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Abstract
Biomedical signals are collected from a body that can be at the organ level, cell
level, or molecular level. There are different biomedical signals including the
electroencephalogram (EEG), which is the electrical activity from the brain; the
electrocardiogram (ECG), which is the electrical activity from the heart; the
electromyogram (EMG), which is the electrical activity from the muscle sound
signals; the electroneurogram; the electroretinogram from the eye; and so on
(Muthuswamy, Biomedical signal analysis. In: Myer Kutz (ed) Standard hand-
book of biomedical engineering and design, vol 14. McGraw-Hill Education,
New York, pp 1–18. 2004). Biomedical signals are primarily used to diagnose or
detect specific pathological or physiological conditions. Additionally, these
signals are employed to analyze biological systems in the healthcare. The aims
of signal processing are signal denoising, precise recognition of signal model
through analysis, feature extraction and dimension reduction for decisive function
or dysfunction, and prediction of future functional or pathological events by
employing machine learning techniques. The objective of this chapter is to
present how biomedical signals are used in the healthcare and what are the
steps of biomedical signal analysis.
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18.1 Introduction

Biomedical signals are acquired from a medical or biological source which can be at
the cell level, molecular level, or organ level. Several biomedical signals are
generally employed in the research laboratory, clinic, and occasionally even at
home. The electroencephalogram (EEG), or electrical activity from the brain or
electrical responses of the brain to specific peripheral stimulation; the electrocardio-
gram (ECG), or electrical activity from the heart; the electromyogram (EMG), or
electrical activity from the muscle; the electroretinogram from the eye; the
electroneurogram, or field potentials from local regions in the brain; and so on are
the widely known examples of the biomedical signals. In clinics, biomedical signals
are mainly recorded to detect definite physiological or pathological conditions and
diagnose and evaluate the therapy. Biomedical signal analysis is employed to
remove the noise, create accurate signal model and analyze its components, extract
features for decisive function or dysfunction, and predict future pathological or
functional events in brain, heart, or muscle (Muthuswamy 2004). Biomedical signals
contain information which is beneficial for understanding of the complex pathophys-
iologic mechanisms and behavior of living systems. However, such information may
not be obtainable directly from the raw signals which might be disguised by other
biomedical signals sensed or suppressed in additive noise. Because of these reasons,
biomedical signal processing is generally needed to improve the related information
and to describe the level of pathology for routine clinical diagnosis, rehabilitation, or
therapy. Numerous signal processing approaches, which are sometimes termed as
preprocessing techniques, can be employed for these purposes such as denoising,
averaging, filtering, spectral estimation, and feature extraction. Biomedical signals
are collected from sensors, electrodes, or transducers and then transmitted, stored,
and treated (Mainardi et al. 2006).

Biomedical signals collected from the body deliver information related to the
organs. Their spectral and temporal specifications might be associated with patho-
logical or normal conditions. According to temporal variations in the function of the
organs, the biomedical signals may show nonstationary as well as time-varying
characteristics. Time-frequency analysis methods, such as wavelet, are more suitable
for biomedical signals analysis. These methods are used for the analysis of time-
varying and transient events in biomedical signals including cardiac and neurologi-
cal signals. Biomedical signal processing utilizes complex mathematical techniques
to achieve information hidden in the signals recorded from sensors. In biomedical
engineering, these sensors and electrodes collect signals from biological tissue to
check their well-being and health in clinical environment. Hence biomedical signal
processing techniques needs employing appropriate signal modelling to extract
features which is important for diagnosis. Since most of the biomedical signals are
time-varying, it is essential to capture transient phenomena in both abnormal and
healthy states. A crucial characteristic of several biomedical signals is the frequency
domain feature. Similarly, biomedical signal pattern represents the transition from
simple normative to unhealthy states of an organism occasionally undertaking severe
variations that can be easily distinguished utilizing time-frequency methods such as
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wavelet transform. Biomedical signals are generally spread out over wide range of
the frequency spectrum, the frequency content of a biomedical signal varies quickly
as in the case of the heartbeat fibrillating in an ECG and seizure spikes in epilepsy.
Wavelet transform, which has wideband representation of signals, is a usual choice
in biomedical signal processing (Thakor et al. 2000).

The focus of this chapter is to support the biomedical researcher in order to
choose the suitable representation or study of the biomedical signal from the existing
models and then guide the engineer toward an ideal approach for enumeration.
Hence, this chapter discusses the usage of basic biomedical signals (ECG, EEG,
and EMG) in healthcare and techniques for analyzing them employing fundamental
signal-processing and classification methods which find widespread application in
biomedical signal analysis.

18.2 Biomedical Signals

18.2.1 The Electrocardiogram (ECG)

The electrocardiogram (ECG) signals are electrical activities originated from heart
on the body surface so that isopotential surfaces can be calculated and analyzed over
time. The contemporary ECG device is entirely combined with an analog front end,
an analog-to-digital (A/D) converter, dedicated input-output (I/O) processors, and a
microcomputer. The better hospital-based system can collect these changes and keep
an ECG database which includes the permutation of parameters, e.g., all females,
elder than age 30, with an inferior congenital heart disease. There are hundreds of
demonstrative approaches where a particular diagnosis is completed for every ECG,
but there are only five or six main classification sets for which the ECG is employed.
The initial step in ECG analysis needs computation of the rhythm and rate for the
atria and ventricles. This includes whichever conduction instability either in the
connection among the different chambers or within the chambers themselves. Then
feature identification that would be connected to the absence or existence of damag-
ing because of the myocardial infarction would be done (Berbari 2000; Subasi
2019).

The heart consists of four chambers; the lower two chambers are named as
ventricles and the upper two chambers are named as atria. The atria collect blood
from the venous circulation. Positioned in the upper right atrium are a group of cells
that operate as the main pacemaker of the heart. The nature of the body surface
waves is dependent on the total of tissue activating at one time and the relative speed
and direction of the activation wave front. Thus, the pacemaker potentials that are
produced by a tiny tissue mass are not visible on the ECG. As the activation wave
front faces the amplified mass of atrial muscle, the beginning of electrical activity is
noticed on the body surface, and the initial ECG wave of the cardiac cycle is visible
(Berbari 2000). The heart is one of the main organs of the human body, crucial to our
existence. It is basically a huge pump, with only function is to keep blood circulation
and preserve organs alive (Begg et al. 2008; Subasi 2019).
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The QRS complex is an electrical ventricular system and the most well-known
waveform showing electrical activity inside the heart. It is the basis for automatic
recognition of heart rate and also as an access point for classification schemes. The
QRS complex morphology describes the mechanical action of the heart offering a
view into how each chamber is functioning. The waves of depolarization extending
all the way through the heart via each cardiac cycle produce electrical impulses.
These impulses travel via a variety of body fluids, e.g., blood, up to the body’s
surface where they can be recorded using surface electrodes. These signals are then
sent to an electrocardiograph. The main characteristics of the QRS wave that
describe significant data related to cardiac health are as follows (Begg et al. 2008;
Subasi 2019).

(a) P wave
(b) QRS complex
(c) T wave
(d) QRS intervals.

There are different heart arrhythmias. In this chapter, four major heart
arrhythmias are selected because these are most frequent arrhythmias. These are
premature ventricular contraction (PVC), atrial premature contraction (APC), right
bundle branch block (RBBB), and left bundle branch block (LBBB). In the follow-
ing text, it will be given short description of these four arrhythmias (Jones 2008).

