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Abstract
The synthetic polymers – plastics have been applied in a wide range of activities 
of our daily routine. However, extensive usage and their non-biodegradable 
nature have led to their accumulation in quantities, which are difficult to manage 
and a major cause of environmental pollution. Bacteria have the ability to accu-
mulate Carbon (C) as biopolymers especially under stress conditions. The bio-
polymers – polyhydroxyalkanotes (PHAs) are biodegradable and have properties 
quite close to those possessed by plastics. PHAs have been explored in diverse 
fields including agriculture and medical. In the field of medicine, PHAs hold 
greater promise because of their usage in producing high value products, in addi-
tion to their biodegradable, biocompatible, and non-toxic nature. PHAs have 
been explored for their role as implants, drug carriers, tissue engineering, bio-
control agents, inhibitors of cancerous growth, and memory enhancing 
molecules.
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1.1  Introduction

Microbes have unique abilities to divert or even curtail their metabolic pathways, as 
soon as they encounter major modifications in their immediate vicinity. A unique 
case which clearly exemplifies this phenomenon is the diversion in their highly 
energy efficient metabolic pathway during stress conditions. Bacteria sense the 
nutritional imbalance, such as excess of Carbon (C) compounds and limited quanti-
ties of nitrogen, phosphorus, potassium, oxygen, and magnesium. Instead of metab-
olizing C compounds to generate energy through the Tricarboxylic acid cycle 
(TCA), bacteria divert the acetyl CoA towards polyhydroxyalkanoates (PHA) syn-
thetic pathway (Porwal et al. 2008; Singh et al. 2009; Kumar et al. 2013; Ray and 
Kalia 2016, 2017). As far as microbes are concerned, they seem to store C as PHA 
granules and use them as energy reservoirs (Patel et al. 2011, 2012, 2015a, b, 2016; 
Singh et al. 2013; Kumar et al. 2014, 2015a, b, c; Bhatia et al. 2015a,b, 2016, 2017, 
2018, Kalia et al. 2016; Koller et al. 2017). However, because of the unique physi-
cochemical properties, PHAs have been explored for their potential to replace syn-
thetic plastics. The direct usage of PHAs has been proving uneconomical. This has 
forced researchers to look for high value derivatives of PHAs. Hence, the emphasis 
has shifted towards use of PHA catabolic pathway products and their chemical 
modifications, which confer unique properties for biomedical applications (Hazer 
et al. 2012; Martinez et al. 2014; Ke et al. 2017).

1.2  Antimicrobials, Biocontrol and Anticancer Agents

Catabolic activity of PHAs results in intermediate like 3-Hydoxy acids (3HAs). It 
primarily involves depolymerase enzyme resulting in monomers. These intermedi-
ates can be modified to synthesize antimicrobials (Gallo et al. 2014; Kalia et al. 
2019). Hydroxycarboxylic acids: 2-alkylated 3HB and β-lactones produced by 
transforming 3HAs, can be used as oral drugs. Antibiotics carbapenem or macrolide 
can be used to treat Staphylococcus aureus infections (Dinjaski et al. 2014). Medium 
chain length 3HAs prepared by Streptomyces strains from Jatropha curcas as anti- 
microbial agent against pathogens such as Salmonella typhimurium, Listeria mono-
cytogenes and E. coli (Allen et  al. 2012). PHA co-polymer poly 
(3-hydroxybutyrate-co-70%4-hydroxybutyrate) produced by Cupriavidus sp. also 
proved to have antimicrobial properties against pathogens such as S. aureus (Hema 
et al. 2013). Chlorhexidine (CHX), an efficient antifungal agent was carried through 
PHB/PEO fibres, showed 99–100% reduction in E. coli and S. aureus population at 
1 wt% concentration (Fernandes et  al. 2014). Tetracycline encapsulated in poly-
meric microspheres showed 85% reduction in periodontitis-causing bacteria 
Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis (Panith et al. 
2016). P3HB and P4HB can be exploited for treating skin infections and healing 
wounds (Shishatskaya et al. 2016). Combining 3HAs with D-peptide is effective 
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against cancers (O’Connor et  al. 2013; Sangsanoh et  al. 2017). Aquaculture and 
livestock industry employ antibiotics at quite low doses along with the feed. This 
regular supplementation has turned out to be harmful to gastrointestinal microflora. 
This selection pressure is likely to cause evolution of drug resistant bacteria. PHAs 
as food supplement have been shown to act as anti-pathogenic in the intestine of 
giant tiger prawn (Defoirdt et al. 2007, 2009; Halet et al. 2007; Dang et al. 2009; Liu 
et al. 2010; Ludevese-Pascual et al. 2016).

