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Abstract
Polyhydroxyalkanoates (PHAs) constitute a family of naturally-occurring micro-
bial polymers possessing excellent physicochemical properties, non-toxic behav-
ior, biocompatibility and biodegradability which render them distinctive 
candidates for industrial applications especially in medicinal and pharmaceutical 
areas. In this review, we deepened in various cellular processes to collect and 
record information highlighting the biotechnological applications of PHA mono-
mers or derivatives as memory amplifiers. Neurological conditions under the 
umbrella term of “dementia” are concerning millions of people worldwide, and 
their prevalence rises exponentially. These diseases are generally defined by 
gradual loss of cognitive and physical abilities, due to severe dysfunction of 
important central nervous system (CNS) areas. Neuronal and synaptic degenera-
tion, though not specified in detail, are most probably multi-etiological events, 
caused by abnormal protein aggregation, neuro-inflammation, oxidative stress, 
and dys-regulated extracellular or intracellular signaling and energy supply. 
Therefore, multifunctional polymeric formulations without side effects, such as 
PHAs (polymers of hydroxy-organic acids), offer numerous applications in the 
prevention and treatment of various diseases. PHA monomers or derivatives (e.g. 
3-hydroxybutyrate, 3-hydroxybutyrate methyl ester, 3-hydroxybutyl-3-
hydroxybutyrate) are now proven to act as artificial ketogenic compounds and 
memory enhancers administered in ketogenic diets. Ketogenic diet (KD) is a 
well-known alternative for the treatment of neurological conditions, as the pro-
duced ketones affect protein modifications, attenuate oxidative and inflammatory 
stress and modulate signaling pathways contributing to neurogenesis. 
Collectively, PHAs can ameliorate brain and neuronal activity, improve memory 
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recall and even alleviate important pathological features of neurodegenerative 
problems, such as Alzheimer’s disease (AD) – related amyloid plaques.
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7.1	 �Introduction

PHAs have been established as a complex class of biodegradable homo- and co-
polymers since the late 1950s. They consist of various hydroxyalkanoic acids (HAs) 
as monomers whose alteration leads to the development of biopolymers with desir-
able mechanical and structural properties, biocompatible behavior and favorable 
degradation kinetics under controlled physiological conditions. PHAs are synthe-
sized by bacteria and gathered in PHA granules as energy and carbon storage com-
posites, in the presence of high carbon concentrations and very low concentrations 
of growth nutrients, such as sulphur, nitrogen, oxygen or phosphorus (Kumar et al. 
2015a, b, c; Patel et al. 2015a, b, 2016; Kalia et al. 2016; Koller et al. 2017). Bacteria 
are able instead of metabolizing available carbon sources through the Tricarboxylic 
acid cycle (TCA), to generate energy utilizing the acetylCoA by diverting it towards 
the polyhydroxyalknoate (PHA) biosynthetic pathway (Singh et al. 2015; Ray and 
Kalia 2016, 2017). Their high degree of polymerization in combination with their 
biodegradability, insolubility in water, nontoxic behavior, thermoplastic, piezoelec-
tric and elastomeric properties, render them functional materials for various bio-
technological applications in the food and packaging industries, agriculture, 
pharmacy, medicine, and as basic synthons in chemical processes (Anderson and 
Dawes 1990).

Poly(3-hydroxybutyric acid) (P(3HB)), one of the most extensively studied con-
stituent of bacterial PHAs, was initially reported to be produced by the bacterium 
Bacillus megaterium in 1926 (Valappil et  al. 2006). Two novel HAs, 
3-hydroxyhexanoate (3HHx) and 3-hydroxyvalerate (3HV), were identified in the 
1960s and 1970s (Valappil et al. 2006). Future research efforts led to the growth of 
small amounts of 3-hydroxyoctanoate (3HO), and 3HHx units in Pseudomonas 
oleovorans on feed containing n-octane (Valappil et al. 2006). By the end of the 
1980s, various HA constituents, such as 4-hydroxyalkanoates, and 
5-hydroxyalkanoates were discovered, whereas after the late 1980s research was 
focused on the development of PHA polymers with tailored properties for medical 
use, through the involvement of cloning and clarification of genes in the biosyn-
thetic procedure (Valappil et al. 2006).

At present, scientists have focused their interest on the specification of tertiary and 
quaternary structures of the key enzymes in PHA biosynthesis, the PHA synthases. 
These multifunctional enzymes define the: (i) substrate specificity, (ii) catalytic mech-
anisms, and (iii) molecular weight of each PHA produced (Valappil et al. 2006).
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PHAs are categorized, according to the carbon atoms within a PHA monomer, 
into the: (i) short-chain length PHAs with 3-5 carbon atoms as scl-PHAs, (ii) 
medium-chain length PHAs with 6-14 carbon atoms as mcl-PHAs, and (iii) long-
chain length PHAs with ≥15 carbon atoms as lcl-PHAs (Khanna and Srivastava 
2005). Until nowadays, more than 150 kinds of PHA monomers have been charac-
terized. New species of  PHAs arise through the physical or chemical modifica-
tion of naturally-occurring PHAs (Zinn and Hany 2005), or through recombinant 
organisms that produce PHAs with specific properties (Escapa et al. 2011).

The discovery of various monomers with numerous useful properties increased 
interest in PHAs. The first industrial copolymer consisting of 3HB and 3HV was 
developed by Imperial Chemical Industries (ICI) and sold under the trade name of 
Biopol® as biodegradable and renewable replacements instead of the petrochemically 
derived plastics (Valappil et al. 2006). The increasing commercial impact of P(3HB) 
and P(3HB-co-3HV) copolymer, enabled their future assessment as medical biomate-
rials in biotechnological applications. HAs are responsible for the stimulation of Ca2+ 
channels which in turn act as an aid in amplifying memory especially in AD patients 
(Xiao et al. 2007; Zou et al. 2009; Chen. 2010b; Magdouli et al. 2015).

