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Chapter 12
Enzymatic Modification of Polymers

H. N. Cheng

Abstract In polymer applications and development, it is often necessary to modify 
an existing polymer structure in order to impart special end-use properties. Whereas 
chemical modification methods are most commonly practiced, sometimes enzyme- 
catalyzed modifications may be desirable because of the specificity of the reactions, 
reduction in the by-products produced, milder reaction conditions, and more benign 
environmental impact. A number of enzyme-catalyzed reactions are reviewed in this 
paper, covering primarily biobased materials like polysaccharides, proteins, triglyc-
erides, and lignin. The enzymes used include mostly hydrolases, oxidoreductases, 
and transferases, with occasional involvement of lyases and isomerases. The types 
of reactions are diverse and include polymer hydrolysis and degradation, polymer-
ization, oxidation, glycosylation, cross-linking, and transformation of functional 
groups. Because biopolymers are agro-based and occur abundantly in nature, they 
are often available in large quantities and amenable to enzymatic reactions. As such, 
the combination of biopolymers and enzymes represents a good product develop-
ment opportunity and a useful tool for postharvest agricultural technology and green 
polymer chemistry.

Keywords Biopolymers · Enzymes · Functionalization · Hydrolysis · Lignin · 
Modification · Polymers · Polysaccharide · Protein · Triglyceride

12.1  Overview

In view of current interest in green polymer chemistry, reduction in the dependence 
of petroleum-based raw materials, and environmental stewardship, agro-based 
materials and enzyme-related technologies have become increasingly emphasized 
in polymer research and product development. Indeed, the use of enzymes for poly-
mer modification reactions is now fairly well established and often encountered. 
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A huge body of literature has been accumulated on numerous reactions and pro-
cesses, including many books [1–7] and reviews [8–14]. A detailed literature search 
of Chemical Abstracts for “enzymatic modification” showed for the 2008–2018 
time period 301 papers on polysaccharides, 6350 papers on proteins, 472 papers on 
lignin, 377 papers on triglycerides, and 7455 on synthetic polymers. In order to 
keep this chapter within a reasonable size, only a selected coverage is being made 
for the period 2012–2018, with the emphases on enzyme-catalyzed reactions that 
can be used for research and development (R&D) and potential industrial applica-
tions. Such reactions include polymer hydrolysis; addition, removal, or modification 
of functional groups; cross-linking; and (to a lesser degree) polymer synthesis.

12.1.1  Enzyme Categories

Enzymes are commonly classified into six categories, known as Enzyme Commission 
(EC) numbers: oxidoreductases, transferases, hydrolases, lyases, isomerases, and 
ligases (Table  12.1) [15]. For polymer hydrolysis, modifications, and syntheses, 
three enzyme categories (hydrolases, oxidoreductases, and transferases) are most 
often utilized. The other three categories are helpful but less often observed for the 
topics covered in this review.

12.1.2  Hydrolases (EC 3)

Thus far in the literature, hydrolases have appeared more frequently in polymer 
studies than any other enzyme types. In addition to its natural function of hydrolyz-
ing the substrates, hydrolases have been used extensively to carry out polymeriza-
tions and polymer modification reactions. Many hydrolases are non-specific and 
can accommodate a range of substrates. It is also helpful that many hydrolases are 
commercially available at reasonable prices.

Polymerization Reactions One successful application of hydrolases is to catalyze 
the synthesis of oligosaccharides and polysaccharides. This approach has been 

Table 12.1 Uses of enzymes in synthesis, modification, and degradation of conventional polymers

Enzyme category EC number Polymer hydrolyses Polymer modifications Polymer syntheses

Oxidoreductase 1 √ √ √
Transferase 2 √ √
Hydrolase 3 √ √ √
Lyase 4 √
Isomerase 5 √ √
Ligase 6
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 pioneered by Kobayashi et al. and summarized in several excellent reviews [8, 10, 
16–18]. A somewhat different approach is to use glycosidases to prepare oligosac-
charides [19–22].

Another very active approach is the synthesis of polyesters, polylactones, and 
polycarbonates. Lipases have been the most commonly used enzymes for this pur-
pose, and a large number of polymers have been made. Particularly outstanding is 
Candida antarctica lipase B immobilized on acrylic resin (also known as CALB or 
Novozym® 435). This large body of literature has been reported and reviewed by a 
number of workers [23–34].

In addition, lipases and proteases have been utilized to make polyamides. 
Polyamides over 10 KDa have been enzymatically synthesized for water-soluble 
polyamides [35–37] or made through ring-opening polymerization of lactams [38–
40]. Proteases have been used to prepare oligopeptides with controlled sequences 
and the effects of reaction parameters studied [41, 42].

An interesting development is silicon bioscience [43–46], where some proteins 
(called “silicateins”) can act both as catalysts and as macromolecular templates 
in vitro, directing the condensation of silica and polysiloxanes from silicon alkox-
ides at neutral pH. The use of a lipid-coated lipase to catalyze the oligomerization 
of diethoxydimethylsilane (DEDMS) has been reported by Nishino et al. [47].

