
Chapter 2
Graph Structures Under Neutrosophic
Environment

A single-valued neutrosophic graph structure (neutrosophic graph structure, for
short) is a generalization of neutrosophic graph. In this chapter, we present the notion
of neutrosophic graph structures and explore some properties of neutrosophic graph
structures.Moreover, we discuss the concept ofφ-complement of neutrosophic graph
structure and present certain operations of neutrosophic graph structures elaborated
with examples. Further, we discuss some applications of neutrosophic graph struc-
tures in decision-making. This chapter is due to [33, 34, 151].

2.1 Introduction

Sampathkumar [151] introduced the graph structure which is a generalization of
undirected graph and is quite useful in studying some structures like graphs, signed
graphs, labelled graphs and edge-coloured graphs.

Definition 2.1 A graph structure G∗ = (X, E1, . . . , En) consists of a nonempty
set X together with relations E1, E2, . . . , En on X which are mutually disjoint such
that each Ei , 1 ≤ i ≤ n, is symmetric and irreflexive.

One can represent a graph structure G∗ = (X, E1, . . . , En) in the plane just like a
graph where each edge is labelled as Ei , 1 ≤ i ≤ n.

Example 2.1 Let X = {r1, r2, r3, r4, r5} and E1 = {(r1, r2), (r3, r4), (r1, r4)},
E2 = {(r1, r3), (r1, r5)}, E3 = {(r2, r3), (r4, r5)} be mutually disjoint, symmetric and
irreflexive relations on set X . Thus G = (X, E1, E2, E3) is a graph structure and is
represented in plane as a graph where each edge is labelled as E1, E2 or E3 (Fig. 2.1).

Definition 2.2 Let φ be a permutation on {E1, E2, . . . , En}. Then φ-complement
of a graph structure G∗ denoted by G∗φc is obtained by replacing Ei by φ(Ei ),
1 ≤ i ≤ n.
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Fig. 2.1 Graph structure G∗ = (X, E1, E2, E3)

G∗ is self-complementary if it is isomorphic to G∗φc, where φ is not an identity
permutation. G∗ is totally strong self-complementary if it is identical to G∗φc for all
permutations φ on {E1, E2, . . . , En}.
Definition 2.3 If graph structure G∗ is connected and contains no cycle, in other
words, its underlying graph is a tree, then it is called a tree. G∗ is an Ei -tree if
subgraph structure induced by Ei -edges is a tree. Similarly, G∗ is an E1E2 . . . En−
tree if G∗ is an Ei−tree for each i ∈ {1, 2, . . . , n}. G∗ is an Ei -forest, if subgraph
structure induced by Ei -edges is a forest.

Definition 2.4 Let G∗
1 = (X, E1, E2, . . . , En) and G∗

2 = (X ′, E ′
1, E

′
2, . . . , E

′
n) be

two graph structures, Cartesian product of G∗
1 and G∗

2 is defined as: G∗
1 × G∗

2 =
(X × X ′, E1 × E ′

1, E2 × E ′
2, . . . , En × E ′

n), where Ei × E ′
i = {(b1d, b2d) | d ∈ X ′,

b1b2 ∈ Ei } ∪ {(bd1, bd2) | b ∈ X, d1d2 ∈ E ′
i }, i = (1, 2, . . . , n).

Definition 2.5 Let G∗
1 = (X, E1, E2, . . . , En) and G∗

2 = (X ′, E ′
1, E

′
2, . . . , E

′
n) be

two graph structures, cross product of G∗
1 and G∗

2 is defined as: G∗
1 ∗ G∗

2 = (X ∗
X ′, E1 ∗ E ′

1, E2 ∗ E ′
2, . . . , En ∗ E ′

n), where Ei ∗ E ′
i = {(b1d1, b2d2) | b1b2 ∈ Ei ,

d1d2 ∈ E ′
i }, i = (1, 2, . . . , n).

Definition 2.6 Let G∗
1 = (X, E1, E2, . . . , En) and G∗

2 = (X ′, E ′
1, E

′
2, . . . , E

′
n) be

two graph structures, lexicographic product of G∗
1 and G∗

2 is defined as: G∗
1 • G∗

2
= (X • X ′, E1 • E ′

1, E2 • E ′
2, . . . , En • E ′

n), where Ei • E ′
i = {(bd1, bd2) | b ∈ X,

d1d2 ∈ E ′
i } ∪ {(b1d1, b2d2) | b1b2 ∈ Ei , d1d2 ∈ E ′

i }, i = (1, 2, . . . , n).

Definition 2.7 Let G∗
1 = (X, E1, E2, . . . , En) and G∗

2 = (X ′, E ′
1, E

′
2, . . . , E

′
n) be

two graph structures, strong product of G∗
1 and G∗

2 is defined as: G∗
1 � G∗

2 =
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(X � X ′, E1 � E ′
1, E2 � E ′

2, . . . , En � E ′
n), where Ei � E ′

i = {(b1d, b2d) | d ∈ X ′,
b1b2 ∈ Ei } ∪ {(bd1, bd2) | b ∈ X, d1d2 ∈ E ′

i } ∪ {(b1d1, b2d2) | b1b2 ∈ Ei , d1d2 ∈
E ′
i }, i = (1, 2, . . . , n).

Definition 2.8 Let G∗
1 = (X, E1, E2, . . . , En) and G∗

2 = (X ′, E ′
1, E

′
2, . . . , E

′
n) be

two graph structures, composition of G∗
1 and G∗

2 is defined as: G∗
1 ◦ G∗

2 = (X ◦
X ′, E1 ◦ E ′

1, E2 ◦ E ′
2, . . . , En ◦ E ′

n), where Ei ◦ E ′
i = {(b1d, b2d) | d ∈ X ′, b1b2 ∈

Ei } ∪ {(bd1, bd2) | b ∈ X, d1d2 ∈ E ′
i } ∪ {(b1d1, b2d2) | b1b2 ∈ Ei , d1, d2 ∈ X ′ such

that d1 �= d2}, i = (1, 2, . . . , n).

Definition 2.9 Let G∗
1 = (X, E1, E2, . . . , En) and G∗

2 = (X ′, E ′
1, E

′
2, . . . , E

′
n) be

two graph structures, union of G∗
1 and G∗

2 is defined as: G∗
1 ∪ G∗

2 = (X ∪ X ′, E1 ∪
E ′
1, E2 ∪ E ′

2, . . . , En ∪ E ′
n).

Definition 2.10 Let G∗
1 = (X, E1, E2, . . . , En) and G∗

2 = (X ′, E ′
1, E

′
2, . . . , E

′
n) be

two graph structures, join of G∗
1 and G∗

2 is defined as: G∗
1 + G∗

2 = (X + X ′, E1 +
E ′
1, E2 + E ′

2, . . . , En + E ′
n), where X + X ′ = X ∪ X ′, Ei + E ′

i = Ei ∪ E ′
i ∪ E ′′

i for
i = (1, 2, . . . , n). E ′′

i contains all those edges, joining the vertices of E and E ′.

2.2 Neutrosophic Graph Structures

Definition 2.11 Let X be a nonempty set and E1, E2, . . . , En relations on X . G =
(A, B1, B2, . . . , Bn) is called a single-valued neutrosophic graph structure if

A = {< n, Ti (n), Ii (n), Fi (n) >: n ∈ X}

is a single-valued neutrosophic set on X and

Bi = {< (m, n), T (m, n), I (m, n), F(m, n) >: (m, n) ∈ Ei }

is a single-valued neutrosophic set on Ei such that

Ti (m, n) ≤ min{T (m), T (n)}, Ii (m, n) ≤ min{I (m), I (n)},
Fi (m, n) ≤ max{F(m), F(n)},∀m, n ∈ X.

Note that Ti (m, n) = 0 = Ii (m, n) = Fi (m, n) for all (m, n) ∈ X × X − Ei and

0 ≤ Ti (m, n) + Ii (m, n) + Fi (m, n) ≤ 3 for all (m, n) ∈ Ei ,

where X and Ei (i = 1, 2, . . . , n) are underlying vertex and underlying i-edge sets
of G, respectively.

Throughout this chapter, we will use neutrosophic set, neutrosophic relation and
neutrosophic graph structure, for short.
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Fig. 2.2 Single-valued neutrosophic graph structure

Definition 2.12 Let G = (A, B1, B2, . . . , Bn) be a neutrosophic graph structure of
G∗. If H = (A′, B ′

1, B
′
2, . . . , B

′
n) is a neutrosophic graph structure of G∗ such that

T ′(n) ≤ T (n), I ′(n) ≤ I (n), F ′(n) ≥ F(n),∀n ∈ X,

T ′
i (m, n) ≤ Ti (m, n), I ′

i (m, n) ≤ Ii (m, n) and F ′
i (m, n) ≥ Fi (m, n),∀m, n ∈ Ei ,

where i = 1, 2, . . . , n. Then H is called a neutrosophic subgraph structure of neu-
trosophic graph structure G.

Example 2.2 Let G∗ = (X, E1, E2) be a graph structure, where X = {q1, q2, q3,
q4, q5, q6}, E1 = {q1q6, q2q3, q3q4, q4q5}, E2 = {q1q2, q5q6, q4q6, q1q3}. Now we
define neutrosophic sets A, B1, B2 on X , E1, E2, respectively.

Let A = {(q1, 0.3, 0.6, 0.4), (q2, 0.4, 0.7, 0.5), (q3, 0.5, 0.7, 0.6), (q4, 0.6, 0.9,
0.7), (q5, 0.4, 0.5, 0.5), (q6, 0.3, 0.4, 0.4)}, B1 = {(q1q6, 0.3, 0.2, 0.3), (q2q3, 0.3,
0.5, 0.4), (q3q4, 0.5, 0.7, 0.6), (q4q5, 0.3, 0.3, 0.4)}, B2 = {(q1q2, 0.2, 0.6, 0.3),
(q5q6, 0.1, 0.4, 0.2),(q4q6, 0.1, 0.4, 0.2), (q1q3, 0.2, 0.4, 0.3)}. By direct calcula-
tions, it is easy to show that G = (A, B1, B2) is a neutrosophic graph structure
of G∗ as shown in Fig. 2.2.

Definition 2.13 A neutrosophic graph structure H = (A′, B ′
1, B

′
2, . . . , B

′
n) is called

an induced subgraph structure of G by a subset R of X if

T ′(n) = T (n), I ′(n) = I (n), F ′(n) = F(n),∀n ∈ E,

T ′
i (m, n) = Ti (m, n), I ′

i (m, n) = Ii (m, n) and F ′
i (m, n) = Fi (m, n),∀m, n ∈ E,

where i = 1, 2, . . . , n.

Definition 2.14 A neutrosophic graph structure H = (A′, B ′
1, B

′
2, . . . , B

′
n) is called

a spanning subgraph structure of G if A′ = A and
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Fig. 2.3 Neutrosophic graph
structure G
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Fig. 2.4 Neutrosophic
subgraph structure

n1(0.4, 0.1, 0.4) n2(0.6, 0.2, 0.5)

n3(0.3, 0.2, 0.6)n4(0.6, 0.2, 0.7)
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B
2

1
0(
.4
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,0

.7
)

B11
(0
.5,
0.2
, 0
.7)

B12(0.3, 0.2, 0.7)

T ′
i (m, n) ≤ Ti (m, n), I ′

i (m, n) ≤ Ii (m, n) and F ′
i (m, n) ≥ Fi (m, n), i = 1, 2, ..., n.

Example 2.3 Consider a graph structure G∗ = (X, E1, E2) and let A, B1, B2 be
neutrosophic subsets of X, E1, E2, respectively, such that

A = {(n1, 0.5, 0.2, 0.3), (n2, 0.7, 0.3, 0.4), (n3, 0.4, 0.3, 0.5), (n4, 0.7, 0.3, 0.6)},

B1 = {(n1n2, 0.5, 0.2, 0.4), (n2n4, 0.7, 0.3, 0.6)},

B2 = {(n3n4, 0.4, 0.3, 0.6), (n1n4, 0.5, 0.2, 0.6)}.

Direct calculations show that G = (A, B1, B2) is a neutrosophic graph structure of
G∗ as shown in Fig. 2.3.

Example 2.4 A neutrosophic graph structure K = (A′, B11, B12) shown in Fig. 2.4
is a neutrosophic subgraph structure of G = (A, B1, B2) shown in Fig. 2.3.

Definition 2.15 Let G = (A, B1, B2, . . . , Bn) be a neutrosophic graph structure of
G∗. Thenmn ∈ Ei is called Bi -edge or simply Bi -edge if Ti (m, n) > 0 or Ii (m, n) >
0 or Fi (m, n) > 0 or all three conditions hold. Consequently, support of Bi is defined
as:
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Fig. 2.5 Strong neutrosophic graph structure G = (A, B1, B2)

supp(Bi ) = {mn ∈ Bi : Ti (m, n) > 0} ∪ {mn ∈ Bi : Ii (m, n) > 0}
∪{mn ∈ Bi : Fi (m, n) > 0}, i = 1, 2, ..., n.

Definition 2.16 Bi -path in a neutrosophic graph structureG = (A, B1, B2, . . . , Bn)

is a sequence of distinct vertices n1, n2, . . . , nm (except choice that nm = n1) in X ,
such that n j−1n j is a neutrosophic Bi -edge for all j = 2, . . . ,m.

Definition 2.17 A neutrosophic graph structure G = (A, B1, B2, . . . , Bn) is called
Bi -strong for some i ∈ {1, 2, . . . , n} if

Ti (m, n) = min{T (m), T (n)}, Ii (m, n) = min{I (m), I (n)}

and
Fi (m, n) = max{F(m), F(n)},∀mn ∈ supp(Bi ).

Furthermore, neutrosophic graph structure G is called strong if it is Bi -strong for all
i ∈ {1, 2, . . . , n}.
Example 2.5 Consider a neutrosophic graph structure G = (A, B1, B2) as shown in
Fig. 2.5. Then G is a strong neutrosophic graph structure since it is both B1- and
B2-strong.

Definition 2.18 A neutrosophic graph structure G = (A, B1, B2, . . . , Bn) is called
complete if G is a strong neutrosophic graph structure, supp(Bi ) �= φ for all i =
1, 2, . . . , n and for every pair of vertices m, n ∈ X , mn is a Bi -edge for some i .
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Fig. 2.6 Complete
neutrosophic graph structure
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Example 2.6 Let G = (A, B1, B2) be a neutrosophic graph structure of graph
structure G∗ = (X, E1, E2) such that X = {n1, n2, n3}, E1 = {n1n2} and E2 =
{n2n3, n1n3} as shown in Fig. 2.6. By simple calculations, it can be seen that G
is a strong neutrosophic graph structure. Moreover, supp(B1) �= φ, supp(B2) �= φ,
and each pair of vertices in X is either a B1-edge or an B2-edge. So G is a complete,
i.e. B1B2-complete neutrosophic graph structure.

Definition 2.19 Let G = (A, B1, B2, . . . , Bn) be a neutrosophic graph structure.
Then truth strength, indeterminacy strength and falsity strength of a Bi -path PBi =
n1, n2, . . . , nm are denoted by T .PBi , I.PBi and F.PBi , respectively, and defined as

T .PBi =
m∧

j=2

[T P
Bi
(n j−1n j )] , I.PBi =

m∧

j=2

[I PBi
(n j−1n j )] , F.PBi =

m∨

j=2

[FP
Bi
(n j−1n j )] .

Example 2.7 Consider a neutrosophic graph structure G = (A, B1, B2) as shown in
Fig. 2.6. We found that PB2 = n2, n3, n1 is a B2-path. So T .PB2 = 0.4, I.PB2 = 0.4
and F.PB2 = 0.8.

