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Chapter 11
Therapeutic Strategies for Alzheimer’s 
Disease in the View of Diabetes Mellitus

Yasumasa Ohyagi, Katsue Miyoshi, and Norimichi Nakamura

Abstract Recently, Alzheimer’s disease (AD) is understood as “diabetes of the 
brain” or “type 3 diabetes.” Recent clinical trials of anti-amyloid β-protein (Aβ) 
therapies have not proved to be successful. Thus, glucose-insulin metabolism in the 
brain is thought to be an alternative therapeutic target. Various types of antidiabetic 
drugs such as insulin, thiazolidinediones, dipeptidyl peptidase-4 (DPP4) inhibitors, 
glucagon-like peptide-1 (GLP-1) agonists, biguanides, and others have been 
reported to be effective on cognitive impairment in animal models and patients with 
DM or AD. Here, recent reports are reviewed. While we identified apomorphine 
(APO) as a novel drug that promoted intracellular Aβ degradation and improved 
memory function in an AD mouse model, more recently, we have revealed that APO 
treatment improves neuronal insulin resistance and activates insulin-degrading 
enzyme (IDE), a major Aβ-degrading enzyme. In this context, recovery of impaired 
insulin signaling in AD neurons may be a promising therapeutic strategy for AD 
dementia.
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11.1  Introduction

Alzheimer’s disease (AD) is the major cause of dementia in the elderly people, and 
the therapeutics for AD is the major topic in the world. At present, four drugs are 
approved to use for AD patients. Among them, three drugs (donepezil, galantamine, 
rivastigmine) are acetylcholinesterase (AChE) inhibitors, and one is a glutamate 
antagonist, memantine. All these drugs have effects to slow the progression of 
dementia but not to improve cognitive function persistently (symptom-modifying 
drugs). Thus, many pharmaceutical companies and researchers have been investi-
gating to develop novel drugs that completely inhibit disease progression and 
improve cognitive function (disease-modifying drugs).

To date, one of the most widely known mechanisms of AD pathogenesis has been 
“amyloid cascade hypothesis.” There are two major pathological hallmarks of AD, 
neurofibrillary tangles (NFTs) and senile plaques (SPs) (Serrano-Pozo et al. 2011). 
NFTs consist of hyper-phosphorylated tau protein (p-tau), and SPs consist of amy-
loid β-protein (Aβ). Remarkably, Aβ has long been thought to play a pivotal role in 
the pathogenesis of AD. Because, Aβ deposition is one of the earliest phenomena in 
brain, followed by p-tau formation and cognitive decline (Jack et  al. 2010). As 
shown in Fig.  11.1, Aβ is produced from Aβ protein precursor (APP) by two 
enzymes, i.e., β-secretase and γ-secretase. Although approximately 90% of Aβ spe-
cies secreted physiologically is Aβ40, only 10% Aβ species, Aβ42, is more aggrega-
tive and forms Aβ oligomers. Aβ oligomers are more neurotoxic than Aβ monomer. 

Fig. 11.1 “Amyloid cascade hypothesis” and therapeutic targets. Aβ is generated by β-secretase 
(β-amyloid clipping enzyme, BACE) and γ-secretase. Aβ42 takes only 10% in secreted Aβ but is 
highly aggregative and readily forms Aβ oligomers that are toxic for synapse and cause memory 
impairment. Aβ oligomers also promote hyperphosphorylation of tau protein. To attenuate this 
process, many inhibitors of β- or γ-secretase, anti-Aβ aggregation drugs, and immunotherapeutics 
such as anti-Aβ antibodies and Aβ vaccination have been developed. However, to date, almost all 
clinical trials of these drugs have been unsuccessful
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Toxicity of Aβ may induce synaptic dysfunction leading to cognitive impairment 
(Ferreira et al. 2015) and may also accelerate p-tau formation (Hu et al. 2014). In 
addition, toxic turn Aβ42 form has recently been found (Murakami et  al. 2010). 
Such a pathogenic cascade is named “amyloid cascade hypothesis.” Based on this 
hypothesis, many therapeutic strategies targeting Aβ have been investigated. As 
shown in Fig. 11.1, β- and γ-secretase inhibitors that inhibit Aβ generation, anti-Aβ 
aggregation drugs, and immunological therapies using specific anti-Aβ antibodies 
or vaccination with Aβ peptides have been developed. Although many of these 
drugs were effective on AD mouse models, almost all phase III clinical trials for AD 
patients did not reach the primary end point. Some evidences of amyloid imaging 
and biomarkers in cerebrospinal fluids have been demonstrated, but cognitive 
impairment was not improved sufficiently (Doody et al. 2014; Salloway et al. 2014; 
Siemers et al. 2016). Possible causes for such unsuccessfulness are the following: 
(i) Aβ-targeting therapy may be effective only in preclinical and prodromal AD; (ii) 
sporadic AD cases in the elderly may be caused by some mechanisms different from 
those in AD mouse models produced by the gene engineering; and (iii) “amyloid 
cascade hypothesis” may not be the true mechanism in dementia of AD. As to the 
possibility (i), clinical trials of anti-Aβ therapy for the preclinical and prodromal 
AD patients are still pursued. As to possibilities (ii) and (iii), clinical trials of anti-Aβ 
therapy for the early-onset familial AD patients with the genes determined are now 
ongoing. The results of such investigation will provide us the validity of “amyloid 
cascade hypothesis.” More recently, p-tau is focused on as a new therapeutic target 
other than Aβ (Boutajangout and Wisniewski 2014). However, it is unclear whether 
or not only the abnormal proteins accumulating in the brain are the powerful thera-
peutic targets to improve dementia. It is important to recover the neuronal network 
system improving generation of energy and metabolism in AD neurons. In this point 
of view, glucose-insulin metabolism may be an important therapeutic target.