Dementia, as a debilitating neurodegenerative disorder, affects memory, orienta-
tion, thinking, calculation, learning capacity, comprehension, judgment, and lan-
guage (Jotheeswaran et al. 2010; Gross et al. 2012). It affects around 35 million 
people worlwide, and the observed global prevalence for individuals over 60 years 
old is 4.7%. AD is the most common type of dementia and contributes to 60–70% 
of the dementia cases (Honjo et al. 2012). Another prevalent type of dementia is 
vascular dementia, which represents 17% of dementia cases (Ross et  al. 2006). 
Other types of dementia occurring along with AD pathology are Parkinson's disease 
(PD) and Lewy body dementia (LBD). Since the distinction between these types of 
dementias is not clear, scientists tend to believe that their main difference lies in the 
duration of each type (Langa et al. 2004; Plassman et al. 2007).

Dementia is an age-related disease. This fact deposits an enormous social burden 
in respect of economics and human inflictions, especially in the context of an out-
stretched aging population. Currently, there is no cure, however, it has been esti-
mated that successful preventive interventions by delaying the symptoms of 
late-onset AD, will reduce the predicted prevalence and incidence rates of the dis-
ease (Jorm et al. 2005).

AD is notably high among patients who are above 65 years of age and it is char-
acterized by a progressive deterioration of cognitive function, ending with severe 
brain damage (Mattson 2008; Braak and Del Tredici 2012; Revett et  al. 2013). 
Pathological data on the disease imply that oxidative stress is closely associated 
with tissue damage such as advanced glycation end products (Smith et al. 1994a, b), 
nitration (Smith et al. 1997), carbonyl-modified neurofilament proteins and free car-
bonyls (Smith et al. 1991), and products of lipid peroxidation (Montine et al. 1996; 
Sayre et  al. 1997). Moreover, Aβ (amyloid-beta plaque) aggregation, hyperphos-
phorylation of tau (τ) protein, and reduced synthesis of the neurotransmitter acetyl-
choline are some of the most prevalent hypotheses on the cause and progression of 
AD (Zhang et al. 2013).

7  Memory Enhancers

http://www.memory-key.com/problems/dementia/parkinsons
http://www.memory-key.com/problems/dementia/parkinsons


174

In general, oxidative stress is affected by a lack of balance in the antioxidant 
defence systems and the production of reactive oxygen species (ROS) (Jung et al. 
2009). The cytopathological significance of the damage induced by oxidative stress 
is observed through the up-regulation of the antioxidant enzyme heme oxygenase-1 
(Smith et al. 1994a, b; Premkumar et al. 1995), associated with the alteration of 
amyloidogenic deposits of tau (τ) (Takeda et al. 2000), found in the neurofibrillary 
tangles of mild AD patient brains (Nday et al. 2015; Halevas et al. 2016). AD symp-
toms often commence with loss of ability to create novel memories, leading to con-
fusion. Eventually, the inability for self-care often leads patients to their committal 
in institutionalization (Allen et al. 2013).

The ketogenic diet (KD) is considered a putative preventive treatment for various 
types of brain diseases, such as AD or epilepsy. During KD, carbohydrates are 
replaced by fats resulting in the increase of blood-borne ketone bodies (KBs) levels. 
Since drug development for AD is based on the acetylcholinesterase inhibition or 
the antibody of Aβ with no satisfactory results on the prevention or reversion of the 
disease progress, scientists have focused their research interest on the development 
of drugs that confront the dysfunction of mitochondria (Colell et al. 2009; Swerdlow 
et al. 2010; Du et al. 2010; Zhu et al. 2013), and the impairment of energy metabo-
lism (Liang et al. 2008; O’Connor et al. 2008).

KBs have been reported as the only alternative to energy supplement for the 
brain. The major component of KBs, 3-hydroxybutyrate (3HB), and a degradation 
product of microbial, natural and biocompatible biopolymer P(3HB) (Williams 
2008, 2009), have been proved to possess neuroprotective properties. However, due 
to its charged nature and acidity, 3HB is not considered an ideal drug candidate 
(Zhang et al. 2013). On the other hand, 3-hydroxybutyrate methyl ester (HBME), 
the esterification product of 3HB, has a lower polarity with a neutral pH, providing 
better evidence on its bioavailability and ability to go through the blood-brain bar-
rier (BBB) more efficiently than 3HB (Zhang et al. 2013). Consequently, HBME 
constitutes a more effective drug candidate for developing CNS biotechnology, 
especially anti-AD and neuroprotective pharmaceutical prevention and treatment.

7.2	 �Production of PHA Monomers, Their Biotechnological 
Applications, and Economic Impacts

PHAs are a category of polyesters consisting of a great number of chiral 
R-hydroxyalkanoic acids (R-HAs), constituting an abundant source of optically 
pure chiral compounds, bi-functional hydroxyl acids of R(−) configuration that can 
be utilized as starting materials for several biotechnological processes such as the 
synthesis of many pharmacological bioactive compounds including drugs, vitamins, 
antibiotics and antifungal agents, hormones, pheromones, β-peptides, enzymes 
inhibitors, siderophores, biofuels, aromatics as well as chiral synthons for several 
fine chemicals (Ren et  al. 2010). Therefore, an emphasis has been given on the 
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utilization of PHA degradative pathway products and their chemical modifications, 
which provide unique properties for biomedical applications (Hazer et  al. 2012; 
Martinez et al. 2014; Ke et al. 2017).

PHA monomers can be obtained by several strategies such as chemical de novo 
synthesis of R-HAs, or chemical degradation of PHAs, biotransformation, micro-
bial de novo biosynthesis, in vitro enzymatic degradation of purified PHAs, enzy-
matic in vivo depolymerization attributed to intracellular PHA depolymerases of 
wild-type bacteria or R-HA production by metabolic pathway engineering by use of 
recombinant microorganisms (Ren et al. 2010).

