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Abstract
Polyhydroxyalkanoates (PHAs) are the biodegradable polyesters synthesized 
from the bacterial origin with high therapeutic importance due to their major 
biopolymer properties like biodegradability, biocompatibility, non-toxicity and 
thermo-plasticity. These hypotheses make the PHAs as one of the drug carrier or 
nanovehicles for therapeutic drug delivery. Drug delivery is one of the emerging 
fields in biological science, which gives application of delivering the promising 
drug molecules in the desired drug target, with increasing dissolution rate and 
bioavailability. Understanding the drug-polymer interactions and controlled 
release makes the combo of the perfect drug molecule and the biopolymer, and 
in this, the PHA is reported to be a better natural origin drug carrier. Several 
reports suggest that, chemical entities of PHA show enhanced activity and used 
as one of the promising nanocarrier. Experimental test by several assays shows 
PHA’s as one of the compatible biopolymers in tissues. This chapter comes up 
with various applications related to PHAs like medical implants, adhesion 
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barriers, drug carriers, tissue engineering, Nano based targeted delivery. Overall, 
this chapter will provide a perfect base for studies on PHA related to drug carrier 
studies.
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Abbreviations

APTS	 para-toluene sulfonic acid monohydrate
DTXL	 Docetaxel
HA	 hydroxyapatite
HDI	 1,6-hexamethylene di-isocyanate
P3	 poly(esterurethane)s
P3HB4HB	 poly(R-3-hydroxybutyrate-co-4-hydroxybutyrate)
P4HB	 poly-4-hydroxybutyrate;
PHA(s)	 Polyhydroxyalkanoate(s)
PhaP	 amphiphilic PHA granule binding protein
PhaR	 PHA synthesis repressor protein
PHB	 poly-(R)-3-hydroxybutyrate;
PHB	 Polyhydroxybutyrate
PHBHHx	 poly(R-3-hydroxybutyrate-co-R-3-hydroxyhexanoate)
PHBHx	 Poly(hydroxybutyrate-co-hydroxyhexanoate)
PHBO	 Poly(hydroxybutyrate-co-hydroxyoctanoate)
PHBV	 Poly(hydroxybutyrate-co-hydroxyvalerate)
PHBV	 poly(R-3-hydroxybutyrate-co-R-3-hydroxyvalerate)
PHBVHHx	 poly(R-3-hydroxy-butyrate-co-R-3-hydroxyvalerate-co-R- 

3-hydroxyhexanoate)
PHHx	 Poly(hydroxyhexanoate)
PHHx	 Poly(hydroxyhexanoate)
PHO	 Poly(hydroxyoctanoate)
PHO	 poly-(R)-3-hydroxyoctanoate;
PPC	 Poly propylene carbonate
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6.1	 �Introduction

As far with trending biological science, the Bioplastics are playing the core impor-
tance in multiple applications, holds the specialty of the pollution free product and 
environment friendly materials. In this, one of the notable bioplastic called 
“Polyhydroxyalkanoates”(PHAs) has introduced a several applications which 
replace the conventional plastics with various physical attributes. Polymers are the 
renewable resources among which the PHA is a biodegradable polymer accumulated 
as storage materials in the cytoplasm of the bacterial cells (Troschl et al. 2017). PHA 
is produced in the lack of nutrients, namely nitrogen and phosphorous, with carbon 
source found plethora. The first discovery of Polyhydroxybutyrate (PHB), which is a 
member of PHA family by Lemoine in 1927. PHA is very easily produced by the 
microorganisms in nature which shows its biodegradability (Kourmentza et al. 2017). 
It acts as an alternative for the traditional polymers where PHA exhibits mechanical 
and thermal properties similar to the plastics. The side chain length plays a vital role 
in maintaining these properties which give them stability. There are more than 150 
different types of hydroxy alkanoic acids known for the bacterial storage polyesters. 
Ecological niches namely the marine habitats, estuaries, rhizosphere, microbial mats 
and marine sediments are the most convenient places for the microbes to perform its 
role and interact with all other microorganisms to constitute the ecosystem. The PHA 
accumulation will be occurred by microorganisms, with the higher stress lever in the 
environmental factors and considering this factor, the researchers have focused the 
industrial waste and effluents from textile industry, distilleries, dairy farms, oil mills, 
paper industry, animal residues, agricultural wastes and biodiesel waste products for 
PHA production. Since PHAs are produced under scarcity of nutrients, but with 
excess carbon, they are stored as inclusion bodies in polymerized form. The PHA has 
been previously produced from the sludge by aerobic dynamic feeding and anaerobic 
system in fermented effluents and sequencing batch reactors. The production of PHA 
from mixed cultures enriched the glycogen accumulating organisms, phosphate 
accumulating organisms and Archae.

PHA as a stored energy source makes the bacterium Bacillus megaterium in 
water a biocontrol agent (Defoirdt et al. 2009). The product which contains PHA 
breaks down completely into carbon dioxide and water, which are the major signifi-
cant molecules for the photosynthesis. This could be a reason; PHA fits into the 
carbon cycle similar to petroleum-based plastics. The nanoparticles have a wide 
range of applications in various fields, as for the medical fields is concerned, they 
are used as the covering material for the drugs, which can be peculiarly designed 
and altered with respect to the target sites without altering the durability of the liv-
ing cells. The PHA overcomes the commercial bioplastics like poly lactic acid 
(PLA), s-poly-glycolic acid (PGA) and poly (dl-lactide-co-glycolide) (PLGA), 
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since the monomers of 3-hydroxybutyric acid and 4-hydroxybutyric acid are 
removed from the body in less than an hour since they are less acidic when com-
pared to other bioplastics. The elimination or the eradication of PHA depends on the 
dispensation methods like nanofibers, films, scaffolds and also varies from one tis-
sue to the other. The PHA degradation products like 3HB (3-hydroxy butyrate) and 
3 HV (3-hydroxy valerate) are less acidic with pKa values of 4.7 than the glycolic 
and lactic acid with 4.72 (Fig. 6.1).

The drug deliveries are highly significant tools for the delivery of pharmacologi-
cal compounds to the tissues, organs and cells. They are done by the polymers 
which make the drugs reach the target site safer with reduced side effects. One of 
the traditionally used polymers is the silicone which has been uncertain to cause 
cancers. To overcome these drawbacks, there is a growing need to find nontoxic, 
biocompatible and biodegradable polymers (Michalak et  al. 2016). The poly(3-
hydroxybutyrate) and the poly(3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) 
are the commonly used drug carriers and has more merits than the other polymers 
in tissue engineering. The polylactate, polyglycolate and poly(lactide-co-glycolide) 
are the chemically synthesized polymers which are biodegradable and biocompati-
ble. The merit of PHA over other polymers is that they are impregnated into the 
human body and need not be removed, which are degraded by the system without 
any adverse effects. Hence it is aid to be a better bet against synthesized polymers 
(Errico et al. 2009). On hydrolytic degradation PHB produces 3 hydroxy butyrate, a 
metabolite in the human blood, were 3HB itself contains pharmaceutical properties. 
In order to improve the efficacy, the copolymers are blended with hexanoate, 
1,4-butanediol, propionate and valerate. Poly(3-hyroxybutyrate-co-3-
hydroxyhexanoate) belonging to the PHA family is physically blended with PHB 
(Misra et al. 2010). The glycosaminoglycans are used along with PHAs to improve 
the mechanical strength and biological properties of PHA biopolymer. There are 

Fig. 6.1  Different biodegradable polymers
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certain inorganic compounds like bioactive glass, nano-HA (hydroxyapatite), cal-
cium silicate and zinconium oxides added to PHB and PHBV for enhancing the cell 
interactions in tissue engineering and bone implants (Pascu et al. 2013). For exam-
ple, calcium silicate enhances the bone bioactivity; cell adhesion of the composite, 
the bioglass grades 45S5 (45  wt% SiO2, 24.5  wt% Na2O, 24.5  wt% CaO, and 
6.0 wt% P2O5) interconnects PHB with the formation of hydroxyalkanote within a 
short period, making it an excellent material for bone regeneration. The PHB is 
soluble in few solvents like dimethyl formamide, dichloromethane and chloroform 
and hence mixing of polymers with PHB is a challenging task. More care is taken 
during thermal molding, which makes the polymers break (Vroman and Tighzert 
2009; Manavitehrani et al. 2016).

6.2	 �Structure of PHA

PHA’s are crystalline in nature, hydrophobic with chirally pure configuration mono-
mers. The PHAs inside the bacterial cells as refractile bodies and as environmental 
friendly degradable plastics was initially found in early 1988 (Shrivastav et  al. 
2013). The PHA composition has been established by Griebel in 1968, in bacterium 
Bacillus megaterium. These have a huge array of applications in the fields of marine, 
medical and agriculture industry. The PHAs are stored as granules in the bacterial 
cells (Shively 2011). These granules contain proteins (1.87%), lipids (0.46%) and 
polyesters (97.7%). The region depicted in brackets is one monomer and R is the 
residual group, which varies based on the length of the carbon chains (Fig. 6.2). 
There are different types of PHA, which are differentiated based on the length of the 
side chain and the main chains. The types are based on the number of the carbon 
atoms in the monomeric units, as the short chain length PHA’s (scl-PHAs) with 
three to five carbons and medium chain length PHA’s (mcl-PHAs) with six to four-
teen carbon atoms (Aslan et al. 2016). The enzyme involved in PHA biosynthesis is 
the PHA synthase, which polymerizes the monomeric hydroxyalkanote substrates.

There are around 14 pathways involved in the PHA biosynthesis and are classi-
fied based on the primary sequences.

