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Chapter 15
Hutchinson-Gilford Progeria Syndrome: 
Challenges at Bench and Bedside

Ray Kreienkamp and Susana Gonzalo

Abstract The structural nuclear proteins known as “lamins” (A-type and B-type) 
provide a scaffold for the compartmentalization of genome function that is impor-
tant to maintain genome stability. Mutations in the LMNA gene -encoding for A-type 
lamins- are associated with over a dozen of degenerative disorders termed lami-
nopathies, which include muscular dystrophies, lipodystrophies, neuropathies, and 
premature ageing diseases such as Hutchinson Gilford Progeria Syndrome (HGPS). 
This devastating disease is caused by the expression of a truncated lamin A protein 
named “progerin”. To date, there is no effective treatment for HGPS patients, who 
die in their teens from cardiovascular disease. At a cellular level, progerin expres-
sion impacts nuclear architecture, chromatin organization, response to mechanical 
stress, and DNA transactions such as transcription, replication and repair. However, 
the current view is that key mechanisms behind progerin toxicity still remain to be 
discovered. Here, we discuss new findings about pathological mechanisms in 
HGPS, especially the contribution of replication stress to cellular decline, and thera-
peutic strategies to ameliorate progerin toxicity. In particular, we present evidence 
for retinoids and calcitriol (hormonal vitamin D metabolite) being among the most 
potent compounds to ameliorate HGPS cellular phenotypes in vitro, providing the 
rationale for testing these compounds in preclinical models of the disease in the near 
term, and in patients in the future.
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 Introduction

To the study of normal ageing, Hutchinson-Gilford Progeria Syndrome (HGPS) is 
certainly an outlier. As a severe premature ageing disease, patients develop alopecia, 
bone and joint abnormalities, subcutaneous fat loss, and severe atherosclerosis, all 
before their teenage years. Patients ultimately die at an average age of 14.6 years 
from myocardial infarction or stroke as a result of rapidly progressive atherosclero-
sis (Ullrich and Gordon 2015). Fortunately, this disease is extremely rare, with an 
estimated 350–400 children worldwide.Yet, since the mutation driving its patho-
physiology was discovered in 2003, it has been the subject of an ever-growing vol-
ume of research. This is not only because treatment is desperately needed to help 
these patients, but it is thought that studying the complexities of this fascinating 
disease might reveal new insights into the normal ageing process. This is corrobo-
rated by the finding that progerin, the toxic protein driving disease pathology, is also 
found in the fibroblasts and vascular smooth muscle cells from old individuals (Dahl 
et  al. 2006, McClintock et  al. 2007). Importantly, progerin is upregulated in the 
hearts of dilated cardiomyopathy patients, where its expression correlates with left 
ventricular remodeling (Messner et  al. 2018). This suggests that progerin might 
contribute to the progression of cardiovascular disease with age. Here, we review 
the clinical manifestations of HGPS, underlying cellular drivers of this disease, and 
emerging therapies for treating patients.

 Hutchinson-Gilford Progeria Syndrome

HGPS results from the disruption of the nuclear lamina, a key nuclear structure for 
innumerate cellular processes, by a de novo single-base substitution within the 
LMNA exon 11 (c.1824C>T) (De Sandre-Giovannoli et  al. 2003, Eriksson et  al. 
2003). This mutation activates a cryptic splice site, leading to an in-frame deletion 
of 50 amino acids near the C-terminus of prelamin A. This prevents proper post- 
translational processing of prelamin A to lamin A and leaves a permanently farne-
sylated and carboxymethylated toxic product called “progerin.” This mutant form of 
lamin A acts in a dominant fashion to induce a variety of abnormalities in nuclear 
processes, which eventually lead to cellular and organismal decline. Although 
c.1824C>T remains the most frequent mutation in HGPS patients, other mutations 
in the LMNA gene have also been reported that result in increased usage of the cryp-
tic splice site.