11.2  Association Between Diabetes Mellitus (DM) and AD

Hypertension and DM have been widely known as the major risk factors for arterio-
sclerosis resulting in brain and cardiac infarction. Thus, DM has been thought to be 
one of the strong risk factors for vascular dementia. On the other hand, correlation 
between DM and AD has been investigated epidemiologically. Some reports found 
no correlation (Luchsinger et al. 2001; MacKnight et al. 2002; Hassing et al. 2002), 
but others found positive correlation between them (Leibson et al. 1997; Ott et al. 
1999; Peila et al. 2002). Such discrepancies may be due to differences in determina-
tion of DM.  DM was diagnosed by oral glucose tolerance tests (OGTT) in the 
reports that showed positive correlation but not in the negative reports. It suggests 
that subclinical diabetic status may contribute to AD risk. Recently, an epidemio-
logical study in Japanese population (the Hisayama study) has clearly revealed that 
glucose intolerance may increase the risk of AD as well as VD in the future (Ohara 
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et  al. 2011). In the same study, correlation between glucose intolerance and Aβ 
deposition (Matsuzaki et  al. 2010) and DM-like gene expression patterns in the 
postmortem brain tissues (Hokama et al. 2014) were also demonstrated. In addition, 
Talbot et  al. revealed an increased insulin resistance of neurons in the AD brain 
(Talbot et al. 2012). Taken together, increased peripheral insulin resistance, i.e., type 
2 DM (T2DM), may be linked to increased neuronal insulin resistance in 
AD. Therefore, AD has recently been named “type 3 DM” or “brain DM” (De la 
Monte 2014) (Fig.  11.2). In addition, recurrent hypoglycemic attacks (Whitmer 
et al. 2009) and both increases and decreases in mean blood glucose levels (Crane 
et al. 2013) may increase the risk for dementia, indicating that marked alteration of 
blood glucose levels may strongly affect neuronal network function and cognitive 
function. Moreover, increased insulin resistance in neurons may decrease insulin- 
degrading enzyme (IDE), also a major Aβ-degrading enzyme (Miners et al. 2011), 
and may increase dephosphorylated GSK-3β, a major phosphokinase of tau protein 
(Avila et al. 2010), resulting in enhancing progression of the AD pathology. In this 
context, brain insulin resistance would be a new target in therapeutic approach for 
dementia in AD patients.

Recently increasing reports suggest that exercise may contribute to prevention of 
dementia (Barnes 2015). Also, the National Institutes of Health in the USA recom-
mends control of T2DM, exercise habits, and healthy foods for prevention of 
dementia. Such recommendations may be similar to the prevention of DM. Such 
facts may imply a common basis of AD and DM.

Fig. 11.2 AD pathogenesis associating with DM. DM is well known to accelerate arteriosclerosis 
and ischemic changes in the brain, leading to vascular dementia (VD) (left: vascular factors). 
While, DM may cause hyperinsulinemia, increase brain insulin resistance and oxidative stress, and 
decrease insulin-degrading enzyme (IDE), accelerating AD-related pathology (Aβ deposition and 
NFT formation). It is also known that vascular lesion due to ischemia may enhance the progression 
of AD pathology
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11.3  Insulin Therapy