Many researchers studied on biomedical signal analysis and machine learning
techniques for computer aided diagnosis (CAD) using ECG signals. Earlier
researches done in this field suggest that biomedical signals taken from complex
systems under healthy conditions may have a fractal temporal structure
(Bassingthwaighte et al. 2013). Many researches (Muller et al. 1992; Lai and Chan
1998; Esgiar and Chakravorty 2004) presented that ECG signals are proper models
as self-affined fractal sets and it is realizable to perform accurate classification by
using fractal dimension. Recently, variety of detection algorithms have been pro-
posed. Thakor et al. (1990) proposed the sequential hypothesis testing; the threshold-
crossing intervals, the auto-correlation function and the VF-filter were suggested by
Clayton et al. (1993), and algorithms based on neural-networks were suggested by
Yang et al. (1994).

ECG based CAD systems contains two functional parts: feature extraction and
classification. There are different ways for feature extraction. In (de Chazal and
Reilly 2003; Hu et al. 1997; Moraes et al. 2002), feature extraction was done in time
domain. In Acharya et al. (2004) and Minami et al. (1999), feature extraction was
done in frequency domain. Al-Fahoum and Howitt (1999) extracted features by
using multiscale decomposition. Osowski and Linh (2001) used statistical measures
for feature extraction. A lot of work has also been dedicated to the improvement of
classification techniques for these feature sets, such as linear discrimination, decision
trees, neural networks, and the combination of experts systems (Yu and Chou 2007).

There are also numerous works done reporting the use of multifractal model for
cardiac signal analysis (Ivanov et al. 1999; Wang et al. 2007). Raghav and Mishra
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(2008) tried to use local fractal dimension based on nearest neighbor classification
algorithm for ECG signal-based heart disorders, and results achieved were
promising (A. K. Mishra and Raghav 2010). Qin et al. (2005) used radial basis
function neural network (RBFNN) to classify ECG signals. Different neural network
techniques were used such as techniques suggested in (Prasad and Sahambi 2003;
Yu and Chou 2008; Yong et al. 2009; Nadal and de Bossan 1993) were used for
ECG signal classification. Classification has also been performed using support
vector machines (Acır 2006; Asl et al. 2008; Besrour et al. 2008; Melgani and
Bazi 2008). Other works were conducted using genetic algorithms (Kutlu and
Kuntalp 2011). Özbay et al. (2006) suggested fuzzy logic classification tool.
k-nearest neighbor (k-NN) classification tool was used in Arif et al. (2009),
Karimifard et al. (2006), Christov et al. (2005), and Arif and Akram (2010).

During ECG recording, several sources can add noise to the acquired signal.
Imperative noise sources can be electrical power line interference, noise due to
instrumentation or electronic devices, impedance changes at the skin/electrode
edge, movement artifacts such as electrode movement, baseline drifts caused by
respiration, and electrosurgical noise. Thus, precise preprocessing of the ECG
signals is crucial to reduce the variety of noise components and enhance the signal-
to-noise ratio (SNR) meaningfully. Consequently, a single band-pass filter having
10–25 Hz pass-band is utilized for the ECG signal filtering (Begg et al. 2008). Since
ECG signal denoising and feature extraction present an indication about several
cardiac abnormalities for diagnosis of cardiovascular disorders, it received lot of
attention from the medical societies. Alickovic and Subasi (2015) denoised ECG
signals using multiscale PCA (MSPCA) for arrhythmia detection. To achieve a
better classification performance, noise should be removed. The proposed frame-
work demonstrated that MSPCA denoising increases the classification accuracy.
Moreover, Alickovic and Subasi (2016) proposed another framework where
MSPCA was utilized for denoising, DWT for feature extraction, and random forest
classifier for ECG signal classification, and they achieved higher accuracy. Usta and
Yildiz (2017) employed random forests (RF) classifier to classify heart arrhythmia
using ECG signals.

Afkhami et al. (2016) used MIT-BIH arrhythmia database including several
forms of common arrhythmias. Dual tree complex wavelet transform based feature
extraction technique is proposed by Thomas et al. (2015) for automatic classification
of cardiac arrhythmias. The results showed that dual tree complex wavelet transform
(DTCWT)-based feature extraction technique achieved better accuracy than discrete
wavelet transform (DWT) for five types of ECG beats of MIT-BIH arrhythmia
database. Li and Zhou (2016) utilized statistical features extracted from DWT,
ICA for dimension reduction, and PNN, k-NN, DT, and SVM for classification. Li
and Zhou (2016) proposed a method to classify ECG signals using wavelet packet
entropy and random forest. Cruz et al. (2016) employed DWT in ECG signal
classification and compared support vector machine (SVM) and adaptive neuro-
fuzzy inference system (ANFIS). The experimental result showed that SVM
achieved better performance in terms of sensitivity, specificity, accuracy, and train-
ing time, while ANFIS had the fastest evaluating time. H. Li et al. (2016) proposed a
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new framework for classification ECG signals by combining WPD and ApEn for
feature extraction and LIBSVM for classification. The algorithm utilizes the PSO to
determine the best parameters. Ai et al. (2015) used GND-ICA feature-fusion
method based on a multilearning subspace-learning algorithm for ECG heartbeat
classification by utilizing MIT-BIH arrhythmia database in all experiments (Subasi
2019).

KalaiSelvi et al. (n.d.) utilized DTCWT-based feature set for classifying ECG
beats. The performance of the developed technique is compared with DWT feature
extraction and it is realized that the proposed feature set was achieved higher
recognition performance than the DWT based feature set. Kiranyaz et al. (2015)
discussed the classification of ECG heartbeat is used CNN to record and detect the
heart problem. The approaches are given maintaining a robust fast, and patient-
specific scheme with a superior classification performance of the heart problem.
Qurraie and Afkhami (2017) developed a novel algorithm based on the TF to get the
features and the decision tree for the arrhythmia classification (Subasi 2019).

18.2.2 The Electroencephalogram (EEG)

Electrical signals produced by the brain characterize the brain function and the status
of the whole body. This delivers the motivation to utilize biomedical signal
processing techniques to the electroencephalogram (EEG) signals acquired from
the brain of a human subject. The physiological characteristics of brain activities
have numerous issues regarding to the characteristics of the original sources and
medium and their actual patterns. The medium describes the path from the neurons,
that are signal sources, to the electrodes, that are the sensors in which some form of
mixtures of the sources are collected. Understanding of neurophysiological
properties and neuronal functions of the brain together with the working principle
underlying the signal generation and acquisition is useful when dealing with these
signals for recognition, analysis, and treatment of brain disorders. EEG presents the
way of diagnosis of several neurological disorders and abnormalities in the human
body (Sörnmo and Laguna 2005; Subasi 2019).

Electroencephalograms (EEGs) are recordings of the electrical potentials created
by the brain, usually less than 300 μV. EEG has been conducted mostly in research
facilities and medical settings with the aim of detecting pathologies and epilepsies.
An electroencephalographer, an individual trained to qualitatively differentiate nor-
mal and abnormal EEG activity within pretty long EEG records, was for many years
the only person qualified for visual interpretation of the EEG. Therefore, researchers
and clinicians were left and covered up in a bunch of EEG paper records. However,
the arrival of modern powerful computers and related technologies opened a whole
new door of possibilities for applying various methods to quantify EEG signals
(Bronzino 1999; Subasi 2019).

