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Chapter 4
Synthesis of Polysaccharides III: Sucrase 
as Catalyst

Satoshi Kimura and Tadahisa Iwata

Abstract  Sucrase-type glycosyltransferases that classified into non-Leloir glycos-
yltransferases, named glucansucrase and fructansucrase, catalyze in transfer of 
either a glucose or a fructose from sucrose to produce glucans or fructans. The reac-
tions need only a renewable carbon resource, such as sucrose, and proceed very 
efficiently, with high yields, with regio- and stereoselectivity, and in one-pot water-
based system. This chapter provides an overview of the glucansucrase and fructan-
sucrase enzymes, their reaction, and product specificity. Finally, we discuss the 
potential applications of α-glucans produced by glucansucrase in new bio-based 
materials.

Keywords  α-Glucan · Fructan · Glucansucrase · Fructansucrase · 
Glucosyltransferase · Sucrose

4.1  �Introduction

Polysaccharides, natural polymers composed of sugar units linked via glycosidic 
bonds, have been considered as interesting bio-based materials for utilization in 
many applications such as plastics and biomedical field with currently increasing 
amount of researches. The advantages are that they are made from renewable 
resources supporting the trend to reduce the consumption of plastics made from 
petrochemicals, and with the concept of carbon neutrality, they can be regarded as 
eco-friendly materials [1]. Plants typically produce polysaccharides such as well-
known cellulose and hemicelluloses such as xyloglucan, xylan, and glucomannan. 
However, hemicelluloses are branched, and they are extracted from wood via alkali 
or acid process leading to chain degradation that lowers the molecular weight. 
Besides, microorganisms can synthesize many polysaccharides in the culture 
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medium as well such as pullulan from Aureobasidium pullulans; curdlan from 
Agrobacterium, Rhizobium, and Cellulomonas; dextran from Leuconostoc and 
Streptococcus; and hyaluronic acid from Streptococcus and Pasteurella [2]. In any 
case, however, it is required complicated purification step in order to purify the 
target polysaccharides, and the limitation of the direct production of polysaccha-
rides by microorganisms is the difficulty in structure and composition control due to 
the nature of each producer.

In vitro enzymatic polymerization of polysaccharides is convenient and environ-
mentally friendly method for production of polysaccharides. Sucrase-type glycosyl-
transferases classified into non-Leloir glycosyltransferases have been employed as 
catalysts for the practical synthesis of polysaccharides by both polymerization and 
modification. It is to be mentioned that sucrases, e.g., glucansucrase and fructansu-
crase, belong to glycosidases (EC 3.2.1). These enzymes catalyze in transfer of 
either a glucose or a fructose moiety of sucrose to produce glucans or fructans of 
different types with respect to glycosidic linkages and side chains. The reactions 
proceed very efficiently, with high yields, with regio- and stereoselectivity, and in 
one-pot water-based system. The background of this convenient synthetic pathway 
is the high energy of the glycosidic bond of sucrose, which is similar to that of 
nucleotide-activated sugars. The simplified reaction manners are represented as 
follows.

Glucansucrase: n Sucrose → Glucan + n Fructose
Fructansucrase: n Sucrose → Fructan + n Glucose

In this chapter, biochemical characterizations of glucansucrases and fructansu-
crases are summarized, and their recent applications with a focus on in  vitro-
synthesized α-glucan by glucansucrase are described.