If insulin resistance is increased in neurons, insulin signaling may not work suffi-
ciently. Insulin signaling may play a major role in signal transduction in cells, regu-
lating cell cycle proteins (Yang and Guan 2007). Thus, first simple therapeutic 
strategy may be supply of insulin in AD brain. Recent reports demonstrating effi-
cacy of insulin administration on cognitive function in rodents and human are listed 
in Table 11.1. In an AD model, 3xTg-AD mice (APPKM670/671NL/PS1M146V/TauP301L), 
high-fat diet (HFD), which increases peripheral insulin resistance, may accelerate 
Aβ deposition in brain and memory impairment; such phenomena may be improved 
by insulin injection (Vandal et al. 2014). Moreover, in these HFD-treated 3xTg-AD 
mice, Aβ deposition is observed in the pancreas, indicating a pathogenic self- 
amplifying loop between AD and T2DM (Vandal et al. 2015). More recently, many 
reports have demonstrated that nasal administration of insulin improved memory 
function, reduced Aβ deposition, increased brain-derived neurotrophic factor 
(BDNF) and its receptor protein tropomyosin receptor kinase B (TrkB), improved 

Table 11.1 Efficacy of insulin administration

Reports of 
rodents

Path Subjects Efficacy

Vandal et al. 
(2014)

Injection 3xTg-AD Improvement of memory function that is further 
impaired by HFD

Mao et al. (2016) Nasal APP/PS1 Improvement of cognitive function and Aβ 
pathology

Zhang et al. 
(2016)

Nasal Anesthesia Prevention of memory deficit and p-tau

Farzampour et al. 
(2016)

Nasal Aβ 
injection

Improvement of memory function

Haas et al. (2016) Ventricle Aged rat Increases in BDNF and TrkB receptors
Maimaiti et al. 
(2016)

Nasal Aged rat Improvement of memory and hippocampal after 
hyperpolarization (AHP)

Brabazon et al. 
(2017)

Nasal Brain 
trauma

Improvement of memory and in FDG-PET

Rajasekar et al. 
(2017)

Nasal STZ Improvement of memory function and increases in 
Nrf-2 and BDNF expression

Kamei et al. 
(2017)

Nasal SAMP8 Slowing the progression of memory loss

Reports of 
human

Path Subjects Efficacy

Craft et al. (2012) Nasal MCI/AD Improvement of memory function
CLaxton et al. 
(2013)

Nasal MCI/AD Differential improvement of memory in male and 
female

Claxton et al. 
(2015)

Nasal MC1/AD Improvement of memory function especially in 
APOE-ε4 carriers

STZ streptozotocin, SAMP8 senescence-accelerated mouse, BDNF brain-derived neurotrophic fac-
tor, TrkB tropomyosin receptor kinase B
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hippocampal afterhyperpolarization (AHP), etc., in APP/presenilin-1 (PS1) double 
transgenic mice, anesthetic mice, Aβ-injected rats, aged rats, rats with brain trauma, 
streptozotocin (STZ)-treated rats, and senescence-accelerated mice (SAMP8) (Mao 
et al. 2016; Zhang et al. 2016; Farzampour et al. 2016; Haas et al. 2016; Maimaiti 
et al. 2016; Brabazon et al. 2017; Rajasekar et al. 2017; Kamei et al. 2017) (see 
Table 11.1).

While, clinical trials of nasal insulin administration to human preceded the inves-
tigation using the animal models. Craft and colleagues have demonstrated that nasal 
administration of insulin improves memory function in MCI and mild AD patients 
(Craft et al. 2012) and that such effects may be different among sex (Claxton et al. 
2013) and apolipoprotein E gene alleles (Claxton et al. 2015). Insulin administered 
via nasal pathway did not cause systemic hypoglycemia (Craft et al. 2012; Claxton 
et al. 2013, 2015) and may thus seem a promising method to develop new drugs to 
improve the hippocampal function.

11.4  Thiazolidinediones (Glitazones)

Thiazolidinediones (glitazones) are peroxisome proliferator-activated receptor γ 
(PPARγ) agonists, which reduce insulin resistance of the liver and muscle. There is 
a possibility that these drugs improve insulin resistance of neurons in the AD brain, 
since neuronal insulin resistance may be increased in AD (Talbot et  al. 2012). 
Recent reports demonstrating efficacy of thiazolidinediones (glitazones) on cogni-
tive function in rodents and human are listed in Table 11.2. At present, there are two 
major glitazones, rosiglitazone (Ros) and pioglitazone (Pio). Disease models con-
sist of some different types. First, transgenic mice with mutant APP, mutant APP + 
presenilin-1 (PS1) double, and mutant APP+PS1+tau triple genes were used as an 
early-onset familial AD models. Second, HFD- and high-fructose-diet (HFuD)-fed 
rats are models of T2DM, because those diets are well known to induce peripheral 
insulin resistance. Third, STZ-injected mouse is a model of type 1 DM (T1DM), 
because STZ causes selective damages in pancreatic β cells resulting in peripheral 
insulin deficiency. At last, congenital DM rats or mice (db/db mice) were also used. 
All these DM-associated mice or rats were exactly not the models of AD. However, 
based on the concept that AD may be “brain diabetes,” drugs that improve cognitive 
function in these DM-associated animal models may become promising candidates 
for AD.