Even though the EEG has lost portion of its supremacy in medical routine due to
these modalities, it still remains a very powerful tool for the analysis of many
diseases like epilepsy, sleep disorders and dementia. Moreover, the EEG signal is
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essential for real-time monitoring of progress of patients with encephalopathies or
the ones in a coma. In these applications, the temporal resolution of the EEG is
unmatched by the imaging. Furthermore, the overall cost related with recording
equipment and skilled workers required for managing the instrumentation is signifi-
cantly lower than the cost related with neuroimaging. For a simple recording system,
the technical demands on instrumentation are quite modest. They are limited to a set
of electrodes, a signal amplifier and a PC for data storage, signal analysis and
graphical demonstration (Sörnmo and Laguna 2005; Subasi 2019).

The EEG signal from the scalp has time duration of 0.01–2 s and amplitude of
around 100 μV (Kerem and Geva 2017). The frequency components of the EEG
signals are generally employed for the analysis taking into account of the following
frequency bands: Delta (up to 4 Hz), Theta (4–8 Hz), Alpha (8–12 Hz), Beta
(12–26 Hz), and Gamma (26–100 Hz). Waveform activities differs from each
other according to the brain function related to the mental and physical tasks. For
instance, low-frequency waves (delta and theta) dominate during sleep times, while
an EEG signal acquired during awake times includes a higher percentage of high-
frequency waves (alpha and beta). Also, transition from an eyes open state to an eyes
closed state changes the EEG frequency spectrum; the state with closed eyes has a
diverse peak in the spectrum around 10 Hz (Felzer and Freisieben 2003). The EEG
signals are semi-stationary time-dependent and non-stationarity in the waveforms.
Hence, these characteristics cannot be detected easily. Power spectrum achieves a
quantitative measure of the frequency distribution of the EEG at a cost of the
amplitude distribution and information related to the existence of EEG patterns.
Even though, these primary efforts are unsatisfactory, they allow the use of fre-
quency analysis in the analysis of brain wave activity. Therefore, time-frequency
methods such as wavelets are applied for feature extraction from the EEG signal
(Bigan 1998). Furthermore time-frequency methods such as discrete wavelet trans-
form (DWT), wavelet packed transform (WPT), tunable Q wavelet transform
(TQWT), dual tree complex wavelet transform (DTCWT), empirical wavelet trans-
form (EWT), and empirical mode decomposition (EMD) are essential to explain the
different behavior of the EEG to express it in both the time and frequency domain. It
should also be highlighted that the wavelet is appropriate for the analysis of
nonstationary signals such as EEG, ECG, and EMG. Therefore, the wavelet is
appropriate for detecting transient events, such as spikes occur during epileptic
seizures (Bronzino 2000; Adeli et al. 2007; Subasi 2007; Subasi and Gursoy 2010).

The lack of clear difference in EEG activities makes the visual detection of
different disorders from EEG signals challenging (Bigan 1998). Therefore, computer
aided decision support systems were developed to allow more precise and quicker
detection of disorders from the EEG recordings. ANN-based classifiers’ perfor-
mance was compared in Pang et al. (2003). They trained ANN with features selected
from a raw EEG signal. A system for the automatic analysis and detection of
epileptic seizures using wavelet transform to extract features from EEG signals
was developed by Bigan (1998). An ANN model was used for the automated
analysis of the EEG recordings. A discrete wavelet transform (DWT) and a mixture
of expert model were employed for EEG signal classification in (Subasi 2007).
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In Subasi and Gursoy (2010), DWT was used for feature extraction; PCA, ICA, and
LDA were used for dimension reduction; and support vector machines (SVM) is
used for the classification of EEG signals. Subasi et al. (2017) proposed an epileptic
seizure detection model to determine the optimum parameters of support vector
machines (SVMs) by employing particle swarm optimization (PSO) and genetic
algorithm (GA). Alickovic et al. (2018) compared wavelet packet decomposition
(WPD), discrete wavelet transform (DWT), and empirical mode decomposition
(EMD) for epileptic seizure detection and seizure prediction. Soleimani et al.
(2012) proposed a robust technique to elaborate and evolve a neuro-fuzzy model
which works as an online adaptive method with a patient-independent parameter for
a seizure prediction. Furthermore, prediction is improved by using multiple features
to detect the preictal patterns. Liu et al. (2012) proposed wavelet decomposition of
multichannel intracranial EEG (iEEG) within five scales by selecting three frequency
bands. They extracted effective features such as relative amplitude, relative energy,
and coefficient of variation and fluctuation index at particular scales. SVM is
employed for classification and achieved low false detection rate and high sensitivity
for seizure detection in long-term iEEG. Williamson et al. (2012) combined multi-
variate EEG features with patient-specific machine learning for seizure prediction.
The proposed algorithm calculates the covariance matrices and eigenspectral of
space-delay correlation from EEG data and classifies the data using support vector
machine. Aarabi and He (2012) implemented a rule-based patient-specific seizure
prediction framework for focal epilepsy. They used five univariate measures, includ-
ing largest Lyapunov exponent, Lempel-Ziv complexity, correlation entropy, corre-
lation dimension, and noise level as well as one bivariate measure, nonlinear
interdependence which are extracted from electrodes implanted deep in the brain.

18.2.3 The Electromyogram (EMG)

The duty of human skeletal muscular system is to achieve the forces required to carry
out a several activities. Such system composed of the nervous system and the
muscular system, together creating the neuromuscular system (Begg et al. 2008).
Motion and arrangement of limbs are administered by electrical signals propagating
back and forth among the muscles and the peripheral and central nervous system
(Bronzino 1999). The central nervous system (CNS) administers via nerve signals
and muscles excitation. The skeletal-muscular system is composed of muscle sets
connected to bones via tendons and a motion is done once nerve signals produce
muscle contractions and relaxations that either attract or repel the bone (Begg et al.
2008).

Neuromuscular disorders consist of abnormalities initially appearing in the ner-
vous system, in the neuromuscular junctions, and in the muscle fibers. These
abnormalities have distinct degrees of severity going from negligible damages of
muscle to amputation caused by neuron or muscle death. In more severe disorder like
amyotrophic lateral sclerosis (ALS), decease is generally assured. In the majority of
cases, clinical testing is insufficient to detect and prevent disorder from spreading

430 A. Subasi



(Preston and Shapiro 2012) since a lot of dissimilar abnormalities could be results a
specific symptom. Correct diagnosis of the disorder is, for that reason, of supreme
significance so as result more purposeful healing can be done employing electromy-
ography (EMG) that was first used as a method of evaluating neuromuscular states
established on cell action capabilities throughout muscle activity. The understanding
of EMG is as a rule done by trained and expert neurologists who besides examining
EMG waveforms employ methods such as needle conduction researches and muscle
acoustics as well. Trouble appears once there are too hardly any specialists to
assemble the demand of patients and, consequently, it is imperative to build up
automated diagnostic systems established on EMG readings. This offers range for
the usage of machine learning methods for the discovery and classification of
neuromuscular irregularities based on EMG processing. These smart systems will
help doctors in discovery of abnormalities in the neuromuscular system. The goal of
smart diagnostic and artificially administered neuromuscular systems is to primary
preprocess the raw EMG signal and after that take out characteristic data or features
that may be taken out comprising of time and frequency domain data. This data may
after that be employed as input data for classifiers that may classify neuromuscular
disorders. The challenge in this case is to invent signal-processing method that
protect or confine significant discriminatory data so as to give a good quality set of
features for classification. Neuromuscular disorders are anomalies related to the
peripheral nervous system. They can be classified based on the location and reason
of the disorders. Two main disorders are neuropathy and myopathy. Neuropathy is a
disease about nerves that cause the pain and some disability. The causes of neuro-
pathic disorders are injury, alcohol abuse, infection, diabetes, and cancer chemother-
apy. It can be categorized as mononeuropathy and polyneuropathy. Myopathy is a
disorder generally related with the skeletal muscle that caused by injury of a muscle
group or some genetic mutation. The patient suffering with myopathic diseases has
week muscles and depending on severity of disorder, has problem with the
performing regular task or impossible to make any movement by using effected
muscles (Begg et al. 2008; Subasi 2019).