4.2  �Glucansucrase

Glucansucrases are extracellular enzymes mainly produced by lactic bacteria 
Lactococcus, Leuconostoc, and oral Streptococcus [3]. Glucansucrases catalyze the 
synthesis of high molecular weight D-glucose polymers named glucans from 
sucrose (Fig. 4.1). Dextran, α(1 → 6)-glucan is the first reported and most common 
glucan synthesized by a kind of glucansucrase, was one of the first biopolymer to be 
produced on an industrial scale in 1948 [4]. The glucansucrase responsible for the 
synthesis of dextran was first reported in Leuconostoc [5] and was named as dex-
transucrase (EC 2.4.1.5). Amylosucrase (EC 2.4.1.4) is the most extensively studied 
glucansucrase [6–8]. Amylosucrase was found in the genus Neisseria and named 
because of its enzymatic conversion of sucrose to a glycogen- or amylopectin-like 
polymer [9]. Until now, amylosucrase gene from Neisseria polysaccharea was 
cloned and heterologously expressed in Escherichia coli [10], followed by reports 
of its three-dimensional structure [11, 12].
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Glucansucrases of oral streptococci, like Streptococcus mutans, play a key role 
in the cariogenesis process, as the synthesized glucans enhance the attachment and 
colonization of cariogenic bacteria [13, 14]. Therefore, in order to develop vaccines 
against dental caries, studies for the isolation of the gene encoding for these glucan-
sucrases of oral streptococci were initiated more than 40 years ago. The first genes 
encoded glucansucrases (named gtf) were cloned from Streptococcus downei, using 
γ phage as cloning vector and screening on sucrose-containing medium [15]. The 
term GTF (glucosyltransferases) has been the one preferred by researchers with oral 
bacteria; this term does carry to confusion with the nucleotide sugar-dependent 
intercellular glycosyltransferases [16]. In the sucrase-type enzymes, energy 

Fig. 4.1  The basic structures of the α-glucans synthesized by glucansucrases. The α-glucans are 
classified according the dominant linkage type in the main chain

4  Synthesis of Polysaccharides III: Sucrase as Catalyst



92

necessary to catalyze all the reactions comes only from the cleavage of the glyco-
sidic bond of sucrose. The mediation of nucleotide-activated sugars or cofactors is 
not necessary. The term glucansucrase has been favorably used in recent years, the 
specificity of the enzyme being indicated by a name derived from the main glucan 
produced, e.g., α(1  →  6)-glucan (dextransucrase) and α(1  →  4)-glucan 
(amylosucrase).

A long-standing question about glucansucrase relates to the mechanisms of 
chain elongation and the determinants of type of glycosidic linkage introduced to 
the growing glucan chain. As nucleotide sequences of glucansucrases became avail-
able, multiple alignments of the deduced amino acid sequences revealed conserved 
unique features which may explain which amino acid residues or domains are 
responsible for these properties. Of the oral streptococci, S. mutans produces three 
distinct glucansucrases, while in S. sobrinus, the closely related S. downei and S. 
salivarius each produce four glucansucrase genes (Table 4.1) [17]. In contrast, S. 
gordonii, S. sanguinis, and S. oralis make only a single glucansucrase.

4.2.1  �Catalytic Mechanism of Glucansucrase

The sequences of about 500 different glucansucrase genes including ORF fragment 
are listed on the CAZY database of Carbohydrate Active Enzymes (http://www.
cazy.org/) [18–20]. And more than 60 glucansucrases have been biochemically 
characterized. In the CAZY classification system, all glucansucrases except amy-
losucrases are classified as family GH70. Amylosucrase is the only enzyme of fam-
ily GH13 displaying polymerase activity and is clearly unique in the family GH13 
that mainly contains starch-degrading enzymes. These enzymes from families 
GH13 and GH70 are also known as the part of the α-amylase superfamily and are 
classified in clan GHH [18–20]. In the α-amylase enzymes, the central catalytic core 
of these enzymes is predicted to have alternating α-helixes and β-sheets, in an 
arrangement the same as found in the (β/α)8 barrel found in amylase. Although 
these enzymes catalyze transglycosylation or hydrolysis reactions on differently 
linked α-glucan polymers, they use the same set of key amino acid residues to cata-
lyze their reaction [21–24]. During the 2000s, the role of these residues and the 
mechanism of the reaction have been extensively studied in GH13 enzymes such as 

Enzyme Mw (10-3 x Mr) Glucan (water solubility)

GtfJ 168 100% α(1→3)- (insoluble)

GtfK 176 100% α(1→6)- (soluble)

GtfL 157 50% α(1→6)- / 50% α(1→3)- (insoluble)

GtfM 171 95% α(1→6)- (soluble)

Table 4.1  Glucansucrases in Streptococcus salivarius (ATCC 25975)
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Neisseria polysaccharea amylosucrase [25], Aspergillus oryzae α-amylase [26], 
and Bacillus circulans cyclodextrin glucanotransferase [27]. A decade later, final 
evidence for the catalytic mechanism of GH70 glucansucrase came from the three-
dimensional structure and its complexes with sucrose or maltose [23].

