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Abstract Despite their similar meanings, near-synonymsmay have different usages
in different contexts. For second-language learners, such differences are not easily
grasped in practical use. This chapter introduces several context analysis techniques
such as pointwise mutual information (PMI), n-gram language model, latent seman-
tic analysis (LSA), and independent component analysis (ICA) to verify whether
near-synonyms do match the given contexts. Applications can benefit from such
techniques to provide useful contextual information for learners, making it easier
for them to understand different usages of various near-synonyms. Based on these
context analysis techniques, we build a prototype computer-assisted near-synonym
learning system. In experiments, we evaluate the context analysis methods on both
Chinese and English sentences, and compared its performance to several previ-
ously proposed supervised and unsupervised methods. Experimental results show
that training on the independent components that contain useful contextual features
with minimized term dependence can improve the classifiers’ ability to discriminate
among near-synonyms, thus yielding better performance.

1 Introduction

Near-synonym sets represent groups of words with similar meanings, which can
be derived from the existing lexical ontologies such as WordNet (Fellbaum 1998),
EuroWordNet (Rodríguez et al. 1998), and Chinese WordNet (Huang et al. 2008).
These are useful knowledge resources for computer-assisted language learning

L.-C. Yu (B) · W.-N. Chien
Yuan Ze University, Taoyuan, Taiwan
e-mail: lcyu@saturn.yzu.edu.tw

W.-N. Chien
e-mail: s986223@mail.yzu.edu.tw

K.-H. Hsu
Yuanze University, Taoyuan, Taiwan
e-mail: s986220@mail.yzu.edu.tw

© Springer Nature Singapore Pte Ltd. 2019
X. Lu and B. Chen (eds.), Computational and Corpus Approaches to Chinese
Language Learning, Chinese Language Learning Sciences,
https://doi.org/10.1007/978-981-13-3570-9_7

121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3570-9_7&domain=pdf
mailto:lcyu@saturn.yzu.edu.tw
mailto:s986223@mail.yzu.edu.tw
mailto:s986220@mail.yzu.edu.tw
https://doi.org/10.1007/978-981-13-3570-9_7


122 L.-C. Yu et al.

(CALL) (Cheng 2004; Inkpen and Hirst 2006; Inkpen 2007; Ouyang et al. 2009; Wu
et al. 2010) and natural language processing (NLP) applications such as information
retrieval (IR) (Moldovan and Mihalcea 2000; Navigli and Velardi 2003; Shlrl and
Revle 2006; Bhogal et al. 2007; Yu et al. 2009) and (near-)duplicate detection for text
summarization (Vanderwende et al. 2007). For example, in composing a text, near-
synonyms can be used to automatically suggest alternatives to avoid repeating the
same word in a text when suitable alternatives are available in the near-synonym set
(Inkpen and Hirst 2006). In information retrieval, systems can perform query expan-
sion to improve the recall rate, for example, through recognizing that the weapon
sense of “arm” corresponds to the weapon sense of “weapon” and of “arsenal”.

Although the words in a near-synonym set have similar meanings, they are not
necessarily interchangeable in practical use due to their specific usage and colloca-
tional constraints (Wible et al. 2003). Consider the following examples.

(E1) {strong, powerful} coffee
(E2) ghastly {error, mistake}
(E3) {bridge, overpass, tunnel} under the bay.

Examples (E1) and (E2) both present an example of collocational constraints
for the given contexts. In (E1), the word “strong” in the near-synonym set {strong,
powerful} is more suitable than “powerful” to fit the given context “coffee,” since
“powerful coffee” is an anti-collocation (Pearce 2001). Similarly, in (E2), “mistake”
is more suitable than “error” because “ghastly mistake” is a collocation and “ghastly
error” is an anti-collocation (Inkpen 2007). In (E3), the near-synonym set {bridge,
overpass, tunnel} represents the meaning of a physical structure that connects sepa-
rate places by traversing an obstacle. Suppose that the original word is “tunnel” in
the context “under the bay”. The word “tunnel” cannot be substituted by the other
words in the same set because all the substitutions are semantically implausible
(Yu et al. 2010). The above examples indicate that near-synonyms may have dif-
ferent usages in different contexts, and such differences are not easily captured by
second-language learners. Therefore, we develop a computer-assisted near-synonym
learning system to assist Chinese English-as-a-Second-Language (ESL) learners to
better understand different usages of various English near-synonyms and use them
appropriately in different contexts.