1.3  Drug Carriers

Efficiency of the drug for treating diseases is dependent up on their delivery to the 
target (Nigmatullin et al. 2015). Since, the Drugs can be delivered through intrave-
nous, subcutaneous and oral routes. The delivery system to be opted depends upon 
the nature and dose of the drug to be administered. The drug release is also influ-
enced by the composition of the polymer (Kamaly et al. 2016). Nano-particles and 
scaffolds can prove effective for eluting drugs from PHA derived monomers 
(Mokhtarzadeh 2016). Nanoparticles of poly (4-hydroxybutyrate)-
monomethoxypoly(ethylene glycol) were used for delivering anticancer drug cis-
platin in to hippocampal HT22 cells of mouse (Shah et  al. 2014). Monomers of 
PHA such as 3-hydroxybutyrate (3HB) can prove helpful for synthesizing novel 
biodegradable polymers. Dendrimers – tamsulosin, ketoprofen and clonidine, have 
high monodispersity and surface-functional moieties, which help these molecules to 
play the role of drug carriers (Parlane et al. 2016a, b). Microspheres made up of 
PHAs, in combination with rifampicin behave as drug carriers and hemoembolizing 
agents Implants such as rods made up of PHA co-polymers have efficient ability to 
deliver antibiotics. Nanoparticles based on docetaxel loaded with PHA copolymer – 
poly (3-hydroxybutyrate-co-3-hydroxyvalerate) was used for its pharmacokinetic 
evaluation. These nanoparticles were reported to have stability with reference to 
drug content and physical characteristics. Nanoparticles helped to increase the effi-
cacy in inhibiting human breast cancer cell line (Vardhan et al. 2017).

1.4  Engineering Tissues

Chemically modified PHAs can be helpful in tissue engineering (Goonoo et  al. 
2017). These can be used as therapeutics and for other medical applications such as: 
(i) grafts, (ii) cardio-vascular valves, and (iii) nerve tissues (Chen 2011). They also 
find use as films, pins, sutures, screws, and scaffolds for repairing skin, cartilage and 
liver tissue engineering (Levine et  al. 2015; Ching et  al. 2016; Insomphun et  al. 
2016; Shishatskaya et al. 2016; Rașoga et al. 2017).
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1.5  Medical Implants and Devices

The use of PHAs for medical devices is improved by developing co-polymers. 
These specific PHAs are relatively quite strong, and highly biocompatible (Qu et al. 
2006a). The biotechnological application range gets broader since their ability to 
resist bacterial infections is high, they lack immunogenicity and have been found to 
be non-toxic. Potential medical devices developed have been implants: rivets and 
tacks, orthopaedic pins, stents, cardiovascular grafting, meniscus repair, cartilage 
repair, staples, mesh, sutured fastener, repair patches (Lobler et al. 2002; Qu et al. 
2006b; Rodríguez-Contreras et  al. 2017). PHA films embedded with lysozyme 
inhibit bacterial biofilm formation and are useful in wound dressing (Kehail and 
Brigham 2017).

1.6  Anti-osteoporosis Agent

3HB improves growth of osteoblasts and proves useful as an anti-osteoporosis 
agent. The serum alkaline phosphatise activity and ability to improve calcium depo-
sition process are the properties by which 3HB helps in prevention of lowering of 
bone density and serum osteocalcin (Tokiwa and Calabia 2007; Zhao et al. 2007; 
Chen 2011).