As shown in Table 11.2, Ros treatment improved memory function in HFD rats 
(Pathan et al. 2008), APP-Tg mice (Escribano et al. 2010), 3xTg-AD mice (Yu et al. 
2015), DM rats (Ma et al. 2015), and db/db mice (Wang et al. 2016). Remarkably, 
Ros treatment removed the amyloid plaques and decreased p-tau in the hippocam-
pus of APP-Tg mice (Escribano et al. 2010). Also, Pio treatment improved memory 
function of HFuD rats (Yin et al. 2013), STZ mice (Liu et al. 2013), 3xTg-AD mice 
(Yu et al. 2015), APP/PS1 mice (Toba et al. 2016), and db/db mice (Wang et al. 
2016). In addition, Pio treatment prevented the β-amyloidogenic process such as Aβ 
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overproduction and decreased Aβ degradation induced by insulin resistance in 
HFuD rats (Luo et al. 2011), strengthened antioxidant defense system in HFuD rats 
(Yin et al. 2013), reduced brain β-amyloid clipping enzyme 1 (BACE1) in STZ mice 
(Liu et al. 2013). Both Ros and Pio treatments attenuated hyperphosphorylation of 
tau and neuroinflammation in 3xTg-AD mice (Yu et  al. 2015) and promoted Aβ 
clearance across the blood-brain barrier (BBB) and enhanced hippocampal long- 
term potentiation (LTP) in db/db mice (Wang et al. 2016). In the human studies, 
there have been the reports indicating dementia protective efficacy of both Ros and 
Pio in patients with MCI/AD (Watson et al. 2005), with AD and T2DM (Sato et al. 
2011), with T2DM (Heneka et al. 2015), and with DM (Chou et al. 2017), whereas 
some other reports indicated the negative data as to the efficacy of Ros and Pio 
(Miller et al. 2011; Harrington et al. 2011; Seaquist et al. 2013; Hildreth et al. 2015; 
Galimberti and Scarpini 2017). Further large-size clinical trials are necessary to 
determine their effects.

Table 11.2 Efficacy of thiazolidinediones (glitazones)

Reports of 
rodents

Drug Subjects Efficacy

Pathan et al. 
(2008)

Ros HFD rat Improvement of memory function

Escribano et al. 
(2010)

Ros APP Removal of Aβ deposition

Luo et al. (2011) Pio HFuD rat Inhibition of Aβ deposition process
Yin et al. (2013) Pio HFuD rat Improvement of memory function
Liu et al. (2013) Pio STZ mice Amelioration of memory deficit
Yu et al. (2015) Ros, 

Pio
3xTg-AD Improvement of learning and inhibition of tau 

phosphorylation and neuroinflammation
Ma et al. (2015) Ros DM rat Improvement of memory function
Toba et al. 
(2016)

Pio APP/PS1 Improvement in pre-Aβ stage in cerebellum

Wang et al. 
(2016)

Ros, 
Pio

db/db mice Improvement of Aβ transport and enhancement of 
hippocampal LTP

Reports of 
human

Drug Subjects Efficacy

Watson et al. 
(2005)

Ros MCI/AD Preservation of cognitive impairment

Sato et al. 
(2011)

Pio AD+T2DM Improvement of cognitive function

Heneka et al. 
(2015)

Pio T2DM Decreases in risk of dementia

Chou et al. 
(2017)

Pio DM Protecting against dementia

Ros rosiglitazone, Pio pioglitazone, HFD high-fat diet, HFuD high-fructose diet, STZ streptozoto-
cin, T2DM type 2 DM, LTP long-term potentiation
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11.5  DPP4 Inhibitors

Dipeptidyl peptidase-4 (DPP4) degrades incretin hormones, which stimulate secre-
tion of insulin from the pancreas and decrease blood glucose levels. Incretin hor-
mones contain glucagon-like peptide-1 (GLP-1) and glucose-dependent 
insulinotropic polypeptide (GIP). Thus, DPP4 inhibitors enhance incretin hormone 
activity followed by increase in levels of plasma insulin. DPP4 inhibitors would 
therefore increase insulin stimulation in the AD brain. Recent reports demonstrating 
efficacy of DPP4 inhibitors (gliptins) on cognitive function in rodents and human 
are listed in Table 11.3. Currently, there are some well-known gliptins such as sita-
gliptin (Sita), saxagliptin (Saxa), vildagliptin (Vilda), alogliptin (Alo), and lina-
gliptin (Lina). As well as PPAR-γ agonists, many reports indicate that these gliptins 