A number of researches have been done to design an accurate automated diagno-
sis system by employing different classification algorithm to classify EMG signals
(Richfield et al. 1981; Subasi et al. 2006). It is possible to find commercial version of
some algorithm on the market, but almost none of them are used at clinics to
diagnosis of the neuromuscular disorders (Bozkurt et al. 2016). Autoregressive
(AR) analysis and time domain analysis were used together to classify the EMG
signals by Pattichis and Elia (1999). De Michele et al. (2003) applied the wavelet
cross-correlation analysis on the two different muscle and find out that it is possible
to make detailed classification. MUAP parameters were used as input to the
parametric sequential pattern recognition classifiers by Pattichis et al. (1995).
Loudon et al. (1992) used eight different MUAP parameters as input to the statistical
pattern recognition techniques to classify the EMG data. Hassoun et al. (1994a, b)
applied the time domain parameters as input to a tree-layered ANN and used
“Pseudo Unsupervised” algorithm as classifier in their study. Two different classifi-
cation methods were used at the same time to classify the EMG signals by
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Christodoulou and Pattichis (1999). They proposed to use unsupervised machine
learning algorithms, including self-organized feature maps, learning vector, and
Euclidian distance. Genetic algorithms were used to classify EMG signals by
Schizas and Pattichis (1997). Recent years, wavelet neural network (WNN) was
used to analyze the EMG signals. Subasi et al. (2006) used AR signal processing
with WNN to classify EMG data. They stated that they classify the EMG signals
with the accuracy of 90.07% and it is possible to develop a simple, accurate, and
reliable enough automated classification system for routine clinical usage. Katsis
et al. (2006) used SVM to classify the EMG data. The features of EMG signals were
extracted by wavelet method and used as input to ANN algorithm and learning
vector quantization (LVQ) by Guo et al. (2006). Jiang et al. (2006) performed the
wavelet transformation of EMG signals and then used the statistical characteristic of
wavelet coefficients as input to an ANN. By using similar techniques, Cai et al.
(1999) extracted feature vectors by using wavelet transform and used them as input
to an ANN which was trained by a standard backpropagation algorithm to classify
the EMG signals.

EMG presents a comprehensive information to describe neuromuscular activity
and muscular morphology. The EMG signals must be decomposed, classified, and
analyzed in order to describe a muscle using quantitative EMG (QEMG) data. In
order to diagnose neuromuscular disorders, EMG signal must be classified for the
detection of abnormalities (Yousefi and Hamilton-Wright 2014). Recently, Rasheed
et al. (2008) developed a model to distinguish individual MUP waveforms from a
raw EMG signal to extract relevant features, and classify the MUPs. The adaptive
fuzzy k-NN classifier with time domain features and with wavelet domain features
are presented. EMG signal are segmented utilizing threshold technique to identify
possible MUAPs. Statistical pattern recognition technique is utilized for clustering
the identified MUAPs. After employing autoregressive (AR) method for feature
extraction, MUAPs are classified utilizing binary support vector machine (SVM)
classifier (Kaur et al. 2010).

Subasi (2012a) utilized several feature extraction methods and machine learning
techniques such as multilayer perceptron neural networks (MLPNN), dynamic fuzzy
neural network (DFNN), and adaptive neuro-fuzzy inference system (ANFIS) to
classify the EMG signals and compared them according to their accuracy. In the
proposed framework, neuro-fuzzy classification methods were capable to classify
the EMG signals with the high accuracy. Moreover, Subasi (2012b) developed an
effective combination of classifier and features to classify the EMG signals. LDA,
RBFN, MLPNN, C4.5 DT, SVM, and Fuzzy SVM classifiers are used with statisti-
cal features extracted from DWT sub-bands. It is reported that the FSVM and the
statistical features extracted from DWT sub-bands utilizing the internal cross vali-
dation method achieved a better performance than other classifiers. Subasi (2013)
proposed a framework in which DWT is utilized to decompose the EMG signals into
the frequency sub-bands and then a set of statistical features were extracted from
these sub-bands. Substantial improvements in terms of classification accuracy was
realized by the developed PSO-SVM classification system. Furthermore, Subasi
(2015) used an evolutionary approach to classify EMG signals utilizing SVM
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classifier and the frequency sub-bands of DWT. A comparison research was done
between combined neural network (CNN) and feedforward error backpropagation
ANN (FEBANN) classifiers by Bozkurt et al. (2016).

Gokgoz and Subasi (2014) studied the effect of multiscale principal component
analysis (MSPCA) denoising in EMG signal classification. Multiple signal classifi-
cation (MUSIC) processing technique was utilized for feature extraction to classify
EMG signals into normal, ALS, or myopathic. It was realized that MSPCA
denoising was improved the classification accuracy. After denoising EMG signals
with MSPCA, the classification accuracy was 92.55% for SVM, 90.02% for ANN,
and 82.11% for k-NN. The same researchers (Gokgoz and Subasi 2015) presented a
framework for classification of EMG signals utilizing decision tree algorithms for
classification, DWT for feature extraction, and MSPCA for denoising. Parsaei and
Stashuk (2013) employed the k-means clustering, and the supervised classification is
realized by utilizing a certainty-based algorithm. Dobrowolski et al. (2012) used the
wavelet index to classify myopathic, neuropathic, or normal EMG signals. Kamali
et al. (2013) proposed a scheme which utilizes both time and time-frequency features
of a MUAP along with an ensemble of SVM classifiers. Time-frequency features are
DWT coefficients of the MUAP. Time domain features consist of peak to peak
amplitude, turn, area, duration and phase of the MUAP. Kamali et al. (2014)
employed ensemble of support vector machines (SVMs) classifiers to determine
the class label (myopathic, neuropathic, or normal) using both time domain and
time-frequency domain features of the EMG signal.

Artameeyanant et al. (2016) proposed a normalized weight vertical visibility
algorithm as a feature extraction method for ALS and myopathy detection. In the
proposed method, the features are extracted by utilizing selective statistical mechan-
ics and measurements, and the extracted features are used as a feature matrix for
classifier input. Finally, powerful classifiers, such as multilayer perceptron neural
network, support vector machine, and k-nearest neighbor classifiers are employed to
categorize signals into healthy, ALS, and myopathy. Naik et al. (2016) presented a
classification technique for neuromuscular disorders (myopathic, and ALS) which
utilized a single-channel EMG sensor. The single-channel EMG signals are
decomposed by employing ensemble empirical mode decomposition algorithm,
then the FastICA algorithm is used for dimension reduction. A reduced set of
features are classified utilizing the linear discriminant analysis, and the classification
results are fine-tuned with a majority voting scheme. Khan et al. (2016) proposed a
framework that utilizes both time domain and time-frequency domain features
extracted from the EMG signals. Several classification approaches including single
classifier and multiple classifiers with time domain and time-frequency domain
features were examined. SVM and k-NN classifiers are employed to predict class
label (Normal, Neuropathic, or Myopathic). Sengur et al. (2017) proposed a deep
learning based classifier for effectively categorization of normal and ALS EMG
signals. They used different time-frequency methods combined with convolutional
neural network for EMG signal classification. Mishra et al. (2017) employed
improved empirical mode decomposition (IEMD) in combination with the least
squares support vector machine (LS-SVM) classifier is used for the analysis of
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ALS and normal EMG signals. The proposed technique is achieved 96.33% accu-
racy. Hazarika et al. (2018) presented a real-time feature extraction and fusion model
for an automated classification of electromyogram signals with amyotrophic lateral
sclerosis (ALS), myopathy (MYO) and normal (NOR) using Discrete wavelet
transform and canonical correlation analysis (CCA).