Definition 2.20 Let G = (A, B1, B2, . . . , Bn) be a neutrosophic graph structure.
Then

(i) Bi -truth strength of connectedness between m and n is defined as:
T∞
Bi
(mn) = ∨

j≥1
{T j

Bi
(mn)} such that T j

Bi
(mn) = (T j−1

Bi
◦ T 1

Bi
)(mn) for j ≥ 2

and
T 2
Bi
(mn) = (T 1

Bi
◦ T 1

Bi
)(mn) =

∨

z

(T 1
Bi
(mz) ∧ T 1

Bi
(zn)).

(ii) Bi -indeterminacy strength of connectedness between m and n is defined as:
I∞
Bi
(mn) = ∨

j≥1
{I j

Bi
(mn)} such that I j

Bi
(mn) = (I j−1

Bi
◦ I 1Bi

)(mn) for j ≥ 2 and

I 2Bi
(mn) = (I 1Bi

◦ I 1Bi
)(mn) =

∨

z

(I 1Bi
(mz) ∧ I 1Bi

(zn)).
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(iii) Bi -falsity strength of connectedness between m and n is defined as:
F∞
Bi
(mn) = ∧

j≥1
{F j

Bi
(mn)} such that F j

Bi
(mn) = (F j−1

Bi
◦ F1

Bi
)(mn) for j ≥ 2

and
F2
Bi
(mn) = (F1

Bi
◦ F1

Bi
)(mn) =

∧

z

(F1
Bi
(mz) ∨ F1

Bi
(zn)).

Definition 2.21 A neutrosophic graph structure G = (A, B1, B2, . . . , Bn) is a Bi -
cycle if

(supp(A), supp(B1), supp(B2), . . . , supp(Bn)) is a Bi -cycle.

Definition 2.22 A neutrosophic graph structure G = (A, B1, B2, . . . , Bn) is a Bi -
cycle (for some i) if G is a Bi -cycle, no unique Bi -edge mn is in G such that

TBi (mn) = min{TBi (rs) : rs ∈ Ei = supp(Bi )},

or
IBi (mn) = min{IBi (rs) : rs ∈ Ei = supp(Bi )},

or
FBi (mn) = max{FBi (rs) : rs ∈ Ei = supp(Bi )}.

Example 2.8 Consider a neutrosophic graph structure G = (A, B1, B2) as shown in
Fig. 2.5. Then G is a B1-cycle and neutrosophic B1 − cycle, since (supp(A), supp
(B1), supp(B2)) is a B1-cycle and there is no unique B1-edge satisfying above con-
dition.

Definition 2.23 LetG = (A, B1, B2, . . . , Bn) be a neutrosophic graph structure and
p be a vertex in G. Let (A′, B ′

1, B
′
2, . . . , B

′
n) be a neutrosophic graph structure

induced by X \ {p} such that, for all v �= p, w �= p,

TA′(p)=0=IA′(p)=FA′(p), TB ′
i
(pv) = 0 = IB ′

i
(pv) = FB ′

i
(pv),∀edges pv ∈ G,

TA′(v) = TA(v), IA′(v) = IA(v), FA′(v) = FA(v),

TB ′
i
(vw) = TBi (vw), IB ′

i
(vw) = IBi (vw) and FB ′

i
(vw) = FBi (vw).

Then p is neutrosophic Bi -cut vertex for any i if

T∞
Bi
(vw) > T∞

B ′
i
(vw), I∞

Bi
(vw) > I∞

B ′
i
(vw) and F∞

Bi
(vw) > F∞

B ′
i
(vw),

for some v,w ∈ X \ {p}. Note that p is a

• Bi − T neutrosophic cut vertex if T∞
Bi
(vw) > T∞

B ′
i
(vw),

• Bi − I neutrosophic cut vertex if I∞
Bi
(vw) > I∞

B ′
i
(vw),
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• Bi − F neutrosophic cut vertex if F∞
Bi
(vw) > F∞

B ′
i
(vw).

Example 2.9 Consider a neutrosophic graph structure G = (A, B1, B2) as shown
in Fig. 2.7 and let G ′ = (A′, B ′

1, B
′
2) be a neutrosophic subgraph structure of neu-

trosophic graph structure G found by deleting vertex n2. Deleted vertex n2 is a
neutrosophic B1-I cut vertex since

I∞
B1
(n2n5) = 0.4 > 0.3 = I∞

B ′
1
(n2n5), I

∞
B1
(n3n4) = 0.7 = I∞

B ′
1
(n3n4),

and
I∞
B1
(n3n5) = 0.4 > 0.3 = I∞

B ′
1
(n3n5).

Definition 2.24 Suppose G = (A, B1, B2, . . . , Bn) be a neutrosophic graph struc-
ture and mn be Bi -edge. Let (A′, B ′

1, B
′
2, . . . , B

′
n) be a neutrosophic spanning sub-

graph structure of G, such that ∀ edges mn �= rs,

TB ′
i
(mn) = 0 = IB ′

i
(mn) = FB ′

i
(mn), TB ′

i
(rs) = TBi (rs),

IB ′
i
(rs) = IBi (rs) and FB ′

i
(rs) = FBi (rs).

Then mn is a neutrosophic Bi -bridge if

T∞
Bi
(vw) > T∞

B ′
i
(vw), I∞

Bi
(vw) > I∞

B ′
i
(vw) and F∞

Bi
(vw) > F∞

B ′
i
(vw),

for some v,w ∈ X . Note that mn is a

• Bi − T neutrosophic bridge if T∞
Bi
(vw) > T∞

B ′
i
(vw),

• Bi − I neutrosophic bridge if I∞
Bi
(vw) > I∞

B ′
i
(vw),

• Bi − F neutrosophic bridge if F∞
Bi
(vw) > F∞

B ′
i
(vw).
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Fig. 2.7 Neutrosophic graph structure G = (A, B1, B2)
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Example 2.10 Consider the neutrosophic graph structureG = (A, B1, B2) as shown
in Fig. 2.7 and G ′ = (A′, B ′

1, B
′
2) be a neutrosophic spanning subgraph structure of

neutrosophic graph structure G which is found by deleting B1-edge (n2n5). Edge
(n2n5) is a neutrosophic B1-bridge. Since

T∞
B1
(n2n5) = 0.4 > 0.3 = T∞

B ′
1
(n2n5),

I∞
B1
(n2n5) = 0.4 > 0.3 = I∞

B ′
1
(n2n5)

and
F∞
B1
(n2n5) = 0.5 > 0 = F∞

B ′
1
(n2n5).

Definition 2.25 A neutrosophic graph structure G = (A, B1, B2, . . . , Bn) is a Bi -
tree if

(supp(A), supp(B1), supp(B2), . . . , supp(Bn))

is a Bi -tree. In other words, G is a Bi -tree if a subgraph of G induced by supp(Bi )

generates a tree.

Definition 2.26 Aneutrosophic graph structureG = (A, B1, B2, . . . , Bn) is Bi -tree
ifG has a neutrosophic spanning subgraph structure H = (A′, B ′

1, B
′
2, . . . , B

′
n) such

that for all Bi -edges mn not in H , H is a B ′
i -tree,

TBi (mn) < T∞
B ′
i
(mn), IBi (mn) < I∞

B ′
i
(mn) and FBi (mn) > F∞

B ′
i
(mn).

In particular, G is a:

• neutrosophic Bi -T tree if TBi (mn) < T∞
B ′
i
(mn),

• neutrosophic Bi -I tree if IBi (mn) < I∞
B ′
i
(mn),

• neutrosophic Bi -F tree if FBi (mn) > F∞
B ′
i
(mn).

Example 2.11 Consider the neutrosophic graph structureG = (A, B1, B2) as shown
in Fig. 2.8, which is a B2-tree. It is not a B1-tree but a neutrosophic B1-tree since it
has a neutrosophic spanning subgraph (A′, B ′

1, B
′
2) as a B ′

1-tree, which is obtained
by deleting B1-edge n2n5 from G.

Moreover,

TB1(n2n5) = 0.2 < 0.3 = T∞
B ′
1
(n2n5), IB1(n2n5) = 0.1 < 0.3 = I∞

B1
′(n2n5)

and
FB1(n2n5) = 0.6 > 0.5 = F∞

B1
′(n2n5).

Definition 2.27 A neutrosophic graph structure G1 = (A1, B11, B12, . . . , B1n) of
the graph structure G∗

1 = (X1, E11, E12, . . . , E1n) is isomorphic to neutrosophic
graph structure G = (A2, B21, B22, . . . , B2n) of the graph structure G∗

2 = (X2, E21,
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Fig. 2.8 Neutrosophic B1-tree

B22, . . . , E2n) if we have ( f,φ) where f : X1 → X2 is a bijection and φ is a permu-
tation on set {1, 2, . . . , n} and following relations are satisfied

TA1(m) = TA2( f (m)), IA1(m) = IA2( f (m)), FA1(m) = FA2( f (m)),

for all m ∈ X1 and

TB1i (mn) = TB2φ(i) ( f (m) f (n)), IB1i (mn) = IB2φ(i) ( f (m) f (n),

FB1i (mn) = FB2φ(i) ( f (m) f (n)),

for all mn ∈ E1i , i = 1, 2, . . . , n.

Example 2.12 Let G1 = (A, B1, B2) and G2 = (A′, B ′
1, B

′
2) be two neutrosophic

graph structures as shown in Fig. 2.9. G1 is isomorphic G2 under ( f,φ) where f :
X → X ′ is a bijection and φ is a permutation on set {1, 2} defined as φ(1) = 2,
φ(2) = 1 and following relations are satisfied

TA(ni ) = TA′( f (ni )), IA(ni ) = IA′( f (ni )), FA(ni ) = FA′( f (ni )),

for all ni ∈ X , and

TBi (nin j ) = TB ′
φ(i)
( f (ni ) f (n j )), IBi (nin j ) = IB ′

φ(i)
( f (ni ) f (n j )),

FBi (nin j ) = FB ′
φ(i)
( f (ni ) f (n j )),

∀nin j ∈ Ei and i = 1, 2.

Definition 2.28 A neutrosophic graph structure G1 = (A1, B11, B12, . . . , B1n) of
the graph structure G∗

1 = (X1, E11, E12, . . . , E1n) is identical to neutrosophic graph
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Fig. 2.9 Isomorphic neutrosophic graph structures

structureG2 = (A2, B21, B22, . . . , B2n) of graph structureG∗
2 = (X2, E21, B22, . . . ,

E2n) if f : X1 → X2 is a bijection and following relations are satisfied:

TA1(m) = TA2( f (m)), IA1(m) = IA2( f (m)), FA1(m) = FA2( f (m)),

for all m ∈ X1 and

TB1i (mn) = TB2i ( f (m) f (n)), IB1i (mn) = IB2i ( f (m) f (n)),

FB1i (mn) = FB2i ( f (m) f (n)),

for all mn ∈ E1i and i = 1, 2, . . . , n.

Example 2.13 Let G1 = (A, B1, B2) and G2 = (A′, B ′
1, B

′
2) be two neutrosophic

graph structures of graph structures G∗
1 = (X, E1, E2) and G∗

2 = (X ′, E ′
1, E

′
2),

respectively, as shown in Figs. 2.10 and 2.11. Neutrosophic graph structure G1 is
identical to G2 under f : X → X ′ defined as

f (n1) = m2, f (n2) = m1, f (n3) = m4, f (n4) = m3, f (n5) = m5, f (n6) = m8,

f (n7) = m7, f (n8) = m6, TA(ni ) = TA′( f (ni )),

IA(ni ) = IA′( f (ni )), FA(ni ) = FA′( f (ni )),

for all ni ∈ X and

TBi (ni n j ) = TB′
i
( f (ni ) f (n j )), IBi (ni n j ) = IB′

i
( f (ni ) f (n j )), FBi (ni n j ) = FB′

i
( f (ni ) f (n j )),
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Fig. 2.10 Neutrosophic graph structure G1
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Fig. 2.11 Neutrosophic graph structure G2

for all nin j ∈ Ei and i = 1, 2.

Definition 2.29 LetG = (A, B1, B2, . . . , Bn) be a neutrosophic graph structure and
φ be a permutation on {B1, B2, . . . , Bn} and on {1, 2, . . . , n} defined by φ(Bi ) = Bj

if and only if φ(i) = j for all i . If mn ∈ Bi for any i and

T
Bφ
i
(mn) = TA(m) ∧ TA(n) −

∨

j �=i

Tφ(Bj )(mn), I
Bφ
i
(mn) = IA(m) ∧ IA(n) −

∨

j �=i

Iφ(Bj )(mn),

FBφ
i
(mn) = FA(m) ∨ FA(n) −

∧

j �=i

Tφ(Bj )(mn), i = 1, 2, . . . , n,

then mn ∈ Bφ
k , where k is selected such that
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Fig. 2.12 Neutrosophic graph structures G, Gφc

TBφ
k
(mn) ≥ TBφ

i
(mn), IBφ

k
(mn) ≥ IBφ

i
(mn) and FBφ

k
(mn) ≥ FBφ

i
(mn) for all i,

then neutrosophic graph structure (A, Bφ
1 , B

φ
2 , . . . , B

φ
n ) is called φ-complement of

G and denoted by Gφc.

Example 2.14 Let G = (A, B1, B2, B3) be a neutrosophic graph structure shown in
Fig. 2.12 and φ be a permutation on {1, 2, 3} defined as:

φ(1) = 2, φ(2) = 3, φ(3) = 1. By direct calculations, we found that
n1n3 ∈ Bφ

3 , n2n3 ∈ Bφ
1 , n1n2 ∈ Bφ

2 . So, G
φc = (A, Bφ

1 , B
φ
2 , B

φ
3 ) is φ-complement of

neutrosophic graph structure G as shown in Fig. 2.12.

Proposition 2.1 φ-complement of a neutrosophic graph structure G = (A, B1,

B2, . . . , Bn) is always a strong neutrosophic graph structure. Moreover, if φ(i) =
k, where i, k ∈ {1, 2, . . . , n}, then all Bk-edges in neutrosophic graph structure
(A, B1, B2, . . . , Bn) become Bφ

i -edges in

(A, Bφ
1 , B

φ
2 , . . . , B

φ
n ).

Proof According to the definition of φ-complement,

TBφ
i
(mn) = TA(m) ∧ TA(n) −

∨

j �=i

Tφ(Bj )(mn),

IBφ
i
(mn) = IA(m) ∧ IA(n) −

∨

j �=i

Iφ(Bj )(mn),

FBφ
i
(mn) = FA(m) ∨ FA(n) −

∧

j �=i

Fφ(Bj )(mn),

for i ∈ {1, 2, . . . , n}. For expression of truthness in φ-complement:
Since

TA(m) ∧ TA(n) ≥ 0,
∨

j �=i

Tφ(Bj )(mn) ≥ 0 and TBi (mn) ≤ TA(m) ∧ TA(n), ∀Bi ,

we see that ∨

j �=i

Tφ(Bj )(mn) ≤ TA(m) ∧ TA(n),
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which implies that
TA(m) ∧ TA(n) −

∨

j �=i

Tφ(Bj )(mn) ≥ 0.

Therefore, TBφ
i
(mn) ≥ 0 ∀i . Moreover, TBφ

i
(mn) achieves its maximum value when∨

j �=i
Tφ(Bj )(mn) is zero. It is obvious that when φ(Bi ) = Bk and mn is a Bk-edge then

∨
j �=i

Tφ(Bj )(mn) gets zero value. So

TBφ
i
(mn) = TA(m) ∧ TA(n), f or (mn) ∈ Bk, φ(Bi ) = Bk .

Similarly, we have

IBφ
i
(mn) = IA(m) ∧ IA(n), f or (mn) ∈ Bk, φ(Bi ) = Bk .