HGPS patients are seemingly normal at birth, but quickly begin showing symp-
toms of their underlying disease. Skin alterations are often among the first manifes-
tations of HGPS.  Though manifestations can present with differing degrees of 
severity, typical alterations include areas of discoloration, stippled pigmentation, 
and tightened areas that restrict movement. Sclerodermoid changes, which give the 
skin a dimpled appearance with varying pigmentation, frequently appear over the 

R. Kreienkamp and S. Gonzalo



437

abdomen and lower extremities (Rork et al. 2014). By 1 year of age, patients often 
present with failure to thrive, alopecia, circumoral cyanosis, prominent scalp veins, 
and decreased range of motion (Merideth et al. 2008, Ullrich and Gordon 2015). 
They develop a distinct progeroid appearance. Often remaining less than four feet 
tall and 30 kg, a decreased and linear rate of weight gain prevents growth compa-
rable to age matched peers (Gordon et al. 2007; Kieran et al. 2007). Patients begin 
to lose cranial hair around 10 months of age, with progression to almost complete 
alopecia with time (Rork et al. 2014). HGPS patients also have distinct craniofacial 
characteristics, developing micrognathia, prominent eyes, and a beaked nose 
(Kieran et al. 2007, Domingo et al. 2009). Prominent forehead scalp veins and peri-
oral cyanosis become evident, both likely the result of decreased subcutaneous fat 
(Rork et al. 2014). Patients also have multiple dental abnormalities, including both 
lack of teeth as well as dental crowding, which can manifest as double rows of teeth 
(Gordon et al. 2007, Domingo et al. 2009). Middle ear abnormalities and aberra-
tions in the ear canal also lead to low-frequency hearing loss in many patients 
(Guardiani et al. 2011).

HGPS is a “segmental ageing disease,” since some features of normal ageing are 
present, whereas other features are notably absent. The liver, kidneys, lungs, and 
gastrointestinal tract are relatively spared in these patients (Kieran et  al. 2007; 
Ullrich and Gordon 2015). However, others cell and tissue types, such as those of 
mesenchymal origin, are particularly susceptible to progerin-induced cellular 
defects, causing notable fat and bone abnormalities in HGPS patients (McClintock 
et al. 2007; Merideth et al. 2008; Zhang et al. 2011). HGPS patients develop lipo-
dystrophy as well as bone and joint abnormalities consistent with skeletal dysplasia 
(Gordon et al. 2011). A profound loss of subcutaneous fat is readily apparent in 
examining these patients. Loss of fat in some body areas, such as the feet, can lead 
to discomfort and often requires supportive therapies (Gordon et al. 2014b; Ullrich 
and Gordon 2015). Interestingly, levels of body fat did not correlate with onset of 
menarche, which girls with this condition often experience in spite of lack of other 
pubertal features (Greer et al. 2017). Bone problems for these patients include small 
clavicles, thin ribs, and acroosteolysis. Patients exhibit reduced bone mineral den-
sity with accentuated demineralization at the end of long bones. Avascular necrosis 
is also present, including at the femoral head, likely resulting from vascular com-
promise (Cleveland et  al. 2012). Interestingly, fracture incidence among HGPS 
patients is not increased compared to the general population, though HGPS patients 
are more susceptible to skull fractures. This is likely the result of disrupted bone 
formation in the skull. Patent anterior and posterior fontanels can persist in patients 
as old as 9 years of age, and these patients often also have widened calvarial sutures 
and a thin calvarium (Ullrich and Gordon 2015).

The most significant problems in HGPS are the cardiovascular complications, 
which underlie patient death. Patients develop severe and progressive atherosclerosis, 
eventually leading to myocardial ischemia, infarction, and stroke (Stehbens et  al. 
1999). Patients also develop readily evident left ventricular diastolic dysfunction, 
which increases with age (Prakash et  al. 2018). Left ventricular hypertrophy and 
systolic dysfunction are also observed, which are more evident in older patients. 
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Cardiac  manifestations include increased afterload and angina (Ullrich and Gordon 
2015). Remarkably, it is estimated that 50% of children have radiographically detect-
able strokes by the age of eight, and infarcts were common on imageing studies of 
patients between 5 and 10 years of age (Silvera et al. 2013). Most of these strokes are 
often clinically silent. This suggests that cardiovascular problems are present well 
before the end of life contributing to both morbidity and mortality.