General reaction mechanism for glucansucrase is shown in Fig. 4.2. Based on the 
sequence homology within the α-amylase superfamily, the corresponding catalytic 
residues in glucansucrases had been identified, and the mechanism was proposed to 
be similar [24]. The most important catalytic residues are a nucleophile (aspartate), 
a general acid/base (glutamate), and a transition-state stabilizer (aspartate). This 
mechanism is based on a detailed structural analysis of B. circulans 251 CGTase in 
complex with intact substrate and on a covalent intermediate of the same enzyme 
[27]. In this mechanism, first the glycosidic linkage of the sucrose is cleaved, result-
ing in a covalent α-glucosyl-enzyme intermediate; in the second half-reaction, the 
glucosyl moiety is transferred to an acceptor with retention of the α-anomeric con-
figuration. After formation of the covalent intermediate, fructose is released, and the 
glucosyl moiety is transferred to an accepting sugar (transglycosylation) or to a 
water molecule (hydrolysis). The excellent review articles have been also published 
to provide detailed information of structure and function of glucansucrase 
[28–30].

4.2.2  �Synthesis of α-Glucans by Glucansucrases

Different kinds of α-glucans with different sizes and structures, depending on the 
glucansucrase-producing bacterium, are synthesized. Based on their main glyco-
sidic linkage type, these α-glucans are divided into five categories: dextran, amy-
lose, mutan, alternan, and reuteran (Fig. 4.1). This structural variability results in a 
wide range of physicochemical properties, which may be suitable for different 
applications.

Dextran  Dextran is a water-soluble α-glucan mainly composed of α(1 → 6) link-
age connected by varying amounts and arrangements of α(1 → 2), α(1 → 3), and 

– – –
–

–

–

––

Fig. 4.2  General reaction mechanism of glucansucrase catalyst to produce glucan from sucrose 
with liberation of fructose
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α(1 → 4) linkages (Fig. 4.1, Table 4.2). The glucansucrase responsible for the syn-
thesis of dextran is designated as dextransucrase and was first reported in 
Leuconostoc [5]. Subsequently, dextransucrases from various species of the genera 
Lactobacillus, Streptococcus, and Weissella were also identified and characterized 
[31–33]. The dextran is widely used in separation technology, biotechnology, and 
several applications in medicine [34, 35]. Dextran for clinical and technical applica-
tions is marketed in most developed countries all over the world. Of industrial rel-
evance is the dextran produced by Leuconostoc mesenteroides NRR B- 512F 
DSR-S; the dextransucrase of this strain converts sucrose into a high molar mass (up 
to 1  MDa) polymer with 95% α(1  →  6) linkages in the main chains and 5% 
α(1 → 3)-branching linkages [36–38]. This native or partially degraded dextran and 
its derivatives have found many industrial applications in medicine (e.g., blood 
plasma expander, anticoagulant, and antithrombotic agents), pharmacy (e.g., lubri-
cant and carrier), food (e.g., thickening, stabilizing, and gelling agent), and biotech-
nology (e.g., chromatography matrix) [38–40].

Another intensively studied dextransucrase is the Lactobacillus reuteri 180 
Gtf180 GS producing an α-glucan with a high molecular weight of 30 MDa contain-
ing 69% of α(1 → 6) linkages plus single α(1 → 3) linkages in linear (21%) and 
branched (13%) orientations [41]. Notably, different α-glucans with unique highly 
branched structures have been reported in Leuconostoc strains. The Leuconostoc 
citreum NRRL B-1299 was found to synthesize a dextran polymer with mostly 
α(1 → 6) linkages but also containing about 30% of α(1 → 2) linkages, as well as a 
limited amount of α(1 → 3)-branching linkages [42–44]. This strain encodes six 
different glucansucrases, namely, DSR-A, DSR-B, DSR-E, DSR-M, DSR-P, and 
BRS-A [43].

