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Abstract. Hyperspectral remote sensing image analysis has always
been a challenging task and hence there are several techniques employed
for exploring the images. Recent approaches include visualizing hyper-
spectral images as third order tensors and processing using various
tensor decomposition methods. This paper focuses on behavioural anal-
ysis of hyperspectral images processed with various decompositions.
The experiments includes processing raw hyperspectral image and pre-
processed hyperspectral image with tensor decomposition methods such
as, Multilinear Singular Value Decomposition and Low Multilinear Rank
Approximation technique. The results are projected based on relative
reconstruction error, classification and pixel reflectance spectrums. The
analysis provides correlated experimental results, which emphasizes the
need of pre-processing for hyperspectral images and the trend followed
by the tensor decomposition methods.
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1 Introduction

Hyperspectral images (HSI) are acquired using air-borne or space-borne hyper-
spectral sensors [13] such as NASA’s AVIRIS (Airborne Visible/Infrared Imag-
ing Spectrometer) and Hyperion Imaging Spectrometer. Hyperspectral sensors
are capable of capturing a pixel at hundreds of contiguous wavelengths and
forms a large image cube of reflectance values. The study has revealed that the
hyperspectral data is spatial and spectral correlated [13] and the need of spatio-
spectral processing for HSI [8]. There are various feasible approaches in literature
for spatio-spectral HSI processing and one among them is processing HSI as a
third order tensor.

Spectral-spatial dimensionality reduction and HSI classification is based on
tensor modelling is proposed by Bourennane et al. where he used Adaptive Mul-
tidimensional Weiner filtering (AMWF), a denoising multidimensional filter [3].
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Zhang et al. proposed Higher Order Singular Value Decomposition (HOSVD)
as an effective compression algorithm for hyperspectral images [13]. Zhang used
Khatri-Rao product for reconstruction of the decomposed tensor to reconstruct
them back to the original size. [12] projected Additive Morphological Decom-
position (AMD) algorithm for HSI and the comparison of classical Principal
Component Analysis (PCA) with Tensor-Principal Component Analysis (TCA)
based on HSI classification.

Lower Rank Tensor Approximation (LRTA) has been used by Renard et al. [9]
for efficient denoising of spatial data and simultaneously reducing the spectral
dimension with low rank approximations. Rank-1 tensor decomposition tech-
nique is employed by Guo et al. as a denoising tool for HSI. Most of the tensor
decomposition algorithms, encompasses that these algorithms can be used as
denoising and dimensionality reduction/compression of HSI.

In this paper, HSI is modelled as a third order tensor and behaviour of ten-
sor decomposition methods such as, Multilinear Singular Value Decomposition
(MLSVD) and Low Multilinear Rank Approximation (LMLRA) on HSI is ana-
lyzed. The tensor decompositions is applied for raw hyperspectral data (without
any pre-processing), data normalized hyperspectral data and Least Square Fast
Fourier Transform (LS-FFT), a spectral denoising algorithm proposed in a prior
work by Chippy et al. [4]. The experimental analysis is projected based on rel-
ative reconstruction error obtained after decomposition and reconstruction of
HSI, Support Vector Machine (SVM) classification results and pixel reflectance
spectrums.

The following section details about the pre-processing techniques employed
and the tensor decomposition methods used. The experimental flow of techniques
is explained in the Sect. 3. Section 3 also exhibits the experimental results and
the analysis derived from the experimental results obtained. The section includes
dataset briefing, fixing of compression size for tensor decompositions based on
relative reconstruction error and the results obtained from SVM classification
and the pixel reflectance spectrums for hyperspectral data with and without
pre-processing. Section 4 concludes with the summary of analysis derived from
the experimental results and discusses about the future work possible in the
discussed research area.

2 HSI Pre-processing Techniques and Tensor
Decomposition Methods

2.1 HSI Pre-processing Techniques

The pre-processing of HSI is always an active research area. Data normalization
and LS-FFT denoising technique are chosen as two pre-processing techniques for
the scope of this paper.