18.3 Biomedical Signal Analysis Framework

The general framework for the biomedical signal analysis is shown in Fig. 18.1. This
framework includes three main modules: (1) signal preprocessing/denoising, (2) fea-
ture extraction/dimension reduction, and (3) classification. In this section, compre-
hensive explanation of each module will be provided.

18.3.1 Biomedical Signal Denoising

The biomedical signals contain several types of artifacts including internal or
external interfering noises. These artifacts can be eliminated by employing signal
denoising techniques to filter out most of the artifacts and noise (Sanei 2013). The
biomedical signal analysis and processing are implemented in three main steps:
preprocessing/denoising, feature extraction/dimension reduction, and detection/clas-
sification. The main goal of preprocessing is to simplify succeeding procedures
without losing related information and to enhance the signal quality by increasing
the signal-to-noise ratio (SNR). Filters and transformations such as ICA, PCA,
KPCA, and MSPCA are often used during preprocessing. Researchers employ
these methods to eliminate or at least reduce the unwanted signal components by
transforming the signals. The capacity of PCA can be combined with the ability of
wavelet analysis to form multiscale principal component analysis (MSPCA) in order

Fig. 18.1 General biomedical signal analysis framework
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to eliminate the relationship among the variables with the ability of wavelet trans-
form to extract features and to remove the relationship between auto-correlated
measurements. The PCA of the wavelet coefficients at every scale is calculated by
MSPCA with integrating the results at relevant scales. MSPCA is efficient since it
includes contributions of events of which behaviors become different over time and
frequency (Bakshi 1998).

The MSPCA denoising technique can be realized in three main steps. All signals
from Xnxm is decomposed using wavelet in the initial step. Then, for each wavelet
decomposition level, PCA denoising algorithm is applied separately, and wavelet
coefficients that have certain threshold value are kept. In the last step, the PCA
application for all levels are combined, to get a denoised input signal matrix _X nxm

(Bakshi 1998). The MSPCA shows better denoising performance than PCA algo-
rithm (Kevric and Subasi 2017).

18.3.2 Feature Extraction

One of the crucial steps in the biomedical signal analysis is the feature extraction.
Therefore, the biomedical signals composed of several data points, and informative
features can be extracted by using different feature extraction methods. These
distinctive and informative parameters describe the behavior of the signal waveform
which specify a precise action. The biomedical signal patterns can be represented by
frequencies and amplitudes. These features can be extracted using different feature
extraction algorithms which is another step in signal processing to simplify the
succeeding stage for classification (Graimann et al. 2009). The biomedical signals
can be decomposed using time-frequency (TF) methods which can detect changes in
both time and frequency (Sanei 2013). It is important to deal with a smaller number
of values that characterize proper features of the signals to accomplish better
performance. Features are generally collected into a feature vector by transforming
signals into a relevant feature vector known as feature extraction. Distinctive features
of a signal are analyzed by a signal classification framework, and depending on those
distinctive features, class of the signal is decided (Siuly et al. 2016). Time-frequency
methods, such as Wigner-Ville transform, short-time Fourier transform (STFT),
wavelet transform (WT), discrete wavelet transform (DWT), wavelet packet trans-
form (WPT), tunable Q-factor wavelet transform (TQWT), dual tree complex
wavelet transform (DTCWT), empirical mode decomposition (EMD), and ensemble
EMD, decompose signals in both time and frequency domain.

The wavelet transform (WT) is a time-frequency signal decomposition algorithm
on a set of orthogonal basis functions taken by contractions, dilations, and shifts of a
mother wavelet. WT, which achieves a good time resolution for high-frequency
components and good frequency resolution for low-frequency components, has been
employed broadly for biomedical signal processing (Muthuswamy 2004). The
continuous wavelet transform is denoted as
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Wx u; sð Þ ¼ 1
ffiffiffi

S
p

Z þ1

�1
x tð Þψ� t � uð Þ=sð Þdt ð18:1Þ

The orthogonal basis functions can be taken by scaling and shifting a mother
wavelet function ψ(t)

ψmk tð Þ ¼ 2�m=2ψ 2�mt� kð Þ ð18:2Þ
In the discrete TFRs both time and scale variations are discrete. Scaling for the

DWT includes sampling rate changes. A larger time band is enclosed for a larger
scale for a given number of samples. Naturally, a binary or dyadic scaling structure is
used so that given a discrete wavelet function, ψ(x), is scaled by values that are
binary. Hence

ψ2j tð Þ ¼ 2jψ 2jt
� � ð18:3Þ

where j is the scaling index and j ¼ 0, –1, –2, . . . . In a dyadic scheme, subsampling
is always decimation in-time by a power of 2. Translations in time will be corre-
spondingly larger as well as for a more sizable scale. Once the scale is enlarged,
resolution is lowered. Resolution mainly corresponds to the frequency. Signals are
decomposed into a series of orthogonal wavelets in a way that every orthogonal
vector space represent signal components with varying levels of scale and resolution.
Mallat (1989) called this algorithm multiresolution signal decomposition. In every
step of the algorithm, wavelets are generated with successively finer depictions of
signal content. In order to produce an orthogonal wavelet depiction, a given wavelet
function is first dilated by the scale coefficient 2j, then translated by 2–jn (Thakor
et al. 2000). This process is shown in Fig. 18.2.

The application of DWT as a feature extraction from the biomedical signals will
be given in sect. 18.4.

Fig. 18.2 DWT for scale
level 3
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18.3.3 Dimension Reduction

Dimension reduction is a process to decrease the dimension of the original feature
vector, while keeping the most distinctive information and removing the unrelated
information (Phinyomark et al. 2013). Most of the feature extraction methods yield
redundant features. Actually, in order to improve the performance of a classifier and
achieve minimum classification error, some types of feature selection/reduction
methods that produce a new set of features must be applied. Several methods
employed for dimension reduction and feature selection to achieve better a classifi-
cation accuracy (Wołczowski and Zdunek 2017).

The dimension of biomedical signals should be reduced to analyze the data for
achieving more accurate results. Small number of parameters are employed to reduce
the dimension of the biomedical signals through different ways. Furthermore, the
features or dimensions must be minimized for achieving better classification accu-
racy. For example, the DWT produces wavelet coefficients to describe the signal
energy distribution in both time and frequency domains and they describe the
biomedical signals with set of wavelet coefficients. Meanwhile, wavelet-based
feature extraction methods yield the feature vector that are too big in size to be
employed as an input to a classifier, a dimension reduction method should be utilized
to achieve a smaller number of features from wavelet coefficients. Recently various
dimension reduction methods such as Lyapunov exponents, higher order statistics,
and entropies have been employed for dimension reduction. First, second, third and
fourth order statistics of the sub-bands of the wavelet decomposition can be
employed for reducing dimension. The six statistical features are utilized for the
biomedical signal classification which are:

1. Mean absolute values of the signal coefficients in every sub-band,
2. Average power of the signal coefficients in every sub-band,
3. Standard deviation of the signal coefficients in every sub-band,
4. Ratio of the absolute mean values of signal coefficients of adjacent sub-bands,
5. Skewness of the signal coefficients in every sub-band,
6. Kurtosis of the signal coefficients in every sub-band.