This chapter introduces the use of NLP techniques such as automatic near-
synonym choice (Edmonds 1997; Gardiner and Dras 2007; Inkpen 2007; Islam and
Inkpen 2010; Wang and Hirst 2010; Yu et al. 2010; Yu and Chien 2013; Yu et al.
2016) to verify whether near-synonyms match the given contexts. The problem of
automatic near-synonym choice has been formulated as a “fill-in-the-blank” (FITB)
task, as shown in Fig. 1. Given a near-synonym set and a sentence containing one
of the near-synonyms, the near-synonym is first removed from the sentence to form
a lexical gap. The goal is to predict an answer (best near-synonym) that can fill the
gap from the given near-synonym set (including the original word). The systems can
then be evaluated by examining their ability to restore the original word with the best
near-synonym.
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English Sentence: This will make the       message easier to interpret. 
Original word: error

Near-synonym set: {error, mistake, oversight}

Fig. 1 Example of FITB evaluation for automatic near-synonym choice

2 Automatic Near-Synonym Choice

Among many approaches to automatic near-synonym choice, Edmonds’ pioneering
study used a lexical co-occurrence network to determine the near-synonym that is
most typical or expected in a given context (Edmonds 1997). Other proposedmethods
can generally be categorized as unsupervised (Gardiner and Dras 2007; Inkpen 2007;
Islam and Inkpen 2010; Yu et al. 2010) and supervised methods (Wang and Hirst
2010; Yu and Chien 2013; Yu et al. 2016).

2.1 Unsupervised Methods

In the unsupervised methods, the pointwise mutual information (PMI) (Gardiner and
Dras 2007; Inkpen 2007) and n-gram-based methods (Islam and Inkpen 2010; Yu
et al. 2010) are the two major methods.

2.1.1 PMI-Based Method

The PMI is used to measure the strength of co-occurrence between a near-synonym
and each individual word appearing in its context. A higher mutual information score
indicates that the near-synonym fits well in the given context, and thus is more likely
to be the correct answer. The pointwisemutual information (Church andHanks 1990)
between two words x and y is defined as

PMI(x, y) � log2
P(x, y)

P(x)P(y)
, (1)

where P(x, y) � C(x, y)/N denotes the probability that x and y co-occur; C(x, y) is
the number of times x and y co-occur in the corpus; and N is the total number of
words in the corpus. Similarly, P(x) � C(x)/N , where C(x) is the number of times
x occurs in the corpus, and P(y) � C(y)/N , where C(y) is the number of times y
occurs in the corpus. Therefore, Eq. 1 can be rewritten as

PMI(x, y) � log2
C(x, y) · N
C(x) · C(y) . (2)
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The frequency counts C(·) presented in Eq. 2 can be retrieved from a large corpus
such as the Waterloo terabyte corpus used in (Inkpen 2007), and the Web 1T 5-gram
corpus used in (Gardiner and Dras 2007).

Given a sentence swith a gap, s � . . .w1 . . .w� . . .w�+1 . . .w2� . . ., the PMI score
for a near-synonym NSj to fill the gap is computed from the words around the gap,
defined as

PMI(NSj, s) �
2�∑

i�1

PMI(NSj,wi). (3)

where � is a window size representing �words to the left and right of the gap. Finally,
the near-synonym with the highest score is considered to be the answer.

2.1.2 5-Gram Language Model

N-grams can capture contiguous word associations within given contexts. Assume
a sentence s � . . .wi−4wi−3wi−2wi−1wiwi+1wi+2wi+3wi+4 . . ., where wi represents a
near-synonym in a set. In computing the 5-gram scores for each near-synonym, only
the five product items P(wi

∣∣wi−1
i−4 ), P(wi+1

∣∣wi
i−3 ), P(wi+2

∣∣wi+1
i−2 ), P(wi+3

∣∣wi+2
i−1 ), and

P(wi+4
∣∣wi+3

i ) are considered (Islam and Inkpen 2010). The other items are excluded
because they do not contain the near-synonym and thus will have the same values.
Accordingly, the 5-gram language model (n � 5) with a smoothing method can be
defined as

P(s) �
5∏

i�1

P(wi
∣∣wi−1

i−n+1 )

�
5∏

i�1

C(wi
i−n+1) + (1 + αn)M (wi−1

i−n+1)P(wi
∣∣wi−1

i−n+2 )
C(wi−1

i−n+1) + αnM (wi−1
i−n+1)

(4)

whereM (wi−1
i−n+1) denotes a missing count used in the smoothing method, defined as

M (wi−1
i−n+1) � C(wi−1

i−n+1) −
∑

wi

C(wi
i−n+1) (5)

where C(·) denotes an n-gram frequency, which can be retrieved from a large corpus
such as the Web 1T 5-gram corpus used in (Islam and Inkpen 2010). The 5-gram
language model is implemented as a back-off model. That is, if the frequency of
a higher order n-gram is zero, then its lower order n-grams will be considered.
Conversely, if the frequency of a higher order n-gram is not zero, then the lower
order n-grams will not be included in the computation. Similar to the PMI-based
method, the near-synonym with the highest score is considered to be the answer.
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2.2 Supervised Methods

Supervised methods usually approach near-synonym choice tasks as classification
tasks in which each near-synonym in a near-synonym set represents a class, and
the features used for classification are the words which occur in the contexts of
the near-synonyms. The near-synonyms and their context words are represented by
vector-based representation which is frequently used in distributional models of lexi-
cal semantics (Harris 1954; Lin 1998; Roussinov and Zhao 2003;Weeds et al. 2004).
Based on this representation, a co-occurrence matrix of the near-synonyms and their
context words can be built from the training data, i.e., a collection of sentences
containing the near-synonyms. Each entry in the matrix represents a co-occurrence
frequency of a context word and a near-synonym. Different context analysis tech-
niques such as latent semantic analysis (LSA) and independent component analysis
(ICA) can then be applied to the context matrix to identify useful context features
that contribute to the classification task (Wang and Hirst 2010; Yu and Chien 2013).

