
sigmoid, tanh, elu (exponential linear unit) among others. There are many other
features and arguments that we can use when configuring, compiling, and fitting our
model.

3.3.4 Configuring the kerasModel

Before compiling themodel, we have to specify the loss objective function. Available
functions include, among others, mean_squared_error for regression prob-
lems and binary_crossentropy and categorical_crossentropy for
binary andmulti-class classifications, respectively.Wewill use thecategorical_
crossentropy as our loss function.

The second required argument is the optimizer for estimating and updating
the model parameters. Keras support several optimizers such as Stochastic gra-
dient descent (sgd) optimizer, Adaptive Moment Estimation (adam), rmsprop,
Adaptive learning rate (Adadelta) among others. While calling the optimizer, we
can specify the learning rate (lr), learning rate decay over each update (decay),
momentum, among other arguments specific to each optimizer. We will use the
adam optimizer in our Keras model.

We also need to define a metric on which the model will be evaluated. We will
use the “accuracy” metric to assess the performance of the model.

3.3.5 Compile and Fit the Model

Now that we have set up the architecture of our model, it is time to compile and fit the
model to the data. In the crucial step of fitting the model, we specify the epochs—the
number of times the algorithm “sees” the entire training data—and the batch size,
i.e., the size of sample to be passed through the algorithm in each epoch. A training

3.3 Introduction to keras 83

sample of size 10, for example, with batch size = 2, will give 5 batches and hence 5
iterations per epoch. If epoch = 4, then we have 20 iterations for training. If we use
too few epochs, we run the risk of underfitting and too many may risk overfitting.
The early stopping function helps the model from overfitting.

set.seed(1)
model <- keras_model_sequential()
model %>%

layer_dense(units = 100, activation = ’relu’, input_shape = c(12288)) %>%
layer_dense(units = 50, activation = ’relu’) %>%
layer_dense(units = 15, activation = ’relu’) %>%
layer_dense(units = 1, activation = ’sigmoid’) %>%
compile(

optimizer = optimizer_adam(),
loss = ’binary_crossentropy’,
metrics = c(’accuracy’)

)
summary(model)

Layer (type) Output Shape Param #
===
dense_1 (Dense) (None, 100) 1228900

dense_2 (Dense) (None, 50) 5050

dense_3 (Dense) (None, 15) 765

dense_4 (Dense) (None, 1) 16
===
Total params: 1,234,731
Trainable params: 1,234,731
Non-trainable params: 0

model %>% fit(t(trainx), trainy, epochs = 50, batch_size = 32,
validation_split = 0.2)

history <- model %>% fit(t(trainx), trainy, epochs = 50, batch_size = 32,
validation_split = 0.2)

model %>% evaluate(t(trainx), trainy)

$loss
[1] 0.7409931

$acc
[1] 0.86

We can use the following functions to inspect our model:

• get_config(model)—returns a list that contains the configuration of the model.
• get_layer(model)—return the layer configuration.
• model$layers—returns a list of the model’s layers.
• model$inputs—returns a list of the input tensors.

84 3 Deep Neural Networks-I

• model$outputs—returns a list of the output tensors.

Let us predict our data on the training and test sets.

keras_pred_train <- model %>% predict_classes(t(trainx))
table(Predicted = keras_pred_train, Actual = trainy)

Actual
Predicted 0 1

0 100 28
1 0 72

prob <- model %>% predict_proba(t(trainx))

model %>% evaluate(t(testx), (testy))

$loss
[1] 1.093653

Fig. 3.5 One of the images which both the applications could not label correctly. The left-hand
image is the actual image and the right-hand image is the resized image, which models. The resized
image could be difficult to identify as a cat or dog, by most humans

3.3 Introduction to keras 85

$acc
[1] 0.62

keras evaluation on the test data set
keras_pred_test <- model %>% predict_classes(t(testx))
table(Predicted = keras_pred_test, Actual = testy)

Actual
Predicted 0 1

0 19 12
1 7 12

Let us find out which images were not predicted by the keras model and our
application.

hidden_layer_act <- c("relu", "relu")
output_layer_act <- "sigmoid"

app_pred_test <- predict_model(three_layer_model$parameters,
testx, hidden_layer_act, output_layer_act)

table(app_pred = app_pred_test, actual = testy)

actual
app_pred 0 1

0 17 5
1 9 19

which(keras_pred_test != testy)

[1] 5 6 12 15 20 22 23 28 30 32 34 35 38 39 43 44 45 46 48

which(app_pred_test != testy)

[1] 5 10 12 13 15 20 22 23 24 28 29 32 42 46

It appears that our three_layer_model returns a higher accuracy than the
keras model.

It also turns out that image number 15 was not predicted by both the models. Let
us have a look at this image (Fig. 3.5).

images <- list.files(file_path_test)
img <- readImage(file.path(file_path_test, images[15]))

str(testx[[15]]) # actual image

num -1.49

str(matrix(as.matrix(testx[, 15]), c(64, 64, 3), byrow = TRUE)) # resized image

num [1:64, 1:192] 0.625 0.629 0.629 0.629 0.607 ...

86 3 Deep Neural Networks-I

EBImage::display(img, method = "raster")
EBImage::display(matrix(as.matrix(testx[, 15]), c(64, 64, 3),

byrow = TRUE), method = "raster")

Indeed both the keras and our three_layer_model could not figure out
whether the blurry image was a cat!

3.4 Conclusion

We have created our own neural network application and successfully used it to
classify images. We have also installed keras and used the API to model a neural
network application.

In the next chapter, we will see how we can initialize the parameters and the role
it plays to improve the convergence rate and the accuracy of the neural network.

Chapter 4
Initialization of Network Parameters

A thought is a great big vector of neural activity and they have
causal powers.

Geoffrey Hinton

Abstract In this section, we will learn how initialization of the parameters affects a
neural network model. We will explore different initialization techniques and visu-
alize the results.

We will be using the following R packages:

library(ggplot2)
library(gridExtra)
library(InspectChangepoint)

4.1 Initialization

Weight initialization can have a profound impact on both the convergence rate and
the accuracy of our network. While working with deep neural networks, initializing
the network with the correct weights can make the difference between the network
converging in a reasonable time and the loss function “oscillating”, and not going
anywhere even after thousands of iterations.

To understand why is initialization a problem, let us consider the sigmoid function
represented in Fig. 4.1. The sigmoid activation function is approximately linear
when we are close to zero (represented by the red line in the figure). This means that
as the weights tend toward zero, there will not be any nonlinearity, which goes
against the very ethos and advantage of deep layer neural networks.

© Springer Nature Singapore Pte Ltd. 2019
A. Ghatak, Deep Learning with R,
https://doi.org/10.1007/978-981-13-5850-0_4

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-5850-0_4&domain=pdf
https://doi.org/10.1007/978-981-13-5850-0_4

88 4 Initialization of Network Parameters

z

σ(
z)

−6 −4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 4.1 The sigmoid function becomes “flat”, at the extremes and “linear” in the middle

If the weights are too small, then the variance of the input signal starts diminishing
as it passes through each layer in the network and eventually drops to a very low
value, which is no longer useful.

If the weights are too large, then the variance of input data tends to increase with
each passing layer and at some point of time, it becomes very large. For very large
values, the sigmoid function tends to become flat (represented by the blue line in
the figure) as we can see in Fig. 4.1. This means that our activations will become
saturated and the gradients will start approaching zero.

Therefore, initializing the network with the right weights is very important if we
want our neural network to function properly and make sure that the weights are in
a reasonable range before we start training the network.

In order to illustrate this fact, let us use our DNN application with four different
weight initializations

(a) Initialize weights to zero.
(b) Initialize weights to a random normal distribution N (0, μ = 0, σ = 1).
(c) The weights are initialized to a random normal distribution but inversely propor-

tional to the square root of the number of neurons in the previous layer (Xavier
initialization).

(d) Initialize weights to a random normal distribution but inversely proportional
to the square root of the number of neurons in the previous layer and directly
proportional to the square root of 2 (He initialization).

A well-designed initialization can speedup the convergence of gradient descent and
increase the chances of a lower training and generalization error. Let us go through
four different types of parameter initializations and what difference do they make on
the cost and convergence.

Before we do that, let us create a spirally distributed planar data set.

4.1 Initialization 89

N <- 400 # number of points per class
D <- 2 # dimensionality
K <- 2 # number of classes
X <- data.frame() # data matrix (each row = single example)
Y <- data.frame() # class labels

set.seed(308)

for (j in (1:2)) {
r <- seq(0.05, 1, length.out = N) # radius
t <- seq((j - 1) * 4.7, j * 4.7, length.out = N) + rnorm(N,

sd = 0.3) # theta
Xtemp <- data.frame(x = r * sin(t), y = r * cos(t))
ytemp <- data.frame(matrix(j, N, 1))
X <- rbind(scale(X), Xtemp)
Y <- rbind(Y, ytemp)

}

data <- cbind(X, Y)
colnames(data) <- c(colnames(X), "label")

x_min <- min(X[, 1]) - 0.2
x_max <- max(X[, 1]) + 0.2
y_min <- min(X[, 2]) - 0.2
y_max <- max(X[, 2]) + 0.2

ggplot(data) + geom_point(aes(x = x,
y = y,
color = as.character(label)),

size = 1) +
theme_bw(base_size = 15) +
xlim(x_min, x_max) +
ylim(y_min, y_max) +
coord_fixed(ratio = 0.8) +
theme(axis.ticks=element_blank(),

panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.text=element_blank(),
axis.title=element_blank(),
legend.position = ’none’)

We will split the data set shown in Fig. 4.2, into training and testing data sets (Figs.
4.3 and 4.4).

indexes <- sample(1:800, 600)
train_data <- data[indexes,]
test_data <- data[-indexes,]
trainX <- train_data[, c(1, 2)]
trainY <- train_data[, 3]
testX <- test_data[, c(1, 2)]
testY <- test_data[, 3]
trainY <- ifelse(trainY == 1, 0, 1)
testY <- ifelse(testY == 1, 0, 1)

We need to be sure about the dimensions of the training set data and test set data.

90 4 Initialization of Network Parameters

Fig. 4.2 A spiral planar data
set created to visualize the
effects of different parameter
initializations

Fig. 4.3 Spiral planar
training data set

dim(train_data)

[1] 600 3

dim(test_data)

[1] 200 3

4.1 Initialization 91

Fig. 4.4 Spiral planar
testing data set

4.1.1 Breaking Symmetry

During forward propagation, each unit in the hidden layer gets signalai = ∑n
i W · xi .

When we initialize all the weights to the same value, each hidden unit receives the
same signal, i.e., if all the weights are initialized to a number n, each unit gets the
same signal every time and would not be able to converge during gradient descent.

If all weights are initialized randomly, then each time the model would search for
a different path to converge and there would be a better chance to find the global
minima. This is what is meant by breaking symmetry. The initialization is asym-
metric, i.e., it is different and the optimization algorithm will find different solutions
to the same problem, thereby seeking a faster convergence.

4.1.2 Zero Initialization

Zero initialization does not serve any purpose because the neural network model
does not perform symmetry breaking. If we set all the weights to be zero, then all
the neurons of all the layers perform the same calculation, giving the same output.
When the weights are zero, the complexity of our network reduces to that of a single
neuron.

layers_dims <- c(2, 100, 1)

init_zero <- n_layer_model(t(trainX), trainY, t(testX), testY,
layers_dims, hidden_layer_act = "relu", output_layer_act = "sigmoid",

92 4 Initialization of Network Parameters

Iteration

lo
ss

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 4.5 Zero initialization: loss versus iteration

learning_rate = 0.03, num_iter = 5000, initialization = "zero",
print_cost = T)

Cost after iteration 0 = 0.693147
Cost after iteration 1000 = 0.693008
Cost after iteration 2000 = 0.693008
Cost after iteration 3000 = 0.693008
Cost after iteration 4000 = 0.693008
Cost after iteration 5000 = 0.693008
Cost after iteration 5000, = 0.693008;

Train Acc: 50.833, Test Acc: 47.500,
Application running time: 43.305 minutes

From Fig. 4.5 , we can see that zero initialization serves no purpose. The neural
network does not break symmetry.

Let us look at the decision boundary for our zero-initialized classifier on the train
and test data sets (Fig. 4.6).

step <- 0.01

x_min <- min(trainX[, 1]) - 0.2
x_max <- max(trainX[, 1]) + 0.2
y_min <- min(trainX[, 2]) - 0.2
y_max <- max(trainX[, 2]) + 0.2

grid <- as.matrix(expand.grid(seq(x_min, x_max, by = step), seq(y_min,
y_max, by = step)))

Z <- predict_model(init_zero$parameters, t(grid), hidden_layer_act = "relu",
output_layer_act = "sigmoid")

Z <- ifelse(Z == 0, 1, 2)

g1 <- ggplot() + geom_tile(aes(x = grid[, 1], y = grid[, 2],
fill = as.character(Z)), alpha = 0.3, show.legend = F) +
geom_point(data = train_data, aes(x = x, y = y, color = as.character(trainY)),

4.1 Initialization 93

Fig. 4.6 Decision boundary with zero initialization on the training data set (left-hand plot) and the
testing data set (right- hand plot)

size = 1) + theme_bw(base_size = 15) + coord_fixed(ratio = 0.8) +
theme(axis.ticks = element_blank(), panel.grid.major = element_blank(),

panel.grid.minor = element_blank(), axis.text = element_blank(),
axis.title = element_blank(), legend.position = "none")

x_min <- min(testX[, 1]) - 0.2
x_max <- max(testX[, 1]) + 0.2
y_min <- min(testX[, 2]) - 0.2
y_max <- max(testX[, 2]) + 0.2

grid <- as.matrix(expand.grid(seq(x_min, x_max, by = step), seq(y_min,
y_max, by = step)))

Z <- predict_model(init_zero$parameters, t(grid), hidden_layer_act = "relu",
output_layer_act = "sigmoid")

Z <- ifelse(Z == 0, 1, 2)
g2 <- ggplot() + geom_tile(aes(x = grid[, 1], y = grid[, 2],

fill = as.character(Z)), alpha = 0.3, show.legend = F) +
geom_point(data = test_data, aes(x = x, y = y, color = as.character(testY)),

size = 1) + theme_bw(base_size = 15) + coord_fixed(ratio = 0.8) +
theme(axis.ticks = element_blank(), panel.grid.major = element_blank(),

panel.grid.minor = element_blank(), axis.text = element_blank(),
axis.title = element_blank(), legend.position = "none")

grid.arrange(g1, g2, ncol = 2, nrow = 1)

As expected, zero initialization is not able to find any decision boundary.

4.1.3 Random Initialization

One of the ways is to assign the weights from a Gaussian distribution which would
have zero mean and some finite variance. This breaks the symmetry and gives better
accuracy because now, every neuron is no longer performing the same computation.
In this method, the weights are initialized very close to zero.

94 4 Initialization of Network Parameters

Iteration

lo
ss

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 4.7 Random initialization loss versus iteration

layers_dims <- c(2, 100, 1)

init_random <- n_layer_model(t(trainX),
trainY,
t(testX),
testY,
layers_dims,
hidden_layer_act = ’relu’,
output_layer_act = ’sigmoid’,
learning_rate = 0.03,
num_iter = 5000,
initialization = "random",
print_cost = T)

Cost after iteration 0 = 0.693335
Cost after iteration 1000 = 0.603099
Cost after iteration 2000 = 0.378896
Cost after iteration 3000 = 0.293113
Cost after iteration 4000 = 0.218871
Cost after iteration 5000 = 0.172451
Cost after iteration 5000, = 0.172451;

Train Acc: 96.333, Test Acc: 97.500,
Application running time: 43.305 minutes

The random (Gaussian normal) initialization yields a decreasing cost and returns a
training accuracy of 96.3% and a corresponding testing accuracy of 97.5% albeit, it
takes 43.3 minutes to converge (Fig. 4.7).

Let us look at the decision boundary and plot our random (Gaussian normal)
initialized classifier on the train and test data sets (Fig. 4.8).

4.1 Initialization 95

Fig. 4.8 Decision boundary with random initialization on the training data set (left-hand plot) and
on the testing data set (right-hand plot)

4.1.4 Xavier Initialization

Let us consider a linear neuron represented as y = w1x1 + w2x2 + · · · + wnxn . We
would want the variance to remain the same with each passing layer. This helps us
to keep the activation values from exploding to a high value or vanishing to zero. We
would therefore need to initialize the weights in such a way that the variance remains
the same for both x and y, by a process known as Xavier initialization. For this
purpose, we can write

var(y) = var(w1x1 + w2x2 + · · · + wnxn)

The right-hand side of the above equation can be generalized as

var(wi xi) = E[xi]2var(wi) + E[wi]2var(xi) + var(wi)var(xi)

Considering that the input values and the weight parameter values are coming from
a Gaussian distribution with zero mean, the above equation reduces to

var(wi xi) = var(xi)var(wi)

or,

var(y) = var(w1)var(x1) + var(w2)var(x2) + · · · + var(wn)var(xn)

Since they are all identically distributed, we can represent the above equation as

var(y) = n × var(wi) × var(xi)

96 4 Initialization of Network Parameters

If the variance of y needs to be the same as that of x , then the term n × var(wi)

should be equal to 1, or

var(wi) = 1

n

We therefore need to pick the parameter weights from a Gaussian distribution with
zero mean and a variance of 1/n, where n is the number of input neurons.

In the original paper, the authors [14], take the average of the number input neurons
and the output neurons. So the formula becomes

var(wi) = 1

navg

where,n[avg] = (n[l − 1] + n[l])/2

wi =
√

2

n[l−1] + n[l] (4.1.1)

Since it is computationally expensive to implement, we only take the number of input
neurons of the previous layer and therefore, Eq.4.1.1 can be written as

wi =
√

2

n[l−1] (4.1.2)

layers_dims <- c(2, 100, 1)

init_Xavier <- n_layer_model(t(trainX),
trainY,
t(testX),
testY,
layers_dims,
hidden_layer_act = ’relu’,
output_layer_act = ’sigmoid’,
learning_rate = 0.03,
num_iter = 5000,
initialization = "Xavier",
print_cost = T)

Cost after iteration 0 = 0.911371
Cost after iteration 1000 = 0.237626
Cost after iteration 2000 = 0.157498
Cost after iteration 3000 = 0.126888
Cost after iteration 4000 = 0.111465
Cost after iteration 5000 = 0.102719
Cost after iteration 5000, = 0.102719;

Train Acc: 97.667, Test Acc: 99.000,
Application running time: 1.090 minutes

4.1 Initialization 97

Iteration

lo
ss

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 4.9 Xavier initialization: loss versus iteration

Fig. 4.10 Decision boundary with Xavier initialization on the training data set (left-hand plot) and
the testing data set (right- hand plot)

The Xavier initialization yields a decreasing cost and returns a higher training
accuracy of 97.66% and testing accuracy is 99%. The time to converge has dropped
from 55min to just about a minute (Fig. 4.9). The decision boundary for our data set,
using Xavier initialisation is shown in Fig. 4.10.

4.1.5 He Initialization

He initialization is named after the first author of [15], 2015. The underlying idea
behind both, He and Xavier initialization is to preserve the variance of activation
values between layers. In this method, the weights are initialized as a function of
the size of the previous layer, which helps in attaining a global minimum of the loss
function faster and more efficiently. The weights are still random but differ in range

98 4 Initialization of Network Parameters

Iteration

lo
ss

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 4.11 He initialization loss: versus iteration

depending on the size of the previous layer of neurons thus providing a controlled
initialization and hence, a faster and more efficient gradient descent. Both the He and
Xavier initializationmethods are able to converge faster than random initialization,
but with He initialization, the errors start to reduce earlier (Fig. 4.11).

layers_dims <- c(2, 100, 1)

init_He <- n_layer_model(t(trainX),
trainY,
t(testX),
testY,
layers_dims,
hidden_layer_act=’relu’,
output_layer_act = ’sigmoid’,
learning_rate = 0.03,
num_iter = 5000,
initialization = "He",
print_cost = T)

Cost after iteration 0 = 1.235932
Cost after iteration 1000 = 0.212091
Cost after iteration 2000 = 0.142321
Cost after iteration 3000 = 0.116169
Cost after iteration 4000 = 0.103672
Cost after iteration 5000 = 0.097017
Cost after iteration 5000, = 0.097017;

Train Acc: 97.333, Test Acc: 99.000,
Application running time: 1.038 minutes

The He initialization yields a steeper decline of the cost and returns a training accu-
racy of 97.33%with a corresponding testing accuracy of 99%. The decision boundary
for our data set, using He initialization is shown in Fig. 4.12. The time to converge
is also lower than all other initializations (Fig. 4.13 and Tables 4.1, 4.2).

4.1 Initialization 99

Fig. 4.12 Decision boundary with He initialization on the training data set (left-hand plot) and the
testing data set (right- hand plot)

Iteration

lo
ss

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

He
Xavier
Random

Fig. 4.13 Convergence pattern of different initialization methods

Table 4.1 Time to converge for different initializations

Random Xavier He

Cost 0.172 0.102 0.097

Time (minutes) 43.300 1.090 1.030

There is no specific rule for selecting any specific initialization method, though
the He initialization works well for networks with relu activations. Our learnings
are the following:

(a) Different initializations lead to different results.
(b) A well-chosen initialization can speedup the convergence of gradient descent.
(c) Awell-chosen initializationmethod can increase the odds of the gradient descent

converging to a lower training (and generalization) error.

100 4 Initialization of Network Parameters

Table 4.2 Train and test accuracies with different initializations

Initialization Train accuracy Test accuracy

Zero 50.83 47.5

Random 96.30 97.5

Xavier 97.60 99.0

He 97.30 99.0

(d) The parameter weightsW [l] should be initialized randomly to break the symme-
try and makes sure that different hidden units can learn different things.

(e) We should not initialize the parameter weights to large values.
(f) He initialization works best for networks with relu activations.
(g) It is appropriate to initialize the biases b[l] to zeros. Symmetry is still broken so

long as W [l] is initialized randomly.

4.2 Dealing with NaNs

Having amodelwhichyieldsNaNsor Infs is quite common if someof the components
in the model are not set properly. NaNs are hard to deal with because, it may be
caused by a bug or an error in the code or because of the numerical stability in the
computational environment (including libraries, etc.). In some cases, it could relate
to the algorithm itself. Let us outline some of the common issues which can cause
the model to yield NaNs, and some of the ways to get around this problem.

4.2.1 Hyperparameters and Weight Initialization

Most frequently, the cause would be that some of the hyperparameters, especially
learning rates, are set incorrectly. A high learning rate can result in NaN outputs so
the first and easiest solution is to lower it. One suggested method is to keep halving
the learning rate till the NaNs disappear.

The penalty (λ) in the regularization term can also play a part where the model
throws up NaN values. Using a wider hyperparameter space with one or two training
epochs, each could be tried out to see if the NaNs disappear.

Some models can be very sensitive to the weight initialization. If the weights are
not initialized correctly, the model can end up yielding NaNs.

4.2 Dealing with NaNs 101

4.2.2 Normalization

Sometimes, this may be obviated by normalizing the input values (though, normal-
ization is a norm which must be strictly followed).

4.2.3 Using Different Activation Functions

Try using other activation functions like tanh. Unlike ReLUs, the outputs from tanh
have an upper bound in value and may be a solution. Adding more nonlinearity can
also help.

4.2.4 Use of NanGuardMode, DebugMode, or MonitorMode

If adjusting the hyperparameters do not work help, it can be still be sought from
Theano’s NanGuardMode, by changing the mode of the Theano function. This
will monitor all input/output variables in each node, and raise an error if NaNs are
detected. Similarly, Theano’s DebugMode and MonitorMode can also help.

4.2.5 Numerical Stability

This may happen due to zero division or by any operation that is making a number(s)
extremely large. Some functions like, 1

log(p(x)+1) could result inNaNs for those nodes,
which have learned to yield a low probability p(x) for some input x . It is important
to find what are the function input values for the given cost (or any other) function
are and why we are getting that input. Scaling the input data, weight initialization,
and using an adaptive learning rate is some of the suggested solutions.

4.2.6 Algorithm Related

If the above methods fail, there could be a good chance that something has gone
wrong in the algorithm. In that case, we need to inspect the mathematics in the
algorithm and try to find out if everything has been derived correctly.

102 4 Initialization of Network Parameters

4.2.7 NaN Introduced by AllocEmpty

AllocEmpty is used by many operations such as scan to allocate some memory
without properly clearing it. The reason for that is that the allocated memory will
subsequently be overwritten. However, this can sometimes introduce NaN depend-
ing on the operation and what was previously stored in the memory it is working
on. For instance, trying to zero out memory using a multiplication before applying
an operation could cause a NaN if NaN is already present in the memory, since
0 * NaN → NaN.

4.3 Conclusion

We have explored different initialization techniques used in neural networks and
learnt how they affect both convergence time and accuracy. In deep neural networks
where it takes a long time to train a model, initialization of the parameters makes a
big difference.

We have also learnt the hazards of encountering NaN values and how to counter
them.

In the next chapter, we will discuss different optimization techniques which will
further enhance the performance of the deep neural network models.

Chapter 5
Optimization

In A.I., the holy grail was how do you generate internal
representations.

Geoffrey Hinton

Abstract In the previous chapter, we explored how initialization of the parameters
affects the outcome of the model. In this chapter, we will explore ways to address
the above issues by

• Implementing optimization algorithms— mini-batch gradient descent, momen-
tum, RMSprop, and Adam, and check for their convergence.

• �2-regularization, dropout regularization, and batch normalization gradient check-
ing.

• How to adjust train/dev/test data sets and analyze bias/variance.
• Use TensorFlow for deep learning.

5.1 Introduction

There are quite a few important and sometimes subtle choices, which we need to
make in the process of building and training a neural network. We need to decide
which loss function to use, which activations to use, howmany layers should we use,
how many neurons should we have in the layers, which optimization algorithm is
best suited for our network, how do we initialize our parameter weights, choice of
the regularization parameter, choice of the learning rate, etc.

We can also include the training time as a hyperparameter, i.e., if the training time
exceeds a certain value, we can ask the algorithm to stop iterating over the epochs.
This condition is important in real-time models when we do not have the luxury of
time.

© Springer Nature Singapore Pte Ltd. 2019
A. Ghatak, Deep Learning with R,
https://doi.org/10.1007/978-981-13-5850-0_5

103

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-5850-0_5&domain=pdf
https://doi.org/10.1007/978-981-13-5850-0_5

104 5 Optimization

The overarching message is overfitting, the deeper the network we formulate,
we have the larger issue of the model overfitting. Deep neural networks can also
have the problem of computational cost and convergence due to a phenomenon
called vanishing/exploding gradients, and we will discuss how we can overcome this
problem.

5.2 Gradient Descent

Up till now, we have been using the simplest update using gradient descent repre-
sented as

W := W − α
∂J
∂W

(5.2.1)

where α is a fixed hyperparameter called the learning rate to determine how small
or large a step should be taken to arrive at the global minima.

As we get closer to the global minima, the derivative of the cost with respect to
the weight gets smaller. It turns out that this simple gradient descent update approach
can be very slow in finding the global minima after a certain number of iterations.

There are three variants of gradient descent and each differs in the amount of data
we use

• Batch Gradient Descent—searches for all the examples for all parameter updates,
• Mini-Batch Gradient Descent—searches for a subset of all the examples over a
cycle, so that it includes all the examples in mini-batches,

• Stochastic Gradient Descent—searches for a randomly selected example.

Since we would be dealing with a lot of data, we make a trade-off between the
accuracy of the parameter update and the time it takes to perform an update.

5.2.1 Gradient Descent or Batch Gradient Descent

The batch gradient descent computes the gradient of the cost function with respect
to the structural parameters w for the entire training data set.

The gradient descent (batch gradient descent) rule is represented as

for layers in 1, 2, . . . , L

W [layer] = W [layer] − λdW [layer]

b[layer] = b[layer] − λdb[layer]
(5.2.2)

Since we have to calculate the gradients for the entire data set to perform one
update, this method can be very slow and can be computationally expensive, espe-

5.2 Gradient Descent 105

cially with large data sets. Batch gradient descent also does not allow us to update
our model online with new observations streaming in.

The function update_params from the previous chapter updates the parame-
ters using batch gradient descent.

5.2.2 Stochastic Gradient Descent

A variant of the batch gradient descent is Stochastic Gradient Descent (SGD), which
is a modified version of the batch gradient descent where each batch has a single ob-
servation x (i) and label y(i) (i.e., mini_batch_size= 1), chosen at random from
the training data set, so that the parameters start getting modified after calculating
the gradient of every single observation. This process is repeated and the weights are
modified, till it has worked through the entire data set. It then, it repeats the above
procedure for the number of iterations as defined.

Batch gradient descent performs computations on the complete data set before
each parameter update. SGD performs one update at a time and is therefore much
faster. It can also be used to learn with online streaming data. However, SGD per-
forms frequent updates with a high variance that causes the objective function to
fluctuate heavily and this complicates convergence to the minimum because it keeps
overshooting. However, if we slowly decrease the learning rate, SGD can have the
same convergence behavior as batch gradient descent, and converges to a local/global
minimum.

5.2.3 Mini-Batch Gradient Descent

We often get faster results if we use a subset of the training examples to perform each
update at each step. The mini-batch gradient descent uses an intermediate number
(between one, as in SGD, and the complete set of observations, as in batch gradient
descent) of examples for each step. Mini-batch gradient descent therefore, takes the
best of both the batch gradient descent and SGD and performs an update for every
mini-batch size. The advantages of this method are the following:

(a) it reduces the variance of the parameters leading to a more stable convergence,
(b) it can make use of highly optimized matrix optimizations techniques present in

many deep learning libraries to allow computation of the gradient with respect
to a mini-batch, very efficient.

The commonly used mini-batch sizes are between 50 and 256. This method is typi-
cally the choice when training a neural network with a large data set.

With mini-batch gradient descent, we will loop over the mini-batches instead of
looping over individual training examples. There are two stages involved in building
a mini-batch

106 5 Optimization

• Shuffle—Shuffle the data set (both X and Y values simultaneously), so that the
observations are split randomly.

• Partition—Partition the data set into the defined mini-batch size set by the hyper-
parameter mini_batch_size. It should be noted that the last mini-batch size
may or may not be the same as the defined mini_batch_size, because the
number of mini-batches may not.

If the hyperparameter mini_batch_size is well tuned, it usually outperforms
either the batch gradient descent and/or the SGD, particularly when the training set
is large.

The function random_mini_batches segregates the observations as per the
“mini_batch_size”, which has a value 1, when we use stochastic gradient descent
and the defined number of observations per mini-batch, for the mini-batch gradient
descent method.

The general rule is

• For a relatively small training data set, with≤2000 observations, use batch gradient
descent.

• For a larger training data set, use mini-batch sizes 64, 128, 256, 512, . . ., i.e., a
power of 2 (due to the computer architecture).

random_mini_batches <- function(X, Y, mini_batch_size, seed){

set.seed(seed)
Get number of training samples
m = dim(X)[2]

Initialize mini batches
mini_batches = list()

Create a list of random numbers
rand_sample = c(sample(m))

Randomly shuffle the training data
shuffled_X = X[, rand_sample]
shuffled_Y = Y[rand_sample]

Compute number of mini batches
num_minibatches = floor(m / mini_batch_size)
batch = 0

for(i in 0:(num_minibatches - 1)){
batch = batch + 1
Set the lower & upper bound of the mini batches
lower = (i * mini_batch_size) + 1
upper = ((i + 1) * mini_batch_size)
mini_batch_X = shuffled_X[, lower:upper]
mini_batch_Y = shuffled_Y[lower:upper]

mini_batch = list("mini_batch_X" = mini_batch_X,
"mini_batch_Y" = mini_batch_Y)

mini_batches[[batch]] = mini_batch
}

5.2 Gradient Descent 107

If the batch size does not divide evenly with mini batch size
if(m %% mini_batch_size != 0){

Set the start and end of last batch
start = floor(m / mini_batch_size) * mini_batch_size
end = start + m %% mini_batch_size
mini_batch_X = shuffled_X[, (start + 1):end]
mini_batch_Y = shuffled_Y[(start + 1):end]
mini_batch_last = list("mini_batch_X" = mini_batch_X,

"mini_batch_Y" = mini_batch_Y)
mini_batches[[batch + 1]] <- c(mini_batch, mini_batch_last)

}

return(mini_batches)
}

5.3 Parameter Updates

Optimization is the process of finding the minimum (or maximum) of a function,
subject to certain constraints. In neural networks, we want to minimize the cost
function by converging to the minima at the earliest.

Once the gradient is computed during backpropagation, the gradients are used
to perform a parameter update. In this section, we will discuss several approaches
which, we use for performing parameter update. A detailed analysis of parameter
updates is however outside the scope of this book.

5.3.1 Simple Update

The simplest way to update the weights is to change them along the negative gradient
direction (since the gradient indicates the direction of increase). If we represent the
gradient as ∂J

∂W , the simplest update can be written as

W := W − α
∂J
∂W

(5.3.1)

where, α is a fixed hyparameter called the the learning rate, i.e., how small/large a
step should be taken to arrive at the global minima.

5.3.2 Momentum Update

This is an approach by which we can improve our convergence on deep networks
and has its motivations from physics. Here, the cost can be interpreted as the height
of a hilly terrain as height is related to potential energy in physics. Potential energy

108 5 Optimization

is represented as mass × gravi tational acceleration × height and therefore, the
cost is related to the potential energy and is proportional to “height”.

Let us conceptualize our weight to that of a ball rolling down a hill. By initializing
our weights to either zero or any random number is the same as initializing the initial
velocity of the ball at some location. The ball (weight) is now ready to roll down the
“hill” with an initial velocity V .