The atherosclerosis that develops in HGPS has some important differences from 
the normal ageing population, although calcification, inflammation, and plaque rup-
ture are present in both HGPS and normal ageing. Interestingly, HGPS patients do 
not develop hypercholesterolemia or increased serum high-sensitivity C-reactive 
protein, which are often seen with cardiovascular disease in the normal population 
(Stehbens et al. 1999; Olive et al. 2010). Additionally, vessels have a more complete 
fibrosis throughout the vessel wall, as arteries and veins show marked adventitial 
fibrosis with a dense rim of collagen. This complete stiffening of the wall leads to 
many measurable changes in the vasculature. Patients can become hypertensive, 
and some patients also have elongated QT intervals by EKG (Merideth et al. 2008; 
Gerhard-Herman et al. 2012). Carotid-femoral pulse wave velocity is dramatically 
elevated, indicating an increase in arterial stiffness. Patients also have abnormally 
echodense vascular walls by ultrasound, thought to correspond to a dramatically 
thickened fibrotic matrix. In these patients, as well as mouse models of disease, 
there is a striking depletion of vascular smooth muscle cells from the media, even in 
the outermost lamellar units adjacent to the adventitia, that is replaced by proteogly-
cans and collagen (Varga et  al. 2006; Osorio et  al. 2011; Gerhard-Herman et  al. 
2012; Villa-Bellosta et  al. 2013). This is likely due to the extreme sensitivity of 
vascular smooth muscle cells to progerin expression.

The vascular abnormalities present in HGPS can compromise the nervous sys-
tem as well. In the absence of vascular disease, the nervous system is relatively 
spared due to the fact that both lamin A and progerin expression is limited in the 
nervous system by miR-9 (Jung et al. 2012). HGPS patients show no evidence of 
memory or cognitive challenges often associated with the normal ageing process 
and have normal cognition. However, many HGPS patients experience neurological 
symptoms such as headaches of migraine-type quality, muscular weakness, or sei-
zures as a result of impaired blood flow and diseased vasculature (Ullrich and 
Gordon 2015).

 Cellular Disruptions

For the plethora of pathologies comprising this disease, it is surprising that it all 
results from a single nucleotide substitution and a deleterious protein. Progerin’s 
toxic cellular effects are substantial and caused primarily by alterations in genome 
function and integrity. Hallmarks of progerin-expressing cells include nuclear mor-
phological abnormalities, changes in chromatin organization, DNA damage, telo-
mere shortening, and premature senescence (Goldman et al. 2004; Prokocimer et al. 
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2013; Gonzalo and Kreienkamp 2015; Gonzalo et  al. 2017). Despite enormous 
progress in recent years identifying cellular processes altered by progerin, we still 
lack a clear picture of the molecular mechanisms whereby progerin expression 
causes all these cellular phenotypes.

Nuclear morphological abnormalities are probably the most robust marker of 
HGPS patient-derived fibroblasts, and the phenotype that is most often ameliorated 
by therapeutic strategies (Capell et al. 2005) (Fig. 15.1). HGPS nuclei appear big, 
dysmorphic, and full of protrusions throughout that are accompanied by nuclear 
lamina thickening and disorganization of nuclear pore complexes and chromatin 
(Goldman et  al. 2004; Kubben et  al. 2015; Kreienkamp et  al. 2016). A dosage- 
dependent effect of progerin inducing morphological nuclear defects has been 
reported, which is exacerbated with continuous proliferation (Chojnowski et  al. 
2015). Thus, strategies that lower levels of progerin have shown improvement of 
HGPS cells in vitro and in mouse models of disease in vivo. This is the case of anti-
sense oligonucleotides (ASO) targeting lamin A/progerin production (Scaffidi and 
Misteli 2005; Osorio et  al. 2011; Bridgeman et  al. 2017), compounds such as 
rapamycin and everolimus that increase clearance of progerin via autophagy 
(DuBose et al. 2018), and MG132 that induces progerin nucleocytoplasmic translo-
cation and progerin clearance through macroautophagy (Harhouri et al. 2017). In 
addition, the E3 ubiquitin ligase Smurf2 directly binds, ubiquitinates, and nega-
tively regulates expression of lamin A/progerin, which in HGPS cells reduces 
nuclear deformability (Borroni et al. 2018). Furthermore, nuclei from HGPS cells 
exhibit increased nuclear stiffness and impaired mechanotransduction (Dahl et al. 
2006; Verstraeten et al. 2008); phenotypes that are thought to have a big impact on 
tissues such as bone, skeletal muscle, heart, and vessels that are subjected to signifi-
cant mechanical stress (Prokocimer et al. 2013; Dobrzynska et al. 2016).