2.2.1 Latent Semantic Analysis (LSA)

LSA is a technique for analyzing the relationships between words and documents
and has been widely used in many application domains such as information retrieval
(Landauer et al. 1998), latent topic discovery (Cribbin 2011), and document cluster-
ing (Wei et al. 2008). For automatic near-synonym choice, LSA is used as a context
analysis technique to identify useful latent context features for the near-synonyms
through indirect associations between words and sentences.

The first step in LSA is to build a word-by-document matrix for near-synonyms
and their context words (Wang and Hirst 2010). In addition to documents, for our
task, other text units such as sentences or 5-grams could also be used to build
the matrix because these text units also contain contextual information for near-
synonyms. Figure 2 shows a sample matrix X built using the sentence as the unit.
The columns in Xv×d represent d sentences containing the near-synonyms in a near-
synonym set and the rows represent v distinct words occurring in the near-synonyms’
contexts in the corpus. Singular value decomposition (SVD) (Golub and Van Loan
1996) is then used to decompose the matrix Xv×d into three matrices as follows:

Xv×d � Uv×n
∑

n×n
VT
n×d , (6)

whereU andV, respectively, consist of a set of latent vectors of words and sentences,∑
is a diagonal matrix of singular values, and n � min(v, d ) denotes the dimen-

sionality of the latent semantic space. Additionally, each element in U represents the
weight of a context word, and the higher weighted words are the useful context fea-
tures for the near-synonyms. By selecting the largest k1 (≤n) singular values together
with the first k1 columns of U and V, the near-synonyms and their context words
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Fig. 2 Illustrative example of singular value decomposition for latent semantic analysis

can be represented in a low-dimensional latent semantic space. The original matrix
can also be reconstructed with the reduced dimensions, as shown in Eq. 7

X
∧

v×d � Uv×k1
∑

k1×k1
VT
k1×d , (7)

where X
∧

represents the reconstructed matrix.
In SVM training and testing, each input sentence with a lexical gap is first trans-

formed into the latent semantic representation as follows:

t̂k1×1 �
−1∑

k1×k1
UT
k1×vtv×1, (8)

where tv×1 denotes the vector representation of an input sentence and t̂k1×1 denotes the
transformed vector in the latent semantic space. Each transformed training vector is
then appended by the correct answer (the near-synonym removed from the sentence)
to form a (k1 + 1)-dimensional vector for SVM training.

The strength of LSA lies in discovering the latent context features for near-
synonyms using SVD. Consider the example shown in Fig. 3. The original matrix,
as shown in Fig. 3a, is built using five training sentences containing two different
near-synonyms NSi and NSj. Suppose that the words w1, w2 are the useful features
for NSi, and w3, w4 are useful for NSj, but w4 is a latent feature because it does not
frequently occur in the context of NSj. After applying SVD, the latent features can
be identified by replacing the zero entries in the original matrix with nonzero real
values through the indirect associations between words and sentences. For instance,
w4 originally does not occur in s3 and s4, but it does co-occur with w3 in the matrix
(e.g., in s5), which means that w4 might also occur in the sentences where w3 occurs
(e.g., s3 and s4). Therefore, the zero entries (w4, s3) and (w4, s4) are replaced with a
nonzero value through the indirect associations between ofw3 andw4 in s5, as shown
in Fig. 3b. This helps identify a useful latent feature w4 for NSj. However, identi-
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Fig. 3 Comparison of LSA and ICA for feature representation

fying latent features through the indirect associations cannot avoid feature overlap
when different near-synonyms share common words in their contexts. This might
be possible because near-synonyms usually have similar contexts. For instance, in
Fig. 3a, w1, which is useful for NSi, still occurs in the context of NSj (e.g., s4).
Through the indirect associations between of w1 and w3 in s4, the frequency of w1

increases in the context of NSj because it may also occur in the sentences where
w3 occurs (e.g., s3 and s5), as shown in Fig. 3b. Therefore, when all word features
are to be accommodated in a low-dimensional space reduced by SVD, term overlap
may occur between the latent vectors. As indicated in Fig. 3c, the two sample latent
vectors which contribute to two different near-synonyms share a common feature
w1. Classifiers trained on such latent vectors with term overlap may decrease their
ability to distinguish among near-synonyms.