It is remarkable that all these follow-up compounds possess higher economic 
value in the commercial market than PHAs themselves. However, PHA degradation 
and recovery of the yielded monomers or oligomers are highly energy-consuming 
processes. To resolve this problem research studies were directed towards the puri-
fication of PHA hydrolyzing enzymes such as depolymerases (Jendrossek et  al. 
1996; Jendrossek and Handrick 2002; Kadouri et  al. 2005; Kim et  al. 2007; 
Jendrossek 2007; Papaneophytou et al. 2009, Papaneophytou and Pantazaki, 2011), 
and the development of effective methods to activate these enzymes in vivo within 
the cells (Cheng et  al. 2005; Ren et  al. 2010) or extracellularly (Papaneophytou 
et  al. 2009, Papaneophytou and  Pantazaki, 2011). Additionally, other strategies 
aimed at the decrease of the market price of the initial PHAs products by using low-
value sources such as industrial wastes (Pantazaki et al. 2009) or by the simultane-
ous production of other useful biotechnological products (Pantazaki et al. 2011), in 
order to benefit from multipotent advantageous applications such as the production 
of monomers and oligomers.

7.3	 �Ketone Bodies, Ketosis, Ketogenic Diet

In order to understand in depth, the basis and the extent of PHAs and their mono-
mers biomedical applications, it is important to elucidate the involvement of the 
principal of them, 3HB, their natural counterpart, in various cellular processes. 
Analytically, 3HB is one of the main natural endogenous circulating KBs, as aceto-
acetate and acetone.

In the mitochondrial milieu, 3HB constitutes the precursor of acetoacetate, which 
is produced during a catabolic reaction catalyzed by the enzyme 3HB dehydroge-
nase 1 (BDH1) and directly linked to the reduction of nicotinamide adenine dinu-
cleotide (NAD) to NADH+. Subsequently, acetoacetate is converted to 
acetoacetyl-CoA and subsequently to acetyl-CoA, which is a component of the cit-
ric acid (TCA) cycle (Liu et al. 2014), as presented in Fig. 7.1.

KBs are products of the catabolism of fatty acids in the liver and are used as an 
alternative energy source (fuel) instead of blood glucose, when glucose availability 
is insufficient, by enhancing the fatty acid-beta oxidation levels in the brain cells 
(Panov et  al. 2014). The maximal concentrations of circulating KB can be up 
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regulated by adhering to a ketogenic diet (KD). It is considered that a high-fat con-
tent and adequate-protein diet, in which carbohydrate intake is drastically reduced 
and replaced with body dietary sources of glucose, exhorts a metabolic transition 
towards the consumption of fatty acids (Hammami 1997; LaManna et al. 2009).

Accumulation of KBs in the blood circulation leads to a metabolic situation 
known as ketosis. It is a survival mechanism functioning as a metabolic state acti-
vated during starvation, or due to lack of carbohydrate digestion (Brownlow et al. 
2013). It should be noted that the plasma concentration of 3HB is estimated in the 
range of 0.02–0.09 μmol.mL−1 (Blomqvist et al. 2002). In addition, the metabolism 
of KBs mimics some actions of insulin and overcomes insulin resistance indicating 
a useful therapeutic potential in the alleviation of the pathological hallmarks of 
cognitive impairment (Sato et al. 1995).

A key feature that increases the lifespan of many organisms is dietary restriction 
(Greer and Brunet 2009). The ketone moiety 3HB functions as a Dietary Restriction 
(DR) mimetic compound (Newman and Verdin 2014), by increasing in the plasma 
during DR, and additionally by decreasing the levels of oxidative stress after exog-
enous administration (Shimazu et al. 2013).

In general, the KD is regarded as an effective non-pharmacological treatment 
providing symptomatic avail, and effective disease-ameliorating activity of various 
neurological disorders typified/provoked by the death of neurons, including epi-
lepsy, AD, Huntington’s disease (HD), PD, stroke and brain injury (Gasior et al. 
2006). Studies on 3HB functionality have proved its utilization as an energy sub-
strate in hemorrhage shock rats (Katayama et al. 1994), and head trauma patients 
(Hiraide et al. 1991).

7.3.1	 �Ketotherapeutic Intervention

KBs serve as alternative energy sources, and they can be increased as liver glycogen 
supplies get consumed after prolonged fasting (Cotter et  al. 2013; Newman and 
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Fig. 7.1  Enzymatic steps involved in the 3HB catabolic process to TCA cycle entry as 
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Verdin 2014). It has been proved that recent ketotherapeutic approaches influence 
the CNS through a variety of mechanisms (Fig. 7.2). More specifically, the action of 
KBs includes: (a) post-translational modifications of proteins, (b) attenuation of 
RONS production, (c) enhancement of the anti-oxidant stress response pathway 
expressions, (d) modulation of G-coupled protein receptor (GPR) and the signaling 
pathways brain derived neurotrophic factor (BDNF), (e) contribution to substrates 
replacement and (f) exhibition of anti-inflammatory effects (Brownlow et al. 2013; 
Koppel and Swerdlow 2017).

7.4	 �The Case of the Ubiquitous (or Omnipresent) 
3-Hydroxybutyrate

Hydrolysis of PHB yields 3HB and its oligomers. 3HB is a physiological constitu-
ent of tissues and blood (Reusch et al. 1992; Malm et al. 1992; Peng et al. 1996), 
primarily originated by the long chain fatty acids catabolism in the liver and liber-
ated to the peripheral tissues and plasma, where it diffuses rapidly, and subsequently, 
penetrates cell membranes serving as a lipogenic precursor and an oxidative com-
bustible material (fuel) (Kesl et al. 2016). Sodium derivatives of D-3-hydroxybutyrate 
(D-3HB), DL-3-hydroxybutyrate (DL-3HB), and Methyl 3-hydroxybutyrate 

Fig. 7.2  Ketotherapeutic interventions through KB influence on brain function. Nrf2 nuclear fac-
tor erythroid 2-related factor, UCP uncoupling protein, GPR G-coupled protein receptor, TCA tri-
carboxylic acid, GSH glutathione, MnSOD manganese superoxide dismutase, ETC electron 
transport chain, RONS reactive oxygen-nitrogen species, ATP adenosine triphosphate, BDNF brain 
derived neurotrophic factor (Koppel and Swerdlow 2017)
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Table 7.1  Structures of (i) Sodium (S)-3-hydroxybutyrate (D-3HB), (ii) Sodium DL-3-
hydroxybutyrate (DL-3HB), (iii) Methyl 3-hydroxybutyrate (3HBME), (iv) Ethyl 
(±)-3-hydroxybutyrate, and (v) 3-hydroxybutyl-(R)-3-hydroxybutyrate/ketone monoester