In the similar way for expression of falsity in φ-complement:

Since

FA(m) ∨ FA(n) ≥ 0,
∧

j �=i

Fφ(Bj )(mn) ≥ 0 and FBi (mn) ≤ FA(m) ∨ FA(n)∀Bi ,

we see that ∧

j �=i

Fφ(Bj )(mn) ≤ FA(m) ∨ FA(n),

which implies that

FA(m) ∨ FA(n) −
∧

j �=i

Fφ(Bj )(mn) ≥ 0.

Therefore, FBφ
i
(mn) is nonnegative for all i .Moreover, FBφ

i
(mn) attains itsmaximum

value when
∧
j �=i

Fφ(Bj )(mn) becomes zero. It is clear that when φ(Bi ) = Bk and mn

is a Bk-edge then
∧
j �=i

Fφ(Bj )(mn) gets zero value. So

FBφ
i
(mn) = FA(m) ∨ FA(n) for (mn) ∈ Bk, φ(Bi ) = Bk .

This completes the proof.

Definition 2.30 LetG = (A, B1, B2, . . . , Bn) be a neutrosophic graph structure and
φ be a permutation on {1, 2, . . . , n}. Then
(i) If G is isomorphic to Gφc, then G is said to be self-complementary.
(ii) If G is identical to Gφc, then G is said to be strong self-complementary.
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Fig. 2.13 Totally strong self-complementary neutrosophic graph structure

Definition 2.31 Suppose G = (A, B1, B2, . . . , Bn) be a neutrosophic graph struc-
ture. Then

(i) If G is isomorphic to Gφc, for all permutations φ on {1, 2, . . . , n}, then G is
totally self-complementary.

(ii) If G is identical to Gφc, for all permutations φ on {1, 2, . . . , n}, then G is
totally strong self-complementary.

Remark 2.1 All strong neutrosophic graph structures are self-complementary or
totally self-complementary neutrosophic graph structures.

Example 2.15 A neutrosophic graph structure G = (A, B1, B2, B3) in Fig. 2.13 is a
totally strong self-complementary neutrosophic graph structure.

Theorem 2.1 A neutrosophic graph structure is totally self-complementary if and
only if it is strong neutrosophic graph structure.

Proof Consider a strong neutrosophic graph structure G and a permutation φ on
{1, 2, . . . , n}. By Proposition 2.1, φ-complement of a neutrosophic graph structure
G = (A, B1, B2, . . . , Bn) is always a strong neutrosophic graph structure. More-
over, if φ(i) = k, where i, k ∈ {1, 2, . . . , n}, then all Bk-edges in neutrosophic graph
structure (A, B1, B2, . . . , Bn) become Bφ

i -edges in (A, B
φ
1 , B

φ
2 , . . . , B

φ
n ). This leads

TBk (mn) = TA(m) ∧ TA(n) = TBφ
i
(mn), IBk (mn) = IA(m) ∧ IA(n) = IBφ

i
(mn)

and
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FBk (mn) = FA(m) ∨ FA(n) = FBφ
i
(mn).

Hence, under the mapping (identity mapping) f : X → X ,G andGφ are isomorphic
such that

TA(m) = TA( f (m)), IA(m) = IA( f (m)), FA(m) = FA( f (m)),

TBk (mn) = TBφ
i
( f (m) f (n)) = TBφ

i
(mn), IBk (mn) = IBφ

i
( f (m) f (n)) = IBφ

i
(mn),

FBk (mn) = FBφ
i
( f (m) f (n)) = FBφ

i
(mn),

for allmn ∈ Ek , φ−1(k) = i and k = 1, 2, . . . , n. This is satisfied for every permuta-
tion φ on {1, 2, . . . , n}. Hence, G is totally self-complementary neutrosophic graph
structure. Conversely, let for every permutation φ on {1, 2, . . . , n}, G and Gφ are
isomorphic. Then according to the definition of isomorphism of neutrosophic graph
structures and φ-complement of neutrosophic graph structure,

TBk (mn) = TBφ
i
( f (m) f (n)) = TA( f (m)) ∧ TA( f (n)) = TA(m) ∧ TA(n),

IBk (mn) = IBφ
i
( f (m) f (n)) = IA( f (m)) ∧ IA( f (n)) = TA(m) ∧ IA(n),

FBk (mn) = FBφ
i
( f (m) f (n)) = FA( f (m)) ∨ TA( f (n)) = FA(m) ∧ TA(n),

for allmn ∈ Ek and k = 1, 2, . . . , n. Hence,G is strong neutrosophic graph structure.

Remark 2.2 Every self-complementary neutrosophic graph structure is totally self-
complementary.

Theorem 2.2 If G∗ = (X, E1, E2, . . . , En) is a totally strong self-complementary
graph structure and A = (TA, IA, FA) is a neutrosophic subset of X where TA, IA, FA

are constant valued functions, then a strong neutrosophic graph structure of G∗ with
neutrosophic vertex set A is always a totally strong self-complementary neutrosophic
graph structure.

Proof Consider three constants p, q, r ∈ [0, 1], such that TA(m) = p, IA(m) =
q, FA(m) = r ∀m ∈ X . Since G∗ is totally self-complementary strong graph struc-
ture, so there is a bijection f : X → X for any permutation φ−1 on {1, 2, . . . , n},
such that for any Ek-edge (mn), ( f (m) f (n)) [an Ei -edge in G∗ ] is an Ek-edge in
G∗φ−1c. Hence, for every Bk-edge (mn), ( f (m) f (n)) [a Bi -edge in G ] is a Bφ

k -edge
in Gφ−1c. Moreover, G is strong neutrosophic graph structure. Thus,

TA(m) = p = TA( f (m)), IA(m) = q = IA( f (m)), FA(m) = r = FA( f (m)), ∀m ∈ X,

TBk (mn) = TA(m) ∧ TA(n) = TA( f (m)) ∧ TA( f (n)) = TBφ
i
( f (m) f (n)),
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IBk (mn) = IA(m) ∧ IA(n) = IA( f (m)) ∧ IA( f (n)) = IBφ
i
( f (m) f (n)),

FBk (mn) = FA(m) ∨ IA(n) = FA( f (m)) ∨ FA( f (n)) = FBφ
i
( f (m) f (n)),

for allmn ∈ Ei and i = 1, 2, . . . , n. This shows thatG is self-complementary strong
neutrosophic graph structure. Every permutation φ and φ−1 on {1, 2, . . . , n} satisfy
above expressions; thus G is totally strong self-complementary neutrosophic graph
structure.

Remark 2.3 Converse of Theorem 2.2 may not be true, for example a neutrosophic
graph structure shown in Fig. 2.13 is a totally strong self-complementary, it is strong
and its underlying graph structure is a totally strong self-complementary but TA, IA,
FA are not constant functions.

2.3 Operations on Neutrosophic Graph Structures

In this section, we present the operations on neutrosophic graph structures.

Definition 2.32 LetG1 = (A1, B11, B12, . . . , B1n) andG2 = (A2, B21, B22, . . . , B2n)

beneutrosophic graph structures of thegraph structuresG∗
1 = (X1, E11, E12, . . . , E1n)

and G∗
2 = (X2, E21, E22, . . . , E2n), respectively. The Cartesian product of G1 and

G2, denoted by

G1 × G2 = (A1 × A2, B11 × B21, B12 × B22, . . . , B1n × B2n),

is defined by the following:

(i)

⎧
⎨

⎩

T(A1×A2)(qr) = (TA1 × TA2)(qr) = TA1(q) ∧ TA2(r)
I(A1×A2)(qr) = (IA1 × IA2)(qr) = IA1(q) ∧ IA2(r)
F(A1×A2)(qr) = (FA1 × FA2)(qr) = FA1(q) ∨ FA2(r)

for all qr ∈ E1 × E2,

(ii)

⎧
⎨

⎩

T(B1i×B2i )(qr1)(qr2) = (TB1i × TB2i )(qr1)(qr2) = TA1(q) ∧ TB2i (r1r2)
I(B1i×B2i )(qr1)(qr2) = (IB1i × IB2i )(qr1)(qr2) = IA1(q) ∧ IB2i (r1r2)
F(B1i×B2i )(qr1)(qr2) = (FB1i × FB2i )(qr1)(qr2) = FA1(q) ∨ FB2i (r1r2)

for all q ∈ X1, r1r2 ∈ E2i ,

(iii)

⎧
⎨

⎩

T(B1i×B2i )(q1r)(q2r) = (TB1i × TB2i )(q1r)(q2r) = TA2(r) ∧ TB1i (q1q2)
I(B1i×B2i )(q1r)(q2r) = (IB1i × IB2i )(q1r)(q2r) = IA2(r) ∧ IB1i (q1q2)
F(B1i×B2i )(q1r)(q2r) = (FB1i × FB2i )(q1r)(q2r) = FA2(r) ∨ FB1i (q1q2)

for all r ∈ X2, q1q2 ∈ E1i .

Example 2.16 Consider G1 = (A1, B11, B12) and G2 = (A2, B21, B22) are neu-
trosophic graph structures of graph structures G∗

1 = (X1, E11, E12) and G∗
2 =

(X2, E21, E22), respectively, as shown in Fig. 2.14, where E11 = {q1q2}, E12 =
{q3q4}, E21 = {r1r2}, E22 = {r2r3}.
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Fig. 2.14 Neutrosophic graph structures
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Fig. 2.15 Cartesian product of two neutrosophic graph structures

Cartesianproduct ofG1 andG2 defined asG1 × G2 = {A1 × A2, B11 × B21, B12 ×
B22} is shown in the Fig. 2.15.

Theorem 2.3 The Cartesian product G1 × G2 = (A1 × A2, B11 × B21, B12 ×
B22, . . . , B1n × B2n) of two neutrosophic graph structures G1 and G2 of the graph
structures G∗

1 and G∗
2 is a neutrosophic graph structure of G∗

1 × G∗
2.

Proof According to the definition of Cartesian product, there are two cases:

Case 1. When q ∈ X1, r1r2 ∈ E2i
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T(B1i×B2i )((qr1)(qr2)) = TA1(q) ∧ TB2i (r1r2)

≤ TA1(q) ∧ [TA2(r1) ∧ TA2(r2)]
= [TA1(q) ∧ TA2(r1)] ∧ [TA1(q) ∧ TA2(r2)]
= T(A1×A2)(qr1) ∧ T(A1×A2)(qr2),

I(B1i×B2i )((qr1)(qr2)) = IA1(q) ∧ IB2i (r1r2)

≤ IA1(q) ∧ [IA2(r1) ∧ IA2(r2)]
= [IA1(q) ∧ IA2(r1)] ∧ [IA1(q) ∧ IA2(r2)]
= I(A1×A2)(qr1) ∧ I(A1×A2)(qr2),

F(B1i×B2i )((qr1)(qr2)) = FA1(q) ∨ FB2i (r1r2)

≤ FA1(q) ∨ [FA2(r1) ∨ FA2(r2)]
= [FA1(q) ∨ FA2(r1)] ∨ [FA1(q) ∨ FA2(r2)]
= F(A1×A2)(qr1) ∨ F(A1×A2)(qr2),

for qr1, qr2 ∈ X1 × X2.

Case 2. When q ∈ X2, r1r2 ∈ E1i

T(B1i×B2i )((r1q)(r2q)) = TA2(q) ∧ TB1i (r1r2)

≤ TA2(q) ∧ [TA1(r1) ∧ TA1(r2)]
= [TA2(q) ∧ TA1(r1)] ∧ [TA2(q) ∧ TA1(r2)]
= T(A1×A2)(r1q) ∧ T(A1×A2)(r2q),

I(B1i×B2i )((r1q)(r2q)) = IA2(q) ∧ IB1i (r1r2)

≤ IA2(q) ∧ [IA1(r1) ∧ IA1(r2)]
= [IA2(q) ∧ IA1(r1)] ∧ [IA2(q) ∧ IA1(r2)]
= I(A1×A2)(r1q) ∧ I(A1×A2)(r2q),

F(B1i×B2i )((r1q)(r2q)) = FA2(q) ∨ FB1i (r1r2)

≤ FA2(q) ∨ [FA1(r1) ∨ FA1(r2)]
= [FA2(q) ∨ FA1(r1)] ∨ [FA2(q) ∨ FA1(r2)]
= F(A1×A2)(r1q) ∨ F(A1×A2)(r2q),

for r1q, r2q ∈ X1 × X2.

Both cases are satisfied ∀i ∈ {1, 2, . . . , n}.
Definition 2.33 LetG1 = (A1, B11, B12, . . . , B1n) andG2 = (A2, B21, B22, . . . , B2n)

be neutrosophic graph structures. The cross product of G1 and G2, denoted by

G1 ∗ G2 = (A1 ∗ A2, B11 ∗ B21, B12 ∗ B22, . . . , B1n ∗ B2n),
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Fig. 2.16 Cross product of two neutrosophic graph structures

is defined by the following:

(i)

⎧
⎨

⎩

T(A1∗A2)(qr) = (TA1 ∗ TA2)(qr) = TA1(q) ∧ TA2(r)
I(A1∗A2)(qr) = (IA1 ∗ IA2)(qr) = IA1(q) ∧ IA2(r)
F(A1∗A2)(qr) = (FA1 ∗ FA2)(qr) = FA1(q) ∨ FA2(r)

for all qr ∈ X1 × X2,

(ii)

⎧
⎨

⎩

T(B1i∗B2i )(q1r1)(q2r2) = (TB1i ∗ TB2i )(q1r1)(q2r2) = TB1i (q1q2) ∧ TB2i (r1r2)
I(B1i∗B2i )(q1r1)(q2r2) = (IB1i ∗ IB2i )(q1r1)(q2r2) = IB1i (q1q2) ∧ IB2i (r1r2)
F(B1i∗B2i )(q1r1)(q2r2) = (FB1i ∗ FB2i )(q1r1)(q2r2) = FB1i (q1q2) ∨ FB2i (r1r2)

for all q1q2 ∈ E1i , r1r2 ∈ E2i .

Example 2.17 Cross product of two neutrosophic graph structuresG1 andG2 shown
in Fig. 2.14 is defined as G1 ∗ G2 = {A1 ∗ A2, B11 ∗ B21, B12 ∗ B22} and is shown in
the Fig. 2.16.