Polymer Modification Reactions This is a large area of endeavor where various 
hydrolases have been employed to insert or remove functional groups on substrate 
polymers or to convert one functionality to another. A good overview with selected 
illustrations has been given by Puskas et al. [48]. Some examples from the literature 
include CALB-catalyzed end-functionalization of many synthetic polymers [48, 
49], lipase-catalyzed syntheses of fatty acid diester of poly(ethylene glycol) [50], 
lipase-catalyzed derivatization of silicone-containing polymers [51], and prepara-
tion of glycosilicone conjugates [52].

In the polysaccharide area, some examples include protease-catalyzed acylation 
of polysaccharides [53], papain-catalyzed amidation of pectin [53], hydrolase- 
catalyzed amidation of carboxymethyl cellulose [50], enzymatic syntheses of fatty 
acid esters of cationic guar [50], and modification of starch [54]. More detailed 
information is given in Sect. 12.2.

Hydrolysis and Degradation In nature, hydrolases are usually designed for 
hydrolysis and degradation of substrate molecules. Hydrolases can be used for 
molecular weight reduction, cleavage of branch chains, breakdown of polymeric 
matrices, and other applications. Some examples in the polysaccharide area include 
cellulolytic enzymes for biomass conversion [55], proteases for the degradation of 
guar gum [53], cellulase for viscosity reduction of xanthan gum [53], and beta-D- 
galactosidase for pectin hydrolysis [53]. More examples can be found in Sect. 
12.2.1.

Examples in the polyester area include the use of specific depolymerases for the 
degradation of poly(lactic acid-co-hydroxybutyrate) [56], recombinant cutinases for 
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polyester degradation [57], cutinases for poly(ethylene terephthalate) hydrolysis 
[58], protease- and lipase-type depolymerases for poly(lactic acid) [59], and lipases 
for the degradation and recycling of poly(butyl adipate) and poly(butylene succi-
nate) [60]. Other hydrolases for polymer degradation and hydrolysis include 
Alcalase® protease for the hydrolysis of end-terminated esters in polyamide [61] 
and nitrilase (and nitrile hydratase) for the bioconversion of nitriles to carboxylic 
acids [62–65]. Two reviews mostly on the enzymatic hydrolysis of synthetic poly-
mers have appeared in 2008 and 2003 [66, 67].

12.1.3  Oxidoreductases (EC 1)

Oxidoreductases tend to be more specific with respect to their substrates. Some 
oxidoreductases require the concurrent action of cofactors and some do not. Because 
cofactors require extra cost and more skill in handling them, the reactions obviating 
the use of cofactors are preferred. However, in appropriate cases oxidoreductases 
requiring cofactors can still be useful.

Polymer Syntheses This is potentially a very fruitful area for enzymes in polymer 
science. A lot of papers have been published using oxidoreductase for the polymer-
ization of phenols and anilines. Thus, polyphenols [68–73], poly(phenylene oxide) 
[74, 75], and electrically conducting polymers [76–78] have been made in this way. 
A different and very productive approach is to engage oxidoreductases in the free- 
radical polymerization of vinyl monomers [79–86].

Polymer Modifications Some oxidoreductases have been used in specific ways to 
convert one functionality to another in a biopolymer. A well-known example is 
galactose oxidase that oxidizes only the C6 alcohol on galactose to an aldehyde 
[87–89]. Thus, this reaction has been used on galactomannans (such as guar and 
locust bean gum) [87–89]. Another example is tyrosinase, which catalyzes the oxi-
dation of phenolic compounds into quinones. It has been used to functionalize chi-
tosan [90, 91] or to graft proteins onto chitosan [92].

An interesting oxidation reaction involves lipase (formally a hydrolase), which 
catalyzes the conversion of a carboxylic acid to a peracid in the presence of H2O2 
[93, 94]. The resulting peracid can then carry out polymer modifications, such as the 
epoxidation of polybutadiene [95] and oxidation of hydroxyethylcellulose [96].

Polymer Hydrolysis and Degradation For pulp and paper industry, a significant 
application of oxidoreductase is “biobleaching,” which refers to the enzyme- 
catalyzed removal of lignin from wood pulp [97–99]. Four oxidoreductases have 
been studied: laccase (with concurrent use of a mediator and oxygen), lignin peroxi-
dase, manganese peroxidase, and versatile peroxidase (in combination with H2O2). 
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Presumably the enzymatic system oxidizes the lignin, such that it is more easily 
removed later in the pulping process. More information is given in Sect. 12.5.

12.1.4  Transferases (EC 2)

A transferase is an enzyme that catalyzes the transfer of a specific functional group 
from one molecule to another. Cofactors are sometimes needed for the processes. 
Thus far, quite a few reactions involving transferases have been used for polymer 
syntheses and modifications.