Table 11.3 Efficacy of DPP4 inhibitors (gliptins)

Reports of rodents Drug Subjects Efficacy
D’Amico et al. 
(2010)

Sita APP/PS1 Inhibition of Aβ deposition

Kosaraju et al. 
(2013a)

Saxa STZ rat Improvement of memory function, p-tau, Aβ 
burden and inflammation increasing GLP-1 in 
hippocampus

Kosaraju et al. 
(2013b)

Vilda STZ rat Improvement of memory function, p-tau, Aβ 
burden and inflammation increasing GLP-1 in 
hippocampus

Sakr (2013) Sita T2DM rat Improvement of memory function increasing 
Adipo R1 expression

Pipatpiboon et al. 
(2013)

Vilda HFD rat Improvement of mitochondrial function

Sripetchwandee 
et al. (2014)

Vilda HFD rat Increases in dendritic spines in CA1

El-Sahar et al. 
(2015)

Sita DM 
rat+ischemia

Protection against oxidative stress, inflammation, 
and apoptosis

Gault et al. (2015) Sita HFD mice Improvement of memory function
Tsai et al. (2015) Sita Ischemia Protection against chronic inflammation
Pintata et al. (2016) Vilda HFD rat Improvement of cognitive function with energy 

restriction
Qin et al.(2016) Alo DM rat Inhibition of inflammation in hippocampus
Kosaraju et al. 
(2016)

Lina 3xTg-AD Improvement of cognitive function

Reports of human Drug Subjects Efficacy
Tasci et al.(2013) Vilda T2DM Inhibition of progression of cognitive 

impairment with metformin therapy
Rizzo et al. (2014) DPP4I T2DM Protection against cognitive impairment
Isik et al. (2017) Sita DM±AD Improvement of cognitive function in DIM with 

or without AD

Sita sitagliptin, Saxa saxagliptin, Vilda vildagliptin, Alo alogliptin, Lina linagliptin, DPP4I DPP4 
inhibitors, HFD high-fat diet, STZ streptozotocin, T2DM type 2 DM
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may improve memory function and mitochondrial function and inhibit Aβ deposi-
tion, p-tau deposition, and neuroinflammation (D’Amico et al. 2010; Kosaraju et al. 
2013a, b, 2016; Sakr 2013; Pipatpiboon et al. 2013; Sripetchwandee et al. 2014; 
El-Sahar et al. 2015; Gault et al. 2015; Tsai et al. 2015; Pintata et al. 2016; Qin et al. 
2016) (Table 11.3). The fact that such drugs may be effective for AD mouse models 
as well as for cognitive deficit in mice with T1DM (STZ) and T2DM (HFD), indi-
cates a common mechanism in cognitive impairment in AD and DM.  In human 
studies, although there have not been clinical trials for MCI or AD patients, DPP4 
inhibitors may be beneficial to protect against cognitive impairment in patients with 
T2DM (Tasci et al. 2013; Rizzo et al. 2014) and may also be effective on patients 
with AD (Isik et al. 2017). Thus, further clinical trials of DPP4 inhibitors for AD 
patients are necessary.

11.6  GLP-1 Agonists

As mentioned above, GLP-1 is one of incretin hormones that stimulate insulin 
secretion. As well as DPP4 inhibitors, GLP-1 agonists and GIP are included in the 
incretin-related drugs. Recent reports demonstrating efficacy of GLP-1 agonists 
(glutides) on cognitive function in rodents and human are listed in Table 11.4. To 
date, liraglutide (Lira), lixisenatide (Lixi), exenatide (Exen), and exendin-4 (Ex-4) 
have been investigated using animal models. As shown in Table 11.4, many reports 
demonstrated that these GLP-1 agonists improved memory function and hippocam-
pal LTP, inhibited Aβ deposition and microglial activation, and decreased insulin 
resistance and tau phosphorylation in HFD mice, STZ mice, APP/PS1 mice, intra-
ventricular Aβ-injected mice, and 3xTg-AD mice (Table 11.4). Interestingly, Ex-4 
treatment recovered permeability of BBB and blood-CSF barrier (BCSFB) dam-
aged by DM, indicating a novel efficacy of GLP-1 agonists other than stimulation 
of insulin secretion (Zanotto et al. 2017). Remarkably, there have been much evi-
dence for the efficacy of Lira treatment, and Lira seems to be a promising drug in 
the AD therapeutics. However, only a few reports have shown negative results 
(Egefjord et al. 2012) and a limited effect in patients with mood disorder (Mansur 
et  al. 2017). Currently, further clinical trials for AD patients are still under 
investigation.