Class I: One type- PhaC which forms homodimer, Scl monomer C3-C5 carbon 
chain lengths.

Fig. 6.2  Structure of polyhydroxyalkanotes
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Class II: Two types- PhaC1 and PhaC2, Mcl monomer C6-C14 carbon chain 
lengths.

Class III: PhaC-PhaE, PhaC and PhaR, and forms heterodimer, Scl monomer 
C3-C5 carbon chain lengths

Class IV: Similar to class III, Scl monomer C3-C5 carbon chain lengths

In spite of the discovery three decades ago, there is no structural information of 
PHB synthase, the first structure of the catalytic domain of a PHB synthase is the 
PhaC from C. necator with PDB ID: 5T6O (Structure of the catalytic domain of the 
class I polyhydroxybutyrate synthase from Cupriavidus necator) (Fig. 6.3) (Chek 
et al. 2017). The scl-PHAs are used for the production of packing materials and 
disposable items, whereas the mcl-PHAs are of highly important applications like 
medicinal implants, matrix for drug delivery, surgical sutures etc., (Chen 2009a, b). 
Due to the diverse properties and different strategies used in the production of PHA, 
the functional group modifications like –COOH, OH, halogens and epoxy may 
enhance the thermal and mechanical properties. As the Scl and Mcl possess differ-
ent monomeric units, their mixture possesses greater physical and thermal proper-
ties which are through the enzyme engineering (Sharma et al. 2017).

6.3	 �Bacterial PHA

PH3B, a homopolymer of 3-hydroxybutyrate is the most widely used member of 
PHA. The molecular weight of PHA depends upon the organism’s growth condi-
tions and the extraction methods. The organisms Bacillus megaterium, Ralstonia 
eutrophus is said to produce PHB due to the physiological stress in a mixed or pure 

Fig. 6.3  Structure of class 
I polyhydroxybutyrate 
synthase – Cupriavidus 
necator, 3D visualization 
using DS Visualizer
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culture. The microbial synthesis of PHB involves condensation of two molecules of 
acetyl CoA to produce acetoacetyl CoA which is reduced to hydroxybutyryl CoA 
which is the monomer to polymerize PHB (Laycock et al. 2013).

6.4	 �PHA Production

The commercial production of PHA is by the fermentation of microorganisms 
namely Ralstonia eutropha, Pseudomonas putida, Escherichia coli, Aeromonas 
caviae, Azotobacter sp, Bacillus sp, and Methylobacterium sp. Though various 
microorganisms produce PHA, only a few are selected for the commercial pro-
duction. Those organisms which have the metabolic activity of synthesizing PHA 
molecules are specifically selected. They play a vital role in the ion channel com-
plexes, where degradation of PHB polymer yields 3-hydroxybutyrate which is a 
natural metabolite responsible for the formation of ketone bodies in animals. The 
ketone body is biosynthesized in the mitochondria of liver and used by brain (Roy 
2015). One of the commonly used strains is Cupriavidus necator for the industrial 
production of PHB, P3HB4HB and PHBV. The recombinant Escherichia coli are 
used in the production of PHA, PHV and PHBV were PHAs are also produced in 
plants (Fig. 6.4).
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precipitation PHA dried
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CH3 O

O
n
OH

H

PHA production

Filtration

Ultra filtration

Drying

PowderingExtractionCentrifugation

Centrifugation

Fig. 6.4  Production and extraction of PHA
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6.5	 �Biosynthetic Pathways of PHA

The composition of the monomer is based on the used carbon source; there are three 
major pathways of PHA. Pathway 1 is two acetyl CoA from the TCA cycle are con-
densed to form aceto-acetyl CoA with the generation of 3HB monomers in the pres-
ence of enzyme β-keto-thiolase. The acetyl CoA reductase and acetyl CoA form the 
3-hydroxybutyryl-CoA, finally yielding poly (3-hydroxybutyrate) P(3HB). Pathway 
2 is the fatty acid metabolism which generates different hydroxyalkanote mono-
mers, where the trans-2-enoyl-CoA is converted to (R)-hydroxyacyl-CoA by a 
(R)-specific enoyl-CoA hydratase. Pathway generates monomers form carbon 
sources like sucrose, glucose and fructose, which involves the conversion of acyl 
carrier protein (ACP) form to the CoA form by the enzyme acyl-ACP-CoA trans-
acylase (Fig. 6.5).

6.6	 �Sources and Microorganisms Used for PHB Production

6.6.1	 �Eubacteria

In the year 1925, PHB accumulation was reported in Bacillus megaterium in the 
form of cytoplasmic inclusions, the PHA synthesizing bacteria are most commonly 
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Fig. 6.5  Pathways in PHA production
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seen in nitrogen fixing organisms. They are classified into two groups based on the 
culture conditions, with the first group containing bacteria which requires excess 
carbon and limited nitrogen and oxygen, and the second group does not require 
limited nutrients. For the large-scale production, the culture conditions are the most 
important factor to be taken on account. The recombinant E. coli was shown to have 
high PHA accumulation due to the presence of PHA biosynthesis genes (Attia et al. 
2010; Shukla 2017).

6.6.2	 �Archaea

Haloarchaea are the class of Euryarchaeota, which requires high salt concentrations 
to grow, and they are saturated with salt in order to maintain the cell wall stability, 
in the absence of the salt the cell wall breaks (Fig. 6.6).

6.6.3	 �Cyanobacteria

Cyanobacteria accumulated PHA by making use of the energy sources like CO2 and 
sunlight. These bacteria naturally possess PHA synthase enzyme. Synechocystis sp. 
PCC6803, spirulinaplatensis UMACC 161, accumulates 10% PHB as of the cell 
dry weight. Some of the cyanobacteria require phosphate limited conditions for the 
accumulation of PHB (Sudhesh et al. 2006).

6.6.4	 �Agro-industrial Residue

To reduce the production costs of the bioplastics the industrial and agricultural 
wastes as nitrogen and carbon sources are utilized for the biosynthesis of degradable 
bioplastics.

Haloarchaeal
strains

Haloquadratum
Halobiforma
Halorhabdus
Halobacterinm
Halococcus
Halopiger
Natrinema

Natronorubrum

Do not require sterile conditions
(Due to alt concentration)

Archae

Fig. 6.6  Archaea involved in PHB production
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6.6.5	 �Molasses

The by-product obtained during the refining process of grapes, sugar beet and sug-
arcane. The accumulation of PHB was reported in the year 1992, in 
Azobactervinelandii UWD species. PHA production involves a three-step process, 
with step I, the fermentation of molasses into organic acids, followed by the Step II 
with the accumulation of PHA, and the step III, with the production of PHA in 
batches. On the refinement of the sugar beet, sugarcane and soy molasses PHA 
accumulation was observed in certain organisms (Fig. 6.7).

6.6.6	 �Whey Hydrolysates

Whey is the by-product of cheese and dairy industry obtained from the separation 
of casein from whole milk. The cheese whey equals the amount of milk used during 
processing, and the disposal of these waste causes pollution to the environment. 
PHA production has been reported in the cheese whey, in Paracoccusdenitrificans 
DSM 413 (Pantazaki et al. 2009; Koller et al. 2011) (Fig. 6.8).

6.6.7	 �Lignocellulose Material

Lignocelluloses consist of 30–50% cellulose, 15–35% lignin, and 20–50% hemicel-
luloses. The wheat straw is an agricultural residue, a most abundant cheap carbon 
source in bioplastics production. The Halomonasboliviensis from the wheat bran 

Fig. 6.7  PHA production from Agro-industrial wastes
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was reported for the production of PHB, were the wheat bran hydrolyzed by the 
enzyme to provide mixture of sugars. Similarly, the wheat straw, rice bran and 
extruded rice bran are the sources, for the organisms in the production of PHB  
(Fig. 6.9).

6.6.8	 �Vegetable Oils and Fats

The triacylglycerols (TAG) are an important feedstock for the production of PHA, 
the Aeromonascaviae biosynthesize PHA from the triacylglycerol. The type of the 
substrate and the monomer type have a relationship, were the high saturated fats 

Fig. 6.8  PHA production from whey

Fig. 6.9  PHB production from lignocellulose
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produce high saturated PHA monomers and the high unsaturated fats produce 
unsaturated monomers. Olive oil, palm oil and other animal fats are responsible for 
the production of medium chain length PHAs (Fig. 6.10).

6.7	 �Microbial Biodegradation

Due to the presence of xenobiotic compounds the microorganisms face the environ-
mental stress which in turn makes the chances to produce more PHA. The amount 
of carbon is found to be seen in higher amount at the oil contaminated sites with 
lesser nitrogen, which makes a prerequisite for the microbes Pseudomonas, 
Acinetobacter, brochothrix, Ralstonia, andYokenella to produce PHA. It has been 
reported that the organism Ralstoniaeutropha produces PHB nearly up to 50% of 
cell dry weight due to the presence of sodium benzoate and phenol as carbon sources 
but limiting nutrients. The waste products comprising toluene as constituent enables 
various microbes like Rhodococcusaetherivorans to produce copolymer P(3HB-
co-HV) as it makes more carbon source with limiting nutrients. Hence these wastes 
can be made as useful valuable products like PHA (Hori et al. 2009) (Fig. 6.11).