Theorem 2.4 The cross product G1 ∗ G2 = (A1 ∗ A2, B11 ∗ B21, B12 ∗ B22, . . . ,

B1n ∗ B2n) of two neutrosophic graph structures of the graph structures G∗1 and G∗
2

is a neutrosophic graph structure of G∗
1 ∗ G∗

2.
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Proof For all q1r1, q2r2 ∈ X1 ∗ X2

T(B1i∗B2i )((q1r1)(q2r2)) = TB1i (q1q2) ∧ TB2i (r1r2)

≤ [TA1(q1) ∧ TA1(q2)] ∧ [TA2(r1) ∧ TA2(r2)]
= [TA1(q1) ∧ TA2(r1)] ∧ [TA1(q2) ∧ TA2(r2)]
= T(A1∗A2)(q1r1) ∧ T(A1∗A2)(q2r2),

I(B1i∗B2i )((q1r1)(q2r2)) = IB1i (q1q2) ∧ IB2i (r1r2)

≤ [IA1(q1) ∧ IA1(q2)] ∧ [IA2(r1) ∧ IA2(r2)]
= [IA1(q1) ∧ IA2(r1)] ∧ [IA1(q2) ∧ IA2(r2)]
= I(A1∗A2)(q1r1) ∧ I(A1∗A2)(q2r2),

F(B1i∗B2i )((q1r1)(q2r2)) = FB1i (q1q2) ∨ FB2i (r1r2)

≤ [FA1(q1) ∨ FA1(q2)] ∨ [FA2(r1) ∨ FA2(r2)]
= [FA1(q1) ∨ FA2(r1)] ∨ [FA1(q2) ∨ FA2(r2)]
= F(A1∗A2)(q1r1) ∨ F(A1∗A2)(q2r2),

for i ∈ {1, 2, . . . , n}.
Definition 2.34 LetG1 = (A1, B11, B12, . . . , B1n) andG2 = (A2, B21, B22, . . . , B2n)

be neutrosophic graph structures. The lexicographic product of G1 and G2, denoted
by

G1 • G2 = (A1 • A2, B11 • B21, B12 • B22, . . . , B1n • B2n),

is defined by the following:

(i)

⎧
⎨

⎩

T(A1•A2)(qr) = (TA1 • TA2)(qr) = TA1(q) ∧ TA2(r)
I(A1•A2)(qr) = (IA1 • IA2)(qr) = IA1(q) ∧ IA2(r)
F(A1•A2)(qr) = (FA1 • FA2)(qr) = FA1(q) ∨ FA2(r)

for all qr ∈ X1 × X2,

(ii)

⎧
⎨

⎩

T(B1i•B2i )(qr1)(qr2) = (TB1i • TB2i )(qr1)(qr2) = TA1(q) ∧ TB2i (r1r2)
I(B1i•B2i )(qr1)(qr2) = (IB1i • IB2i )(qr1)(qr2) = IA1(q) ∧ IB2i (r1r2)
F(B1i•B2i )(qr1)(qr2) = (FB1i • FB2i )(qr1)(qr2) = FA1(q) ∨ FB2i (r1r2)

for all q ∈ X1, r1r2 ∈ E2i ,

(iii)

⎧
⎨

⎩

T(B1i•B2i )(q1r1)(q2r2) = (TB1i • TB2i )(q1r1)(q2r2) = TB1i (q1q2) ∧ TB2i (r1r2)
I(B1i•B2i )(q1r1)(q2r2) = (IB1i • IB2i )(q1r1)(q2r2) = IB1i (q1q2) ∧ IB2i (r1r2)
F(B1i•B2i )(q1r1)(q2r2) = (FB1i • FB2i )(q1r1)(q2r2) = FB1i (q1q2) ∨ FB2i (r1r2)

for all q1q2 ∈ E1i , r1r2 ∈ E2i .

Example 2.18 Lexicographic product of two neutrosophic graph structures G1 and
G2 shown in Fig. 2.14 is defined as

G1 • G2 = {A1 • A2, B11 • B21, B12 • B22} and is shown in the Fig. 2.17.



2.3 Operations on Neutrosophic Graph Structures 105

Fig. 2.17 Lexicographic product of two neutrosophic graph structures

Theorem 2.5 The lexicographic product G1 • G2 = (A1 • A2, B11 • B21, B12

• B22, . . . , B1n • B2n) of two neutrosophic graph structures of the graph structures
G∗

1 and G∗
2 is a neutrosophic graph structure of G∗

1 • G∗
2.

Proof According to the definition of lexicographic product, there are two cases:

Case 1. When q ∈ X1, r1r2 ∈ E2i

T(B1i•B2i )((qr1)(qr2)) = TA1(q) ∧ TB2i (r1r2)

≤ TA1(q) ∧ [TA2(r1) ∧ TA2(r2)]
= [TA1(q) ∧ TA2(r1)] ∧ [TA1(q) ∧ TA2(r2)]
= T(A1•A2)(qr1) ∧ T(A1•A2)(qr2),

I(B1i•B2i )((qr1)(qr2)) = IA1(q) ∧ IB2i (r1r2)

≤ IA1(q) ∧ [IA2(r1) ∧ IA2(r2)]
= [IA1(q) ∧ IA2(r1)] ∧ [IA1(q) ∧ IA2(r2)]
= I(A1•A2)(qr1) ∧ I(A1•A2)(qr2),
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F(B1i•B2i )((qr1)(qr2)) = FA1(q) ∨ FB2i (r1r2)

≤ FA1(q) ∨ [FA2(r1) ∨ FA2(r2)]
= [FA1(q) ∨ FA2(r1)] ∨ [FA1(q) ∨ FA2(r2)]
= F(A1•A2)(qr1) ∨ F(A1•A2)(qr2),

for qr1, qr2 ∈ X1 • X2.

Case 2. When q1q2 ∈ E1i , r1r2 ∈ E2i

T(B1i•B2i )((q1r1)(q2r2)) = TB1i (q1q2) ∧ TB2i (r1r2)

≤ [TA1(q1) ∧ TA1(q2)] ∧ [TA2(r1) ∧ TA2(r2)]
= [TA1(q1) ∧ TA2(r1)] ∧ [TA1(q2) ∧ TA2(r2)]
= T(A1•A2)(q1r1) ∧ T(A1•A2)(q2r2),

I(B1i•B2i )((q1r1)(q2r2)) = IB1i (q1q2) ∧ IB2i (r1r2)

≤ [IA1(q1) ∧ IA1(q2)] ∧ [IA2(r1) ∧ IA2(r2)]
= [IA1(q1) ∧ IA2(r1)] ∧ [IA1(q2) ∧ IA2(r2)]
= I(A1•A2)(q1r1) ∧ I(A1•A2)(q2r2),

F(B1i•B2i )((q1r1)(q2r2)) = FB1i (q1q2) ∨ FB2i (r1r2)

≤ [FA1(q1) ∨ FA1(q2)] ∨ [FA2(r1) ∨ FA2(r2)]
= [FA1(q1) ∨ FA2(r1)] ∨ [FA1(q2) ∨ FA2(r2)]
= F(A1•A2)(q1r1) ∨ F(A1•A2)(q2r2),

for q1r1, q2r2 ∈ X1 • X2.
Both cases are satisfied for i ∈ {1, 2, . . . , n}.

Definition 2.35 LetG1 = (A1, B11, B12, . . . , B1n) andG2 = (A2, B21, B22, . . . , B2n)

be neutrosophic graph structures. The strong product of G1 and G2, denoted by

G1 � G2 = (A1 � A2, B11 � B21, B12 � B22, . . . , B1n � B2n),

is defined by the following:

(i)

⎧
⎨

⎩

T(A1�A2)(qr) = (TA1 � TA2)(qr) = TA1(q) ∧ TA2(r)
I(A1�A2)(qr) = (IA1 � IA2)(qr) = IA1(q) ∧ IA2(r)
F(A1�A2)(qr) = (FA1 � FA2)(qr) = FA1(q) ∨ FA2(r)

for all qr ∈ X1 × X2,

(ii)

⎧
⎨

⎩

T(B1i�B2i )(qr1)(qr2) = (TB1i � TB2i )(qr1)(qr2) = TA1(q) ∧ TB2i (r1r2)
I(B1i�B2i )(qr1)(qr2) = (IB1i � IB2i )(qr1)(qr2) = IA1(q) ∧ IB2i (r1r2)
F(B1i�B2i )(qr1)(qr2) = (FB1i � FB2i )(qr1)(qr2) = FA1(q) ∨ FB2i (r1r2)

for all q ∈ X1, r1r2 ∈ E2i ,
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Fig. 2.18 Strong product of two neutrosophic graph structures

(iii)

⎧
⎨

⎩

T(B1i�B2i )(q1r)(q2r) = (TB1i � TB2i )(q1r)(q2r) = TA2(r) ∧ TB1i (q1q2)
I(B1i�B2i )(q1r)(q2r) = (IB1i � IB2i )(q1r)(q2r) = IA2(r) ∧ IB1i (q1q2)
F(B1i�B2i )(q1r)(q2r) = (FB1i � FB2i )(q1r)(q2r) = FA2(r) ∨ FB1i (q1q2)

for all r ∈ X2, q1q2 ∈ E1i ,

(iv)

⎧
⎨

⎩

T(B1i�B2i )(q1r1)(q2r2)=(TB1i � TB2i )(q1r1)(q2r2)=TB1i (q1q2) ∧ TB2i (r1r2)
I(B1i�B2i )(q1r1)(q2r2) = (IB1i � IB2i )(q1r1)(q2r2) = IB1i (q1q2) ∧ IB2i (r1r2)
F(B1i�B2i )(q1r1)(q2r2)=(FB1i � FB2i )(q1r1)(q2r2)=FB1i (q1q2) ∨ FB2i (r1r2)

for all q1q2 ∈ E1i , r1r2 ∈ E2i .

Example 2.19 Strong product of two neutrosophic graph structures G1 and G2

shown in Fig. 2.14 is defined as G1 � G2 = {A1 � A2, B11 � B21, B12 � B22} and
is shown in the Fig. 2.18.

Theorem 2.6 The strong product G1 � G2 = (A1 � A2, B11 � B21, B12 � B22, . . . ,

B1n � B2n) of two neutrosophic graph structures of the graph structures G∗
1 and G

∗
2

is a neutrosophic graph structure of G∗
1 � G∗

2.

Proof According to the definition of strong product, there are three cases:

Case 1. When q ∈ X1, r1r2 ∈ E2i
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T(B1i�B2i )((qr1)(qr2)) = TA1(q) ∧ TB2i (r1r2)

≤ TA1(q) ∧ [TA2(r1) ∧ TA2(r2)]
= [TA1(q) ∧ TA2(r1)] ∧ [TA1(q) ∧ TA2(r2)]
= T(A1�A2)(qr1) ∧ T(A1�A2)(qr2),

I(B1i�B2i )((qr1)(qr2)) = IA1(q) ∧ IB2i (r1r2)

≤ IA1(q) ∧ [IA2(r1) ∧ IA2(r2)]
= [IA1(q) ∧ IA2(r1)] ∧ [IA1(q) ∧ IA2(r2)]
= I(A1�A2)(qr1) ∧ I(A1�A2)(qr2),

F(B1i�B2i )((qr1)(qr2)) = FA1(q) ∨ FB2i (r1r2)

≤ FA1(q) ∨ [FA2(r1) ∨ FA2(r2)]
= [FA1(q) ∨ FA2(r1)] ∨ [FA1(q) ∨ FA2(r2)]
= F(A1�A2)(qr1) ∨ F(A1�A2)(qr2),

for qr1, qr2 ∈ X1 � X2.

Case 2. When q ∈ X2, r1r2 ∈ E1i

T(B1i�B2i )((r1q)(r2q)) = TA2(q) ∧ TB1i (r1r2)

≤ TA2(q) ∧ [TA1(r1) ∧ TA1(r2)]
= [TA2(q) ∧ TA1(r1)] ∧ [TA2(q) ∧ TA1(r2)]
= T(A1�A2)(r1q) ∧ T(A1�A2)(r2q),

I(B1i�B2i )((r1q)(r2q)) = IA2(q) ∧ IB1i (r1r2)

≤ IA2(q) ∧ [IA1(r1) ∧ IA1(r2)]
= [IA2(q) ∧ IA1(r1)] ∧ [IA2(q) ∧ IA1(r2)]
= I(A1�A2)(r1q) ∧ I(A1�A2)(r2q),

F(B1i�B2i )((r1q)(r2q)) = FA2(q) ∨ FB1i (r1r2)

≤ FA2(q) ∨ [FA1(r1) ∨ FA1(r2)]
= [FA2(q) ∨ FA1(r1)] ∨ [FA2(q) ∨ FA1(r2)]
= F(A1�A2)(r1q) ∨ F(A1�A2)(r2q),

for r1q, r2q ∈ X1 � X2.

Case 3. For all q1q2 ∈ E1i , r1r2 ∈ E2i

T(B1i�B2i )((q1r1)(q2r2)) = TB1i (q1q2) ∧ TB2i (r1r2)

≤ [TA1(q1) ∧ TA1(q2)] ∧ [TA2(r1) ∧ TA2(r2)]
= [TA1(q1) ∧ TA2(r1)] ∧ [TA1(q2) ∧ TA2(r2)]
= T(A1�A2)(q1r1) ∧ T(A1�A2)(q2r2),
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I(B1i�B2i )((q1r1)(q2r2)) = IB1i (q1q2) ∧ IB2i (r1r2)

≤ [IA1(q1) ∧ IA1(q2)] ∧ [IA2(r1) ∧ IA2(r2)]
= [IA1(q1) ∧ IA2(r1)] ∧ [IA1(q2) ∧ IA2(r2)]
= I(A1�A2)(q1r1) ∧ I(A1�A2)(q2r2),

F(B1i�B2i )((q1r1)(q2r2)) = FB1i (q1q2) ∨ FB2i (r1r2)

≤ [FA1(q1) ∨ FA1(q2)] ∨ [FA2(r1) ∨ FA2(r2)]
= [FA1(q1) ∨ FA2(r1)] ∨ [FA1(q2) ∨ FA2(r2)]
= F(A1�A2)(q1r1) ∨ F(A1�A2)(q2r2),

for q1r1, q2r2 ∈ X1 � X2.

All cases are satisfied for i = 1, 2, . . . , n.

Definition 2.36 LetG1 = (A1, B11, B12, . . . , B1n) andG2 = (A2, B21, B22, . . . , B2n)

be neutrosophic graph structures. The composition of G1 and G2, denoted by

G1 ◦ G2 = (A1 ◦ A2, B11 ◦ B21, B12 ◦ B22, . . . , B1n ◦ B2n),

is defined by the following:

(i)

⎧
⎨

⎩

T(A1◦A2)(qr) = (TA1 ◦ TA2)(qr) = TA1(q) ∧ TA2(r)
I(A1◦A2)(qr) = (IA1 ◦ IA2)(qr) = IA1(q) ∧ IA2(r)
F(A1◦A2)(qr) = (FA1 ◦ FA2)(qr) = FA1(q) ∨ FA2(r)

for all qr ∈ X1 × X2,

(ii)

⎧
⎨

⎩

T(B1i◦B2i )(qr1)(qr2) = (TB1i ◦ TB2i )(qr1)(qr2) = TA1(q) ∧ TB2i (r1r2)
I(B1i◦B2i )(qr1)(qr2) = (IB1i ◦ IB2i )(qr1)(qr2) = IA1(q) ∧ IB2i (r1r2)
F(B1i◦B2i )(qr1)(qr2) = (FB1i ◦ FB2i )(qr1)(qr2) = FA1(q) ∨ FB2i (r1r2)

for all q ∈ X1, r1r2 ∈ E2i ,

(iii)

⎧
⎨

⎩

T(B1i◦B2i )(q1r)(q2r) = (TB1i ◦ TB2i )(q1r)(q2r) = TA2(r) ∧ TB1i (q1q2)
I(B1i◦B2i )(q1r)(q2r) = (IB1i ◦ IB2i )(q1r)(q2r) = IA2(r) ∧ IB1i (q1q2)
F(B1i◦B2i )(q1r)(q2r) = (FB1i ◦ FB2i )(q1r)(q2r) = FA2(r) ∨ FB1i (q1q2)

for all r ∈ X2, q1q2 ∈ E1i ,

(iv)

⎧
⎨

⎩

T(B1i ◦B2i )(q1r1)(q2r2) = (TB1i ◦ TB2i )(q1r1)(q2r2) = TB1i (q1q2) ∧ TA2 (r1) ∧ TA2 (r2)
I(B1i ◦B2i )(q1r1)(q2r2) = (IB1i ◦ IB2i )(q1r1)(q2r2) = IB1i (q1q2) ∧ IA2 (r1) ∧ IA2 (r2)
F(B1i ◦B2i )(q1r1)(q2r2) = (FB1i ◦ FB2i )(q1r1)(q2r2) = FB1i (q1q2) ∨ FA2 (r1) ∨ FA2 (r2)

for all q1q2 ∈ E1i , r1r2 ∈ E2i such that r1 �= r2.