Polymer Syntheses Many articles describe the application of transferases for 
polymer syntheses. One example is the use of glycosyltransferase for the synthesis 
of oligosaccharides and polysaccharides, where the cofactors are recycled [100–
104]. Wang et al. [100] have reviewed several approaches relating to glycosyltrans-
ferases. DeAngelis [105] described two methods using recombinant Pasteurella 
multocida synthase to generate glycosaminoglycans (GAG). These have been uti-
lized to make GAG via immobilized mutant enzyme reactors [106]. Another 
approach is to take advantage of biopathway engineering to design different carbo-
hydrate polymers [107].

Other transferases of interest include dextransucrase, which catalyzes the forma-
tion of dextran and some oligosaccharides [108–111]. Yet another transferase reac-
tion entails the use of potato starch phosphorylase in the synthesis of 
low-molecular-weight amylose [112, 113]. Glycogen phosphorylases have been 
employed in a two-enzyme tandem reaction to produce artificial starches with dif-
ferent levels of branches [114].

Polymer Modifications Glycosyltransferases have also been utilized for glycan 
chain modifications, especially at outer or terminal positions [22]. Transglutaminases 
are acyl transfer enzymes that catalyze the condensation of glutamine and lysine resi-
dues of proteins [115, 116]. A calcium-independent microbial transglutaminase has 
been reported by Payne et al. [92] to cross-link the protein in gelatin-chitosan blends.

12.1.5  Lyases (EC 4)

A lyase is an enzyme that catalyzes the breaking of various chemical bonds by 
means other than hydrolysis and oxidation. It often forms a new double bond or a 
new ring structure. In practical terms, lyases are alternatives to hydrolases in degrad-
ing polymers. In the polysaccharide area, a number of lyases are known and some-
times used, e.g., pectin lyase, pectate lyase, xanthan lyase, alginate lyase, hyaluronate 
lyase, and heparin lyase.
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12.1.6  Isomerases (EC 5)

An isomerase converts a molecule from one isomer to another, often involving bond 
breakage and reformation. For example, alanine racemase catalyzes the conversion 
of L-alanine to D-alanine, and glucose isomerase converts glucose to fructose. In 
polymer science, isomerases are less often used. Some examples in polysaccharides 
include the use of epimerases to convert mannuronate to guluronate in alginates 
[117–120] and to carry out C5 epimerization of oxidized konjac glucomannan [121] 
and oxidized galactomannan [122].

12.1.7  Ligases (EC 6)

DNA ligase is involved in DNA synthesis during replication. Other ligases are also 
useful in various biochemical processes. For conventional polymer synthesis or 
modification, the use of this category of enzymes is rather rare.

12.2  Enzymatic Modification of Polysaccharides

Polysaccharides are polymeric carbohydrates found in nature that consist of mono-
saccharides attached together by glycosidic bonds. Some of them, like starch and 
glycogen, are important for food and nutrition. Many of them (e.g., cellulose, hemi-
cellulose, starch, chitin, guar, xanthan, carrageenan, and alginate) are industrially 
relevant materials, used as thickeners, gelling agents, stabilizers, interfacial agents, 
flocculants, and encapsulants in a variety of applications [123–126]. Yet, the poly-
saccharides found in nature often do not have the optimal properties needed for 
specific applications, and chemical modifications are needed in order to produce 
desirable and competitive commercial products [127–129]. Particularly successful 
are chemically modified cellulose and starch, with a range of derivative products 
available. For example, commercially available cellulosic derivatives include cel-
lulose acetate, carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), and 
methyl cellulose (MC). Modified starches include cationic starch, hydroxyethyl 
starch, starch acetate, and starch phosphate.

It is well known that enzymatic reactions can complement the chemical modifi-
cation reactions in suitable cases [130–133]. Examples of useful enzyme-catalyzed 
reactions of polysaccharides include (1) molecular weight reduction, (2) addition of 
charge, (3) addition of polar group, (4) hydrophobic modification, and (5) formation 
of reactive oligomers. For illustration, some enzyme-catalyzed modification reac-
tions are shown below.
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12.2.1  Molecular Weight Reduction

Through the use of an appropriate hydrolase, the molecular weight of a polysac-
charide can be reduced [133]. An example of an advantageous reduction of molecu-
lar weight is shown for “biostable” cellulosic derivatives [134, 135], where CMC or 
HEC can be deliberately treated with a cellulase enzyme to hydrolyze substrate sites 
that are susceptible to enzymatic action. The resulting cellulosic products are then 
resistant toward microbial degradation.

In the recent literature, there has been some interest in degrading the molecular 
weight of glycosaminoglycans, particularly hyaluronic acid in order to yield new 
bioactive compounds. Thus, in one study, many enzymes and microbes were 
screened for their ability to degrade a marine exopolysaccharide comprising mostly 
hyaluronic acid, and one candidate was found to be particularly suitable [136]. 
Moreover, the degradation of hyaluronic acid by hyaluronidase was studied with a 
protein nanopore [137].

Another example of a functional product is low-molecular-weight guar, which 
can be used as a dietary fiber and bioactive substance [138, 139]. The molecular 
weight reduction can be done chemically or enzymatically [140, 141]. In an earlier 
study [142], the molecular weight reduction of guar was examined combinatorially 
with four enzymes (lipase, hemicellulase, pectinase, and protease). The hemicellu-
lose/protease combination gave the greatest molecular weight reduction. That study 
pointed out the importance of protein (up to 7% in guar) in contributing toward the 
viscosity of guar.

