)

Check for
updates

Organization and Protection on the Basis
of a Multi-agent System of Distributed
Computing in a Computer Network to Reduce
the Time for Solving Large-Scale Tasks

Sergey Khovanskov®™®, Konstantin Rumyantsev,
and Vera Khovanskova

Southern Federal University, Rostov-on-Don, Russia
{Sahb9, rke2004}@mail. ru, v.s.khovanskova@gmail. com

Abstract. Special compilers are often used to solve multivariate tasks with time
constraints. However, in this case, the cost of solving the problem is signifi-
cantly increased and the time required to organize access to such a computing
environment is required. At present, the use of distributed computing organized
in a computer network is one of the most accessible and widespread tech-
nologies for reducing the time for solving large-scale tasks. Many different
approaches for organization of distributed computing in a computer network are
grid technology, metacomputing (BOINC, PVM and others). The purpose of
most of the existing approaches for creating centralized systems of distributed
computing is their main disadvantage.

We propose to organize solutions to such a problem as multivariate modeling
by creating distributed computing in a computer network based on a decen-
tralized multi-agent system. A typical computer network is selected as a com-
puting environment. A self-organizing distributed computing system based on a
decentralized multi-agent system is proposed as a computer system. A system is
a set of agents performing the same algorithm. We propose an agent algorithm
for a decentralized multi-agent system. Agents working on this algorithm create
a self-organizing distributed computing system and protect the results of cal-
culations from such a thunderstorm as “denial of service”.

Keywords: Distributed computing * Information protection
Computational process

1 Introduction

Nowadays special computers are often used to solve multivariant tasks with time
constraints. However, this significantly increases the cost of solving the problem and

requires time to organize access to such a computing environment.

Distributed computing is one of the most accessible and common technologies for

reducing the time for solving complex multivariant problems [1-6].

Different computing environments are used to implement such calculations. The
multiprocessor computer, cluster computing system, multi-computer system, or an

© Springer Nature Singapore Pte Ltd. 2019
P. K. Singh et al. (Eds.): FINCT 2018, CCIS 958, pp. 292-303, 2019.
https://doi.org/10.1007/978-981-13-3804-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3804-5_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3804-5_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3804-5_22&domain=pdf
https://doi.org/10.1007/978-981-13-3804-5_22

Organization and Protection on the Basis of a Multi-agent System 293

ordinary computer network can be used as a computing environment. The most
accessible computing environment on which distributed computing is possible is a
computer network that has a sufficient or excessive number of data centers (local, wide
area networks). Most available computing environment where it is possible to perform
distributed computing is a computer network having a sufficient or excessive number of
data centers (LAN/WAN).

Currently, there are many different approaches for organization of the distributed
calculations in computer network technology grid, metacomputing (BOINC, PVM and
others). Most existing approaches are designed to create centralized distributed com-
puting systems. This is their main drawback. In the global network there is a real threat
to the operability of the distributed computational processes due to the extreme
instability of the computing environment and the actions of intruders. We propose to
use self-organizing distributed computing system based on a decentralized multi-agent
system for the solution of large-task and to reducing the threats to the existence of
distributed computing and the security of the obtained results [7—10] (see Fig. 1).

Fig. 1. Structure of the agent program of the multi-agent system

Multiagent system is a set of agents, each of which represents a software module
and placed on a separate computer. The agent performs the office only of its computer
and therefore its work is independent. It organizes the decision of tasks on your
computer initiates the communication with the computers of other agents, performs
processing of information provided by them and based on it make decisions.

294 S. Khovanskov et al.

Decentralized multi-agent system is a set of networked computers. Each computer
is under the control of his agent. All agents execute the same algorithm. The result is a
peer-to-peer computing system. Each agent works independently from the other agents,
the exchange between agents is done using broadcast messages. It allows in the process
of implementing distributed computing scaling a multi-agent system without affecting
functionality of processes computing.

We the developed the multi-agent system algorithm for the realization and
protection of distributed computations in computer networks. The algorithm
allows organizing the distributed computing system based on the nodes of computer
network [11-20].