In physics, the force acting on a particle is proportional to the gradient of the
potential energy. Since the cost is represented as potential energy, we can intuitively
state that the force felt by our weights is the negative gradient of the cost function.
Also since force, F = mass × acceleration, the negative gradient is proportional
to the acceleration of the weight of the ball. Acceleration therefore just changes the
ball’s position by altering its velocity. A motion which is driven by velocity is better
suited to counteract the effects of a wildly fluctuating gradient, by smoothing the
trajectory of the ball over its history. Velocity therefore serves as a form of memory,
thereby allowing us to cumulatively calculate the movement toward the minimum
direction while canceling out oscillating accelerations in the orthogonal directions
(refer saddle points in Chap.1). Velocity therefore is the exponentially weighted
average of the gradient on the previous steps.

We are now introducing two hyperparameters—Velocity (V) and Momentum
(β). The hyperparameter, β is used to dampen the velocity so as to reduce the kinetic
energy of our weights, or else, our weights would never come to a stop at the bottom
of a hill. The term, momentum (β), is a misnomer here since it is more related to the
coefficient of friction, in physics.

In essence, the mini-batch gradient descent makes a parameter update with a
subset of the observations and therefore, the direction of the update has some inherent
variance. This results in some “oscillation” in the path taken by mini-batch gradient
descent toward convergence. Momentum reduces these oscillations by taking into
account the past gradients to smooth out the update. We store the “direction” of the
previous gradients in the variable V , which is the exponentially weighted average
of the gradient in the previous steps. We therefore update V and use the updated
velocity to update our weights

VdW [l] = β × VdW [l] + (1 − β)
∂J

∂W [l]
W [l] : = W [l] − α × VdW [l] α is the learning rate

(5.3.2)

In the above equation, we are using the momentum hyperparameter β to determine
what fraction of the previous velocity we should retain in the new update, and add
this “memory” (which is composed of past gradients) to our current gradient. Since
the momentum term increases the step size while using momentum, we may require
a reduced learning rate as with respect to mini-batch gradient descent.

We usually assign a value of 0.9 for the hyperparameter β but can also be set to
either of 0.5, 0.9, 0.95, 0.99.

5.3 Parameter Updates 109

initialize_velocity <- function(parameters) {
L = length(parameters)
v = list()
for (layer in 1:L) {

v[[paste("dW", layer, sep = "")]] = 0 * parameters[[paste("W",
layer, sep = "")]]

v[[paste("db", layer, sep = "")]] = 0 * parameters[[paste("b",
layer, sep = "")]]

}

return(v)
}

update_params_with_momentum <- function(parameters, gradients,
velocity, beta, learning_rate) {

L = length(parameters)/2

for (l in 1:L) {
velocity[[paste("dW", l, sep = "")]] = beta * velocity[[paste("dW",

l, sep = "")]] + (1 - beta) * gradients[[paste("dW",
l, sep = "")]]

velocity[[paste("db", l, sep = "")]] = beta * velocity[[paste("db",
l, sep = "")]] + (1 - beta) * gradients[[paste("db",
l, sep = "")]]

parameters[[paste("W", l, sep = "")]] = parameters[[paste("W",
l, sep = "")]] - learning_rate * velocity[[paste("dW",
l, sep = "")]]

parameters[[paste("b", l, sep = "")]] = parameters[[paste("b",
l, sep = "")]] - learning_rate * velocity[[paste("db",
l, sep = "")]]

}

return(list(parameters = parameters, Velocity = velocity))
}

With momentum update, we update our weights in the direction of the velocity.
Over the first few iterations, V increases and our descent takes longer steps. As we
approach the global minima, our velocity slows down as the derivative of the cost
with respect to the weight gets smaller and reaches a value of zero, when the weights
reach the minima. It should be noted that the velocity acts independently for each
weight, because each weight is changing independently.

5.3.3 Nesterov Momentum Update

Nesterov’s accelerated gradient is a first-order optimization method which has a
better convergence rate than gradient descent for general convex functions [16], and
it was proved that it worked better than classical momentum updates during training
neural networks (Fig. 5.1). This was further confirmed by [17], who provided an
alternative formulation.

110 5 Optimization

gradient step

actual step

momentum
step

actual step

momentum step

predicted
gradient step

Fig. 5.1 Momentum update and Nesterov update: the left-hand figure shows a typical momentum
update which is the sum of the gradient vector and the momentum vector; the right-hand plot is the
Nesterov update where the actual step is the sum of the momentum vector and the vector of the
predicted gradient

This is a modification of the momentum update and has been gaining popularity
of late, due to stronger convergence. The idea behind Nesterov momentum is that
weights having a certain value, will be perturbed by an amount μ × V , irrespective
of the gradient (which is fixed at that particular location). It therefore makes sense
that the next set of values of the weights would be W + μ × V . This is a kind
of, prediction, of the values of the next set of weights. It therefore makes sense to
compute the gradient of W + μ × V , instead of the gradient of cost with respect to
“old” values of our weights.

With the momentum update, we are taking the gradient of the weights at the
current position; with the Nesterov momentum, we are refining our update by taking
the gradient of the predicted set of weights (Fig. 5.1).

We therefore take the gradient of the predicted weights instead of the earlier
weights V and use the updated velocity to update our weights

Vprev = V #make a copy

V = (μ × V) − λ
∂(W + μV)

∂W
velocity update

W = W − (μ × Vprev) + (1 + μ) × V position of the weight changes
(5.3.3)

5.3.4 Annealing the Learning Rate

With a high learning rate, the neural network system will have a high kinetic energy
and the weights vector has the possibility to bounce around the deeper and narrower
“crevaces” of the loss function. While training deep neural networks, it is therefore
helpful to anneal (decay) the learning rate over time. The challenge is to know when
to decay and by how much—if we decay it slowly there are chances that our system

5.3 Parameter Updates 111

will bounce around chaotically with little improvement; if we decay it very fast, our
system will be unable to reach the best position.

We normally use one of the three types of learning rate decay

• Step decay—Reduce the learning rate by some factor every few epochs. A typical
heuristic could be to observe the validation error, while training with a fixed learn-
ing rate, and reduce the learning rate by a constant (say 0.5) whenever there is
no improvement in the validation error. Another method is to reduce the learning
rate by half every 5 epochs, or by 0.1 every 20 epochs. It may be appreciated that
choosing the correct decay will depend on the type of the problem, the complexity
of the model and the skill of the data scientist.

• Exponential decay—as the name signifies, it is represented as α = α0exp−kt ,
where α0 and k are hyperparameters and t is the iteration number or epoch number.

• 1
t decay—this is represented asα = α0

(1+kt) where,α0 and k are the hyperparameters
and t is the iteration number

If we can afford the computational cost, a slower decay and longer training time
could be a good option.

5.3.5 Second-Order Methods

The gradient descent training algorithm requires many iterations and does not neces-
sarily produce the fastest convergence. Someof the other techniques are: (1)Newton’s
method, (2) Conjugate gradient (3) Quasi Newton, and (4) Levenberg Marquardt.
We will touch upon the Newton’s method.

Newton’s Method

The Newton’s method (also known as the Newton–Raphson method) is a second-
order algorithm, making use of the Hessian1 matrix. This method can help to find
better training directions by using the second-order derivatives of the loss function.

The convergence is based on a small number called the tolerance and identified
by ε, such that

f (w(t+1)) − f (w(t)) < ε

f (w(t) + �w(t)) − f (w(t)) < ε
(5.3.4)

Using Taylor’s expansion in Eq.5.3.4 we get

f (w(t) + �w(t)) ≈ f (w(t)) + �w(t) ∂ f

∂w

∣
∣
∣
∣
w(t)

+ �(w(t))2

2

∂2 f

∂w2

∣
∣
∣
∣
w(t)

(5.3.5)

1Hessian is a square matrix of second-order partial derivatives.

112 5 Optimization

Equation5.3.5 is a quadratic approximation where, ∂ f
∂w

∣
∣
∣
w(t)

and ∂2 f
∂w2

∣
∣
∣
w(t)

are called

the gradient and Hessian of the function f at time step w(t).
Since w(t+1) = xt + �w(t), we can rewrite Eq. (5.3.5) as a function of �w(t).

Representing the gradient and the Hessian by gt and Ht, we can write

ht (�w(t)) = f (w(t)) + �w(t)gt + 1

2
�(w(t))

2
Ht (5.3.6)

As our intent, as stated in the beginning is to minimize f (w), we can do that by
differentiating Eq.5.3.6 and setting it to zero

∂ht (�w(t))

∂�w(t)
= gt + �w(t)Ht (5.3.7)

Solving for �w(t), we get

�w(t) = −gtH−1
t (5.3.8)

Since xt+1 = xt + �xt , and applying the learning rate η we can write

w(t+1) = w(t) − η(gtH−1
t) (5.3.9)

Newton’s method has its drawbacks—the exact evaluation of the Hessian and its
inverse are computationally very expensive.

5.3.6 Per-Parameter Adaptive Learning Rate Methods

In the previous approaches, we have discussed so far, we have manipulated the
learning rate equally for all parameters. Tuning the learning rate is computationally
expensive and therefore, if we can adaptively tune the learning rates, per parameter,
it would ease the computational cost. In this section, we will discuss some common
adaptive methods which can be used.

Adagrad (Adaptive Gradient Algorithm) Update

Adagrad (Accumulating Historical Gradients) [18] is an algorithm that adapts the
learning rate to the parameter by performing larger updates for infrequent parameters
and smaller updates for frequent parameters. It is thereforewell suited for sparse data.

RMSProp (Root Mean Square Propagation) Update

RMSProp is a Exponentially Weighted Moving Average of Gradients. While
AdaGrad works well for simple convex functions, the flatter regions can force
AdaGrad to decrease the learning rate before it reaches a minimum. Therefore,
simply using a naive accumulation of gradients is not a good solution. Reference

5.3 Parameter Updates 113

[7], suggested RMSProp as an adaptive learning rate method wherein, instead of
an accumulation of historical gradients, an Exponentially Weighted Moving Aver-
ages (EWMA) of gradients, can enable us to discard measurements that we made
at an earlier time step. In that context, RMSprop divides the learning rate by an
exponentially decaying average of squared gradients.

More specifically, our update to the gradient accumulation vector is now as fol-
lows:

For t in iteration compute dW, db using the current mini-batch:

sdW = βsdW + (1 − β)[dW]2
sdb = βsdb + (1 − β)[db]2

W : = W − α
dW√
sdW + ε

(5.3.10)

The value of ε is set at 10e-08, so that we do not get a divide by zero situation.
Reference [7] suggests a value of 0.9 for β, and a value of 0.001 for the learning rate
α.

Adam (Adaptive Moment Estimation) Update

Reference [19], suggested Adam in which, adaptive learning rates are computed for
each parameter. Adam stores (a) an exponentially decaying average of past squared
gradients and (b) an exponentially decaying average of past gradients. If momentum
can be envisaged as a ball running down a slope, Adam is akin to a heavy ball with
friction, which prefers a flat minima in the error surface. Reference [19], describe
Adam as combining the advantages of both AdaGrad and RMSProp.

Some of the popular deep learning libraries recommend the following hyperpa-
rameters values for Adam:

• TensorFlow: learning_rate = 0.001, β1 = 0.9, β2 = 0.999, ε = 1e-08
• Keras: learning_rate = 0.001, β1 = 0.9, β2 = 0.999, ε = 1e-08, decay = 0.

We compute the decaying averages of past and past squared gradients as follows:

initialize vdW , sdW , vdb, sdb = 0

For t in iteration compute dW, db using the current mini-batch:

vdW = β1vdW + (1 − β1)dW −β1 is the momentum

sdW = β2sdW + (1 − β2)[dW]2 −β2 is the RMSPropβ

vcorrected
dW = vdW

(1 − β t
1)

scorrecteddW = sdW
(1 − β t

2)

W : = W − α
vcorrected
dW

√

scorrecteddW + ε

(5.3.11)

114 5 Optimization

Each update of Adam involves the following steps

(1) Compute the gradient and its element-wise square using the current parameters.
(2) Update the exponentialmoving average of thefirst-ordermoment and the second-

order moment.
(3) Compute an unbiased average of the first-order moment and second-order mo-

ment.
(4) Compute weight update: first-order moment unbiased average divided by the

square root of second-order moment unbiased average (and scale by learning
rate).

(5) Apply update to the weights.

initialize_adam <- function(parameters) {

L = length(parameters)/2
v = list()
s = list()

for (layer in 1:L) {
v[[paste("dW", layer, sep = "")]] = 0 * parameters[[paste("W",

layer, sep = "")]]
v[[paste("db", layer, sep = "")]] = 0 * parameters[[paste("b",

layer, sep = "")]]

s[[paste("dW", layer, sep = "")]] = 0 * parameters[[paste("W",
layer, sep = "")]]

s[[paste("db", layer, sep = "")]] = 0 * parameters[[paste("b",
layer, sep = "")]]

}

return(list(V = v, S = s))
}

update_params_with_adam <- function(parameters, gradients, v,
s, t, beta1, beta2, learning_rate, epsilon) {

L = length(parameters)/2
v_corrected = list()
s_corrected = list()

for (layer in 1:L) {
v[[paste("dW", layer, sep = "")]] = beta1 * v[[paste("dW",

layer, sep = "")]] + (1 - beta1) * (gradients[[paste("dW",
layer, sep = "")]])

v[[paste("db", layer, sep = "")]] = beta1 * v[[paste("db",
layer, sep = "")]] + (1 - beta1) * gradients[[paste("db",
layer, sep = "")]]

v_corrected[[paste("dW", layer, sep = "")]] = v[[paste("dW",
layer, sep = "")]]/(1 - beta1ˆt)

v_corrected[[paste("db", layer, sep = "")]] = v[[paste("db",
layer, sep = "")]]/(1 - beta1ˆt)

s[[paste("dW", layer, sep = "")]] = beta2 * s[[paste("dW",
layer, sep = "")]] + (1 - beta2) * (gradients[[paste("dW",
layer, sep = "")]])ˆ2

s[[paste("db", layer, sep = "")]] = beta2 * s[[paste("db",

5.3 Parameter Updates 115

layer, sep = "")]] + (1 - beta2) * (gradients[[paste("db",
layer, sep = "")]])ˆ2

s_corrected[[paste("dW", layer, sep = "")]] = s[[paste("dW",
layer, sep = "")]]/(1 - beta2ˆt)

s_corrected[[paste("db", layer, sep = "")]] = s[[paste("db",
layer, sep = "")]]/(1 - beta2ˆt)

parameters[[paste("W", layer, sep = "")]] = parameters[[paste("W",
layer, sep = "")]] - learning_rate * (v_corrected[[paste("dW",
layer, sep = "")]])/(sqrt(s_corrected[[paste("dW",
layer, sep = "")]]) + epsilon)

parameters[[paste("b", layer, sep = "")]] = parameters[[paste("b",
layer, sep = "")]] - learning_rate * (v_corrected[[paste("db",
layer, sep = "")]])/(sqrt(s_corrected[[paste("db",
layer, sep = "")]]) + epsilon)

}

return(list(parameters = parameters, Velocity = v, S = s))
}

It should be noted that the mini-batch/SGD implementation requires three for-
loops in total

• Number of iterations.
• Number of training observations.
• Number of layers (update all parameters from W [1], b[1] to W [L], b[L]).

model <- function(X,
Y,
X_test,
Y_test,
layers_dims,
hidden_layer_act,
output_layer_act,
optimizer,
learning_rate,
mini_batch_size,
num_epochs,
initialization,
beta,
beta1,
beta2,
epsilon,
print_cost = F){

costs <- NULL
t = 0
set.seed = 1
seed = 10
parameters = initialize_params(layers_dims, initialization)
v = initialize_adam(parameters)[["V"]]
s = initialize_adam(parameters)[["S"]]
velocity = initialize_velocity(parameters)

start_time <- Sys.time()

for(i in 0:num_epochs){
seed = seed + 1

116 5 Optimization

minibatches = random_mini_batches(X, Y, mini_batch_size, seed)

for(batch in 1:length(minibatches)){
mini_batch_X = (minibatches[[batch]][[’mini_batch_X’]])
mini_batch_Y = minibatches[[batch]][[’mini_batch_Y’]]

AL = forward_prop(mini_batch_X, parameters, hidden_layer_act,
output_layer_act)[[’AL’]]

caches = forward_prop(mini_batch_X, parameters, hidden_layer_act,
output_layer_act)[[’caches’]]

cost <- compute_cost(AL, mini_batch_X, mini_batch_Y, num_classes = 0,
output_layer_act)

gradients = back_prop(AL, mini_batch_Y, caches, hidden_layer_act,
output_layer_act)

if(optimizer == ’gd’){
parameters = update_params(parameters, gradients, learning_rate)

}
else if(optimizer == ’momentum’){

parameters = update_params_with_momentum(parameters,
gradients,
velocity,
beta,
learning_rate
)[["parameters"]]

velocity = update_params_with_momentum(parameters,
gradients,
velocity,
beta,
learning_rate
)[["Velocity"]]

}
else if(optimizer == ’adam’){
t = t + 1
parameters = update_params_with_adam(parameters,

gradients,
v,
s,
t,
beta1,
beta2,
learning_rate,
epsilon
)[["parameters"]]

v = update_params_with_adam(parameters,
gradients,
v,
s,
t,
beta1,
beta2,
learning_rate,
epsilon
)[["Velocity"]]

s = update_params_with_adam(parameters,
gradients,
v,

5.3 Parameter Updates 117

s,
t,
beta1,
beta2,
learning_rate,
epsilon
)[["S"]]

}
}

if(print_cost == T & i %% 1000 == 0){
print(paste0("Cost after iteration " , i, ’ = ’, cost, sep = ’ ’))
}

if(print_cost == T & i %% 100 == 0){
costs = c(costs, cost)
}

}

Y_prediction_train = predict_model(parameters, X, hidden_layer_act,
output_layer_act)

Y_prediction_test = predict_model(parameters, X_test, hidden_layer_act,
output_layer_act)

cat(sprintf("train accuracy: %05f, \n",
(100 - mean(abs(Y_prediction_train - Y)) * 100)))

cat(sprintf("test accuracy: %05f, \n",
(100 - mean(abs(Y_prediction_test - Y_test)) * 100)))

cat(sprintf("Cost after: %d, iterations is: %05f, \n", i, cost))

end_time <- Sys.time()
cat(sprintf("Application running time: %#.3f minutes",

end_time - start_time))

return(list("parameters" = parameters, "costs" = costs))
}

Let us normalize the data

scale.trainX <- t(scale(trainX))
scale.testX <- t(scale(testX))

Let us now create four different models using the optimization methods: (1) batch
gradient descent, (2) mini-batch gradient descent, (3) mini-batch gradient descent
with momentum, and (4) mini-batch gradient descent with adam, respectively.

For batch gradient descent optimization, we will be using all the observations and
therefore, the argument mini_batch_size will be set to 600, i.e., the number of
observations in the training data set (Fig. 5.2).

layers_dims <- c(2, 100, 1)

model_batch_gd <- model(scale.trainX,
trainY,
scale.testX,
testY,
layers_dims,
hidden_layer_act = ’relu’,
output_layer_act = ’sigmoid’,
optimizer = ’gd’,

118 5 Optimization

Iteration (per 100)

lo
ss

0 20 40 60 80 100

0.
68

6
0.

68
8

0.
69

0
0.

69
2

Fig. 5.2 Batch Gradient descent optimizer: loss versus iteration

learning_rate = 0.001,
mini_batch_size = 600,
num_epochs = 10000,
initialization = ’random’,
beta = 0.9,
beta1 = 0.9,
beta2 = 0.999,
epsilon = 1e-8,
print_cost = T)

[1] "Cost after iteration 0 = 0.693399526383027 "
[1] "Cost after iteration 1000 = 0.692996097339685 "
[1] "Cost after iteration 2000 = 0.692616936479433 "
[1] "Cost after iteration 3000 = 0.692225661133013 "
[1] "Cost after iteration 4000 = 0.691787142978714 "
[1] "Cost after iteration 5000 = 0.691269259982158 "
[1] "Cost after iteration 6000 = 0.690634881182416 "
[1] "Cost after iteration 7000 = 0.689838379901064 "
[1] "Cost after iteration 8000 = 0.688821489352451 "
[1] "Cost after iteration 9000 = 0.687510626499713 "
[1] "Cost after iteration 10000 = 0.685819368589529 "
train accuracy: 50.833333,
test accuracy: 47.500000,
Cost after: 10000, iterations is: 0.685819,
Application running time: 1.580 minutes

For mini-batch gradient descent, we will choose a mini-batch size of 64 (Figs. 5.3,
5.4, 5.5).

layers_dims <- c(2, 100, 1)

model_minibatch_gd <- model(scale.trainX,
trainY,

5.3 Parameter Updates 119

Iteration (per 100)

lo
ss

0 20 40 60 80 100

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Fig. 5.3 Mini-batch gradient descent optimizer: loss versus iteration. The gradient descent opti-
mizer oscillates wildly and does not quite do well in reducing the objective cost function

scale.testX,
testY,
layers_dims,
hidden_layer_act = ’relu’,
output_layer_act = ’sigmoid’,
optimizer = ’gd’,
learning_rate = 0.001,
mini_batch_size = 64,
num_epochs = 10000,
initialization = ’random’,
beta = 0.9,
beta1 = 0.9,
beta2 = 0.999,
epsilon = 1e-8,
print_cost = T)

[1] "Cost after iteration 0 = 0.693321360452555 "
[1] "Cost after iteration 1000 = 0.684982371935506 "
[1] "Cost after iteration 2000 = 0.599731869142396 "
[1] "Cost after iteration 3000 = 0.569371253111551 "
[1] "Cost after iteration 4000 = 0.41637987226805 "
[1] "Cost after iteration 5000 = 0.296604362374641 "
[1] "Cost after iteration 6000 = 0.261217834087639 "
[1] "Cost after iteration 7000 = 0.299227003420015 "
[1] "Cost after iteration 8000 = 0.245556139754028 "
[1] "Cost after iteration 9000 = 0.223421205824919 "
[1] "Cost after iteration 10000 = 0.212745419311865 "
train accuracy: 92.666667,
test accuracy: 93.000000,
Cost after: 10000, iterations is: 0.212745,
Application running time: 3.236 minutes

120 5 Optimization

layers_dims <- c(2, 100, 1)

model_minibatch_gd_mom <- model(scale.trainX,
trainY,
scale.testX,
testY,
layers_dims,
hidden_layer_act = ’relu’,
output_layer_act = ’sigmoid’,
optimizer = ’momentum’,
learning_rate = 0.001,
mini_batch_size = 64,
num_epochs = 10000,
initialization = ’random’,
beta = 0.9,
beta1 = 0.9,
beta2 = 0.999,
epsilon = 1e-8,
print_cost = T)

[1] "Cost after iteration 0 = 0.693320562283126 "
[1] "Cost after iteration 1000 = 0.685022531415745 "
[1] "Cost after iteration 2000 = 0.600111907605888 "
[1] "Cost after iteration 3000 = 0.569681803345362 "
[1] "Cost after iteration 4000 = 0.416619273843368 "
[1] "Cost after iteration 5000 = 0.296770206347163 "
[1] "Cost after iteration 6000 = 0.261311267794582 "
[1] "Cost after iteration 7000 = 0.299345591302726 "
[1] "Cost after iteration 8000 = 0.245693797051899 "
[1] "Cost after iteration 9000 = 0.223527223844926 "
[1] "Cost after iteration 10000 = 0.21282563453313 "
train accuracy: 92.666667,
test accuracy: 93.000000,
Cost after: 10000, iterations is: 0.212826,
Application running time: 2.469 minutes

layers_dims <- c(2, 100, 1)

model_minibatch_adam <- model(scale.trainX,
trainY,
scale.testX,
testY,
layers_dims,
hidden_layer_act = ’relu’,
output_layer_act = ’sigmoid’,
optimizer = ’adam’,
learning_rate = 0.001,
mini_batch_size = 64,
num_epochs = 10000,
initialization = ’random’,
beta = 0.9,
beta1 = 0.9,
beta2 = 0.999,

5.3 Parameter Updates 121

Iteration (per 100)

lo
ss

0 20 40 60 80 100

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Fig. 5.4 Mini-batch gradient descent with momentum: loss versus iteration

epsilon = 1e-8,
print_cost = T)

[1] "Cost after iteration 0 = 0.692243953244077 "
[1] "Cost after iteration 1000 = 0.082159559525978 "
[1] "Cost after iteration 2000 = 0.0205592965269963 "
[1] "Cost after iteration 3000 = 0.100252805396719 "
[1] "Cost after iteration 4000 = 0.0208339453640888 "
[1] "Cost after iteration 5000 = 0.0386408118308484 "
[1] "Cost after iteration 6000 = 0.0369781948814698 "
[1] "Cost after iteration 7000 = 0.0354628106862388 "
[1] "Cost after iteration 8000 = 0.0713437232696845 "
[1] "Cost after iteration 9000 = 0.0467632093035248 "
[1] "Cost after iteration 10000 = 0.0878683736127119 "
train accuracy: 97.500000,
test accuracy: 95.500000,
Cost after: 10000, iterations is: 0.087868,
Application running time: 3.373 minutes

Plotting decision boundary on the training data
s.trainX.df <- data.frame(scale(trainX))
s.testX.df <- data.frame(scale(testX))

data <- cbind(s.trainX.df, trainY)
class <- data[, 3]
data <- data[, 1:2]
plot(data, col = class + 1, pch = class + 1, cex = 0.5, xaxt = "n",

yaxt = "n", xlab = "x1", ylab = "x2", cex.lab = 0.7)
axis(side = 1, col = "black", cex.axis = 0.7)
axis(side = 2, col = "black", cex.axis = 0.7)

r <- sapply(data, range, na.rm = TRUE)

122 5 Optimization

Iteration (per 100)

lo
ss

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Fig. 5.5 Mini-batch gradient descent with Adam optimization: loss versus iteration. Mini-batch
gradient descent with Adam optimization clearly outperforms the others by converging to a lower
value of the loss, much earlier

xs <- seq(r[1, 1], r[2, 1], length.out = 100)
ys <- seq(r[1, 2], r[2, 2], length.out = 100)
grid <- cbind(rep(xs, each = 100), rep(ys, times = 100))
colnames(grid) <- colnames(r)
grid <- as.data.frame(grid)

predicted <- predict_model(model_minibatch_adam$parameters, t(grid),
hidden_layer_act = "relu", output_layer_act = "sigmoid")

points(grid, col = predicted + 1, pch = ".")

z <- matrix(predicted, nrow = 100, byrow = TRUE)
z <- matrix(predicted, nrow = 100, byrow = TRUE)
contour(xs, ys, z, add = T, levels = 1:(k - 1) + 0.5)

5.4 Vanishing Gradient

We can run the risk of a deep layer neural network to train indefinitely or perform
inaccurately. The reason is that iterative optimization algorithms slowly make their
way to the local optima by perturbing weights in a direction inferred from the gradi-
ent, so that the cost (difference between the predicted and actual values) decreases.
The gradient descent algorithm updates the weights by the negative of the gradient
multiplied by a hyperparameter known as the learning rate (values between 0 and
1). Another hyperparameter is the number of iterations; if the number of iterations
is small we may have inaccurate results, and if the number is large, the time to train
can be very long. Therefore it is a trade-off between training time and accuracy.
Moreover, if the gradient at each step is small a larger number of repetitions will be
needed till convergence as the weight is not changing enough at each iteration. It
is also difficult to represent very small gradients as numerical values in machines,

5.4 Vanishing Gradient 123

x1

x2

−3 −2 −1 0 1

−2
−1

0
1

2
3

x1
x2

−3 −2 −1 0 1

−2
−1

0
1

2
Fig. 5.6 Plot of the decision boundary using the Adam optimizer model on the training data (left-
hand plot) and the testing data (right-hand plot)

W[1] W[2] W[3]
Input σ(Z[1]) = A[1] σ(Z[2]) = A[2] σ(Z[3]) = A[3] J = (y − A[3])

Fig. 5.7 A three-layer neural network with sigmoid activation

due to a problem known as underflow. With very small gradients, this becomes a
problem and often gives rise to the vanishing gradient problem. The activation
functions, sigmoid, and tanh suffer from the vanishing gradient problem. We
can also have exploding gradients if the gradients are larger than 1.

Let us try to understand the vanishing gradient problem by considering the sig-
moid function, which squeezes any input value into an output between the range of
(0, 1), where it asymptotes. This is perfect for representations of probabilities and
classification.Wewill consider a three-layer neural network activated by the sigmoid
activation function in Fig. 5.7

In Fig. 5.8, the maximum value for the derivative of the sigmoid activation
function is 0.25. The derivative also asymptotes to zero at the tails and therefore
the minimum value is zero. We can say that the the output of the derivative of the
sigmoid function is between (0, 0.25].

The error J in Fig. 5.7 aggregates the total error of the network. We now need to
perform backpropagation to modify our weights through gradient descent to mini-
mize J . The derivative to the first weight can be written as

Z [1] = W [1]X + b[1]

A[1] = σ(Z [1])

124 5 Optimization

Z

σ(
Z)

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sigmoid
Derivative of the Sigmoid

Fig. 5.8 Plot of the derivative of the Sigmoid activation function

∂A[1]

∂Z [1] = [A[1](1 − A[1])] = σ ′(Z [1])

Z [2] = W [2]A[1] + b[2]

∂Z [2]

∂A[1] = W [2]

A[2] = σ(Z [2])

∂A[2]

∂Z [2] = [A[2](1 − A[2])] = σ ′(Z [2])

∂ J

∂W [1] = ∂ J

∂A[2]
∂A[2]

∂Z [2]
∂Z [2]

∂A[1]
∂A[1]

∂Z1

∂Z [1]

∂W [1]

= [(A[2] − Y)] ∗ [σ ′(Z [2])]
︸ ︷︷ ︸

≤0.25

∗ [W [2]]
︸ ︷︷ ︸

<1

∗ [σ ′(Z [1])]
︸ ︷︷ ︸

≤0.25

∗[X]

Here

• σ ′(Z [2]) ≤ 0.25
• W [2] < 1
• σ ′(Z [1]) ≤ 0.25

And the multiplication of the above three numbers will be much smaller than 0.25
In Fig. 5.8, the derivative of the sigmoid function values is between 0 and 0.25. By
multiplying these two derivatives together, we are multiplying two values which are
between 0 and 0.25, thereby resulting in an even smaller number. Also, we generally

5.4 Vanishing Gradient 125

initialize our weights from a standardGaussian distributionwithmean 0 and standard
deviation 1 and thus having values between 1 and −1.

The gradient at a layer is the products of the gradients at prior layers.
In the above equation, we are now multiplying four values which are between 0

and 1, which will tend to become a very small number (even if we employ some
other method for initialization of weights) and will result in the vanishing gradient
problem. In deep neural networks, the first layer is the furthest from the error, and
therefore the derivative will have more sigmoid derivatives, and thus ending up in
very small values. The first layer are therefore the slowest to train. Since the other
hidden layers and the output layer are each functionally dependent on the previous
layers, inaccuracies in the previous layers will have an impact on the downstream
layers by building on the inaccuracy and therefore corrupting the entire neural net.
(This is more so in the case of ConvNets as the early layers perform high-level feature
detection which the downstream layers analyze further).

One of the reasons for the unpopularity of neural networks was the vanishing
gradient problem as only the sigmoid and tanh activation functions were being
used. However, with the usage of other activation functions like the relu, lrelu,
etc., this problem has been largely minimized.

So how do these activation functions solve the problem of the vanishing gradient?
As we have seen in Sect. 2.4.3, the relu outputs a zero for all input values less

than zero and mimics the input when the input is greater than zero. The derivative
of the relu is zero when the input is less than zero, and when the input is greater
or equal to zero, the derivative is equal to one. Our derivatives will now no longer
vanish because it is not bounded.

However, the relu function can “die” with an output of zero for a negative value
input. This can sometimes cause problems in backpropagation because the gradients
will be zero for one negative value input to the relu function. The “dead” relu
will now output the same value, i.e., zero, and therefore cannot modify the weights
in any way, since not only is the output for any negative input zero, the derivative is
too.

The event that the weighted sums ending up negative, does not happen all the
time, and we can indeed initialize our weights to be only positive and normalize
our input values so that they are between 0 and 1. Another way around is to use the
lrelu. lrelu has a very small gradient instead of a zero gradient when the input is
negative, thereby giving a chance for the network to continue learning, albeit slowly
with negative inputs.

The vanishing gradient problem cannot be solved with any one technique and we
can only delay its occurrence.

R uses IEEE 754 double-precision floating-point numbers and the upper bound
of these floating-point numbers is 10308.

126 5 Optimization

5.5 Regularization

Regularization is a method by which we impose constraints on our neural network
with an objective to prevent overfitting. One of the ways overfitting happens is when
the magnitude of the weights becomes large, which makes the network output func-
tion to oscillate wildly. It then captures the underlying noise present in the data
instead of the signal present in the data.

One of the ways to prevent the weights from getting inflated is by modifying our
objective function and adding an additional term, which penalizes large weights. If
we denote our neural network as f , and if the loss function, we are optimizing is
(say), the MSE, we can represent the cost as

J = 1

n

∑

i

(yi − f (xi))
2

Large weights can be penalized by adding the the �2-regularization term R(f) to the
above equation

R(f) = 1

2
λ

∑

w2

The hyperparameter λ controls the overall magnitude of the regularization term.
The 1

2 multiplier is added only for convenience, for cancelation when taking it’s
derivative. Adding this term to the cost equation, we now have:

J = 1

n

∑

i

(yi − f (xi))
2 + R(f)

The net result of adding the regularization term is is to help gradient descent find such
parameters which do not result in large weights and thereby preventing the model
output to exhibit wild swings.

There are also other regularization terms including �1-distance or the “Manhattan
distance”, and each of them has different properties, but approximately the same
effect.