(3HBME), ethyl (±)-3-hydroxybutyrate, 3-hydroxybutyl-(R)-3-hydroxybutyrate/
ketone monoester (Table 7.1) are derivatives of 3HB, some are KBs produced in 
vivo in animals and humans, significantly useful for applications associated with 
tissue engineering (Chen and Wu, 2005), mainly due to the inhibition of cell death 
and the increase in cytosolic Ca2+ levels (Chen et al. 2010).
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7.4.1	 �Therapeutic Applications of 3-Hydroxybutyrate 
as Memory Enhancer

7.4.1.1	 �3-Hydroxybutyrate as an Anti-aging Agent Against Cognitive 
Impairment

Aging is one of the primary risk factors that progressively deteriorate the decline of 
cell and tissue function in neurodegenerative diseases such as PD and AD. The devel-
opment of premature aging is directly related to mitochondrial dysfunction (Braeckman 
et al. 1999; Hansen et al. 2005; Dell’agnello et al. 2007; Copeland et al. 2009), whilst 
the increase in the mitochondrial reactive oxygen species (ROS) generation provokes 
the progressive damage of cellular macromolecules (Harman 2009). AD specific char-
acteristics also include early and region-specific impairments of cerebral glu-
cose  metabolism. KBs are considered intra-corporeal glucose deprivation products 
and are metabolized by the brain. Recent scientific research results in animal models 
and human trials have indicated that 3HB, as a DR mimetic compound, delays the 
onset and progression of age-related neurodegenerative diseases, such as AD (Pasinetti 
et al. 2007; Mercken et al. 2012), by protecting cultured hippocampal neurons from 
Aβ1–42 mediated toxicity and increased inflammation due to increased ROS levels 
(Kashiwaya et al. 2000; Van der Auwera et al. 2005; Tamagno et al. 2008). Research 
results on 3HB supplementation in C. elegans nematodes led to the increase of worm 
thermotolerance, whilst it partially hindered glucose toxicity, delayed AD Aβ toxicity 
and decreased PD alpha-synuclein aggregation. Additionally, 3HB extended the lifes-
pan of C. elegans nematodes through histone deacetylases (HDACs) inhibition and 
via the activation of conserved stress response pathways (Edwards et al. 2014).

Furthermore, the role of oxidative stress in AD is recently well-accepted (Chen and 
Zhong 2014; Huang et al. 2016; Liu et al. 2017). In this frame, 3HB represents a 
potent protective agent against oxidative stress conditions, through its inhibitory activ-
ity of both classes of HDACs (I and IIa), in the increase of the expression of genes that 
encode antioxidant stress response factors, such as the forkhead box O3 (FOXO3A), 
the transcriptional factor DAF16, the mammalian orthologue of the stress-responsive 
lifespan regulator in worms, and the MT2 (Shimazu et al. 2013). Additionally, the 
3HB-mediated inhibition of HDACs and the activation of the well-conserved antioxi-
dant stress response mechanisms, result in lifespan extension and protection against 
metabolic, proteotoxic and thermal stress conditions in the cellular milieu (Edwards 
et al. 2014). Recently, new research orientations are based on the thinking that acute 
elevation of serum 3HB concentration via the oral administration of medium chain 
triglycerides (MCTs) meliorates memory and attention in AD individuals setting the 
stage for the development of an innovative therapeutic approach towards the effective 
confrontation of neurodegenerative disorders (Reger et al. 2004).

7.4.1.2	 �The Protective Role of 3-Hydroxybutyrate 
Against Parkinson’s and Huntington’s Diseases

PD main clinical characteristics are bradykinesia, muscle rigidity, and tremor of the 
distal extremities, whilst its pathological features include eosinophilic cytoplasmic 
Lewy-body inclusions consisted of: (i) ubiquitin, (ii) α-synuclein nucleoprotein, 
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and (iii) death of essential nigral dopaminergic neurons (Dunnett and Bjorklund 
1999). Most important causes of PD are infections, environmental toxins or genetic 
irregularities, and it can be temporarily treated by L-3,4-dihydroxyphenylalanine 
(L-dopa) administration (Dunnett and Bjorklund 1999). Experimental results on the 
protective role of ketones against amyloid Aβ1–42 or 1-methyl-4-phenylpyridinium 
(MPP+) exposure of either hippocampal or mesencephalic neurons, respectively, 
suggest that mitochondrial dys-operation is the key factor in both of these common 
neurological disorders (Dunnett and Bjorklund 1999; Kashiwaya et  al. 2000), 
despite the pathophysiological and genetic diversity of AD and PD etiology. AD and 
PD share a common dysfunction in the protein degradation process, possibly due to 
the defective mitochondrial energy generation. Thus, increase of ketones may pro-
mote protection of neurons by contributing in prevention and in treatment against 
memory decline related diseases AD and PD, in cases where cure with L-dopa must 
be period restricted. However, alternative biotechnologically produced dietary 
sources of ketones are beneficial without displaying the harmful side effects of con-
temporary KDs, although the high-fat KD is not considered appropriate for adults 
due to its atherogenic capacity (Gerngross 1999).

Taken into account all these biochemical experimental data, it is noteworthy to 
add that regulation of 3HB amounts can constitute a targeted neuroprotective 
approach for the cure against PD. More specifically, 3HB has been proved to confer 
protection through oxidative phosphorylation enhancement, in a stereo-specific and 
dose-dependent way, against the structural and functional toxic activities of the par-
kinsonian toxin 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), such as 
degeneration of dopaminergic substantia nigra pars compacta (SNpc) striatal fibers 
and neurons, PD-like motor abnormalities, and loss of striatal dopamine (Duan and 
Mattson 1999; Przedborski et al. 2003; Tieu et al. 2003).