2 Implementing a Multi-agent System

The system should be decentralized—each agent should have equal rights and be able
to exchange messages with other agents.
Let’s formulate requirements to the algorithm of the agent:

e the agent should monitor the computing processes running on managed computer;

e agents must share the computational load for the organization of distributed
computing;

e agents must redistribute its processing load depending on the performance of their
computers;

e cach agent needs to store all the results of the execution of a large task;

e multi-agent system must ensure the protection of distributed computing against
threats from intruders.

The algorithm was developed containing a set of rules that each agent must perform
to organize distributed computing in a computer network and implement requirements.

A multi-agent system is a set of agents M in the form of the same program modules
of agents {mj, my,..., m,} € M. The set M is superimposed on the set of network
computers {pl, D2y pj} € P (P > M) so that the agent m; is located on the corre-
sponding computer p; of the network. Each agent module (agent) controls the resources
of the p; computer and monitors the load on the Wi. All multi-agent system M,
managing computers {p 1,2y - o p_,-} € P, organizes a system of distributed computing
to solve the whole set of tasks {wy, wy,...,w,} € W. The set M is a peer-to-peer set of
agents working on the same program.

At the beginning of the organization of distributed computing, the agents
{my, my, ..., m,} € M are operating in the computer network {p;,ps,...,p,} € P on
M. At the first stage, the m; € M agent receives the basic information for the organi-
zation of distributed computations in the set M. It includes the computational load W of
the M system and indicating which part of w; of the total volume W the agent must
perform. To monitor the execution of the computational load, each agent has two tables

Organization and Protection on the Basis of a Multi-agent System 295

for work. The first W,,,, table includes all outstanding tasks. The second W,,, table
includes the completed tasks with the results of the execution {W,e;, Wye } € W.

At the initial stage of organizing distributed computing in a computer
network w; C W.

After the agent receives the load m; € M and general information about the system,
he initiates on his computer p; a computational process to perform wi;, performing the
actions in accordance with the rule of computational load.

3 Algorithm of the Agent for Organizing Distributed
Computing and Ensuring the Safety of the Results
of Computing Processes

Each agent of a multi-agent system is located on its network computer. Each computer
is an autonomous computing system, the work of which does not depend on other
computers on the network.

The agent m; monitors the state of the p; computer and manages its operation in
accordance with the “computational load” rule. If p; does not perform calculations, then
the agent m; selects from the list of its computational load W; the next order in the order
and passes it for execution to the computing block of the computer p;. The choice is
made by sequentially viewing the list of computing load Wi € W,,,., by the agent.

The algorithm of actions of the agent m; by the rule “computational load
execution”.

1°. The agent m; € M checks whether the next task w; € Wi is completed? If not
then to point 7°.

2°. Agent m; receives the result of the task w; € Wi.

3°. The m; agent looks at the list of uncompleted Wi, jobs.

4°. Load Wi completely fulfilled Wi,,., = 07 If yes, go to item 7°.

5°. Selection by agent m; of the next job w; + 1 from the list of uncompleted
computing load Wi,,,...

6°. Transfer the selected job wj + 1 to the computer p; € Pz.

7°. Go to another rule.

Due to the “computational load” rule, each computation node p; continuously
performs computational load Wi. The process is performed completely under the
control of the agent m;. This allows you to optimally use the computing resources of
each computer.

To implement the interaction between the agents {my, my,..., m,} € M, during
the execution of distributed calculations, agents exchange messages with results among
themselves. Exchange between agents occurs against the background of computational
load carrying out by computers controlled by the agents {m, ma,..., m,} € M. The
agent m;, having received the result from the other agent, writes w; € W into its table of

296 S. Khovanskov et al.

the results of the general computing load. At the end of the work, each agent stores all
the results of the solutions to tasks W.

The algorithm of actions of m; agent according to the rule “transfer the obtained
results to the other agents”.

1°. Verification is not passed to their computational load w; € Wi? If Yes, go to item
2°, if not then to paragraph 5°.

2°. To form a package for transmitting information agents {my, my, ..., m,} € M.
3°. Free medium? If Yes, go to item 4°, if not to the point 5°.

4°. To send a package with information about the result of the calculation w; € Wi
from all agents {m, m,, ..., m,} € M.

5°. Go to the selection rules of behavior.

The execution time of the entire computing load W by the multi-agent system M is
equal to the time for executing the average load Wi by the agent m; € M.