Example 2.20 Composition of two neutrosophic graph structures G1 and G2 shown
in Fig. 2.14 is defined as G1 ◦ G2 = {A1 ◦ A2, B11 ◦ B21, B12 ◦ B22} and is shown in
the Fig. 2.19.

Theorem 2.7 The composition G1 ◦ G2 = (A1 ◦ A2, B11 ◦ B21, B12 ◦ B22, . . . ,

B1n ◦ B2n) of two neutrosophic graph structures of the graph structures G∗
1 and

G∗
2 is a neutrosophic graph structure of G∗

1 ◦ G∗
2.
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Fig. 2.19 Composition of two neutrosophic graph structures

Proof According to the definition of composition, there are three cases:

Case 1. When q ∈ X1, r1r2 ∈ E2i

T(B1i◦B2i )((qr1)(qr2)) = TA1(q) ∧ TB2i (r1r2)

≤ TA1(q) ∧ [TA2(r1) ∧ TA2(r2)]
= [TA1(q) ∧ TA2(r1)] ∧ [TA1(q) ∧ TA2(r2)]
= T(A1◦A2)(qr1) ∧ T(A1◦A2)(qr2),
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I(B1i◦B2i )((qr1)(qr2)) = IA1(q) ∧ IB2i (r1r2)

≤ IA1(q) ∧ [IA2(r1) ∧ IA2(r2)]
= [IA1(q) ∧ IA2(r1)] ∧ [IA1(q) ∧ IA2(r2)]
= I(A1◦A2)(qr1) ∧ I(A1◦A2)(qr2),

F(B1i◦B2i )((qr1)(qr2)) = FA1(q) ∨ FB2i (r1r2)

≤ FA1(q) ∨ [FA2(r1) ∨ FA2(r2)]
= [FA1(q) ∨ FA2(r1)] ∨ [FA1(q) ∨ FA2(r2)]
= F(A1◦A2)(qr1) ∨ F(A1◦A2)(qr2),

for qr1, qr2 ∈ X1 ◦ X2.

Case 2. When q ∈ X2, r1r2 ∈ E1i

T(B1i◦B2i )((r1q)(r2q)) = TA2(q) ∧ TB1i (r1r2)

≤ TA2(q) ∧ [TA1(r1) ∧ TA1(r2)]
= [TA2(q) ∧ TA1(r1)] ∧ [TA2(q) ∧ TA1(r2)]
= T(A1◦A2)(r1q) ∧ T(A1◦A2)(r2q),

I(B1i◦B2i )((r1q)(r2q)) = IA2(q) ∧ IB1i (r1r2)

≤ IA2(q) ∧ [IA1(r1) ∧ IA1(r2)]
= [IA2(q) ∧ IA1(r1)] ∧ [IA2(q) ∧ IA1(r2)]
= I(A1◦A2)(r1q) ∧ I(A1◦A2)(r2q),

F(B1i◦B2i )((r1q)(r2q)) = FA2(q) ∨ FB1i (r1r2)

≤ FA2(q) ∨ [FA1(r1) ∨ FA1(r2)]
= [FA2(q) ∨ FA1(r1)] ∨ [FA2(q) ∨ FA1(r2)]
= F(A1◦A2)(r1q) ∨ F(A1◦A2)(r2q),

for r1q, r2q ∈ X1 ◦ X2.

Case 3. For all q1q2 ∈ E1i , r1, r2 ∈ X2 such that r1 �= r2

T(B1i◦B2i )((q1r1)(q2r2)) = TB1i (q1q2) ∧ TA2(r1) ∧ TA2(r2)

≤ [TA1(q1) ∧ TA1(q2)] ∧ TA2(r1) ∧ TA2(r2)

= [TA1(q1) ∧ TA2(r1)] ∧ [TA1(q2) ∧ TA2(r2)]
= T(A1◦A2)(q1r1) ∧ T(A1◦A2)(q2r2),

I(B1i◦B2i )((q1r1)(q2r2)) = IB1i (q1q2) ∧ IA2(r1) ∧ IA2(r2)

≤ [IA1(q1) ∧ IA1(q2)] ∧ [IA2(r1) ∧ IA2(r2)]
= [IA1(q1) ∧ IA2(r1)] ∧ [IA1(q2) ∧ IA2(r2)]
= I(A1◦A2)(q1r1) ∧ I(A1◦A2)(q2r2),
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Fig. 2.20 Union of two neutrosophic graph structures

F(B1i◦B2i )((q1r1)(q2r2)) = FB1i (q1q2) ∨ FA2(r1) ∨ FA2(r2)

≤ [FA1(q1) ∨ FA1(q2)] ∨ [FA2(r1) ∨ FA2(r2)]
= [FA1(q1) ∨ FA2(r1)] ∨ [FA1(q2) ∨ FA2(r2)]
= F(A1◦A2)(q1r1) ∨ F(A1◦A2)(q2r2),

for q1r1, q2r2 ∈ X1 ◦ X2.

All cases are satisfied for i = 1, 2, . . . , n.

Definition 2.37 LetG1 = (A1, B11, B12, . . . , B1n) andG2 = (A2, B21, B22, . . . , B2n)

be neutrosophic graph structures. The union of G1 and G2, denoted by

G1 ∪ G2 = (A1 ∪ A2, B11 ∪ B21, B12 ∪ B22, . . . , B1n ∪ B2n),

is defined by following:

(i)

⎧
⎨

⎩

T(A1∪A2)(q) = (TA1 ∪ TA2)(q) = TA1(q) ∨ TA2(q)
I(A1∪A2)(q) = (IA1 ∪ IA2)(q) = IA1(q) ∨ IA2(q)
F(A1∪A2)(q) = (FA1 ∪ FA2)(q) = FA1(q) ∧ FA2(q)

for all q ∈ X1 ∪ X2,

(ii)

⎧
⎨

⎩

T(B1i∪B2i )(qr) = (TB1i ∪ TB2i )(qr) = TB1i (qr) ∨ TB2i (qr)
I(B1i∪B2i )(qr) = (IB1i ∪ IB2i )(qr) = IB1i (qr) ∨ IB2i (qr)
F(B1i∪B2i )(qr) = (FB1i ∪ FB2i )(qr) = FB1i (qr) ∧ FB2i (qr)

for all qr ∈ E1i ∪ E2i .

Example 2.21 Union of two neutrosophic graph structures G1 and G2 shown in
Fig. 2.14 is defined as G1 ∪ G2 = {A1 ∪ A2, B11 ∪ B21, B12 ∪ B22} and is shown in
the Fig. 2.20.

Theorem 2.8 The union G1 ∪ G2 = (A1 ∪ A2, B11 ∪ B21, B12 ∪ B22, . . . , B1n ∪
B2n) of two neutrosophic graph structures of the graph structures G∗

1 and G∗
2 is

a neutrosophic graph structure of G∗
1 ∪ G∗

2.
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Proof Let q1q2 ∈ E1i ∪ E2i . Here we consider two cases:

Case 1. Whenq1, q2 ∈ X1, then according toDefinition2.37,TA2(q1) = TA2(q2) =
TB2i (q1q2) = 0, IA2(q1) = IA2(q2) = IB2i (q1q2) = 0, FA2(q1) = FA2(q2) = FB2i

(q1q2) = 0, so

T(B1i∪B2i )(q1q2) = TB1i (q1q2) ∨ TB2i (q1q2)

= TB1i (q1q2) ∨ 0

≤ [TA1(q1) ∧ TA1(q2)] ∨ 0

= [TA1(q1) ∨ 0] ∧ [TA1(q2) ∨ 0]
= [TA1(q1) ∨ TA2(q1)] ∧ [TA1(q2) ∨ TA2(q2)]
= T(A1∪A2)(q1) ∧ T(A1∪A2)(q2),

I(B1i∪B2i )(q1q2) = IB1i (q1q2) ∨ IB2i (q1q2)

= IB1i (q1q2) ∨ 0

≤ [IA1(q1) ∧ IA1(q2)] ∨ 0

= [IA1(q1) ∨ 0] ∧ [IA1(q2) ∨ 0]
= [IA1(q1) ∨ IA2(q1)] ∧ [IA1(q2) ∨ IA2(q2)]
= I(A1∪A2)(q1) ∧ I(A1∪A2)(q2),

F(B1i∪B2i )(q1q2) = FB1i (q1q2) ∧ FB2i (q1q2)

= FB1i (q1q2) ∧ 0

≤ [FA1(q1) ∨ FA1(q2)] ∧ 0

= [FA1(q1) ∧ 0] ∨ [FA1(q2) ∧ 0]
= [FA1(q1) ∧ FA2(q1)] ∨ [FA1(q2) ∧ FA2(q2)]
= F(A1∪A2)(q1) ∨ F(A1∪A2)(q2),

for q1, q2 ∈ X1 ∪ X2.
Case 2. Whenq1, q2 ∈ X2, then according toDefinition2.37,TA1(q1) = TA1(q2) =

TB1i (q1q2) = 0, IA1(q1) = IA1(q2) = IB1i (q1q2) = 0, FA1(q1) = FA1(q2) = FB1i

(q1q2) = 0, so

T(B1i∪B2i )(q1q2) = TB1i (q1q2) ∨ TB2i (q1q2)

= TB2i (q1q2) ∨ 0

≤ [TA2(q1) ∧ TA2(q2)] ∨ 0

= [TA2(q1) ∨ 0] ∧ [TA2(q2) ∨ 0]
= [TA1(q1) ∨ TA2(q1)] ∧ [TA1(q2) ∨ TA2(q2)]
= T(A1∪A2)(q1) ∧ T(A1∪A2)(q2),
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I(B1i∪B2i )(q1q2) = IB1i (q1q2) ∨ IB2i (q1q2)

= IB2i (q1q2) ∨ 0

≤ [IA2(q1) ∧ IA2(q2)] ∨ 0

= [IA2(q1) ∨ 0] ∧ [IA2(q2) ∨ 0]
= [IA1(q1) ∨ IA2(q1)] ∧ [IA1(q2) ∨ IA2(q2)]
= I(A1∪A2)(q1) ∧ I(A1∪A2)(q2),

F(B1i∪B2i )(q1q2) = FB1i (q1q2) ∧ FB2i (q1q2)

= FB2i (q1q2) ∧ 0

≤ [FA2(q1) ∨ FA2(q2)] ∧ 0

= [FA2(q1) ∧ 0] ∨ [FA2(q2) ∧ 0]
= [FA1(q1) ∧ FA2(q1)] ∨ [FA1(q2) ∧ FA2(q2)]
= F(A1∪A2)(q1) ∨ F(A1∪A2)(q2),

for q1, q2 ∈ X1 ∪ X2.

Both cases are satisfied ∀i ∈ {1, 2, . . . , n}. This completes the proof.

Theorem 2.9 Let G∗ = (X1 ∪ X2, E11 ∪ E21, E12 ∪ E22, . . . , E1n ∪ E2n) be the
union of two graph structures G∗

1 = (X1, E11, E12, . . . , E1n) andG∗
2 = (X2, E21, E22,

. . . , E2n). Then every neutrosophic graph structure G = (A, B1, B2, . . . , Bn) of G∗
is union of two neutrosophic graph structures G1 = (A1, B11, B12, . . . , B1n) and G2

= (A2, B21, B22, . . . , B2n) of graph structures G∗
1 and G∗

2, respectively.

Proof First we define A1, A2, B1i and B2i for i ∈ {1, 2, . . . , n} as:
TA1(q) = TA(q), IA1(q) = IA(q), FA1(q) = FA(q), if q ∈ X1

TA2(q) = TA(q), IA2(q) = IA(q), FA2(q) = FA(q), if q ∈ X2

TB1i (q1q2) = TBi (q1q2), IB1i (q1q2) = IBi (q1q2), FB1i (q1q2) = FBi (q1q2), if q1q2 ∈
E1i ,TB2i (q1q2) = TBi (q1q2), IB2i (q1q2) = IBi (q1q2), FB2i (q1q2) = FBi (q1q2), ifq1q2 ∈
E2i . Then A = A1 ∪ A2 and Bi = B1i ∪ B2i , i ∈ {1, 2, . . . , n}.

Now for q1q2 ∈ Eki , k = 1, 2, i = 1, 2, . . . , n
TBki (q1q2) = TBi (q1q2) ≤ TA(q1) ∧ TA(q2) = TAk (q1) ∧ TAk (q2),
IBki (q1q2) = IBi (q1q2) ≤ IA(q1) ∧ IA(q2) = IAk (q1) ∧ IAk (q2),
FBki (q1q2) = FBi (q1q2) ≤ FA(q1) ∨ FA(q2) = FAk (q1) ∨ FAk (q2),
i.e.
Gk = (Ak, Bk1, Bk2, . . . , Bkn) is a neutrosophic graph structure of G∗

k , k = 1, 2.
Thus G = (A, B1, B2, . . . , Bn), a neutrosophic graph structure of G∗ = G∗

1 ∪ G∗
2, is

union of two neutrosophic graph structures G1 and G2.

Definition 2.38 LetG1 = (A1, B11, B12, . . . , B1n) andG2 = (A2, B21, B22, . . . , B2n)

be neutrosophic graph structures and let X1 ∩ X2 = ∅. The join ofG1 andG2, denoted
by
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Fig. 2.21 Join of two neutrosophic graph structures

G1 + G2 = (A1 + A2, B11 + B21, B12 + B22, . . . , B1n + B2n),

is defined by the following:

(i)

⎧
⎨

⎩

T(A1+A2)(q) = T(A1∪A2)(q)
I(A1+A2)(q) = I(A1∪A2)(q)
F(A1+A2)(q) = F(A1∪A2)(q)

for all q ∈ X1 ∪ X2,

(ii)

⎧
⎨

⎩

T(B1i+B2i )(qr) = T(B1i∪B2i )(qr)
I(B1i+B2i )(qr) = I(B1i∪B2i )(qr)
F(B1i+B2i )(qr) = F(B1i∪B2i )(qr)

for all qr ∈ E1i ∪ E2i ,

(iii)

⎧
⎨

⎩

T(B1i+B2i )(qr) = (TB1i + TB2i )(qr) = TA1(q) ∧ TA2(r)
I(B1i+B2i )(qr) = (IB1i + IB2i )(qr) = IA1(q) ∧ IA2(r)
F(B1i+B2i )(qr) = (FB1i + FB2i )(qr) = FA1(q) ∨ FA2(r)

for all q ∈ X1, r ∈ X2.

Example 2.22 Join of two neutrosophic graph structures G1 and G2 shown in
Fig. 2.14 is defined as G1 + G2 = {A1 + A2, B11 + B21, B12 + B22} and is shown
in the Fig. 2.21.

Theorem 2.10 The join G1 + G2 = (A1 + A2, B11 + B21, B12 + B22, . . . , B1n +
B2n) of two neutrosophic graph structures of the graph structures G∗

1 and G∗
2 is a

neutrosophic graph structure of G∗
1 + G∗

2.