18.3.4 Machine Learning Methods

Machine learning algorithms utilized to optimize a performance criterion using
historical data or learned experience. The model defined with system parameters
designed and controlled with hyperparameters, and learning is the optimization of
the parameters by the execution of a machine learning algorithm to search the
optimal parameters using the training data, which are historical data or previously
acquired experience. The main learning goal can be predictive to make forecasts
from the labeled data such as classification and regression models. Machine learning
algorithms mainly utilize the theory of statistics in designing models, because the
aim is to describe the samples or make an inference from the samples. In order to
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develop machine learning models, in training, you need to consider the performance
by means of accuracy to find a solution for the optimization problem. Moreover,
once a model is trained, its representation and soft computing solution for learning
inference need to be efficient by means of space and time complexity as well. In
certain applications, efficiency has also great importance, for example, efficiency is
often as much as important as accuracy for the data mining applications. In medicine,
learning programs are used for disease identification and diagnosis (Alpaydin 2014).

18.4 Biomedical Signal Analysis Applications

In order to get a consistent assessment of the quality of the target approximation
characterized by the model, the assessment of the classification model is utilized.
Depending on the model’s intended application, diverse performance measures can
be used. Since the model is generated based on a training data set, it is crucial for
model’s quality to check generalization ability. Hence, it important to distinguish
between the value of a specific dataset, value of training set and its anticipated
performance on the whole domain (Cichosz 2014).

In order to obtain the dataset performance of a model, the value of one or more
selected performance metrics on a specific dataset with true class labels existing is
calculated. Dataset performance represents the matching degree of the model and the
target concept on this dataset. Training performance of the model is determined by
the evaluation of the model on the training set that was employed to build the model.
While this performance is beneficial for better understanding of the model, it is not of
significant interest as the classification of the training data is not the purpose of
classification models. Expected performance of the model, on the whole domain,
represents its true performance. True performance of the model shows its ability to
classify new examples from the given domain correctly. In order to assess the true
performance, i.e., to consistently evaluate the unknown values of the accepted
performance metrics on the whole domain, comprising generally previously unseen
examples, appropriate assessment measures are needed (Cichosz 2014).

k-fold cross-validation is a sophisticated assessment process which handles the
tradeoff of bias vs. variance. It randomly divides the existing dataset into k subsets of
the same size and then iterates over these subsets. When all k iterations are accom-
plished, the model built without specific instance in the training set is employed to
produce a predicted class label for every instance in the dataset. The resultant vector
of predictions is compared to the true class labels utilizing one or more chosen
performance measures. The k-fold cross-validation process successfully virtualizes
the training and validation or test sets. All existing instances from the set are
employed for both model creation and evaluation, but not at the same time (Cichosz
2014).
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18.4.1 Performance Measures

Performance measures of model are created by comparing the true class labels of the
instances from dataset and the predictions produced by the classifier on the same
dataset. For binary classification, a confusion matrix can be characterized with TP as
true positive, TN as true negative, FN as false negative, and FP as false positive
counts. A new learning problem presented focusses on its domain but ignores a
comprehensive analysis. This brings the most employed measure, accuracy, unable
to differentiate between the number of correct labels of different classes (Sokolova
et al. 2006):

Accuracy ¼ TPþ TN

TPþ FPþ FN þ TN

In some applications, the number of instances in one class is frequently consider-
ably lower than the overall number of instances. The experimental setting is
represented as follows: there is a class of special interest (usually positive) within
the set of classes. The rest of the classes are either left, as is in the case of multiclass
classification, or combined into one, as in binary classification. The measures of
selection are taken for the positive class (Sokolova et al. 2006). The ratio between
true positives and false positives is represented by precision.

Precision ¼ TP

TPþ FP

A relation between correctly classified instances and misclassified instances is
called recall.

Recall ¼ TP

TPþ FN

F �Measure ¼ 2 � Precision � Recall
Precisionþ Recall

The F-measure is the harmonic mean of the precision and recall indicators. Recall
is a function of its true positives and its false negatives. Precision is a function of true
positives and false positives (Sokolova et al. 2006).

Receiver operating characteristic (ROC) employs Cartesian coordinate system in
which its y-axis characterizes the true-positive rate, while the x-axis characterizes the
false-positive rate. Single point on the ROC plane which visualizes the underlying
tradeoff between true positives and false positives characterizes the performance of
the classifier. Performance of a classifier which is based only on its scoring function
element can be graphically designated utilizing ROC curve. It is essential to deter-
mine all possible operating points of a scoring classifier to generate the ROC curve.
Occasionally a simple assessment measure is desired even in such more complex
cases. Such usually employed measure is the area under the ROC curve (AUC).
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During the comparison of models, the model which has greater AUC value is
considered superior with respect to its overall predictive performance potential
(Cichosz 2014).

Kappa statistic is another performance measure which takes expected figure into
account by taking it from the predictor’s successes. It represents the result as a
proportion of the total for a perfect predictor. The measurement of the consensus
between observed and predicted categories of a dataset, and correcting the agreement
which happens by chance is achieved by the Kappa statistic (Hall et al. 2011).

18.4.2 ECG Signals Analysis in Diagnosis of Heart Arrhythmia

Cardiovascular disorders (CVDs) are one of the main mortality reasons in world-
wide. The creation of accurate and fast techniques for automated ECG heartbeat
signal classification is vital for clinical diagnosis of different CVDs (Thaler 2017),
e.g., an arrhythmia. Notion arrhythmia is employed to represent a group of
circumstances in which irregular electrical activities coming from heart and are
characterized by the ECG beats or patterns (Pan and Tompkins 1985; De Chazal
et al. 2004). ECG is an effective, simple, noninvasive tool for heart disease recogni-
tion. Medical doctors investigate several waveforms based on their characteristics
(amplitude, polarity, etc.) and diagnose and treat based on this investigation (Subasi
2019).

Human heart is the most crucial muscle in human body, which together with
blood vessels forms cardiovascular system and pumps the blood into each cell of the
body. There is no precise heart failure diagnosis tool for detecting the heart failure.
The electrocardiogram (ECG) is a noninvasive instrument that acquires electrical
activity of the heart and demonstrates the heartbeat irregularities. It shows the
possible arrhythmias of the heart or the heartbeat irregularities (Passanisi 2004).
Therefore, ECG is an imperative tool for defining the healthiness and the function of
the cardiovascular system. Furthermore, it is substantial to describe precise and
appropriate diagnosis of physicians to circumvent more damage and to define
appropriate approaches and techniques (Son et al. 2012). Still, the problem arises
when there is inadequate number of doctors to encounter the requests of patients.
Hence, it is essential to implement an ECG based efficient and automated diagnostic
systems, together with the machine learning techniques to classify heart beats. These
diagnostic schemes support physicians in distinguishing the cardiovascular
anomalies (Masetic and Subasi 2016; Subasi 2019).