Data Normalization. HSI data is normalized with respect to spectral dimen-
sion. Data is normalized to the range of minimum reflectance value and maximum
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reflectance value captured for that pixel. A vector “x” can be normalized to its
min-max range using,

x′
i = ((xi − min(x))/(max(x) − min(x))) ∗ ((max(x) − min(x)) + min(x)) (1)

where, x′
i is the normalized vector of x and i ranges to the length of the vector.

LS-FFT Denoising. Least Square based denoising technique for one-
dimensional signals [10] is proposed by Ivan W Selesnick as,

min
x

||y − x||22 + λ||Dx||22 (2)

where ‘y’ is the input noisy signal, ‘x’ is the unknown denoised signal and ‘D’
is the second derivative coefficient matrix; λ is the control parameter, which
balances the importance of removing noise with retaining the information in the
Eq. (2). The solution of the optimization problem mentioned in the Eq. (2) is
derived as,

x = (I + λDTD)−1y (3)

Chippy et al. introduced a variant approach to the Ivan W Selesnick’s optimiza-
tion problem (Eq. 2) to avoid the complex inverse calculation as in the Eq. 3.
Chippy adopted denoising in the frequency domain [4] by rewriting the Eq. 2 as,

min
x

||y − x||22 + λ||s ⊗ x||22 (4)

where, s ⊗ x represents the convolution of s and x. Solving the convolution in
frequency domain becomes multiplication.
For LS-FFT of matrix, the optimization problem can be formulated as,

min
X

||Y − X||22 + λ||SX||22 (5)

where, the discrete Fourier transform of y, x, and s are represented as ‘Y’, ‘X’
and ‘S’ respectively. The solution is the Inverse Discrete Fourier Transform of
the Eq. 5 is,

Xk = Yk/(1+λ|Sk|2) (6)

where k varies from 1 to length of the signal.

2.2 Tensor Decomposition Methods

Multilinear Singular Value Decomposition (MLSVD). Multilinear Sin-
gular Value decomposition is a speculation of Singular Value Decomposition for
higher dimensional datasets [5]. A third order tensor of size (I1 × I2 × I3) is
decomposed into a set of core tensor and three orthogonal factor matrices. A
pixel at i1, i2, i3 location of the tensor ‘a’ can be represented as [5],

ai1i2i3 =
I1∑

j1=1

I2∑

j2=1

I3∑

j3=1

sj1j2j3u
(1)
i1j1

u
(2)
i2j2

u
(3)
i3j3

(7)
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where, u(1), u(2), u(3) are the orthogonal factor matrices along the three dimen-
sions/modes and s is the core tensor. For a tensor ‘T’, MLSVD can be defined
as shown in Fig. 1

Fig. 1. Multilinear Singular Value Decomposition (Image Courtesy: [2])

and can be written as,
T = S.1U

(1).2U
(2).3U

(3) (8)

where S is the core tensor and U (1), U (2), U (3) are the orthonormal bases for
three different subspaces of third order tensor. The .1, .2, .3 or ×1,×2,×3 repre-
sentation mentions the first order, second order and third order (n-order) tensor
products respectively [7].

Low Multilinear Rank Approximation (LMLRA). Low Multilinear Rank
Approximation is comparable with Multilinear Singular Value Decomposition
and is different with the way of computation and the optimality of the tech-
niques [1]. LMLRA is computed in two stages, processing the underlying theory
and refining the registered yield from the initial step utilizing the mentioned
algorithm. The approximation technique tries to limit the frobenius error in each
iteration. [6] The low rank approximation techniques Higher Order Orthogonal
I and trust-region-based algorithm is discussed by Ishteva and reasons that the
trust-region-based algorithm focalizes to the arrangement speeder.

LMLRA Reconstruction Technique. The decomposed tensor can be recon-
structed by using Low Multilinear Rank Approximation (LMLRA) reconstruc-
tion/regeneration technique. The technique follows a simple Khatri-Rao product
(n-order tensor product) of core tensor and factor matrices with respect to its
dimensions. The HSI tensor is reconstructed to its original size for comparative
analysis.
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2.3 Analysis Methods

– Relative Reconstruction Error : Relative reconstruction error is the frobenius
norm of the difference in the reconstructed image from the original image to
the frobenius norm of the original image [2] and is computed as,

RRE =
||Original Image − Reconstructed Image||F

||Original Image||F (9)

where RRE denotes Relative Reconstruction Error; ||x||F denotes the frobe-
nius norm of x.