Epigenetic changes are characteristic of HGPS cells, including alterations in 
DNA methylation (Osorio et al. 2010; Heyn et al. 2013), post-translational modifi-
cations of histones -mainly H3K9me3, H3K27me3, and H4K20me3- (Columbaro 
et al. 2005; Scaffidi and Misteli 2005; Shumaker et al. 2006), expression levels of 
chromatin-modifying activities such as the NURD complex (Pegoraro et al. 2009), 
and miRNAs (Arancio et al. 2014; Frankel et al. 2018). Interestingly, these chroma-
tin changes and expression of progerin are also observed in cells from old individu-
als, suggesting their implication in physiological ageing (Dahl et al. 2006). Special 
attention has been given lately to the consequences of loss of function of SIRT6 in 
progerin-expressing cells. This sirtuin family member has histone deacetylation and 
mono-ADP ribosylation activities and has been associated with genomic instability 
and accelerated ageing similar to HGPS (Ghosh et al. 2015).

Deregulated gene expression is another hallmark of HGPS, which resembles the 
gene expression profile of disorders affecting mesodermal and mesenchymal cell 
lineages. Functional categories more often found differentially expressed in HGPS 
cells include transcription factors (Duband-Goulet et  al. 2011) and extracellular 
matrix (ECM) components (Csoka et al. 2004), in addition to signaling cascades 
such as the Wnt pathway (Hernandez et al. 2010; Vidak and Foisner 2016), the reti-
noblastoma pathway (Marji et  al. 2010), Notch signalling (Scaffidi and Misteli 
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Fig. 15.1 Progerin expression elicits profound alterations in nuclear morphology and genome 
integrity and function. Compared to normal fibroblasts, HGPS patient-derived fibroblasts exhibit 
increased nuclear size and nuclear envelope morphological abnormalities characterized by invagi-
nations, protrusions and blebbing. Progerin-expressing cells lose heterochromatin from the nuclear 
periphery and accumulate DNA damage. In particular, progerin causes increased levels of γΗ2AX 
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2008), NFκB inflammatory pathway, and the recently identified, interferon (IFN)-
related innate immune responses (Kreienkamp et al. 2018).

DNA repair defects, telomere dysfunction, and genomic instability are amongst 
the more potent drivers of ageing and malignancy. In HGPS, there is strong evi-
dence for deficiencies in DNA repair, which are characterized by delayed recruit-
ment of DNA repair factors such as 53BP1 and RAD51 to γH2AX-labeled DNA 
repair foci (Liu et al. 2005) or anomalous accumulation of Xeroderma Pigmentosum 
group A (XPA) (Liu et  al. 2005, 2008), a protein with an important function in 
nucleotide excision repair (NER), among others. HGPS cells also develop telomere 
dysfunction, with faster telomere attrition during proliferation that elicits DNA 
damage and premature senescence (Gonzalo and Kreienkamp 2015). In addition, 
there is accumulation of ROS due to mitochondrial dysfunction, which was has 
been linked to impaired NRF2 pathway activity (Kubben et al. 2016). An interesting 
study has recently found that inhibition of ROCK (rho-associated protein kinase) 
activity recovers mitochondrial function in HGPS fibroblasts, ameliorating nuclear 
morphological abnormalities and genomic instability phenotypes (Kang et  al. 
2017). Many reviews have previously described the phenotypes of genomic insta-
bility in progerin-expressing cells (Gonzalo and Kreienkamp 2015; Dobrzynska 
et al. 2016; Gonzalo et al. 2017). Here, we will focus on newly identified mecha-
nisms underlying genomic instability and their contribution to premature ageing.

Recently, special emphasis has been placed on understanding how progerin 
affects DNA replication, given that most of the DNA damage that accumulates in 
cells is generated during replication. Early replication studies using Xenopus 
extracts showed that nuclear lamina disruption causes a marked reduction in DNA 
replication, concomitant with alteration in the distribution of Proliferating Cell 
Nuclear Antigen (PCNA) and the Replication Factor Complex (RFC), key factors in 
the elongation phase of DNA replication (Spann et al. 1997). Another study revealed 
that altered organization of the nuclear lamina inhibits chain elongation in a dose- 
dependent manner (Moir et  al. 2000). In addition, PCNA has been found to co- 
localize with A- and B-type lamins in early and late sites of DNA replication, 
respectively (Moir et al. 1994; Goldberg et al. 1995; Jenkins et al. 1995; Kennedy 
et al. 2000; Dechat et al. 2008), suggesting a role for lamins in the spatial/temporal 
organization of replication.