Incomplete or slow execution of computational load by agents of the distributed
computing system can be caused not only by the low speed of individual computers,
but also by the consequence of the implementation of a denial-of-service threat.
A denial-of-service attack can lead to a disruption in the performance of some compute
nodes and, as a consequence, the termination of the operation of the distributed
computing system itself. To ensure the protection of distributed computing from this
threat, each agent performs actions according to the rule of monitoring the complete-
ness of the execution of the total computing load W.

The agent m; performs the tracking of the completeness of the execution of W with
each obtaining of results from both agents m; € M and from the computer p; and
recording of the results obtained in the list. W,,,. If the entire Wi load is performed in
full, then the agent scans and selects from W,,,.. The job and and passes it on to
execution p;.

The algorithm of actions of the agent m; according to the rule of monitoring the
completeness of execution of the general computing load.

1°. The agent m; € M checks whether all tasks included in its computational load
are executed Wi,,.. = 0? If yes then go to item 5°, if not to item 2°.

2°. The agent m; selects from the table of the general computing load W,,.. the job
w; by which the result is not obtained.

3°. Does the agent m; check that he performed w; before? If yes then go to item 5°, if
not then go to item 4°.

4°. The agent m; transmits the selected task to its computer p; € Pz.

5°. Go to the next rule.

A graphical representation of the algorithm in Fig. 2

Due to the implementation of the rule for monitoring the completeness of the
overall computing load, there is a redistribution of the load between the agents of the
multi-agent system. When you attack “denial of service” and the failure of one or more

Organization and Protection on the Basis of a Multi-agent System

of the agents, the load is redistributed among the remaining healthy compute nodes of
the multi-agent system. This ensures high resiliency of the distributed computing

system created on the basis of a multi-agent system in a computer network.

The execution agent m, next
load and get results

Shut down

In Wg there is a
failed job?

There are in W,,.,
failed job?

Job selection
wi€ Wnrez

A

mg agent performs the
selection of the next load
in Wg and p, reports on the
decision

The agent reports its w; m,
P on the decision

mg agent executes the rule,
the exchange of information
between agents.

Fig. 2. Structure of the agent program of the multi-agent system

Based on the developed algorithm was written in Python and streamlined program

of work agent multi-agent system. The program structure is shown in Fig. 3.

298

S. Khovanskov et al.

X1 Agent
+worker_queue
+server_queue
+app_data
+SRV 1
+PreWorker
+assignmentTasks() +app_data
+check_is_all_results()
+got_all_results()
+terminate()
1
+SRV
X8 X6
Worker OnStartWorker
+data +alive
+sender +data
+taskname +sender
= +queue
run() +complete
+resultSender()
+run()
+stop()

Fig. 3. Structure of the

Data X3 Configurations
+cfg -cfg
+ip_table +WORK_BEFORE_SRV_FINDING
+task_table +MULTITHREADING
+initialization +TIMEOUT
+identification +SLEEP_TIMEOUT

+complete_task
+flag_of_close

+strlPTable()
+strTaskTable()
+getiPTable()
+getTaskTable()
+getTotalComplete Tasks()

[Pyt

1 &*daxa

Server

+queue
+data
+close_flag
+my_addr
+my_port
+master_ip
+data_require
+serv_require

+NUMBER_OF_CLIENTS
+MY_PORT

+MY_IP

+MASTER_IP
+PATH_TASKS
+PATH_INTERPRETER
+IPS

+PORT

+STATE

+TASKS

+STATUS

+RESULT

+TIME

+run()
+agentValidator()
+isGoToExit()
+initDataRequire()
+initServerRequire()
+intData()
+intServer()
+MasterHandler()
+SlaveHandler()
+someHandler()
+waitincomingData()
+taskResultRecv()

+taskResultSendToMaster()
+taskResultSendToSlaves()

+xmitFiles()
+sendToSlaves()
+sendTo()
+recvAll()

+recv()

+send()
+getMasterAddr()

X7
FileTransmitter

+MY_IP
+sock

+ip_addr
+magic_separator

-__getListFiles()

-__readFile()
-__writeFile()
+sendFile()
+recvFile()
+sendFiles()
+recvFiles()

agent program of the multi-agent system

4 Estimating the Detection of a False Result in a Centralized
Multi-agent System

Each agent of a multi-agent system fulfilling the developed algorithm of distributed
computing allows expanding the system by including free computers in it. For this
purpose, the agent module and its computational load are transferred to the free
computer. Scaling a multi-agent system reduces the computational burden on each
agent and reduces the execution time of a larger volume task. The agent module can be
located on any network computer, including on the computers of the global Internet.
This increases the degree of threat to the security of processes and the results of
distributed computing. The management agents verify the correctness of the results
obtained from the agents of a multi-child system for protecting distributed computing

from the threat of receiving a false result.