12.2.2  Addition of a Polar Substituent

The nature of a substituent on a polysaccharide can significantly change the proper-
ties of the polysaccharide. This is why so many cellulose and starch derivatives have 
been made. Whereas most of the derivatizing reactions have been conducted through 
chemical means, there have been some enzymatic reactions. A simple example is 
the reaction involving lactose and β-galactosidase to insert a galactose moiety either 
at the chain ends of an oligosaccharide [143] or at the end of ethylene oxide units in 
HEC [144]. Another fruitful approach is to enzymatically graft a polymer onto a 
polysaccharide, as shown in the two examples below.

In the first example, HEC, when deposited as a film, could be grafted by capro-
lactone in bulk, using lipases derived from porcine pancreas (Scheme 12.1) [145]. 
The product had a degree of substitution between 0.10 and 0.32 on the anhydroglu-
cose basis. The reaction demonstrates that lipase-catalyzed ring-opening polymer-
ization can be employed to graft hydrophobic polyesters onto hydrophilic 
cellulose-based polymers.

The second example is the chemoenzymatic synthesis of amylose-grafted cellu-
lose [146]. A maltoheptaose was chemically introduced to the amine-functionalized 
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cellulose by reductive amination to produce the maltoheptaose-grafted cellulose. 
Then, the phosphorylase-catalyzed enzymatic polymerization of glucose 1- phosphate 
from the graft-chain ends on the cellulose derivative was performed, giving the amy-
lose-grafted cellulose. The obtained material was shown to form gels and films [146].
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12.2.3  Addition of Charge

Sometimes it is useful to introduce an electrical charge to a polysaccharide to impart 
special properties. An example of the addition of an anionic group is shown by the 
lipase-catalyzed reaction of an anhydride (e.g., succinic and maleic) [147, 148]. 
Thus, lipase AK (Pseudomonas sp., from Amano) was found to have excellent 
activity for this reaction on guar, giving succinated guar (Scheme 12.2). The same 
reaction was also reported for HEC [147].

The enzyme-catalyzed addition of a cationic functionality to a polysaccharide is 
less common. An example is the papain-catalyzed amidation of high methoxy pec-
tin with lysine and other diamines as shown below [149].
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where X is -(CH2)4-NH2 for lysine but can also be –CH2-(CH2)5-NH2, -CH2-
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Scheme 12.1 Modification of hydroxyethyl cellulose (HEC) via graft copolymerization of 
ε-caprolactone by a lipase catalyst
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be a minor component in papain. The products were reported to show enhanced 
viscosity and gel-forming properties.

Another example of the addition of a cationic functionality was shown for the 
protease-catalyzed reaction of CMC with 1,6-hexamethylenediamine to form an 
amide with a free amine end group [148].

12.2.4  Hydrophobic Modification

A more commonly encountered reaction is hydrophobic modification. Because 
polysaccharides are usually water-soluble, a hydrophobic moiety on the polysac-
charide tends to associate with each other to increase the viscosity of the polysac-
charide solution at low shear rates [150]. These hydrophobically modified 
polysaccharides can often be used as surfactants or rheology modifiers. Whereas 
this reaction is mostly done chemically, an enzyme has been used in selected cases 
to facilitate the reaction or to provide additional hydrophobic structures. An exam-
ple of the lipase-catalyzed reaction of alkyl ketene dimer with HEC is shown in 
Scheme 12.3 [151], where R1 = R2 = C14H29, for a ketene dimer derived from pal-
mitic acid. Although the reaction can be done without an enzyme at higher tempera-
ture, the use of the enzyme increases the yield and decreases the reaction temperature. 
This enzyme-catalyzed reaction has also been carried out on starch [152].

Another example is the hydrophobic modification of HEC, using lipase and vinyl 
stearate [153]. The stearoyl functionality forms an ester with the –OH of HEC with 
the loss of acetaldehyde, thereby providing a hydrophobic substituent on HEC.
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12.2.5  Formation of Reactive Functionalities

Enzymatic reactions can be used to convert the functionality of one substituent on a 
polysaccharide to another. A good example is the conversion of C6 alcohol on a 
galactose to an aldehyde through galactose oxidase [87–89, 154–156]. Another 
reaction is the addition of an acrylate functionality onto HEC with vinyl acrylate 
and a lipase. The acrylate functionality on HEC can then be reacted further to form 
additional derivatives [153].