1.7  Memory Enhancer

PHAs can rapidly diffuse to improve cardiac efficiency and prevent brain damage, 
by acting as source of energy. Parkinson and Alzheimer diseases can be cured 
through PHA monomers such as 3HB.  It acts by preventing neuronal cell death 
(Camberos-Luna et al. 2016). Modified PHA monomers such as methyl esters of 
3-hydroxybutyrate can be employed as drugs to protect mitochondrial damage 
(Zhang et al. 2013). HA can stimulate Ca2+ channels, which acts as an aid in enhanc-
ing memory especially patient with dementia – Alzheimer’s disease (Cheng et al. 
2006; Xiao et al. 2007; Zou et al. 2009; Magdouli et al. 2015).

1.8  Packaging

Use of plastics as packaging material is quite prevalent. Their use for packing food 
material need special attention. The specific requirements include: (i) protection 
from dust, contaminants, dehydration, etc., (ii) food grade quality, (iii) food stabil-
ity, and (iv) degradation during (Prasad and Kochhar 2014). PHAs have the poten-
tial to meet the requirements of food grade packing material, especially material 
properties and permeability (Chen 2010; Chanprateep 2010; Rai et al. 2011; Wang 
and Chen 2017). Copolymers of PHA having high hydroxyvalerate and mcl-PHA 
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content helps to reduce brittleness and Young’s modulus, allowing it to achieve 
higher flexibility (Fu et al. 2014; Albuquerque and Malafaia 2018).

Packaged food needs to retain its aroma for a long storage period. PHB made 
films show higher barrier to aromatic compounds. Limonene, which is commonly 
used for testing the loss of aroma during storage was found to be retained for longer 
period in PHBV copolymers (Sanchez-Garcia et al. 2007). Nanocomposites of PHB 
or PHBV with organo-modified montmorillonite Cloisite® 30B or halloysite 
(HNT), bacterial cellulose nano-whiskers allowed variation in morphology, thermal 
and mechanical properties (Wang et al. 2005; Carli et al. 2011; Martínez-Sanz et al. 
2014; Arrieta et al. 2015). More recently, polymer films with desirable characteris-
tics such as odorless, high flexibility, nontoxicity, antimicrobial and antioxidant 
activities have been developed by using: (i) PHB: nanomelanin: glycerol polymer 
film (Kiran et al. 2017), (ii) PHBV along with natural vermiculite and organoclay 
(Reis et al. 2016, 2017).

1.9  Agriculture

The usage of PHA in agriculture has been exploited only to a limited extent in com-
parison to that in the medical field. The obvious reason for his biased attitude is the 
high cost associated with medical applications. Among the few fields where PHAs 
have found some application are: (i) mulching, (ii) nets, and (iii) bags. Mulching 
helps to improve and maintain good soil structure, control contamination, and regu-
late weeds. PHA copolymer (PHBHHx) based NodaxTM has been used to prepare 
agricultural mulch (Hassan et al. 2006). Another mulch being produced at commer-
cial level is made from PHA based Mirel™ resin, Metabolix Inc. (Andrews 2014). 
Nets are used in greenhouse and for protecting crops from insects, birds, hails, and 
for creating special environmental conditions (Castellano et al. 2008; Niaounakis 
2015; Guerrini et al. 2017; Ojanji 2017). PHA based bags are used for seedlings, 
retaining water and regulating temperature (Lu et al. 2014; Schrader et al. 2016). 
PHA nanomaterials specifically microspheres have found its application as nano-
herbicide which have lower genotoxicity and high biodegradability increasing the 
herbicide efficacy (Grillo et al. 2010; Lobo et al. 2011).

1.10  Challenges in Customizing PHAs

Despite the wonderful and unique characteristics of PHAs, their real-life applica-
tions are limited (Singh et al. 2015). The major challenges include: (i) selecting a 
host organism to express genes involved in PHA synthesis (Singh et al. 2009), (ii) 
regulating co-polymer composition and production (Kumar et al. 2015c; Ray and 
Kalia 2016), (iii) manipulate feed composition, (iv) improving physicochemical 
properties, and (v) develop techniques to modify the products generated from 
metabolism of PHAs (Singh et al. 2015).
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1.11  The Future

PHAs have the necessary potential for being applied in diverse fields. The major limi-
tation has been the economic – feasibility of this product. Application of PHAs and 
their metabolic products in the field of medicine can circumvent the economic issue. 
The synthetic biology approach to produce these biochemical in a cell-free system has 
been envisaged as a viable alternative to limit costs (Opgenorth et al. 2016).
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