2.2.2 Independent Component Analysis (ICA)

ICA is a technique for extracting independent components from a mixture of sig-
nals and has been successfully applied to solve the blind source separation problem
(Hyvärinen et al. 2001; Lee 1998). Recent studies have shown that ICA can also be
applied to other application domains such as text processing (Kolenda and Hansen
2000;Rapp 2004; Sevillano et al. 2004). In contrast toLSA, ICAextracts independent
components by minimizing the term dependence of the context matrix. Therefore,
LSA and ICA can be considered complementary methods where LSA can be used to
discover latent features that do not frequently occur in the context of near-synonyms,
and ICA can be used to further minimize the dependence of the latent features such
that overlapped features can be removed, as presented in Fig. 3d. Based on this com-
plementariness, the ICA-based framework can be used to analyze the LSA output to
discover more useful latent features for different near-synonyms, and the dependence
between them can also be minimized. The discriminant power of classifiers can thus
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be improved by training them on the independent components with minimized term
overlap. The ICA model can be formally described as

X � AS, (9)

where X denotes the observed mixture signals, A denotes a mixing matrix, and S
denotes the independent components. The goal of ICA is to estimate both A and
S. Once the mixing matrix A is estimated, the demixing matrix can be obtained by
W � A−1, and Eq. 9 can be rewritten as

S � WX, (10)

That is, the observed mixture signals can be separated into independent compo-
nents using the demixing matrix.

For our problem, the context matrix can be considered as a mixture of signals
because it consists of the contexts of different near-synonyms. Therefore, ICA used,
herein is to estimate the demixing matrix so that it can separate the mixed contexts
to derive the independent components for each near-synonym. Figure 4 shows the
ICA-based framework combining LSA and ICA.

LSA decomposition and reconstruction In the training phase, the original context
matrix Xv×d is first decomposed by SVD using Eq. 6, and then reconstructed with
reduced dimensions using Eq. 7. Useful latent features that do not frequently occur
in the original matrix can thus be discovered in this step.

ICA decomposition and demixing To further minimize term dependence in deriv-
ing the independent components, the reconstructed matrix X

∧

v×d is passed to ICA to

estimate the demixing matrix. ICA accomplishes this by decomposing X
∧

v×d using
Eq. 11. Figure 5 shows an example of the decomposition.

X
∧

v×d � Av×k2Sk2×d . (11)

Based on this decomposition, the demixing matrix can be obtained byWk2×v �
A−1
v×k2 , where k2 (≤n) is the number of independent components. Similar to the

matrix U in LSA, each element inW also represents the weight of a context word,
and the higher weighted words are useful context features for the near-synonyms.
Therefore, the demixingmatrix contains useful context features withminimized term
dependence for different near-synonyms.

Once estimated, the demixing matrix is used to separate X
∧

v×d to derive the inde-
pendent components as follows:

Sk2×d � Wk2×vX
∧

v×d , (12)
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Fig. 4 ICA-based framework for near-synonym choice

Fig. 5 Illustrative example of ICA decomposition



130 L.-C. Yu et al.

Each column vector in Sk2×d is then appended by the correct answer for SVM
training. Similarly, as shown in Fig. 4, each test instance tv×1 in the testing phase is
also transformed by the demixing matrix, and then predicted with the trained SVM
model.

3 Experimental Results

This section presents the evaluation results of different methods for near-synonym
choice. Section 3.1 describes the experiment setup, including experimental data,
implementation details of methods used, and the evaluation metric. Section 3.2
investigates the selection of optimal parameters for LSA and ICA-based meth-
ods. Section 3.3 compares the results obtained by the various methods. Section 3.4
presents a detailed analysis to examine the effect of term overlap on classification
performance.

3.1 Experiment Setup

3.1.1 Data

As shown in Table 1, seven English and Chinese near-synonym sets was used for
evaluation. For Chinese near-synonym choice evaluation, two test corporawere used:
the Chinese News Corpus (CNC) and the Sinica Corpus (SC), both released by
the Association for Computational Linguistics and Chinese Language Processing
(ACLCLP). The test examples were collected from the two corpora by selecting
sentences containing the near-synonyms in the seven Chinese near-synonym sets.
A total of 36,427 (CNC) and 26,504 (SC) sentences were collected, where 20%
of sentences from each corpus were randomly selected as a development set for
parameter tuning of LSA and ICA-based methods, and the remaining 80% were
used as the test set for performance evaluation. In addition, the classifiers (described
in the next section) were built from the Chinese Web 5-gram corpus released by the
Linguistic Data Consortium (LDC). For English near-synonym choice evaluation,
the Web 1T 5-gram corpus released by LDC was used for both classifier training and
evaluation using the cross-validation method.