Overfitting is not only associated with very large estimated (structural) parame-
ters, but also when the number of features is very high compared to the number of
examples. Deep learning models generally tend to have a large capacity due to the
number of layers and nodes in the network and also due to the fact that the number
of features can be very large. We have also seen in Sect. 1.5 that large capacity algo-
rithms have a serious problem of overfitting, which implies that the trained network
does not generalize well to unseen data.

The objective function of a model is to minimize the cost, which is dependent on

• How well the model fits the data.
• Model capacity (measure of the sum of the parameters).

5.5 Regularization 127

Fig. 5.9 Left: A two layer network. Right: Same network with dropout. Crossed units have been
dropped [20]

The total cost of an algorithm is therefore the sum of theMeasure of fit and capacity
of the model.

The measure of fit to training data in a classification algorithm is the error rate
and the capacity of the algorithm is measured by the �1 / �2 norms represented by
‖w‖1 and ‖w‖22, respectively.

5.5.1 Dropout Regularization

Dropout is a regularization technique introduced by [20] in 2014. When dropout is
applied to a layer, some percentage of its neurons (commonly having values between
20 and 50%) are randomly deactivated or “dropped out”, and their connections are
deactivated. This reduces the network’s tendency of overdependence on some neu-
rons. This in effect, forces the network to learn a more balanced representation,
and therefore prevents overfitting. Dropout regularization is depicted below, from its
original publication (Fig. 5.9).

The term “dropout” refers to canceling or removing the units (hidden and visible)
in a neural network. By dropping a unit, we temporarily remove it from the network
along with its incoming and outgoing connections.

Use dropout only during training. Dropout is not used during test time. Dropout
is applied both during forward and backward propagation.

During training time, we divide each dropout layer by probability value defined as
keep_prob to keep the same expected value for the activations. For example, if
keep_prob is 0.5, then we will on average shut down half the nodes, so the output
will be scaled by 0.5 since only the remaining half are contributing to the solution.

128 5 Optimization

Dividing by 0.5 is equivalent to multiplying by 2. Hence, the output now has the
same expected value. You can check that this works even when keep_prob is
other values than 0.5.

The idea behind dropout is that at each iteration, we train a different model that
uses only a subset of the total number of neurons in the model. With dropout, our
neurons thus become less sensitive to activation of a specific neuron because another
neuron may be dropped during another iteration.

5.5.2 �2 Regularization

Aswe have in Sect. 5.5, an appropriateway to avoid overfitting is the �2 regularization
method. This is done by modifying the cost function as follows:

From:

J = − 1

m

m
∑

i=1

(

y(i) log
(

a[L](i)) + (1 − y(i)) log
(

1 − a[L](i))) (1)

To:

Jregulari zed = − 1

m

m
∑

i=1

(

y(i) log
(

a[L](i)) + (1 − y(i)) log
(

1 − a[L](i)))

︸ ︷︷ ︸

cross-entropy cost

+ 1

m

λ

2

∑

l

∑

k

∑

j

W [l]2
k, j

︸ ︷︷ ︸

L2 regularization cost

(2)
�2 regularization relies on the assumption that a model with small weights is simpler
than a model with large weights. By penalizing the squared values of the sum of the
weights (weight decay) in the cost function, it drives all the weights to smaller values
by making it costly to have large weights.

Let us modify some of our earlier functions to accommodate both the dropout and
�2 regularization methods into our model.

To incorporate a random dropout of some of the activation nodes (for dropout
regularization), we will have to amend our earlier forward_prop function to
include regularization, as follows:

forward_prop_Reg <- function(X,
parameters,
hidden_layer_act,
output_layer_act,
keep_prob){

dropout_matrix <- list()
caches <- list()
A <- X
L <- length(parameters) / 2

for(l in 1:(L - 1)){
A_prev <- A

5.5 Regularization 129

W <- parameters[[paste("W", l, sep = "")]]
b <- parameters[[paste("b", l, sep = "")]]
actForward <- f_prop_helper(A_prev, W, b, hidden_layer_act[[l]])
A <- actForward[[’A’]]
caches[[l]] <-actForward

Randomly drop some activation units
Create a matrix with the same shape as A
set.seed(1)
i = dim(A)[1]
j = dim(A)[2]
k <- rnorm(i * j)
Convert values in k to between 0 and 1
k = (k - min(k)) / (max(k) - min(k))
Create a matrix of D
D <- matrix(k, nrow = i, ncol = j)
Find D which is less than equal to keep_prob
D <- D < keep_prob
Shut down those neurons which are less than keep_prob
A <- A * D
Scale the value of neurons that have not been
shut down to keep the expected values
A <- A / keep_prob
dropout_matrix[[paste("D", l, sep = "")]] <- D

}

W <- parameters[[paste("W", L, sep = "")]]
b <- parameters[[paste("b", L, sep = "")]]

actForward = f_prop_helper(A, W, b, output_layer_act)
AL <- actForward[[’A’]]
caches[[L]] <- actForward

return(list("AL" = AL, "caches" = caches, "dropout_matrix" = dropout_matrix))
}

The cost function will now need to include the �2 regularization cost (penalty term
for the weights), in addition to the cross-entropy cost.

compute_cost_with_Reg <- function(AL, X, Y, num_classes, parameters,
lambd, output_layer_act) {

Cross-Entropy cost
if (output_layer_act == "sigmoid") {

m = length(Y)
cross_entropy_cost = -(1/m) * sum(Y * log(AL) + (1 -

Y) * log(1 - AL))
} else if (output_layer_act == "softmax") {

m = ncol(X)
y.mat <- matrix(Y, ncol = 1)
y <- matrix(0, nrow = m, ncol = num_classes)
for (i in 0:(num_classes - 1)) {

y[y.mat[, 1] == i, i + 1] <- 1
}
correct_logprobs <- -log(AL)
cross_entropy_cost <- sum(correct_logprobs * y)/m

}

Regularization cost
L <- length(parameters)/2

130 5 Optimization

L2_Reg_Cost = 0

for (l in 1:L) {
L2_Reg_Cost = L2_Reg_Cost + sum(parameters[[paste("W",

l, sep = "")]]ˆ2)
}
L2_Reg_Cost = lambd/(2 * m) * L2_Reg_Cost
cost = cross_entropy_cost + L2_Reg_Cost

return(cost)
}

Since we have changed the cost, we also have to change the backward propagation,
and the gradients have to be computed with respect to the new cost.

back_prop_Reg_helper <- function(dA,
cache,
X,
Y,
num_classes,
hidden_layer_act,
lambd){

forward_cache <-cache[[’forward_cache’]]
activation_cache <- cache[[’activation_cache’]]
A_prev <- forward_cache[[’A_prev’]]
m = dim(A_prev)[2]
activation_cache <- cache[[’activation_cache’]]

if(hidden_layer_act == "relu"){
dZ <- derivative_relu(dA, activation_cache)

}
else if(hidden_layer_act == "sigmoid"){

dZ <- derivative_sigmoid(dA, activation_cache)
}
else if(hidden_layer_act == "tanh"){

dZ <- derivative_tanh(dA, activation_cache)
}
else if(hidden_layer_act == "softmax"){

dZ <- derivative_softmax(dAL, activation_cache, X, Y, num_classes)
}

W <- forward_cache[[’W’]]
b <- forward_cache[[’b’]]
m = dim(A_prev)[2]

if(hidden_layer_act == ’softmax’){
dW = 1 / m * t(dZ) %*% t(A_prev) + (lambd / m) * W
db = 1 / m * colSums(dZ)
dA_prev = t(W) %*% t(dZ)

}
else{
dW = 1 / m * dZ %*% t(A_prev) + (lambd / m) * W
db = 1 / m * rowSums(dZ)
dA_prev = t(W) %*% dZ
}

return(list("dA_prev" = dA_prev, "dW" = dW, "db" = db))
}

5.5 Regularization 131

back_prop_Reg <- function(AL,
X,
Y,
num_classes,
caches,
hidden_layer_act,
output_layer_act,
keep_prob,
dropout_matrix,
lambd){

gradients = list()
L = length(caches)
m = dim(AL)[2]

if(output_layer_act == "sigmoid"){
dAL = -((Y/AL) - (1 - Y)/(1 - AL))

}
else if(output_layer_act == ’softmax’) {

y.mat <- matrix(Y, ncol = 1)
y <- matrix(0, nrow=ncol((X)), ncol = num_classes)
for (i in 0:(num_classes - 1)) {

y[y.mat[, 1] == i,i+1] <- 1
}
dAL = (AL - y)

}

current_cache = caches[[L]]$cache
if(lambd == 0){

loop_back_reg_vals <- back_prop_Reg_helper(dAL,
current_cache,
X, Y,
num_classes,
hidden_layer_act =

output_layer_act,
lambd)

}
else {

loop_back_reg_vals = back_prop_Reg_helper(dAL, current_cache,
X, Y,
num_classes,
hidden_layer_act =

output_layer_act,
lambd)

}

if(output_layer_act == "sigmoid"){
gradients[[paste("dA", L, sep = "")]] <- loop_back_reg_vals[[’dA_prev’]]

}
else if(output_layer_act == "softmax"){

gradients[[paste("dA", L, sep = "")]] <- (loop_back_reg_vals[[’dA_prev’]])
}
gradients[[paste("dW", L, sep = "")]] <- loop_back_reg_vals[[’dW’]]
gradients[[paste("db", L, sep = "")]] <- loop_back_reg_vals[[’db’]]

for(l in (L-1):1){
current_cache = caches[[l]]$cache

if (lambd == 0 & keep_prob < 1){
D <- dropout_matrix[[paste("D", l, sep = "")]]

132 5 Optimization

Multiply gradient with dropout matrix &
divide by keep_prob to keep expected value same
gradients[[paste(’dA’, l + 1, sep = "")]] =

gradients[[paste(’dA’, l + 1, sep = "")]] * D / keep_prob
loop_back_vals <- back_prop_Reg_helper(gradients[[paste(’dA’,

l + 1,
sep = "")]],

current_cache,
X,
Y,
num_classes,
hidden_layer_act[[l]],
lambd)

}
else if(lambd != 0 & keep_prob == 1){

loop_back_vals = back_prop_Reg_helper(gradients[[paste(’dA’,
l + 1,
sep = "")]],

current_cache,
X,
Y,
num_classes,
hidden_layer_act[[l]],
lambd)

}
else if(lambd == 0 & keep_prob == 1){

loop_back_vals = back_prop_Reg_helper(gradients[[paste(’dA’,
l + 1,
sep = "")]],

current_cache,
X,
Y,
num_classes,
hidden_layer_act[[l]],
lambd = 0)

}

gradients[[paste("dA", l, sep = "")]] <- loop_back_vals[[’dA_prev’]]
gradients[[paste("dW", l, sep = "")]] <- loop_back_vals[[’dW’]]
gradients[[paste("db", l, sep = "")]] <- loop_back_vals[[’db’]]

}

return(gradients)
}

model_with_Reg <- function(X,
Y,
X_test,
Y_test,
num_classes,
layers_dims,
hidden_layer_act,
output_layer_act,
optimizer,
learning_rate,
mini_batch_size,
num_epochs,
initialization,
beta,
beta1,

5.5 Regularization 133

beta2,
epsilon,
keep_prob,
lambd,
verbose = F){

start_time <- Sys.time()
costs <- NULL
converged = FALSE
param <- NULL
t = 0
iter = 0
set.seed = 1
seed = 10
parameters = initialize_params(layers_dims, initialization)
v = initialize_adam(parameters)[["V"]]
s = initialize_adam(parameters)[["S"]]
velocity = initialize_velocity(parameters)

for(i in 0:num_epochs){
seed = seed + 1
iter = iter + 1
minibatches = random_mini_batches(X, Y, mini_batch_size, seed)

for(batch in 1:length(minibatches)){
mini_batch_X = (minibatches[[batch]][[’mini_batch_X’]])
mini_batch_Y = minibatches[[batch]][[’mini_batch_Y’]]

if(keep_prob == 1){
AL = forward_prop(mini_batch_X,

parameters,
hidden_layer_act,
output_layer_act)[[’AL’]]

caches = forward_prop(mini_batch_X,
parameters,
hidden_layer_act,
output_layer_act)[[’caches’]]

}
else if(keep_prob < 1){
AL = forward_prop_Reg(mini_batch_X,

parameters,
hidden_layer_act,
output_layer_act,
keep_prob)[[’AL’]]

caches = forward_prop_Reg(mini_batch_X,
parameters,
hidden_layer_act,
output_layer_act,
keep_prob)[[’caches’]]

dropout_matrix = forward_prop_Reg(mini_batch_X,
parameters,
hidden_layer_act,
output_layer_act,
keep_prob)[[’dropout_matrix’]]

}
Compute Cost

cost <- compute_cost_with_Reg(AL,
mini_batch_X,
mini_batch_Y,
num_classes,

134 5 Optimization

parameters,
lambd,
output_layer_act)

Backward propagation
if(lambd == 0 & keep_prob == 1){

gradients = back_prop_Reg(AL,
mini_batch_X,
mini_batch_Y,
num_classes,
caches,
hidden_layer_act,
output_layer_act,
keep_prob = 1,
dropout_matrix = NULL,
lambd = 0)

}
else if(lambd != 0 & keep_prob == 1){

gradients = back_prop_Reg(AL,
mini_batch_X,
mini_batch_Y,
num_classes,
caches,
hidden_layer_act,
output_layer_act,
keep_prob = 1,
dropout_matrix = NULL,
lambd)

}
else if(lambd == 0 & keep_prob < 1){

gradients = back_prop_Reg(AL,
mini_batch_X,
mini_batch_Y,
num_classes,
caches,
hidden_layer_act,
output_layer_act,
keep_prob = 1,
dropout_matrix,
lambd = 0)

}

if(optimizer == ’gd’){
parameters = update_params(parameters, gradients, learning_rate)

}
else if(optimizer == ’momentum’){

parameters = update_params_with_momentum(parameters,
gradients,
velocity,
beta,
learning_rate)[["parameters"]]

velocity = update_params_with_momentum(parameters,
gradients,
velocity,
beta,
learning_rate)[["Velocity"]]

}
else if(optimizer == ’adam’){

t = t + 1
parameters = update_params_with_adam(parameters,

5.5 Regularization 135

gradients,
v,
s,
t,
beta1,
beta2,
learning_rate,
epsilon)[["parameters"]]

v = update_params_with_adam(parameters,
gradients,
v,
s,
t,
beta1,
beta2,
learning_rate,
epsilon)[["Velocity"]]

s = update_params_with_adam(parameters,
gradients,
v,
s,
t,
beta1,
beta2,
learning_rate,
epsilon)[["S"]]

}
}

if(verbose == T & (iter - 1) %% 10000 == 0){
print(paste0("Cost after iteration " , iter - 1, ’ = ’, cost, sep = ’ ’))

}
if((iter - 1) %% 100 == 0){

costs = c(costs,cost)
}

}

if(output_layer_act != ’softmax’){
pred_train <- predict_model(parameters,

X,
hidden_layer_act,
output_layer_act)

Tr_acc <- mean(pred_train == Y) * 100

pred_test <- predict_model(parameters,
X_test,
hidden_layer_act,
output_layer_act)

Ts_acc <- mean(pred_test == Y_test) * 100

cat(sprintf("Cost after iteration %d, = %05f;
Train Acc: %#.3f, Test Acc: %#.3f, \n",
i, cost, Tr_acc, Ts_acc))

}
else if(output_layer_act != ’softmax’){

pred_train <- predict_model(parameters,
X,
hidden_layer_act,
output_layer_act)

Tr_acc <- mean((pred_train - 1) == Y)

136 5 Optimization

pred_test <- predict_model(parameters,
X_test,
hidden_layer_act,
output_layer_act)

Ts_acc <- mean((pred_test - 1) == Y_test)

cat(sprintf("Cost after iteration , %d, = %05f;
Train Acc: %#.3f, Test Acc: %#.3f, \n",
i, cost, Tr_acc, Ts_acc))

}
end_time <- Sys.time()

cat(sprintf("Application running time: %#.3f minutes", end_time - start_time))

return(list("parameters" = parameters, "costs" = costs))
}

layers_dims <- c(2, 100, 1)

model_batch_with_no_Reg <- model_with_Reg(scale.trainX,
trainY,
scale.testX,
testY,
num_classes = length(unique(trainY)),
layers_dims,
hidden_layer_act = c(’relu’),
output_layer_act = ’sigmoid’,
optimizer = ’gd’,
learning_rate = 0.0001,
mini_batch_size = 600,
num_epochs = 15000,
initialization = ’He’,
beta = 0.9,
beta1 = 0.9,
beta2 = 0.999,
epsilon = 1e-8,
keep_prob = 1,
lambd = 0,
verbose = T)

[1] "Cost after iteration 0 = 1.47048780895349 "
[1] "Cost after iteration 10000 = 0.540938410678508 "
Cost after iteration 15000, = 0.522032;

Train Acc: 70.167, Test Acc: 66.500,
Application running time: 2.169 minutes

layers_dims <- c(2, 100, 1)

model_mb_with_no_Reg <- model_with_Reg(scale.trainX,
trainY,
scale.testX,
testY,
num_classes = length(unique(trainY)),
layers_dims,
hidden_layer_act = c(’relu’),
output_layer_act = ’sigmoid’,
optimizer = ’gd’,
learning_rate = 0.0001,

5.5 Regularization 137

mini_batch_size = 64,
num_epochs = 15000,
initialization = ’He’,
beta = 0.9,
beta1 = 0.9,
beta2 = 0.999,
epsilon = 1e-8,
keep_prob = 1,
lambd = 0,
verbose = T)

[1] "Cost after iteration 0 = 1.30788569097192 "
[1] "Cost after iteration 10000 = 0.350172075944783 "
Cost after iteration 15000, = 0.228268;

Train Acc: 91.667, Test Acc: 90.500,
Application running time: 4.418 minutes

layers_dims <- c(2, 100, 1)

model_mb_with_Mom_no_Reg <- model_with_Reg(scale.trainX,
trainY,
scale.testX,
testY,
num_classes = length(unique(trainY)),
layers_dims,
hidden_layer_act = ’relu’,
output_layer_act = ’sigmoid’,
optimizer = ’momentum’,
learning_rate = 0.0001,
mini_batch_size = 64,
num_epochs = 15000,
initialization = ’He’,
beta = 0.9,
beta1 = 0.9,
beta2 = 0.999,
epsilon = 1e-8,
keep_prob = 1,
lambd = 0,
verbose = T)

[1] "Cost after iteration 0 = 1.31294231878059 "
[1] "Cost after iteration 10000 = 0.350180602995558 "
Cost after iteration 15000, = 0.228286;

Train Acc: 91.667, Test Acc: 90.500,
Application running time: 4.379 minutes

layers_dims <- c(2, 100, 1)

model_mb_with_Adam_no_Reg <- model_with_Reg(scale.trainX,
trainY,
scale.testX,
testY,
num_classes = length(unique(trainY)),
layers_dims,
hidden_layer_act = ’relu’,
output_layer_act = ’sigmoid’,

138 5 Optimization

Iteration
(per 1000)

Iteration
(per 1000)

Iteration
(per 1000)

Iteration
(per 1000)

lo
ss

0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150

lo
ss

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

0.
6

0.
8

1.
0

1.
2

1.
4

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

0.
2

0.
0

0.
4

0.
6

0.
8

1.
0

1.
2

lo
ss

lo
ss

Fig. 5.10 Gradient descent with no regularization: loss versus iteration. Starting from left batch
gradient descent, mini-batch gradient descent, mini-batch gradient descent with momentum, and
mini-batch gradient descent with Adam

optimizer = ’adam’,
learning_rate = 0.0001,
mini_batch_size = 64,
num_epochs = 15000,
initialization = ’He’,
beta = 0.9,
beta1 = 0.9,
beta2 = 0.999,
epsilon = 1e-8,
keep_prob = 1,
lambd = 0,
verbose = T)

[1] "Cost after iteration 0 = 1.29201230219011 "
[1] "Cost after iteration 10000 = 0.104942563682952 "
Cost after iteration 15000, = 0.035551;

Train Acc: 97.333, Test Acc: 95.000,
Application running time: 5.825 minutes

Now, let us try out our algorithm with the dropout probability keep_prob = 0.8,
i.e., at every iteration we will shut down the neurons of layers 1 and 2 with 20%
probability.

layers_dims <- c(2, 100, 1)
model_batch_dropout <- model_with_Reg(scale.trainX,

trainY,
scale.testX, testY,

5.5 Regularization 139

num_classes = length(unique(trainY)),
layers_dims,
hidden_layer_act = ’relu’,
output_layer_act = ’sigmoid’,
optimizer = ’gd’,
learning_rate = 0.0001,
mini_batch_size = 600,
num_epochs = 15000,
initialization = ’He’,
beta = 0.9,
beta1 = 0.9,
beta2 = 0.999,
epsilon = 1e-8,
keep_prob = 0.8,
lambd = 0,
verbose = T)

[1] "Cost after iteration 0 = 1.70923892863993 "
[1] "Cost after iteration 10000 = 0.539889679943393 "
Cost after iteration 15000, = 0.516557;

Train Acc: 72.167, Test Acc: 70.500,
Application running time: 8.729 minutes

model_mb_dropout <- model_with_Reg(scale.trainX,
trainY,
scale.testX,
testY,
num_classes = length(unique(trainY)),
layers_dims,
hidden_layer_act = ’relu’,
output_layer_act = ’sigmoid’,
optimizer = ’gd’,
learning_rate = 0.0001,
mini_batch_size = 64,
num_epochs = 15000,
initialization = ’He’,
beta = 0.9,
beta1 = 0.9,
beta2 = 0.999,
epsilon = 1e-8,
keep_prob = 0.8,
lambd = 0,
verbose = T)

[1] "Cost after iteration 0 = 1.49581082005902 "
[1] "Cost after iteration 10000 = 0.334804409527771 "
Cost after iteration 15000, = 0.223873;

Train Acc: 91.333, Test Acc: 92.000,
Application running time: 8.917 minutes

model_mb_mom_dropout <- model_with_Reg(scale.trainX,
trainY,
scale.testX,
testY,
num_classes = length(unique(trainY)),
layers_dims,

140 5 Optimization

hidden_layer_act = ’relu’,
output_layer_act = ’sigmoid’,
optimizer = ’momentum’,
learning_rate = 0.0001,
mini_batch_size = 64,
num_epochs = 15000,
initialization = ’He’,
beta = 0.9,
beta1 = 0.9,
beta2 = 0.999,
epsilon = 1e-8,
keep_prob = 0.8,
lambd = 0,
verbose = T)

[1] "Cost after iteration 0 = 1.50436105247378 "
[1] "Cost after iteration 10000 = 0.33481409021011 "
Cost after iteration 15000, = 0.223898;

Train Acc: 91.333, Test Acc: 92.000,
Application running time: 8.964 minutes

model_mb_adam_dropout <- model_with_Reg(scale.trainX,
trainY,
scale.testX,
testY,
num_classes = length(unique(trainY)),
layers_dims,
hidden_layer_act = ’relu’,
output_layer_act = ’sigmoid’,
optimizer = ’adam’,
learning_rate = 0.0001,
mini_batch_size = 64,
num_epochs = 15000,
initialization = ’He’,
beta = 0.9,
beta1 = 0.9,
beta2 = 0.999,
epsilon = 1e-8,
keep_prob = 0.8,
lambd = 0,
verbose = T)

[1] "Cost after iteration 0 = 1.47770684841945 "
[1] "Cost after iteration 10000 = 0.110124099690202 "
Cost after iteration 15000, = 0.042310;

Train Acc: 97.667, Test Acc: 96.000,
Application running time: 10.476 minutes

L2 Regularization

We will now set the penalty λ = 0.6 in �2 regularization and compare our results
(Fig. 5.12).

layers_dims <- c(2, 100, 1)
model_batch_l2 <- model_with_Reg(scale.trainX,

trainY,

5.5 Regularization 141

Iteration
(per 1000)

lo
ss

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

0.
6

0.
2

0.
4

0.
8

1.
0

1.
2

1.
4

0.
6

0.
2

0.
4

0.
8

1.
0

1.
2

1.
4

0.
5

0.
0

1.
0

1.
5

Iteration
(per 1000)

lo
ss

Iteration
(per 1000)

lo
ss

Iteration
(per 1000)

lo
ss

0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150

Fig. 5.11 Gradient descent with dropout regularization, (dropout probability = 0.2): loss versus
iteration plot. Starting from left batch gradient descent, mini-batch gradient descent, mini-batch
gradient descent with momentum, and mini-batch gradient descent with Adam

scale.testX,
testY,
num_classes = length(unique(trainY)),
layers_dims,
hidden_layer_act = ’relu’,
output_layer_act = ’sigmoid’,
optimizer = ’gd’,
learning_rate = 0.0001,
mini_batch_size = 600,
num_epochs = 15000,
initialization = ’He’,
beta = 0.9,
beta1 = 0.9,
beta2 = 0.999,
epsilon = 1e-8,
keep_prob = 1,
lambd = 0.6,
verbose = T)

[1] "Cost after iteration 0 = 1.58639145691037 "
[1] "Cost after iteration 10000 = 0.656553136817669 "
Cost after iteration 15000, = 0.637578;

Train Acc: 70.167, Test Acc: 66.500,
Application running time: 2.187 minutes

model_minibatch_l2 <- model_with_Reg(scale.trainX,
trainY,

142 5 Optimization

scale.testX,
testY,
num_classes = length(unique(trainY)),
layers_dims,
hidden_layer_act = ’relu’,
output_layer_act = ’sigmoid’,
optimizer = ’gd’,
learning_rate = 0.0001,
mini_batch_size = 64,
num_epochs = 15000,
initialization = ’He’,
beta = 0.9,
beta1 = 0.9,
beta2 = 0.999,
epsilon = 1e-8,
keep_prob = 1,
lambd = 0.6,
verbose = T)

[1] "Cost after iteration 0 = 2.39443387207555 "
[1] "Cost after iteration 10000 = 1.26264735343363 "
Cost after iteration 15000, = 1.068367;

Train Acc: 91.500, Test Acc: 91.000,
Application running time: 2.868 minutes

model_minibatch_mom_l2 <- model_with_Reg(scale.trainX,
trainY,
scale.testX,
testY,
num_classes = length(unique(trainY)),
layers_dims,
hidden_layer_act = ’relu’,
output_layer_act = ’sigmoid’,
optimizer = ’momentum’,
learning_rate = 0.0001,
mini_batch_size = 64,
num_epochs = 15000,
initialization = ’He’,
beta = 0.9,
beta1 = 0.9,
beta2 = 0.999,
epsilon = 1e-8,
keep_prob = 1,
lambd = 0.6,
verbose = T)

[1] "Cost after iteration 0 = 2.39952012968536 "
[1] "Cost after iteration 10000 = 1.26266151545024 "
Cost after iteration 15000, = 1.068387;

Train Acc: 91.500, Test Acc: 91.000,
Application running time: 3.149 minutes

model_minibatch_adam_l2 <- model_with_Reg(scale.trainX,
trainY,
scale.testX,
testY,

5.5 Regularization 143

Iteration
(per 1000)

lo
ss

0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

Iteration
(per 1000)

lo
ss

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

Iteration
(per 1000)

lo
ss

Iteration
(per 1000)

lo
ss

0.
5

1.
0

1.
5

2.
0

Fig. 5.12 Gradient descent with l2 regularization, (l2 = 0.6): loss vs. iteration plot. Starting from left
batch gradient descent, mini-batch gradient descent, mini-batch gradient descent with momentum,
and mini-batch gradient descent with Adam

num_classes = length(unique(trainY)),
layers_dims,
hidden_layer_act = ’relu’,
output_layer_act = ’sigmoid’,
optimizer = ’adam’,
learning_rate = 0.0001,
mini_batch_size = 64,
num_epochs = 15000,
initialization = ’He’,
beta = 0.9,
beta1 = 0.9,
beta2 = 0.999,
epsilon = 1e-8,
keep_prob = 1,
lambd = 0.6,
verbose = T)

[1] "Cost after iteration 0 = 2.37800789224143 "
[1] "Cost after iteration 10000 = 0.316931955547848 "
Cost after iteration 15000, = 0.256161;

Train Acc: 96.500, Test Acc: 95.500,
Application running time: 4.026 minutes

Figure 5.12 depicts the loss, using l2 regularization for batch gradient descent,
mini-batch gradient descent, mini-batch gradient descent with momentum and mini-
batch gradient descent with Adam.

144 5 Optimization

5.5.3 Combining Dropout and �2 Regularization?

It is still not clear whether using both at the same time is beneficial or if it makes
things more complicated. While �2 regularization is implemented to penalize high
values of the structural parameters, dropout involves a random process of switching-
off or dropping some nodes, which cannot be expressed as a penalty term. However,
they both try to avoid the network’s overreliance on spurious correlations, which are
one of the consequences of overtraining.

Having said that, itwould be prudent to say thatmore detailed research is necessary
to determine how and when, they can work together or, end up negating each other.
So far, it seems the results tend to vary in a case-by-case fashion.

You may try your experiments and maybe, you can add to the knowledge base, on
their suitability or otherwise, and the conditions of use, by means of further research
on this topic.

5.6 Gradient Checking

As we have seen so far, in neural networks, we apply the forward propagation func-
tion, calculate the error function J (θ), and then compute the derivatives of the error
function d

dθ
J (θ), with the backpropagation function.

Backpropagation is a difficult algorithm to debug and to get right and therefore,
it is difficult to check whether our backpropagation is actually working.

Consider that we want to minimize J (θ) using gradient descent. An iteration of
gradient descent can be written as

θ := θ − α
d

dθ
J (θ). (5.6.1)

How do we check if our implementation of d
dθ
J (θ) is correct? We know from

calculus that the mathematical definition of the derivative is

d

dθ
J (θ) = lim

ε→0

J (θ + ε) − J (θ − ε)

2ε
. (5.6.2)

To derive confidence in our implementation, let us once again implement forward
propagation for some given input values.

But before we do that, we write two functions, which will unlist the elements in
the caches and convert them to a vector.

dic2vec_params <- function(parameters) {
p = unlist(list(W1 = parameters[["W1"]], b1 = parameters[["b1"]],

W2 = parameters[["W2"]], b2 = parameters[["b2"]]))
return(p)

5.6 Gradient Checking 145

}

dic2vec_grads <- function(gradientss) {
g = unlist(list(dW1 = gradients[["dW1"]], db1 = gradients[["db1"]],

dW2 = gradients[["dW2"]], db2 = gradients[["db2"]]))
return(g)

}

The forward_prop_check function computes the cost and stores the network
parameters in a cache, to be used during our gradient checking.

forward_prop_check <- function(X, Y, parameters) {
m = dim(X)[2]
W1 = parameters[["W1"]]
b1 = parameters[["b1"]]
W2 = parameters[["W2"]]
b2 = parameters[["b2"]]

Z1 = sweep(W1 %*% X, 1, b1, "+")
A1 = relu(Z1)[["A"]]
Z2 = sweep(W2 %*% A1, 1, b2, "+")
A2 = sigmoid(Z2)[["A"]]

logprobs = -(log(A2) %*% Y + log(1 - A2) %*% (1 - Y))
cost = 1/m * sum(logprobs)

cache = list(Z1 = Z1, A1 = A1, W1 = W1, b1 = b1, Z2 = Z2,
A2 = A2, W2 = W2, b2 = b2)

return(list(cost = cost, cache = cache))
}

As forward propagation is relatively easy to implement, we are quite sure about
computing the cost J correctly. Therefore we can use our computed J values to
verify the code for computing ∂ J

∂W to arrive at the approximated computed value
of the gradient. In the following function, we calculate this value and store it in
gradapprox as follows:

gradapprox = J (W+ε)−J (W−ε)

2ε . The calculated gradients are stored in grad.
Finally we compute the relative difference between gradapprox and the grad
using the �2 norm as follows-
di f f = ‖grad−gradapprox‖2

‖grad‖2+‖gradapprox‖2
The�2 normof avectora = [a1, a2, a3] is‖a‖ =

√

a21 + a22 + a23 . InR, the function
to calculate the �2 norm is vector.norm() from the InspectChangepoint
package.

gradient_check <- function(parameters, gradients, X, Y, epsilon = 1e-07) {
parameters_values = dic2vec_params(parameters)
grad = dic2vec_grads(gradients)

num_parameters = length(parameters_values)
J_plus = rep(0, num_parameters)
J_minus = rep(0, num_parameters)
gradapprox = rep(0, num_parameters)

for (i in 1:num_parameters) {

146 5 Optimization

thetaplus = parameters_values
length(thetaplus)
thetaplus[i] = thetaplus[i] + epsilon
J_plus[[i]] = forward_prop_check(X, Y, relist(unlist(thetaplus),

parameters))[["cost"]]
forward_prop(X, Y, relist(unlist(thetaplus),
parameters))[[’cost’]]
thetaminus = parameters_values
thetaminus[i] = thetaminus[i] - epsilon
J_minus[[i]] = forward_prop_check(X, Y, relist(unlist(thetaminus),

parameters))[["cost"]]

gradapprox[i] = (J_plus[i] - J_minus[i])/(2 * epsilon)
}
num = vector.norm((grad - gradapprox))
den = vector.norm(grad) + vector.norm(gradapprox)
diff = num/den

if (diff < 1e-07) {
print("The gradient is correct!")

} else {
print("The gradient is wrong!")

}
return(diff)

}

We will be using the back_prop function, to get are our network gradients and
use them in the gradient_check function, above.

set.seed(1)
index = sample(1:600, 1)
X = as.matrix(scale.trainX[, index])
Y = trainY[index]

parameters = initialize_params(layers_dims = c(2, 100, 2), initialization = "random")
AL = forward_prop(X, parameters, "relu", "sigmoid")[["AL"]]
caches = forward_prop(X, parameters, "relu", "sigmoid")[["caches"]]
gradients <- back_prop(AL, Y, caches, hidden_layer_act = "relu",

output_layer_act = "sigmoid")

gradient_check(parameters, gradients, X, Y, epsilon = 1e-07)

[1] "The gradient is correct!"