11.7  Other Antidiabetic Drugs

Recent reports demonstrating efficacy of other antidiabetic drugs on cognitive func-
tion in rodents and human are listed in Table  11.5. Sulfonylureas, biguanides, 
α-glucosidase inhibitors (α-GIs), and sodium-glucose cotransporter-2 (SGLT-2) 
inhibitors are also known as antidiabetic drugs. Sulfonylureas stimulate insulin 
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Table 11.4 Efficacy of GLP-1 agonists (glutides)

Reports of 
rodents

Drug Subjects Efficacy

Gault et al. (2010) Ex-4 HFD mice Improvement of cognitive function and LTP
Porter et al. 
(2010)

Lira HFD mice Improvement of memory function

McClean et al. 
(2011)

Lira APP/PS1 Inhibition of Aβ deposition

Porter et al. 
(2011)

GIF HFD mice Improvement of cognitive function and LTP

Bomfim et al. 
(2012)

Ex-4 APP/PS1 Recovery of insulin signaling

Ma et al. (2012) GLP- 
1

APP/PS1 Improvement of memory function

Long-Smith et al.
(2013)

Lira APP/PS1 Decrease in insulin resistance and attenuation of Aβ 
deposition and microglial activation

Faivre and 
Hölscher (2013)

GIP APP/PS1 Improvement of synaptic plasticity and reduction of 
numbers of Aβ plaques and activated microglias

Lennox et al. 
(2014a)

Lixi HFD mice Improvement of learning and memory and LTP in 
hippocampus

Lennox et al. 
(2014b)

GLP- 
1

HFD mice Improvement of learning and memory and LTP in 
hippocampus

McClean and 
Hölscher (2014)

Lira APP/PS1 Prevention of Aβ deposition, microglial activation, and 
memory impairment

Gumuslu et al. 
(2016)

Ex-4 STZ mice Improvement of cognitive function and upregulation 
of CREB and BDNF gene expression levels

Qi et al. (2016) Lira Aβ mice Attenuation of tau phosphorylation via inhibiting 
GSK-3β

Hansen et al. 
(2016)

Lira TauP301L Reduction of tau phosphorylation and improvement of 
motor function

Chen et al. (2017) Lira 3xTg-AD Improvement of memory and reduction of tau 
phosphorylation

Palleria et al. 
(2017)

Lira STZ rat Inhibition of anxiolytic and pro-depressant actions as 
well as memory function activating AKT pathway

Zanotto et al. 
(2017)

Ex-4 DM rat Recovery of permeability of BBB and BCSFB 
damaged by DM

Reports of 
human

Drug Subjects Efficacy

Egefjord et al. 
(2012)

Lira AD A protocol of clinical trial of liraglutide with PET; no 
effects on Aβ deposition

Mansur et al. 
(2017)

Lira Mood 
disorder

Improvement of cognitive function

Ex-4 exendin-4, Lira liraglutide, Lixi lixisenatide, Exen exenatide, GIP glucose-dependent insuli-
notropic polypeptide/gastric inhibitory peptide, HFD high-fat diet, STZ streptozotocin, LTP long- 
term potentiation, CREB cAMP response element-binding protein, BDNF brain-derived 
neurotrophic factor, BBB blood-brain barrier, BCSFB blood-CSF barrier
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secretion from β-cells in the pancreas. Glibenclamide, a sulfonylurea drug, improved 
memory function in the rats intracerebroventicularly injected with Aβ peptide 
(Baraka and ElGhotny 2010) and in the rats with traumatic brain injury (TBI) (Patel 
et al. 2010). Also, inhibition of the Sur1-Trpm4 channel by glibenclamide reduces 
neuroinflammation and ameliorates cognitive impairments in rat and human with 
subarachnoid hemorrhage (SAH) (Tosun et al. 2013). Although glibenclamide may 
have protective effects on cognitive function, there have been no studies using AD 
mouse models. In human studies, there is a report that indicates no association 
between sulfonylurea and risk of AD (Imfeld et al. 2012), while sulfonylurea would 
reduce the risk for dementia in T2DM patients (Cheng et al. 2014). Since hypogly-
cemic attacks may increase the risk for dementia (Whitmer et al. 2009), evaluation 
of the efficacy of sulfonylurea should be carefully investigated.