3.1.2 Classifiers

The classifiers involved in this experiment included PMI, the 5-gram languagemodel,
cosine measure, LSA, and ICA-based methods (including stand-alone ICA and a
combination of LSA and ICA). The implementation details for each classifier are as
follows:
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Table 1 English and Chinese
near-synonym sets

No. Near-synonym sets

1 Difficult, hard, tough
困難的,艱難的,艱苦的,難懂的

2 Error, mistake, oversight
錯誤,錯,過失,失察

3 Job, task, duty
工作,任務,義務

4 Responsibility, burden, obligation, commitment
責任,職責,職務,約定

5 Material, stuff, substance
物質,材料,質料

6 Give, provide, offer
給,給予,給與,供應,供給

7 Settle, resolve
決定,確定,定奪,終結

The English and Chinese near-synonyms in each set corresponds
to the same sense

PMI: Given a near-synonym set and a test example with a gap, the PMI scores
for each near-synonym were calculated using Eq. 3, where the size of the context
window � was set to 2. The frequency counts were retrieved from the Web 1T 5-
gram corpus and Chinese Web 5-gram corpus, respectively, for English and Chinese
near-synonym choice evaluation.

5 GRAM: The 5-gram scores for each near-synonym in a test example were cal-
culated using Eq. 4. The frequency counts for n-grams were retrieved by querying
Google (as in Yu et al. 2010) for English near-synonym choice evaluation, and from
the Chinese Web 5-gram corpus for Chinese evaluation.

COS: Given a near-synonym set, all 5-grams containing the near-synonyms in the set
were first extracted from the training data (i.e., from the Web 1T 5-gram corpus for
English near-synonyms and from the Chinese Web 5-gram corpus for Chinese near-
synonyms). The 5-grams with the near-synonyms are removed and were then used
to build a word-by-class matrix for the near-synonym set. The best near-synonym
for each test example was then predicted by comparing the cosine similarity of the
test example and the near-synonyms in the matrix.

LSA: COS used all 5-grams to build the context matrix but, due to the efficiency
consideration, we randomly selected only 20,000 5-grams to build the word-by-
document (5-gram) matrix for each English and Chinese near-synonym set. The
number of the 5-grams for each near-synonym in the matrix was selected according
to their proportions in the corpus. Once the matrix was built, each training instance
(i.e., each column vector of the matrix) was transformed into the latent space using
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Eq. 8. The correct answer (the near-synonym removed from the training instance)
was then appended to the corresponding transformed vector to form a (k1 + 1)-
dimensional vector for SVM training.

ICA: Stand-alone ICA was implemented using Eqs. 9 and 10. The input matrix was
the same as that of LSA, and the demixing matrix was estimated using the FastICA
package (Hyvärinen 1999).AnSVMclassifierwas then trained using the independent
components obtained using Eq. 10 with the correct answers appended.

LSA + ICA: The combination of LSA and ICA was implemented by taking the
LSA result as input to estimate the demixing matrix in ICA, as shown in Eq. 11. An
SVM classifier was then trained using the independent components obtained from
Eq. 12 with the correct answers appended. For LSA, ICA, and LSA + ICA, the best
near-synonym for each test example was predicted using the trained SVM models.

3.1.3 Evaluation Metric

In testing, this experiment followed the FITB evaluation procedure (Fig. 1) to remove
the near-synonyms from the test samples. The answers proposed by each classifier
are the near-synonyms with the highest score. The correct answers are the near-
synonyms originally in the gap of the test samples. Performance is determined by
accuracy, which is defined as the number of correct answers made by each classifier,
divided by the total number of test examples.

3.2 Evaluation of LSA and ICA-Based Methods

Experiments were conducted to compare the performance of LSA, ICA, and LSA +
ICA using different settings for the parameters k1 and k2, which, respectively repre-
sent the dimensionality of the latent semantic space and the number of independent
components. The optimal settings of the two parameters were tuned by maximizing
the classification accuracy on the development set. Figure 6 shows the classification
accuracy of LSA, ICA, and LSA + ICA with different settings of dimensionality (k1
or k2). The accuracies were obtained by averaging the seven Chinese near-synonym
sets. For LSA, the x-axis represents different values of k1, with performance increas-
ing with k1 up to 2000. For ICA, the x-axis represents different values of k2, with
an optimal performance at k2 � 500. For LSA + ICA, the performance was tuned
by varying both k1 and k2. Due to the large number of combinations of k1 and k2,
for LSA + ICA, Fig. 7 only plots the optimal accuracy for each value of k1 on the
x-axis, and the optimal accuracy for each value of k1 (e.g., 500) was determined by
increasing k2 by increments of 100 to select the highest accuracy among the different
settings of k2. For instance, the accuracy of LSA + ICA at k1 � 500 was selected
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Fig. 6 Classification accuracy of LSA, ICA, and LSA + ICA on the development set, as a function
of dimensionality

from the highest achieved at k2 � 500, and this accuracy (i.e., that reached at k1 �
500 and k2 � 500) was also the optimal performance of LSA + ICA.