HD is a genomic abnormalities-derived neurological disease provoked by the 
expansion of CAG (cytosine-adenine-guanine) trinucleotide repeats in the gene 
coding for polyglutamine domain for the protein huntingtin. HD main characteris-
tics are protrusive perdition of medium-size spiny neurons and constitution of pro-
tein assemblages in the striatum and its cortical connections and the cerebral cortex 
(Vonsattel et al. 2011). Epigenetic modifications and bioenergetic defects play also 
a decisive role in the onset of the disease. To that end, in vitro and in vivo experi-
mental results have demonstrated that the bioenergetic and epigenetic effects of 
3HB confer neuroprotection in two animal models, a genetic one of HD and a 
murine toxic one of striatal neuronal perdition, by hindering the histone deacety-
lation stimulated by an erroneous form of huntingtin, the mutant huntingtin (mhtt) 
(Lim et al. 2011).

7.4.1.3	 �The Beneficial Role of 3-Hydroxybutyrate in Cell Proliferation 
and Prevention of Cell Death

Apart from the various potential therapeutic applications of 3HB in the amelioration 
of tissue damage, protein catabolism, and metabolic dysfunction (Cheng et  al. 
2006), experimental studies have proved that 3HB promotes cell proliferation in cell 
cultures (Cheng et al. 2005). The results at hand indicated that 3HB either speeds up 
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cell cycle progression by stimulating impermanent increases in intracellular cal-
cium (Ca2+) levels, which subsequently activate signal transduction pathways 
responsible for the regulation of the cell cycle (Berridge 1995), or decreases cell 
apoptosis, by enhancement of the mitochondrial respiration, bypassing glycolysis, 
while they are also introduced in The Citric Acid (TCA) cycle (Zou et al. 2002; 
Nakamura et al. 2003). In general, 3HB could supplement Adenosine Triphosphate 
(ATP) production, thereby hindering necrosis at high levels of cell growth, inter-
vened by cell-to-cell contacts.

Recent experimental results on new drug formulations with various benefits such 
as enhanced bio-distribution and bioavailability, prolonged drug release and 
decreased cytotoxicity, have shown that conjugation of ibuprofen, a Non-steroidal 
anti-inflammatory drug (NSAID), linked to PHA oligomers, and particularly oligo(3-
hydroxybutyrate) (O3HB), exhibited significantly increased inhibitory ability against 
proliferation of HT-29 and HCT 116 colon cancer cells in comparison with unconju-
gated ibuprofen. Collectively, the observed results indicated that conjugation 
enhances the cellular uptake of the conjugate, decreases cytotoxicity and improves 
the biopharmaceutical properties of the drugs (Zawidlak-Węgrzyńska et al. 2010).

7.4.1.4	 �The Role of 3-Hydroxybutyrate in Neuronal Death
Macro-autophagy is considered an intracellular destructive mechanism exclusively 
associated with the hydrolytic potency of lysosomes and responsible for the disas-
sembly of damaged or dysfunctional organelles and proteins (Mizushima et  al. 
2008; Tanida 2011). It is considered a highly conserved process stimulated under 
various types of stress, such as nutritional stress, providing energy and sustaining 
cell survival (Ogata et al. 2006; Kroemer et al. 2010; Alirezaei et al. 2010). The 
autophagic flux is a process initiated by the recruitment of a multi-component pro-
teinic complex, important for the formation of autophagosomes or double mem-
brane vesicles, which then join with lysosomes to produce autophagolysosomes, 
where degradation of damaged proteins and intracellular components occur by 
hydrolytic enzymes. A dysfunction of the autophagic flux can result in increase in 
formation of autophagosomes leading to neuronal cell death (Kulbe et  al. 2014; 
Sarkar et al. 2014). It has been shown that 3HB stimulates the autophagic flux by 
decreasing the formation rate of autophagosomes under conditions of energy defi-
ciency and glucose withdrawal and minimizes neuronal death stimulated by glucose 
restriction (GD) (Camberos-Luna et al. 2016).

Glutamate is an important neurotransmitter which acts excitatory in the brain of 
mammals. Nevertheless, increase in extracellular levels activates neuronal death 
through the excitotoxicity process (Olney 1971; Choi 1992). Further scientific stud-
ies have estimated the contribution of oxidative damage in the promotion of excito-
toxicity derived from inhibition of glycolytic metabolism, highlighting the 
neuroprotective potentiality of 3HB in the confrontation of the in vivo excitotoxic 
oxidative impairment (Mejía-Tober et al. 2006).

The results at hand indicate that systemic administration of 3HB prevents neuro-
nal damage and lipoperoxidation, and stimulates two cellular processes occurred in 
isolated mitochondria, ATP generation and oxygen depletion (Tieu et  al. 2003), 
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implying that administration of KBs, such as 3HB, in the mitochondrial metabo-
lism, provides in the cells the ability to confront the neurotoxic effect originated 
from the activation of glutamate receptor. In accordance are studies performed 
in vitro, demonstrated the benefit of 3HB administration during hypoxia promoting 
the mitochondrial membrane durability and survival of hippocampal neuronal cell 
cultures, by preventing the generation of free radicals and the liberation of apoptotic 
molecules (Masuda et al. 2005). Furthermore, various in vitro studies indicate that 
3HB opposes MPP+ (the heroin analogue 1-methyl-4-phenylpyridinium), and 
β-amyloid toxicity (Kashiwaya et  al. 2000) affecting memory, sustains creatine-
phosphate and ATP at the initial amounts during glucose deprivation (Wada et al. 
1997), and maintains synaptic communication as well as neuronal integrity (Izumi 
et al. 1998). In addition, evaluation of the in vitro effect of 3HB and its derivatives, 
DL-3HB and methyl D-3-hydroxybutyrate (M-D-3HB) on cellular apoptotic death 
and cytosolic Ca2+ levels of mouse glial cells indicated that the proportion of apop-
totic cells significantly decreased when they are exposed to the aforementioned 
compounds (Xiao et al. 2007).