[1] 1.070501e-08

Our implementation of backpropagation is doing good! The difference is 1.07-08

Gradient checking does not work when applying dropout regularization. Use
keep-prob = 1 during gradient checking and then change it during training.
Epsilon = 10e − 7 is a common value used for the difference between analytical
gradient and numerical gradient. If the difference is less than 10e − 7, then the
implementation of backpropagation is correct.

Since gradient checking is very slow we apply it on one or a few training examples.
We need to turn it off when training a neural network after making sure that the
backpropagation’s implementation is correct.

5.7 Conclusion 147

5.7 Conclusion

We have come far from our simple neural network algorithm.
We are now aware about most of the hyperparameters which go into a neural

network. We also have a fair idea about vanishing and exploding gradients, and we
have also devised a method wherein we can check if our backpropagation algorithm
is working.

We are now ready to experiment with deeper networks, which we will discuss in
the next chapter.

Chapter 6
Deep Neural Networks-II

The purpose of computing is insights, not numbers.
R.W. Hamming

Abstract We will implement a multi-layered neural network with different hyper-
parameters

• Hidden layer activations
• Hidden layer nodes
• Output layer activation
• Learning rate
• Mini-batch size
• Initialization
• Value of β

• Values of β1

• Value of β2

• Value of ε

• Value of keep_prob
• Value of λ

• Model training time

6.1 Revisiting DNNs

In the previous chapter, we have explored many different optimization algorithms
and regularization techniques. We will now explore multi-label classification using
the softmax function in the output layer.

© Springer Nature Singapore Pte Ltd. 2019
A. Ghatak, Deep Learning with R,
https://doi.org/10.1007/978-981-13-5850-0_6

149

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-5850-0_6&domain=pdf
https://doi.org/10.1007/978-981-13-5850-0_6

150 6 Deep Neural Networks-II

DNN_model <- function(X,
Y,
X_test,
Y_test,
layers_dims,
hidden_layer_act,
output_layer_act,
optimizer,
learning_rate,
mini_batch_size,
num_epochs,
initialization,
beta,
beta1,
beta2,
epsilon,
keep_prob,
lambd,
print_cost = F){

start_time <- Sys.time()
costs <- NULL
converged = FALSE
param <- NULL
t = 0
iter = 0
set.seed = 1
seed = 10
num_classes = length(unique(Y))
parameters = initialize_params(layers_dims, initialization)
v = initialize_adam(parameters)[["V"]]
s = initialize_adam(parameters)[["S"]]
velocity = initialize_velocity(parameters)

for(i in 0:num_epochs){
seed = seed + 1
iter = iter + 1
minibatches = random_mini_batches(X, Y, mini_batch_size, seed)

for(batch in 1:length(minibatches)){
mini_batch_X = (minibatches[[batch]][[’mini_batch_X’]])
mini_batch_Y = minibatches[[batch]][[’mini_batch_Y’]]

if(keep_prob == 1){
AL = forward_prop(mini_batch_X, parameters, hidden_layer_act,

output_layer_act)[[’AL’]]
caches = forward_prop(mini_batch_X, parameters, hidden_layer_act,

output_layer_act)[[’caches’]]
}
else if(keep_prob < 1){

AL = forward_prop_Reg(mini_batch_X, parameters, hidden_layer_act,
output_layer_act, keep_prob)[[’AL’]]

caches = forward_prop_Reg(mini_batch_X, parameters,
hidden_layer_act,
output_layer_act,
keep_prob)[[’caches’]]

dropout_matrix = forward_prop_Reg(mini_batch_X, parameters,
hidden_layer_act,
output_layer_act,
keep_prob)[[’dropout_matrix’]]

}

6.1 Revisiting DNNs 151

cost <- compute_cost_with_Reg(AL, mini_batch_X, mini_batch_Y,
num_classes,
parameters,
lambd,
output_layer_act)

Backward propagation
if(lambd == 0 & keep_prob == 1){

gradients = back_prop(AL, mini_batch_Y, caches,
hidden_layer_act, output_layer_act)

}
else if(lambd != 0 & keep_prob == 1){

gradients = back_prop_Reg(AL, mini_batch_X, mini_batch_Y,
num_classes,
caches, hidden_layer_act,
output_layer_act, keep_prob = 1,
dropout_matrix, lambd)

}
else if(lambd == 0 & keep_prob < 1){

gradients = back_prop_Reg(AL, mini_batch_X, mini_batch_Y,
num_classes, caches,
hidden_layer_act,
output_layer_act, keep_prob,
dropout_matrix, lambd = 0)

}

if(optimizer == ’gd’){
parameters = update_params(parameters, gradients, learning_rate)

}
else if(optimizer == ’momentum’){

parameters = update_params_with_momentum(parameters, gradients, velocity,
beta,
learning_rate)[["parameters"]]

velocity = update_params_with_momentum(parameters, gradients, velocity,
beta,
learning_rate)[["Velocity"]]

}
else if(optimizer == ’adam’){

t = t + 1
parameters = update_params_with_adam(parameters, gradients, v, s, t,

beta1, beta2,
learning_rate,
epsilon)[["parameters"]]

v = update_params_with_adam(parameters, gradients, v, s, t,
beta1, beta2,
learning_rate,
epsilon)[["Velocity"]]

s = update_params_with_adam(parameters, gradients, v, s, t,
beta1, beta2,
learning_rate,
epsilon)[["S"]]

}
}

costs <- append(costs, list(cost))

if(print_cost == T & i %% 1000 == 0){
cat(sprintf("Cost after epoch %d = %05f\n", i, cost))

}
}

152 6 Deep Neural Networks-II

if(output_layer_act != ’softmax’){
pred_train <- predict_model(parameters, X,

hidden_layer_act,
output_layer_act)

Tr_acc <- mean(pred_train == Y) * 100
pred_test <- predict_model(parameters, X_test,

hidden_layer_act,
output_layer_act)

Ts_acc <- mean(pred_test == Y_test) * 100
cat(sprintf("Cost after epoch %d, = %05f;

Train Acc: %#.3f, Test Acc: %#.3f, \n",
i, cost, Tr_acc, Ts_acc))

}
else if(output_layer_act == ’softmax’){

pred_train <- predict_model(parameters, X,
hidden_layer_act, output_layer_act)

Tr_acc <- mean((pred_train - 1) == Y)
pred_test <- predict_model(parameters, X_test,

hidden_layer_act, output_layer_act)
Ts_acc <- mean((pred_test - 1) == Y_test)
cat(sprintf("Cost after epoch , %d, = %05f;

Train Acc: %#.3f, Test Acc: %#.3f, \n",
i, cost, Tr_acc, Ts_acc))

}

end_time <- Sys.time()
cat(sprintf("Application running time: %#.3f seconds\n",

end_time - start_time))

return(list("parameters" = parameters, "costs" = costs))
}

We will use the MNIST1 data for multi-label classification.
The labels in the MNIST data set are a one-hot encoded matrix.

file_path <- "˜/data/MNIST"

train <- read.csv(paste0(file_path, "mnist_train_images.csv",
sep = ""), header = FALSE)

ytrain <- read.csv(paste0(file_path, "mnist_train_labels.csv",
sep = ""), header = FALSE)

test <- read.csv(paste0(file_path, "mnist_test_images.csv", sep = ""),
header = FALSE)

ytest <- read.csv(paste0(file_path, "mnist_test_labels.csv",
sep = ""), header = FALSE)

dim(train)

1Downloaded from http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/

6.1 Revisiting DNNs 153

[1] 55000 784

dim(ytrain)

[1] 55000 10

dim(test)

[1] 10000 784

dim(ytest)

[1] 10000 10

train <- data.matrix(train)
test <- data.matrix(test)

The labels in the MNIST data set are one-hot encoded.Wewill convert the one-hot
encoded labels to a single column of labels.

ytr = ytrain
colnames(ytr) <- c(0:9)
head(ytr)

0 1 2 3 4 5 6 7 8 9
1 0 0 0 0 0 0 0 1 0 0
2 0 0 0 1 0 0 0 0 0 0
3 0 0 0 0 1 0 0 0 0 0
4 0 0 0 0 0 0 1 0 0 0
5 0 1 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 1 0

w <- which(ytr == 1, arr.ind = T)
ytr$label <- toupper(names(ytr)[w[order(w[, 1]), 2]])
ytr = as.numeric(ytr$label)
head(ytr)

[1] 7 3 4 6 1 8

yts = ytest
colnames(yts) <- c(0:9)
head(yts)

154 6 Deep Neural Networks-II

0 1 2 3 4 5 6 7 8 9
1 0 0 0 0 0 0 0 1 0 0
2 0 0 1 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0 0 0
5 0 0 0 0 1 0 0 0 0 0
6 0 1 0 0 0 0 0 0 0 0

w <- which(yts == 1, arr.ind = T)
yts$label <- toupper(names(yts)[w[order(w[, 1]), 2]])
yts = as.numeric(yts$label)
head(yts)

[1] 7 2 1 0 4 1

The MNIST data set has 55000 observations in the training set and 10000 obser-
vations in the test set. We will consider a subset of the data set for training and
validation.

The data is in gray scale with each image having 0 to 255 pixels. We therefore
need to scale the data by the number of pixels.

We will use a multi-layered network with relu activations in the two hidden
layers, having 30 and 10 nodes, respectively, and softmax activation in the output
layer.

train_X <- t(train) / 256
test_X <- t(test) / 256

X_train <- train_X[, 1:5000]; y_train <- ytr[1:5000]
X_test <- test_X[, 1:1000]; y_test <- yts[1:1000]

dnn_1 <- DNN_model(X_train,
y_train,
X_test,
y_test,
layers_dims = c(nrow(X_train), 30, 10, 10),
hidden_layer_act = c(’relu’, ’relu’),
output_layer_act = ’softmax’,
optimizer = ’adam’,
learning_rate = 0.001,
mini_batch_size = 32,
num_epochs = 300,
initialization = ’He’,
beta = 0.9,
beta1 = 0.9,
beta2 = 0.999,
epsilon = 1e-8,
keep_prob = 1,
lambd = 0.0001,
print_cost = T)

6.1 Revisiting DNNs 155

Epoch

lo
ss

0 50 100 150 200 250 300

0.
0

0.
5

1.
0

1.
5

2.
0

Fig. 6.1 Plot of loss versus epochs for a multi-layered network with relu activations in the two
hidden layers having 30 and 10 nodes respectively, and softmax activation in the output layer

Cost after epoch 0 = 2.291371
Cost after epoch 300 = 0.275142;

Train Acc: 0.962, Test Acc: 0.861,
Application running time: 14.974 seconds

The loss for this model is plotted in Fig. 6.1.

dnn_2 <- DNN_model(X_train,
y_train,
X_test,
y_test,
layers_dims = c(nrow(X_train), 30, 10, 10, 10),
hidden_layer_act = c(’relu’, ’relu’, ’relu’),
output_layer_act = ’softmax’,
optimizer = ’adam’,
learning_rate = 0.001,
mini_batch_size = 32,
num_epochs = 300,
initialization = ’He’,
beta = 0.9,
beta1 = 0.9,
beta2 = 0.999,
epsilon = 1e-8,
keep_prob = 0.8,
lambd = 0,
print_cost = T)

Cost after epoch 0 = 2.139287
Cost after epoch , 300, = 0.054083;

Train Acc: 0.988, Test Acc: 0.866,
Application running time: 10.012 seconds

With softmax activation in the output layer and a deeper network with dropout
regularization, keep_prob = 0.8, we have improved our train-set accuracy by 2.6%.

For our designed application, this is quite magnificent. I would urge you to play
with the hyperparameters to achieve a train set accuracy of 97%, using only 10% of
the available training data set with softmax in the output layer. The loss for a 3
layered model is plotted in Fig. 6.2.

156 6 Deep Neural Networks-II

Epoch

lo
ss

0 50 100 150 200 250 300

0.
0

0.
5

1.
0

1.
5

2.
0

Fig. 6.2 Plot of loss versus epochs for a multi-layered network with relu activations in three hidden
layers having 30, 10 and 10 nodes respectively, and softmax activation in the output layer

6.2 Modeling Using keras

scale.trainX.mat <- scale(trainX)
scale.testX.mat <- scale(testX)

set.seed(1)
model <- keras_model_sequential() %>%

layer_dense(units = 400, activation = "relu", input_shape = 2) %>%
layer_dense(units = 200, activation = "relu", input_shape = 2) %>%
layer_dense(units = 50, activation = "relu") %>%
layer_dense(units = 1, activation = ’sigmoid’) %>%

compile(
optimizer = optimizer_adam(),
loss = ’binary_crossentropy’,
metrics = ’accuracy’

)
learn <- model %>% fit(scale.trainX.mat, trainY,

epochs = 300,
batch_size = 64,
validation_split = 0.2,
verbose = FALSE)

learn

Trained on 480 samples, validated on 120 samples (batch_size=64,epochs=300)

Final epoch (plot to see history):
acc: 0.9771

loss: 0.05486
val_acc: 0.95

val_loss: 0.1831

plot(learn)

The loss and accuracy for a 3 layered keras model is plotted in Fig. 6.3.

6.2 Modeling Using keras 157

ac
c

lo
ss

0 50 100 150 200 250 300

0.5

0.6

0.7

0.8

0.9

1.0

0.2

0.4

0.6

epoch

data
training

validation

Fig. 6.3 Plot of accuracy and loss with respect to epochs using a keras model with three hidden
layers having 400, 200 and 50 nodes with sigmoid activation in the output layer

set.seed(1)
model <- keras_model_sequential() %>%

layer_dense(units = 175, activation = "relu", input_shape = 2) %>%
layer_dense(units = 1, activation = ’sigmoid’) %>%

compile(
optimizer = optimizer_adam(),
loss = ’binary_crossentropy’,
metrics = ’accuracy’

)
learn <- model %>% fit((scale.trainX.mat), trainY,

epochs = 300,
batch_size = 64,
validation_split = 0.2,
verbose = FALSE)

learn

Trained on 480 samples, validated on 120 samples
(batch_size=64, epochs=300)
Final epoch (plot to see history):

acc: 0.9771
loss: 0.06767

val_acc: 0.9417
val_loss: 0.1491

plot(learn)

The loss and accuracy with a single layer keras model is plotted in Fig. 6.4.

158 6 Deep Neural Networks-II

ac
c

lo
ss

0 50 100 150 200 250 300

0.5

0.6

0.7

0.8

0.9

1.0

0.2

0.4

0.6

epoch

data
training

validation

Fig. 6.4 Plot of accuracy and loss with respect to epochs using a keras model with one hidden layer
having 175 nodes with sigmoid activation in the output layer

6.2.1 Adjust Epochs

Here, we incorporate callback_early_stopping(patience = 100) to
stop training if the loss has not improved after 100 epochs.

set.seed(1)
model <- keras_model_sequential() %>%

layer_dense(units = 175, activation = "relu", input_shape = 2) %>%
layer_dense(units = 1, activation = ’sigmoid’) %>%
compile(

optimizer = optimizer_adam(),
loss = ’binary_crossentropy’,
metrics = ’accuracy’

)

learn <- model %>% fit((scale.trainX.mat), trainY,
epochs = 300,
batch_size = 64,
validation_split = 0.2,
verbose = FALSE,
callbacks = list(callback_early_stopping(patience = 100)))

learn

Trained on 480 samples, validated on 120 samples
(batch_size=64, epochs=268)
Final epoch (plot to see history):

acc: 0.9792
loss: 0.06945

val_acc: 0.95
val_loss: 0.1449

6.2 Modeling Using keras 159

ac
c

lo
ss

0 50 100 150 200 250 300

0.6

0.7

0.8

0.9

1.0

0.2

0.4

0.6

epoch

data
training

validation

Fig. 6.5 Plot of accuracy and loss with respect to epochs using a keras model with one hidden
layer having 175 nodes with sigmoid activation in the output layer and, adjusting the epoch to stop
training the model if the accuracy does not improve after 100 epochs

plot(learn)

The loss and accuracy with a single layer keras model, with early stopping is
plotted in Fig. 6.5.

6.2.2 Add Batch Normalization

set.seed(1)
model <- keras_model_sequential() %>%

layer_dense(units = 175, activation = "relu", input_shape = 2) %>%
layer_batch_normalization() %>%
layer_dense(units = 1, activation = ’sigmoid’) %>%
compile(

optimizer = optimizer_adam(),
loss = ’binary_crossentropy’,
metrics = ’accuracy’

)

learn <- model %>% fit((scale.trainX.mat), trainY,
epochs = 300,
batch_size = 64,
validation_split = 0.2,
verbose = FALSE,
callbacks = list(callback_early_stopping(patience = 100)))

learn

160 6 Deep Neural Networks-II

ac
c

lo
ss

0 50 100 150 200 250 300

0.7

0.8

0.9

1.0

0.2

0.4

0.6

epoch

data
training

validation

Fig. 6.6 Plot of accuracy and loss with respect to epochs using a keras model with one hidden
layer having 175 nodes with sigmoid activation in the output layer and, adjusting the epoch to stop
training the model if the accuracy does not improve after 100 epochs and, using batch normalisation

Trained on 480 samples, validated on 120 samples (batch_size=64, epochs=150)
Final epoch (plot to see history):

acc: 0.9792
loss: 0.07647

val_acc: 0.95
val_loss: 0.1723

plot(learn)

The loss and accuracy with a single layer kerasmodel, with early stopping and
batch normalization is plotted in Fig. 6.6.

6.2.3 Add Dropout

set.seed(1)
model <- keras_model_sequential() %>%

layer_dense(units = 175, activation = "relu", input_shape = 2) %>%
layer_batch_normalization() %>%
layer_dropout(rate = 0.2) %>%
layer_dense(units = 1, activation = ’sigmoid’) %>%
compile(

optimizer = optimizer_adam(),
loss = ’binary_crossentropy’,
metrics = ’accuracy’

)

6.2 Modeling Using keras 161

ac
c

lo
ss

0 50 100 150 200 250 300

0.7

0.8

0.9

0.2

0.4

0.6

epoch

data
training

validation

Fig. 6.7 Plot of accuracy and loss with respect to epochs using a keras model with one hidden
layer having 175 nodes with sigmoid activation in the output layer and, adjusting the epoch to stop
training the model if the accuracy does not improve after 100 epochs and, using batch normalisation
and, with a dropout regularization of 0.2

learn <- model %>% fit((scale.trainX.mat), trainY,
epochs = 300,
batch_size = 64,
validation_split = 0.2,
verbose = FALSE,
callbacks = list(callback_early_stopping(patience = 100)))

learn

Trained on 480 samples, validated on 120 samples (batch_size=64, epochs=151)
Final epoch (plot to see history):

acc: 0.9708
loss: 0.07657

val_acc: 0.9417
val_loss: 0.1653

plot(learn)

The loss and accuracy with a single layer keras model, with early stopping,
batch normalization and dropout regularization is plotted in Fig. 6.7.

6.2.4 Add Weight Regularization

set.seed(1)
model <- keras_model_sequential() %>%

layer_dense(units = 175, activation = "relu",

162 6 Deep Neural Networks-II

ac
c

lo
ss

0 50 100 150 200 250 300

0.7

0.8

0.9

0.2

0.4

0.6

epoch

data
training

validation

Fig. 6.8 Plot of accuracy and loss with respect to epochs using a keras model with one hidden
layer having 175 nodes with sigmoid activation in the output layer and, adjusting the epoch to stop
training the model if the accuracy does not improve after 100 epochs and, using batch normalisation
and, with a dropout regularization of 0.2 and, adding parameter weight regularization of 0.001

input_shape = 2,
kernel_regularizer = regularizer_l2(0.001)) %>%

layer_batch_normalization() %>%
layer_dropout(rate = 0.2) %>%
layer_dense(units = 1, activation = ’sigmoid’) %>%
compile(

optimizer = optimizer_adam(),
loss = ’binary_crossentropy’,
metrics = ’accuracy’

)
learn <- model %>% fit((scale.trainX.mat), trainY,

epochs = 300,
batch_size = 64,
validation_split = 0.2,
verbose = FALSE,
callbacks = list(callback_early_stopping(patience = 100)))

learn

Trained on 480 samples, validated on 120 samples (batch_size=64, epochs=159)
Final epoch (plot to see history):

acc: 0.9771
loss: 0.08318

val_acc: 0.9333
val_loss: 0.1745

plot(learn)

The loss and accuracy with a single layer keras model, with early stopping,
batch normalization, dropout regularization and parameter weight regularization is
plotted in Fig. 6.8.

6.2 Modeling Using keras 163

6.2.5 Adjust Learning Rate

set.seed(1)
model <- keras_model_sequential() %>%

layer_dense(units = 175,
activation = "relu", input_shape = 2,
kernel_regularizer = regularizer_l2(0.001)) %>%

layer_batch_normalization() %>%
layer_dropout(rate = 0.2) %>%
layer_dense(units = 1, activation = ’sigmoid’) %>%
compile(

optimizer = optimizer_adam(),
loss = ’binary_crossentropy’,
metrics = ’accuracy’

)

learn <- model %>% fit((scale.trainX.mat), trainY,
epochs = 300,
batch_size = 64,
validation_split = 0.2,
verbose = FALSE,
callbacks = list(callback_early_stopping(patience = 100),

callback_reduce_lr_on_plateau()))
learn

Trained on 480 samples, validated on 120 samples (batch_size=64, epochs=158)
Final epoch (plot to see history):

acc: 0.9729
loss: 0.08223

val_acc: 0.9417
val_loss: 0.1585

lr: 0.000000000001

plot(learn)

6.2.6 Prediction

model %>% predict(scale.testX.mat[1:10,])

[,1]
[1,] 0.0144612212
[2,] 0.0084884493
[3,] 0.0061556785
[4,] 0.0049234540
[5,] 0.0037987749
[6,] 0.0037381186
[7,] 0.0008490850
[8,] 0.0002616270
[9,] 0.0001423903

[10,] 0.0002294233

predictions <- model %>% evaluate(scale.testX.mat, testY)

164 6 Deep Neural Networks-II

ac
c

lo
ss

lr

0 50 100 150 200 250 300

0.4

0.6

0.8

1.0

0.25

0.50

0.75

0e+00

4e−04

8e−04

epoch

data
training

validation

Fig. 6.9 Plot of accuracy and loss with respect to epochs using a keras model with one hidden
layer having 175 nodes with sigmoid activation in the output layer and, adjusting the epoch to stop
training the model if the accuracy does not improve after 100 epochs and, using batch normalisation
and, with a dropout regularization of 0.2 and, adding parameter weight regularization of 0.001 and,
adjusting the learning rate

The loss and accuracy with a single layer keras model, with early stopping,
batch normalization, dropout regularization, parameter weight regularization and
learning rate adjustment is plotted in Fig. 6.9.

6.3 Introduction to TensorFlow

TensorFlow is a general purpose, open source,numerical computing library. It
is a hardware independent, lower level mathematical library for building deep neu-
ral network architectures. The keras R package makes it easy to use Keras and
TensorFlow in R.

TensorFlow was developed by the Google Brain Team at Google’s, Machine
Intelligence research organization. TensorFlow is an open-source software library
for numerical computation using data flow graphs. Nodes in the graph represent
mathematical operations, while the graph edges represent the multidimensional data
arrays or tensors, which communicate between them. The TensorFlow architec-
ture allows us to deploy computation to one or more CPUs or GPUs in a desktop,
server, or mobile device with a single API.

Like Keras, TensorFlow is also a Machine Learning framework that has the
ability to speed up network development, significantly and is mainly designed for
DNN models.

6.3 Introduction to TensorFlow 165

Table 6.1 Tensor arrays (36 is an arbitrary number used here)

Dimension R Object

0D 36 a scalar

1D c(36, 36, 36) a vector

2D matrix(32, nrow = 2, ncol = 2)

3D array(36, dim = c(2, 3, 2)

4D array(36, dim = c(2,2,2,2)

6.3.1 What is Tensor ‘Flow’?

A TensorFlow is a data flow graph consisting of nodes representing computational
units. The flow of tensors consists of the following:

• Defining the graph.
• Compiling the graph.
• Executing the graph.

Nodes are the representations and tensors flow between the nodes.
The R interface to TensorFlow lets us use the Keras and Estimator

APIs and also provides full access to the core TensorFlow API- Keras API,
Estimator API and Core API. TensorFlow does not require all the data to be
in the RAM.

Tensors are a generalization of vectors and matrices with any arbitrary dimen-
sion (also called axis). We use vectors to operate on 1D tensors and use matrices
to operate on 2D tensors. array objects use higher dimensions. Tensors are
therefore multidimensional arrays and the data is stored in these arrays.

A tensor containing a single number is called a scalar or zero-dimensional
tensor (0D). A 1D tensor is a vector (Tables6.1 and 6.2).

An nD vector and an nD tensor are not the same. An nD vector has only one
axis and an nD tensor has n axes.

TensorFlow has several units, namely (1) High-Level APIs, (2) Estimators, (3)
Estimators, (4) Accelerators, (5) Low-Level APIs, (6) ML Concepts, (7) Debugging,
(8) TensorBoard, and (9) Misc.

The High Level APIs include

• Keras,
• Eager Execution,
• Importing Data,
• Estimators.

166 6 Deep Neural Networks-II

Table 6.2 Each row is an observation and samples is always the first argument

Data Tensor

Scalar 1D tensor

Time Series or sequence data 2D tensors of shape (samples, features)

Vector data 3D tensors of shape(samples, timesteps,
features)

Images 4D tensors of shape (samples, channels (RGB),
height, width)

Video 5D tensors of shape (samples, frames,
channels, height, width)

6.3.2 Keras

Keras is a high-level API to build and train deep learning models. It is used for fast
prototyping, advanced research, and production. It is user-friendly, is modular (able
to connect configurable building blocks) and it is easy to write customized building
blocks.

In this section, we will explore the following in TensorFlow:

• Initialize variables.
• Start a session.
• Train algorithms.
• Implement a Neural Network using the MNIST data.

Writing and running programs in TensorFlow has the following steps:

• Create Tensors (variables) that are not yet executed/evaluated.
• Write operations between those Tensors.
• Initialize your Tensors.
• Create a Session.
• Run the Session.

When we create a variable for the loss, we simply define the loss as a function of
other quantities, but do not evaluate its value.

6.3.3 Installing and Running TensorFlow

library(tensorflow)
install_tensorflow()

6.4 Modeling Using TensorFlow 167

6.4 Modeling Using TensorFlow

Before we carry out any computation, we need to start an interactive session.

sess = tf$InteractiveSession()
a = tf$constant(2)
b = tf$constant(10)
c = tf$multiply(a, b)
print(sess$run(c))

[1] 20

6.4.1 Importing MNIST Data Set from TensorFlow

datasets <- tf$contrib$learn$datasets
mnist <- datasets$mnist$read_data_sets("MNIST-data", one_hot = TRUE)

train_images <- mnist$train$images
train_labels <- mnist$train$labels

label_1 <- train_labels[1,]
image_1 <- train_images[1,]

label_1

[1] 0 0 0 0 0 0 0 1 0 0

length(image_1)

[1] 784

image_1[250:300]

[1] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.54901963
[7] 0.98431379 0.99607849 0.99607849 0.99607849 0.99607849 0.99607849

[13] 0.99607849 0.99607849 0.99607849 0.99607849 0.99607849 0.99607849
[19] 0.99607849 0.99607849 0.99607849 0.74117649 0.09019608 0.00000000
[25] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
[31] 0.00000000 0.00000000 0.00000000 0.88627458 0.99607849 0.81568635
[37] 0.78039223 0.78039223 0.78039223 0.78039223 0.54509807 0.23921570
[43] 0.23921570 0.23921570 0.23921570 0.23921570 0.50196081 0.87058830
[49] 0.99607849 0.99607849 0.74117649

Let us identify the different labels from the MNIST data.

grayscale <- colorRampPalette(c("white", "blue"))
par(mar = c(1, 1, 1, 1), mfrow = c(8, 8), pty = "s", xaxt = "n",

yaxt = "n")

for (i in 1:40) {
z <- array(train_images[i,], dim = c(28, 28))

168 6 Deep Neural Networks-II

7 3 4 6 1 8 1 0

9 8 0 3 1 2 7 0

2 9 6 0 1 6 7 1

9 7 6 5 5 8 8 3

4 4 8 7 3 6 4 6

Fig. 6.10 Identification of different labels from the MNIST data set. Each label is 28 pixels by 28
pixels

z <- z[, 28:1]
image(1:28, 1:28, z, main = which.max(train_labels[i,]) -

1, col = grayscale(256), xlab = "", ylab = "")
}

The labels from the MNIST data is shown in Fig. 6.10.

6.4.2 Define Placeholders

Instead of running a single expensive operation independentlywith R,TensorFlow
lets us describe a graph of interacting operations that run entirely outside R. To access
the TensorFlow API, we reference the tf object exported by the tensorflow
package.

In the following code, x and y is just a placeholder and does carry hold any value.
We will assign a value to the placeholders when we run a computation. Specifically,
we would want to input any number of the MNIST images, each flattened into a
784-dimensional vector. We represent this as a 2-dimensional tensor of floating-
point numbers, with shape (NULL, 784L), where NULL implies a dimension of any
length.

We also need the weights and biases for our model. In TensorFlow, Variable is
a modifiable tensor in TensorFlow graph. It can be used and modified during
computation. We create these variables by giving tf$Variable an initial value.
In our case, we initialize both W and b as tensors with zeros.

In this case, W has shape (784, 10) because we want to multiply the 784-
dimensional image vectors byW to produce 10-dimensional vectors for the different
classes. b has shape (10).

We thereafter implement our model with the function tfnnsoftmax
(tf$matmul(x, W) + b) or the alternative tfnnsoftmax(tf
$add(tf$multiply(X, W), b)).

6.4 Modeling Using TensorFlow 169

Declare placeholders (images are 55000 x 784 and labels are 55000 x 10)
x <- tf$placeholder(tf$float32, shape(NULL, 784L))

Initialize the weight matrix (784 x 10)
W <- tf$Variable(tf$zeros(shape(784L, 10L)))
Initialize the weight matrix (10 x 1)
b <- tf$Variable(tf$zeros(shape(10L)))

We will be using a softmax output layer to predict y
y <- tfnnsoftmax(tf$matmul(x, W) + b)

6.4.3 Training the Model

Wenowneed to define ourCE loss function, which is−∑
y′log(y), where yhat is the

predicted probability distribution and y is the actual probability distribution. If you
recall from Sect. 2.2, CE is how different is the the predicted probability distribution
from the true distribution.

To implement CE, we need to first add a new placeholder to input the correct
labels and then define the CE loss function. tf$log computes the log of each
label y. We then multiply each element of yhat with the corresponding element
of tf $log(y). The tf$reduce_sum function adds the elements in the second
dimension of y, as defined in the reduction_indices=1L parameter. Finally,
tf$reduce_mean computes the mean over all examples in the batch. Note that
tensor indices are 0-based in TensorFlowAPI, rather than 1-based in R vectors.

Having defined the completemodel,TensorFlow nowknows the entire graph of
our computations and it can automatically implement the backpropagation algorithm.
Then, it can apply our choice of optimization algorithm to modify the variables and
reduce the loss.

Input the correct labels
yhat <- tf$placeholder(tf$float32, shape(NULL, 10L))
Define the CE loss function
cross_entropy <- tf$reduce_mean(-tf$reduce_sum(yhat * tf$log(y),

reduction_indices = 1L))
Minimize CE using gradient descent with a learning rate of 0.5.
optimizer <- tf$train$GradientDescentOptimizer(0.5)
train_step <- optimizer$minimize(cross_entropy)

We first create a Session and launch the model and initialize the variables. After
this step, at each step of the for loop, we get a mini_batch of 100 random data points
from the training set. We then run train_step, feeding in the mini_batches to
replace the placeholders x and y.

6.4.4 Instantiating a Session and Running the Model

Create a session before any computation.
sess = tf$InteractiveSession()

sess$run(tf$global_variables_initializer())

170 6 Deep Neural Networks-II

for (i in 1:1000) {
batches <- mnist$train$next_batch(100L)
batch_x <- batches[[1]]
batch_y <- batches[[2]]
sess$run(train_step, feed_dict = dict(x = batch_x, yhat = batch_y))

}

6.4.5 Model Evaluation

We would now want to evaluate our model. Let us first find out where we predicted
the correct label. The tf$argmax function gives us the index of the highest entry
in a tensor along some axis. For example, tf$argmax(y, 1L) is the label
our model thinks is most likely for each input, while tf$argmax(y_, 1L) is the
correct label. We use tf$equal to check if our prediction matches the truth.

The function correct_prediction returns a vector of booleans. To deter-
mine what fraction is correct, we cast it to floating-point numbers and then take
the mean. For example, (TRUE,FALSE,TRUE,TRUE,TRUE) would become
(1.0, 0.0, 1.0, 1.0, 1.0) which becomes 0.80.

Also please note that since tensors in the TensorFlow API start from 0, we
pass 1L to specify that tf$argmax should operate on the second dimension of the
tensor.

Finally, seek the accuracy on our test data.

correct_prediction <- tf$equal(tf$argmax(y, 1L), tf$argmax(yhat, 1L))
accuracy <- tf$reduce_mean(tf$cast(correct_prediction, tf$float32))

training accuracy
sess$run(accuracy, feed_dict=dict(x = mnist$train$images,

yhat = mnist$train$labels))

[1] 0.9174727

test accuracy
sess$run(accuracy, feed_dict=dict(x = mnist$test$images,

yhat = mnist$test$labels))

[1] 0.92

The model returns an accuracy of 92%. Using ConvNets, we can get an accuracy
of 97%.

6.5 Conclusion

We have learnt how to tweak some of the hyperparameters while working with
deep layered neural networks. We have discussed the TensorFlow framework and
successfully applied it to learn a deep neural network.