The results presented in Fig. 6 show that LSA + ICA improved the performance
of LSA for all dimensionalities because the degree of term overlap in LSA was
reduced by ICA. In addition, the performance difference between LSA + ICA and
LSAwas greater when the dimensionality was smaller, indicating that ICAwasmore
effective in reducing the degree of term overlap in a low-dimensional space. More
detailed analysis of the relationship between the term overlap and the classification
performance is discussed in Sect. 3.4. The best settings of the parameters were used
in the following experiments.

3.3 Comparative Results

This section reports the classification accuracy of supervised and unsupervisedmeth-
ods including PMI, 5GRAM, COS, LSA, ICA, and LSA + ICA. Table 2 shows the
comparative results for the Chinese corpora including Chinese News Corpus (CNC),
Sinica Corpus (SC), and both (ALL). The binomial exact test (Howell 2007) was
used to determine whether the performance difference was statistically significant.

For the two unsupervised methods, 5GRAM outperformed PMI on both test cor-
pora. One possible reason is that the 5-gram language model can capture contiguous
word associations in a given context, whereas in PMI, words are considered inde-
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pendently within the given context. In addition, all supervised methods (i.e., COS,
LSA, ICA, and LSA + ICA) achieved better performance than the two unsupervised
methods on both test corpora. In the supervised methods, COS provided the base-
line results since it did not use any technique for context analysis. As indicated in
Table 2, COS yielded higher average accuracy than the best unsupervised method
(i.e., 5GRAM) by 2.55 and 7.83% on CNC and SC, respectively, and by 4.79% on
ALL. Once context analysis techniques were employed, LSA, ICA, and LSA + ICA
significantly improved COS, indicating that context analysis is a useful technique for
near-synonym choice. For LSA, it improved the average accuracy of COS by 7.52,
4.29, and 6.16%, respectively, onCNC, SC, andALL. The improvementmainly came
from the discovery of useful latent features from the contexts of the near-synonyms.
ICA also outperformed COS, with the improvement mainly coming from the dis-
covery of independent components by minimizing the feature dependence among
near-synonyms. After combining LSA and ICA, the performance of both LSA and
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ICA was further improved because LSA + ICA cannot only discover useful latent
features for different near-synonyms but also can minimize the dependence between
them, thus improving the discriminant power of classifiers to distinguish between
near-synonyms.

For the evaluation of English near-synonym choice, 20,000 5-grams for each
English near-synonym set were randomly selected from the Web 1T 5-gram corpus
(Web 1T), and the near-synonyms in the 5-grams were removed for the purpose of
FITB evaluation. Ten-fold cross-validation was then used to determine the classifica-
tion accuracy of the methods used, with a t-test to determine statistical significance.
In addition, for PMI, frequency counts were retrieved from thewholeWeb 1T 5-gram
corpus, and those for 5GRAM were retrieved by querying Google (as in Yu et al.
2010). Table 3 shows the comparative results of the various methods, showing that
LSA + ICA improved the performance of both stand-alone LSA and ICA.

3.4 Term Overlap Analysis

This section investigates the effect of term overlap on classification performance.
Term overlap in LSA and the ICA-based methods can be estimated from their
respective corresponding matrices Uv×k andW

T
v×k . Each column of Uv×k andW

T
v×k

represents a latent vector/independent component of v words, and each element
in the vector are a word weight representing its relevance to the corresponding
latent vector/independent component. Therefore, the meaning of each latent vec-
tor/independent component can be characterized by its higher weighted words.
Figure 7 shows two sample latent vectors for LSA and two independent compo-
nents for LSA + ICA.

The upper part of Fig. 7 shows parts of the context words and their weights in the
two latent vectors, where latent vector #1 can be characterized by friend, opinion,
and chance, which are the useful features for identifying the near-synonym “give,”
and latent vector #2 can be characterized by protection, information, and increase,
which are useful for identifying the near-synonym “provide”. Although the two latent
vectors contained useful context features for the respective different near-synonyms,
these features still had some overlap between the latent vectors, as marked by the
dashed rectangles. The overlapped features, especially those with higher weights,
may reduce the classifier’s ability to distinguish between the near-synonyms. The
lower part of Fig. 7 also shows two independent components for the near-synonyms
“give” and “provide”. As indicated, the term overlap between the two independent
components was relatively low.