6.7.1	 �Extremophile Organisms

Halophiles are organisms which live in high salt concentrations, also known as salt 
loving organisms. They are classified under Archae, still there are some bacterial 
halophiles and eukaryota. They live in salt concentrations nearly five times higher 
than the salt concentrations in oceans, islands and salt lakes. For the first time the 
Halobacterium marismortui was found to have PHB accumulation identified using 
the freeze fracture technique (Robenek and Severs 2008). The bacterium 

Fig. 6.10  PHA production from oil contaminants
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Haloferaxmediterranei is said to produce around 65% of PHA of cells dry weight, 
in case were the glucose and sucrose acts as the carbon source, limitation of the 
oxygen enhances the PHA production. H.boliviensis, are said to produce higher 
amount of PHB nearly up to 88% of cell dry weight with sodium acetate and butyric 
acid as carbon sources (Kourmentza et al. 2017).

6.7.2	 �Phosynthetic Bacteria

Cyanobacteria are reported to produce PHA by oxygenic photosynthesis, as they 
can produce PHA naturally and have the tendency to store PHA. The PHA produc-
ing organisms are found to be species specific, and mostly produce PHB.

6.7.3	 �Rhizospheres

The rhizospheres are the place for the microbes to harbor which enhances the 
growth of roots in plants, and it’s the place of exchange of nutrients for interaction 
of microbes hence the rhizospheres are the reservoirs of PHA. Pseudomonas extrem-
australis, Pseudomonas orientalis, Pseudomonas brassicacearum, 
Burkholderiaterricola and Lysobactergummosusare reported to be the PHA produc-
ers. The microbe Azospirrillumbrasilenseis a growth promoting rhizobacterium in 
plants (Muller-Santos et al. 2015). The need for the utilization and storage of poly-𝛽
-hydroxyalkanoate is for the maintenance of shelf-life of bacteria. There are various 

Sunlight

Plants

Carbohydrates

PHA polymer
(PHBHHx)

Bioplastics

Carbon cycle

Biodegradation

CO2&H2O

Fig. 6.11  Carbon cycle
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merits in the production of PHA like growth promotion in plants, cell multiplica-
tion, motility and colonization. Hence the oilseed rape, sugar beet and wheat rhizo-
spheres have more PHA production, which means those plants which are rich in oily 
and carbohydrates products are said to produce more PHA.

6.7.4	 �Antibiotic Producers

Streptomyces, gram positive, aerobic bacteria are said to produce PHA as intracel-
lular granules with rich carbon source for the antibiotics synthesis. Various other 
strains of Streptomyces produce PHB and play’s an important role in antibiotic 
production.

6.8	 �Different Types of PHAs

Based on the number of carbons, the types of PHAs are classified. Among various 
types PHB and PHBV are the extensively used commercial polymeric biomaterials. 
The molecular weight and the structure are manipulated by changing the growth 
conditions.

6.8.1	 �PHB

The Poly-β-hydroxybutyrate (PHB) is a homopolymer of (R) – β-hydroxybutyric 
acid, a head to tail homopolymer, naturally found in bacteria (Chen and Wu 2005; 
Philip et al. 2007). It’s the biodegradable and biocompatible polymer when used as 
implants gets degraded gradually by the temperature and produces non-toxic metab-
olites which are excreted through urine. Polyhydroxy butyrate and polyvinyl alco-
hol are used as scaffolds, prepared by the electro spinning in the field of tissue 
engineering. The collagen coated Nano fibrous PHBV loaded with somatic stem 
cells showed better healing property in rat models (Asran et al. 2010).

6.8.2	 �PHV, PHHx, PHHp, PHO

The polyhydroxyvalerate obtained from the P.oleovorans, in the activated sludge, 
few other monomers like 3HV, 3- hydroxyheptanoate (3HHp), and 
3-hydroxyhexanoate (3HHx) existed as major components (Chen et  al. 2013) 
(Fig. 6.12). The Poly (hydroxyhexanoate) (PHHx) from P. putida KTHH03, polyhy-
droxyheptanoate (PHHp) from P. putida KTHH03, PHO Poly(hydroxyoctanoate) 
from Streptmoyceslividansand PHN from Alcaligenessp. The therapeutic applica-
tions are mentioned in the Table 6.1 and medical applications are mentioned in the 
Fig. 6.13.
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6.9	 �Biodegradability of PHA

An important role which makes the PHAs compatible is its biocompatibility. Since 
the PHAs are of the biological origin they are catabolized into water and carbon 
dioxide by microbes found in water, soil and sewage (Jaglan et al. 2017). These 
microbes excrete extracellular enzymes to hydrolyze solid PHA into water soluble 
monomers and oligomers, and use the end products as nutrients. The detriment of 
PHB seems to be faster in vivo than the in vitro because of the enzymes which cata-
lyze the degradation at body temperature. The PHA polymers are degraded at the 
site of implantation by natural nonspecific esterase and lipases (Shrivastav et  al. 
2013). Lobler reported that there could be some impact of lipases on the PHA 
implants which has been shown by the lipase activities observed near the PHA 
implants in rat gastrointestinein vivo. For the use in medical applications PHA must 
be very specific and biocompatible, which should not cause any serious reactions as 
it must be introduced into the host organisms. The PHA must not evoke any immune 
response, when impregnated with the drug as the carrier vehicle. Over a period the 
PHA releases the drug which acts as the dosing agent. The dosage of the compounds 

Fig. 6.12  Different kinds of PHAs
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Table 6.1  Type of PHAs and their therapeutic applications

Polyhydroxyalkanoates Properties References
PHB, PHBHHx, PLA Biodegradation and Biocompatible, 

PHB exhibits better properties than 
PLA

Chen and Zhang 
(2017)

Tendon tissue regeneration, high 
affinity towards bone marrow cells, 
chondrocytes

PHBVHHx Tissue engineering – Skin and bones, 
proliferation of WJ-MSCs, 
PHBVHHx, better than all other 
biopolymers

Ji et al. (2009)

PHB-PLA-PCL (Triblock 
copolymers)

Supports cell growth and anti-blood 
clotting

Chen and Zhang 
(2017)

PHB, Ma-PHBHHx Cell growth and fast biodegradable Hong et al. (2008)
P3HB4HB-PEG, PHB-PEG Drug delivery system (Injection), 

hydrophobic wound healing property
Loh et al. (2007)

PHB-PMLA, PHB-PEG Tissue compatibility, regeneration of 
tissues

Bonartsev et al. 
(2016)

PhaP-RGD, PhaP-IKVAV, PHB, 
PHBHHx

Proliferation, cell adhesion and 
differentiation of the chondrocytes in 
rats.

Xie et al. (2013)

PHBHHx,PHBV,PLA coated 
with PhaP-RGD

Cell adhesion, accelerated growth on 
the coated films.

Chen et al. (2009a, 
b)

PHBHHx, PHB modified by 
ammonia plasma

Cell growth of umbilical endothelial 
cells in human, and aorta muscle 
cells-rabbit

Pompe et al. 
(2007)

PHBHHx-Insulin-Phospholipid, 
PHB-PMLA

Nanoparticle drug delivery matrices, 
hydrophilic drug delivery, insulin 
(long lasting)

Peng et al. (2012)

PHBHHx, PHB blend with 
NaOH

Proliferation of chondrocytes and 
elongation property

Yang et al. (2002)

PHBHHx, PHB blended with 
HAP, composites

Cell adhesion: MG-63 cells, 
PHBHHx-Hap: elastic modulus, cell 
growth, in vivo and in vitro alkaline 
phosphatase activity

Ding et al. (2016)

PHBHHx Biodegradable, biocompatible, 
mechanical and can be altered with 
varying molecular weight

Shangguan et al. 
(2006)

PHBV, PHB Anti-inflammatory, biodegradable Shangguan et al. 
(2006)

PHBHHx-PhaP-ligand In vivo and in vitro drug delivery 
matrices, specificity with colon 
cancer cells.

Yao et al. (2008) 
and Kwon et al. 
(2014)

P4HB nanoparticles Sustained release of cisplatin from 
PHBHHx, inhibiting cancer growth

Lu et al. (2011) 
and Shah et al. 
(2014)

PHA nanoparticles Anticancer drug release Masood (2016)
PHB- Scaffolds –Nano bio glass Tissue engineering: Bones, improves 

cellular proliferation
Hajiali et al, 
(2012)

(continued)
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Table 6.1  (continued)

Polyhydroxyalkanoates Properties References
Medium chain length PHA PHBHHx blend with PPC improves 

mechanical properties, Artificial heart 
and blood vessels

Zhang et al. 
(2007)

PHBHHx Lithography (mimic of the cellular 
environment)

Dai et al. (2009)

PHBHHx Formation of films on the PHBHHx, 
mixed with nontoxic solvents, 
artificial nerve conduits

Zhou et al. (2010)

PLA, PHB, P3HB4HB Proliferation of HaCaT cell line, as 
nanofibre

Li et al. (2008a, b)

PHB-TCP 3D printing Wang et al. (2006)
PHB,PHO blend Growth and differentiation, 

mechanical properties of nerves
Lizarraga-
Valderrama et al. 
(2015)

PHB Nerve regeneration, scaffold 
attachment, proliferation and survival

Young et al. 
(2002)

PHBHHx coated porcine aortic 
valve

Artificial heart valve and blood 
vessels, promoting repopulation of 
cells

Sodian et al. 
(2000a, b) and Wu 
et al. (2007a, b)

P3HB4HB based polyurethane 
block copolymer, PHBV and 
bacterial cellulose

The 4HB content in P3HB4HB 
enhanced elastin formation and 
artificial blood vessels, PHBV+ 
cellulose (same as P3HB4HB)

Li et al. (2010)

HA, PHB Hydroxyapatite or PHB coated with 
collagen enhanced osteogenic growth 
and differentiation

Rentsch et al. 
(2010)

PHBHHx Islet transplantation, insulin gene 
expression

Yang et al. (2009) 
and Wang et al. 
(2006)Tarsal repair

PHBVHHx Nerve conduits, differentiation of 
human bone marrow mesenchymal 
cells

Wang et al. (2010)

PHBHHx coated PhaP-RGD Tissue engineering: bone, repair 
spinal cord injury, cartilage tissue 
engineering

You et al. (2011) 
and Lomas et al. 
(2013)

P(3HB), P(4HB)- Tube form Fibrosis reduction Lobler et al. 
(2011)

P(3HB), P(4HB)- Microspheres Bone disorders, anticancer drug 
delivery

Francis et al. 
(2011)

P(3HB-co-3 HV), magnetite 
composite

Intestinal tissue – targeted drug 
delivery

Vilos et al. (2013)

P(3HB-co-3 HV) nanoparticle Folate mediated drug delivery 
(Doxorubicin)

Zhang et al. 
(2010)

P(3HB-co-3HHx) Folate mediated anticancer drug 
delivery

Kiliçay et al. 
(2011))

P(3HB),P(4HB)/HA, P(3HO) Skin tissue engineering Peschel et al. 
(2008)
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can be altered by changing the properties of the biopolymer, like different side 
chains for PHA. As the PHA are biocompatible and does not elicit any immune 
response they can be used in the implants and sutures.