12.3  Enzymatic Modification of Proteins

Enzymes are proteins themselves, and thus one may expect the use of enzymes in 
protein modification to be very productive. Indeed in living systems, a lot of pro-
teins are modified in physiological processes. However, from the point of view of 
industrial product development, the largest applications of enzymatic modification 
of proteins happen in the food arena. As in other polymers, sometimes a given pro-
tein may not have the optimal properties needed for an application, and protein 
modifications are needed. In the food area, chemical modifications have to be done 
with care to ensure that the reagents used are nontoxic (or else fully reacted or 
removed after the reactions), the reaction products are nonhazardous, and all by- 
products involved in the reactions are compatible with FDA regulations for food 
use. In contrast, the enzymes are more specific in their reactions (thereby generating 
less by-products) and usually involve milder experimental conditions (such as lower 
temperature and aqueous solvents), and many enzymes are nontoxic themselves, 
such that the FDA requirements can be more easily met.

An excellent early review on this topic was provided by Whitaker [157]. More 
recent reviews included Filice et al. [158], Kumar et al. [159], Panyam and Kilara 
[160], and Chobert et al. [161]. For the enzymatic reactions on food proteins, the 
most common reactions are hydrolysis and cross-linking. Other modifications have 
been used with less frequency, such as phosphorylation/dephosphorylation, glyco-
sylation, and oxidation/reduction. The following review was based on a Chemical 
Abstracts search of enzymatic modifications of food proteins covering the years 
2012–2018.

12.3.1  Hydrolysis

For food applications, hydrolysis is the most common way of modifying proteins. 
Since 2012 at least 27 papers and reviews have appeared on enzymatic hydrolysis 
of food proteins. These papers can be grouped into four categories. In the first cat-
egory, 21 papers deal with enzymatic hydrolysates of proteins in order to improve 
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their properties, to enhance their use in normal or clinical nutrition, and to produce 
bioactive substances or functional food ingredients. A wide range of food proteins 
were enzymatically hydrolyzed, including soy proteins [162, 163], sesame proteins 
[164–166], milk proteins [167–171], fish proteins [172, 173], egg proteins [174], 
canola meal protein [175], sunflower protein [176], flaxseed protein [177], rice bran 
protein [178], wheat protein [179], and pea protein [180, 181]. The properties being 
studied included emulsification, foaming, antioxidant, and bioactivity. Canola meal 
protein [175], milk protein [167], and sunflower protein [176] were specifically 
subjected to enzymatic hydrolysis in order to improve their poor water solubility. 
The enzymes used included mostly proteases, e.g., Alcalase®, papain, pepsin, chy-
motrypsin, trypsin, neutrase®, bromelain, and Flavourzyme®.

The second category of papers in the enzyme hydrolysis area deals with encap-
sulation. Thus, soy protein was degraded with Alcalase® in order to make oil-in- 
water emulsions that encapsulated tocopherol [182]. Sunflower protein was also 
enzymatically hydrolyzed to form microparticles and emulsions that encapsulated 
tocopherol [183]. Hydrolysis was combined with enzymatic cross-linking for soy 
and sunflower protein [184]. In all three cases, oil retention decreased with hydro-
lysis but increased with fatty acid acylation.

The third category consists of publications that use enzyme hydrolysis to reduce 
allergenicity of the protein. Thus, whey protein was treated with trypsin [185] and 
chymotrypsin and bromelain in combination with high hydrostatic pressure [186] in 
order to develop specialty products like infant formulas, geriatric products, diet 
foods, and high-energy food supplements.

There are also some papers that carried out enzymatic hydrolysis of proteins to 
gather fundamental information, e.g., use of Alcalase® and Flavourzyme® to degrade 
potato protein to get amino acid composition [187] and degradation of casein to 
determine its chemical structure and molecular weight distribution [188].

12.3.2  Cross-Linking

In the past 5–6 years, there have been at least 23 papers on enzyme-modified food 
proteins through cross-linking. Most of them used transglutaminase (TG) although 
tyrosinase and laccase were sometimes involved as well. In an excellent paper 
[189], the reaction conditions for TG, T. hirsuta laccase, and two types of tyrosinase 
(A. bisporus and T. reesei) were investigated. In raw milk, T. reesei tyrosinase was 
the only enzyme that induced intermolecular protein cross-linking. After heat treat-
ment of milk, both TG and T. reesei tyrosinase were able to form covalently linked 
oligomers. β-Casein was the most readily cross-linked protein. Susceptibility of the 
whey proteins to enzymatic modification was restricted due to their compact globu-
lar structure. After heat treatment, which partially unfolded the whey protein mol-
ecules, both TG and T. reesei tyrosinase were capable of cross-linking whey 
proteins, whereas A. bisporus tyrosinase and laccase were inefficient [189]. 
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Additionally, two other publications also studied the reaction parameters for tyrosi-
nase [190] and laccase [191].