– SVM Classification: Hyperspectral data classification follows pixel-wise clas-
sification. Each pixel is mapped to a corresponding label. SVM is a linear
binary classifier, that classifies two classes with respect to minimize the error
function. SVM can be extended for multi-class classification as one-on-one or
one-on-all methods.

– Pixel Reflectance Spectrum: Pixel reflectance spectrums are graphical plots
of reflectance value plotted against the wavelength/band number of a pixel,
which is the spectral signature of the pixel from a remote sensing perspective.

3 Experimental Procedure, Results and Observations

The raw hyperspectral image is compressed using MLSVD and reconstructed
to its original size, whose relative reconstruction error (computed using Eq. 9)
is noted. The reconstructed image is then analyzed based on the variation in
SVM classification results, overall classification accuracy, class-wise accuracy
and classification maps, and Pixel Reflectance Spectrums for a pixel chosen from
the noisy part of the image. This flow of experiments is repeated for LMLRA
compression also, and results are tabulated. As shown in the Fig. 2, the whole
set of experiments for both MLSVD and LMLRA is repeated for normalized
hyperspectral data and LS-FFT denoised hyperspectral data.

Fig. 2. Experimental flow - block diagram
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3.1 Dataset/Hyperspectral Data

Experiments are carried out on the standard dataset of hyperspectral images:
Indian Pines, Salinas Scene and Pavia University [4,11]. Indian Pines is captured
by NASA AVIRIS sensor. Indian Pines was captured over the Indian Pines in
North-Western Indiana with 145 × 145 pixels and 224 bands in the range of
400–2500 nm. Salinas Scene is also acquired by NASA AVIRIS sensor. Salinas
Scene was captured over Salinas valley, California with a spatial resolution of
3.7 m pixels. The area covered consists of 512 scan-lines by 217 samples over
224 spectral bands. Pavia University was acquired by the ROSIS sensor over
the region Pavia in Northern Italy consisting of 610 × 340 pixels (excluding the
blacked out pixels) and 103 bands.

3.2 Tuning of Compression Size Based on Relative Reconstruction
Error

The compression size tabulated in the Table 1, is fixed based on the graphical
plot plotted for relative reconstruction error against the compression size rang-
ing till the minimum size of the image in all dimensions. A graphical plot result
is depicted in the Fig. 3 for the dataset Indian Pines, where the relative recon-
struction error tends to become constant at the dimension 45 and hence the
compression size is chosen as 45 × 45 × 45 for the experiments performed.

The corresponding relative reconstruction errors for the dataset and tuned
compression size and the rate of compression are also recorded in the Table 1.

Fig. 3. Graphical plot for tuning of compression size for Indian Pines dataset
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Table 1. Tuning results and corresponding compression rate

Dataset & size Compression
size & Rate

Decomposition
methods

Relative Reconstruction Error

Without
pre-processing

With data
normalization

With
LS-FFT
denoising

Indian Pines
(145× 145× 220)

45× 45× 45
{97.5%}

MLSVD 0.0380 0.0380 0.0166

LMLRA 0.0378 0.0378 0.0165

Salinas Scene
(512× 217× 224)

75× 75× 75
{98%}

MLSVD 0.0482 0.0482 0.0497

LMLRA 0.0478 0.0478 0.0493

Pavia University
(610× 340× 103)

70× 70× 70
{97.8%)

MLSVD 0.1792 0.1792 0.1187

LMLRA 0.1771 0.1771 0.1173

The compression rate is computed as,

Compression Rate = (1 − No. of pixels of Compressed Image

No. of pixels of Original Image
) × 100 (10)

From the Table 1, the relative reconstruction error for data without pre-
processing and normalized data are more or less same while there is a huge
variation in reconstruction error in case of LS-FFT denoised data.