6.10	 �Biocompatibility of PHA

The implant material though being biodegradable should also be biocompatible 
with the host organisms. The polymers should not produce any toxic responses in 
the body, its supports the cell adhesion and growth which are the key factors for the 
commercialization.

6.10.1	 �In Vitro Cell and Tissue Compatibility

Basically, the monomers as they are not harmful for the tissues and cells, the biode-
gradable products are preferred for the medicinal applications. The PHB polymer 
when used as a pericardial patch in sheep, did not elicit any adverse effects. The 
PLAs are used as the standard polymer approved by FDA for implantation, the 
PHBHHx elicited a mild tissue response and found superior than PLA, as they 
exhibit thermo and mechanical properties. The PHBVHHx studied using human 
bone marrow mesenchymal cells showed better adhesion property than the PLA 
film and also enhanced osteogenic differentiation. Similarly, they showed better 
adhesion and proliferation of the Wharton’s jelly derived mesenchymal stem cells. 
On comparison with other PHA materials, P3HB4HBHHx and PHBVHHx exhib-
ited better adhesion and cellular proliferation than tricalcium phosphate.

Fig. 6.13  Biomedical applications of PHA
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6.10.2	 �In Vivo Medical Implants

The PHAs are used as drug delivery matrices for encapsulating the hydrophobic 
drugs in the form of nanoparticles. The PHA nanoparticles, proteins or polypeptides 
fused with PhaP are developed, were PhaP fused with ligands and the overexpres-
sion of the genes of E.Coli attaches to the hydrophobic particle. These ligands pull 
the PhaP and PHA particles to the targets; this ligand-PhaP-PHA complex has been 
proved for specific drug delivery in both in vivo and in vitro. The insulin phospho-
lipid complex (INS-PLC) loaded with PHBHHx was tested with the rats and found 
that the 20% of insulin released in the first 8 h within 31 days. The hypoglycemic 
effect sustained for more than 3 days and the subcutaneous injection of INS-PLC-
NPs prolonged the therapeutic effect than administering with insulin solution indi-
cating the challenging role of INS-PLC-NPs complex, with long term insulin release 
formulation. For targeting the microcapillary endothelial cells in the pancreas, the 
PHBHHx microspheres were prepared. Adenoviruses carrying a green fluorescence 
protein gene complexed with PHBHHx microspheres and injected in the pancreas 
of mice. About 40% of the cells were labeled after 5 days from surgery and the islet 
cells labeled occasionally. The insulin entrapment in PHBHHx nanoparticles, 
enhanced the efficiency of insulin in INS-PLC-NPs system. These paved the way 
for targeting capillary related disorders using PHBHHx microsphere-adenoviral 
complex (Zhang et al. 2012).

6.11	 �Biomedical Implants

The PHAs like PHO, PHB, PHBHHx, PHBV, and P4HB are used in biomedical 
applications since they are in sufficient quantities. For past 20 years PHA and com-
posites have been used for many biomedical applications like sutures, staples, 
screws, plates(bone), slings, patches, adhesion barriers, nerve guides, filling agents, 
scaffolds, dressings, substitutes for skin injury, ligaments, cell implants, hemostats, 
orthopedic pins, tissue regeneration, meniscus regeneration, done dowels and spinal 
fusion cages (Chen et al. 2001; Chen and Wu 2005; Wang et al. 2008; Bian et al. 
2009). The composition of PHA is altered to enhance the biocompatibility, degrada-
tion time under physiological conditions. 3-hydroxybutyrate promoted cell prolif-
eration in highly dense cultures which prevented the cell death making the 
biopolymer PHBHHx a good candidate for tissue engineering, which may regener-
ate large number of cells. PHBHHx microparticles also promote the L929cell pro-
liferations with increase in the intracellular calcium concentration. The P4HB is the 
successfully used implant material approved by FDA (Cheng et al. 2006). For the 
disease osteomyelitis, the poly(3HB-co-3 HV) rods with the sulperazone antibiotic 
were used. The rods loaded with 50% of the drug in the form of granules to the 
poly(3HB-co-3HV) solvent solution and the resulting paste was molded as rods. 
The animal studies were performed using staphylococcus aureus infected implants 
in rabbit tibias and replaced with the biopolymeric rods. The infection was found to 
be totally eradicated in 15 days. Similarly using poly(3HB-co-3HV) rods with the 
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drug sulbactam-cefoper for the treatment of osteomyelitis has been reported (Gursel 
et al. 2002). (Korkusuz et al. 2001) used the poly(3HB-co-3HV) and poly(3HB-co-
4HB) as antibiotic carriers for the osteomyelitis, the poly(3HB-co-4HB) was less 
rigid and easier to handle.

6.12	 �Subcutaneous Implants

The lipophilic drugs when administered orally are normally destroyed by the liver, 
so the transdermal delivery makes an option of delivering lipophilic drugs. The skin 
is one of the toughest paths for the diffusion of the drugs, which consist of a lipid 
bilayer; hence more focus is towards the transdermal delivery (Metcalfe and 
Ferguson 2006). The gonadotropin releasing hormone is entrapped with the P(3HB) 
and placed in sheep subcutaneously. The hormone induces ovulation and promotes 
the pre-ovulatory follicular growth. The release of the hormone was observed for 
about 2–4 h, and the incidence of ovulation was observed.

6.13	 �Ceramic Scaffolds

The ceramic scaffolds and biodegradable polymers are the drug delivery vehicles, 
and certain synthetic polymers could not be used for drug delivery as it produces 
adverse responses due to acidic degradation product. Therefore, the biocompatible 
polymer like PHAs supports cellular growth. The PHAs when in combinations with 
the bioactive ceramics improves the mechanical properties of the scaffolds.

6.14	 �Urology

The poly(3HB) and poly(3HB-co-3HV) material used in the repair and reconstruc-
tion of ureter. The interlaced tubes were coated with poly(3HB-co-3HV) and 
implanted in dogs for urethra replacement. The urethra tissue has been reconstructed 
in all tested animals after a period of 6–9 months, showing the efficiency of the 
poly(3HB) in reconstruction without any adverse effects (Jiménez and Kenny 2014).

6.15	 �Blood Vessels and Heart Valve

Due to the flexible property of PHAs they are used for the biomedical applications in 
making artificial blood vessels and heart valves. The P3HB4HB containing 4 hydroxy 
butyrate showed the formation of the elastin and its strength, which has the ability to 
induce formation of elastins and hence P3HB4HB polymers are used for making the 
artificial blood vessels (Cheng et al. 2008). As P3HB4HB is more fragile and less 
strong, copolymers with strong structures using poly (propylene glycol)- poly(ethylene 
glycol)-poly(propylene glycol) (PPG-PEG-PPG), were synthesized using 
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1,6-hexamethylene di-isocyanate (HDI).The stronger blood vessel materials are made 
using the materials like PHBHV and cellulose. The blending was made by the solvent 
casting method into films with varying ratios based on the blood vessels, when blended 
with other materials makes the PHBHHx a more suitable for engineering blood ves-
sels. Blending of PHBHHx with poly propylene carbonate (PPC) increases the 
mechanical properties of the biopolymer making an ideal model. The porcine aortic 
valves decellularized and coated with the PHBHHx and implanted in the sheep with-
out cardiopulmonary bypass. Then explanted valve is studied after 16 weeks for its 
histological and biochemical examination. It was observed that the valves maintained 
the original shape with less calcification than the control. The in vitro assay revealed 
the PHBHHx increases the tensile strength and enhanced repopulation of the cells 
making it similar to the native for valve replacement. The P4HB is absorbable and 
more flexible and found to be superior to the traditional polymeric materials. It finds 
use in wound healing, drug delivery and orthopedic surgeries (Wu et al. 2007a, b). The 
vascular cells from the ovine carotid arteries were harvested in vitro and seeded on the 
P4HB valve scaffold by cardiopulmonary bypass. The native valves were cut out and 
replaced using the 2 cm segments of pulmonary artery by cell seeded construct. After 
the observations all the animals survived with no thrombus formation. Such scaffold 
using P4HB can be used as tissue engineered heart valves and functions for a period 
of 120 days (Sodian et al. 2000a, b).