Proof Let q1q2 ∈ E1i + E2i . Here we consider three cases:

Case 1. Whenq1, q2 ∈ X1, then according toDefinition2.38,TA2(q1) = TA2(q2) =
TB2i (q1q2) = 0, IA2(q1) = IA2(q2) = IB2i (q1q2) = 0, FA2(q1) = FA2(q2) =
FB2i (q1q2) = 0, so,

T(B1i+B2i )(q1q2) = TB1i (q1q2) ∨ TB2i (q1q2)
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= TB1i (q1q2) ∨ 0

≤ [TA1(q1) ∧ TA1(q2)] ∨ 0

= [TA1(q1) ∨ 0] ∧ [TA1(q2) ∨ 0]
= [TA1(q1) ∨ TA2(q1)] ∧ [TA1(q2) ∨ TA2(q2)]
= T(A1+A2)(q1) ∧ T(A1+A2)(q2),

I(B1i+B2i )(q1q2) = IB1i (q1q2) ∨ IB2i (q1q2)

= IB1i (q1q2) ∨ 0

≤ [IA1(q1) ∧ IA1(q2)] ∨ 0

= [IA1(q1) ∨ 0] ∧ [IA1(q2) ∨ 0]
= [IA1(q1) ∨ IA2(q1)] ∧ [IA1(q2) ∨ IA2(q2)]
= I(A1+A2)(q1) ∧ I(A1+A2)(q2),

F(B1i+B2i )(q1q2) = FB1i (q1q2) ∧ FB2i (q1q2)

= FB1i (q1q2) ∧ 0

≤ [FA1(q1) ∨ FA1(q2)] ∧ 0

= [FA1(q1) ∧ 0] ∨ [FA1(q2) ∧ 0]
= [FA1(q1) ∧ FA2(q1)] ∨ [FA1(q2) ∧ FA2(q2)]
= F(A1+A2)(q1) ∨ F(A1+A2)(q2),

for q1, q2 ∈ X1 + X2.
Case 2. Whenq1, q2 ∈ X2, then according toDefinition2.38,TA1(q1) = TA1(q2) =

TB1i (q1q2) = 0, IA1(q1) = IA1(q2) = IB1i (q1q2) = 0, FA1(q1) = FA1(q2) =
FB1i (q1q2) = 0, so

T(B1i+B2i )(q1q2) = TB1i (q1q2) ∨ TB2i (q1q2)

= TB2i (q1q2) ∨ 0

≤ [TA2(q1) ∧ TA2(q2)] ∨ 0

= [TA2(q1) ∨ 0] ∧ [TA2(q2) ∨ 0]
= [TA1(q1) ∨ TA2(q1)] ∧ [TA1(q2) ∨ TA2(q2)]
= T(A1+A2)(q1) ∧ T(A1+A2)(q2),

I(B1i+B2i )(q1q2) = IB1i (q1q2) ∨ IB2i (q1q2)

= IB2i (q1q2) ∨ 0

≤ [IA2(q1) ∧ IA2(q2)] ∨ 0

= [IA2(q1) ∨ 0] ∧ [IA2(q2) ∨ 0]
= [IA1(q1) ∨ IA2(q1)] ∧ [IA1(q2) ∨ IA2(q2)]
= I(A1+A2)(q1) ∧ I(A1+A2)(q2),
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F(B1i+B2i )(q1q2) = FB1i (q1q2) ∧ FB2i (q1q2)

= FB2i (q1q2) ∧ 0

≤ [FA2(q1) ∨ FA2(q2)] ∧ 0

= [FA2(q1) ∧ 0] ∨ [FA2(q2) ∧ 0]
= [FA1(q1) ∧ FA2(q1)] ∨ [FA1(q2) ∧ FA2(q2)]
= F(A1+A2)(q1) ∨ F(A1+A2)(q2),

for q1, q2 ∈ X1 + X2.
Case 3. When q1 ∈ X1, q2 ∈ X2, then according to Definition2.38,

TA1(q2) = TA2(q1) = 0, IA1(q2) = IA2(q1) = 0, FA1(q2) = FA2(q1) = 0, so

T(B1i+B2i )(q1q2) = TA1(q1) ∧ TA2(q2)

= [TA1(q1) ∨ 0] ∧ [TA2(q2) ∨ 0]
= [TA1(q1) ∨ TA2(q1)] ∧ [TA2(q2) ∨ TA1(q2)]
= T(A1+A2)(q1) ∧ T(A1+A2)(q2),

I(B1i+B2i )(q1q2) = IA1(q1) ∧ IA2(q2)

= [IA1(q1) ∨ 0] ∧ [IA2(q2) ∨ 0]
= [IA1(q1) ∨ IA2(q1)] ∧ [IA2(q2) ∨ IA1(q2)]
= I(A1+A2)(q1) ∧ I(A1+A2)(q2),

F(B1i+B2i )(q1q2) = FA1(q1) ∨ FA2(q2)

= [FA1(q1) ∧ 0] ∨ [FA2(q2) ∧ 0]
= [FA1(q1) ∧ FA2(q1)] ∨ [FA2(q2) ∧ FA1(q2)]
= F(A1+A2)(q1) ∨ F(A1+A2)(q2),

for q1, q2 ∈ X1 + X2.

All cases are satisfied ∀i ∈ {1, 2, . . . , n}.
Theorem 2.11 If G∗ = (X1 + X2, E11 + E21, E12 + E22, . . . , E1n + E2n) is join of
two graph structures G∗

1 = (X1, E11, E12, . . . , E1n) and G∗
2 = (X2, E21, E22, . . . ,

E2n). Then every strong neutrosophic graph structure G = (A, B1, B2, . . . , Bn) of
G is join of two strong neutrosophic graph structures G1 = (A1, B11, B12, . . . , B1n)

and G2 = (A2, B21, B22, . . . , B2n) of graph structures G∗
1 and G∗

2, respectively.

Proof First we define Ak and Bki for k = 1, 2 and i = 1, 2, . . . , n as:
TAk (q) = TA(q), IAk (q) = IA(q), FAk (q) = FA(q), if q ∈ Xk

TBki (q1q2) = TBi (q1q2), IBki (q1q2) = IBi (q1q2), FBki (q1q2) = FBi (q1q2), if q1q2 ∈
Eki
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Now for q1q2 ∈ Eki , k = 1, 2, i = 1, 2, . . . , n
TBki (q1q2) = TBi (q1q2) = TA(q1) ∧ TA(q2) = TAk (q1) ∧ TAk (q2),
IBki (q1q2) = IBi (q1q2) = IA(q1) ∧ IA(q2) = IAk (q1) ∧ IAk (q2),
FBki (q1q2) = FBi (q1q2) = FA(q1) ∨ TA(q2) = TAk (q1) ∨ TAk (q2),
i.e.
Gk = (Ak, Bk1, Bk2, . . . , Bkn) is a strong neutrosophic graph structure of G∗

k , k = 1,2.
Moreover, G is join of G1 and G2 as shown:
UsingDefinitions2.37 and 2.38, A = A1 ∪ A2 = A1 + A2 and Bi = B1i ∪ B2i =

B1i + B2i , ∀q1q2 ∈ E1i ∪ E2i .
When q1q2 ∈ E1i + E2i (E1i ∪ E2i ), i.e. q1 ∈ X1 and q2 ∈ X2

TBi (q1q2) = TA(q1) ∧ TA(q2) = TAk (q1) ∧ TAk (q2) = T(B1i+B2i )(q1q2),
IBi (q1q2) = IA(q1) ∧ IA(q2) = IAk (q1) ∧ IAk (q2) = I(B1i+B2i )(q1q2),
FBi (q1q2) = FA(q1) ∨ FA(q2) = FAk (q1) ∨ FAk (q2) = F(B1i+B2i )(q1q2),
Calculations are similar when q1 ∈ X2, q2 ∈ X1. It is true when i = 1, 2, . . . , n. This
completes the proof.

2.4 Applications of Neutrosophic Graph Structures

Graph structures are amazing source of graph-theoretical notions to represent the
most prominent relations between objects. But these graph structures do not repre-
sent all real-world relations. Therefore, fuzzy graph structures are important to repre-
sent the relations between objects of uncertain systems existing in nature. However,
graph structures and fuzzy graph structures are failed to depict the most prominent
relations between objects in many real-world phenomenons due to natural existence
of indeterminacyor neutrality. It increases the utility of neutrosophic graph structures.

2.4.1 Detection of Crucial Crimes During Maritime Trade

Waters are very important for trade in whole world but crimes through waters are
increasing day by day. Crimes held during maritime trade are in abundance but
some are very crucial including human trafficking, illegal carrying of weapons, black
money transfer, smuggling of precious metals, drug trafficking and smuggling of rare
plants and animals. Using neutrosophic graph structure, we can easily investigate the
fact that between any two countries which maritime crime is chronic and increasing
rapidly with time. Moreover, we can decide which country is most sensitive for
particular type of maritime crimes. We consider a set X consisting of eight countries.

X={Bangladesh, Malaysia, Singapore, United Arab Emirates, Pakistan, India,
Kenya, Italy}. Let A be the neutrosophic set on X , defined in Table2.1.

In Table2.1, T depicts the importance of that particular country in the world due
to its geographic position, F indicates the degree of its nonimportance in the world,
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Table 2.1 Neutrosophic set A of eight countries

Country T I F

Bangladesh 0.8 0.7 0.6

Malaysia 0.7 0.7 0.8

Singapore 0.9 0.5 0.5

United Arab Emirates 1.0 0.5 0.6

Pakistan 0.9 0.5 0.5

India 0.8 0.7 0.7

Kenya 0.7 0.6 0.7

Italy 0.9 0.6 0.5

Table 2.2 Neutrosophic set of crimes between Pakistan and other countries during maritime trade

Type of crime (P, UAE) (P, B) (P, M) (P, S)

Human
trafficking

(0.7, 0.4, 0.5) (0.8, 0.3, 0.4) (0.7, 0.4, 0.2) (0.6, 0.4, 0.2)

Illegal carrying of
weapons

(0.6, 0.3, 0.6) (0.7, 0.3, 0.4) (0.4, 0.5, 0.5) (0.4, 0.3, 0.5)

Black money
transfer

(0.6, 0.3, 0.2) (0.7, 0.5, 0.4) (0.2, 0.4, 0.3) (0.9, 0.2, 0.2)

Smuggling of
precious metals

(0.8, 0.3, 0.2) (0.6, 0.3, 0.3) (0.2, 0.4, 0.3) (0.8, 0.5, 0.5)

Drug trafficking (0.7, 0.3, 0.3) (0.5, 0.4, 0.3) (0.6, 0.5, 0.6) (0.8, 0.4, 0.3)

Smuggling of
rare plants and
animals

(0.3, 0.5, 0.5) (0.4, 0.3, 0.4) (0.4, 0.4, 0.5) (0.2, 0.3, 0.3)

and I expresses, to which extent it is undecided/indeterminate to be beneficial for
the world, geographically.

Let Bangladesh = B,Malaysia =M, Singapore = S, United Arab Emirates = UAE,
Pakistan = P, India = I, Kenya = K, Italy = IT.

In Tables2.2, 2.3, 2.4, 2.5, 2.6, 2.7 and 2.8, we have shown the values of T , I and
F of different crimes for each pair of countries.

Many relations on set X can be defined, let we define six relations on X as:
E1 =Human trafficking, E2 = Illegal carrying ofweapons, E3 =Blackmoney transfer,
E4 = Smuggling of precious metals, E5 = Drug trafficking, E6 = Smuggling of rare
plants and animals, such that (X, E1, E2, E3, E4, E5, E6) is a graph structure. An
element in a relation detects that kind of crime during maritime trade between those
two countries.

As (X, E1, E2, E3, E4, E5, E6) is a graph structure, an element will not be in
more than one relations, so it can appear just once. Therefore, we will consider it an
element of that relation for which its percentage of truth is high, and percentage of
both falsity and indeterminacy is low as compared to other relations.
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Table 2.3 Neutrosophic set of crimes between UAE and other countries during maritime trade

Type of crime (UAE, B) (UAE, M) (UAE, S) (UAE, I)

Human
trafficking

(0.7, 0.3, 0.4) (0.6, 0.2, 0.5) (0.3, 0.2, 0.5) (0.6, 0.4, 0.2)

Illegal carrying of
weapons

(0.5, 0.2, 0.2) (0.5, 0.3, 0.2) (0.4, 0.3, 0.5) (0.4, 0.3, 0.5)

Black money
transfer

(0.6, 0.3, 0.3) (0.6, 0.2, 0.3) (0.6, 0.2, 0.3) (0.6, 0.4, 0.5)

Smuggling of
precious metals

(0.6, 0.2, 0.2) (0.6, 0.3, 0.3) (0.6, 0.3, 0.3) (0.8, 0.3, 0.2)

Drug trafficking (0.6, 0.2, 0.2) (0.5, 0.4, 0.3) (0.7, 0.3, 0.2) (0.7, 0.4, 0.3)

Smuggling of
rare plants and
animals

(0.3, 0.4, 0.4) (0.4, 0.3, 0.4) (0.4, 0.2, 0.5) (0.3, 0.3, 0.3)

Table 2.4 Neutrosophic set of crimes between Bangladesh and other countries during maritime
trade

Type of crime (B, M) (B, S) (B, I) (B, K)

Human
trafficking

(0.6, 0.3, 0.4) (0.8, 0.3, 0.2) (0.5, 0.2, 0.5) (0.6, 0.4, 0.5)

Illegal carrying of
weapons

(0.5, 0.2, 0.5) (0.5, 0.3, 0.2) (0.7, 0.3, 0.5) (0.4, 0.3, 0.5)

Black money
transfer

(0.4, 0.2, 0.2) (0.7, 0.4, 0.3) (0.1, 0.1, 0.2) (0.1, 0.3, 0.4)

Smuggling of
precious metals

(0.4, 0.2, 0.2) (0.6, 0.3, 0.3) (0.2, 0.3, 0.3) (0.2, 0.2, 0.4)

Drug trafficking (0.6, 0.2, 0.2) (0.5, 0.4, 0.3) (0.6, 0.3, 0.5) (0.5, 0.4, 0.4)

Smuggling of
rare plants and
animals

(0.2, 0.3, 0.3) (0.3, 0.2, 0.3) (0.2, 0.1, 0.4) (0.5, 0.2, 0.2)

According to given data, we write the elements in relation to their truth, falsity
and indeterminacy values, resulting sets are neutrosophic sets on E1, E2, E3, E4,
E5, E6, respectively. We can name these sets as B1, B2, B3, B4, B5, B6, respectively.
Let
E1 = {(Bangladesh, Pakistan), (Malaysia, Pakistan), (Bangladesh,
Singapore)},
E2 = {(Pakistan, I ndia)},
E3 = {(Singapore, Pakistan)},
E4 = {(I ndia, Singapore), (United ArabEmirates, I ndia)},
E5 = {(I taly, Pakistan), (I ndia, I taly)},
E6 = {(Kenya, Singapore)}.
And corresponding neutrosophic sets are:
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Table 2.5 Neutrosophic set of crimes between Malaysia and other countries during maritime trade

Type of crime (M, S) (M, I) (M, K) (M, IT)

Human
trafficking

(0.5, 0.3, 0.4) (0.6, 0.2, 0.3) (0.3, 0.2, 0.5) (0.6, 0.4, 0.5)

Illegal carrying of
weapons

(0.6, 0.2, 0.2) (0.5, 0.3, 0.2) (0.4, 0.3, 0.5) (0.4, 0.3, 0.5)

Black money
transfer

(0.6, 0.3, 0.3) (0.2, 0.2, 0.3) (0.2, 0.2, 0.3) (0.2, 0.4, 0.5)

Smuggling of
precious metals

(0.6, 0.2, 0.2) (0.6, 0.3, 0.3) (0.2, 0.3, 0.3) (0.2, 0.2, 0.6)

Drug trafficking (0.5, 0.2, 0.2) (0.5, 0.4, 0.3) (0.4, 0.3, 0.6) (0.7, 0.4, 0.2)

Smuggling of
rare plants and
animals

(0.3, 0.4, 0.4) (0.4, 0.3, 0.4) (0.6, 0.2, 0.2) (0.5, 0.3, 0.3)

Table 2.6 Neutrosophic set of crimes between Singapore and other countries duringmaritime trade

Type of crime (S, I) (S, K) (S, IT) (P, I)

Human
trafficking

(0.5, 0.3, 0.4) (0.3, 0.2, 0.5) (0.3, 0.2, 0.5) (0.6, 0.4, 0.6)

Illegal carrying of
weapons

(0.7, 0.4, 0.5) (0.5, 0.3, 0.2) (0.4, 0.3, 0.5) (0.8, 0.2, 0.4)

Black money
transfer

(0.5, 0.3, 0.4) (0.6, 0.2, 0.3) (0.6, 0.2, 0.3) (0.7, 0.4, 0.5)

Smuggling of
precious metals

(0.8, 0.3, 0.7) (0.6, 0.3, 0.3) (0.6, 0.3, 0.3) (0.6, 0.2, 0.4)

Drug trafficking (0.7, 0.3, 0.4) (0.5, 0.4, 0.3) (0.6, 0.3, 0.2) (0.8, 0.4, 0.4)

Smuggling of
rare plants and
animals

(0.7, 0.5, 0.6) (0.4, 0.3, 0.4) (0.6, 0.2, 0.5) (0.7, 0.3, 0.3)

B1 = {((B, P), 0.8, 0.2, 0.2),((M, P), 0.7, 0.4, 0.2),((B, S), 0.8, 0.3, 0.2)},
B2 = {((P, I ), 0.8, 0.2, 0.4)},
B3 = {((S, P), 0.9, 0.2, 0.2), },
B4 = {((I, S), 0.8, 0.3, 0.4),((U AE, I ), 0.8, 0.3, 0.2)},
B5 = {((I T, P), 0.9, 0.3, 0.3),((I, I T ), 0.8, 0.3, 0.3)},
B6 = {((K , S), 0.7, 0.2, 0.4)}.