To formally compare the degree of term overlap of LSA and the ICA-based meth-
ods, we used a measure, overlap@n, to calculate the degree of overlap of the top
n ranked words among the latent vectors in Uv×k and independent components in
WT

v×k . First, the words in each latent vector (or independent component) were ranked
according to the descending order of theirweights. The topnwordswere then selected
to form a word set. Let sni and s

n
j be the two word sets of the top n words for any two
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Table 2 Classification accuracy for Chinese corpora

CNC Accuracy

PMI 5GRAM COS LSA ICA LSA + ICA

1 72.72 71.33 67.47 71.49 72.81 76.55

2 59.70 53.70 65.05 65.97 68.65 69.36

3 67.90 70.68 81.40 87.02 88.38 89.38

4 56.35 56.87 59.90 69.62 70.53 72.63

5 75.85 64.39 78.96 83.77 83.69 86.32

6 51.85 57.71 57.67 65.98 66.35 67.99

7 60.81 72.27 63.69 73.53 79.98 82.03

Average 61.49 66.41 68.96 76.48 79.02* 80.58†

Data size 29,141 28,694

SC Accuracy

PMI 5GRAM COS LSA ICA LSA +
ICA

1 68.84 70.66 69.35 68.08 72.37 73.31

2 67.51 52.47 76.12 77.40 79.02 80.11

3 64.67 76.72 84.96 90.01 90.71 92.06

4 50.14 68.58 68.86 75.70 77.51 79.10

5 73.29 59.52 76.13 72.13 75.96 78.63

6 69.85 65.68 76.72 81.52 82.66 84.57

7 61.58 71.98 70.17 74.88 76.79 78.75

Average 65.26 70.11 77.94 82.23 83.60* 85.28†

Data size 21,192 21,098

ALL Accuracy

PMI 5GRAM COS LSA ICA LSA +
ICA

1 70.35 70.92 68.63 69.35 72.54 74.55

2 63.48 53.11 70.41 71.51 73.67 74.57

3 66.52 73.25 82.92 88.30 89.38 90.53

4 54.17 60.98 63.06 71.76 72.99 74.91

5 74.26 61.37 77.20 76.53 78.88 81.54

6 60.81 61.68 67.25 73.80 74.55 76.33

7 61.05 72.18 65.72 73.95 78.98 81.00

Average 63.07 67.97 72.76 78.92 80.96* 82.57†

Data size 50,333 49,792

All figures are in %
*ICA versus LSA significantly different (p < 0.05)
†LSA + ICA versus ICA significantly different (p < 0.05)



Table 3 Classification accuracy for the English corpus

Web 1T Accuracy

PMI 5GRAM COS LSA ICA LSA +
ICA

1 60.36 61.36 60.88 62.68 63.57 65.29

2 76.62 72.67 76.39 79.16 79.85 82.05

3 70.67 71.33 76.17 78.95 80.30 80.97

4 68.75 70.25 67.25 68.50 72.21 73.50

5 70.58 70.35 71.53 74.79 77.25 79.50

6 65.93 61.98 66.25 72.53 73.22 75.08

7 71.29 68.50 76.56 77.89 79.06 81.06

Average 69.17 68.06 70.72 73.50 75.07* 76.78†

All figures are in %
*ICA versus LSA significantly different (p < 0.05)
†LSA + ICA versus ICA significantly different (p < 0.05)

Fig. 8 Example of
computing the degree of
term overlap

k=1 k=2 k=3
A 0.4381 F 0.3678 F 0.2218
B 0.2708 A 0.2342 H 0.1582
C 0.2532 G 0.2095 E 0.1416
D 0.2342 H 0.1972 I 0.1332
E 0.2104 I 0.1895 C 0.1276
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latent vectors (or independent components). The degree of term overlap between
them was calculated by the number of intersections between their corresponding

word sets divided by n, i.e.,
∣∣∣sni ∩ snj

∣∣∣
/
n. Therefore, the degree of term overlap for a

whole matrix, namely overlapUv×k (or overlapWT
v×k ), can be calculated by the average

of the degrees of termoverlap between all latent vectors (or independent components)
in Uv×k (orW

T
v×k ). That is,

overlapUv×k@n � 1

Ck
2

k∑

i�1

k∑

j�i+1

∣∣∣sni ∩ snj

∣∣∣
n

, (13)

whereCk
2 denotes the number of combinations of any two vectors inUv×k (orW

T
v×k ).

Figure 8 presents a sample matrix for computing the degree of term overlap, con-
sisting of three vectors of the top five terms. The respective overlap@5 between the
vectors (1, 2), (1, 3), and (2, 3), was 1/5, 2/5, and 3/5, yielding an average 2/5 as the
overlap@5 for the matrix.

By averaging the degree of term overlap over the matrices corresponding to the
near-synonym sets, we can obtain the degree of term overlap of LSA, ICA, andLSA+
ICA, respectively, defined as overlapLSA@n, overlapICA@n, and overlapLSA+ICA@n.