Amylose  Amylosucrase can catalyze three types of enzymatic reactions when 
sucrose is the only substrate: polymerization, isomerization, and hydrolysis [45]. 

Enzyme Linkage compositon (%) Ref.
α(1→2) α(1→3) α(1→4) α(1→6)

Leuconstoc mesenteroidesNRRL B-512F DSRS 5 95 [40]

Leuconstoc citreum B-1299 DSRE 5 10 3 81 [72]

Leuconstoc citreum B-1299 BSR-A 37 63 [73]

Leuconstoc citreum BSR-B 50 50 [74]

Weissella cibaria DSRWC 100 [39]

Lactobacillus reuteri 180 Gtf180 31 69 [47]

StreotococcusmutanssGS5 GtfD 30 70 [37]

Streotococcus salivariusGtfJ 100 [12]

Table 4.2  Examples of dextran synthesized by glucansucrases from sucrose
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The polymerization reaction, a unique characteristic of amylosucrase, synthesizes 
α-glucan with only α(1 → 4) linkages and has no need for any primer. Recombinant 
amylosucrase from Neisseria polysaccharea synthesizes amylose with DP of 35–58 
in vitro. By changing only the initial sucrose concentration, it was possible to obtain 
amyloses with different morphology and structure [46]. Simultaneously, amylosu-
crase produces a certain number of sucrose isomers, turanose and trehalulose, 
through isomerization reactions, and catalyzes a hydrolysis reaction releasing glu-
cose and fructose from sucrose [45]. In addition, in the presence of sucrose and 
extra glycosyl acceptors, amylosucrase has transglycosylation capacity to attach 
glucose molecules from sucrose to glycosyl acceptors, such as glycogen [47, 48], 
starch [49], and flavanone [50]. These unique reactions make it a vital transgluco-
sylation tool in producing novel polysaccharides and carbohydrate-based bioactive 
compounds.

Using the self-assembly process of α(1 →  4)-glucans produced by amylosu-
crase, several amylose microbeads and their applications were reported. Amylose-
single-walled carbon nanotube microbeads are the first exploration of enzymatic 
synthesis of microparticles by amylosucrase [51]. Amylose magnetic microbeads 
were also prepared by the similar enzymatic approach in the presence of iron oxide 
nanoparticles [52]. The produced microbeads had a well-defined spherical shape 
and exhibited excellent magnetic responses and dispersibility in aqueous 
solutions.

Mutan  Mutan polymers are water-insoluble α-glucan mainly composed of 
α(1 → 3) linkage in the linear backbone and minor amounts of α(1 → 6) linkages. 
Mutansucrase-synthesizing mutan polymers are mainly found in Streptococcus 
strains. The ability of Streptococcus mutans and Streptococcus sobrinus to convert 
sucrose into water-insoluble glucans was found to be important in the etiology of 
dental caries by facilitating the colonization of tooth surfaces [53]. Consequently, 
glucansucrases are regarded as potential targets for anticaries drugs [54]. 
Mutansucrases have also been found in Lactobacillus and Leuconostoc strains [55, 
56]. Mutan is regarded as a potentially low-cost polymer, which may be used to 
develop new bio-based materials [57, 58]. In particular, chemical modification of 
mutans to ester derivatives has shown to improve the thermoplasticity of this poly-
saccharide (see below for further details) [57, 58]. Moreover, chemically sulfated 
mutan showed fibrinolytic, anti-inflammatory, and antimicrobial properties [59–62]. 
The use of mutan for a variety of applications as fibers, films, and resins has been 
patented. The in vitro-synthesized mutan by recombinant mutansucrase (GtfJ from 
S. salivarius ATCC 25975) showed only α(1 → 3) linkage without any branching 
structure, which is difficult to obtain from native sources.