6.16	 �Hard and Soft Tissue Engineering

As the PHAs are biocompatible and long term degradability make it favorable bio-
polymer for the tissue engineering. The commonly used polymers in hard tissue 
engineering are the poly lactide-co-glycolide and polyethylene glycol. The P(3HB) 
strengthens the natural bone and induces osteogenesis and healing (Yang 2001). The 
P(3HB) are used in recovering the damaged gastrointestinal tract, pericardial 
patches, repair of peripheral nerves (Novikov et al. 2002). The medium chain length 
biopolymers are favorable for the soft tissue engineering due to their elastomeric 
and soft properties. The P(3HO-co-3HHx) is used to replace soft tissues like blood 
vessels and valves and also in hard tissue engineering like bones (Sodian et  al. 
2000a, b; Stock et al. 2000).

6.17	 �Hydrogels

The hydrophilic polymers with large water content are the hydrogels, which forms 
three-dimensional macro molecular networks. It is advantageous in tissue engineer-
ing as because of its permeability to nutrients. The 3D printing, molding and micro 
patterning has the impact on the hydrogels. There are natural and synthetic hydro-
gels based on the polymeric material as its components. The natural hydrogel form-
ing polymers are agarose, chitosan, alginate and dextran and the synthetic hydrogel 
forming polymers are the polyethylene oxide, polyacrylic acid and polyvinyl 
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alcohol. The hybrid hydrogels consist the peptide and the synthetic domains. The 
macromolecular polymers made of cross linked chains are used in the drug develop-
ment and in various biomedical applications. The most favorable property for the 
hydrogels is its porous morphology which allows easier diffusion of drugs and 
nutrients within and outside the matrix. Hence these hydrogels are widely used as 
the drug carrier vehicle. The drug release rate can be altered or modified based on 
the mesh size of the network which enhances diffusion mediated release. The drugs 
impregnated hydrogels are used to induce therapeutic applications and the con-
trolled release of the small molecule drugs, proteins or peptides. These gels are 
grafted onto biomaterials by polymerization, entrapment and graft coupling. 
Hydrogels are used as cardiovascular implants, urinary tracts, dressing of wounds 
and as controlled drug release devices. The coating with the help of hydrogels 
makes the biomaterials more compatible. The role of hydrogels in antibacterial 
activity using curcumin loaded nanoparticles into hydrogel was studied by (Vimala 
et al. 2014). The thin films were fabricated by the adsorption of dextran sulphate 
(DS) and poly (allylamine hydrochloride) (PAH) to drug delivery. The leaf extracts 
of Hybanthus enneasermus were used for the silver nanoparticles production and 
prepared as thin films and these silver nanoparticles along with the films showed the 
release of the drug more efficiently. The drug release of the silver nanoparticles 
coated polyelectrolyte thin films showed high release of moxifloxacin hydrochlo-
ride than the silver nanoparticles alone (Fig. 6.14).

Fig. 6.14  Biomedical applications of hydrogels
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6.18	 �Wound Healing

The largest organ in the human body is the skin and those damages caused might be 
due to the injury, burn or diseases. Skin act as a barrier in the human body which 
protects from the environment, skin substitutes are done mainly for the purpose as 
the grafts for healing wounds and for in vitro assay for skin testing of products. The 
skin replacements are through tissue engineered substitutes, like biomaterials and 
these biomaterials are designed for the skin wounds, and must enhance the growth 
of skin cells like fibroblast, keratinocytes and melanocytes. The biomaterials act as 
an artificial extracellular matrix for the attachment of the cells. Both the natural and 
synthetic polymers like glycosaminoglycans, polypeptides, hyaluronan and poly-
lactide are used as substitutes were there are few demerits for the materials. The 
main demerit includes the inability of molecular signaling making it a tough task 
during surgery. Hence to overcome these issues PHAs are used for tissue regenera-
tion. The seeding of melanocytes on the polymer scaffolds and in glands namely 
sebaceous gland and sweat glands. The drawback of the synthetic materials is lack 
of cell recognition as the heparin binding domains present on the binding sites of 
many proteins. The P(3HO) films supports cell differentiation and maturation of the 
HaCaT cell line. The PHA material terpolyster P(3HB-co-3 HV-co-HHx), used as a 
scaffold material in skin substitutes. This complex as it contains the 3HB, 3 HV, 
3HHx polymers they have high mechanical and thermal properties.

6.19	 �Nerve Conduits

The PHB is brittle and the high elastic properties make it an ideal material as elastic 
conduit with tube structures. The PHB scaffold enhances proliferation and attachment 
of Schwann cells and its regeneration. The PHB conduits were tested for nerve injury, 
the peripheral nerve regeneration was studied using rabbits and showed these PHBs 
would be suitable for long term nerve injuries. The PHBHHx promotes central nervous 
system growth and differentiation on 2D and 3D matrices beneficial for the CNS repair. 
On comparison with 2D, the 3D nanofibers were more suitable for the central nervous 
system attachment, synaptogenesis and synaptic outgrowth. The PHA with varying 
ratios of PHB was found to be rough which makes the stiffness in the polymer when 
PHB is increased. Though they are blended with many ratios, the one with 25:75makes 
it significant for the neuronal cells in growth and differentiation. The PHAs would serve 
as the base for the manufacture of nerve conduits (Lizarraga-Valderrama et al. 2015).

6.20	 �Biomedical 3D Printing

The 3D porous cubes were made based on the laser sintering technology and the 
cubes are altered as per the virtual model. On comparison of the clinically used 
PLA, PGA and PLGA, PHB implants showed unaltered pH which makes them 
tolerated by cells. The PHB are used as coating materials for the dissolving implants 
(Meischel et al. 2016).
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6.21	 �Biomedical Lithography

The two lithographic methods micro molding and hot embossing are used for 
PHBHHx arrays of microstructures in culturing cells in local environment in desired 
shapes, with different configurations like octagons, rectangles and squares. The 
microstructures of PHBHHx are used to impersonate cellular microenvironment for 
cell culture (Zhou et al. 2012; Li et al. 2014).

6.22	 �Injections

The PHBHHx dissolved in nontoxic solvents like dimethylacetamide, 
N-methylpyrrolidone, 1,4-dioxane, dimethyl sulphoxide, and 1,4-butanolide, which 
is the injectable implant method and forms a film around the site of injection in 
animals. The films were formed due to the interaction between the body fluids and 
the PHBHHx solvents. Such implant system was used for the tissue adhesion pre-
venting film formation in surgeries (Dai et al. 2009).

6.23	 �Eyelid Reconstruction

The eyelid reconstruction involves the tarsal repair, were the traditional methods did 
not show satisfactory effects. The PHBHHx material is used as the tarsal substitute 
tested on the Sprague Dawley rats. Both the commercial scaffolds and the PHBHHx 
showed better effects though it showed inflammation for 2 weeks but still better than 
the blank. Since it’s a strong material with high elastic proprieties and biodegrad-
ability it’s proved that PHBHHx would be a good candidate for tarsal repair (Zhou 
et al. 2010). The transplantation of Islets is the alternative for the treatment of dia-
betes. The spherical islet like structures were observed on the PHBHHx films on 
cultivation, and cells when assayed by MTT showed high metabolic activity. After 
a growth on the PHBHHx films the extracellular secretion and the insulin gene 
expression were upregulated making it ideal for islet transplantation (Yang et al. 
2009).

6.24	 �Osteogenic and Chondrogenic Effects

The biomaterial initiates the changes on the cell behavior which has specific surface 
features. The planar and grooved films exhibit osteogenic and chondrogenic effects on 
mesenchymal stem cells (Li et al. 2014). The presence of the biomaterials impacts the 
increase and decrease of specific genes for the variation in cellular response, which 
shows that the surface modifications are the major factor for the cellular response. The 
cells sense the material through adhesion formation or the integrin clusters. The strat-
egy behind the proliferation of the cell lines are through the enhanced combination of 
a PHA binding protein with a mcl-PHA (Geiger et al. 2009).
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6.25	 �Tissue Engineered Heart Valve

Sodian and his team made an attempt in tissue engineering using the flexible 
properties of the PHA, in implanting a trileaflet tissue engineered heart valve in a 
lamb with P(3HHx-co-3HO) polymer. It was found to work very efficiently for 
more than 3  months without any clots but had slight contraction (Sodian et  al. 
2000a, b; Levine et al. 2015). The poly glycolic acid when used as a blend with Poly 
(3hydroxyhexanoate-co-3hydroxyoctanoate), the heart valve regurgitation was seen 
after implantation in 6 months. The surface modification has a high impact when 
designing the PHA biopolymer (Qu et al. 2006).

6.26	 �Medical Scaffolding Material

In the medical terms the scaffolding is made of polymer fibers used for bone and 
tissue regrowth in various organs. The scaffolds are inserted into the host for the 
repair of the damaged tissue, once the tissue grows the scaffolds, are absorbed in the 
body and completely disappears.

Few studies report the hydroxyapatite as scaffolds used in the treatment of bone 
disorders. The PHB and polyglycolic acid were used as scaffolds for the pulmonary 
arteries in the sheep, where the PHA based scaffold are inserted surgically into the 
host. Also, the PHB were used in the rats with the spinal cord injury by neuronal 
generation (Novikov et al. 2002).

6.27	 �Surgical Material (Sutures)

The sterile fibers may be absorbable or non-absorbable used in the medical applica-
tions for tissue fixation, ligation and wound healing. During the implantation, 
absorbable sutures are made which loses their tensile strength and gets degraded 
as nontoxic products (Chen et  al. 2014). The polymeric materials are more 
specific for making sutures, were the material must exhibit high tensile strength for 
the effectiveness of the sutures made for closure of wounds. The sutures must 
exhibit high tensile strength, flexibility, resistance to bacterial growth, easily to tie, 
grip, good absorbance and eventually disappearing property. The polymers 
Poly(3hydroxybutyrate-co-3hydroxyhexanoate) and PLA exhibited such properties 
and have been used as biomedical application. The TephaFLEX suture is the most 
well-known first approved suture by US FDA, which are more familiar due to its 
mechanical properties.