3.3 SVM Classification Results

Classification of raw data gives dissatisfying results (refer Table 2), hence pre-
processing the data becomes vital. As per the overall classification accuracy in

Table 2. SVM classification results

Dataset & size Decomposition
methods

Overall classification accuracy (%)

Original
image

Reconstructed image

Without pre-
processing

With data
normalization

With LS-FFT
denoising

Indian Pines
(145× 145× 220)

MLSVD 77.33 80.96 82.50 88.60

LMLRA 81.72 82.46 88.14

Salinas Scene
(512× 217× 224)

MLSVD 86.74 93.86 93.89 94.10

LMLRA 93.60 93.61 94.65

Pavia University
(610× 340× 103)

MLSVD 91.15 94.45 93.92 96.50

LMLRA 94.36 94.41 96.32
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the Table 2, it can be noted that relative reconstruction error and Overall Clas-
sification Accuracy are inversely proportional which is the expected behaviour.
The results also confirms with LS-FFT denoising as an efficient denoising tech-
nique and the compression algorithms as lossless. Since the decomposition and
reconstruction has only aided in the removal of noise by adding smoothness and
has not deprecated the information contained within the image.

Sample classification map shown in the Fig. 4 confirms the above derived
observations. It can be noted that MLSVD and LMLRA approaches the image
in two different manner, so that predictions in one class for MLSVD is better
than LMLRA and vice-versa. The same can be noted in all the three datasets.
The choice of decomposition algorithm wholly depends on the data and should
be experimentally chosen. From the overall classification accuracy and classifi-
cation maps, MLSVD provides better results for both Indian Pines and Pavia
University, while LMLRA provides better results for Salinas Scene.

Fig. 4. Sample classification map (Dataset: Indian Pines): (i) Ground truth; (ii)
Original image; (iii) Class labels; (iv) MLSVD without pre-processing; (v) MLSVD
after data normalization; (vi) MLSVD after LS-FFT denoising; (vii) LMLRA without
pre-processing; (viii) LMLRA after data normalization; (ix) LMLRA after LS-FFT
denoising
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For deep analysis, class-wise accuracy is also considered and tabulated for
all the three datasets Indian Pines, Salinas Scene and Pavia University in the
Tables 3, 4 and 5. Except for very few classes, the accuracy has increased promi-
nently for most of the classes, assisting the results derived from the classification
maps and overall classification accuracy.

3.4 Pixel Reflectance Spectrum

Pixel Reflectance Spectrum is the spectral signature of a pixel. Reflectance spec-
trums helps us to understand the pixel level information and variation along the
wavelength spectrum. Figures 5, 6 and 7 represents the reflectance spectrum of a
pixel from the dataset Indian Pines, Salinas Scene and Pavia University. It can
be observed that the data without pre-processing and data normalized MLSVD

Fig. 5. Pixel reflectance spectrum - Indian Pines (Left: MLSVD, Right: LMLRA)

Fig. 6. Pixel reflectance spectrum - Salinas Scene (Left: MLSVD, Right: LMLRA)
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Fig. 7. Pixel reflectance spectrum - Pavia University (Left: MLSVD, Right: LMLRA)

and LMLRA are similar and not differential but varies from the original pixel
information denoting the smoothening effect of decomposition algorithm. Spec-
trum with LS-FFT denoised is prominent and vary from the other reflectance
spectrums by the smoothening it provides at highly variation reflection values.
This extra smoothening is the denoising effect and reasons the improvement in
the classification results and the relative reconstruction error.

4 Conclusion

The paper aims on the comparative study of behaviour analysis of tensor decom-
position methods MLSVD and LMLRA with the same reconstruction technique
on the raw, data normalized and LS-FFT denoised hyperspectral data. From
the experimental results and observations, it can be concluded that the choice of
tensor decomposition based on efficiency depends on the data. In terms of compu-
tational time, MLSVD is 98% faster than LMLRA. The analysis of other tensor
decomposition methods and including other analyzing methods or extending the
techniques to other three dimensional data can be considered as the future scope
of this paper.
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