Organization and Protection on the Basis of a Multi-agent System 299

Let’s calculate on a concrete example the probability of finding a false result for a
centralized multi-agent system. The calculation is feasible for a multi-agent system
consisting of thousands of agents performing calculations and one managing agent.
Assume that among the many agents that make up the multi-agent system, there are
intruders, each of which transmits false results of calculations. The controlling agent
from the results obtained from the agents selects some and checks their correctness by
repeating the calculations. The results to be checked are randomly selected, since the
managing agent, having limited computing resources, does not know exactly which
agent is the attacker.

The probability of P, detecting one false result in a centralized multi-agent sys-
tem, which is constantly formed by an attacker, is determined by the Bernoulli formula.
The Bernoulli formula makes it possible to determine the probability of occurrence of a
certain event under independent conditions. This suggests that the occurrence of an
event in an experiment does not depend on the appearance or non-appearance of the
same event in earlier or subsequent tests.

Paln) = e 7 (L=) (1

where m is the number of times the event occurred;

p - probability that the event will occur;

n is the number of repetitions of the experiment.

For our case, the number of repetitions of the experiment n is the average com-
putational load kr for each agent. It depends on the total amount of computational load
W and the number of agents N in the multi-agent system M. Load kr is calculated by
formula

n:krzﬁ (2)

where N is the number of agents in the multi-agent system M,

W is the total amount of computational load.

The probability of occurrence of an event in one experiment is determined by the
number of agents of the multi-agent system:

P:N; (3)

To calculate the probability of finding a false result, we substitute in our formula (1)
our data from formulas (2) and (3).

where m is the number of false results found.

300 S. Khovanskov et al.

Since an attacker can generate false results for his entire computing load, the
probability of generating a false result is ko = 1. If the probability of forming a false
result is ko = 0.5, this means that it produces false results for only half of its com-
putational load.

In accordance with the structure of the multi-agent system, formula (5) is used to
calculate the probability of detecting a false result, reflecting the dependence of the
probability on the number of control agents and the probability of creating false results
by the attacker:

b
p= N xko; (5)

ko - probability of false results creation by an intruder;

b is the number of control agents.

Substituting in formula (4) instead of probability p, calculated from formula (3), the
value of p calculated by formula (5), we will form the probability of detection of at
least one false result (m = 1) from the attacker by the controlling agent (b = 1).
Probabilities of detecting at least one false result in a centralized multi-agent system
that are generated by an attacker with probabilities ko = 1, ko = 0.8 and ko = 0.6 (see
Fig. 4).

0.5

0.4

0 et =)
100 200 300 400 500 600 700 800 900 1000

Fig. 4. The probability of detection of at least one false result when the probability of the
formation of a “false result” (1) ko = 1 (2) ko = 0.8 and (3) ko = 0.6.

Organization and Protection on the Basis of a Multi-agent System 301

The calculation is performed for a centralized multi-agent system with one
managing agent. The number of tasks for a large-volume problem W = 10000 for a
different number of agents N of a multi-agent system from 100 to 1000. When ana-
lyzing the obtained graphs, it is seen that the probability of detecting at least one false
result by the managing agent decreases with the increase in the number of system
agents. With the number of agents N = 1000, the probability of detecting at least one
false result is P,;,. = 0.005. When N — oo the probability P,;, — 0. The reason for this
is when scaling the multi-agent system the number of results you get a managing agent,
increases. Managing agent is unable to verify all the results transferred to him by the
agents of multi-agent system M.

Reducing the likelihood of false results is also affected by a decrease in the
probability of false results from the attacker, since in this case the total number of false
results in the multi-agent system decreases, which reduces the probability of detection
of false results by the managing agent.