6.28	 �Drug Release

PHA are used as devices in drug delivery, an in vitro assay using P(HB-co-HV) 
polymer, impregnated with drug gentamicin showed a slow release of the drug into 
the aqueous solution for 2 weeks. The release of the drug can be altered using the 

6  Applications of Polyhydroxyalkanoates Based Nanovehicles as Drug Carriers



150

amount of drug loaded. The sustained release using biopolymers makes the drugs 
reach the target site at a given concentrations (Gursel et al. 2002).

6.29	 �Drug Carriers

As PHAs are hydrophobic and biocompatible they are turned into porous matrices, 
microspheres, nanoparticles, films and micro capsules. So, the drugs like antibiotics, 
anticancer, anesthetic agents, anti-inflammatory agents, vaccines and steroids can be 
trapped in the polymer and delivered to the host organisms. The PHA microspheres 
are used as carriers of steroids, were PHB is used in the preparation of microspheres 
containing the progesterone as drug. PHB microspheres showed the higher rate of 
release of the drug when compared with other polymers. The anticancer drug lomus-
tine incorporated in PHB and PLA microspheres as drug carriers and found the 
release of drug faster from the PHB microspheres than PLA. The increased rate of 
drug release was observed with the incorporation of butyl esters in PHB micro-
spheres (Chen et al. 2009a, b; Shrivastav et al. 2013). The PHBV polymers incorpo-
rated with tetracycline acts as the carriers for the periodontal diseases and were found 
to be effective for the controlled release of the drug. The tetracycline are loaded in 
PHBV microspheres and in micro capsules in both the acidic and neutral forms, 
showed the complete release of the drug before degradation (Chang and Sultana 
2017). The PHB microspheres were incorporated with rubomycin an antitumor drug, 
in mice for its proliferative activity in Ehrlich’s carcinoma. (Lu et al. 2011) reported 
PHA nanoparticles as drug carriers for ant cancerous studies. The sustained release 
of the PI3K(TGX221) for blocking the proliferation of cancer cell lines. The TGX221 
slowly released from the PHA based nanoparticles, gradually inhibited the growth of 
cancerous cells. The chemotherapeutic drugs which are highly toxic and poorly 
water soluble are encapsulated with PHA nanoparticles. The chemotherapeutic mol-
ecule Docetaxel (DTXL) used in treatment of tumor types. DTXL formulated with 
PHB nanoparticles increased the therapeutic index and blood longevity. The PLGA 
is the traditionally used nanoparticles for DTXL whereas the product of PHB is the 
nontoxic compound, 3-hydroxybutyric acid. In terms of loading, release and cytotox-
icity the PHB polymers exhibited high loading capacity.

Cisplatin, a familiar chemotherapeutic agent used against different tumors, 
loaded in self assembled copolymer nanoparticles, showed the sustained the release 
of the cisplatin from the hydrophobic domain enhancing the apoptosis of the tumor 
cells (Shah et  al. 2012). The PHA polymers releases 3HB monomers, which 
increases the calcium level in the cells inturn protecting the mitochondria, hence 
suggesting these biopolymers as a drug for nervous and bone disorders. For obtain-
ing a purified R10 monomer the medium chain length PHA (R10) was depolymer-
ized and conjugated with a D-peptide (DP18) and derivatives, which enhanced the 
anticancer activities. The anticancer activity was more superior with the R10-DP18 
than the peptides combined with decanoic acid (O’Connor et al. 2013).The PHA 
nano particles can be used for targeted drug delivery (Shrivastav et al. 2013). The 
carcinogenicity of PHAs were analyzed using deoxyribonucleic acid (DNA) 
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aneuploid and telomerase activity, which showed that the PHAs supports cell growth 
and hence not susceptible to tumor induction, which implies PHAs as safe biopoly-
mers (Peng et al. 2012). The PhaP called as Phasins, the PHA binding protein is 
seen immobilized on the surface of the nanoparticles through hydrophobic interac-
tions between PHA and PhaP.  The overexpression of the recombinant genes in 
microbes produces PhaP fused ligands. The ligand-PhaP-PHA nano based drug 
delivery has been proved in vitro and in vivo (Yao et al. 2008). The costimulation of 
T-cells by B7(costimulatory molecules), showed hetrologous expression of the 
B7-2 molecule and construction of an immobilized molecule using PHA nano par-
ticles as immune activation agent. The B7-2 molecule fused at the N terminal with 
PhaP and expressed in E.coli strain DE3. The purified B7-2-PhaP was immobilized 
on the surface of nanoparticle. The immobilized particle provide the signals to 
induce activation of T-cell and in vitro proliferation (Li et al. 2012).

6.30	 �Microparticulate Carriers

The drug delivery methods with controlled and sustained release of the drugs with 
maximum activity and minimized side effects are the microparticulate drug deliv-
ery. The drugs in the form of solids or liquids covered by the polymers of different 
thickness depending upon the permeability of the cell membrane. The poly 3HB 
and poly (3HB-co-3HV) are the examples of microparticulate carriers produced by 
solvent evaporation method, which varies by the composition of polymers, particle 
size, crystallization rate and molecular weight. The valerate content usually slows 
down the drug release rate due to less crystalline and hence valerate incorporated 
with poly 3HB tends to decrease the physical damage. Before the degradation of the 
polymers the drugs are completely released, which is diffusion based.

6.31	 �Tablets

The tablets were prepared using poly(3HB) containing diltiazem, the vasodilator 
and tested in vitro. The complete release of the drug was seen when drug loaded 
with the higher concentration of biopolymer and the release rate was slower with 
lower concentrations (Korkusuz et al. 2001). The contraceptive pills are the com-
monly used steroids; estrogens are readily absorbed through mucous membranes, 
gastrointestinal tract and through skin. There are certain adverse effects on steroids, 
but still due to the missing steroid synthesis, they are taken endogenously. Estrogens 
are used for the treatment of ovarian development failure, prevention of heart attacks 
and osteoporosis. The steroids encapsulated with biopolymer PHA are used to mini-
mize the side effects. The PHB and P(3HB-3HV) are used to prepare microspheres 
containing the progesterone. The surface of the microspheres is based on the com-
position and temperature, when there is a change in the solvents the microspheres 
becomes smoother. The in vitro release was seen slowest with the other polymers 
were as found to be efficient with PHB (Chen and Davis 2002).
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6.32	 �Drugs

The derivatives of 3HB are the ketone body produced in animals and also human, 
which is the degradation product of PHA. The derivatives of 3HB plays a role in 
the cell apoptosis and the in the cytosolic Ca2+concentration in the mouse glial 
cells, in the presence of 3HB the apoptosis decreased significantly (Xiao et  al. 
2007). The in vitro assay showed that elevation of cytosolic Ca2+ concentration is 
because of the 3HB derivatives. The intracellular and the extracellular calcium 
contributed for the increase in calcium level mediating the signaling of cellular 
pathways. The 3HBME which is also one of the derivative of 3HB shown to be 
efficient in cellular permeation than the other derivatives D-3HB and DL-3HB. The 
brain which is the most sensitive organ requires more energy for the activity, which 
is supplemented with metabolic substrates. The metabolic activity of the neuroglial 
cells was seen elevated in the presence of the PHB derivatives. An increase in the 
ERK2and connexin 36 protein in brain tissues was observed with the treatment 
using 3HBME. Through the signaling pathways 3HB enhances the memory and 
the learning skills (Zou et al. 2009).

6.33	 �Prodrug

Prodrugs are those inactive compounds metabolized inside the human system as 
drugs with the action of enzymes. The poly(4HB) is the prodrug of 4-hydroxybutyrate, 
which were tested using the rats given with low molecular weight polymer 
poly(4HB). The serum concentration was elevated within a short period of time. 
The prolonged release of monomers had an importance for the narcolepsy (Sudesh 
et al. 2000). The properties of the prodrug depends on the susceptibility, physio-
chemical properties and the enzymatic regeneration were as the chemical modifica-
tions alone does not enhance the activity of prodrug, in turn the combinations with 
the polymeric conjugates (Williams and Martin 2005). The controlled release of 
5-fluoro-2′-deoxyuridine (FUdR) ester prodrugs as microspheres using PHB were 
investigated. The PHB-450 microspheres containing the drug showed rapid com-
plete release containing FUdR within 24 h. The release profiles were observed with 
the poly lactic acid and the FUdR prodrug and the lower content spheres showed 
significant faster release. To identify the drug release rate for anti-tumor activity an 
in vivo assay using P388 mouse leukemia cells through intraperitoneal injections 
and the single administration containing FUdR was effective with the use of high 
molecular weight PHB. The combinations of the prodrug and the biopolymer PHB 
showed a controlled and sustained release with increased therapeutic applications as 
the anti-tumor agent FUdR. The molecular weight along with the physio chemical 
properties of PHB microspheres was biocompatible and with low toxicity.
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6.34	 �Drug Delivery of PHAs

Drug delivery is the reach of the therapeutic drug at the given concentration to the 
target, which triggers the pharmacological response. The dosage of the drugs and its 
frequency has to be increased to overcome the side effects of the drugs. The bio-
polymers designed, and its composition is based on the target place of the drug 
release. An in vitro and in vivo assay of the drug 7- hydroxyetheophylline in P(3HB) 
tablets, implanted on the neck fold subcutaneously showed a high drug release rate 
for 80% drug loading, and the complete release was observed within 24 h (Brigham 
and Sinskey 2012; Ali and Jamil 2016; Ferre-Guell and Winterburn 2018). On com-
parison with the P(3HB) and PHV polymers the release rate was slower with the 
P(3HB-co-3 HV) compressed biopolymers. The main difference between the drug 
releases was the structure, composition and porosity.