Different types of arrhythmias exist and each of them is related to a pattern to
classify and identify its type. The arrhythmias can be classified into two main groups.
The first group composed of arrhythmias formed by a single irregular heartbeat and
the other group composed of arrhythmias formed by a set of irregular heartbeats. The
classification and identification of arrhythmias can be very difficult since it needs the
analysis of each heartbeat of the ECG records, recorded by a Holter monitor, during
hours, or even days. Furthermore, physicians can make a mistake during the ECG
analysis, due to exhaustion. The employment of computational methods for
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automated classification of heartbeats is an alternative. Fully automated framework
for arrhythmia detection from the ECG can be divided in three stages: (1) ECG
signal preprocessing; (2) feature extraction/dimension reduction; and (3) detection/
classification (Luz et al. 2016).

MIT-BIH arrhythmia database records taken from the Beth Israel Hospital
Arrhythmia Laboratory1 is used. This database includes 48 two-lead ECG records
recorded from 47 different patients, and duration of each of these records is about
30 minutes. Sampling frequency is 360 Hz. Five different heartbeat categories are
selected for this study: normal (N), left bundle branch blocks (LBBB), right bundle
branch blocks (RBBB), atrial premature contractions (APC), and premature ventric-
ular contractions (PVC) heartbeats (Alickovic and Subasi 2016). The results of
classification are shown in Table 18.1.

Table 18.1 presents values for four different evaluation criteria employed in heart
arrhythmia classification for nine machine learning techniques. Features have been
extracted using discrete wavelet transform from raw ECG signals. The least effective
method was LAD Tree with average accuracy of only 87.7%. The best result was
achieved with k-NN classifier reaching total accuracy of 98.1%. SVM and ANN also
achieved good accuracy. Random forest is the best for F-measure and AUC and
k-NN is the best for Kappa statistics.

18.4.3 EEG Signal Analysis in Epileptic Seizure Detection
and Prediction

Electroencephalographic (EEG) signals are generally examined by spectrum analy-
sis methods, separating the EEG signal into different frequency bands (α, β, θ, δ).
Straightforward spectrum analysis techniques are beneficial when these events are
slowly unfolding. But, once transient events such as epileptic seizures happen,
bursting series of events or sharp spikes in the recorded signal is seen. The discrete
wavelet transform can be used to detect the beginning of the seizure burst. Moreover,
it can be used for the onset seizure detection and the termination of seizures (Thakor
et al. 2000).

Machine learning techniques are employed to solve biomedical engineering
problems and, especially, in biomedical signals analysis. They can accomplish to
identify and diagnose in real time. EEG analysis has improved considerably with the
extensive use of mathematical modelling and machine learning tools. Machine
learning tools have also enabled the classification of patterns within the EEG to
enhance the recognition, making EEG signals valuable for recognition of brain
disorders and primary pathologies. Therefore, several studies on characteristics of
the EEG signals related to neurological diseases have been carried out (Begg et al.
2008).

1http://physionet.ph.biu.ac.il/physiobank/database/html/mitdbdir/mitdbdir.htm
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There are around 2 million epilepsy patients in the United States alone, respon-
sive therapeutic intervention facilitated by seizure detection algorithm which
increases the efficiency of the method. Raghunathan et al. (2011) devised a
two-stage cascaded seizure detection solution, with full detection efficiency. The
proposed solution is based on the usage of features that results in unique patterns
during the seizure. The proposed technique shows high sensitivity rate and low
detection duration. Yuan et al. (2012) proposed a new method for multichannel long-
term EEG. Novel nonlinear features of EEG signals are derived from the fractal
geometry, as the linear feature comes from the relative fluctuation index. The vector
of the feature is then merged into an extreme learning machine for classification. For
more stable results, post processing techniques are employed such as smoothing and
channel fusion and they are tested on 21 subjects with the segment-based and event-
based analysis.

Epilepsy is a severe disease characterized by temporary changes in the bioelectri-
cal functioning of the brain. These fluctuations cause irregular neuronal synchroni-
zation and seizures that affect awareness, sensation or movement. Epileptic seizures
represent unexpected bursts of wild electrical activity in a group of neurons of the
cerebral cortex. Due to the location of the focus (origin) of the electrical activity and
sequential enrolment of various brain regions, epileptic seizures may be manifested
in numerous ways. For instance, some sort of auditive or visual sensation follows
seizures which focus is located in the sensory regions of the cortex. A group of
neurons with reduced functionality is referred to as the epileptic focus (Sörnmo and
Laguna 2005). Seizure EEG signals contain characteristic patterns that health
professionals use to distinguish them from normal (nonseizure) EEG signals. There-
fore, their detection may be used to respond to a forthcoming or ongoing seizure.
Also, automated recognition techniques have been tested to decrease the amount of
data and enable quicker and more accurate detection of pathological EEG
waveforms which characterize epileptic seizures. In addition, a few techniques
have been suggested to identify spikes in the EEG to predict epileptic events
(Begg et al. 2008).

During normal conditions, there is a stable relationship between inhibitory and
excitatory signals. The former signals prevent neurons from firing and thus decrease
the brain’s electrical activity, while the latter signals force neurons to fire. Nonethe-
less, an important cause of epilepsy lies in impaired balance between these two
actions. The reason for producing this imbalance or unstable condition hides inside
the neurotransmitters which are responsible for chemical transfer of the signals in the
synapse. Consequently, bursts of wild electrical activity will arise when the inhibi-
tory neurotransmitters are being inactive, or the excitatory ones are being exces-
sively active. This neurotransmitter imbalance can be improved by increasing the
inhibitory activity or decreasing the excitatory activity, which is the main challenge
of antiepileptic drugs (Sörnmo and Laguna 2005).

Epileptic seizures, hardly causing long-lasting injuries or death, may result in loss
of consciousness or cause slight mental confusion only. Seizures possess an
extremely variable time duration and rate of occurrence. Their duration may range
from several seconds to several minutes. There are epileptic patients who experience
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just a few seizures during the entire life, while some of them have several seizures
during a single day. Therefore, (Niedermayer 1999) built a scheme to classify
seizures into groups based on the EEG characteristics. Groups are formed based
on the epileptic seizure focus (origin): primary generalized seizures include the
whole brain, while partial seizures start in a limited brain area. The latter group is
associated with a single epileptic focus, which cannot be said for the former group.
Therefore, some partial seizures by eliminating a small part of the cortex during
surgery can be treated. To make sure that the location of the epileptic focus is
correctly bordered, a series of very systematic and in-depth studies and examinations
must be carried out before the surgery. A partial seizure may sometimes progress to
other brain areas. Such seizure is denoted as a partial seizure with secondary
generalization (Sörnmo and Laguna 2005).

Health specialists use distinctive patterns within ictal (seizure) EEG waveforms to
differentiate them from interictal (nonseizure) EEG waveforms. Any form of long-
term EEG monitoring creates huge amounts of data as a result. This data requires a
lot of time to be properly analyzed. In order to reduce the amount of data and allow
quicker and better detection of abnormal EEG signals related to epileptic seizures,
automatic detection systems have been tested. Moreover, a few methods have been
suggested to predict epileptic seizures by discovering spikes in the EEG. Several
signal processing techniques considering mathematical representation of interictal
and ictal data are essential for the design of these detection algorithms (Y. Khan and
Gotman 2003). Noise and artifact elimination are an additional factor that should be
taken into consideration. An effective seizure prediction algorithm may warn a
patient wearing an ambulatory recording device to consider proper security actions
before the seizure occurs (Sörnmo and Laguna 2005).