In the next chapter, we will discuss a new type of architecture for neural networks
called convolutional neural networks.

Chapter 7
Convolutional Neural Networks
(ConvNets)

The pooling operation used in convolutional neural networks is
a big mistake, and the fact that it works so well is a disaster.

Geoffrey Hinton

Abstract In this chapter, we will discuss and understand the building blocks of a
Convolutional Neural Network (ConvNet). In particular, we will learn

• How to build a convolutional neural network.
• How to apply convolutional neural networks on image data.
• How to apply convolutional neural networks for image recognition.
• Introduce the reader to neural style transfer to generate art.

7.1 Building Blocks of a Convolution Operation

7.1.1 What is a Convolution Operation?

Convolutional Networks work with something which is called Sparse Connectivity.
A Convolutional Neural Network (ConvNet or CNNs) exploit the spatially local

correlation by enforcing a local connectivity between neurons of adjacent layers.
This implies that the inputs of hidden units in layer � belong to a subset of units in
layer �-1 which have “spatially contiguous” receptive fields.

Each unit does not respond to the variations which are outer to its receptive field
with respect to the input. This ensures that the learnt “filters” result in the strongest
response to a spatially local input pattern.

The convolution operation is the fundamental building block of a convolutional
neural network (CNN or ConvNet).

Figure 7.1 and 7.2 shows a typical convolution operation, where a 5 × 3 × 3
filter slides over a 32 × 32 × 3 image and, along the way it computes the dot
product between the filter (weights) and the chunks of the input image. As there

© Springer Nature Singapore Pte Ltd. 2019
A. Ghatak, Deep Learning with R,
https://doi.org/10.1007/978-981-13-5850-0_7

171

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-5850-0_7&domain=pdf
https://doi.org/10.1007/978-981-13-5850-0_7

172 7 Convolutional Neural Networks (ConvNets)

Fig. 7.1 The inputs of the
hidden units in layer � are
from a subset of units in layer
� − 1 that have spatially
contiguous receptive fields

layer[l − 1] layer[l] layer[l + 1]

Fig. 7.2 We take a
5 × 5 × 3 filter and slide
it over the complete image
and at each step, take the dot
product between the
filter and the respective
chunks of the input image
over one layer and, get an
output dimension of
28 × 28 × 1

32 x 32 x 3 image

5 x 5 x 3 filter

convolve over
 all spatial locations 28

28

1

are 28 × 28 unique positions where the filter can be put on the image, we get a
28 × 28 × 1 dimensional output, for one layer of the image.

If you are facing difficulty in calculating the output dimension, do not bother; this
will become clear as we move along to the next sections.

Let us try to understand this with an example. We will consider a 6 × 6 matrix
and apply a 3 × 3 filter (also termed as kernel), which is a hyperparameter, over
the matrix and interpret the results. We can think of the filter as an arrangement
of weights.

* =

1

7

5

2

1

3

3

0

1

4

7

6

5

2

3

3

3

2

2

4

6

0

9

4

6

1

2

0

2

1

1

3

7

1

1

0

*
1

1

1

0

0

0

−1

−1

−1

=

3

6

−1

−2

−8

−5

−3

4

1

5

5

5

1

−1

6

11

In the above figure, when we apply the filter to the first row and first column of
the matrix, we multiply the parameters of the filter with the input and we get-

1 × 1 + 7 × 1 + 5 × 1 + 3 × 0 + 0 × 0 + 1 × 0 + 5 × −1 + 2 × −1 + 3 × −1 = 3

7.1 Building Blocks of a Convolution Operation 173

The first row first column entry is 3, in the 4 × 4 output matrix. Similarly, when we
scan across all the 4 × 4 sections of the 6 × 6 matrix with our filter we get the
remaining values in the output matrix. We can think of the 4 × 4 output matrix as an
image matrix.

Applying this filter on the input data is the convolution operation.
The convolution operation is also a very convenient way to specify edges in an

image. Let us look at an example to detect edges using convolution. We will consider
a 6 × 6 × 1 grayscale image with a single channel (rgb images will have 3 channels
images and, grayscale will have images have 1 channel).

7.1.2 Edge Detection

When we convolve the grayscale image with a 3 × 3 filter to get a 4 × 4 image
matrix, we get a vertical edge detector as shown below (Fig. 7.3).

The image of the output matrix is plotted in Figure 7.4. The lighter regions in the
middle are book-ended by the darker regions, with vertical edges down the middle.
Since we are dealing with a 6 × 6 image matrix, the detected edge appears very
thick, and that would not be the case if we had a large image matrix. The convolution
operation still does a pretty good job of detecting the vertical edges of our image.

Let us try to detect horizontal edges with a horizontal edge detection filter as
shown in Fig. 7.5-

There are different filters which are used in ConvNets and two of these are- Sobel
filter and the Scharr filter depicted as

Sobel filter =
⎡
⎣
1 0 −1
2 0 2
1 0 −1

⎤
⎦ (7.1.1)

Scharr filter =
⎡
⎣

3 0 −3
10 0 −10
3 0 −3

⎤
⎦ (7.1.2)

Different filters allow us to detect vertical (Fig. 7.6) and horizontal (Fig. 7.5) edges
of an image in different ways. They are also used to detect edges at different angles.

* =

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

*
1

1

1

0

0

0

−1

−1

−1

=

0

0

0

0

60

60

60

60

60

60

60

60

0

0

0

0

Fig. 7.3 Edge detection using a vertical edge detection filter

174 7 Convolutional Neural Networks (ConvNets)

Fig. 7.4 Thevertical edges of our 6 × 6 × 1 image is detectedby applying the convolutionoperation

* =

20

20

20

0

0

0

20

20

20

0

0

0

20

20

20

0

0

0

0

0

0

20

20

20

0

0

0

20

20

20

0

0

0

20

20

20

*
1

0

−1

1

0

−1

1

0

−1

=

0

60

60

0

0

20

20

0

0

−20

−20

0

0

−60

−60

0

Fig. 7.5 Edge detection using a horizontal edge detection filter

If we have an n × n image matrix and an f × f filter, the general formula for
the dimension of the output image matrix is n − f + 1 × n − f + 1, but this will
change as we will see in the next sections. By convention in computer vision, f is
usually odd, because in an odd dimension filter will always have a central position
and sometimes in computer vision its nice to have a central pixel, which we can refer
to as the position of the filter. Another reason why f is generally odd is because of
padding.

7.1 Building Blocks of a Convolution Operation 175

Fig. 7.6 The horizontal
edges of our 6 × 6 × 1 image
is detected by applying the
convolution operation

Technically this operation is sometimes called cross-correlation instead of con-
volution, but in deep learning literature by convention, we call this a convolutional
operation.

We now have a fair understanding of what is a convolution operation and how it
works. We will now look at some other building blocks of ConvNets.

7.1.3 Padding

In the above 6 × 6 image matrices and with a 3 × 3 filter, there are only 4 × 4
possible positions. This poses two problems first, we have a shrinking output and
second, we are literally ignoring the information present in the edges of the image
matrix. When we are dealing with really deep neural networks, we may not want the
image to shrink on every step because at the final layer, we might end up with a very
small image. We also may not want to lose information carried in the input data. We,
therefore, introduce a hyperparameter called padding, represented by the letter p.

To apply padding to an image implies adding an additional border of one pixel
all around the edges. When we apply a padding p = 1 on a 6 × 6 image, we are
getting a 8 × 8 image matrix as shown in Figure 7.7. Now when we convolve this
with a 3 × 3filterwe get back a 6 × 6 imagematrix in the output. By convention,
we apply padding with zeros.

176 7 Convolutional Neural Networks (ConvNets)

Fig. 7.7 padding applied
to an image matrix with one
pixel. Notice the zeros in the
outer rows and columns

0

0

0

0

0

0

0

0

0

1

7

5

2

1

3

0

0

3

0

1

4

7

6

0

0

5

2

3

3

3

2

0

0

2

4

6

0

9

4

0

0

6

1

2

0

2

1

0

0

1

3

7

1

1

0

0

0

0

0

0

0

0

0

0

If we apply a p = 2, i.e., apply two pixels of padding our 6 × 6 image becomes
a 10 × 10 matrix and after convolving with a 3 × 3 filter we get a 7 × 7 image
matrix. The general formula for the dimensions of the output matrix is

(n + 2p − f + 1) × (n + 2p − f + 1)

By convention, in ConvNet parlance, there two names by which we address how
much to pad

• Valid: No padding
• Same: Pad as much so that the output is the same size as the input

There is one last thing about padding and that is, if we have odd numbered f we
will have asymmetric padding.

7.1.4 Strided Convolutions

Another building block of ConvNets is the stride. By stride wemean, howmany steps
do we take to “jump” over a block. This is also a hyperparameter and is represented
by s.

Suppose we would like to convolve the following 9 × 9 image matrix by a 3 × 3
filter. We can hop over from one row / column to the other by a step of one
(s = 1). In this example, after the convolution operation with s = 1, we get a 6 × 6
output.

7.1 Building Blocks of a Convolution Operation 177

We can also hop over from one row / column to the other by a step of two (s= 2)
and, after the convolution operation, we get a 3 × 3 output.
The dimensions of the output matrix with stride is

(
n + 2p − f

s
+ 1,

n + 2p − f

s
+ 1

)

If the fraction is not an integer, we use the floor function in R.

7.1.5 Convolutions over Volume

Applying convolutions to 6 × 6 × 3 (3D) images involves dealing with color “chan-
nels” (Fig. 7.8), which is a stack of three rgb channels corresponding to red, green,
and blue. To detect edges and other features in this image, we need a 3 × 3 × 3
filter,
(a 3D filter) i.e., the number of channels in the filter matches the number of
channels in the image.

The image is normally defined by its height, width, and the number of channels
and so does the filter, which also has a height, a width, and a number of channels.

The output, however, in this case will be a 4 × 4 × 1- dimensional image.
To compute the output of this convolutional operation, we will place the filter

on the upper left most position of the image. Our filter now has 3 × 3 × 3 = 27
parameters, and we take each of these parameters and carry out a dotproduct with the
corresponding numbers from the red, green, and blue channels of the image (Fig. 7.9).

178 7 Convolutional Neural Networks (ConvNets)

* =

Image filter output

Fig. 7.8 Convoluting a 6 × 6 × 3 image matrix with rgb channels

1

1

1

0

0

0

red

−1

−1

−1

0

0

0

0

0

0

green

0

0

0

0

0

0

0

0

0

blue

0

0

0

Fig. 7.9 To detect vertical edges in the red channel we need to set the green and blue channel in
the filter to zero

1

1

1

0

0

0

red

−1

−1

−1

1

1

1

0

0

0

green

−1

−1

−1

1

1

1

0

0

0

blue

−1

−1

−1

Fig. 7.10 To detect vertical edges irrespective of color we need to have the same values in each of
the channels of the filter

We do this by taking the first nine numbers from the red channel of the filter,
then the green channel and, the blue channel, and multiply it with the corresponding
nine numbers from each of the individual three channels of the image. Adding up the
dotproduct of all these numbers gives us the first number in the output. We then slide
over the filter by one step and repeat the same procedure till we get 16 values of
the output.

Now if we want to detect vertical edges (we can also detect horizontal or slanting
edges, in which case we have to change the values in the filter and also consider
using multiple filters) in the red channel of the image, then we need to set the green
and blue filters to zero. Or if we do not care about the color of the edges, we can set
the filter as is shown in Figure 7.10.

We can also consider using multiple filters (Fig. 7.11)
With different choices of the parameters in our filter, we can extract different

types of features including horizontal and other angular edges.
There is another interesting exercise we can consider—using multiple filters. We

can use the first filter as a vertical edge detector and the second filter as an
horizontal edge detector. So, nowwe have two output matrices stacked together—the
first output matrix defining the vertical edges and the second output layer defining the
horizontal edges.We have the liberty and acumen to keep adding different filters
to gather different types of edges.

7.1 Building Blocks of a Convolution Operation 179

Fig. 7.11 Using multiple filters on the input to get a 2-D output

7.1.6 Pooling

The pooling (POOL) layer reduces the dimensions of the input and also therefore,
reduces computation and make feature detectors more invariant (invariance implies
that we can recognize an object even when its appearance varies) to its position in
the input.

**Translation invariance* means that the system produces exactly the same
response, regardless of how the input varies. For example, a dog-detector might
report “dog-identified” for all input images.

The two types of pooling layers are

• Max-pooling layer: slides the filter over the input and stores the maximum of the
values of the input (overlapping the the input) in the output.

• Average-pooling layer: slides the filter over the input and stores the average value
of the input (overlapping the the input) in the output.

Pooling layers have no parameters for backpropagation to train. However, they have
hyperparameters such as the window size f. This specifies the height and width of
the f × f window to compute a maximum or average over.

Normally, max-pooling is usedmore than average-pooling. However, while work-
ing on a deep neural network, if we would want to collapse our output, we would
like to use average-pooling.

Another important thing to note is that when we use max-pooling, we usually do
not use padding and therefore the dimensions of the output is nH− f

s + 1 × nW− f
s +

1 × nC
The hyperparameters for pooling are the following:

• filter size f
• stride s
• Max Pool or Average Pool.

Pooling is visually depicted below.

180 7 Convolutional Neural Networks (ConvNets)

7.2 Single-Layer Convolutional Network

A simple convolutional network is depicted in Figs. 7.12 and 7.13 If we denote the
height and width of the input matrix as nh and nw and, if we consider a layer �which
is a convolutional layer we can state

I nput = n[�−1]
h × n[�−1]

w × n[�−1]
c

number of filters = n[�]
c f

f ilter si ze = f [�]

stride = s[�]

padding = p[�]
{

= 0 if Valid

�= 0 if Same (to ensure same size as the input)

Weights = f [�] × f [�] × n[�−1]
c × n[�]

c f

bias = n[�]
c f

n[�]
h and n[�]

w = [n
[�−1] + 2p[�] − f [�]

s[�] + 1]
activations a[�] = n[�]

h × n[�]
w × n[�]

c

Activations A[�] = m × n[�]
h × n[�]

w × n[�]
c

Output = n[�]
h × n[�]

w × n[�]
c

where,

nc is the number of channels in the input,

n[�]
c f

is number of filters in layer �,

m is the number of examples.

Before we proceed further, let us clear the conundrum of dimensions with an
example—suppose we have a 64 × 64 × 20 input volume, which we want to con-
volve with 50 filters having dimensions 9 × 9 each, and we are using a stride of 2
with no padding, the dimensions of the output volume is calculated with the formula

dim = f loor

(
(n + 2p − f)

s

)
+ 1 (use floor if it is a fraction or else not)

n = 64

p = 0

s = 2

f = 9

nc f = 50

f loor

(
(64 + 0 − 9)

2

)
+ 1 = 28

7.2 Single-Layer Convolutional Network 181

nh
[0]= 64

nw
[0] = 64

nc
[0] = 3

f [1] = 3

s[1] = 1

p[1] = 0

ncf
[1] = 10

a[1] = 62 x 62 x 10

nh
[1] = 62

nw
[1] = 62

ncf
[1] = 10

f [2] = 5

s[2] = 2

p[2] = 0

ncf
[2] = 20

a[2] = 29 x 29 x 20

nh
[2] = 29

nw
[2] = 29

nc
[2] = 20

−−
−−
−−
−−
−−
−−
−−
−−
−−
−

flatten to
16,820 rows

ŷ

sigmoid /
softmax activation

Fig. 7.12 A single-layer Convolution Network diagram

Input CONV1 POOL1 CONV2 POOL2 FC1 FC2
Softmax

or
Sigmoid

Fig. 7.13 A complete Convolution Neural Network diagram

The dimensions of the output volume is 28 × 28 × 50.
Having defined the above, let us work through a single-layer ConvNet

7.2.1 Writing a ConvNet Application

In the padd function below, we add zeros around the border of the image.

padd <- function(A_prev, pad) {
n <- dim(A_prev)
new = array(0, dim = c(n[1] + 2 * pad, n[2] + 2 * pad, n[3]))
seqr = seq(pad + 1, nrow(new) - pad)
seqc = seq(pad + 1, ncol(new) - pad)
new[seqr, seqc, 1:n[3]] = A_prev
return(new)

}

In this function, we will implement a single step of convolution, where we apply
the filter to a single position of the input. This will be used to build a convolutional
unit, which, takes an input volume, applies a filter at every position of the input and
outputs another volume.

conv_one_step <- function(a_slice_prev, W, b) {
s = a_slice_prev * W
Z = sum(s)
Z = Z + b

return(Z)
}

conv_fwd <- function(A_prev, W, b, hyperparams) {

stride = as.numeric(hyperparams[["stride"]])

182 7 Convolutional Neural Networks (ConvNets)

pad = as.numeric(hyperparams[["pad"]])

stride = 1 pad = 0 n_H_prev = nrow(mat); n_W_prev =
ncol(mat) n_C = 2 W = fil; b = array(0, c(1, 1, 2))
f = dim(W)[1]
n_C = dim(W)[3]

n_H = ((n_H_prev - f + 2 * pad)/stride) + 1
n_H
n_W = ((n_W_prev - f + 2 * pad)/stride) + 1
n_W

Z = array(0, dim = c(n_H, n_W, n_C))
Z
A_prev = mat
A_prev_pad = padd(A_prev, pad)

a_prev_pad = A_prev_pad

for (h in 1:n_H) {
loop over vertical axis of the output volume loop over
horizontal axis of the output volume loop over the channels
of the output volume
for (w in 1:n_W) {

for (c in 1:n_C) {
vert_start = h * stride
vert_end = vert_start + f - 1
horiz_start = w * stride
horiz_end = horiz_start + f - 1
Use the corners to define the (3D) slice of a_prev_pad
a_slice_prev = a_prev_pad[vert_start:vert_end,

horiz_start:horiz_end, c]
print(a_slice_prev) Convolve the slice to get back one o/p
neuron
Z[h, w, c] = conv_one_step(a_slice_prev, W[,

, c], b[, , c])
Z[h, w, c] = conv_one_step(a_slice_prev, W[,

, c], b[, , c])
}

}
}
cache = list(A_prev = A_prev, W = W, b = b, hyperparams = hyperparams)

return(list(Z = Z, cache = cache))
}

Now, we will implement MAX-POOL and AVG-POOL, in the same function.

pool_forward <- function(A_prev, hyperparams, mode = "max") {

n_H_prev = dim(A_prev)[1] # 4
n_W_prev = dim(A_prev)[2] # 4
n_C_prev = dim(A_prev)[3] # 2

stride = as.numeric(hyperparams["stride"])
f = as.numeric(hyperparams["f"])

n_H = ((n_H_prev - f)/stride) + 1 # n_H
n_W = ((n_W_prev - f)/stride) + 1 # n_W
n_C = n_C_prev

7.2 Single-Layer Convolutional Network 183

Initialize output matrix A
A = array(0, dim = c(n_H, n_W, n_C))

for (h in 1:n_H) {
for (w in 1:n_W) {

for (c in 1:n_C) {
vert_start = h * stride
vert_end = vert_start + f - 1
horiz_start = w * stride
horiz_end = horiz_start + f - 1

Use the corners to define the (3D) slice of a_prev_pad
a_prev_slice = A_prev[vert_start:vert_end, horiz_start:horiz_end,

c]

if (mode == "max")
A[h, w, c] = max(a_prev_slice) else if (mode == "average")
A[h, w, c] = mean(a_prev_slice)

}
}

}
cache = list(A_prev = A_prev, hyperparams)

return(list(A = A, cache = cache))
}

In modern deep learning frameworks, we only have to implement the forward
pass, and the framework takes care of the backward pass, so most deep learning
engineers do not need to bother with the details of the backward pass. The backward
pass for convolutional networks is complicated.

Earlier we had implemented a simple (fully connected) neural network, where we
used backpropagation to compute the derivatives with respect to the cost to update
the parameters. Similarly, in ConvNets, we calculate the derivatives with respect to
the cost in order to update the parameters.

The formula to compute d A with respect to the cost for a certain filter Wc and a
given training example can be written as

d A = +∑nH
h=0

∑nW
w=0 Wc × dZhw

conv_backward <- function(dZ, cache){

A_prev = cache[[’A_prev’]]
W = cache[[’W’]]
b = cache[[’b’]]
hparams = cache$hyperparams

Retrieve dimensions from A_prev’s shape
n_H_prev = dim(A_prev)[1] # 6
n_W_prev = dim(A_prev)[2] # 6
n_C_prev = dim(A_prev)[3] # 2

Retrieve dimensions from W’s shape
f = dim(W)[1]
n_C = dim(W)[3]

Retrieve information from "hparameters"
stride = as.numeric(hparams["stride"])

184 7 Convolutional Neural Networks (ConvNets)

pad = as.numeric(hparams["pad"])

Retrieve dimensions from dZ’s shape
dZ = array(rnorm(36), dim = c(6, 6, 2)) # with pad = 1
dZ = array(rnorm(16), dim = c(4, 4, 2)) # with pad = 1
n_H = dim(dZ)[1]
n_W = dim(dZ)[2]
n_C = dim(dZ)[3]

dA_prev = array(0, dim = c(n_H_prev, n_W_prev, n_C_prev))
dW = array(0, dim = c(f, f, n_C))
db = array(0, dim = c(1, 1, n_C))

Pad A_prev and dA_prev
A_prev_pad = padd(A_prev, pad)
dA_prev_pad = padd(dA_prev, pad)

for(h in 1:n_H){
for(w in 1:n_W){

for(c in 1:n_C){
vert_start = h * stride
vert_end = vert_start + f -1
horiz_start = w * stride
horiz_end = horiz_start + f -1

Use the corners to define the slice from a_prev_pad
a_slice = a_prev_pad[vert_start:vert_end, horiz_start:horiz_end, c]

Update gradients for the window and the filter’s parameters
dA_prev_pad[vert_start:vert_end, horiz_start:horiz_end, c] =+ W[, , c] *

dZ[h, w, c]
dW[, , c] =+ a_slice * dZ[h, w, c]
db[, , c] =+ dZ[h, w, c]

}
}

}
Set the example’s in dA_prev to the unpaded da_prev_pad
seqr = seq(pad + 1, nrow(dA_prev_pad) - pad)
seqc = seq(pad + 1, ncol(dA_prev_pad) - pad)
new[seqr, seqc, 1:n[3]] = A_prev
dA_prev = dA_prev_pad[seqr, seqc,]

return(list(dA_prev, dW, db))
}

Next, we will implement the backward pass for the pooling layer, starting with
the MAX-POOL layer. Even though a pooling layer has no parameters for backprop
to update, we will still need to backpropagate the gradient through the pooling layer
in order to compute gradients for layers that came before the pooling layer.

Before getting into the backpropagation of the pooling layer, wewill build a helper
function called create_mask_from_window which creates a mask matrix to
keep track of where the maximum of the matrix is located. A True == 1 indicates
the position of the maximum in the matrix while the other entries are False == 0.

create_mask_from_window <- function(x) {
mask = x == max(x)
return(mask)

}

7.2 Single-Layer Convolutional Network 185

In max pooling, for each input window, all the “influence” on the output came
from a single input value—the max. In average- pooling, every element of the input
window has equal influence on the output. So to implement backprop, you will now
implement a helper function that reflects this.

distribute_value <- function(dz, shape) {
n_H = dim(shape)[1]
n_W = dim(shape)[2]
Compute the value to distribute on the matrix
average = dz/(n_H * n_W)
Create a matrix where every entry is the ’average’ value
a = matrix(rep(average, n_H * n_W), nrow = n_W)
return(a)

}

pool_backward <- function(dA, cache, mode = "max"){
A_prev = cache[[’A_prev’]]
hparams = cache[[2]]
stride = as.numeric(hparams["stride"])
f = as.numeric(hparams["f"])

Retrieve dimensions from A_prev’s shape
n_H_prev = dim(A_prev)[1]
n_W_prev = dim(A_prev)[2]
n_C_prev = dim(A_prev)[3]

n_H = dim(dA)[1]
n_W = dim(dA)[2]
n_C = dim(dA)[3]

dA_prev = array(0, dim = c(n_H_prev, n_W_prev, n_C_prev))

for(h in 1:n_H){
for(w in 1:n_W){

for(c in 1:n_C){
vert_start = h * stride
vert_end = vert_start + f -1
horiz_start = w * stride
horiz_end = horiz_start + f -1

if(mode == "max"){
a_prev_slice = A_prev[vert_start:vert_end, horiz_start:horiz_end, c]
mask = create_mask_from_window(a_prev_slice)
dA_prev[vert_start:vert_end, horiz_start:horiz_end, c] =+

mask * dA[h, w, c]
}
else if(mode == "average"){

da = dA[h, w, c]
shape = matrix(0 ,nrow = f, ncol = f)
dA_prev[vert_start:vert_end, horiz_start:horiz_end, c] =+

distribute_value(da, shape)
}

}
}

}
return(dA_prev)

}

186 7 Convolutional Neural Networks (ConvNets)

7.3 Training a ConvNet on a Small DataSet Using keras

A “small” data set in neural networks is with respect to the size and depth of the
network. We will use the “Dogs vs Cats” data set1 which has 25,000 images in
the training data set. We will break that up and create a subset of 1000 images for
training, 500 images for validation and another 500 for testing.
data_dir <- "˜/data"
new_dir <- "˜/data/subset"
dir.create(new_dir)

train_dir_path <- file.path(new_dir, "train")
dir.create(train_dir_path)

validation_dir_path <- file.path(new_dir, "validation")
dir.create(validation_dir_path)

test_dir_path <- file.path(new_dir, "test")
dir.create(test_dir_path)

train_cats_dir <- file.path(train_dir_path, "cats")
dir.create(train_cats_dir)
train_dogs_dir <- file.path(train_dir_path, "dogs")
dir.create(tr_dogs_dir)

validation_cats_dir <- file.path(validation_dir_path, "cats")
dir.create(validation_cats_dir)
validation_dogs_dir <- file.path(validation_dir_path, "dogs")
dir.create(validation_dogs_dir)

test_cats_dir <- file.path(test_dir_path, "cats")
dir.create(test_cats_dir)
test_dogs_dir <- file.path(test_dir_path, "dogs")
dir.create(test_dogs_dir)

fnames <- paste0("cat.", 1:500, ".jpg")
file.copy(file.path(data_dir, fnames), file.path(train_cats_dir))
fnames <- paste0("dog.", 1:500, ".jpg")
file.copy(file.path(data_dir, fnames), file.path(train_dogs_dir))

fnames <- paste0("cat.", 501:750, ".jpg")
file.copy(file.path(data_dir, fnames), file.path(validation_cats_dir))
fnames <- paste0("dog.", 501:750, ".jpg")
file.copy(file.path(data_dir, fnames), file.path(validation_dogs_dir))

fnames <- paste0("dog.", 751:1000, ".jpg")
file.copy(file.path(data_dir, fnames), file.path(test_dogs_dir))
fnames <- paste0("cat.", 751:1000, ".jpg")
file.copy(file.path(data_dir, fnames), file.path(test_cats_dir))

library(keras)
is_keras_available()
img_width <- 150
img_height <- 150
batch_size <- 32
epochs <- 30
train_samples = 1000
validation_samples = 500

1Downloaded from https://www.kaggle.com/c/dogs-vs-cats/data on Apr 02, 2018, 07:40 IST.

https://www.kaggle.com/c/dogs-vs-cats/data

7.3 Training a ConvNet on a Small DataSet Using keras 187

We are now ready to do some data preprocessing in keras. In short, we need to
read the images from a directory, rescale the pixel values between 0 and 255 to [0,1]
interval, convert the images into RGB format and convert them to floating point
tensors.

In the following function, we set the argument class_mode to “binary”, as we
will use the binary crossentropy loss.

train_generator <- flow_images_from_directory(
train_dir_path, generator = image_data_generator(rescale = 1 / 255),
target_size = c(img_height, img_width), color_mode = "rgb",
class_mode = "binary", batch_size = batch_size,
shuffle = TRUE, seed = 61)

validation_generator <- flow_images_from_directory(
validation_dir_path, generator = image_data_generator(rescale = 1 / 255),
target_size = c(img_width, img_height), color_mode = "rgb",
classes = NULL, class_mode = "binary", batch_size = batch_size,
shuffle = TRUE, seed = 61)

In our model, we start with a CONV layer having 32 filters of size 3 × 3, followed
by relu activation and a POOL layer with max_pooling.

model <- keras_model_sequential()

model %>%
layer_conv_2d(filter = 32, kernel_size = c(3,3),

input_shape = c(img_height, img_width, 3)) %>%
layer_activation("relu") %>%
layer_max_pooling_2d(pool_size = c(2,2)) %>%

layer_conv_2d(filter = 64, kernel_size = c(3,3)) %>%
layer_activation("relu") %>%
layer_max_pooling_2d(pool_size = c(2,2)) %>%

layer_conv_2d(filter = 128, kernel_size = c(3,3)) %>%
layer_activation("relu") %>%
layer_max_pooling_2d(pool_size = c(2,2)) %>%

layer_conv_2d(filter = 128, kernel_size = c(3,3)) %>%
layer_activation("relu") %>%
layer_max_pooling_2d(pool_size = c(2,2)) %>%

layer_flatten() %>%
layer_dense(units = 512, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid")

summary(model)

Layer (type) Output Shape Param #
===
conv2d_1 (Conv2D) (None, 148, 148, 32) 896

activation_1 (Activation) (None, 148, 148, 32) 0

max_pooling2d_1 (MaxPooling2D) (None, 74, 74, 32) 0

conv2d_2 (Conv2D) (None, 72, 72, 64) 18496

188 7 Convolutional Neural Networks (ConvNets)

activation_2 (Activation) (None, 72, 72, 64) 0

max_pooling2d_2 (MaxPooling2D) (None, 36, 36, 64) 0

conv2d_3 (Conv2D) (None, 34, 34, 128) 73856

activation_3 (Activation) (None, 34, 34, 128) 0

max_pooling2d_3 (MaxPooling2D) (None, 17, 17, 128) 0

conv2d_4 (Conv2D) (None, 15, 15, 128) 147584

activation_4 (Activation) (None, 15, 15, 128) 0

max_pooling2d_4 (MaxPooling2D) (None, 7, 7, 128) 0

flatten_1 (Flatten) (None, 6272) 0

dense_1 (Dense) (None, 512) 3211776

dense_2 (Dense) (None, 1) 513
===
Total params: 3,453,121
Trainable params: 3,453,121
Non-trainable params: 0

Let us compile and fit our model.

model %>% compile(loss = "binary_crossentropy", optimizer = optimizer_adam(lr = 0.001,
decay = 1e-06), metrics = "accuracy")

history <- model %>% fit_generator(train_generator, steps_per_epoch = as.integer(train_samples/batch_size),

epochs = epochs, validation_data = validation_generator,

validation_steps = as.integer(validation_samples/batch_size),

verbose = 2)

In the plot below (Fig. 7.14), we can see that the training accuracy keeps increasing
and reaches an accuracy of 100%while the validation accuracy plateaus out after the
ninth epoch. This is a clear sign of overfitting (Fig. 7.14).

plot(history)

evaluate_generator(model, validation_generator, validation_samples)

$loss
[1] 2.415147

$acc
[1] 0.6596493

It is always a good idea to save our models!

save_model_hdf5(model, paste0(model_path, ’basic_cnn.h5’),
overwrite = TRUE)

save_model_weights_hdf5(model, paste0(model_path, ’basic_cnn_weights.h5’),
overwrite = TRUE)

7.3 Training a ConvNet on a Small DataSet Using keras 189

ac
c

lo
ss

0 5 10 15 20 25 30

0.5

0.6

0.7

0.8

0.9

1.0

0.0

0.5

1.0

1.5

2.0

epoch

data
training

validation

Fig. 7.14 The training set accuracy keeps increasing while the validation set accuracy plateaus out.
Similarly, the training loss keeps decreasing and the validation loss keeps increasing

7.3.1 Data Augmentation

When we train a neural network model, we are actually finding the correct estimates
of the parameters so that it can map a particular input (say, an image) to some output
(a label). Our optimization goal is to find the sweet spot where the model loss is low.

In this case, we are training the neural network with only 1000 examples and
around 3e+06 parameters. With such a small data set, we run the risk of overfitting
and would either need more data and if that is not available, we can augment our
data set. Data augmentation is a process of creating more training data from existing
training data.

If we have a lot of parameters, we need to have a proportional number of
examples to get good performance. The number of parameters required is pro-
portional to the complexity of the task our model has to perform.

Some of the data augmentation methods are

(a) General

(i) Mirroring an image
(ii) Shearing an image
(iii) Randomly cropping an image
(iv) Rotating the image, etc.

(b) Color Shifting

190 7 Convolutional Neural Networks (ConvNets)

(i) Shifting the RGB color range of the image.

(c) Advanced

(i) Apply PCA (Principal Component Analysis) for color augmentation

In keras, data augmentation is performed by the image_data_generator
function. Some of the important arguments in this function are

• rotation_range is the value in degrees (0 to 180) within which to randomly
rotate the image.

• width_shift_range and height_shift_range is the fraction of the
total width / height within which to randomly shift the images horizontally or
vertically.

• shear_range randomly applies shear transformation.
• zoom_range amount by which to zoom in.
• horizontal_flip to allow the images to be randomly flipped horizontally.
• fill_mode to fill in newly created pixels, which appear after a rotation or a
vertical/horizontal shift, which are, “constant”, “nearest”, “reflect”, or “wrap”.

• data_forma t RGB “channels first”, implying the depth of the image is
at index 1 or “channels last”, implying where it is 3. The default is the
image_data_format.