Clearly, (A, B1, B2, B3, B4, B5, B6) is a neutrosophic graph structure as shown
in Fig. 2.22.

In neutrosophic graph structure shown in Fig. 2.22, every edge detects most fre-
quent crime between adjacent countries during maritime trade. For instance, most
frequent maritime crime between Pakistan and Singapore is black money transfer, its
strength is 90%, weakness is 20% and indeterminacy is 20%. We can also note that
for relation human trafficking, vertex Pakistan has highest vertex degree, it means
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Table 2.7 Neutrosophic set of crimes between Italy and other countries during maritime trade

Type of crime (IT, P) (IT, UAE) (IT, B) (IT, I)

Human
trafficking

(0.5, 0.3, 0.4) (0.3, 0.2, 0.5) (0.3, 0.2, 0.5) (0.6, 0.4, 0.6)

Illegal carrying of
weapons

(0.8, 0.3, 0.3) (0.6, 0.3, 0.2) (0.4, 0.3, 0.5) (0.7, 0.3, 0.5)

Black money
transfer

(0.6, 0.3, 0.3) (0.5, 0.2, 0.3) (0.2, 0.2, 0.3) (0.5, 0.4, 0.5)

Smuggling of
precious metals

(0.7, 0.3, 0.3) (0.6, 0.3, 0.3) (0.2, 0.3, 0.3) (0.7, 0.3, 0.6)

Drug trafficking (0.9, 0.3, 0.3) (0.6, 0.4, 0.3) (0.7, 0.3, 0.5) (0.8, 0.3, 0.3)

Smuggling of
rare plants and
animals

(0.3, 0.4, 0.4) (0.4, 0.3, 0.4) (0.6, 0.2, 0.5) (0.7, 0.3, 0.3)

Table 2.8 Neutrosophic set of crimes between Kenya and other countries during maritime trade

Type of crime (K, P) (K, UAE) (K, I) (K, IT)

Human
trafficking

(0.5, 0.3, 0.4) (0.6, 0.2, 0.5) (0.5, 0.2, 0.5) (0.6, 0.4, 0.5)

Illegal carrying of
weapons

(0.6, 0.2, 0.5) (0.5, 0.3, 0.4) (0.5, 0.3, 0.5) (0.4, 0.3, 0.5)

Black money
transfer

(0.5, 0.3, 0.3) (0.5, 0.2, 0.3) (0.5, 0.2, 0.3) (0.5, 0.4, 0.5)

Smuggling of
precious metals

(0.4, 0.2, 0.2) (0.6, 0.3, 0.3) (0.6, 0.3, 0.3) (0.4, 0.2, 0.4)

Drug trafficking (0.7, 0.2, 0.2) (0.5, 0.4, 0.3) (0.5, 0.3, 0.5) (0.8, 0.4, 0.2)

Smuggling of
rare plants and
animals

(0.3, 0.4, 0.4) (0.7, 0.3, 0.4) (0.6, 0.2, 0.4) (0.7, 0.3, 0.3)

Pakistan is most sensitive country for human trafficking. Moreover, according to our
neutrosophic graph structure, most frequent crime is human trafficking. It means
that navy and maritime forces of these eight countries should take action to control
human trafficking.

2.4.2 Decision-Making of Prominent Relationships

Among the countries of this world, various types of relationships exist, for example
friendship, rival or enemy, religious affection, trade, political and military. Between
any two countries, all relationships are not of same strength. Some relationships are
comparatively stronger than other relationships. In general, it is difficult and time



2.4 Applications of Neutrosophic Graph Structures 123

Malaysia

India

smuggling of rare plants and animals

Kenya

Singapore

Pakistan

Bangladesh

Italy
UAE

(0.8, 0.3, 0.2)

(0.8, 0.3, 0.3)

(0.7, 0.2, 0.4)

(0.7, 0.4, 0.2)

(0.9, 0.3, 0.3)

(0.8, 0.3, 0.
4)

(0
.9
, 0
.2
, 0
.2
)

(0.8,
0.3, 0

.2)

(0.8, 0.2, 0.4)

(0
.8
, 0
.3
, 0
.4
)

Human trafficking

H
u
m

an
tr

affi
ck

in
g

Illegal carrying of weapons

Human trafficking

B
la

ck
m

on
ey

tr
an

sf
er

Smuggling of precious metals

Drug trafficking

Drug
traffi

cking

Fig. 2.22 Neutrosophic graph structure showing most crucial maritime crime between any two
countries

consuming to judge all relationships among the countries and to decide the most
prominent one. But through neutrosophic graph structure, we can represent all these
in easiest way and can be judged even in a single glance on graph. Moreover, we
can be aware of the status of relationship, that is, what is percentage of its strength,
weakness and in how much percentage it is indeterminate. We can also examine
which pair of countries are in same kind of relationship. We consider a set X of eight
countries.

X = {America, Russia,China, Japan, Pakistan, I ndia, I ran, Saudi
Arabia}. Let A be the neutrosophic set on X , defined in Table2.9.

In Table2.9, T indicates positive impact (strength) of a particular country for
whole world, F indicates negative impact (weakness), and I expresses that in what
percentage or magnitude that country’s position is undecided or indeterminate for
global world. Let we denote the countries with alphabets: A = America, R = Russia,
CH = China, J = Japan, P = Pakistan, I = India, IR = Iran, S = Saudi Arabia.

In Tables2.10, 2.11, 2.12, 2.13, 2.14 and 2.15, we have shown the T , I and F
values of different relationships for each pair of countries.
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Table 2.9 Neutrosophic set A of a few countries on globe

Country T I F

America 0.9 0.3 0.2

Russia 0.7 0.4 0.3

China 0.8 0.4 0.4

Japan 0.8 0.5 0.4

Pakistan 0.7 0.6 0.7

India 0.7 0.8 0.6

Iran 0.7 0.7 0.6

Saudi Arabia 0.6 0.9 0.7

Table 2.10 Neutrosophic set of relationships between America and other countries

Type of
relation

(A, R) (A, CH) (A, P) (A, I) (A, IR)

Friendship (0.0, 0.2, 0.3) (0.2, 0.3, 0.4) (0.2, 0.1, 0.4) (0.5, 0.3, 0.5) (0.1, 0.3, 0.5)

Rival or
enemy

(0.7, 0.1, 0.1) (0.8, 0.2, 0.1) (0.3, 0.2, 0.4) (0.3, 0.2, 0.4) (0.5, 0.2, 0.4)

Religious
affection

(0.4, 0.2, 0.2) (0.1, 0.3, 0.2) (0.1, 0.1, 0.2) (0.1, 0.3, 0.4) (0.1, 0.1, 0.2)

Trade (0.3, 0.1, 0.1) (0.5, 0.2, 0.2) (0.1, 0.2, 0.2) (0.1, 0.1, 0.5) (0.6, 0.1, 0.3)

Politics (0.6, 0.1, 0.1) (0.4, 0.3, 0.2) (0.6, 0.1, 0.1) (0.7, 0.3, 0.2) (0.7, 0.3, 0.1)

Military (0.2, 0.3, 0.3) (0.3, 0.2, 0.3) (0.5, 0.1, 0.4) (0.6, 0.2, 0.2) (0.2, 0.3, 0.2)

Table 2.11 Neutrosophic set of relationships between Russia and other countries

Type of
relation

(R, CH) (R, J) (R, P) (R, I) (R, IR)

Friendship (0.5, 0.2, 0.3) (0.5, 0.2, 0.3) (0.3, 0.3, 0.4) (0.4, 0.3, 0.3) (0.1, 0.1, 0.5)

Rival or
enemy

(0.6, 0.2, 0.2) (0.6, 0.2, 0.2) (0.3, 0.3, 0.3) (0.2, 0.2, 0.4) (0.4, 0.1, 0.3)

Religious
affection

(0.1, 0.1, 0.4) (0.2, 0.1, 0.3) (0.1, 0.1, 0.4) (0.4, 0.4, 0.3) (0.2, 0.1, 0.5)

Trade (0.4, 0.1, 0.3) (0.4, 0.2, 0.3) (0.4, 0.1, 0.4) (0.5, 0.2, 0.3) (0.4, 0.1, 0.3)

Politics (0.7, 0.3, 0.4) (0.7, 0.1, 0.3) (0.4, 0.1, 0.3) (0.5, 0.2, 0.3) (0.7, 0.4, 0.5)

Military (0.2, 0.1, 0.4) (0.4, 0.1, 0.3) (0.7, 0.1, 0.3) (0.7, 0.2, 0.4) (0.2, 0.1, 0.3)

We can define many relations on set X , let we define six relations on X as:
E1 = Friendship, E2 = Rival or Enemy, E3 = Religious affection, E4 = Trade, E5 =
Politics, E6 =Military, such that (X, E1, E2, E3, E4, E5, E6) is a graph structure. An
element in a relation indicates that these two countries have a particular relationship.
As (X, E1, E2, E3, E4, E5, E6) is a graph structure, so an element will not be in
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Table 2.12 Neutrosophic set of relationships between China and other countries

Type of
relation

(CH, J) (CH, P) (CH, I) (CH, IR) (CH, S)

Friendship (0.5, 0.2, 0.3) (0.7, 0.1, 0.1) (0.2, 0.3, 0.6) (0.1, 0.4, 0.6) (0.2, 0.4, 0.6)

Rival or
enemy

(0.6, 0.2, 0.2) (0.1, 0.1, 0.7) (0.7, 0.2, 0.2) (0.3, 0.3, 0.6) (0.2, 0.3, 0.5)

Religious
affection

(0.1, 0.1, 0.4) (0.3, 0.3, 0.6) (0.4, 0.4, 0.3) (0.2, 0.2, 0.5) (0.1, 0.4, 0.6)

Trade (0.1, 0.1, 0.3) (0.6, 0.1, 0.1) (0.4, 0.2, 0.4) (0.7, 0.1, 0.3) (0.5, 0.4, 0.2)

Politics (0.8, 0.4, 0.4) (0.2, 0.4, 0.3) (0.6, 0.2, 0.2) (0.7, 0.2, 0.2) (0.6, 0.4, 0.3)

Military (0.4, 0.2, 0.3) (0.6, 0.2, 0.3) (0.1, 0.4, 0.2) (0.2, 0.4, 0.6) (0.1, 0.4, 0.6)

Table 2.13 Neutrosophic set of relationships between Japan and other countries

Type of
relation

(J, A) (J, P) (J, I) (J, IR) (J, S)

Friendship (0.5, 0.3, 0.4) (0.2, 0.3, 0.6) (0.3, 0.4, 0.3) (0.2, 0.5, 0.6) (0.1, 0.4, 0.6)

Rival or
enemy

(0.7, 0.3, 0.3) (0.3, 0.4, 0.6) (0.2, 0.3, 0.5) (0.2, 0.4, 0.4) (0.3, 0.4, 0.4)

Religious
affection

(0.1, 0.3, 0.3) (0.1, 0.4, 0.5) (0.4, 0.4, 0.5) ( 0.1, 0.5, 0.6) ( 0.1, 0.4, 0.6)

Trade (0.1, 0.3, 0.4) (0.7, 0.3, 0.2) (0.7, 0.2, 0.1) (0.6, 0.4, 0.6) (0.6, 0.5, 0.7)

Politics (0.8, 0.3, 0.3) (0.6, 0.4, 0.2) (0.6, 0.5, 0.2) ( 0.6, 0.3, 0.1) (0.4, 0.3, 0.4)

Military (0.2, 0.3, 0.3) (0.4, 0.4, 0.4) (0.5, 0.4, 0.3) (0.2, 0.4, 0.6) (0.1, 0.4, 0.6)

Table 2.14 Neutrosophic set of relationships between Saudi Arabia and other countries

Type of
relation

(I, IR) (S, I) (S, IR) (S, A) (S, R)

Friendship (0.2, 0.4, 0.4) (0.1, 0.7, 0.6) (0.2, 0.4, 0.6) (0.4, 0.3, 0.6) (0.2, 0.2, 0.6)

Rival or
enemy

(0.6, 0.3, 0.6) (0.5, 0.4, 0.5) (0.5, 0.4, 0.4) (0.4, 0.2, 0.5) (0.4, 0.2, 0.4)

Religious
affection

(0.1, 0.4, 0.6) (0.3, 0.4, 0.6) (0.6, 0.4, 0.2) (0.1, 0.1, 0.7) (0.2, 0.1, 0.6)

Trade (0.4, 0.4, 0.5) (0.1, 0.4, 0.6) (0.3, 0.4, 0.6) (0.2, 0.1, 0.6) (0.1, 0.1, 0.3)

Politics (0.7, 0.4, 0.2) (0.3, 0.4, 0.6) (0.6, 0.4, 0.6) (0.6, 0.2, 0.3) (0.6, 0.4, 0.6)

Military (0.2, 0.5, 0.6) (0.1, 0.4, 0.6) (0.2, 0.3, 0.7) (0.1, 0.1, 0.7) (0.2, 0.1, 0.5)

more than one relation. So, we will put it in that relation for which percentage of
truth is high, percentage of both falsity and indeterminacy is low as compared to
other relationships, using above-mentioned data.

Wewrite the elements in relationswith their truth, falsity and indeterminacy values
according to given data, resulting sets are neutrosophic sets on E1, E2, E3, E4, E5,
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Table 2.15 Neutrosophic set of relationships between Pakistan and other countries

Type of relation (P, I) (P, IR) (P, S)

Friendship (0.1, 0.4, 0.6) (0.5, 0.4, 0.5) (0.5, 0.1, 0.1)

Rival or enemy (0.7, 0.1, 0.1) (0.4, 0.4, 0.5) (0.3, 0.6, 0.6)

Religious affection (0.4, 0.4, 0.6) (0.7, 0.4, 0.5) (0.6, 0.1, 0.1)

Trade (0.3, 0.3, 0.6) (0.4, 0.4, 0.5) (0.3, 0.2, 0.6)

Politics (0.6, 0.2, 0.2) (0.5, 0.4, 0.5) (0.2, 0.4, 0.5)

Military (0.1, 0.2, 0.6) (0.2, 0.4, 0.6) (0.1, 0.4, 0.6)

E6, respectively. We can name these sets as B1, B2, B3, B4, B5, B6, respectively. Let
B1 = {((P,CH), 0.7, 0.1, 0.1)},
B2 = {((P, I ), 0.7, 0.1, 0.1), ((A, R), 0.7, 0.1, 0.1), ((A,CH), 0.8, 0.2, 0.1),
((I,CH), 0.7, 0.2, 0.2)},
B3 = {((P, S), 0.6, 0.1, 0.1), ((P, I R), 0.7, 0.4, 0.5)},
B4 = {((P, J ), 0.7, 0.3, 0.2), ((I, J ), 0.7, 0.2, 0.1)},
B5 = {((P, A), 0.6, 0.1, 0.1), ((A, I ), 0.7, 0.3, 0.2), ((A, S), 0.6, 0.2, 0.3),
((A, I R), 0.7, 0.3, 0.1), ((A, J ), 0.8, 0.3, 0.3)},
B6 = {((P, R), 0.7, 0.1, 0.3), ((R, I ), 0.7, 0.2, 0.4)}.