6.35	 �Mechanism of Controlled Release

6.35.1	 �Diffusion Release Mechanism

•	 Monolithic device
•	 Reservoir device

The active pharmaceutical ingredient is added to the polymeric solution 
or dispersed within the polymer. The drug is slowly released into 
the physiological fluid by dissolution, followed by diffusion. Though 
the drug release may not be 100% but it’s the simplest method of drug 
delivery, is the monolithic device.

In reservoir device, active pharmaceutical ingredient is placed on the film, based 
on the porosity and the thickness the drug released. The drug with low solubility 
makes a possibility to stop the process, and those with high solubility makes the 
drug burst increasing the concentration of the drug to the surrounding parts (Vasant 
and John 2011).

6.36	 �Osmotic Release

The drug delivery which employs the osmotic pressure for delivering the active 
pharmaceutical ingredient, were the drug is coated with the semi permeable mate-
rial. The orally administered drug involves this type of release. The permeability is 
based on the degree of acetylation, were the permeability increases with increase in 
acetyl content. When the drug immersed in the aqueous medium, due to the hydro-
static pressure within the drug, it diffuses through the membrane. The thickness 
ranges from 200 to 300 μm. Around 80% of the drugs are expelled completely 
beyond which the residual release rate is slower (Kwon and Furgeson 2007).
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6.37	 �Polymer Erosion

The importance of the polymer is highly noted only by the biodegradability. The 
drug releases through three different mechanisms.

•	 The drug is attached with the polymer backbone by covalent linkage, and the 
drug release is observed when the backbone is hydrolytically cleaved.

•	 The drug is encapsulated with the biopolymer and released when the polymer 
undergoes degradation. The drug release rate is proportional to the polymer deg-
radation rate.

•	 This mechanism involves the diffusion and erosion of the polymer.

The small chain length PHA is ideal for drug delivery than medium chain length as 
they are degraded by surface erosion. The rate of drug release is based on the crys-
tallinity of the polymer. On the other hand, medium chain length polymer provides 
controlled drug release because of their low melting point. The drawback of Mcl 
PHAs is the inability of production in large quantity.

6.38	 �Oral Drug Delivery

The larger molecules like proteins and peptide are challenging task in reaching the 
targets when taken orally (Yang 2001). The orally taken drugs must maintain its 
stability and structure until reaching the site of action. The hindrances are due to the 
enzymes in the stomach which prevents the drugs bioactivity and the pharmacoki-
netics. The mucosal lining prevents the penetration of the drugs to the site of action 
(Shishatskaya et al. 2011). Hence P (3HB) is used for the sustained release of the 
drug to be delivered, which is based on the molecular weight of the polymer. For 
example when the molecular weight increased from 3000 to 6000 kDa, the release 
rate also increases. The P(3HB) were used as compressed compact discs for the 
treatment of periodontal diseases for the delivery of tetracycline and the reduction 
of the gingival infections has been observed over a period of 10 days (Volova 2004). 
Similarly P(3HB) microspheres encapsulation sulphamethizole was taken orally in 
greyhound dogs. The absorption rate was good in both the in vivo and in vitro pro-
files (Koller 2018). The vasodilator, Diltrazem compressed with the P(3HB) tablets 
was used in studying the drug release rate in vitro. When there is 45% drug loading 
complete release of the drug has been observed.

6.39	 �Intravenous Administration

The anticancer drug Imoustine, entrapped with the P (3HB) microspheres, intrave-
nously injected on lung carcinoma mice, were the drug release was better with the 
P(3HB) than the poly lactic acid (Makadia and Siegel 2011; Panchal et al. 2012).
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6.40	 �Nanoparticles-Based Targeted Drug Delivery

The drug when reaches the target becomes an efficient molecule against the disease, 
were there are no side effects when the drug reaches the target. Cancer is one of the 
dreadful diseases and focus towards the targeted drug delivery is based on the deliv-
ery particles its accumulation within the target. The new approach to target the 
cancer cells for drug delivery and imaging based on the oil-water emulsion method, 
using the PHA synthase as catalyst. The coupling of hydrophobic surface of PHB 
nanoparticle and the PHB chain, in the presence of the synthase linked with a ligand, 
organizes the nanoparticle in the aqueous environment. RGD4C fused with PHA 
synthase and the tumor specific ligand, organizes the surface of the nanoparticle, 
which showed affinity towards the MDA-MB-231 breast cancer cells. Hence show-
ing the capability of the drug carrier molecule especially bound towards the PHB 
nanoparticle (Lee et al. 2011). The development in the field of nanotechnology has 
been a promising aspect in the drug delivery. The delivery of drugs to various parts 
of the body, to the targets and the sustained release of the drug. Based on the target 
the surface of the nanoparticles can be modified. The hydrophobic and hydrophilic 
drugs, vaccines, proteins, macromolecules and vaccines are delivered using the 
nano particles. Based on the target of the drugs, targeted based drug delivery system 
plays a vital role in delivering the exact dosage of drugs for the specified time with-
out any adverse effects on other parts. More focus towards the chemotherapeutic 
drugs and proteins and peptides which are delicate (Yamamoto et al. 2005). The 
modification in the nanoparticles with the ligand enhances the efficacy and the cel-
lular uptake of nanoparticles through cell mediated endocytosis, an increase in the 
intracellular concentration of the drug increases the therapeutic activity. The PHB 
microspheres used for the delivery of formalinized vaccine of Staphylococcal 
Enterotoxin B for the lymphoid tissue (Fig.  6.15) In Payer’s patches the micro-
spheres exhibited good absorption (Shi et al. 2010).

6.41	 �Folate Mediated Targeting

Folate is important in the biosynthesis of bases for DNA synthesis and hence 
required in large amounts. Since because of its role in DNA synthesis, the folate 
receptor is regulated in various cancer types. There are various reports which shows 
the over expression of folate receptors in ovarian carcinomas. The density of the 
folate receptor gradually increases with the progression of the disease, and hence 
focusing folate in targeted drug delivery for cancers.

Zhang et al. proposed targeting a drug delivery system using [P(3HB-co-3HO)] 
as carrier, folic acid as ligand and doxorubicin as anticancer drug. The folate conju-
gated particles were endocytosed by HeLa cells than the non-folate conjugate. The 
cytotoxicity was high, and the in vitro assay has shown the intracellular uptake of 
the nano particles were efficient with the HeLa cells. The in vivo studies on mice 
having the HeLa tumors xenograft exhibited similar activity with minimal side 
effects (Zhang et al. 2010). In a study, the chemotherapeutic drug etoposide (ETO) 
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was delivered with the P(3HB-co-3HHx) conjugated with the folate(FA). From the 
treatment it was observed that the complex ETO/FA- P(3HB-co-3HHx) showed 
higher cytotoxicity than the non-conjugated particles. The L929 cells, which have 
low folate receptor expression, and this may be the reason behind the reduced effect. 
On comparison DOX/FA-P(3HB-co-3HHx) was more cytotoxic than complex with 
etoposide which may be due to the difference in the drugs. Though both the drugs 
are topoisomerase II inhibitors, doxorubicin generated reactive oxygen species 
(ROS), due to which they exhibit more cytotoxicity. So, targeting folate receptor 
with the folate conjugated PHA increases the selectivity and cytotoxicity for the 
cancer therapeutics (Andronescu and Grumezescu 2017).

6.42	 �Targeting Ligands by PHA Binding Proteins

The targeting method based on the ligand conjugates using PhaP and PhaC, were 
PhaP is the amphiphilic protein with low molecular weight produced during the 
PHA biosynthesis, and these forms a layer on the granules and stabilizes the intra-
cellular environment in the bacteria. And PhaC is covalently linked to the granules 

RGD4C - PHA

3HB-CoA

HO

O

SCoA

RGD4C, on the surface of
PHB nanoparticle

Fig. 6.15  Drug delivery with nano based biopolymers
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by the cysteine residues, and these PhaC and PhaP genes produces fusion proteins. 
As PhaP has higher affinity towards PHAs, they are linked to the PHA particles, and 
the fusion proteins seem to maintain the enzyme activity (Chen 2009a, b). Based on 
the ligand targeting, the PhaP fused with the human epidermal growth factor 
(rhEGF), the upregulation of the EGF is an important consideration in cancer types 
mainly hepatocellular carcinoma. The rhEGF-PhaP fusion proteins were linked 
with the drug loaded nanoparticles, the P(3HB-co-3HHx) (Fig.  6.16). The drug 
loaded is the rhodamine B isothiocynate (RBITC) used for analysis of tissue deposi-
tion. The murine hepatoma22 (H22) model cells were implanted in mice and then 
treated with the drug RBITC. The fluorescence assay showed the accumulation of 
RBITC loaded rhEGF-PhaP-PHBHHX nanoparticles within tumors (York et  al. 
2002; Potter 2005; Yao et al. 2008; Kwon et al. 2014).