We define the parameters of the augmented features in the next function.

augment <- image_data_generator(rescale = 1/255, rotation_range = 50,
width_shift_range = 0.2, height_shift_range = 0.2, shear_range = 0.2,
zoom_range = 0.2, horizontal_flip = TRUE, fill_mode = "nearest")

Preprocess the data with the augmented features.

train_generator_augmented <- flow_images_from_directory(
train_dir_path, generator = augment,
target_size = c(img_height, img_width),
color_mode = "rgb", class_mode = "binary", batch_size = batch_size,
shuffle = TRUE, seed = 61)

validation_generator <- flow_images_from_directory(
validation_dir_path, generator = image_data_generator(rescale = 1 / 255),
target_size = c(img_height, img_width), color_mode = "rgb",
classes = NULL, class_mode = "binary", batch_size = batch_size,
shuffle = TRUE, seed = 61)

The function texttt{generator_next} retrieves the results from a generator. To
understand this function, let us have a look at the first nine results stored in
train_generator_augmented.

batch <- generator_next(train_generator_augmented)
str(batch)

List of 2
$: num [1:32, 1:150, 1:150, 1:3] 0.835 0.676 0.663 0.733 0.885 ...
$: num [1:32(1d)] 1 1 0 0 0 0 0 1 1 1 ...

7.3 Training a ConvNet on a Small DataSet Using keras 191

Fig. 7.15 Augmented images from the training data set

Let us plot some of our augmented images (Fig. 7.15).

sp <- par(mfrow = c(3, 3), pty = "s", mar = c(1, 0, 1, 0))
for (i in 1:9) {

batch <- generator_next(train_generator_augmented)
plot(as.raster(batch[[1]][1, , ,]))

}

par(sp)

To take care of overfitting, we add dropout regularization in the final layer
(Fig. 7.16).

model <- keras_model_sequential()

model %>%
layer_conv_2d(filter = 32, kernel_size = c(3,3),

input_shape = c(img_height, img_width, 3)) %>%
layer_activation("relu") %>%
layer_max_pooling_2d(pool_size = c(2,2)) %>%

layer_conv_2d(filter = 64, kernel_size = c(3,3)) %>% #32
layer_activation("relu") %>%
layer_max_pooling_2d(pool_size = c(2,2)) %>%

layer_conv_2d(filter = 128, kernel_size = c(3,3)) %>% #64

192 7 Convolutional Neural Networks (ConvNets)

ac
c

lo
ss

0 5 10 15 20 25 30

0.50

0.55

0.60

0.65

0.70

0.55

0.60

0.65

0.70

epoch

data
training

validation

Fig. 7.16 The training and validation accuracies are moving together and the model reduces over-
fitting substantially

layer_activation("relu") %>%
layer_max_pooling_2d(pool_size = c(2,2)) %>%

layer_conv_2d(filter = 128, kernel_size = c(3,3)) %>% #64
layer_activation("relu") %>%
layer_max_pooling_2d(pool_size = c(2,2)) %>%

layer_flatten() %>%
layer_dropout(rate = 0.5) %>%
layer_dense(units = 512, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid")

model %>% compile(loss = "binary_crossentropy", optimizer = optimizer_adam(lr = 1e-04,
decay = 1e-06), metrics = "accuracy")

history <- model %>% fit_generator(train_generator_augmented,

steps_per_epoch = as.integer(train_samples/batch_size), epochs = epochs,

validation_data = validation_generator, validation_steps = as.integer(validation_samples/batch_size),

verbose = 2)

plot(history)

evaluate_generator(model, validation_generator, validation_samples)

$loss
[1] 0.5502918

$acc
[1] 0.723701

7.3 Training a ConvNet on a Small DataSet Using keras 193

Using dropout regularization and data augmentation, we have substantially reduced
overfitting. The validation accuracy has gone up to 74%, an increase of 9% from the
previous model.

save_model_weights_hdf5(model, paste0(model_path, ’augmented_cnn_weights.h5’),
overwrite = TRUE)

save_model_hdf5(model, paste0(model_path, ’augmented_cnn.h5’),
overwrite = TRUE)

7.4 Specialized Neural Network Architectures

There are many pretrained specialized neural network models available— VGG-16,
ResNet , LeNet-5, AlexNet , etc. Let us have a look at some of them.

7.4.1 LeNet-5

LeNet-5, is a 7-level ConvNet developed by [21] in 1998. using a 32 × 32 pixel
grayscale image as input. The ability to process higher resolution images requires
larger andmore convolutional layers, so this technique is constrained by the availabil-
ity of computing resources. The motivation of LeNet-5 was to recognize handwritten
digits.

In the first step, LeNet-5 uses a set of six, 5 × 5 filters with a stride of one and no
padding, ending up with a 28 × 28 × 6 cube.

Then it applies average-pooling with a filter width two and a stride of two and
that results in a 14 × 14 × 6 cube.

Next, it applies another convolutional layer with a set of 16 filters of size 5 × 5
thereby ending up with 16 channels of size 10 × 10 to the next volume.

Then another average-pooling layer, which reduces the height and width by a
factor of two, thereby ending up with 5 × 5 × 16.

Multiplying these numbers we get 400 and the next layer is then a fully connected
layer with 400 nodes with every one of 120 neurons, so there is a fully connected
layer. LeNet then have two fully connected layerswith 120 and84nodes, respectively.
These 84 features are used for one final output, where ŷ took on 10 possible values
corresponding to each of the digits from 0 to 9.

In 1998, this neural network was small by modern standards, having approxi-
mately 60,000 parameters, compared to 10–100 million parameters, which we see
in today’s neural networks.

194 7 Convolutional Neural Networks (ConvNets)

Fig. 7.17 LeNet-5 architecture [21]

Fig. 7.18 AlexNet architecture—two GPUs run the layer parts of the architecture. [22]

7.4.2 AlexNet

In 2012, AlexNet was developed by [22], which has a very similar architecture
as LeNet but much deeper, with more filters per layer, and with stacked convolu-
tional layers. The ImageNet data set was used which is a data set consisting of over
15 million labeled images belonging to approximately 22,000 categories (Fig. 7.18
and Table7.1).

AlexNet is quite similar toLeNet, butmuch largerwith approximately 62.3million
parameters. The convolution layers, which accounts for 6% of the total number of
parameters, consumes 95% of the computation.

It also uses dropout, data augmentation, relu activations in the fully connected
layers and SGD with momentum = 0.9, a learning rate of 0.01 and weight decay of
0.0005.

7.4.3 VGG-16

VGG-16 is attributed to [23] and consists of 16ConvNet layers and has a very uniform
architecture. It is similar to AlexNet with only 3 × 3 convolutions with a stride of
one and “same” padding; and 2 × 2 max-pooling layers with a stride of two.

The architecture of this network is depicted in Fig. 7.19.

7.4 Specialized Neural Network Architectures 195

Table 7.1 AlexNet architecture

Size operation Filter Depth Stride Padding Number of parame-
ters

227 × 227 × 3

Conv1 + relu 11 × 11 96 4 (11 × 11 × 3 +
1) × 96 = 34, 944

55 × 55 × 96

Max-pooling 3 × 3 2

27 × 27 × 96

Norm

Conv2 + relu 5 × 5 256 1 2 (5 × 5 × 96 +
1) × 256 =
614, 656

27 × 27 × 256

Max-pooling 3 × 3 2

13 × 13 × 256

Norm

Conv3 + relu 3 × 3 384 1 1 (3 × 3 × 256 +
1) × 384 =
885, 120

13 × 13 × 384

Conv4 + relu 3 × 3 384 1 1 (3 × 3 × 384 +
1) × 256 =
884, 992

13 × 13 × 256

Max-pooling 3 × 3 2

6 × 6 × 256

Dropout (rate
= 0.5)

FC6 + relu 6 × 6 × 256 ×
4096 =
37, 748, 736

4096

Dropout (rate
= 0.5)

FC7 + relu 4096 × 4096 =
16, 7777, 216

4096

FC8 + relu 4096 × 1000 =
4096000

Overall 62, 369, 152

Conv versus FC Conv:3.7 mil-
lion, FC:58.6 mil-
lion

196 7 Convolutional Neural Networks (ConvNets)

Fig. 7.19 VGG-16 architecture. [23]

The number 16 in the VGG-16 refers to the 16 layers in its architecture, that have
weights and has approximately 138 million parameters.

7.4.4 GoogleNet

GoogleNet uses a ConvNet based on LeNet. This also includes a new element, which
is termed as the “inception module”. This model uses batch normalization, image
distortions, and RMSprop and, some very small convolutions so as to reduce the
number of parameters.

This architecture consists of a 22-layer deep neural network, but reduces the
number of parameters from 60 million (in AlexNet) to approximately, 4 million.

This is a kind of a network, which is also called the Inception Network. Discus-
sions on this subject is beyond the scope of this book. However, interested readers
are encouraged to read the published papers about the subject.

7.4.5 Transfer Learning or Using Pretrained Models

If we already know theweights (structural parameters) of amodel, which has a higher
accuracy, we get a head start. This is also called transfer learning. Transfer learning
is useful when we have a relatively small data set.

7.4 Specialized Neural Network Architectures 197

A pretrained network model is a model that has been trained on a large data set. If
the data set on which the model has been trained was large enough and comparable
to our data set, the features learned by the pretrained model can be used to train with
a small data set.

It may be of interest to you to think how pretraining on a different task and a
different data set can be transferred to a new task with a new data set, which is
slightly perturbed from the other.

In keras, we have a handful of pretrained models in the ImageNet dataset (con-
taining 1.2 million images with 1000 categories), and they are—VGG16, VGG19,
MobileNet , ResNet50, etc.

Aswe are dealingwith a data set of 1000 examples, let us experimentwithVGG16
to extract some of the better features in our data set.

We will do this without data augmentation.
application_vgg is a function in keraswhich allows us to load the model.

The arguments in this function are

• include_top—whether to include the 3 fully connected layers at the top of the
network.

• weights—ImageNet weights, or the path to the weights file to be loaded.
• input_shape- Three inputs channels with a condition that width and height
should not be smaller than 48.

library(keras)
conv_vgg <- application_vgg16(

weights = "imagenet",
include_top = F,
input_shape = c(150, 150, 3)

)
conv_vgg

Model

Layer (type) Output Shape Param #
===
input_1 (InputLayer) (None, 150, 150, 3) 0

block1_conv1 (Conv2D) (None, 150, 150, 64) 1792

block1_conv2 (Conv2D) (None, 150, 150, 64) 36928

block1_pool (MaxPooling2D) (None, 75, 75, 64) 0

block2_conv1 (Conv2D) (None, 75, 75, 128) 73856

block2_conv2 (Conv2D) (None, 75, 75, 128) 147584

block2_pool (MaxPooling2D) (None, 37, 37, 128) 0

block3_conv1 (Conv2D) (None, 37, 37, 256) 295168

block3_conv2 (Conv2D) (None, 37, 37, 256) 590080

block3_conv3 (Conv2D) (None, 37, 37, 256) 590080

198 7 Convolutional Neural Networks (ConvNets)

block3_pool (MaxPooling2D) (None, 18, 18, 256) 0

block4_conv1 (Conv2D) (None, 18, 18, 512) 1180160

block4_conv2 (Conv2D) (None, 18, 18, 512) 2359808

block4_conv3 (Conv2D) (None, 18, 18, 512) 2359808

block4_pool (MaxPooling2D) (None, 9, 9, 512) 0

block5_conv1 (Conv2D) (None, 9, 9, 512) 2359808

block5_conv2 (Conv2D) (None, 9, 9, 512) 2359808

block5_conv3 (Conv2D) (None, 9, 9, 512) 2359808

block5_pool (MaxPooling2D) (None, 4, 4, 512) 0
===
Total params: 14,714,688
Trainable params: 14,714,688
Non-trainable params: 0

7.4.6 Feature Extraction

When we use transfer learning, we would like to extract patterns with the highest
appearance frequency. If those features are relevant to the data set, they have been
trained, it is likely that they would be relevant to a similar data set.

Here, wewill extract features learned from the VGG_16model whichwas trained
on the ImageNet data set (Fig. 7.20).

base_dir <- "˜/subset"
train_dir <- file.path(base_dir, "train")
validation_dir <- file.path(base_dir, "validation")
test_dir <- file.path(base_dir, "test")

data_gen <- image_data_generator(rescale = 1 / 255)
batch_size <- 20

extracted_features <- function(directory, sample){

features <- array(0, dim = c(sample, 4, 4, 512))
labels <- array(0, dim = c(sample))

generator <- flow_images_from_directory(
directory = directory,
generator = data_gen,
target_size = c(150, 150),
batch_size = batch_size,
class_mode = "binary"

)

i <- 0
while(TRUE) {

7.4 Specialized Neural Network Architectures 199

ac
c

lo
ss

0 5 10 15 20 25 30

0.7

0.8

0.9

0.2

0.4

0.6

epoch

data
training

validation

Fig. 7.20 With feature extraction, we have achieved a validation accuracy close to 90%

batch <- generator_next(generator)
input_batch <- batch[[1]]
label_batch <- batch[[2]]
feature_batch <- conv_vgg %>% predict(input_batch)

index_range <- ((i * batch_size) + 1):((i + 1) * batch_size)
features[index_range,,,] <- feature_batch
labels[index_range] <- label_batch

i <- i + 1
if(i * batch_size >= sample) break

}
list(

features = features,
labels = labels

)
}

train <- extracted_features(train_dir, 1000)
validation <- extracted_features(validation_dir, 500)
test <- extracted_features(test_dir, 500)

reshape_features <- function(features){
array_reshape(features, dim = c(nrow(features), 4 * 4 * 512))

}

train$features <- reshape_features(train$features)
validation$features <- reshape_features(validation$features)
test$features <- reshape_features(test$features)

model <- keras_model_sequential() %>%
layer_dense(units = 256, activation = "relu", input_shape = 4 * 4 * 512) %>%

200 7 Convolutional Neural Networks (ConvNets)

layer_dropout(rate = 0.5) %>%
layer_dense(units = 1, activation = "sigmoid")

model %>% compile(
optimizer = optimizer_rmsprop(lr = 2e-5),
loss = "binary_crossentropy",
metrics = "accuracy"

)

history <- model %>% fit(
x = train$features, y = train$labels,
epochs = 30,
batch_size = 20,
validation_data = list(validation$features, validation$labels)

)

plot(history)

evaluate(model, test$features, test$labels)

$loss
[1] 0.2554676

$acc
[1] 0.892

The model delivers a 90% accuracy on the unseen data; starting from an accuracy of
66% this is a remarkable jump, indeed!

Let us save this model.

save_model_weights_hdf5(model,
paste0(model_path,

’featureExtract_vgg16_weights.h5’),
overwrite = TRUE)

save_model_hdf5(model, paste0(model_path, ’featureExtract_vgg16.h5’),
overwrite = TRUE)

7.5 What is the ConvNet Learning? A Visualization of
Different Layers

What are deep ConvNets really learning? In this section, we will visualize what is
going on in the deeper layers of a ConvNet. This will also help us to implement
neural style transfer, which is discussed in the next section.

If we start with a hidden unit in layer 1 and scan through the training sets and find
out what are the image patches that maximize that unit’s activation, i.e., what is the
image that maximizes that particular unit’s activation.

A hidden unit in layer 1 will see a relatively small portion of the neural network.
So, if we pick one hidden unit and find the five input images that maximizes that
unit’s activation, we might find five image patches.

7.5 What is the ConvNet Learning? A Visualization of Different Layers 201

library(keras)
model <- load_model_hdf5("˜/model_path/basic_cnn.h5")

summary(model)

Layer (type) Output Shape Param #
===
conv2d_1 (Conv2D) (None, 148, 148, 32) 896

activation_1 (Activation) (None, 148, 148, 32) 0

max_pooling2d_1 (MaxPooling2D) (None, 74, 74, 32) 0

conv2d_2 (Conv2D) (None, 72, 72, 64) 18496

activation_2 (Activation) (None, 72, 72, 64) 0

max_pooling2d_2 (MaxPooling2D) (None, 36, 36, 64) 0

conv2d_3 (Conv2D) (None, 34, 34, 128) 73856

activation_3 (Activation) (None, 34, 34, 128) 0

max_pooling2d_3 (MaxPooling2D) (None, 17, 17, 128) 0

conv2d_4 (Conv2D) (None, 15, 15, 128) 147584

activation_4 (Activation) (None, 15, 15, 128) 0

max_pooling2d_4 (MaxPooling2D) (None, 7, 7, 128) 0

flatten_1 (Flatten) (None, 6272) 0

dense_1 (Dense) (None, 512) 3211776

dense_2 (Dense) (None, 1) 513
===
Total params: 3,453,121
Trainable params: 3,453,121
Non-trainable params: 0

As you can see, our model has 15 layers.
We will now preprocess the image into a 4D tensor.

img_path <- "˜/path_to_image/vanGogh.png"

img <- image_load(img_path, target_size = c(150, 150))
img_tensor <- image_to_array(img)
img_tensor <- array_reshape(img_tensor, c(1, 150, 150, 3))

img_tensor <- img_tensor / 255

dim(img_tensor)

[1] 1 150 150 3

202 7 Convolutional Neural Networks (ConvNets)

Fig. 7.21 Plot of the input
image

The output shape of the first layer, as reflected in the model summary is 1 × 148 ×
148 × 32.

Let us plot our input image (Fig. 7.21).
We will now extract the outputs of the 15 layers of our ConvNet model and, create

a model act_model, that will contain the outputs, given the model input.
We then create a function plot_channel, which will take the channel number

as the argument and plot the channel of the respective layer.

layer_outputs <- lapply(model$layers[1:15], function(layer) layer$output)

act_model <- keras_model(inputs = model$input, outputs = layer_outputs)

activations <- act_model %>% predict(img_tensor)
first_layer_act <- activations[[1]]
tenth_layer_act <- activations[[10]]

dim(first_layer_act)

[1] 1 148 148 32

dim(tenth_layer_act)

[1] 1 15 15 128

plot_channel <- function(channel) {
rotate <- function(x) t(apply(x, 2, rev))
image(rotate(channel), axes = FALSE, asp = 1, col = terrain.colors(12))

}

Wewill now use the plot_channel function to plot the 1st and 32nd channels
of the first layer.

7.5 What is the ConvNet Learning? A Visualization of Different Layers 203

Fig. 7.22 The 1st and 32nd channel activation of the first layer

Fig. 7.23 Plot of three random channels of the tenth layer. The higher layers represent more global
and abstract information

The visualisation of the sixth, tenth and thirty-second channels respectively of the
tenth layer is shown in Fig. 7.23.

par(mfrow = c(1, 2))
plot_channel(first_layer_act[1, , , 1])
plot_channel(first_layer_act[1, , , 32])

The first layer, as it appears in Fig. 7.22 is exploring the edges of the face. It is
retaining most of the information present in the input image.

par(mfrow = c(1, 3))
plot_channel(tenth_layer_act[1, , , 6])
plot_channel(tenth_layer_act[1, , , 10])
plot_channel(tenth_layer_act[1, , , 32])

7.6 Introduction to Neural Style Transfer

Neural style transfer [24] is a process by which we apply the style of a reference
image to a target image, while preserving the content of the target image. Style
is essentially the texture, color, and visual patterns of the reference image and the
content is the higher level structure of the target image. Neural style transfer is more
akin to signal processing rather than AI.

204 7 Convolutional Neural Networks (ConvNets)

In neural style transfer, we want to conserve the content of the target image,
while applying the style of the reference image. If we can define content and style
mathematically, we can define the loss using the distance function (the �2 norm),
which we would like to minimize as follows

loss = distance(style(reference_image) − style(generated_image)) +
distance(content(original_image) − content(generated_image))

7.6.1 Content Loss

We know from the previous section that activations from the initial layers represent
more local information and the activations from the higher layers contain more
abstract information of the image. We, therefore, expect the abstract representations
of the image’s content to be captured by the later layers of the ConvNet.

If we can think that the final layer of the ConvNet actually captures the content of
the target image, we can use a pretrained ConvNet and define the content loss as the
�2 norm between the activations of the final layer, computed over the target image
and, the activations of the same layer computed over the generated image.

7.6.2 Style Loss

The style loss aims at capturing the appearance and the style of the reference image.
In the paper by [24], the authors use a “Gram matrix” (the inner product between the
feature maps of a given layer) of the layer’s activations, which represents a mapping
of the correlations between the features of a layer. These correlations capture the
patterns of the spatial scales, which in turn, corresponds to the appearance of the
textures of the image, present at the particular scale.

Style loss, therefore, aims at preserving the internal correlations within the acti-
vations of different layers, across the style of the reference image and the generated
image.

7.6.3 Generating Art Using Neural Style Transfer

We will now run the gradient-ascent process using the L-BFGS algorithm, plotting
the generated image at each iteration of the algorithm. We will be using two images
of Van Gogh- “siesta” as the target image and “irises”, as the style image (Fig. 7.24).
The generated image is plotted in (Figs. 7.25).

7.6 Introduction to Neural Style Transfer 205

Fig. 7.24 On the left is the style image and on the right is the target image

Fig. 7.25 VGG19 network
was used with L-BFGS
optimization with 20
iterations to obtain the
generated image from the
style and target images from
above

library(imager)
img_path <- "˜/data"

im1 <- load.image(paste0(img_path, "/irises.png"))
im2 <- load.image(paste0(img_path, "/siesta.png"))
par(mfrow = c(1, 2))
plot(im1, axes = F)
plot(im2, axes = F)

library(imager)
img_path <- "˜/data"

im3 <- load.image(paste0(img_path, "/iris_siesta.png"))
par(mfrow = c(1, 1))
plot(im3, axes = F)

206 7 Convolutional Neural Networks (ConvNets)

7.7 Conclusion

We have explored the architecture of convolutional neural networks. We have dis-
cussed transfer learning and used pretrained models for feature extraction. We have
also discussed some of the well known pretrained networks and applied them using
neural style transfer to create new images, keeping in mind the content loss and style
loss attributes of transfer learning.

In the next chapter, we will discuss about sequence models and howwe can create
character-level language models using LSTMs.

Chapter 8
Recurrent Neural Networks (RNN)
or Sequence Models

Machine intelligence is the last invention that humanity will ever
need to make.

Nick Bostrom

Abstract In this chapter, we will explore and discuss the basic architecture of se-
quence models (Recurrent Neural Networks). In particular, we will

• Build and train sequence models, and a commonly used variant known as Long
Short-Term Memory Models (LSTMs).

• Apply sequence models to Natural Language Processing (NLP) problems, includ-
ing text synthesis.

This is the last chapter of the book and, the reader is expected to have a very good
understanding of neural networks, including convolutional networks.

8.1 Sequence Models or RNNs

ConvNets generally do not perform well when the input data is interdependent.
ConvNets do not have any correlation between the previous input and the next input.
Therefore, all the outputs are self-dependent. In ConvNets, if we run 100 different
inputs, none of them would be biased by the previous output.

However, for sentence generation or text translation, all the words generated are
dependent on the words generated apriori (sometimes it is dependent on words com-
ing after as well). Therefore, we need to have some bias, based on our previous
output. This is where sequence models (as the name suggests), come in. Sequence
models have a sense of memorizing, what happened earlier in the sequence of data.
This helps the system to gain context.

Sequence models make use of sequential information. In our previous neural
network models, all inputs (and outputs) are independent of each other. However, in
dealing with some real-life problems, this may not be an appropriate approach. If we
would want to predict the next word in a sentence we would be better off with the
knowledge of the previous sequence of words. Sequence models remember all these

© Springer Nature Singapore Pte Ltd. 2019
A. Ghatak, Deep Learning with R,
https://doi.org/10.1007/978-981-13-5850-0_8

207

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-5850-0_8&domain=pdf
https://doi.org/10.1007/978-981-13-5850-0_8

208 8 Recurrent Neural Networks (RNN) or Sequence Models

RNN 1
a< 0 >

x< 1 >

ŷ
< 1 >

a< 1 >

RNN 2
a< 2 >

x< 2 >

ŷ
< 2 >

RNN 3

x< 3 >

ŷ
< 2 >

a< 3 >

. . . RNN Tx

x< Tx >

ŷ
< Tx >

a< Tx − 1 > a< Tx >

Fig. 8.1 Forward propagation for a basic RNN model

relations while training itself. In these neural network architectures, the output of a
particular unit depends on the previous computations.

Sequence models are recurrent because they perform the same task for every
element of a sequence. They also exhibit “memory”, which captures information
aboutwhat has been computed up to a time-step.Unlike feedforward neural networks,
sequencemodels can use their internal state (memory) to process sequences of inputs.

We will be using the following notation to describe RNN objects:

• As before, the superscript [l] denotes an object associated with the lth layer.
• Superscript (i) implies that the object is associated with the i th observation.
• Superscript 〈t〉 denotes an object at the t th time-step.
• Subscript i denotes the i th entry of a vector.

a[l]
i denotes the i th entry of the activations in layer l.
ŷ〈t〉(i) is the predicted output at the t th time-step for the i th observation.

All sequence models have the form of a chain of repeating modules of neural
network. In standard sequence models, this repeating module will have a very simple
structure, such as a single tanh layer. A typical sequence model chain looks like as
shown in Fig. 8.1.

Figure8.2 is a blown up schematic of a basic RNN cell.
A basic sequence model cell, first takes the x 〈t〉 from the sequence of input and

then it outputs ŷ〈t〉, which together with x 〈t+1〉 is the input for the next step. This way,
it keeps remembering the context while training.

After comparing ŷ〈t〉 to the true labels, we will get the error rate. The error rate is
then used to backpropagate using a technique called Backpropagation through Time
(BPTT). BPTT travels back through the network and adjusts the weights based on
the error rate.

Theoretically, sequence models can handle context from the beginning of the
sentencewhichwill allowmore accurate predictions of aword at the endof a sentence.
In practice, this is not necessarily true for plain vanilla models and has given rise to
Long Short-Term Memory (LSTM) unit inside the Neural Network.

8.2 Applications of Sequence Models 209

Fig. 8.2 The basic RNN cell takes input x 〈t〉 (at time-step t) and a〈t−1〉 (previous hidden state
containing information from the past), and outputs a〈t〉 which is the input to the next RNN cell and,
also predicts y〈t〉 [Andrew Ng]

8.2 Applications of Sequence Models

Some examples where sequence models are used are the following:

• Speech recognition—Predicting phonetic segments based on input sound waves,
thus formulating a word.

• Music generation—Only the output Y is a sequence, the input can be an empty
set, or it can be a single integer say, referring to the genre of music we would want
to generate or maybe the first few notes of the piece of the composition. Here X
can be nothing or maybe just an integer and output Y is a sequence.

• DNA sequence analysis—DNAs are represented by four alphabets, namely—A,
C , G, and T . Given a DNA sequence label which is part of this DNA sequence
corresponds to, say a protein.

• Sentiment classification—The input X is a sequence; therefore, given an input
phrase determine the sentiment, say how many stars does the review fetch?

• Machine translation—translate a sentence from one language to the other.
• Video activity recognition—Automatically creating the subtitles of a video for
each frame.

• Named Entity recognition—Given a sentence, identify the people in that sentence.

8.3 Sequence Model Architectures

Reference [30] states that “recurrent networks allow us to operate over sequences of
vectors” and in Fig. 8.3, he illustrates this by describing each rectangle as a vector
and the arrows as functions.

210 8 Recurrent Neural Networks (RNN) or Sequence Models

Fig. 8.3 From left to right: (1) Processing without RNN, from fixed-sized input to fixed-sized
output (i.e., image classification). (2) Sequence output (i.e., image captioning takes an image and
outputs a sentence of words). (3) Sequence input (i.e., sentiment analysis where a given sentence
is classified as expressing positive or negative sentiment). (4) Sequence input and sequence output
(i.e., Machine Translation: an RNN reads a sentence in English and then outputs a sentence in
French). (5) Synced sequence input and output (i.e., video classification where we wish to label
each frame of the video). In every case, there are no constraints on the lengths of the sequences
because the recurrent transformation (in green) is fixed, and can be applied as many times as we
like [30]

8.4 Writing the Basic Sequence Model Architecture

We will code the basic sequence model architecture as follows:

• Compute the hidden state with tanh activation: a〈t〉 = tanh(Waaa〈t−1〉 + Wax x 〈t〉 +
ba).

• Use the hidden state a〈t〉, to compute the prediction ŷ〈t〉 = so f tmax(Wyaa〈t〉 +
by). We will use the softmax activation.

• Store (a〈t〉, a〈t−1〉, x 〈t〉, parameters) in cache
• Return a〈t〉, y〈t〉 and cache

x 〈t〉 will have dimension (nx ,m), and a〈t〉 will have dimension (na,m).

softmax <- function(Z) {
exp_scores = exp(t(Z))
A = exp_scores / rowSums(exp_scores)
return(A)

}

sigmoid <- function(x){
1 / (1 + exp(-x))
}

In this example, Tx = Ty .

rnn_cell_forward <- function(xt, a_prev, parameters){

Wax = (parameters[["Wax"]])
Waa = parameters[["Waa"]]
Wya = parameters[["Wya"]]
ba = parameters[["ba"]]

8.4 Writing the Basic Sequence Model Architecture 211

by = parameters[["by"]]

a_next = sinh((Waa %*% a_prev) + t(apply(Wax %*% xt, 1 , function(x) x + ba))) /
cosh((Waa %*% a_prev) + t(apply(Wax %*% xt, 1 , function(x) x + ba)))

yt_pred = t(softmax((Wya %*% a_next) + by))
cache = list(’a_next’ = a_next,

’a_prev’ = a_prev,
’xt’ = xt,
’params’ = parameters)

return(list(’a_next’ = a_next, "yt_pred" = yt_pred, "cache" = cache))
}

An sequence model is the repetition of the cell shown in Fig. 8.2. Each cell takes as
input the hidden state from the previous cell (a〈t−1〉) and the current time-step’s input
data (x 〈t〉). It outputs a hidden state (a〈t〉) and a prediction (y〈t−1〉) for this time-step.

rnn_forward <- function(x, a0, parameters) {

caches = NULL

n_x = dim(x)[1]
m = dim(x)[2]
T_x = dim(x)[3]
n_y = dim(parameters[["Wya"]])[1]
n_a = dim(parameters[["Wya"]])[2]

a = array(0, c(n_a, m, T_x))
y_pred = array(0, c(n_y, m, T_x))

a_next = a0

for (t in 1:T_x) {
a_next = rnn_cell_forward(x[, , t], a_next, parameters)[["a_next"]]
yt_pred = rnn_cell_forward(x[, , t], a_next, parameters)[["yt_pred"]]
cache = rnn_cell_forward(x[, , t], a_next, parameters)
a[, , t] = a_next
y_pred[, , t] = yt_pred

caches = append(caches, list(cache))
}
return(list(a = a, y_pred = y_pred, caches = caches))

}

set.seed(1)
x = array(rnorm(3*10*4), dim = c(3,10,4))
a0 = matrix(rnorm(50), nrow =5)
Waa = matrix(rnorm(25), nrow =5)
Wax = matrix(rnorm(15), nrow =5)
Wya = matrix(rnorm(10), nrow =2)
ba = rnorm(5)
by = rnorm(2)
parameters = list("Waa"= Waa, "Wax"= Wax, "Wya"= Wya, "ba"= ba, "by"= by)

a = rnn_forward(x, a0, parameters)[["a"]]; dim(a)

[1] 5 10 4

212 8 Recurrent Neural Networks (RNN) or Sequence Models

y_pred = rnn_forward(x, a0, parameters)[["y_pred"]]; dim(y_pred)

[1] 2 10 4

caches = rnn_forward(x, a0, parameters)[["caches"]]; length(caches)

[1] 4

8.4.1 Backpropagation in Basic RNN

rnn_cell_backward <- function(da_next, cache){

a_next = cache[["a_next"]]
a_prev = cache[["a_prev"]]
xt = cache[["xt"]]
parameters = cache[["params"]]

Retrieve values from parameters
Wax = parameters[["Wax"]]
Waa = parameters[["Waa"]]
Wya = parameters[["Wya"]]
ba = parameters[["ba"]]
by = parameters[["by"]]

dtanh = (1- a_nextˆ2) * da_next

dxt = t(Wax) %*% dtanh
dWax = dtanh %*% t(xt)

da_prev = t(Waa) %*% dtanh
dWaa = dtanh %*% t(a_prev)

dba = rowSums(dtanh)

gradients = list("dxt" = dxt,
"da_prev" = da_prev,
"dWax" = dWax,
"dWaa" = dWaa,
"dba" = dba)

return(gradients)
}

set.seed(1)
xt = matrix(rnorm(30), nrow = 3)
a_prev = matrix(rnorm(50), nrow = 5)
Wax = matrix(rnorm(15), nrow = 5)
Waa = matrix(rnorm(25), nrow = 5)
Wya = matrix(rnorm(10), nrow = 2)
ba = rnorm(5)
by = rnorm(2)
parameters = list("Wax" = Wax, "Waa" = Waa, "Wya" = Wya, "ba" = ba, "by" = by)

a_next = rnn_cell_forward(xt, a_prev, parameters)[["a_next"]]

8.4 Writing the Basic Sequence Model Architecture 213

yt = rnn_cell_forward(xt, a_prev, parameters)[["yt_pred"]]
cache = rnn_cell_forward(xt, a_prev, parameters)[["cache"]]

da_next = matrix(rnorm(50), nrow = 5)
gradients = rnn_cell_backward(da_next, cache)

dim(gradients[["dxt"]])

[1] 3 10

dim(gradients[["da_prev"]])

[1] 5 10

dim(gradients[["dWax"]])

[1] 5 3

dim(gradients[["dWaa"]])

[1] 5 5

length(gradients[["dba"]])

[1] 5

rnn_backward <- function(da, cache) {

caches = cache[[1]]
caches = caches$cache
x = cache[[2]]

a1 = caches$a_next
a0 = caches$a_prev
x1 = caches$xt
parameters = caches$params

n_a = dim(da)[1]
m = dim(da)[2]
T_x = dim(da)[3]

n_x = dim(x1)[1]
m = dim(x1)[2]

dx = array(0, dim = c(n_x, m, T_x))
dWax = matrix(0, nrow = n_a, ncol = n_x)
dWaa = matrix(0, nrow = n_a, ncol = n_a)
dba = rep(0, n_a)
da0 = matrix(0, nrow = n_a, ncol = m)
da_prevt = matrix(0, nrow = n_a, ncol = m)

for(t in T_x:1){
gradients = rnn_cell_backward(da[, , t] + da_prevt, caches)
dxt = gradients[["dxt"]]
da_prevt = gradients[["da_prev"]]
dWaxt = gradients[["dWax"]]

214 8 Recurrent Neural Networks (RNN) or Sequence Models

dWaat = gradients[["dWaa"]]
dbat = gradients[["dba"]]

dx[, , t] = dxt
dWax =+ dWaxt
dWaa =+ dWaat
dba =+ dbat

da0 = da_prevt

gradients = list("dx" = dx,
"da0" = da0,
"dWax" = dWax,
"dWaa" = dWaa,
"dba" = dba)

return(gradients)
}

}

set.seed(1)
x = array(rnorm(3*10*4), dim = c(3, 10, 4))
a0 = matrix(rnorm(50), nrow = 5)
Wax = matrix(rnorm(15), nrow = 5)
Waa = matrix(rnorm(25), nrow = 5)
Wya = matrix(rnorm(10), nrow = 2)
ba = rnorm(5)
by = rnorm(2)
parameters = list("Wax" = Wax, "Waa" = Waa, "Wya" = Wya, "ba" = ba, "by" = by)
a = rnn_forward(x, a0, parameters)[["a"]]
y = rnn_forward(x, a0, parameters)[["y_pred"]]
cache = rnn_forward(x, a0, parameters)[["caches"]]
da = array(rnorm(5*10*4), dim = c(5, 10, 4))
gradients = rnn_backward(da, cache)

dim(gradients$dx)

[1] 3 10 4

dim(gradients$da0)

[1] 5 10

dim(gradients$dWax)

[1] 5 3

dim(gradients$dWaa)

[1] 5 5

length(gradients$dba)

[1] 5

8.5 Long Short-Term Memory (LSTM) Models 215

8.5 Long Short-Term Memory (LSTM) Models

Long Short-Term Memory networks (LSTMs) are a special type of recurrent net-
works which are capable of learning long-term dependencies and was introduced
by [29].