Biguanides inhibit glycogenesis in the liver and uptake of glucose from the intes-
tine and improve insulin resistance. A well-known biguanide metformin was 
reported to attenuate tau phosphorylation in db/db mice (Li et al. 2012) and to have 
protective effects on cognitive function in combination in HFD mice (Asadbegi 
et al. 2016; Allard et al. 2016). In human, it is suggested that metformin treatment 
reduced the risk of cognitive decline in DM patients (Ng et al. 2014; Herath et al. 
2016). Also, a meta-analysis suggests that metformin and thiazolidinediones may 
reduce the incidence rate of dementia with the relative risks, 0.79 and 0.75, 

Table 11.5 Efficacy of other antidiabetic drugs

Reports of rodents Drug Subjects Efficacy
Baraka and ElGhotny 
(2010)

Gliben Aβ-injected 
rat

Improvement of memory function

Patel et al. (2010) Gliben TBI rat Improvement of memory function
Tosun et al. (2013) Gliben SAH rat Reduction of neuroinflammation and cognitive 

impairment
Li et al. (2012) Met db/db mice Attenuation of AD-like neuropathology
Asadbegi et al. 
(2016)

Met HFD rat Protection against Aβ-mediated inhibition of 
hippocampal LTP

Allard et al. (2016) Met HFD mice Prevention of memory impairment
Tong et al. (2015) Acarbose SAMP8 Effect on behavioral impairment
Yin et al. (2013) Acarbose SAMP8 Alleviation of memory impairment
Lin et al. (2014) Empa db/db mice Amelioration of cognitive dysfunction
Reports of human Drug Subjects Efficacy
Imfeld et al. (2012) SU AD No association between SU and AD risk
Cheng et al. (2014) SU T2DM Reduction of risk for dementia
Ng et al. (2014) Met DM Reduction of the risk for cognitive decline
Herath et al. (2016) Met DM Reduction of the risk for cognitive decline
Ye et al. (2016) Met DM Reduction of the incidence rate of dementia 

(A meta-analysis)

Gliben glibenclamide, Met metformin, Empa empagliflozin, SU sulfonylurea, TBI traumatic brain 
injury, SAH subarachnoid hemorrhage, HFD high-fat diet, HFuD high-fructose diet, T2DM type 2 
DM, LTP long-term potentiation
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 respectively (Ye et al. 2016). Efficacy of biguanides for AD patients should be eval-
uated in the future studies.

α-GIs inhibit postprandial hyperglycemia and would thus inhibit glucotoxicity in 
the brain. Although there have been no reports of investigation about efficacy on 
rodents or patients with AD, chronic acarbose treatment may have a protective 
effect on behavioral impairment (Tong et al. 2015) and alleviated memory impair-
ment (Yan et  al. 2015) in SAMP8 mice. The efficacy of α-GIs for the cognitive 
impairment in DM and AD remains to be elucidated.

SGLT-2 inhibitors are newcomers in antidiabetic drugs. These drugs inhibit reup-
take of glucose in the kidney and lower the blood glucose level. Since the term of 
usage of SGLT-2 inhibitors is not long, there have been few reports studying about 
its efficacy on cognitive impairment. A recent report demonstrated that empa-
gliflozin treatment ameliorates cardiovascular injury and cognitive dysfunction in 
db/db mice (Lin et al. 2014). At present, many SGLT-2 inhibitors are used for con-
trol of blood glucose levels. Thus, further investigation about its efficacy should be 
continued.

11.8  Apomorphine (APO)

Lastly, we describe about our recent finding of novel efficacy of apomorphine 
(APO) for AD. Although APO is well known to be a dopamine agonist for patients 
with Parkinson’s disease (PD), we have recently found efficacy of APO for cogni-
tive improvement in AD and have also found APO to be effective on brain 
diabetes.