Most of the protein cross-linking papers deal with improved functional proper-
ties achieved, particularly with TG. In general, cross-linking affects solubility, gela-
tion, emulsification, foaming, viscosity, and water-holding properties of the protein. 
Two reviews cover these effects well, one dealing with proteins in general [192] and 
one with dairy proteins [193]. Eight more papers deal with improvements in the 
properties of specific proteins with TG treatment. These include milk proteins [194], 
casein [195], chicken proteins [196, 197], oat and faba bean protein [198], pea pro-
tein [199], peanut protein [200], and fish protein [201]. Four papers studied the 
composite proteins made through cross-linking of two different proteins and their 
functional properties, e.g., casein/gelatin [202], and soy protein/gelatin [203–205]. 
Although the papers cited in this paragraph all deal with TG, the paper on oat and 
faba bean protein [198] also looked at the effect of tyrosinase on the colloidal and 
foaming properties, and one paper on soy protein/gelatin composite [204] studied 
the combined effect of TG and trypsin on the functional properties. A separate paper 
assessed the use of glucose oxidase to cross-link pork myofibrillar protein [206]. 
Glucose oxidase catalyzes the oxidation of glucose into gluconic acid and H2O2, 
which can degrade to the hydroxy radical. When applied to pork myofibrillar pro-
tein, firmer and more elastic gels were obtained by the enzymatic route than by the 
Fenton reagent at comparable H2O2 levels [206].

Two papers deal with a different use of cross-linking in food proteins. A review 
[207] indicated that gluten-free flours lack the viscoelastic network required to 
resist gas production and expansion during baking. Enzymatic cross-linking of 
gluten- free flours was proposed for creating protein aggregates that mimic gluten 
functionality but also for modifying proteins to improve their functionalities. 
Another paper was published on gluten-free amadumbe flour [208], where laccase 
was used; rheological data confirmed the presence of cross-linking due to protein 
and polysaccharide reactions.

One paper on wheat protein [209] pointed out that TG could decrease the immu-
noreactivity of the protein. Even greater decrease was observed for the combined 
TG/hydrolase treatments. Another paper on TG treatment of whey protein [210] 
noted that protein cross-linking and denaturation could change the rate of digestion 
of the resulting food and may be useful for people with special digestive needs.

One paper studied films made with soy protein and TG [211]. The mechanical 
properties of the films were measured. It was pointed out that such a system may be 
a suitable bioplastic.

12.3.3  Phosphorylation/Dephosphorylation

In nature the phosphorylation of protein is involved in many cellular processes, such 
as signal transduction, gene expression, cell cycle, cytoskeletal regulation, and 
apoptosis [212, 213]. Since the early work by Burnett and Kennedy [214], 

H. N. Cheng



369

numerous enzymes are known that carry out phosphorylation and dephosphoryla-
tion [157, 212]. For the purpose of in  vitro synthesis of industrial proteins, the 
kinase reaction seems to be preferred. For example, two milk proteins, β-casein and 
α-lactalbumin, were compared as substrates for casein kinase from bovine mam-
mary gland [215]. Soybean proteins were enzymatically phosphorylated with the 
catalytic subunit of cAMP-dependent protein kinase [216, 217]. Some of the func-
tional properties of the phosphorylated soy protein were also reported [218, 219]. A 
2010 review on the phosphorylation of food proteins by both chemical and enzy-
matic methods has more details [220].

A good example of both phosphorylation and dephosphorylation is given for 
genetically engineered spider silk (though not a food protein) [221]. In that publica-
tion, the protein was phosphorylated with cyclic AMP-dependent kinase and 
dephosphorylated with calf intestinal alkaline phosphatase.

12.3.4  Glycosylation

The Maillard reaction is well known in food chemistry, where heating of amino acids 
and reducing sugars brings about a coupling reaction that gives food its brown color 
and distinctive flavor. The same reaction can be used to glycosylate proteins [222–
224]. However, this chemical reaction is non-specific, requires high temperatures, 
and often generates undesirable colored or other by-products. In contrast, enzymatic 
glycosylation reactions are usually more specific and can be carried out at lower 
temperatures. Indeed, in physiology, protein glycosylation is an important posttrans-
lational modification that enhances the functional diversity of proteins and influ-
ences their biological activity. Many elaborate enzymatic glycosylation routes have 
been identified in a host of organisms. Several reviews have appeared on these physi-
ological pathways [157, 225, 226] and their mechanisms [227]. It was pointed out 
[157] that some of these pathways (often involving glycosyltransferases) can func-
tion in vitro to glycosylate proteins. Nevertheless, in practical terms, these reactions 
tend to be more difficult to handle and probably less amenable to popular usage.

Two recent developments are worthy of note. In one approach [228], tyrosinase 
was used to convert tyrosine residues in gelatin to o-quinone moieties, which then 
underwent nonenzymatic reactions with nucleophilic amino groups of chitosan to 
furnish in vitro conjugation of gelatin to chitosan. In a variation of this approach 
[229], protein-oligosaccharide conjugates were produced by laccase and tyrosinase 
through coupling of the tyrosine side chains of α-casein and phenolic acids of 
hydrolyzed oat spelt xylan. The second approach used transglutaminase (TG) to 
conjugate an amino-containing saccharide with soy protein [230–232], caseinate 
[233–235], fish gelatin [236], and actomyosin [237]. Thus far, glucosamine and 
chitosan (up to 5 kDa in molecular weight) have been found to be suitable saccha-
rides for this reaction. Enhanced emulsification, rheology, and solubility were 
reported for the glycosylated proteins [230, 234, 237]. Further development of these 
synthetic methodologies is expected in the future.
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12.3.5  Redox Reactions