A medical application designed to control seizures comprises of two systems
(Winterhalder et al. 2003): (1) a seizure prediction algorithm raising an alarm when it
senses an upcoming seizure and (2) a system acting to control a seizure. Moreover,
one simple alert of upcoming seizure may be enough for a patient to leave dangerous
situations or actions, like climbing stairs or playing sports. Seizure prediction
methods are based on the extraction of EEG features, calculated over a short time
window of a few seconds to a few minutes. There exist univariate measures,
calculated separately for each EEG channel, and bivariate (or multivariate)
measures, which quantify some relationship between two or more EEG channels
(Subasi 2019).

Table 18.2 presents values for four different evaluation criteria employed in
epileptic seizure detection and prediction for nine machine learning techniques.
Features have been extracted using discrete wavelet transform from raw ECG
signals. The least effective method was Random Tree with average accuracy of
only 94.3%. The best result was achieved with SVM classifier reaching total
accuracy of 98.7%. Random forest is the second best among the classifiers with a
total accuracy of 98.5%. F-measure of the classifiers is almost the same as total
accuracy results. Random forest is the best for AUC and Kappa statistics with a value
of 0.999.
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18.4.4 EMG Signal Analysis in Diagnosis of Neuromuscular Disorders

The needle EMG is the usual clinical recording method employed for diagnosis of
the neuromuscular pathology. Once a patient goes to a doctor for muscle weakness,
recording of the needle EMG during contraction of specific muscles will be done.
The morphology of single MUAP waveforms gives necessary clinical data regarding
the muscle’s skill to answer to the central nervous system. This data may assist to
identify irregular activity happening in situations like muscles irritation, injury to
nerves in the arms and legs, pinched nerves, and muscular dystrophy. The needle
EMG is also investigated together with nerve wound and can be employed to find out
if the wound restores and go back to normal with complete muscle re-activity, for
instance, by analyzing alterations in motor unit accomplishment over a definite time
period. The diagnostic EMG comprises of investigation of unplanned motor action
that can be throughout muscle relaxation. In ordinary situations, the muscle is
electrically quiet during relaxation period; on the other hand, irregular unplanned
waveforms and waveform patterns can be produced that are connected with sponta-
neous muscular activities and seizures (Sörnmo and Laguna 2005; Subasi 2019).

Table 18.3 presents values for four different evaluation criteria employed in
diagnosis of neuromuscular disorders for nine machine learning techniques. Features
have been extracted using discrete wavelet transform from raw ECG signals. The

Table 18.2 Classification of different EEG signals for epileptic seizure prediction and detection

Interictal Preictal Ictal Average F-measure AUC Kappa

SVM 0.997 0.973 0.99 0.987 0.987 0.992 0.98

k-NN 0.987 0.918 0.967 0.957 0.957 0.968 0.936

ANN 0.981 0.95 0.955 0.962 0.962 0.987 0.943

Random forest 0.997 0.969 0.988 0.985 0.985 0.999 0.999

CART 0.977 0.936 0.942 0.952 0.952 0.965 0.9275

C4.5 0.978 0.946 0.961 0.962 0.962 0.974 0.9425

REP tree 0.977 0.937 0.953 0.956 0.956 0.986 0.9335

Random tree 0.962 0.922 0.945 0.943 0.943 0.957 0.9145

LAD tree 0.973 0.91 0.958 0.947 0.947 0.992 0.9205

Table 18.3 Classification of different EMG signals for diagnosis of neuromuscular disorders

Control Myopathy ALS Average F-measure AUC Kappa

SVM 0.989 0.986 0.999 0.991 0.991 0.995 0.9871

k-NN 0.972 0.976 0.997 0.981 0.981 0.986 0.9721

ANN 0.98 0.975 0.998 0.984 0.984 0.998 0.9767

Random forest 0.974 0.984 0.999 0.986 0.986 1 0.9788

CART 0.933 0.949 0.993 0.958 0.958 0.976 0.9375

C4.5 0.947 0.952 0.989 0.963 0.962 0.975 0.9437

REP tree 0.937 0.953 0.985 0.958 0.958 0.985 0.9375

Random tree 0.913 0.928 0.968 0.936 0.936 0.952 0.9042

LAD tree 0.941 0.955 0.985 0.96 0.96 0.993 0.9404
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least effective method was Random Tree with average accuracy of only 93.6%. The
best result was achieved with SVM classifier reaching total accuracy of 99.1% and
F-measure of 0.991. Random forest is the second best among the classifiers with a
total accuracy of 98.6%. F-measure of the classifiers is almost the same as total
accuracy results. Random forest is the best for AUC with a value of 1. SVM is the
best for the Kappa statistics with a value of 0.9871.

18.5 Discussion and Conclusions

Biomedical signals are principally used to diagnose or detect specific pathological or
physiological conditions. Additionally, these signals are employed to analyze
biological systems in the healthcare. Biomedical signals are utilized in the research
laboratory, clinic, and even at home. The ECG, the EEG, and the EMG are the
widely used examples of the biomedical signals. In healthcare, biomedical signals
are utilized to detect physiological or pathological conditions and diagnose different
disorders. Biomedical signal analysis is utilized to remove the noise, create accurate
signal model and analyze its components, and predict pathological events in the
brain, heart or muscle (Muthuswamy 2004). Biomedical signals include information
to recognize the complex pathophysiologic mechanisms. However, such information
may not be attainable directly from the raw signals suppressed in additive noise.
Because of these reasons, biomedical signal processing is needed to enhance the
related information and to designate the level of pathology for routine clinical
diagnosis, rehabilitation or therapy. Several signal processing techniques can be
used for denoising, filtering, spectral estimation, and feature extraction (Mainardi
et al. 2006).

Time-frequency feature extraction techniques are used for the analysis and
interpretation of biomedical signals with time-varying characteristics. For instance,
the P-QRS-T characteristic of the ECG signals show localized low frequencies in the
P- and the ST-segments and high frequencies in the QRS complex. The QRS
segment can be localized by means of time-frequency analysis such as discrete
wavelet transform. Moreover, neurological signals with potential applications in
the analysis of EEG, and epileptic spikes and seizures can be analyzed by discrete
wavelet transform. The need for an effective analysis of biomedical signals with
time-frequency methods is apparent, and spectral variations can be well localized
with them. Analyzing the signal at different scales can achieve meaningful informa-
tion. The discrete wavelet transform seems to have strong theoretical features
permitting innovative interpretation of biomedical signals (Thakor et al. 2000).

Machine learning algorithms offer a powerful tool for the biomedical signal
analysis. This chapter has reviewed the biomedical signals such as ECG, EEG,
and EMG and applications of machine learning methods in cardiology, neurology,
and brain signals. Machine learning methods have been employed broadly in
different fields including biomedical signal analysis. In addition to these
applications, many studies is still going on to find optimal values for the parameters
and optimal algorithms employed in these techniques (Micheli-Tzanakou 2000).
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Three different biomedical signals, namely, ECG, EEG, and EMG signal analy-
sis, and classification results are presented in this chapter as an example of biomedi-
cal signal usage in healthcare. For each type of biomedical signal dataset, the
analysis results are given in Tables 18.1, 18.2, and 18.3. The SVM, ANN, k-NN,
and random forest classifiers achieved better results in most of the cases.
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