(marker of DNA DSBs), and phosphorylated-RPA (marker of replication stress). The structure of 
the nuclear lamina is impacted by progerin expression. A-type and B-type lamins form indepen-
dent networks, and progerin seems to be able to intercalate in both types of networks, eliciting 
structural alterations that affect nuclear stiffness and stability. In fact, nuclear rupture is common 
in progerin-expressing cells, with leakage of DNA fragments, chromatin, and other nucleoplasmic 
proteins into the cytoplasm. Similarly, mitochondrial integrity and function is often compromised 
in HGPS patient-derived cells. Moreover, progerin causes broad changes in gene expression. 
Recently, we showed that the transcription factor STAT1 is activated by phosphorylation in 
progerin-expressing cells, leading to its translocation to the nucleus and the activation of target 
genes in the interferon (IFN) response. (Graphic illustrations generated by Michael Andrus, BS, St 
Louis University)
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More recently, expression of pre-lamin-A was associated with mono- 
ubiquitination of PCNA and induction of Pol η, two hallmarks of replication fork 
stalling (Cobb et al. 2016). It was suggested that pre-lamin-A mitigates the interac-
tion of PCNA with mature lamin-A, eliciting replication fork stalling. In HGPS 
cells, RFC1 is aberrantly degraded by a serine protease, and the cleavage causes 
defects in the loading of PCNA and Pol δ onto DNA for replication (Tang et al. 
2012). In an unbiased screen of lamin-A- and progerin-interacting proteins by mass 
spectrometry, progerin was also shown to interact with PCNA more robustly than 
lamin A (Kubben et al. 2010), and also reported to sequester PCNA away from rep-
licating DNA (Wheaton et al. 2017). These findings support the idea that expression 
of pre-lamin-A and progerin elicit replication stress by sequestering PCNA away 
from the replication fork. Consistent with this idea, progerin-expressing cells accu-
mulate XPA at stalled or collapsed replication forks, concomitant with a significant 
loss of PCNA at the forks (Hilton et al. 2017). Depletion of XPA or progerin restores 
PCNA at replication forks, while reducing the extent of progerin-induced apoptosis. 
Therefore, progerin expression seems to alter the binding of key factors to the rep-
lication fork, including PCNA and proteins such as XPA that participate in the 
repair of DNA lesions. Altogether, these findings suggest that alterations in nuclear 
lamins impact DNA replication and that replication stress could play a major role in 
the proliferation defects and genomic instability that characterize lamins-defective 
cells. Despite these findings, our mechanistic understanding of how mutant lamins 
hinder DNA replication is limited.

Mutant lamins such as progerin could hinder the progression of the replication 
fork by inducing mis-localization of factors that associate with the replisome -PCNA 
and RFC-. Lamin dysfunction could also hinder the proper recruitment of replica-
tion fork protective factors upon fork stalling, causing replication stress- induced 
genomic instability. To understand mechanistically how lamin dysfunction affects 
DNA replication requires the utilization of newly developed techniques such as 
genome-wide single-molecule replication assays (DNA fiber assays), iPOND 
(Isolation of Proteins On Nascent DNA) (Sirbu et al. 2011), and electron micros-
copy (Vindigni and Lopes 2017). Our recent studies performing DNA fiber assays 
have revealed that progerin expression, but not overexpression of lamin-A, causes a 
robust phenotype hindering replication (Kreienkamp et al. 2018). Progerin elicits 
replication stress, characterized by increased replication fork stalling in the absence 
of drugs that inhibit replication. In addition, we find that stalled replication forks are 
deprotected and susceptible to MRE11 nuclease-mediated fork degradation. As 
such, inhibition of MRE11 nuclease rescues replication defects in progerin- 
expressing cells. Moreover, we find that a variety of compounds known to amelio-
rate phenotypes of genomic instability in progerin-expressing cells, including 
vitamin D (Gonzalez-Suarez et al. 2011), all-trans retinoic acid (ATRA) (Swift et al. 
2013; Kubben et al. 2015; Pellegrini et al. 2015), remodelin (Larrieu et al. 2014), 
and the combination of a farnesyltransferase inhibitor (FTI) and rapamycin (Cao 
et al. 2011; Pellegrini et al. 2015; Gordon et al. 2016) markedly reduce replication 
stress in progerin-expressing cells (Kreienkamp et al. 2018). Despite the fact that 
molecular mechanisms underlying the beneficial effects of these drugs rescuing 

R. Kreienkamp and S. Gonzalo



443

 replication stress and genomic instability in progerin-expressing cells remain to be 
identified, this finding has important implications from a therapeutic perspective 
and for defining the importance of replication stress to the progeria phenotype.