A transmission electron micrograph of in vitro-synthesized mutan is shown in 
Fig. 4.3 (Kimura and Iwata unpublished data). The synthetic mutan are wavy fibril-
like crystals, which aggregated into plates. By electron diffraction analysis, it was 
indicated that the glucan chain was not extended parallel to the fibril axis as with 
other fibrillar polysaccharides, such as cellulose and chitin, but folded in the fibrils 
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[63]. Several structural studies of mutan-like glucans have been reported by X-ray 
diffraction analysis [64–67]. In either case, however, regenerated mutan derived 
from the precipitate of an alkaline extraction from fungi cell walls was used, and the 
detailed structures of mutan have not been elucidated. The in  vitro-synthesized 
mutan was a pure and completely linear α(1 → 3)-glucan without branches; for the 
first time, it was confirmed the morphology of native mutan [63].

Alternan  Alternan, with alternating α(1 → 6) and α(1 → 3) linkages, was found 
in L. mesenteroides NRRL B-1355 [68, 69]. Due to its backbone structure of alter-
nating α(1 → 6) and α(1 → 3) linkages, alternan is resistant to enzymatic digestion 
by most known mammalian and microbial hydrolytic enzymes [70]. These proper-
ties make alternan valuable as low-calorie food additive [71]. So far the only 
enzymes reported to hydrolyze alternan are isomaltodextranases and alternanase 
[70–73].

Reuteran  Reuteran is a water-soluble branched α-glucan mainly composed of 
α(1 → 4)-glucan segments interconnected by single α(1 → 6) linkage. Only two 
reuteransucrase have been characterized, both of them present in Lactobacillus 
reuteri strains and producing reuteran polymers differing in the amount of α(1 → 4) 
and α(1 → 6) linkages [74, 75]. Reuteran has been described as a potentially health-
promoting food ingredient.

Fig. 4.3  Transmission electron micrograph of in  vitro-synthesized mutan. (Kimura and Iwata 
unpublished data)

S. Kimura and T. Iwata
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4.3  �Fructansucrase

Fructansucrases transfer the fructose units of sucrose onto polysaccharides or 
appropriate acceptors with release of glucose. Fructans, thus produced, are either 
levan composed of β(2 → 6)-linked fructose residues by levansucrase or inulin com-
posed of β(2 → 1)-linked fructose residues by inulosucrase. Figure 4.4 has shown 
the typical structure of levan and inulin. When sucrose is used as the acceptor in the 
initial priming reaction, synthesized fructans contain a nonreducing glucose unit at 
the end of the chain. In bacteria, fructansucrases are extracellular enzymes; levan-
sucrases are widely distributed in both gram-positive and gram-negative bacteria, 
while inulosucrases are exclusively present in lactic acid bacteria. Most of the 
research of fructansucrases has been performed on levansucrases, in particular on 
enzymes from Bacillus spp. [76–79] and Zymomonas spp. [80–83].

Fructansucrases cleave the glycosidic bond of sucrose and use the released 
energy to couple a fructose unit (i) to a growing fructan chain (transfructosylation), 
(ii) to sucrose, (iii) to water (hydrolysis), or (iv) to another acceptor (such as raffi-
nose) [84, 85]. Because sucrose is used as the acceptor in the initial priming reac-
tion, bacterial fructans contain a nonreducing glucose unit at the end of the chain 
[86] (Fig. 4.4). In the initial reaction of fructansucrases, the fructose of a sucrose 
molecule is coupled by the enzyme to another nonreducing fructose with a free 

Fig. 4.4  Structure of levan and inulin synthesized by fructansucrase from sucrose. When sucrose 
is used as the acceptor in the initial priming reaction, synthesized fructans contain a nonreducing 
glucose unit at the end of the chain (terminal glucose)
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primary alcohol at position C2, acting as an acceptor substrate, e.g., sucrose, raffi-
nose, or a fructan molecule [87, 88]. This is also referred to as the priming reaction. 
In subsequent steps, the enzyme elongates the primer. A clear difference between 
fructansucrase and glucansucrase enzymes is the fact that glucansucrase enzymes 
cannot use sucrose as an acceptor but rather the cleaved glucose residue. The molec-
ular masses of the fructans produced show a large variation, from 2  ×  104 to 
50 × 106 Da [28]. There are some reports that the molecular mass of the fructan 
produced is dependent on incubation conditions, the temperature, salinity, and 
sucrose concentration [89–91]. Sucrose analogues with a similar glycosidic linkage 
to sucrose have been used for the synthesis of new poly- and oligosaccharides by 
fructansucrase. For example, a wide range of fructansucrases recognize most of the 
sucrose analogues, such as those which were composed of galactose, mannose, 
xylose, fucose, and rhamnose in place of glucose, giving rise to novel poly- and 
oligosaccharides [92–97].