Fig. 9 Degree of term overlap of LSA, ICA, and LSA + ICA, as a function of dimensionality
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Figure 9 shows the degree of term overlap for LSA, ICA, and LSA + ICA averaged
over the seven Chinese near-synonym sets against various dimensionality values.
The results show that ICA achieved the lowest degree of term overlap for both over-
lap@10 and overlap@50. In addition, combining LSA and ICA reduced the degree
of term overlap of using LSA alone, especially for a smaller dimensionality. As indi-
cated in Fig. 9, the difference between both overlapLSA+ICA@10 and overlapLSA@10
and overlapLSA+ICA@50 and overlapLSA@50 increased with smaller dimensionality,
mainly due to the fact that the features discovered by LSA were not easily sep-
arable in a lower dimensional space. In this circumstance, incorporating ICA can
more effectively reduce the degree of term overlap. As the dimensionality increased,
the difference between LSA and LSA + ICA gradually decreased, mainly because
the increase in dimensionality decreased the degree of term overlap in LSA, thus
ICA only produces a limited reduction of term overlap in LSA. As indicated, both
overlapLSA+ICA@10 and overlapLSA+ICA@50 yielded a small decrease or increase of
overlap when the dimensionality exceeded 1000.

To further analyze the relationship between term overlap and classification per-
formance, Fig. 10 compares the classification accuracy of LSA, ICA, and LSA +
ICA from Fig. 6 and overlapLSA@50, overlapICA@50, and overlapLSA+ICA@50 from
Fig. 9. Comparing the degree of term overlap and classification performance of LSA
+ ICA and LSA found that reducing the degree of term overlap improved classi-
fication performance. Given a small dimensionality, the performance of LSA was
low due to the high degree of term overlap. Combining LSA and ICA in this stage
yielded a greater performance improvement because LSA + ICA effectively reduced
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Fig. 10 Comparison of the classification accuracy and the degree of term overlap of LSA, ICA,
and LSA + ICA, as a function of dimensionality

the degree of term overlap in LSA such that useful context features could be sepa-
rated into different independent components according to their contribution to dif-
ferent near-synonyms. An increase in the dimensionality improves the performance
of LSA due to the reduced degree of term overlap. Meanwhile, the performance of
LSA + ICA was not similarly improved due to the small reduction of the degree of
term overlap, resulting in a gradual decrease in the performance difference between
LSA + ICA and LSA. Another observation is that LSA + ICA also outperformed
ICA, despite ICA having a lower degree of term overlap than LSA + ICA. This is
mainly due to the fact that LSA + ICA can discover more useful context features
than ICA, and also minimizes feature dependence.

4 Applications

Based on the contextual information provided by the PMI and n-gram, we imple-
ment a prototype system with two functions: contextual statistics and near-synonym
choice, both of which interact with learners.
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4.1 Contextual Statistics

This function provides the contextual information retrieved by PMI and n-gram. This
prototype system features a total of 21 English near-synonyms grouped into seven
near-synonym sets, as shown in Table 1. Figure 11 shows a screenshot of the interface
for contextual information lookup. Once a near-synonym set is selected, the 100 top-
ranked context words and n-grams are retrieved for each near-synonym in the set.
For PMI, both proportion-based PMI scores and co-occurrence frequencies between
near-synonyms and their contextwords are presented. For n-gram, the 100 top-ranked
n-grams with their frequencies are presented. Through this function, learners learn to
determine the most frequently co-occurring and discriminative words and n-grams
for different near-synonyms.

4.2 Near-Synonym Choice

This function assists learners in determining suitable near-synonyms when they are
not familiarwith the various usages of the near-synonyms in a given context. Learners
can specify a near-synonym set and then input a sentence with “*” to represent any
near-synonym in the set. The system will replace “*” with each near-synonym, and

Fig. 11 Screenshot of contextual statistics
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Fig. 12 Screenshot of near-synonym choice

then retrieve the contextual information around “*” using PMI and n-gram. Figure 12
shows a sample sentence (the original word substance has been replaced with *)
along with its contextual information retrieved by the system. For PMI, at most five
contextwords (window size) before and after “*” are included to compute proportion-
based PMI scores for each near-synonym. In addition, the sum of all PMI scores for
each near-synonym is also presented to facilitate learner decisions. For n-gram, the
frequencies of the n-grams (2–5) containing each near-synonym are retrieved. In the
example shown in Fig. 12, learners can learn useful word pairs such as (substance,
matter) and n-grams such as “substance of the matter,” thus learning to discriminate
between substance, material, and stuff .

5 Conclusion

A framework that incorporates LSA and ICA for near-synonym choice is presented.
Both LSA and ICA are used to analyze the contexts of near-synonyms. LSA is used
to discover useful latent contextual features, while ICA is used to estimate the inde-
pendent components with minimal dependence between the features. Experiments
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compared several supervised and unsupervisedmethods on both Chinese and English
corpora. Results show that the ICA-based methods can reduce the degree of term
overlap to improve the classifiers’ ability to distinguish among near-synonyms, thus
yielding higher classification accuracy.

Future work will focus on improving classification performance by combining
multiple features such as predicate-argument structure and named entities occurring
in the context of near-synonyms. In addition, current near-synonymchoice evaluation
is carried out on several preselected near-synonym sets. To make the near-synonym
choice task more practical (similar to all-words word sense disambiguation), all-
words near-synonym choice evaluation could also be designed and implemented to
verify whether every word in a text fits the context well.
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