7.4.1.5	 �The Role of 3-Hydroxybutyrate as a Blocker of NLRP3 
Inflammasome Activation in AD

The NLRP3 inflammasome is a significant multiprotein assemblage acting as a sensor 
of the innate immunity system found in macrophages with a fundamental role in the 
control of caspase-1 activation and the secretion of pro-inflammatory cytokines IL-1β 
and IL-18 (Martinon et al. 2009; Lamkanfi and Dixit 2014; Wen et al. 2013). The acti-
vation of inflammasome derives as a response to various damage-linked structural fea-
tures, including among them amyloids, called DAMPs (damage-associated molecular 
patterns) (Masters et al. 2010; Heneka et al. 2013). Ablation of NLRP3 attenuates AD 
and age-related functional decline (Heneka et al. 2013; Youm et al. 2013).

Since the particular nutritional conditions are related to the modified functions of 
immune cells, recent experimental studies have proved that 3HB specifically affects 
the activated state of inflammasome that is also ATP-stimulated as well ordinary 
mechanisms of signal transduction in response to different structurally NLRP3 acti-
vators (Youm et al. 2015). Thus, under DR conditions, the role of 3HB as a meta-
bolic signal can reduce the responses of the innate immune system, consuming 
sparingly ATP to assure the proper operation of organelles, which are ketone-
dependent, like the heart and brain. Thus, the use of 3HB, in this case, is to set the 
stage for new pharmacological approaches to confronting chronic inflammatory 
diseases, where NLRP3 is involved (Youm et al. 2015).

7.4.1.6	 �Cerebro-Protective Effect of 3-Hydroxybutyrate on Anoxia, 
Hypoxia and Ischemia

The brain is an active tissue, whose basic source of energy supplies is glucose oxida-
tion. Although glucose provision limitation and metabolism under the situations of 
ischemia and hypoxia, lead to brain injuries such as infarct and cerebral edema, it 
have been shown in epidemiological studies that hyperglycemia was linked with 
greater dangers of both cerebral ischemia and strokes occurrence (Asplund et  al. 
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1980; Riddle and Hart 1982; Pulsinelli et  al. 1983). Moreover, studies in several 
animal models have verified that the brain injury, provoked by cerebral ischemia, was 
accelerated by glucose administration (Siemkowicz and Hansen 1978; Ibayashi et al. 
1986; Natale et al. 1990). The elevated levels of anaerobic glucose metabolism, dur-
ing such conditions as hypoxia and ischemia, cause in tissues an overproduction of 
lactate leading to augmented intracellular quantities of proton H+ (Rehncrona et al. 
1981; Raichle 1983; Siesjo 1988). It has been reported that fasting under such condi-
tions as hypoglycemia and ketosis, increased 3HB levels in the blood, preventing rats 
from displaying brain infarction after ischemia and hypoxia (Go et al. 1988).

Furthermore, studies carried out for elucidating the effect of 3HB administration 
showed the cerebroprotective activity and the notable protraction of the survival 
time under hypoxia, anoxia, and ischemia in rats and mice, subjected to bilateral 
common carotid artery ligation (BLCL). These results were obtained by reducing 
cerebral edema formation, maintaining higher ATP levels and inhibiting lipid per-
oxidation and anaerobic lactate accumulation (Suzuki et al. 2001). These research 
data indicate that 3HB has the potential to be utilized as a clinical nutritional treat-
ment of acute cerebrovascular disorders (Suzuki et al. 2002).

7.4.1.7	 �The Boosting Role of 3-Hydroxybutyrate in the Brain 
Synthesis of Kynurenic Acid

Kynurenic acid (KYNA) is produced endogenously along the kynurenine pathway 
and constitutes a neuroactive intermediate product of tryptophan metabolism. Its 
formulation is involved in a process catalyzed by the enzymes kynurenine amino-
transferases (KAT I–III) (Guidetti et al. 1997, 2007). Brain KYNA is synthesized 
intracellularly in astrocytes and its secreted extracellular amounts reach the nano-
molar levels (Moroni et al. 1988; Turski et al. 1989; Németh et al. 2006). KYNA 
possesses enhanced anticonvulsant and neuroprotective activities, especially this 
related to the inhibition of strychnine-insensitive site of N-methyl-D-aspartate 
receptors (NMDA) (Urbanska et al. 1991; Stone et al. 2001; Schwarcz and Pellicciari 
2002; Németh et al. 2006), the sufficiency in the noncompetitive reduction of α7 
nicotinic receptors and the enhancement of the expression of α4β2 nicotinic recep-
tors by increasing the presynaptic liberation of glutamate (Carpenedo et al. 2001; 
Hilmas et al. 2001; Luccini et al. 2007).

Experimental data have proved that relatively low concentrations of a racemic 
mixture of 3HB stimulate the brain biosynthetic pathway of KYNA in primary glial 
cells as well as in cortical slices as effectively as during a KD or ketosis in diabetes 
(Gilbert et al. 2000; Fukao et al. 2004). Moreover, in vitro studies confirmed that 
high levels of circulating 3HB accompanied by acidosis or mild to severe hypogly-
cemic conditions inhibited KYNA synthesis in rat cortical tissue pieces. Furthermore, 
data from cultures of glial cells demonstrated that 3HB enhances the KYNA biosyn-
thetic enzymes (KAT I and II) expression (Chmiel-Perzyńska et al. 2011). In gen-
eral, the action of 3HB is to augment the levels of KYNA synthesis in the brain that 
via interaction with presynaptic NMDA receptors, may cause a reduction of the 
glutamate liberation and minimize the effects of the postsynaptic glutamate recep-
tors contributing to their neuroprotective potency (Chmiel-Perzyńska et al. 2011).
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7.4.1.8	 �Accumulation of 3ΗΒ Induced by Physical Exercise Promotes 
Brain-Derived Neurotrophic Factor Production

Exercise is beneficial for both physical and mental health. Corporeal exercise may 
influence the production of valuable proteins in the brain, particularly the levels of 
a significant protein called brain-derived neurotrophic factor (BDNF). Recent 
experimental studies demonstrated that 3ΗΒ accumulation induced by the physical 
exercise in the hippocampal milieu acts as an energy source and as an inhibitor of 
HDACs (class I) in the induction of BDNF expression (Fig. 7.3).