4.4  �In Vitro-Synthesized α-Glucan as New Bio-Based 
Materials

The usage of naturally obtained mutan in the material application had not attracted 
any attention until now as the mutan has a branched structure; they lack a uniform 
composition, and purification costs are relatively high. The GtfJ enzyme, a kind of 
glucansucrase from Streptococcus salivarius, can effectively catalyze the one-pot 
water-based enzymatic polymerization of linear α(1 → 3)-glucan without branches. 
The synthesis process is environmentally friendly with a reaction in water medium, 
without organic solvent, and also convenient: only mixing sucrose solution with 
enzyme and storing at designated temperature. In addition, the molecular weight of 
the mutan can be adjusted by reaction conditions. Thus, in vitro-synthesized mutan 
can be considered as a potentially low-cost polymer for future prospect. A disadvan-
tage of mutan, like all other polysaccharides, is the insolubility against most organic 
solvents and its thermally unprocessability. Up until now, many researchers have 
been attempting to improve this drawback by various techniques. One interesting 
method is the introduction of acyl groups to the hydroxyl groups of sugar units, or 
esterification, which raised the thermoplastic properties of cellulose known as so-
called cellulose acetate and also improved the thermal properties and solubility of 
other polysaccharides in reported researches recently.

The series of mutan ester derivatives with Mw of about 200 kDa having different 
acid chain length were synthesized, and their thermal and mechanical properties of 
mutan ester films were investigated [58]. Hopefully, this material could be a substi-
tution product to come on board replacing petroleum-derived plastics so as to avoid 
the uncertainty and sensitivity from oil’s booms and busts, mitigate the environmen-
tal issues, and create the sustainability for future generations. Glass transition and 
melting behaviors of mutan ester series from C2 (acetate) to C8 (octanoate) are 
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shown in Fig. 4.5. The thermal and mechanical properties of mutan esters and its 
degree of crystallinity can be controlled by changing the length of its ester chain. 
Figure 4.6 shows the superior melting and glass transition temperature of mutan 
acetate and propionate over commercially available petroleum-based thermoplas-
tics and currently interesting bio-based polymers; thus these materials are regarded 
as promising candidates for future thermoplastic application [57]. It was showed 
that unbranched mutan can be conveniently produced by green method using 
sucrose as a low-cost material. Furthermore, fully substituted mutan esters which 

Fig. 4.5  Glass transition 
(Tg) and melting 
temperature (Tm) of mutan 
esters series from C2 
(acetate) to C8 (octanoate). 
Redrawn on the basis of 
the reference [58]

Fig. 4.6  Comparison of glass transition (Tg) and melting temperature (Tm) between those of mutan 
acetate and propionate, esters of other polysaccharides, and commercially available polymers. PE, 
PP, and PET are polyethylene, polypropylene, and polyethylene terephthalate, respectively. 
Redrawn on the basis of the reference [57]
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their thermal and mechanical properties can be adjusted are of interest for develop-
ing new thermoplastic materials.

4.5  �Conclusions

Sucrase-type (non-Leloir-type) enzymes can catalyze to produce both polysaccha-
rides and oligosaccharides using sucrose as a renewable cheap substrate via one-pot 
water-based reaction. The sucrase-type enzymes can be a very efficient tool to pro-
vide the synthesis of tailor-made glucan, fructan polysaccharides, and oligosaccha-
rides for a wide range of applications. Several enzymatic processes with these 
enzymes already have been established for polysaccharide and oligosaccharide syn-
thesis, some of which are applied industrially for a variety of applications. Further 
breakthroughs in this field are expected in the future, with enzyme engineering 
approaches increasingly allowing new construction of mutant enzymes and the dis-
covery of new types of sucrase enzymes.
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