Interestingly, our recent studies demonstrate that replication stress in progerin- 
expressing cells not only contribute to genomic instability, but also activate inflam-
matory responses that contribute to cellular ageing. Replication stress in HGPS 
patient-derived fibroblasts and progerin-expressing normal fibroblasts is accompa-
nied by accumulation of chromatin at the cytoplasm, upregulation of cytosolic sen-
sors of nucleic acids -cGAS, STING, RIG-I, MDA5, and OASs-, and robust 
activation of a cell intrinsic interferon (IFN)-like response (Kreienkamp et al. 2018). 
This IFN-like response, which is regulated by STAT1, contributes to cellular ageing 
phenotypes such as reduced proliferation and migration capabilities. This finding is 
important because STAT1 is a notorious regulator of inflammation in immune and 
vascular cells during atherosclerosis, and an important therapeutic target for cardio-
vascular disease (Szelag et al. 2016), the main cause of death of HGPS patients. We 
hypothesize that progerin expression in vascular cells from HGPS patients could 
recapitulate the STAT1 pathway activation observed in fibroblasts, being a contribu-
tor to the decline of vascular cells characteristic of this disease.

Importantly, we showed that the same treatments that ameliorate replication 
stress -vitamin D, ATRA, remodelin, FTI and rapamycin-, markedly repress the 
STAT1/IFN-like response (Kreienkamp et al. 2018). We propose that in progerin- 
expressing cells, DNA damage and replication stress, together with disruption of 
nuclear integrity, results in accumulation of immunogenic nucleic acids in the cyto-
plasm, where they activate cytosolic sensors of foreign nucleic acids. This in turn 
leads to activation of inflammatory pathways such as NFκB and STAT1 that drive 
an IFN-like response. Defining the causes of this cell-intrinsic IFN response and its 
consequences for organismal decline in HGPS, as well as the mechanisms whereby 
different compounds ameliorate this response might reveal ways to reduce its patho-
logical impact in HGPS and in normal ageing, as progerin is expressed in cells from 
old individuals (Dahl et al. 2006).

 Current and Future Therapies

With such a multitude of cellular processes and organ systems affected, developing 
therapies for HGPS has proven challenging. However, since progerin was identified 
as the driver behind disease phenotypes, researchers have searched for ways to com-
bat its detrimental effects (Harhouri et al. 2018). Among the first of the drugs that 
emerged was lonafarnib, a farnesyltransferase inhibitor (FTI) designed to prevent 
processing of prelamin A to progerin. FTIs reduced nuclear blebbing, nuclear stiff-
ness, rescued heterochromatin organization in HGPS cells, decreasing onset of pre-
mature senescence and improving proliferation (Capell et al. 2005; Columbaro et al. 
2005; Yang et al. 2005; Verstraeten et al. 2008). Further, FTIs had a remarkable effect 
in mouse models of disease (Fong et al. 2006; Yang et al. 2006; Varela et al. 2008). 
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Based on these promising results, a clinical trial was initiated. There, the results were 
equally compelling. Administration of the FTI lonafarnib for 2  years in HGPS 
patients improved pulse-wave velocity, carotid artery wall echodensity, and incidence 
of stroke, headaches, and seizures (Gordon et al. 2012). FTIs increased mean survival 
by 1.6 years (Gordon et al. 2014a). Recently, it was demonstrated that lonafarnib 
monotherapy was associated with a lower mortality rate after 2.2 years of follow-up 
(Gordon et  al. 2018). While this drug certainly is the first treatment for HGPS 
patients, it can be hard for patients to tolerate due to a number of side effects. 
Therefore, the next wave of therapies, and the possibility for combination therapies, 
are desperately needed to allow for synergy or even lower dosages for effectiveness.

The next compound that has made its way to patients is everolimus. Everolimus 
is an analog of rapamycin, which promotes the removal of toxic, insoluble aggre-
gates like progerin by enhanced autophagy (Cao et al. 2011). Everolimus increased 
proliferative ability and delayed cellular senescence in cell lines, including those 
without the classical HGPS mutation (DuBose et al. 2018). Based on these studies, 
a phase I/II dose-escalation clinical trial of everolimus in combination with lona-
farnib was initiated in 2015, with results from these studies expected by 2020 
(https://clinicaltrials.gov/ct2/show/study/NCT02579044).