In the beginning of this century, based on many studies using AD mouse models 
produced by mutant APP and PS1 genes, anti-Aβ therapies such as Aβ vaccination 
and anti-Aβ antibodies were thought to be a promising therapeutic strategy for 
AD. However, it is well known that many clinical trials targeting Aβ in AD patients 
have failed. While, our previous studies first revealed that oxidative stress-related 
apoptosis stimulation induced intracellular Aβ42 deposition in contrast to reduction 
of extracellular Aβ secretion in primary neuronal cultures (Ohyagi et  al. 2000). 
Subsequently, we found intracellular accumulation of Aβ42 to promote the p53 
mRNA expression resulting in neuronal apoptosis (Ohyagi et al. 2005). In addition, 
intracellular Aβ42 was reported to promote apoptosis via various pathways (Ohyagi 
2008). Therefore, we did search for novel drugs that may promote intracellular 
Aβ42 degradation. Using SH-SY5Y cells, we established an assay system for intra-
cellular Aβ degradation and found that treatment with APO, which has been sug-
gested to protect neurons from oxidative stress in PD mouse models and from brain 
infarction in a gerbil stroke model (Mandel et al. 2004; Castri et al. 2006), acceler-
ated Aβ42 degradation through activating insulin-degrading enzyme (IDE) and pro-
teasome system (Himeno et al. 2011). Furthermore, APO therapy improved memory 
function and the AD pathology in 3xTg-AD mice (Himeno et al. 2011) (Fig. 11.3).
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Further investigation has revealed that APO treatment may enhance intracellular 
antioxidative stress system protecting cells from apoptosis (Ma et al. 2011). In addi-
tion, DNA microarray analysis has revealed that APO treatment may effect on regu-
lation of cell cycle, which is a quite different characteristic from other kind of 
dopamine agonists, and upregulates molecules relating to insulin signaling (unpub-
lished data). Taken together, we hypothesized that APO treatment may upregulate 
IDE through activating insulin signaling. In our recent report (Nakamura et  al. 
2017), western blotting and immunostaining revealed that IDE was upregulated and 
two types of serine-phosphorylated insulin receptor substrate-1 (pS616 and pS636+639 
IRS-1) were downregulated in APO-treated 3xTg-AD mice brain. Figure  11.4 
shows immunostaining data of hippocampus (CA1) in 13-month-old mice in that 
report (Nakamura et al. 2017). IDE was increased in 3xTg-AD mice compared to 
non-Tg mice and was further increased by APO treatment, while Aβ was decreased 
by APO treatment (Fig. 11.4a). In the same 13-month-old mice, pS616 and pS636+639 
IRS-1 were increased in 3xTg-AD mice compared to non-Tg mice and were 
decreased by APO treatment (Fig. 11.4b). All the alterations were statistically sig-
nificant (Fig. 11.4a, b, right panels), indicating that APO treatment may decrease 

Fig. 11.3 Efficacy of APO on 3xTg-AD mice (Himeno et al. 2011; Nakamura et al. 2017). (a) 
Morris water maze (MWM) of the representative 3xTg-AD mice treated with APO. 6-month-old 
and 12-month-old mice were subcutaneously injected with 5 m/kg APO once a week for 1 month 
(total five times). After memorizing the platform location, track of 60 s free swimming was ana-
lyzed. Both 7- and 13-month-old mice exhibited improvement of spatial memory posttreatment 
compared to pretreatment. (b) Immunohistochemistry of hippocampus CA1 in 7-month-old mice. 
Both Aβ42 and p-tau levels were lower in APO-treated mice compared to untreated mice. 
Bars = 100 μm
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insulin resistance of neurons (decreases in pS616 and pS636+639 IRS-1) and may 
enhance insulin signaling associating with IDE upregulation.

Since APO is currently used as a subcutaneous injection drug for PD patients, we 
checked its effects on five AD patients without DM and have observed slight 
improvement of memory function (unpublished data). Also, APO treatment may 
reduce Aβ burden in the brains of PD patients (Yarnall et al. 2016). Thus, APO may 
be effective on “brain diabetes” as well as PPAR-γ agonists, DPP4 inhibitors, and 
GLP-1 agonists. In Fig. 11.5, our hypothesis of molecular pathogenesis in AD brain 
and therapeutic targets of APO therapy are presented. In AD neurons, increased 
insulin resistance decreases insulin signaling, leading to decreases in IDE levels and 
increases in GSK-3β, which may accelerate accumulation of both Aβ and p-tau, 
respectively. Increased Aβ oligomers may inhibit insulin signaling, which may 
result in a vicious cycle. APO may activate insulin signaling and IDE and may 
inhibit GSK-3β, thereby inhibiting AD pathology. In this context, APO may become 
a novel drug for AD targeting glucose-insulin metabolism in neurons. To evaluate 

Fig. 11.4 Quantitative analysis of immunohistochemistry of hippocampus CA1 (Nakamura et al. 
2017). (a) IDE and Aβ. IDE is increased in 3xTg-AD compared to non-Tg mice. APO treatment 
further increased IDE level. In contrast, Aβ is decreased by APO treatment. Inset shows a solitary 
neuron. (b) pS616 and pS636+639 IRS-1. Both types of IRS-1 are increased in 3xTg-AD mice com-
pared to non-Tg mice and are decreased by APO treatment. *P < 0.05, **P < 0.01, ***P < 0.001. 
Bars = 100 μm
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the significance of APO treatment, APO effects should be checked in comparison 
with other DM drugs in the future.
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