Similarly, the probability of detection by the managing agent of at least 2 false
results for one intruder is calculated, similarly to 3 and 4 (Polr2, Polr3, Polr4). In the
formula (4) we substitute m = 2, 3, 4.

The probabilities P,;2, Poir3, poira Of the detection agent of false results are cal-
culated with one attacker. Probabilities of detection of 2, 3 and 4 false results in a
centralized multi-agent system of those that are formed by an attacker with probabilities
ko = 1. are shown in Fig. 5.

400 500

Fig. 5. Probability of detection with ko = 1 (1) 2x, (2) 3x and (3) 4 false results.

302 S. Khovanskov et al.

Comparing the graphs in Figs. 3 and 4, we can conclude that in the centralized
multi-agent system the probability of finding false results decreases with the increase in
the number of false results that the controlling agent should detect.

5 Conclusion

The algorithm was developed for the organization and protection of distributed com-
putations in computer networks based on multi-agent system with the aim of reducing
the solution time of large-scale problems. We developed the algorithm for decentral-
ized multi-agent agent system, which allows securing distributed computing based on
multi-agent systems in computer networks and reducing the solution time of large-scale
problems. Decentralized computer system provides higher protection efficiency of the
processes of distributed computing than centralized in an unstable computing envi-
ronment of a computer network. Agents, working on information in the article, algo-
rithm, perform their own distribution between a given computational load for the
organization of distributed computing. In the process of implementing distributed
computing, the agents communicate with multicast messages pass each other the results
of the calculations and redistribute among themselves the given computational load
depending on the performance of computers. It allows you to provide in addition to
reducing the solution time of large-scale problems, the protection efficiency of com-
putational processes and computing results from the substitution. It increases the degree
of protection for distributed computing from the threat of “denial of service” and safety
results of the decision from the threat of a “false” result compared to a centralized
computing system. Implementation of the algorithm for decentralized multi-agent
system program was written in Python. The agent program was installed on 3 com-
puters. The results of multi-agent system in the network showed that an organized
system of distributed computing works. The system performs integrity monitoring of
the results of the solutions of a large problem. At the organization of the distributed
computing system decreases the computational load on computers with low produc-
tivity through the redistribution of computational load among the agents.

References

1. Kureichik, V.V, Kureichik, V.M., Sorokoletov, P.V.: Analysis and a survey of evolutionary
models. J. Comput. Syst. Sci. Int. 5(46), 779-791 (2007)

2. Khovanskov, S.A., Norkin, O.R., Litvinenko, V.A.: Algorithm of optimization of computing
loading of the organization of the distributed calculation. In: Proceedings of the Congress on
Intelligent Systems and Information Technologies, IS-IT 2011, Scientific Publication in 4
Volumes, No. 4, pp. 142—145. Physmathlit, Moscow (2011)

3. Pljonkin, A., Rumyantsev, K.: Quantum-cryptographic network. In: 2016 IEEE East-West
Design and Test Symposium (EWDTS). https://doi.org/10.1109/ewdts.2016.7807623.
Electronic ISSN 2472-761X. ISBN 978-150900693-9

4. Khovanskova, V.S., Khovanskov, S.A., Litvinenko, V.A., Litvinenko, E.V.: Primenenie
parametricheskoj adaptacii v algoritmah postroeniya ortogonal’nogo dereva SHtejnera.
Informatika, vychislitel’'naya tekhnika i inzhenernoe obrazovanie 4(28), 9-16 (2016)

http://dx.doi.org/10.1109/ewdts.2016.7807623

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Organization and Protection on the Basis of a Multi-agent System 303

. Khovanskov, S.A., Litvinenko, V.A., Litvinenko, E.V.: Gibridnyj metod upravleniya

tochnost’yu resheniya ehkstremal’nyh zadach na grafah. Izvestiya YUFU. Tekhnicheskie
nauki 7(144), 112-116 (2013)

. Kshemkalyani, A.D., Singhal, M.: Distributed Computing: Principles. Algorithms, and

Systems. Cambridge University Press, Cambridge (2008)