Sulforaphane acts in a similar manner to everolimus, and, as such, has shown 
benefit in vitro by increasing progerin clearance by autophagy (Gabriel et al. 2015). 
More recent studies have demonstrated that combination of sulforaphane with lona-
farnib is toxic, but intermittent treatment of sulforaphane with lonafarnib separately 
and in repeated cycles rescues HGPS cellular phenotype (Gabriel et al. 2017).

Other therapies are likely next for testing in patients. Remodelin, an inhibitor of 
N-acetyltransferase-10 (NAT10), increases chromatin compaction while rescuing 
nuclear morphological abnormalities, proliferation defects, and accumulation of 
DNA damage characteristic of progerin-expressing cells (Larrieu et  al. 2014). A 
preclinical study recently performed with remodelin treatment revealed an improve-
ment in healthspan in the progeria mice (Balmus et al. 2018), and similar effects by 
chemical inhibition of NAT10.

The retinoids are among other treatment strategies that now await testing in vivo. 
The LMNA gene promoter contains retinoic acid responsive elements (L-RARE) 
that downregulate LMNA gene expression with all trans retinoic acid (ATRA) treat-
ment (Swift et  al. 2013). In HGPS patient-derived fibroblasts, ATRA treatment 
reduces significantly progerin expression and actually synergizes with rapamycin in 
downregulating progerin levels, ameliorating a variety of progerin-induced pheno-
types (Pellegrini et al. 2015). Retinoids were also identified in a high-throughput, 
high-content based screening of a library of FDA approved drugs as a class of com-
pounds able to revert cellular HGPS phenotypes (Kubben et al. 2016). Similarly, our 
studies show that activation of vitamin D receptor signaling by ligand 
(1,25α-dihydroxy-vitamin D3) binding ameliorates a broad repertoire of phenotypes 
of HGPS patient-derived cells (Kreienkamp et al. 2016, 2018). Other therapeutic 
strategies of benefit have included inhibitors of the enzyme responsible for 
 carboxymethylation of the farnesylcysteine of progerin (Ibrahim et al. 2013); the 
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ROS scavenger N-acetyl cysteine, which reduces the amount of unrepairable DNA 
damage caused by the increased generation of ROS (Pekovic et al. 2011; Richards 
et  al. 2011; Lattanzi et  al. 2012; Sieprath et  al. 2012); methylene blue, a 
mitochondrial- targeting antioxidant (Xiong et al. 2016); or resveratrol, an enhancer 
of SIRT1 deacetylase activity that alleviates progeroid features (Liu et al. 2012). 
The plethora of potential therapeutic options is encourageing, since it is likely that 
the best treatment options for these patients will consist of combination therapy. 
Combination therapy might allow for synergy among compounds, reducing toxicity 
owed to lowering the doses of each single compound.

 Concluding Remarks

HGPS, with its severity and time-course, is certainly an outlier to the ageing pro-
cess. As an outlier, though, its study portends value not only for these patients, but 
also for the normal ageing population. Since 2003, our understanding of both nor-
mal and abnormal ageing has greatly increased. In the last few years, the fruits of 
these studies have become tangible for HGPS patients with the first wave of thera-
pies to help them. It is hoped that the next years will yield further therapies of ben-
efit to these children.

Much remains to be learned. Our understanding of the cardiovascular disease 
that drives patient death is still quite limited. Our studies are also challenged by the 
fact that we still lack a suitable animal model for recapitulating well the cardiovas-
cular disease driving human death. The coming years seem destined for advances in 
our understanding of these critical disease processes. Finding targeted biomarkers 
for disease remains an important goal, as is identifying other genes that impact dis-
ease phenotype. With the increased utilization of next generation sequencing, it is 
hoped that this technology will also benefit HGPS, particularly with identifying 
other genetic traits that either potentiate or reduce progerin’s toxic effect. Other new 
technologies, like CRISPR-Cas9, have obvious applications in diseases like HGPS, 
which now just wait application. Time will certainly reveal new mysteries for dis-
ease. And, as we develop ways to help these children live longer, maybe some of 
these findings might also have relevance for the rest of us in the normal ageing 
population.
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