Like all polymers, proteins are susceptible to oxidative reactions. In fact, the normal 
aging process involves an increase in the accumulation of damaged polymers, and 
the buildup of oxidized proteins is regarded as a hallmark of cellular aging [238, 
239]. Proteins can undergo oxidation in many different ways [240]. As regards 
enzyme-catalyzed oxidations, the greatest occurrence in the literature is the use of 
oxidative enzymes to carry out protein cross-linking reactions (as shown in Sect. 
12.3.2) and conjugation of casein with oat spelt xylan (Sect. 12.3.4). Specific enzy-
matic oxidation reactions may be useful in selected applications, e.g., horseradish 
peroxidase- or lactoperoxide-catalyzed iodination of proteins at tyrosine residues 
[157], but these uses are relatively infrequent.

12.4  Enzymatic Modification of Fats and Oils

Fats and oils are used extensively for food and industrial applications. Although 
many chemical modifications are known and practiced, enzymes offer specific 
advantages, such as chemo-, regio-, and stereoselectivities and mild reaction condi-
tions. A lot of work has been done, and this area has been often reviewed 
[241–249].

For convenience, the enzymes used for lipids can be grouped in four categories: 
(1) lipases, (2) enzymes for oxy-functionalization, (3) phospholipases, and (4) spe-
cial enzymes obtained by protein engineering.

12.4.1  Lipases Used for Lipid Modifications

The lipases are the most commonly used enzymes for lipids. The lipase reactions 
can be separated into five types [247]: hydrolysis, esterification, alcoholysis, acidol-
ysis, and transesterification. A large number of lipases from different microorgan-
isms are commercially available. Immobilized lipases are also available, the most 
well known being Novozym® 435 from Candida antarctica B lipase. These enzymes 
have been used extensively to make triglycerides, diglycerides, monoglycerides, 
and structured lipids, as documented in the reviews [241–249].

12.4.2  Enzymes for Oxy-functionalization

These include P450 monooxygenases, hydratase, hydroxylase, lipoxygenase, and 
diol synthase [241, 250]. Cytochromes P450 (CYPs) are hemoproteins that are 
found widely in different organisms [251]. In the P450 monooxygenase reaction, 
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one atom of oxygen is inserted into the aliphatic position of an organic substrate 
(RH), while the other oxygen atom is reduced to water:

 RH O NADPH H ROH H O NADP+ + + → + ++ +
2 2  

For example, a saturated fatty acid can be converted into a ω-hydroxy fatty acid 
in this way [251, 252].

The fatty acid double-bond hydratase catalyzes the addition of water to the cis 
double bond in fatty acids to form a hydroxy fatty acid. It works with a cofactor like 
FAD. Thus, oleic acid is converted to 10-hydroxystearic acid and linoleic acid to 
10-hydroxy-9-cis-octadecenoic acid [253, 254]. The enzyme 12-hydroxylase con-
verts oleic acid into 12-hydroxyoleic acid (ricinoleic acid) [255]. Diol synthase con-
verts an olefin in fatty acid to a diol [250, 256]; for example, 9-hexadecenoic acid 
was converted to 9,10-dihydroxyhexadecanoic acid [256].

Lipoxygenases are enzymes under the family of dioxygenases, which catalyze the 
synthesis of hydroperoxy fatty acids of polyunsaturated fatty acids (PUFAs) having 
one or more cis,cis-pentadiene units by insertion of molecular oxygen [257, 258].

12.4.3  Phospholipases

A phospholipase is an enzyme that hydrolyzes phospholipids into fatty acids and 
other lipophilic substances. Several types of phospholipases are known that catalyze 
reactions on different bonds of the glycerophospholipid [259]. The major use of these 
enzymes is to remove phospholipids from natural fats and oils, a process known as 
degumming. These enzymes have also found applications in food areas [260].

12.4.4  Special Enzymes Obtained by Protein Engineering

A large number of enzymes have been subjected to protein engineering in order to 
improve their attributes or properties. A major accomplishment [261] was the cre-
ation of a lipase that was highly selective for trans- and saturated fatty acids when 
applied to partially hydrogenated vegetable oil. Those fatty acids, identified as a 
major risk factor for human health, can then be removed by selective enzyme hydro-
lysis. Another useful modification of lipase was the chain-length selectivity; thus 
the medium-chain fatty acids can be selectively hydrolyzed [262]. In yet another 
modification, the stability of a R. oryzae lipase toward oxidation was improved 
[263, 264]. These developments have been given in more detail in a review written 
by Bornscheuer [243].

Another interesting development is the use of the yeast Candida tropicalis that 
was engineered with a select cytochrome P450 that converted methyl tetradecanoate 
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to 14-hydroxytetradecanoic acid with high yield and purity [265]. This ω-hydroxy 
fatty acid was then made into a polyester through chemical means (titanium- 
catalyzed polymerization) [266].