. Khovanskova, V.S., Khovanskov, S.A., Litvinenko, V.A.: Ocenka sokrashcheniya vremeni

postroeniya svyazyvayushchih derev’ev cepej s pomoshch’yu raspredelyonnoj vychis-
liteI’'noj sistemy. Informatika, vychislitel’naya tekhnika i inzhenernoe obrazovanie 4(28),
34-42 (2016)

. Khovanskov, S.A., Norkin, O.R.: The approach to the implementation of the algorithm trace

connections of electronic components in a distributed computer networks. Int. J. Innov. Inf.
Manuf. Technol. 1, 26-31 (2014)

. Foster, 1., Zhao, Y., Raicu, I, Lu, S.: Cloud Computing and Grid Computing 360-Degree

Compared. http://arxiv.org/pdf/0901.0131.pdf. Accessed 14 Sept 2012

Kotenko, V.V., Rumyancev, K.E., Kotenko, S.V.: Identifikacionnyj analiz v informacionno-
telekommutacionnyh sistemah. Monografiya. Rostov-na-Donu: 1zd-vo YUFU (2014)
Madkour, A.M., Eassa, F.E., Ali, A.M., Qayyum, N.U.: Mobile-agent-based systems against
malicious hosts. World Appl. Sci. J. 2(29), 287-297 (2014)

Muiioz, A., Pablo, A., Mafia, A: Multiagent systems protection. Adv. Softw. Eng. Article ID
281517, 9-12 (2011)

Guan, X., Yang, Y., You, J.: POM-a mobile model against malicious hosts. In: Proceedings
of High Performance Computing in the Asia-Pacific Region, vol. 2, pp. 1165-1166 (2000)
Khovanskov, S.A., Khovanskova, V.S., Litvinenko, V.A., Norkin, O.R.: The algorithm for
determining the direction of building relations in a distributed computing system. In:
Proceedings of the Congress on Intelligent Systems and Information Technologies, IS&IT
2012, vol. 4, pp. 49-50. Physmathlit, Moscow (2012)

Khovanskova, V.S., Khovanskov, S.A., Litvinenko, V.A.: Algoritm organizacii bezopasnyh
raspredelennyh vychislenij na osnove mnogoagentnoj sistemy.Izvestiya YUFU. Tekhnich-
eskie nauki 10(183), 146158 (2016)

Miiller, J.P., Fischer, K.: Application impact of multi-agent systems and technologies: a
survey. In: Shehory, O., Sturm, A. (eds.) Agent-Oriented Software Engineering, pp. 27-53.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54432-3_3

Wooldridge, M.: An Introduction to Multiagent Systems, p. 484. Wiley, New Jersey (2012)
Khovanskov, S.A., Khovanskova, V.S.: Metody zashchity raspredelennykh vychisleniy.
Modernizatsiya sovremennogo obshchestva: problemy. puti razvitiya i perspektivy: sbornik
materialov VI Mezhdunarodnoy nauchno-prakticheskoy konferentsii, pp. 104—-107. Logos,
Stavropol (2015)

Khovanskov, S.A., Khovanskova, V.S.: Povysheniye stepeni zashchity raspredelennykh
vychisleniy. Sovremennoye sostoyaniye estestvennykh i tekhnicheskikh nauk: Materi-
aly XVIII Mezhdunarodnoy nauchno-prakticheskoy konferentsii (20.03.2015). M.: Izd-
vo «Sputnik +», pp. 96-100 (2015)

Khovanskova, V., Khovanskov, S.: Mul’tiagentnye sistemy: koncepcii zashchity, Bezopas-
nost’ mul’tiagentnyh sistem. — Technical and natural sciences: Theory and practice. In:
Proceedings of Materials of International Scientific e-Symposium, Russia, Moscow, 27-28
March 2015, Kirov, pp. 167-175 (2015)

http://arxiv.org/pdf/0901.0131.pdf
http://dx.doi.org/10.1007/978-3-642-54432-3_3

	Organization and Protection on the Basis of a Multi-agent System of Distributed Computing in a Computer Network to Reduce the Time for Solving Large-Scale Tasks
	Abstract
	1 Introduction
	2 Implementing a Multi-agent System
	3 Algorithm of the Agent for Organizing Distributed Computing and Ensuring the Safety of the Results of Computing Processes
	4 Estimating the Detection of a False Result in a Centralized Multi-agent System
	5 Conclusion
	References