8.5.1 The Problem with Sequence Models

Vanishing/Exploding Gradients

Plain vanilla sequence models are not quite used very often in practice. The main
reason behind is the vanishing gradient problem. For these models, ideally, we would
want to have long memories, so the network can connect data relationships over
distances in time and thus make real progress in understanding the context of the
language, etc. However, in plain vanilla sequence models, the more time-steps we
have, the more is the chance we have of backpropagation gradients either exploding
or vanishing. To overcome this problem, we have LSTMs.

The Problem of Long-Term Dependencies

The appeal of sequence model was that they could be able to connect previous
information to the present task. Sometimes,weonlyneed to look at recent information
to perform the present task. For example, consider a language model trying to predict
the next word based on the previous ones. If we are trying to predict the last word
in “aeroplanes fly in the sky,” we are pretty sure that last word is sky. In such cases,
where the gap between the relevant information and the time-step where it is required
is small, the model can learn to use the past information.

But when the gap between the relevant information and the time-step where it is
required is large,RNNsare unable to connect the information.Consider predicting the
last word in the sentence “I grew up in China which is a country of different cultures,
… and therefore I speak fluent Chinese.” The most recent information suggests that
the last word is probably the name of a language. If our sequence model needs to
predict which language, it needs the context of the country, which could be way
further back in time-steps. It is possible for the gap between the relevant information
and the time-step, where it is needed to become very large. And as that gap grows,
the model becomes unable to learn to connect the information.

This problem of sequence models was explored by [29] in their paper in 1994,
wherein they found some fundamental reasons, for why it might be difficult.

Thankfully, LSTMs help us to surmount the above two problems.
LSTMs are a special kind of sequence models (RNNs), which are capable of

learning long-term dependencies. They were introduced by [29] in 1997, which was
successively improved by many other researchers. Adding the LSTM to the network
is like adding a memory unit that can remember context from the very beginning
of the input. LSTMs are, therefore, designed to avoid the long-term dependency
problem and, remembering information for long time- steps comes quite naturally to

216 8 Recurrent Neural Networks (RNN) or Sequence Models

Fig. 8.4 An LSTM cell [Andrew Ng]

them. LSTMs work very well on a large variety of problems, and is presently very
widely used.

Figure8.4 describes an LSTM cell. The horizontal line running through the top
of the diagram runs straight down the entire chain, with only some minor linear
interactions. Information flows along this line unchanged.

Gates are positioned to optionally let information through. They are composed
out of a sigmoid neural net layer and a pointwise multiplication operation. The
sigmoid layer outputs numbers between zero and one, describing how much of each
component should be let through. A value of zero implies that nothing is let through
and a value of one implies that all information is let through.

8.5.2 Walking Through LSTM

An LSTM has three of these gates, to protect and control the cell state.
The first step in LSTM is to decide what information will be thrown away from

the cell state and is made by the “forget gate layer” having a sigmoid activation.
It looks at y〈t〉 and y〈t〉, and outputs a number between 0 and 1, for each number in
the cell state c〈t−1〉. A value of 1 signifies that all information is kept and a value of
0 signifies all information is thrown away.

8.5 Long Short-Term Memory (LSTM) Models 217

�u = σ(Wn[a〈t−1〉, x 〈t〉] + bu) (8.5.1)

The next step is to decide what new information is required to be updated in the
cell state. This has two parts. First, a sigmoid layer called the “update gate layer”
decides which values are to be updated. Next, a tanh layer creates a vector of new
candidate values, c̃〈t〉, that could be added to the state. These two layers are then
combined to create an update to the state.

� f = σ(W f [a〈t〉, x 〈t〉] + b f)

c̃〈t〉 = tanh(Wc[�〈t−1〉
a , x 〈t〉] + bc)

(8.5.2)

It is now time to update the old cell state, c〈t−1〉, into the new cell state c〈t〉. We
multiply the old state by � f , (so as to forget the things we decided to forget earlier)
and then add it to �u ∗ c̃〈t〉. This is the new candidate values, scaled by how much
we decided to update each state value.

c〈t〉 = �u ∗ c̃〈t〉 + � f ∗ c〈t−1〉 (8.5.3)

Finally, we now need to decide what we are going to output. This output will be
based on our cell state, but will be a filtered version. First, we run a sigmoid layer
which decides what parts of the cell state we are going to output. Then, we put the
cell state through tanh activation, (pushing the values to lie between −1 and 1),
and multiply it by the output of the sigmoid gate, so that we only output the parts
we decided to.

�o = σ(Wo[a〈t−1〉, x 〈t〉] + bo)

a〈t〉 = �o ∗ c〈t〉 (8.5.4)

A variation of the LSTM is the Gated Recurrent Unit (GRU), introduced by [27]
in 2014. It combines the forget and input gates into a single “update gate” and also
merges the cell state and hidden state, and makes some other changes. The resulting
model is simpler than standard LSTM models, and is quite popular.

We will not discuss GRUs here, but the reader is advised to look up on relevant
papers on the subject.

8.6 Writing the LSTM Architecture

lstm_cell_forward <- function(xt, a_prev, c_prev, parameters){

Wf = parameters[["Wf"]]
bf = parameters[["bf"]]

218 8 Recurrent Neural Networks (RNN) or Sequence Models

Wi = parameters[["Wi"]]
bi = parameters[["bi"]]
Wc = parameters[["Wc"]]
bc = parameters[["bc"]]
Wo = parameters[["Wo"]]
bo = parameters[["bo"]]
Wy = parameters[["Wy"]]
by = parameters[["by"]]

n_x = dim(xt)[1]; n_x
m = dim(xt)[2]; m
n_y = dim(Wy)[1]; n_y
n_a = dim(Wy)[2]; n_a

concat = matrix(0, nrow = n_a + n_x, ncol = m); concat
concat[1:n_a, 1:m] = a_prev
concat[(n_a + 1):(n_a + n_x), 1:m] = xt

ft = sigmoid((Wf %*% concat) + bf)
it = sigmoid((Wi %*% concat) + bi)
cct = sinh((Wc %*% concat) + bc) / cosh((Wc %*% concat) + bc)
c_next = ft * c_prev + it * cct
ot = sigmoid((Wo %*% concat) + bo)
a_next = ot * (sinh(c_next) / cosh(c_next))

yt_pred = t(softmax((Wy %*% a_next) + by))

cache = list("a_next" = a_next,
"c_next" = c_next,
"a_prev" = a_prev,
"c_prev" = c_prev,
"ft" = ft,
"it" = it,
"cct" = cct,
"ot" = ot,
"xt" = xt,
"parameters" = parameters)

return(list("a_next" = a_next,
"c_next" = c_next,
"yt_pred" = yt_pred,
"cache" = cache))

}

set.seed(1)
xt = matrix(rnorm(30), nrow = 3)
a_prev = matrix(rnorm(50), nrow = 5)
c_prev = matrix(rnorm(50), nrow = 5)
Wf = matrix(rnorm(5*8), nrow = 5)
bf = rnorm(5)
Wi = matrix(rnorm(5*8), nrow = 5)
bi = rnorm(5)
Wo = matrix(rnorm(5*8), nrow = 5)
bo = rnorm(5)
Wc = matrix(rnorm(5*8), nrow = 5)
bc = rnorm(5)
Wy = matrix(rnorm(10), nrow = 2)
by = rnorm(2)
parameters = list("Wf" = Wf, "Wi" = Wi, "Wo" = Wo, "Wc" = Wc, "Wy" = Wy,

"bf" = bf, "bi" = bi, "bo" = bo, "bc" = bc, "by" = by)

8.6 Writing the LSTM Architecture 219

a_next = lstm_cell_forward(xt, a_prev, c_prev, parameters)[["a_next"]]
dim(a_next)

[1] 5 10

c_next = lstm_cell_forward(xt, a_prev, c_prev, parameters)[["c_next"]]
dim(c_next)

[1] 5 10

yt_pred = lstm_cell_forward(xt, a_prev, c_prev, parameters)[["yt_pred"]]
dim(yt_pred)

[1] 2 10

cache = lstm_cell_forward(xt, a_prev, c_prev, parameters)[["cache"]]
length(cache)

[1] 10

lstm_forward <- function(x, a0, parameters){

caches = NULL

n_x = dim(x)[1]
m = dim(x)[2]
T_x = dim(x)[3]
n_y = dim(parameters[["Wy"]])[1]
n_a = dim(parameters[["Wy"]])[2]

a = array(0, dim = c(n_a, m, T_x))
c = a
y = array(0, dim = c(n_y, m, T_x))

a_next = a0
c_next = matrix(0, nrow = dim(a_next)[1], ncol = dim(a_next)[2])

for(t in 1:T_x) {
a_next = lstm_cell_forward(x[, , t], a_next, c_next, parameters)[["a_next"]]
c_next = lstm_cell_forward(x[, , t], a_next, c_next, parameters)[["c_next"]]
yt = lstm_cell_forward(x[, , t], a_next, c_next, parameters)[["yt_pred"]]
cache = lstm_cell_forward(x[, , t], a_next, c_next, parameters)[["cache"]]

a[, , t] = a_next
y[, , t] = yt
c[, , t] = c_next

caches = append(caches, list(cache))
}
return(list("a" = a, "y" = y, "c" = c, "caches" = caches))

}

set.seed(1)
x = array(3*10*7, dim = c(3,10,7))
a0 = matrix(rnorm(50), nrow = 5)
Wf = matrix(rnorm(5*8), nrow = 5)
bf = rnorm(5)

220 8 Recurrent Neural Networks (RNN) or Sequence Models

Wi = matrix(rnorm(5*8), nrow = 5)
bi = rnorm(5)
Wo = matrix(rnorm(5*8), nrow = 5)
bo = rnorm(5)
Wc = matrix(rnorm(5*8), nrow = 5)
bc = rnorm(5)
Wy = matrix(rnorm(2*5), nrow = 2)
by = rnorm(2)
parameters = list("Wf" = Wf, "Wi" = Wi, "Wo" = Wo, "Wc" = Wc, "Wy" = Wy,

"bf" = bf, "bi" = bi, "bo" = bo, "bc" = bc, "by" = by)

a = lstm_forward(x, a0, parameters)[["a"]]
dim(a)

[1] 5 10 7

y = lstm_forward(x, a0, parameters)[["y"]]
dim(y)

[1] 2 10 7

c = lstm_forward(x, a0, parameters)[["c"]]
dim(c)

[1] 5 10 7

caches = lstm_forward(x, a0, parameters)[["caches"]]
length(caches)

[1] 7

lstm_cell_backward <- function(da_next, dc_next, cache){

a_next = cache[["a_next"]]
c_next = cache[["c_next"]]
a_prev = cache[["a_prev"]]
c_prev = cache[["c_prev"]]
ft = cache[["ft"]]
it = cache[["it"]]
cct = cache[["cct"]]
ot = cache[["ot"]]
xt = cache[["xt"]]
parameters = cache[["parameters"]]

n_x = dim(xt)[1]
m = dim(xt)[2]
n_a = dim(a_next)[1]
m = dim(a_next)[2]

dot = da_next * (sinh(c_next) / cosh(c_next)) * ot * (1 - ot)
dcct = (dc_next * it + ot *

(1 - (sinh(c_next) / cosh(c_next))ˆ2 *
it * da_next) *

(1 - (cct)ˆ2))
dit = (dc_next * cct + ot *

(1 - (sinh(c_next) / cosh(c_next))ˆ2 *
cct * da_next) *

8.6 Writing the LSTM Architecture 221

it * (1 - it))
dft = (dc_next * c_prev + ot *

(1 - (sinh(c_next) / cosh(c_next))ˆ2) *
c_prev * da_next) * ft * (1 - ft)

concat = rbind(a_prev, xt)

dWf = dft %*% t(concat)
dWi = dit %*% t(concat)
dWc = dcct %*% t(concat)
dWo = dot %*% t(concat)
dbf = rowSums(dft)
dbi = rowSums(dit)
dbc = rowSums(dcct)
dbo = rowSums(dot)

na_end = dim(parameters[[’Wf’]])[2]

da_prev = (t(parameters[[’Wf’]][, 1:n_a]) %*% dft) +
(t(parameters[[’Wi’]][, 1:n_a]) %*% dit) +
(t(parameters[[’Wc’]][, 1:n_a]) %*% dcct) +
(t(parameters[[’Wo’]][, 1:n_a]) %*% dot)

dc_prev = dc_next *
(ft + ot) *
(1 - sinh(c_next) / cosh(c_next))ˆ2 *
ft *
da_next

dxt = t(parameters[[’Wf’]][, (n_a + 1):na_end]) %*% dft +
t(parameters[[’Wi’]][, (n_a + 1):na_end]) %*% dit +
t(parameters[[’Wc’]][, (n_a + 1):na_end]) %*% dcct +
t(parameters[[’Wo’]][, (n_a + 1):na_end]) %*% dot

gradients = list("dxt" = dxt,
"da_prev" = da_prev,
"dc_prev" = dc_prev,
"dWf" = dWf,
"dbf" = dbf,
"dWi" = dWi,
"dbi" = dbi,
"dWc" = dWc,
"dbc" = dbc,
"dWo" = dWo,
"dbo" = dbo)

return(gradients)
}

set.seed(1)
xt = matrix(rnorm(30), nrow = 3)
a_prev = matrix(rnorm(50), nrow = 5)
c_prev = matrix(rnorm(50), nrow = 5)
Wf = matrix(rnorm(40), nrow = 5, ncol = 5 + 3)
bf = rnorm(5)
Wi = matrix(rnorm(40), nrow = 5, ncol = 5 + 3)
bi = rnorm(5)
Wo = matrix(rnorm(40), nrow = 5, ncol = 5 + 3)
bo = rnorm(5)
Wc = matrix(rnorm(40), nrow = 5, ncol = 5 + 3)

222 8 Recurrent Neural Networks (RNN) or Sequence Models

bc = rnorm(5)
Wy = matrix(rnorm(10), nrow = 2)
by = rnorm(2)

parameters = list("Wf" = Wf,
"Wi" = Wi,
"Wo" = Wo,
"Wc" = Wc,
"Wy" = Wy,
"bf" = bf,
"bi" = bi,
"bo" = bo,
"bc" = bc,
"by" = by)

a_next = lstm_cell_forward(xt, a_prev, c_prev, parameters)[["a_next"]]

c_next = lstm_cell_forward(xt, a_prev, c_prev, parameters)[["c_next"]]

yt = lstm_cell_forward(xt, a_prev, c_prev, parameters)[["yt_pred"]]

cache = lstm_cell_forward(xt, a_prev, c_prev, parameters)[["cache"]]

da_next = matrix(rnorm(50), nrow = 5)

dc_next = matrix(rnorm(50), nrow = 5)

gradients = lstm_cell_backward(da_next, dc_next, cache)

dim(gradients[["dxt"]])

[1] 3 10

dim(gradients[["da_prev"]])

[1] 5 10

dim(gradients[["dc_prev"]])

[1] 5 10

dim(gradients[["dWf"]])

[1] 5 8

dim(gradients[["dWc"]])

[1] 5 8

length(gradients[["dbf"]])

[1] 5

8.6 Writing the LSTM Architecture 223

length(gradients[["dbi"]])

[1] 5

length(gradients[["dbo"]])

[1] 5

lstm_backward <- function(da, caches){

a1 = caches[[1]][["a_next"]]
c1 = caches[[1]][["c_next"]]
a0 = caches[[1]][["a_prev"]]
c0 = caches[[1]][["c_prev"]]
f1 = caches[[1]][["ft"]]
i1 = caches[[1]][["it"]]
cc1 = caches[[1]][["cct"]]
o1 = caches[[1]][["ot"]]
x1 = caches[[1]][["xt"]]
parameters = caches[[1]][["parameters"]]

n_a = dim(da)[1]
m = dim(da)[2]
T_x = dim(da)[3]
n_x = dim(x1)[1]
m = dim(x1)[2]

dx = array(0, dim = c(n_x, m, T_x))
da0 = matrix(0, nrow = n_a)
da_prevt = rep(0, length(da0))
dc_prevt = rep(0, length(da0))
dWf = matrix(0, nrow = n_a, ncol = n_a + n_x)
dWi = rep(0, length(dWf))
dWc = rep(0, length(dWf))
dWo = rep(0, length(dWf))
dbf = rnorm(n_a)
dbi = rep(0, length(dbf))
dbc = rep(0, length(dbf))
dbo = rep(0, length(dbf))

for(t in T_x:1){
gradients = lstm_cell_backward(da[, , t], dc_prevt, caches[[t]])
dx[, ,t] = gradients[["dxt"]]
dWf =+ gradients[["dWf"]]
dWi =+ gradients[["dWi"]]
dWc =+ gradients[["dWc"]]
dWo =+ gradients[["dWo"]]
dbf =+ gradients[["dbf"]]
dbi =+ gradients[["dbi"]]
dbc =+ gradients[["dbc"]]
dbo =+ gradients[["dbo"]]

}

da0 = gradients[["da_prev"]]

gradients = list("dx" = dx,
"da0" = da0,
"dWf" = dWf,
"dbf" = dbf,

224 8 Recurrent Neural Networks (RNN) or Sequence Models

"dWi" = dWi,
"dbi" = dbi,
"dWc" = dWc,
"dbc" = dbc,
"dWo" = dWo,
"dbo" = dbo)

return(gradients)
}

set.seed(1)
x = array(rnorm(3*10*7), dim = c(3, 10, 7))
a0 = matrix(rnorm(50), nrow = 5)
Wf = matrix(rnorm(40), nrow = 5, ncol = 5 + 3)
bf = rnorm(5)
Wi = matrix(rnorm(40), nrow = 5, ncol = 5 + 3)
bi = rnorm(5)
Wo = matrix(rnorm(40), nrow = 5, ncol = 5 + 3)
bo = rnorm(5)
Wc = matrix(rnorm(40), nrow = 5, ncol = 5 + 3)
bc = rnorm(5)
Wy = matrix(rnorm(10), nrow = 2)
by = rnorm(2)

parameters = list("Wf" = Wf,
"Wi" = Wi,
"Wo" = Wo,
"Wc" = Wc,
"Wy" = Wy,
"bf" = bf,
"bi" = bi,
"bo" = bo,
"bc" = bc,
"by" = by)

a = lstm_forward(x, a0, parameters)[["a"]]
y = lstm_forward(x, a0, parameters)[["y"]]
c = lstm_forward(x, a0, parameters)[["c"]]
caches = lstm_forward(x, a0, parameters)[["caches"]]

da = array(rnorm(5*10*4), dim = c(5, 10, 4))
gradients = lstm_backward(da, caches)
dim(gradients[["dx"]])

[1] 3 10 4

dim(gradients[["da0"]])

[1] 5 10

dim(gradients[["dWf"]])

[1] 5 8

dim(gradients[["dWi"]])

[1] 5 8

8.6 Writing the LSTM Architecture 225

dim(gradients[["dWc"]])

[1] 5 8

dim(gradients[["dWo"]])

[1] 5 8

length(gradients[["dbf"]])

[1] 5

length(gradients[["dbi"]])

[1] 5

length(gradients[["dbc"]])

[1] 5

length(gradients[["dbo"]])

[1] 5

8.7 Text Generation with LSTM

In this section, we will learn how RNNs can be used to generate sequence text
data. Nowadays, there is a huge amount of data that can be categorized as sequential,
namely—data in the formof audio, video, text, time series, sensor data, etc. Examples
of text generation include machines writing entire chapters of popular novels like
“Game of Thrones” and “Harry Potter”, with varying degrees of success.

Working with text data and text generation is challenging which we will gradually
explore. We will experiment with some of the novels written by “Shakespeare”, to
create new literature albeit, restricted to a few hundred words.

8.7.1 Working with Text Data

Text can be considered a form of sequence data, i.e., a sequence of characters or a
sequence of words. Applying deep learning to NLP endeavors to identify patterns in
the same way it does with images, i.e., pixels of the image. As much as we vectorized
the input image to pixels, with text data, we need to vectorize the input text in a similar
manner, so that we can use it as an input for our deep learning models.

This can be done by

226 8 Recurrent Neural Networks (RNN) or Sequence Models

• Transform each word to a vector.
• Transform each character to a vector.
• Extract n-grams of words or characters and transform them to a vector.

Text generators can be extremely tricky. With text data, a model may be trained
to make accurate predictions using the sequences that have occurred previously;
however, a wrong prediction can make the entire sentence meaningless. However,
with numerical sequence data, a wrong prediction could still be considered a valid
prediction without any visual (perceptual) distinction.

Text generation usually involves the following steps

• Loading of Data
• Creating Character/Word mappings
• Data Preprocessing
• Modeling
• Generating text.

8.7.2 Generating Sequence Data

When we deal with text data, tokens signifywords or characters. A language model
is one which can predict the next token with some probability, given the previous
tokens. We generate sequence data by training a sequence model (or a ConvNet) to
predict the next token or next few tokens in a sequence, using the previous tokens as
input.

A text generation model is supposed to capture the latent space of the language.
Latent means hidden—we observe some data which is in the space that is observable
and, map it to a latent space where similar data points are closer together. A neural
network extracts the features through many layers (convolutional, recurrent, pooling
etc.). In other words, the latent space is the space where our features lie.

8.7.3 Sampling Strategy and the Importance of Softmax
Diversity

There are two ways in which we can choose the next character, which are as follows:

• Greedy Sampling—consists of choosing the most likely character.
• Stochastic Sampling—introduces randomness in the sampling process.

In stochastic sampling, if the token “a” has a 0.45% probability of becoming the next
character, the model will choose that character 45% of the time.

We have seen earlier in Sect. 1.11.5 that randomness is measured by the entropy
of the probability distribution. The standard softmax output often does not offer
any strategy to control the amount of randomness in choosing the next token.

8.7 Text Generation with LSTM 227

Temperature (or diversity) is a hyperparameter of LSTMs (neural net-
works, in general), which is used to control the randomness of predictions by scaling
the logits before applying softmax. When the temperature is 1, we compute the
softmax directly on the logits.

Using a higher temperature produces a softer probability distribution and
makes the sequence model more “excited”, resulting in more diversity and also
prone to making more mistakes. In contrast, a lower temperature produces a
conservative output.

Neural networks produce class probabilities with logit vector z, where z =
(z1, z2, . . . , zn), resulting in the following softmax output

exp
zi
T

∑
j exp

z j
T

(8.7.1)

where T is the temperature.

8.7.4 Implementing LSTM Text Generation (Character-Level
Neural Language Model)

In this example, we will utilize the first 20 stories written by Shakespeare. We will
then take an LSTM layer, feed the layer with strings of n characters, which have
been extracted from a text corpus and train it predicts n+1 characters. The output is
a softmax activation over all possible characters.

A very simple method to represent a word in the vector format is by using a
one-hot encoded vector, where the digit 1 stands for the position where the word
exists and the digit 0 implies everywhere else. The vectorized representation of a
word could be written as [0, 0, 0, 0, 0, 1], where 1 is the representation of the word
(or token) in the sentence (or string of characters).

library(stringr)
library(tokenizers)
library(readr)

define length of extracted character sequences
maxlen <- 60

textFile <- keras::get_file("pg100.txt",
origin =
"http://www.gutenberg.org/cache/epub/100/pg100.txt")

text = readLines(textFile)
length(text)
text = text[-(1:173)]
text = text[-(124195:length(text))]
text = paste(text, collapse = " ")
text = strsplit(text, "<<[ˆ>]*>>")[[1]]

dramatis_personae <- grep("Dramatis Personae", text, ignore.case = TRUE)

228 8 Recurrent Neural Networks (RNN) or Sequence Models

text = text[-dramatis_personae]
text <- text[-(20:182)]
text = str_to_lower(text) %>%
str_c(collapse = "\n")

text_indexes <- seq(1, nchar(text) - maxlen, by = 3)
sentences <- str_sub(text, text_indexes, text_indexes + maxlen - 1)

next_chars <- str_sub(text, text_indexes + maxlen, text_indexes + maxlen)

chars <- unique(sort(strsplit(text, "")[[1]]))
cat("Number of unique characters:", length(chars), "\n")

map unique characters to their index in ’chars’
char_indices <- 1:length(chars)
names(char_indices) <- chars

one-hot encode the characters
x <- array(0L, dim = c(length(sentences), maxlen, length(chars)))
y <- array(0L, dim = c(length(sentences), length(chars)))

Vectorize
for (i in 1:length(sentences)) {
sentence <- strsplit(sentences[[i]], "")[[1]]
for (t in 1:length(sentence)) {
char <- sentence[[t]]
x[i, t, char_indices[[char]]] <- 1
}

next_char <- next_chars[[i]]
y[i, char_indices[[next_char]]] <- 1

}

The following code is from [26].

library(keras)
model <- keras_model_sequential() %>% layer_lstm(units = 128,

input_shape = c(maxlen, length(chars))) %>% layer_dense(units = length(chars),
activation = "softmax")

optimizer <- optimizer_rmsprop(lr = 0.01)

model %>% compile(loss = "categorical_crossentropy", optimizer = optimizer)

sample_next_char <- function(preds, diversity = 1) {
preds <- as.numeric(preds)
preds <- log(preds)/diversity
exp_preds <- exp(preds)
preds <- exp_preds/sum(exp_preds)
which.max(t(rmultinom(1, 1, preds)))

}

for (epoch in 1:20) {
cat("epoch", epoch, "\n")

model %>% fit(x, y, batch_size = 128, epochs = 1)

Select a text seed at random
start_index <- sample(1:(nchar(text) - maxlen - 1), 1)
seed_text <- str_sub(text, start_index, start_index + maxlen -

1)

8.7 Text Generation with LSTM 229

cat("Generating with seed:", seed_text, "\n")
cat("******************************\n")

for (diversity in c(0.2, 0.6, 1, 1.3)) {

cat("softmax distribution diversity = ", diversity, "\n")
cat(seed_text, "\n")

generated_text <- seed_text

Generate 500 characters
for (i in 1:500) {

sampled <- array(0, dim = c(1, maxlen, length(chars)))
generated_chars <- strsplit(generated_text, "")[[1]]
for (t in 1:length(generated_chars)) {

char <- generated_chars[[t]]
sampled[1, t, char_indices[[char]]] <- 1

}

preds <- model %>% predict(sampled, verbose = 0)
next_index <- sample_next_char(preds[1,], diversity)
next_char <- chars[[next_index]]

generated_text <- paste0(generated_text, next_char)
generated_text <- substring(generated_text, 2)

cat(next_char)
}
cat("\n\n")

}
}

The output presented below is a series of characters predicted by the model. You
may appreciate that the predicted characters (which also include white spaces and
punctuations), combine together in a sequence to represent, correct interpretations
(with a measure of success).

After 20 iterations and using a random text seed, “t; light is an effect of fire, and
fire will burn; ergo, l,” we get the following:

diversity: 0.1

et me she shall be the the should be promise the world to me the man all the seems
that the man that the world that the man is the man is the the stand that the man that
i will be the that the man is the the should shall be the man in the spring to the man
that the man and the that the man that the man that the man that the self the the thing
the man that the man that the world that i will be the the man that the man that the
man in the man that with the seems the

diversity: 0.5

et the thing he will the best meason the show my heart, the heart in every contented
scanush that strange so kind the great in a hand of this court; the stands of pity in
a man with the thoughts prove the point things me to this of ring of the thoughts of
it of the forest of all the brand hear the tell profess she gave a shall seem to should

230 8 Recurrent Neural Networks (RNN) or Sequence Models

have taked the plain stands of mine own field and she see the brother man that the
man that and the heart. where i have

diversity: 1

ikines him, poor some like livies. the is your dauld hold indeed. messenger. if they
readye enderting stosilles. parolles. kente; and dromio of syracuse tencus! warned
and a a messenger antony musing as you’ll littu’st thou my dear rection to cluse and
fair alone cage, patch on this gentle. gentle withould would have return service is
evils woman and traitorable, that truanter. but i know that peace. duke senior. the
honour’ds it. so lusgi’st upon him. dulen. which i

diversity: 1.5

ook werts himery; and, values; route? sodd. saliu; order love, honour, play fors gave
now i hoain mode thausaysy aad: a hel’t gor bys toiot. helena. prioft to’t:est le cal!
rooass. nairr to be parop he, may t cleopatra. countrollsdinglh, i s, reasparo! any
absenish withal? call it r apfoalacrenh. the flobmime. clowin. go was’ibles neitoxtres
dilaat oathsech, civis. by yight. ’tis cutart: ther; bythdy woo inte’ed prisiggssge for
willy; hold, hear nese-unrinler. pirioce. ! luci

From the text generated, we can see that at lower temperatures, the text is repetitive
and the text consists of real English words; however with higher temperatures, the
text produced is a trifle adventurous and it produces new words like “traitorable”.
The words also appear to be random strings of characters.

8.8 Natural Language Processing

Natural Language Processing (NLP), is broadly defined as the automatic manipula-
tion of natural language, like speech and text. NLP can be used to interpret text and
make it analyzable.

Since deep learning architectures are incapable of processing characters or words
in their raw form, the text needs to be converted to numbers as inputs.

8.8.1 Word Embeddings

Word embeddings are the texts converted into numbers. A vocabulary is a list of
all unique words in the English language.

We have seen earlier that a one-hot encoded vector can be used to represent a
vectorized representation of word/character (token).

Vectorized representation of words through one-hot encoding result in binary
(present/not present), sparse (most of the arrays are 0s) and high-dimensional vectors.
Imagine, if we have 15,000 word tokens, one-hot encoding could output more than

8.8 Natural Language Processing 231

a 15,000- dimensional vector. Moreover, it just tells us the presence of a token. A
way to overcome this problem is by using word embeddings.

Word embeddings learn from data and, theymap thewords into a geometric space.
The distance between two words in a geometric space could be the �2 norm (or any
other distance measurement), between the two word vectors and, the distances relate
to the semantic distance between the associatedwords. In addition, specific directions
in the embedded space also carry information of associativity.

Word-embedding spaces are domain specific as the semantic relationship between
words differ with different tasks, i.e., a word-embedding space for a model to predict
presence of breast cancer will be completely different from that of a restaurant-
review sentiment classification model. We should, therefore, learn a new embedding
space which is specific to the task at hand. In keras, this is quite simple, it is about
learning the weights of a layer using the function layer_embedding().

8.8.2 Transfer Learning and Word Embedding

Sometimes, we may not have enough training data in hand, which could make it
difficult to learn a task-specific embedding of our vocabulary. In this situation, as
we learnt in the section on transfer learning in the previous chapter, we can load
embedding vectors from a precomputed embedding space, which captures the se-
mantic aspects of the language structure and reuse the features learned, on a different
problem.

Using dense, low-dimensional embedding space was first explored by Bengio
[33] in his paper titled “A Neural Probabilistic Language Mode”, 2003. The two
most common precomputed word embeddings are Word2Vec algorithm, developed
by [31], 2013 and, Global Vectors for Word Representation (GloVe) developed by
[35]. GloVe is an embedding technique based on factorizing a matrix of word co-
occurrence statistics. It is available at https://nlp.stanford.edu/projects/glove, which
is a zip file called glove.6B.zip having 100-dimensional embedding vectors for
400,000 words.

The transfer learning process for word embeddings involve the following:

• Learn word embeddings from a large text corpus by downloading a pretrained
embedding.

• Transfer embedding to a new task with a smaller training set.
• You may further fine tune the word embeddings with the new data.