It has been proved that BDNF causes enhancement of mental competences, 
counteracting depression and anxiety as effectively in mice as in humans in a simi-
lar manner (Sleiman et al. 2016). In general, BDNF is necessary in order to survive 
susceptible populations of neurons. Furthermore, it plays an important role in den-
dritic and axonal neuronal cell growth as well as in synaptogenesis (Bibel and Barde 
2000; Alsina et  al. 2001). It has been proved that low levels of BDNF provoke 
depression, whereas they are elevated after administration of antidepressant treat-
ment (Duman and Monteggia 2006; Martinowich et al. 2007).

In addition, exercise increases BDNF levels in the CNS promoting amelioration of 
cognitive ability and of comportment resembling depression (Russo-Neustadt et al. 
2000; Marais et al. 2009), as it has been shown in animals and in patients suffering 
from mental disorders with depressive behavior (Sleiman et al. 2016), and neurode-
generative disorders such as PD (Frazzitta et al. 2014) or AD (Crabb et al. 2014).

Previous work indicated the neuroprotective effect of 3HB in HD (Lim et al. 
2011) and PD (Kashiwaya et  al. 2000; Tieu et  al. 2003), on dopaminergic and 
striatal neurons, respectively (Autry and Monteggia 2012). Moreover, recent stud-
ies proved that the induction of 3HB in the brain after treatment of AD mice with 
structural analogs of glucose (e.g. 2-deoxy-D-glucose), delayed the occurrence/or 
advancement of bioenergetic deficiencies and the correlated β-amyloid 

Fig. 7.3  A model 
mechanism indicating the 
effect of exercise on the 
induction of BDNF 
expression in the 
hippocampal milieu. 
Exercise provokes 3HB 
synthesis within the liver. 
Subsequently, 3HB is 
transferred through blood 
circulation to the 
hippocampus, where it 
induces BDNF expression 
through HDAC inhibition
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encumbrance (Ralser et al. 2008; Yao et al. 2011). Therefore, since 3HB repre-
sents an endogenous molecule with the ability to cross the BBB, the experimental 
results at hand suggest that through physical exercise and peripheral metabolism 
3HB upregulates BDNF transcription in the hippocampus, affecting the gene 
expression and epigenetic monitoring in the brain and the synaptic transmission 
(Sleiman et al. 2016).

7.5	 �Modified PHA Monomers. The Cases 
of 3-Hydroxybutyrate Methyl Ester 
and 3-Hydroxyalkanoate Methyl Esters

7.5.1	 �The 3-Hydroxybutyrate Methyl Ester

The 3-hydroxybutyrate methyl ester (3HBME) or other 3-hydroxyalkanoate methyl 
esters (3HAME) (Fig. 7.4) derive as products of the methyl esterification of scl-
PHAs such as PHB (and PHV for 3HVME), or mcl-PHAs, including all HAs with 
equal and higher than six carbon atoms (Fig. 7.2) (Pantazaki et al., 2003). They have 
been considered as a basic source for PHA-based biofuels production (Zhang et al. 
2009; Chen et al. 2010a). Modified PHA monomers such as 3HBME can also be 
employed as drugs against mitochondrial damage (Zhang et al. 2013).

Ex vivo production of 3HBME can be easily achieved by acidic methanolysis of 
PHB in a chloroform solution, at 67 °C for 60 h (de Roo et al. 2002; Wang et al. 
2010; Zhang et al. 2009). Direct degradations of PHB to 3HB and 3HBME have 
also been reported (Seebach et al. 2003). To our knowledge, no in vivo data have 
been reported regarding the existence of 3HBME in biological systems. However, 
several microbial species, plants and possibly mammals are capable of producing 
both 3HB and PHB, with the latter proved to be carried by blood lipoproteins and 

Fig. 7.4  Memory enhancers derived from PHAs like 3-hydroxybutyrate methyl ester (3HBME) 
or other 3-hydroxyalkanoate methyl esters (3HAME). Scanning electron microscopy (SEM) 
images of PHAs produced by the thermophilic bacterium Thermus thermophilus HB8. (Pantazaki 
et al. 2003)
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albumin and intracellularly located in mitochondria and microsomes (Reusch et al. 
1992; Reusch 2015). So, it is possible that some esterases or special de-esterases 
may yield 3HBME.

7.5.2	 �Bioavailability and Pharmacokinetics 
of 3-Hydroxybutyrate Methyl Ester

As it has been previously stated extensively, 3HB has been reported to possess 
strong neuroprotective properties (Kashiwaya et al. 2000; Reger et al. 2004; Cheng 
et al. 2013). 3HB is transported through the BBB via the monocarboxylate trans-
porter family SLC16 and the sodium-dependent transporters SMCT and SLC5A 
with a relatively good rate (KM of 6.03 mM in cultured rat astrocytes) (Tildon et al. 
1994; Achanta and Rae 2017). Additionally, it has been proved that the bioavail-
ability of 3HB in the brain is related to various factors including diet, age and spe-
cies (Regen et al. 1983; Leino et al. 2001; Ito et al. 2011).

It is interesting that the bioavailability of 3HB in animals treated with 3HBME is 
higher than the ones treated with analogous shots of 3HB (7.5 times higher than basal 
levels compared to 1.6 times, respectively) (Uchida et al. 2011). Although the par-
ticular behavior has yet to be clarified, researchers have speculated that the amphi-
philicity and small size of 3HBME could assist its easy transport through the BBB 
and its better distribution and transformation to 3HB in the brain (Zhang et al. 2013).

7.5.3	 �3-Hydroxybutyrate Methyl Ester and 3-Hydroxybutyrate 
Ethyl Ester as Neuroprotective Agents and Memory 
Enhancers

Memory function and learning action are highly energy-demanding processes. In 
so, if the brain is supplied with an excess of suitable metabolic substrates, an 
enhancement of these processes should be expected. Research results on neuroglial 
cells cultures supplemented with 3HB or its derivatives [(3-hydroxybutyrate ethyl 
ester (HBEE) and HBME] demonstrated that the neuroglial cell metabolic activity 
was remarkably elevated (p < 0.05) after 1 and 2 days of cultivation. In all cases, 
HBME-treated cells were more active than both HBEE and 3HB. Moreover, intra-
cerebral expression of the receptor for the 3HB uptake into the cells, a protein up-
regulated in macrophages by interferon-g (PUMA-G), occurred after 3HBME 
administration in mice (Zou et al. 2009).