6.43	 �Targeting Using Superparamagnetic Iron Oxide 
Nanoparticles

The superparamagnetic iron oxide nanoparticles encapsulated with P(3HB-co-3 HV) 
forms a theragnostic particles, which means the combination of therapeutic and 
diagnostic properties in a single agent (Jain et  al. 2008; Vilos et  al. 2013). The 
SPION-P(3HB-co-3HV) are biocompatible and inhibits the generation of ROS. This 

Fig. 6.16  Ligand targeting by PHA binding proteins
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superparamagnetic property facilitates the accumulation of the drug in the targeted 
site. The in vivo assay, with the administration of the drug Alexa-Fluor encapsulated 
with SPION-P(3HB-co-3 HV) to the rats in the presence or absence of magnetic 
field. The accumulation of the nanoparticles measured through fluorescence showed 
for the accumulation of SPION-P(3HB-co-3  HV nanoparticles in the target was 
higher with those particles exposed to magnetism. Hence these PHA biomaterials 
are compatible with the controlled drug release and the nanoparticles can be altered 
based targeting ligands in order to have increased effects within the tissues. If the 
drugs of higher doses are administered, drug localization plays a vital role to reduce 
the risk of side effects (Allen 2004). An example of such therapies is the cancer 
therapeutics as small molecule kinase inhibitors and monoclonal antibodies (Grillo-
Lopez et al. 2000). Based on the target antigen and the agents, PHAs act as a better 
nano carrier for targeted drug delivery.

6.44	 �Polyhydroxyalkanoate Microsphere-Based Protein 
Encapsulation

Proteins are used as vaccines, enzymes, growth factors and hormones for biomedi-
cal applications. The major disadvantage of proteins is the short half lives in vivo. 
Due to the high molecular weight of proteins, they are not completely absorbed by 
the system. The protein stability is maintained by the microencapsulated capsules. 
Biopolymer microspheres provide an opportunity in decreasing the recurrent injec-
tions, which is based on the size of the microspheres (Yang 2001).

6.45	 �Chemical Modification of PHA

The PHA contains the methyl, bromine, hydroxyl and nitrophenyl derivatives pro-
duced from the microorganisms. These functional groups are said to enhance the 
activity and the biomedical applications of the PHAs. Such modifications are still 
under progress and challenging to modulate the structure of the polyesters by mak-
ing alterations in the functionality and the molecular weight. Introducing functional 
groups to the PHA by chemical reactions makes a possibility to widely use the PHA 
as biocompatible and biodegradable component in the application of medicinal 
therapeutics. There are various chemical modifications like the hydroxylation, car-
boxylation, epoxidation and the chlorination.

6.46	 �Modification Using Hydroxyl Group

6.46.1	 �Monohydroxylated Macromonomer

The acid or base catalyzed reactions with para-toluene sulfonic acid monohydrate 
(APTS) and methanolysis produced oligomers with terminal hydroxyl group. The 
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ester bonds of PHO are stable at pH 12 and after hydrolysis the pH was 14 with the 
formation of hydroxyl group at one end of the chain. The decrease in the molar mass 
is based on the nature of the solvent; the chain cleavage occurred more rapid in tolu-
ene than dichloroethane. From the spectral analysis the acid catalyzed condition 
using APTS ended in the formation of hydroxyl group in one end and the carboxylic 
group on the other. The cyclic structures have been observed and the high molecular 
weight polyhydroxyalkanotes are exposed to methanolysis in the presence of a cata-
lyst sulphuric acid resulted in the formation of monohydroxylated macromonomers 
with carboxylic acid were formed. Thus, many such monohydroxylated PHAs can 
be formed (Nguyen et al. 2002; Sun et al. 2007; Timbart et al. 2007; Xiao et al. 
2007; Wu et al. 2008; Zhou et al. 2012).

6.46.2	 �Dihydroxylated Macromonomer

The transesterification with 1,4-butanediol in the presence of catalyst p-
toluenesulfonicacid. The hydroxyl group in the molecule cleaves the ester bond 
forming a telechelic polymer, which is a prepolymer and enters into various reac-
tions with the end groups, as the cleavage is an important mechanism the molecular 
weight decreases gradually. By the combinations of PHAs with different side chain 
length the P3 poly(esterurethane)s, 4HB poly(esterurethane)s and PHBHHx 
poly(esterurethane)s are obtained. These possess more cell compatibility than the 
pure forms, and hence used as biomaterials for would healing. During synthesis the 
PHBHHx replaced by PHHxHO, the polymer obtained becomes more hydrophobic, 
hence modifying the physical properties enhances the biomedical applications of 
the polymers (Saad et al. 2001a, b; Chen et al. 2009a, b).

6.46.3	 �Modification Using the Carboxylic Group

The functional groups with carboxylic acids play an important role for the binding 
of targeting enzymes, bioactive compounds and the hydrophilic components. These 
carboxylic groups when incorporated in the polymers enhance the hydrophilicity 
(Renard et al. 2007). The PHAs with the unsaturated groups can be converted to 
carboxyl groups by oxidation process, theses polymers are used as graft copolymers 
preparation. In another approach the PHA oligomers terminated with carboxyl 
group forms methacrylic PHAs (Lee and Park 2000; Kurth et al. 2002).

6.46.4	 �Modifications Using Epoxy Group

The reaction by which alkenes is converted to epoxide; the epoxidation involves the 
chemical modifications to enhance the physical property like the elasticity of the 
compounds. The conditions like cross-linking and attachment of ionizable groups 
plays a role in the epoxidation process. In the acidic conditions there is no much 
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change in the chains of poly(3-hydroxyoctanoate-co-3-hydroxyundec-10-enoate) 
whereas cross linked PHOUS are formed from the epoxidation reactions in the pres-
ence of succinic anhydride, and these cross linking enhances the elasticity of the 
polymers without disturbing the biodegradability (Hazer 2010; Kai and Loh 2013; 
Li et al. 2016).

6.46.5	 �Modification Using Chlorination

The process of passing of chlorine gas through the unsaturated PHAs gives the 
PHA-Cl complex with the chlorine content of about 5–40%. And these thermal 
properties of the PHA-Cl complex were changed in terms of the transition tempera-
ture. Due to the chlorination the temperature increased, and the mobility of the 
molecules were dependent on the chlorine content. From the PHA chlorinated 
derivatives the quaternary ammonium salts, and phenyl derivatives were obtained, 
the benzene and the PHA-Cl complex forms the cross linked polymers (Arkin and 
Hazer 2002).

6.47	 �Conclusion

Biopolymers like polyhydroxyalkanoates are produced as energy- and carbon-
storage materials by many bacteria. The PHAs produced from the bacteria are with 
varying monomer based on the substrates, due to the physical properties from flex-
ible to brittle and elastic makes better replacements for the petroleum based plastics. 
The PHA production from various sources like industrial waste, molasses, cheese 
and whey products, lignocellulosic materials, oils from cooking wastes which are 
the cheapest sources for the PHA production. As they are more peculiar due to the 
biocompatibility, biodegradability, non-toxicity, and chemical diversity they are 
with various biomedical applications like sutures, surgical implants, and as drug 
carriers which has increased the interest in the use of PHAs. The tissue engineering 
is one of the research areas growing exponentially and the scaffold materials play a 
vital role. PHA based targeted drug delivery in cancer therapy, and in the delivery 
of biological molecules, vaccines and steroids. The unmodified PHAs are highly 
hydrophobic and crystalline, due to poor compatibility between polymers, and the 
different chemical modifications may come up with novel class of biopolymers as 
water soluble PHAs. They are considered favorable as they are reproducible and are 
synthesized from natural renewable resources. The applications of PHAs make the 
replacement with the commercial plastics as better improvements and as environ-
mental friendly materials in the formulating into useful biomedical products.
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6.48	 �Prospects and Challenges

Despite various advantages of PHA, all PHAs produced to date are mainly from the 
bacterial origin, which is a very costly process, and this is a main reason for the 
exploitation of PHA from research. The harmful effects of the plastics from 
petroleum-based materials and the hike in petroleum prices will create a big chal-
lenge for the production of bioplastics. The PHAs have a wide application as drug 
carrier for cancer therapy and tumor treatment, with the formulation as micro cap-
sules, microspheres and Nano particles, corresponds to the speedy release and to 
reach the target. PHAs without any modifications chemically leads to high crystal-
linity, and porous formation on the cell surface which leads to uncontrolled release 
of the drugs. The development of PHAs with respect to related molecular weight, its 
physico-chemical and surface properties are main considerations for the distribution 
of the drug.

Few PHA types have shown to exhibit antimicrobial properties, which reduce the 
amount of drug used for the treatment and free from side effects.

•	 Through the metabolic engineering methods PHAs with unique monomers can 
be obtained.

•	 Novel bacterial strains of bacteria which can produce unique monomers with 
enhanced properties.

•	 Advancements can be made in the production of bioplastics with peculiar prop-
erties like nontoxic and biocompatibility to prevent from immune response.

•	 Production of PHA using low cost substrates, to improve the economy.
•	 Genetic modifications of bacteria to improve the yield of PHA.
•	 So far, no studies have been proved for the carcinogenesis implanting PHA 

in vivo, though PHA promotes cell proliferation.
•	 Blending of smaller and larger PHA helps maintaining the stability and increases 

biodegradation. Blending PHA with PLGA increases the rate of degradation.
•	 The poly-4-hydroxybutyrate is the only approved material for the sutures by 

FDA which took more than a decade for approval.
•	 The PHAs are more focused towards the packaging industries, which has to be 

directed towards the biomedical applications.
•	 The purification of the PHAs for the complete removal of lipopolysaccharides, 

bacterial impurities and residual proteins to make it suitable for the biomedical 
implants.

•	 A great demand in the field of plastic surgery, the 3D printing material plays a 
vital role.

•	 Treatment and diagnosis using single particle administration, production of mul-
tifunctional theragnostics particles.

•	 Targeting using superparamagnetic approach for specificity and localization of 
the cells within tissues.
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