Let us use the downloaded embedding vectors to build an index that maps the words
to their vector representation.

glove_dir = "˜/Downloads/glove"

lines <- readLines(file.path(glove_dir, "glove.6B.100d.txt"))

words <- NULL

https://nlp.stanford.edu/projects/glove

232 8 Recurrent Neural Networks (RNN) or Sequence Models

embeddings_index <- new.env(hash = TRUE, parent = emptyenv())
for (i in 1:length(lines)) {

line <- lines[[i]]
values <- strsplit(line, " ")[[1]]
word <- values[[1]]
embeddings_index[[word]] <- as.double(values[-1])
words[i] <- word

}

cat("Found", length(words), "word vectors.\n")

Found 400000 word vectors.

8.8.3 Analyzing Word Similarity Using Word Vectors

Let us play around with some of the words represented by their vectors. We will use
the respective word vectors to find similarities between similar and dissimilar words.
For this we will use the cosine similarity function, which is defined as

simcosine(u, v) = uT v

‖u‖2 ‖v‖2 = cosine(θ)

where θ is the angle between the two vectors. For similar words, the angle between
the vectors will be small resulting in a large value of cosine(θ).

To calculate the �2 norm, we will use the vector.naorm() function from the
InspectChangepoint library.

cosine_sim <- function(u, v) {
library(InspectChangepoint)
num = sum(u * v)
norm_u = vector.norm(u)
norm_v = vector.norm(v)
den = norm_u * norm_v

cos_sim <- num/den
return(cos_sim)

}

e_man <- as.numeric(embeddings_index[["man"]])
e_woman <- as.numeric(embeddings_index[["woman"]])

e_apple <- as.numeric(embeddings_index[["apple"]])
e_hippopotamus <- as.numeric(embeddings_index[["hippopotamus"]])

e_france <- as.numeric(embeddings_index[["france"]])
e_paris <- as.numeric(embeddings_index[["paris"]])
e_india <- as.numeric(embeddings_index[["india"]])
e_delhi <- as.numeric(embeddings_index[["delhi"]])

cat("cosine similarity(apple, hippopotamus)", cosine_sim(e_apple,
e_hippopotamus))

8.8 Natural Language Processing 233

cosine similarity(apple, hippopotamus) -0.09480483

cat("cosine similarity(man, woman)", cosine_sim(e_man, e_woman))

cosine similarity(man, woman) 0.8323494

cat("cosine similarity(france-paris, india-delhi)", cosine_sim((e_france -
e_paris), (e_india - e_delhi)))

cosine similarity(france-paris, india-delhi) 0.6974226

8.8.4 Analyzing Word Analogies Using Word Vectors

Wecan also use theword vectors to discover analogies betweenwords, i.e., findwhich
word is the most similar to a given word. The following simple code highlights how
we can do that.

word_analogy <- function(word_a, word_b, word_c, words) {
e_a = as.numeric(embeddings_index[[word_a]])
e_b = as.numeric(embeddings_index[[word_b]])
e_c = as.numeric(embeddings_index[[word_c]])
max_cos_sim = -100
best_word = NULL
for (w in words) {

if (!(w %in% c(word_c, word_a, word_b))) {

e_w = as.numeric(embeddings_index[[w]])
cos_sim <- cosine_sim((e_b - e_a), (e_w - e_c))

if (cos_sim > max_cos_sim) {
max_cos_sim = cos_sim
best_word = w

}
}

}
analogy <- paste0(word_a, " -> ", word_b, " : ", word_c,

" -> ", best_word, sep = "")

return(analogy)
}

word_analogy("italy", "italian", "spain", words)

[1] "italy -> italian : spain -> spanish"

word_analogy("small", "smaller", "large", words)

[1] "small -> smaller : large -> larger"

word_analogy("india", "delhi", "china", words)

[1] "india -> delhi : china -> beijing"

234 8 Recurrent Neural Networks (RNN) or Sequence Models

8.8.5 Debiasing Word Vectors

Lets first see how the GloVe word embeddings relate to gender. The resulting vector
approximately encodes the concept of “gender”.

g = as.numeric(embeddings_index[["woman"]]) - as.numeric(embeddings_index[["man"]])
g

[1] 0.2207500 0.0632200 -0.1176600 0.7332440 0.1124228 0.3521500
[7] -0.1095900 0.2969030 0.6333900 0.0813400 -0.5658500 0.0360900

[13] 0.2707400 0.2881100 -0.1544100 -0.1187690 -0.1046800 -0.0312400
[19] 0.0599500 -0.0622400 -0.7541500 -0.0424780 0.2065190 0.7089200
[25] -0.1709100 -0.1067500 0.0946500 -0.9140200 0.0144600 -0.1311700
[31] 0.2762930 0.0438400 0.6295340 -0.1956900 0.0590300 -0.2443100
[37] 0.0977600 -0.2959600 0.1919100 0.4377150 -0.3925200 0.1424570
[43] -0.7447100 -0.0361200 0.1059100 -0.0611300 -0.1433850 0.0986680
[49] -0.0621100 -0.0174600 0.0690700 0.0023600 0.1576600 -0.1122000
[55] -0.0309300 0.2501000 0.0715700 -0.2485000 -0.0214000 -0.0263000
[61] 0.0294400 -0.1174000 0.4505370 0.1447440 -0.0188800 0.2010770
[67] -0.0616200 -0.2057700 0.0748700 -0.2081480 -0.0233400 0.2231390
[73] -0.2148500 0.8334400 0.1910900 0.7920510 -0.0315700 -0.0403800
[79] -0.1284900 -0.7932300 -0.8311650 -0.0236300 0.5066970 0.3183280
[85] 0.0554000 -0.6549000 0.6084610 0.4950300 0.1802440 -0.2314800
[91] 0.5914400 0.1549300 0.3665900 -0.1381820 -0.2126600 0.4200540
[97] -0.1771600 0.3906300 0.1124820 0.2315700

name_list = c("john", "alejandra", "paul", "hari", "marco", "akbar",
"ivanka", "nusrat", "simran", "elizabeth", "victoria")

for (w in name_list) {
e_w = as.numeric(embeddings_index[[w]])
cos_sim <- cosine_sim(e_w, g)
cat(w, cos_sim, "\n")

}

john -0.2283502
alejandra 0.2040976
paul -0.2612691
hari -0.1162951
marco -0.2273328
akbar -0.155323
ivanka 0.08449648
nusrat 0.1118457
simran 0.1675252
elizabeth 0.202231
victoria 0.0955887

Comparing first names with the vector g, we can see that female first names tend
to have a positive cosine similarity, while male first names tend to have a negative
cosine similarity.

Let us try an array of different words and let us see how our word vector attributes
them in relation to gender.

8.8 Natural Language Processing 235

word_list = c("fishing", "science", "arts", "army", "lawyer",
"engineer", "pilot", "computer", "technology", "receptionist",
"fashion", "teacher", "singer", "mascara", "literature")

for (w in word_list) {
e_w = as.numeric(embeddings_index[[w]])
cos_sim <- cosine_sim(e_w, g)
cat(w, cos_sim, "\n")

}

fishing -0.05767286
science -0.02147577
arts 0.01484675
army -0.09906478
lawyer 0.01669994
engineer -0.1230001
pilot -0.04113394
computer -0.1154572
technology -0.1447453
receptionist 0.2806876
fashion 0.08097437
teacher 0.152337
singer 0.1137264
mascara 0.04712166
literature 0.08261854

If you read the output, it appears, almost all of the words have a gender bias- “mas-
cara” is closer to the female gender and “science” is closer to the male gender.

Let us endeavor to debias (neutralize) and reduce the bias of these vectors, using
an algorithm attributed to [36].

In the following function neutralize, we will first calculate the unit vector
g, which is in the bias direction; then project the word vector e on the bias vector g
and, finally divide the resultant vector by the unit vector of g.

This will give us the biased component of the word vector.
We then subtract the biased component of the word vector from the original word

vector to get the debiased word vector.

neutralize <- function(word, g) {
e = as.numeric(embeddings_index[[word]])
unit_vec_g = (g/vector.norm(g))
dot_product = sum(e * g)
e_bias_component = dot_product/unit_vec_g
e_debiased = e - e_bias_component
return(e_debiased)

}

word = "receptionist"
e_w = as.numeric(embeddings_index[[word]])
cat("cosine similarity without debiasing:", cosine_sim(e_w, g))

cosine similarity without debiasing: 0.2806876

236 8 Recurrent Neural Networks (RNN) or Sequence Models

word = "receptionist"
e_db = neutralize(word, g)
cat("cosine similarity after debiasing:", cosine_sim(e_db, g))

cosine similarity after debiasing: -0.06464001

The key idea behind equalization is to make sure that a particular pair of words are
equidistant from the n-dimensional g⊥ vector.

equalize <- function(pair, bias_axis) {
word_1 <- pair[1]
word_2 <- pair[2]
ew_1 <- as.numeric(embeddings_index[[word_1]])
ew_2 <- as.numeric(embeddings_index[[word_2]])

mu = (ew_1 + ew_2)/2

mu_bias = (mu * bias_axis/vector.norm(bias_axis)) * bias_axis
mu_orth = mu - mu_bias

ew_1_bias = (ew_1 * bias_axis/vector.norm(bias_axis)) * bias_axis
ew_2_bias = (ew_2 * bias_axis/vector.norm(bias_axis)) * bias_axis

corrected_e_w_1_bias = sqrt(abs(1 - sum(mu_orthˆ2))) * (ew_1_bias -
mu_bias)/abs(ew_1 - mu_orth - mu_bias)

corrected_e_w_2_bias = sqrt(abs(1 - sum(mu_orthˆ2))) * (ew_2_bias -
mu_bias)/abs(ew_2 - mu_orth - mu_bias)

e_1 = corrected_e_w_1_bias + mu_orth
e_2 = corrected_e_w_2_bias + mu_orth

return(list(e_1, e_2))
}

word = "man"
e_w = as.numeric(embeddings_index[[word]])
cat("cosine similarity before equalizing for", "’", word, "’",

"is", cosine_sim(e_w, g))

cosine similarity before equalizing for ’ man ’ is -0.1876906

word = "woman"
e_w = as.numeric(embeddings_index[[word]])
cat("cosine similarity before equalizing for", "’", word, "’",

"is", cosine_sim(e_w, g))

cosine similarity before equalizing for ’ woman ’ is 0.388177

e_1 = equalize(c("man", "woman"), g)[[1]]
e_2 = equalize(c("man", "woman"), g)[[2]]
cat("cosine similarity after equalizing for", "’", word, "’",

"is", cosine_sim(e_1, g))

cosine similarity after equalizing for ’ woman ’ is -0.4564555

cat("cosine similarity after equalizing for", "’", word, "’",
"is", cosine_sim(e_2, g))

cosine similarity after equalizing for ’ woman ’ is 0.5599987

8.9 Conclusion 237

8.9 Conclusion

We have discussed, explored and constructed sequence models from scratch. We
have also used the keras API to generate sequence character models to recreate
language paragraphs.

To say the least, we have touched upon the basics of recurrent neural networks
and its variant—LSTMS. There is still a lot of distance to be covered.

In the final chapter of this book, I will touch uponways to collaborate and progress
further on this fascinating subject.

Chapter 9
Epilogue

Self-education is the only kind of education there is.
Issac Asimov

Congratulations on completing your journey of exploring deep learning with R.
Starting with the basics of machine learning, we have explored all the three deep
learning architectures and have created our own deep learning applications from
scratch. We have learnt many new optimization techniques and understand how they
improve convergence in many different ways. We have constructed our own transfer
learning models using ConvNets and character generation models using LSTMs.

Wehave also used theKerasAPI to create amodel up and going quickly. This helps
us to understand how we need to shape our hyperparameters, which optimization
algorithm to use, and what model architecture is best suited for the data. Thereafter,
it is up to our ingenuity and expertise to come up with the best model.

In short, we have now dug our trenches and we have many more miles to go.

9.1 Gathering Experience and Knowledge

One of the best ways to gather experience is by coming up with solutions to real-
world problems; and the best way to gather this experience is by trying to solve
problems presented at Kaggle (https://www.kaggle.com). There are many organi-
zations who have put up their data on Kaggle to find solutions to their respective
problem statements and many of them involve deep learning.

© Springer Nature Singapore Pte Ltd. 2019
A. Ghatak, Deep Learning with R,
https://doi.org/10.1007/978-981-13-5850-0_9

239

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-5850-0_9&domain=pdf
https://www.kaggle.com
https://doi.org/10.1007/978-981-13-5850-0_9

240 9 Epilogue

9.1.1 Research Papers

Most of the topics discussed in this book were based on recently published research
papers and I owe the authors, my gratitude.

Reading old and new research papers is a smart thing to do. Deep learning research
and it’s related papers are freely available for everyone to read (unlike other subject
areas). Most of the authors who have been cited here have had their papers uploaded
on [https://arxiv.org]. arXiv, pronounced as “archive” (X is the Greek chi), is an
open-access server where research papers can be accessed.

It is possible that some of the topics were a bit difficult to grasp but, that should
not deter the deep learning enthusiast.

If I can rephrase the catch line from the movie Forrest Gump, I would say “Life
is like a box of neural nets- you never know what astounding deep learning research
paper you get”.

9.2 Towards Lifelong Learning

To the discerned reader, a few of learning areas are presented

1. Neural Network Journals

• Neural Networks; Publisher Pergamon Press
• Neural Computation; Publisher MIT Press
• IEEE Transactions on Neural Networks; Publisher Institute of Electrical and
Electronics Engineers (IEEE)

• International Journal of Neural Systems; Publisher World Scientific Publish-
ing

• International Journal of Neurocomputing; Publisher Elsevier Science
• Neural Network News; Publisher- AIWeek Inc.
• Network: Computation in Neural Systems; Publisher IOP Publishing Ltd
• Connection Science: Journal of Neural Computing, Artificial Intelligence and
Cognitive Research; Publisher- Carfax Publishing

• Neural Network News; Publisher- AIWeek Inc.
• The Journal of Experimental and Theoretical Artificial Intelligence; Publisher
Taylor and Francis, Ltd.

2. Neural Network Conferences

• Neural Information Processing Systems (NIPS)
• International Joint Conference on Neural Networks (IJCNN)
• Annual Conference on Neural Networks (ACNN)
• International Conference on Artificial Neural Networks (ICANN)
• European Symposium on Artificial Neural Networks (ESANN)
• Artificial Neural Networks in Engineering (ANNIE)

https://arxiv.org

9.2 Towards Lifelong Learning 241

• International Joint Conference on Artificial Intelligence (IJCAI)
• International Joint Conference on Artificial Intelligence (IJCAI)

3. keras

• https://keras.rstudio.com
• https://keras.io
• https://github.com/rstudio/keras
• https://blog.keras.io
• https://tensorflow.rstudio.com/blog.html

9.2.1 Final Words

Once again, thanks for going through this book.
If you have any word of appreciation or otherwise, I would like to know. In either

case, it would be a learning.
My best wishes for your journey in deep learning.

https://keras.rstudio.com
https://keras.io
https://github.com/rstudio/keras
https://blog.keras.io
https://tensorflow.rstudio.com/blog.html

References

1. Bush, V. As we may think. https://www.theatlantic.com/magazine/archive/1945/07/as-we-
may-think/303881/.

2. Young, T., Hazarika, D., Poria, S., & Cambria, E. Recent trends in deep learning based natural
language processing. arXiv:1708.02709.

3. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. Learning internal representation-
s by error propagation. https://web.stanford.edu/class/psych209a/ReadingsByDate/02_06/
PDPVolIChapter8.pdf.

4. Breiman, L. Statistical modeling: The two cultures. http://www2.math.uu.se/~thulin/mm/
breiman.pdf.

5. Ghatak, A. (2017).Machine learning with R. Singapore: Springer (ISBN 978-981-10-6807-2).
6. Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of

Machine LearningResearch, 13, 281–305. http://www.jmlr.org/papers/volume13/bergstra12a/
bergstra12a.pdf.

7. Hinton, G., Srivastava, N., & Swersky, K. Neural networks for machine learning. https://www.
cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

8. Hutter, F., Holger, H. H., &Leyton-Brown, K. Sequential model-based optimization for general
algorithm configuration. https://www.cs.ubc.ca/~hutter/papers/10-TR-SMAC.pdf.

9. Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical
Journal, 27(379–423), 623–656.

10. Shannon, L. (2001). Statistical modeling: The two cultures. Statistical Science, 16(3). https://
projecteuclid.org/download/pdf_1/euclid.ss/1009213726.

11. Schacter, D. (2011). Psychology. New York: Worth Publishers.
12. Krizhevsky, A., Sutskever, I., & Hinton, G. E. ImageNet classification with deep convolutional

neural networks. http://www.cs.toronto.edu//%7Efritz/absps/imagenet.pdf.
13. Knuth: Computers and typesetting. http://www-cs-faculty.stanford.edu/~uno/abcde.html.
14. Glorot, X., & Bengio, Y. Understanding the difficulty of training deep feedforward neural

networks. http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf/~uno/abcde.html.
15. He, K., Zhang, X., Ren, S., & Sun, J. Delving deep into rectifiers: surpassing human-level

performance on ImageNet classification. https://arxiv.org/abs/1502.01852.
16. Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization

and momentum in deep learning. In Proceedings of Machine Learning Research, PMLR (Vol.
28, Issue 3, pp. 1139–1147). http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.
pdf/~uno/abcde.html.

© Springer Nature Singapore Pte Ltd. 2019
A. Ghatak, Deep Learning with R,
https://doi.org/10.1007/978-981-13-5850-0

243

https://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/
https://www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/
http://arxiv.org/abs/1708.02709
https://web.stanford.edu/class/psych209a/ReadingsByDate/02_06/PDPVolIChapter8.pdf
https://web.stanford.edu/class/psych209a/ReadingsByDate/02_06/PDPVolIChapter8.pdf
http://www2.math.uu.se/~thulin/mm/breiman.pdf
http://www2.math.uu.se/~thulin/mm/breiman.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.ubc.ca/~hutter/papers/10-TR-SMAC.pdf
https://projecteuclid.org/download/pdf_1/euclid.ss/1009213726
https://projecteuclid.org/download/pdf_1/euclid.ss/1009213726
http://www.cs.toronto.edu//%7Efritz/absps/imagenet.pdf
http://www-cs-faculty.stanford.edu/~uno/abcde.html
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf/~uno/abcde.html
https://arxiv.org/abs/1502.01852
http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf/~uno/abcde.html
http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf/~uno/abcde.html
https://doi.org/10.1007/978-981-13-5850-0

244 References

17. Bengio, Y., Boulanger-Lewandowski, N., & Pascanu, R. Advances in optimizing recurrent
networks. arXiv:1212.0901v2.

18. Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12, 2121–2159.

19. Kingma, D. P., & Ba, L. J. (2015). Adam: A method for stochastic optimization. International
Conference on Learning Representations.

20. Srivastava, N., Hinton, G., Krizhevsky, A., & Salakhutdinov, R. (2014). Dropout: A simple
way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15,
1929–1958. http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf.

21. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to
document recognition.Proceedings of the IEEE. http://yann.lecun.com/exdb/publis/pdf/lecun-
01a.pdf.

22. Krizhevsky, A., Sutskever, I., & Hinton, G. E. ImageNet classification with deep convolutional
neural networks. In NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada.
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf.

23. Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large scale image
recognition ICLR. arXiv:1409.1556.

24. Gatys, L. A., Ecker, A. S., & Bethge, M. (2015). A neural algorithm of artistic style. https://
www.robots.ox.ac.uk/~vgg/rg/papers/1508.06576v2.pdf.

25. Narayanan, H. Convolutional neural networks for artistic style transfer. https://
harishnarayanan.org/writing/artistic-style-transfer/.

26. Chollet, F., & Allaire, J. J. Deep learning with R. https://www.manning.com/books/deep-
learning-with-r.

27. Cho, K., vanMerrienboer, B., Bahdanau, D., & Bengio, Y.On the properties of neural machine
translation: encoder-decoder approaches. arXiv:1409.1259.

28. Chung, J., Gulcehre, C., Cho, K., & Yoshua, B. Empirical evaluation of gated recurrent neural
networks on sequence modeling. arXiv:1412.3555.

29. Hochreiter, S., & Schmidhuber, J. Long short term memory. http://www.bioinf.jku.at/
publications/older/2604.pdf.

30. Karpathy, A. The unreasonable effectiveness of recurrent neural networks. http://karpathy.
github.io/2015/05/21/rnn-effectiveness/.

31. Mikolov, A., Chen, K., Corrado, G., & Dean, J. Efficient estimation of word representations in
vector space. arXiv:1301.3781.

32. van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine
Learning Research, 9, 2579–2605. arXiv:1301.3781.

33. Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic language
model. Journal of Machine Learning Research, 3, 1137–1155. http://www.jmlr.org/papers/
volume3/bengio03a/bengio03a.pdf.

34. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. Distributed representations of
words and phrases and their compositionality. https://papers.nips.cc/paper/5021-distributed-
representations-of-words-and-phrases-and-their-compositionality.pdf.

35. Pennington, J., Socker, R., & Manning, C. GloVe: Global vectors for word representation.
https://nlp.stanford.edu/pubs/glove.pdf.

36. Bolukbasi, T., Chang, K. W., Zou, J., Saligrama, V., & Kalai, A. Man is
to computer programmer as woman is to homemaker? debiasing word embed-
dings. https://papers.nips.cc/paper/6228-man-is-to-computer-programmer-as-woman-is-to-
homemaker-debiasing-word-embeddings.pdf.

37. Hinton, G., Oriol V., & Dean, J. Distilling the knowledge in a neural network. arX-
iv:1503.02531.

38. Taigman,Y.,Yang,M.,Ranzato,M.A.,&Wolf, L. (2008).DeepFace:Closing the gap to human-
level performance in face verification. Journal of Machine Learning Research, 9, 2579–2605.
https://ieeexplore.ieee.org/document/6909616/.

39. Sutskever, I., Vinyals, O., & Le, Q. V. Sequence to sequence learning with neural networks.
https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf.

http://arxiv.org/abs/1212.0901v2
http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
http://arxiv.org/abs/1409.1556
https://www.robots.ox.ac.uk/~vgg/rg/papers/1508.06576v2.pdf
https://www.robots.ox.ac.uk/~vgg/rg/papers/1508.06576v2.pdf
https://harishnarayanan.org/writing/artistic-style-transfer/
https://harishnarayanan.org/writing/artistic-style-transfer/
https://www.manning.com/books/deep-learning-with-r
https://www.manning.com/books/deep-learning-with-r
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1412.3555
http://www.bioinf.jku.at/publications/older/2604.pdf
http://www.bioinf.jku.at/publications/older/2604.pdf
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://nlp.stanford.edu/pubs/glove.pdf
https://papers.nips.cc/paper/6228-man-is-to-computer-programmer-as-woman-is-to-homemaker-debiasing-word-embeddings.pdf
https://papers.nips.cc/paper/6228-man-is-to-computer-programmer-as-woman-is-to-homemaker-debiasing-word-embeddings.pdf
http://arxiv.org/abs/1503.02531
https://ieeexplore.ieee.org/document/6909616/
https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

References 245

40. Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., et al.
Learning phrase representations using RNN encoder-decoder for statistical machine transla-
tion. arXiv:1406.1078.

41. Mao, J., Xu, W., Yang, Y., Wang, J., Huang, Z., & Yuille, A. Deep captioning with multimodal
recurrent neural networks (m-RNN). arXiv:1412.6632

42. Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. Show and tell: A neural image caption
generator. arXiv:1411.4555.

43. Karpathy, A., Fei-Fei, L., Bengio, S., & Erhan, D. Deep visual-semantic alignments for gen-
erating image descriptions. https://cs.stanford.edu/people/karpathy/cvpr2015.pdf.

44. Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002). BLEU: A method for automatic
evaluation ofmachine translation. InProceedings of the 40th AnnualMeeting of the Association
for Computational Linguistics (ACL), Philadelphia. https://www.aclweb.org/anthology/P02-
1040.pdf.

45. Bahdanau, D., Cho, K., & Bengio, Y. Neural machine translation by jointly learning to align
and translate. arXiv:1409.0473.

46. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., et al. Show, attend and tell:
Neural image caption generation with visual attention. arXiv:1502.03044.

47. Graves, A., Fernandez S., Gomez, F., & Schmidhuber, J.Connectionist temporal classification:
Labelling unsegmented sequence data with recurrent neural networks. https://www.cs.toronto.
edu/~graves/icml_2006.pdf.

48. Young, T., Hazarika, D., Poria, S., & Cambria, E. Recent trends in deep learning based natural
language processing. arXiv:1708.02709.

49. Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., et al. Google’s neural machine trans-
lation system: Bridging the gap between human and machine translation. arXiv:1609.08144.

50. The alan turing internet scrapbook. https://www.turing.org.uk/scrapbook/test.html.
51. Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., & Massimiliano, P. Bilevel programming for

hyperparameter optimization and meta-learning. arXiv:1806.04910.
52. Schmerling, E.Whose line is it?- quote attribution through recurrent neural networks. https://

cs224d.stanford.edu/reports/edward.pdf.
53. Aleksander, I., & Morton, H. (1990). An introduction to neural computing. Boca Raton: Chap-

man and Hall (ISBN 0-412-37780-2).
54. Beale, R., & Jackson, T. (1990).Neural computing, an introduction. Bristol: AdamHilger, IOP

Publishing Ltd (ISBN 0-85274-262-2).
55. Ruineihart, D. E. Hinton, G., &Williams, R. (1985). Learning internal representation by error

propagation. http://www.dtic.mil/dtic/tr/fulltext/u2/a164453.pdf.
56. LeCun, Y., Bottou, L., Orr, G.B., Muller, K-R. Efficient BackProp. http://www.yann.lecun.

com/exdb/publis/pdf/lecun-98b.pdf.

http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1412.6632
http://arxiv.org/abs/1411.4555
https://cs.stanford.edu/people/karpathy/cvpr2015.pdf
https://www.aclweb.org/anthology/P02-1040.pdf
https://www.aclweb.org/anthology/P02-1040.pdf
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1502.03044
https://www.cs.toronto.edu/~graves/icml_2006.pdf
https://www.cs.toronto.edu/~graves/icml_2006.pdf
http://arxiv.org/abs/1708.02709
http://arxiv.org/abs/1609.08144
https://www.turing.org.uk/scrapbook/test.html
http://arxiv.org/abs/1806.04910
https://cs224d.stanford.edu/reports/edward.pdf
https://cs224d.stanford.edu/reports/edward.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a164453.pdf
http://www.yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://www.yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf

	Preface
	Artificial Intelligence
	Evolution of Expert Systems to Machine Learning
	Machine Learning and Deep Learning
	Applications and Research in Deep Learning
	Intended Audience

	Acknowledgements
	About This Book
	Contents
	About the Author
	1 Introduction to Machine Learning
	1.1 Machine Learning
	1.1.1 Difference Between Machine Learning and Statistics
	1.1.2 Difference Between Machine Learning and Deep Learning

	1.2 Bias and Variance
	1.3 Bias–Variance Trade-off in Machine Learning
	1.4 Addressing Bias and Variance in the Model
	1.5 Underfitting and Overfitting
	1.6 Loss Function
	1.7 Regularization
	1.8 Gradient Descent
	1.9 Hyperparameter Tuning
	1.9.1 Searching for Hyperparameters

	1.10 Maximum Likelihood Estimation
	1.11 Quantifying Loss
	1.11.1 The Cross-Entropy Loss
	1.11.2 Negative Log-Likelihood
	1.11.3 Entropy
	1.11.4 Cross-Entropy
	1.11.5 Kullback–Leibler Divergence
	1.11.6 Summarizing the Measurement of Loss

	1.12 Conclusion

	2 Introduction to Neural Networks
	2.1 Introduction
	2.2 Types of Neural Network Architectures
	2.2.1 Feedforward Neural Networks (FFNNs)
	2.2.2 Convolutional Neural Networks (ConvNets)
	2.2.3 Recurrent Neural Networks (RNNs)

	2.3 Forward Propagation
	2.3.1 Notations
	2.3.2 Input Matrix
	2.3.3 Bias Matrix
	2.3.4 Weight Matrix of Layer-1
	2.3.5 Activation Function at Layer-1
	2.3.6 Weights Matrix of Layer-2
	2.3.7 Activation Function at Layer-2
	2.3.8 Output Layer
	2.3.9 Summary of Forward Propagation

	2.4 Activation Functions
	2.4.1 Sigmoid
	2.4.2 Hyperbolic Tangent
	2.4.3 Rectified Linear Unit
	2.4.4 Leaky Rectified Linear Unit
	2.4.5 Softmax

	2.5 Derivatives of Activation Functions
	2.5.1 Derivative of Sigmoid
	2.5.2 Derivative of tanh
	2.5.3 Derivative of Rectified Linear Unit
	2.5.4 Derivative of Leaky Rectified Linear Unit
	2.5.5 Derivative of Softmax

	2.6 Cross-Entropy Loss
	2.7 Derivative of the Cost Function
	2.7.1 Derivative of Cross-Entropy Loss with Sigmoid
	2.7.2 Derivative of Cross-Entropy Loss with Softmax

	2.8 Back Propagation
	2.8.1 Summary of Backward Propagation

	2.9 Writing a Simple Neural Network Application
	2.10 Conclusion

	3 Deep Neural Networks-I
	3.1 Writing a Deep Neural Network (DNN) Algorithm
	3.2 Overview of Packages for Deep Learning in
	3.3 Introduction to
	3.3.1 Installing
	3.3.2 Pipe Operator in
	3.3.3 Defining a Model
	3.3.4 Configuring the Model
	3.3.5 Compile and Fit the Model

	3.4 Conclusion

	4 Initialization of Network Parameters
	4.1 Initialization
	4.1.1 Breaking Symmetry
	4.1.2 Zero Initialization
	4.1.3 Random Initialization
	4.1.4 Initialization
	4.1.5 Initialization

	4.2 Dealing with NaNs
	4.2.1 Hyperparameters and Weight Initialization
	4.2.2 Normalization
	4.2.3 Using Different Activation Functions
	4.2.4 Use of NanGuardMode, DebugMode, or MonitorMode
	4.2.5 Numerical Stability
	4.2.6 Algorithm Related
	4.2.7 NaN Introduced by AllocEmpty

	4.3 Conclusion

	5 Optimization
	5.1 Introduction
	5.2 Gradient Descent
	5.2.1 Gradient Descent or Batch Gradient Descent
	5.2.2 Stochastic Gradient Descent
	5.2.3 Mini-Batch Gradient Descent

	5.3 Parameter Updates
	5.3.1 Simple Update
	5.3.2 Momentum Update
	5.3.3 Nesterov Momentum Update
	5.3.4 Annealing the Learning Rate
	5.3.5 Second-Order Methods
	5.3.6 Per-Parameter Adaptive Learning Rate Methods

	5.4 Vanishing Gradient
	5.5 Regularization
	5.5.1 Dropout Regularization
	5.5.2 \ell_2 Regularization
	5.5.3 Combining Dropout and \ell_2 Regularization?

	5.6 Gradient Checking
	5.7 Conclusion

	6 Deep Neural Networks-II
	6.1 Revisiting DNNs
	6.2 Modeling Using
	6.2.1 Adjust Epochs
	6.2.2 Add Batch Normalization
	6.2.3 Add Dropout
	6.2.4 Add Weight Regularization
	6.2.5 Adjust Learning Rate
	6.2.6 Prediction

	6.3 Introduction to
	6.3.1 What is Flow?
	6.3.2
	6.3.3 Installing and Running

	6.4 Modeling Using
	6.4.1 Importing MNIST Data Set from
	6.4.2 Define
	6.4.3 Training the Model
	6.4.4 Instantiating a and Running the Model
	6.4.5 Model Evaluation

	6.5 Conclusion

	7 Convolutional Neural Networks (ConvNets)
	7.1 Building Blocks of a Convolution Operation
	7.1.1 What is a Convolution Operation?
	7.1.2 Edge Detection
	7.1.3 Padding
	7.1.4 Strided Convolutions
	7.1.5 Convolutions over Volume
	7.1.6 Pooling

	7.2 Single-Layer Convolutional Network
	7.2.1 Writing a ConvNet Application

	7.3 Training a ConvNet on a Small DataSet Using keras
	7.3.1 Data Augmentation

	7.4 Specialized Neural Network Architectures
	7.4.1 LeNet-5
	7.4.2 AlexNet
	7.4.3 VGG-16
	7.4.4 GoogleNet
	7.4.5 Transfer Learning or Using Pretrained Models
	7.4.6 Feature Extraction

	7.5 What is the ConvNet Learning? A Visualization of Different Layers
	7.6 Introduction to Neural Style Transfer
	7.6.1 Content Loss
	7.6.2 Style Loss
	7.6.3 Generating Art Using Neural Style Transfer

	7.7 Conclusion

	8 Recurrent Neural Networks (RNN) or Sequence Models
	8.1 Sequence Models or RNNs
	8.2 Applications of Sequence Models
	8.3 Sequence Model Architectures
	8.4 Writing the Basic Sequence Model Architecture
	8.4.1 Backpropagation in Basic RNN

	8.5 Long Short-Term Memory (LSTM) Models
	8.5.1 The Problem with Sequence Models
	8.5.2 Walking Through LSTM

	8.6 Writing the LSTM Architecture
	8.7 Text Generation with LSTM
	8.7.1 Working with Text Data
	8.7.2 Generating Sequence Data
	8.7.3 Sampling Strategy and the Importance of Softmax Diversity
	8.7.4 Implementing LSTM Text Generation

	8.8 Natural Language Processing
	8.8.1 Word Embeddings
	8.8.2 Transfer Learning and Word Embedding
	8.8.3 Analyzing Word Similarity Using Word Vectors
	8.8.4 Analyzing Word Analogies Using Word Vectors
	8.8.5 Debiasing Word Vectors

	8.9 Conclusion

	9 Epilogue
	9.1 Gathering Experience and Knowledge
	9.1.1 Research Papers

	9.2 Towards Lifelong Learning
	9.2.1 Final Words

	 References
	