Furthermore, it was also affirmed that cerebral proteins such as phosphorylated 
extracellular-signal-regulated kinase 2 (ERK2) and connexin 36 were upregulated 
after 3HBME administration, but in statistically not  significant way. Moreover, 
mice performed significantly better in the Morris water-maze than non-treted con-
trols or mice administered with the neuronal stimulator acetyl-l-carnitine. 

E. Halevas et al.



187

Additionally, 3HBME could increase the gap junctional intercellular communica-
tion between neurons (Zou et al. 2009).

In vivo studies were also performed on double transgenic mice models of AD 
that exhibited age-dependent amyloidal plaques aggregation in the cerebral cortex 
and the hippocampus and declining learning and memory ability. After training 
and daily treatment with different doses of 3HBME for 2.5 months, animals scored 
better in water-maze than non-treated controls and animals treated with AXONA–
an FDA approved supplement for AD (Zhang et al. 2009). Significant alleviation of 
amyloidal burden was also demonstrated in HBME treated mice, accompanied by 
inhibition of brain atrophy around ventricles. Additionally, transcription of two 
genes encoding apolipoprotein E (ApoE) that promotes amyloidal aggregation, 
and caspase-3, an important protease in cell death, were down-regulated in mice 
treated with 3HBME (Zhang et al. 2013).

In the same study, PC12 cells were treated with NaN3 to inhibit mitochondrial 
electron chain, ATP production and to induce oxidative stress. Interestingly, cells 
supplemented with 3HBME significantly increased ATP levels and inhibited ROS 
production. Additionally, 3HBME treatment restored NADH/NAD+ ratio to the nor-
mal levels, after Rotenone treatment. Furthermore, 3HBME proved capable of pro-
tecting PC-12 cells from starvation-induced apoptosis, and carbonyl cyanide 
m-chlorophenyl hydrazine (CCCP)-induced dissociation of mitochondrial mem-
brane potential (Zhang et al. 2013).

7.5.4	 �(R)-3-Hydroxybutyl (R)-3-Hydroxybutyrate/Ketone 
Monoester

(R)-3-hydroxybutyl (R)-3-hydroxybutyrate (D-3HB), also known as ketone mono-
ester (KME), is a synthetic oil consisted mainly from (R)-3-hydroxybutyl (R)-3-
hydroxybutyrate (94%) and other small-chain organic esters or non-esters. The 
purpose of this product, firstly synthesized at the University of Oxford, is to induce 
artificial mild ketosis, by its enzymatic hydrolysis to 3HB and butane-1,3-diol, with 
the latter being enzymatically turned also to 3HB (Clarke et al. 2012a, b).

7.5.4.1	 �Bioavailability and Pharmacokinetics of Ketone Monoester
Experimental studies have proved that KME is metabolized quickly, shortly 
after injection of a single dose of 714 mg.Kg−1 in adult humans and mice, as it 
cannot be traced in the systemic circulation. At the same time, blood concentra-
tions of 3HB and acetoacetate increased, reaching a plateau after 1.5–2.5 h. In 
addition, it was verified that KME is hydrolyzed to its components (i.e. D-3HB 
and R-1,3-butanediol) and by that an increase in the levels of ketones in sys-
temic circulation is achieved, as R-1,3-butanediol is hepatically metabolized to 
D-β-hydroxybutyrate and acetoacetate. Also, ingestion of the KME over a 
period of 5 days did not impose any significant adverse effects, even in repeated 
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doses of 2142 mg.Kg−1bw/day. There were also no effects noticed on the devel-
opment of mice embryos (Clarke et al. 2012a, b).

7.5.4.2	 �Ketone Monoester as a Possible Treatment for Alzheimer’s 
Disease

Human studies on the employment of KME on a 51-aged male patient suffering 
from the early-onset AD, after three doses of 21.5 g daily for 3 days and three doses 
of 28.7 g daily thereafter, showed a remarkable improvement in the mood even 
after the first dose. Moreover, an improvement in the patient’s impaired linguistic 
skills was noticed. After increased dosages, the patient  also began to perform 
everyday activities without prompting or assistance, activities that he  could not 
perform prior to the medication. After 6 weeks, memory retrieval has also been 
enhanced. It is interesting that the patient’s physician noted that elevated cognitive 
performance paralleled plasma ketone levels and induced a decline in interaction 
skills and mood as ketone levels fell gradually toward basal levels. Additionally, a 
decline in total LDL and HDL cholesterol was recorded after 20 months of supple-
mentation. No other noteworthy biochemical alteration was noticed in blood tests 
(Newport et al. 2015).

A synoptic presentation of all the in vitro, ex vivo, in vivo and clinical studies of 
the memory- enhancing activity of PHAs monomers was recorded in Table 7.2.

7.6	 �Conclusions

Microbes, as cellular factories exploiting low-cost carbon sources, can produce 
PHAs. PHA derivatives constitute high-value products, important curative agents 
and memory amplifiers. Memory decline, on the cognitive level, is a major issue of 
AD and related neurodegenerative diseases, from which millions of people suffer in 
the world and is set to grow rapidly in the coming decades. Although PHAs possess 
unique properties such as biodegradability and biocompatibility, their high cost at 
the moment, acts as a deterrent for their large-scale utilization. The newly devel-
oped field of PHA-based drugs functioning as memory enhancing moieties will help 
in the development of novel treatments against neurodegenerative disorders. The 
applicability of PHAs in those pharmaceutical and medical areas is more than plau-
sible in the near future. However, at present only 3HB and its related products have 
been demonstrated for therapeutic activities, but more PHA monomers need to be 
evaluated for their medical efficacy in the near future. These memory enhancing 
monomers could be then utilized on their own, or even as encapsulating agents of 
multi-functional therapeutic compounds for their effective delivery through the 
BBB against AD.

E. Halevas et al.
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