12.5  Enzymatic Degradation of Lignin

Lignin is one of the major components of woody tissue, together with cellulose and 
hemicellulose. It is an irregular, randomly cross-linked, heterogeneous polymer of 
three phenylpropanoid monomers: p-coumaryl alcohol (I), coniferyl alcohol (II), 
and sinapyl alcohol (III) (Scheme 12.4). The polymer contains both C-O-C (ether) 
and C-C linkages, the proportions of each varying depending on wood type. Most 
of the hydroxy group on the ring is methoxylated. In wood, the lignin polymer also 
forms covalent bonds with hemicellulose and probably cellulose.

Only a few enzymes are known to modify lignin. The ones that are most well- 
known are the oxidative enzymes, such as the heme-containing glycoproteins, lig-
nin peroxidase (LiP), manganese peroxide (MnP), and versatile peroxidase (VP), 
and the copper-containing glycoprotein laccase. The hemoproteins (LiP, MnP, and 
VP) require H2O2 for their action, whereas laccase needs oxygen. The activity of all 
four enzymes (particularly laccase) can be enhanced with mediators. These enzy-
matic systems have been extensively studied [267–270]. They are used particularly 
in the pulp and paper industry in order to bleach pulp or to optimize the use of plant 
biomass.

Some recent development can be noted here. In an interesting paper [271], lignin 
was reacted with laccase and glucosamine or the tripeptide glycyl-tyrosyl-glycine in 
acetone/water mixture. IR and NMR data suggested that glucosamine and the tri-
peptide were somehow grafted onto the lignin. The detailed structures of the prod-
ucts and the mechanism were yet to be deciphered.

One of the active areas of research involves the mediators for laccase. In one 
paper [272] some phenolic compounds that seemed to be natural laccase mediators 
were studied; these natural phenolic compounds are eco-friendly and may facilitate 
the use of laccase in biorefining. In another paper [273], the mechanism of action 
for mediators was studied with ESR; the results suggested that electron shuttling by 
mediators was not a significant contributor to enhanced laccase oxidation of lignin. 
Yet another paper [274] addressed the question whether laccase can directly cata-

Scheme 12.4 Structures of p-coumaryl alcohol (I), coniferyl alcohol (II), and sinapyl alcohol (III)
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lyze modification of lignin via catalytic bond cleavage. (Laccase is known to cata-
lyze polymerization of lignin.) The authors concluded that bond cleavage indeed 
takes place for low-molecular-weight lignin model compounds, but for lignin itself, 
the laccase-mediator combination is needed.

In a review article, Gonzalo et  al. [267] noted that several bacterial enzymes 
might be involved in lignin degradation, including bacterial laccases, glutathione- 
dependent β-etherases, superoxide dismutases, catalase-peroxidases, and bacterial 
dioxygenases. Additional delignification enzymes were discussed by Pollegioni 
et al. [268], such as β-etherases, demethylases, peroxidases, mycelium-associated 
dehydrogenase, and other oxidoreductases. The use and advantages of immobilized 
ligninolytic enzymes were delineated in a review article [275]. Laccase engineering, 
including both rational design and directed evolution, were reviewed in another 
publication [276].

12.6  Perspectives

It is clear from the above review that enzymatic modifications of polymers consti-
tute an important and vibrant area of research and development. This is a multidis-
ciplinary field, requiring the expertise in polymer chemistry (for polymer handling, 
polymer properties, and structure/property relationships), organic chemistry (for 
synthesis and workup procedures), biochemistry (for enzymology), and chemical 
engineering (for process development). Thus, a multidisciplinary team is often 
needed for an optimal research and development endeavor.

Several current trends favor the continued growth of this field. The first trend is 
the increasing popularity of green polymer chemistry. Indeed, the materials covered 
in this chapter (e.g., polysaccharides, proteins, triglycerides, and lignin) are all bio-
based, degradable, renewable, and sustainable. They can be recycled if needed so 
that the resulting products would not produce polymer waste and cause disposal 
problems. The enzymes are themselves proteins, usually nontoxic, and easily 
 disposable. The enzymatic reactions are often done in water, thereby minimizing 
the hazards associated with organic solvents. The enzymes are frequently specific in 
their reactivity and produce less by-products relative to chemical reactions. The 
enzymatic reactions usually entail lower temperatures, which minimize the energy 
usage. Thus, the use of enzymes is fully compatible with green chemistry.

The second trend is the continued development of gene technologies. Indeed, 
new enzymes can be (and have been) developed as needed for specific reactions. 
Improved enzymes can be obtained to enhance a specific functionality or to meet 
the demands of a given process. In the future, many advances in enzyme technolo-
gies are expected, and these should be helpful as researchers seek new or improved 
ways to modify the polymers or to optimize their processes.

An inherent advantage of agro-based materials like polysaccharides, proteins, 
oils/fats, and lignin is their availability in large quantities and their relatively low 
cost. As natural polymers, they are often amenable to enzymatic action. Thus, the 
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combination of agro-based materials and enzyme reactions should be a powerful 
platform for the development of green polymeric products and a useful tool for 
postharvest agricultural technology.
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