Clearly, (A, B1, B2, B3, B4, B5, B6) is a neutrosophic graph structure as shown in
Fig. 2.23.

In neutrosophic graph structure shown in Fig. 2.23, every edge indicates the most
prominent relationship of adjacent vertices(countries), for example most prominent
relationship between Pakistan and China is friendship, it is 70% strong, 10% weak
and 10% indeterminate. It can be noted that for the relation politics, vertex America
has highest degree, it shows that America is the most prominent country for having
political relationship with other countries in A. Further, we can tell that China and
India, America and Russia, Pakistan and India have common relationship, that is,
they are rival or enemy of each other. Moreover, according to our neutrosophic graph
structure most frequent relation is politics, it means that among these eight countries
politics is dominating relationship.

This neutrosophic graph structure depicts most prominent relationships among
some elements (countries) of A. By taking large neutrosophic graph structure, most
dominating relationships among all the countries of A can be detected. On the similar
basis, we can make a neutrosophic graph structure for all countries across the world,
in order to find the status and strength of prominent relationships among them. From
neutrosophic graph structure, we can also determine that which pair of countries
have common relationships. Further, we can find which country is most prominent
for having a particular kind of relationship with other countries. Most frequent rela-
tionship in the neutrosophic graph structure will indicate that this relationship is
prevailing in the world. So, using neutrosophic graph structure, it is quite easy to
judge, in which direction this world is moving? whether it is moving towards peace
or war/Cold War.
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Fig. 2.23 Neutrosophic graph structure showing most prominent relationship between any two
vertices(countries)

2.4.3 Detection of Most Frequent Smuggling

Smuggling on the seaports are increasing rapidly with time. There are 4,764 seaports
on Atlantic ocean, Arctic ocean, Indian ocean, Pacific ocean, etc. These seaports
are very useful and advantageous for import and export of different types of goods
through out the world. Besides, there are also many disadvantages of these seaports.
Crimes held on seaports are in abundance, but Smuggling of different kinds like
human smuggling, weapons smuggling, black money smuggling, gold and diamond
smuggling, smuggling of ivory and drug smuggling are most alarming. A lot of time
and labour is required to collect and manipulate the data from all seaports to judge
that which type of smuggling is frequent. But using neutrosophic graph structure, we
can easily investigate the fact that between any two seaports which type of smuggling
is chronic and increasing violently. Moreover, we can decide which seaport is most
sensitive for smuggling, globally and need to be focused by security teams. We
consider a set X consisting of eight seaports.

X= {Chalna, Penang, Singapore, Dubai, Karachi, Mumbai, Mombasa, Gioia
Tauro}. Let A be the neutrosophic set on X , defined in Table 2.16.

In Table 2.16, T depicts the importance of that particular seaport in the world due
to its geographic position, F indicates the degree of its nonimportance in the world,
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Table 2.16 Neutrosophic set A of eight seaports

Country T I F

Chalna 0.7 0.6 0.5

Penang 0.6 0.6 0.7

Singapore 0.8 0.4 0.4

Dubai 0.9 0.4 0.5

Karachi 0.8 0.4 0.4

Mumbai 0.7 0.6 0.6

Mombasa 0.6 0.5 0.6

Gioia Tauro 0.8 0.5 0.4

Table 2.17 Neutrosophic set of smuggling between Karachi and other seaports

Type of
smuggling

(K, DU) (K, C) (K, P) (K, S)

Human
smuggling

(0.6, 0.3, 0.4) (0.7, 0.2, 0.3) (0.6, 0.3, 0.1) (0.5, 0.3, 0.1)

Weapons
smuggling

(0.5, 0.2, 0.5) (0.6, 0.2, 0.3) (0.3, 0.4, 0.4) (0.3, 0.2, 0.4)

Black money
smuggling

(0.5, 0.2, 0.1) (0.6, 0.4, 0.3) (0.1, 0.3, 0.2) (0.8, 0.1, 0.1)

Gold and
diamond
smuggling

(0.7, 0.2, 0.1) (0.5, 0.2, 0.2) (0.1, 0.3, 0.2) (0.7, 0.4, 0.4)

Drug smuggling (0.6, 0.2, 0.2) (0.4, 0.3, 0.2) (0.5, 0.4, 0.5) (0.7, 0.3, 0.2)

Smuggling of
ivory

(0.2, 0.4, 0.4) (0.3, 0.2, 0.3) (0.3, 0.3, 0.4) (0.1, 0.2, 0.2)

and I expresses, to which extent it is undecided/indeterminate to be beneficial for
the world, geographically.

Let Chalna = C, Pengang = P, Singapore = S, Dubai = DU, Karachi = K, Mumbai
= MU, Mombasa = MO, Gioia Tauro = GT.

In Tables2.17, 2.18, 2.19, 2.20, 2.21, 2.22 and 2.23, we have shown the values of
T , I and F of different smuggling for each pair of seaports.

Many relations on set X can be defined, let we define six relations on X as:
E1 = Human smuggling, E2 = Weapons smuggling, E3 = Black money smuggling,
E4 = Gold and diamond smuggling, E5 = Drug smuggling, E6 = Smuggling of ivory,
such that (X, E1, E2, E3, E4, E5, E6) is a graph structure. An element in a relation
detects that kind of smuggling between those two seaports.

As (X, E1, E2, E3, E4, E5, E6) is a graph structure, an element will not be in
more than one relations, so it can appear just once. Therefore, we will consider it an
element of that relation for which its percentage of truth is high, and percentage of
both falsity and indeterminacy is low as compared to other relations.
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Table 2.18 Neutrosophic set of smuggling between Dubai and other seaports

Type of
smuggling

(DU, C) (DU, P) (DU, S) (DU, MU)

Human
smuggling

(0,6, 0.2, 0.3) (0.5, 0.1, 0.4) (0.2, 0.1, 0.4) (0.5, 0.3, 0.1)

Weapons
smuggling

(0.4, 0.1, 0.1) (0.4, 0.2, 0.1) (0.3, 0.2, 0.4) (0.3, 0.2, 0.4)

Black money
smuggling

(0.5, 0.2, 0.2) (0.5, 0.1, 0.2) (0.5, 0.1, 0.2) (0.5, 0.3, 0.4)

Gold and
diamond
smuggling

(0.5, 0.1, 0.1) (0.5, 0.2, 0.2) (0.5, 0.2, 0.2) (0.7, 0.2, 0.1)

Drug smuggling (0.5, 0.1, 0.1) (0.4, 0.3, 0.2) (0.6, 0.2, 0.1) (0.6, 0.3, 0.2)

Smuggling of
ivory

(0.2, 0.3, 0.3) (0.3, 0.2, 0.3) (0.3, 0.1, 0.4) (0.2, 0.2, 0.2)

Table 2.19 Neutrosophic set of smuggling between Chalna and other seaports

Type of
smuggling

(C, P) (C, S) (C, MU) (C, MO)

Human
smuggling

(0.5, 0.2, 0.3) (0.7, 0.2, 0.1) (0.4, 0.1, 0.4) (0.5, 0.3, 0.4)

Weapons
smuggling

(0.4, 0.1, 0.4) (0.4, 0.2, 0.1) (0.6, 0.2, 0.4) (0.3, 0.2, 0.4)

Black money
smuggling

(0.4, 0.2, 0.2) (0.7, 0.4, 0.3) (0.1, 0.1, 0.2) (0.1, 0.3, 0.4)

Gold and
diamond
smuggling

(0.3, 0.1, 0.1) (0.5, 0.2, 0.2) (0.1, 0.2, 0.2) (0.1, 0.1, 0.3)

Drug smuggling (0.5, 0.1, 0.1) (0.4, 0.3, 0.2) (0.5, 0.2, 0.4) (0.4, 0.3, 0.3)

Smuggling of
ivory

(0.2, 0.3, 0.3) (0.3, 0.2, 0.3) (0.2, 0.1, 0.4) (0.5, 0.2, 0.2)

According to given data, we write the elements in relations with their truth, falsity
and indeterminacy values, so the resulting sets are neutrosophic sets on E1, E2,
E3, E4, E5, E6, respectively. We can name these sets as B1, B2, B3, B4, B5, B6,
respectively. Let
E1 = {(Chalna, Karachi), (Penang, Karachi), (Chalna, Singapore)},
E2 = {(Karachi,Mumbai)},
E3 = {(Singapore, Karachi)},
E4 = {(Mumbai, Singapore), (Dubai,Mumbai)},
E5 = {(GioiaT auro, Karachi), (Mumbai,Gioia Tauro)},
E6 = {(Mombasa, Singapore)}.
And corresponding neutrosophic sets are:
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Table 2.20 Neutrosophic set of smuggling between Penang and other seaports

Type of
smuggling

(P, S) (P, MU) (P, MO) (P, GT)

Human
smuggling

(0.4, 0.2, 0.3) (0.5, 0.1, 0.2) (0.2, 0.1, 0.4) (0.5, 0.3, 0.4)

Weapons
smuggling

(0.5, 0.1, 0.1) (0.4, 0.2, 0.1) (0.3, 0.2, 0.4) (0.3, 0.2, 0.4)

Black money
smuggling

(0.5, 0.2, 0.2) (0.1, 0.1, 0.2) (0.1, 0.1, 0.2) (0.1, 0.3, 0.4)

Gold and
diamond
smuggling

(0.5, 0.1, 0.1) (0.5, 0.2, 0.2) (0.1, 0.2, 0.2) (0.1, 0.1, 0.5)

Drug smuggling (0.4, 0.1, 0.1) (0.4, 0.3, 0.2) (0.3, 0.2, 0.5) (0.6, 0.3, 0.1)

Smuggling of
ivory

(0.2, 0.3, 0.3) (0.3, 0.2, 0.3) (0.5, 0.1, 0.1) (0.4, 0.2, 0.2)

Table 2.21 Neutrosophic set of smuggling between Singapore and other seaports

Type of
smuggling

(S, MU) (S, MO) (S, GT) (K, MU)

Human
smuggling

(0.4, 0.2, 0.3) (0.2, 0.1, 0.4) (0.2, 0.1, 0.4) (0.5, 0.3, 0.5)

Weapons
smuggling

(0.6, 0.3, 0.4) (0.4, 0.2, 0.3) (0.3, 0.2, 0.4) (0.7, 0.1, 0.3)

Black money
smuggling

(0.4, 0.2, 0.3) (0.5, 0.1, 0.3) (0.5, 0.1, 0.2) (0.6, 0.3, 0.4)

Gold and
diamond
smuggling

(0.7, 0.2, 0.6) (0.5, 0.2, 0.4) (0.5, 0.2, 0.2) (0.5, 0.1, 0.3)

Drug smuggling (0.6, 0.2, 0.3) (0.4, 0.3, 0.4) (0.5, 0.2, 0.1) (0.7, 0.3, 0.3)

Smuggling of
ivory

(0.6, 0.4, 0.5) (0.6, 0.1, 0.3) (0.5, 0.1, 0.4) (0.6, 0.2, 0.2)

B1 = {((C, K ), 0.7, 0.2, 0.3),((P, K ), 0.6, 0.3, 0.1),((C, S), 0.7, 0.2, 0.1)},
B2 = {((K ,MU ), 0.7, 0.1, 0.3)},
B3 = {((S, K ), 0.8, 0.1, 0.1), },
B4 = {((MU, S), 0.7, 0.2, 0.3), ((DU,MU ), 0.7, 0.2, 0.1)},
B5 = {((GT, K ), 0.8, 0.2, 0.2), ((MU,GT ), 0.7, 0.2, 0.2)},
B6 = {((MO, S), 0.6, 0.1, 0.3)}.

Clearly, (A, B1, B2, B3, B4, B5, B6) is a neutrosophic graph structure as shown
in Fig. 2.24.

In neutrosophic graph structure shown in Fig. 2.24, every edge detects most fre-
quent smuggling between adjacent seaports. For instance, most frequent smuggling
betweenKarachi and Singapore is blackmoney smuggling, its strength is 80%,weak-
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Table 2.22 Neutrosophic set of smuggling between Gioia Tauro and other seaports

Type of
smuggling

(GT, K) (GT, DU) (GT, C) (GT, MU)

Human
smuggling

(0.4, 0.2, 0.3) (0.2, 0.1, 0.4) (0.2, 0.1, 0.4) (0.5, 0.3, 0.5)

Weapons
smuggling

(0.7, 0.2, 0.2) (0.5, 0.2, 0.1) (0.3, 0.2, 0.4) (0.6, 0.2, 0.4)

Black money
smuggling

(0.5, 0.2, 0.2) (0.4, 0.1, 0.2) (0.1, 0.1, 0.2) (0.4, 0.3, 0.4)

Gold and
diamond
smuggling

(0.6, 0.2, 0.2) (0.5, 0.2, 0.2) (0.1, 0.2, 0.2) (0.6, 0.2, 0.5)

Drug smuggling (0.8, 0.2, 0.2) (0.5, 0.3, 0.2) (0.6, 0.2, 0.4) (0.7, 0.2, 0.2)

Smuggling of
ivory

(0.2, 0.3, 0.3) (0.3, 0.2, 0.3) (0.5, 0.1, 0.4) (0.6, 0.2, 0.2)

Table 2.23 Neutrosophic set of smuggling between Mombasa and other seaports

Type of
smuggling

(MO, K) (MO, DU) (MO, MU) (MO, GT)

Human
smuggling

(0.4, 0.2, 0.3) (0.5, 0.1, 0.4) (0.4, 0.1, 0.4) (0.5, 0.3, 0.4)

Weapons
smuggling

(0.5, 0.1, 0.4) (0.4, 0.2, 0.3) (0.4, 0.2, 0.4) (0.3, 0.2, 0.4)

Black money
smuggling

(0.4, 0.2, 0.2) (0.4, 0.1, 0.2) (0.4, 0.1, 0.2) (0.4, 0.3, 0.4)

Gold and
diamond
smuggling

(0.3, 0.1, 0.1) (0.5, 0.2, 0.2) (0.5, 0.2, 0.2) (0.3, 0.1, 0.3)

Drug smuggling (0.6, 0.1, 0.1) (0.4, 0.3, 0.2) (0.4, 0.2, 0.4) (0.6, 0.3, 0.1)

Smuggling of
ivory

(0.2, 0.3, 0.3) (0.6, 0.2, 0.3) (0.5, 0.1, 0.3) (0.6, 0.2, 0.2)

ness is 10% and indeterminacy is 10%. We can also note that for relation human
smuggling, vertex Karachi has highest vertex degree, it means Karachi is most sen-
sitive seaport for human smuggling. Moreover, according to our neutrosophic graph
structure most frequent smuggling is human smuggling. It means that at these eight
seaports, security forces should take action to control human smuggling.

This neutrosophic graph structure detects most frequent smuggling between some
seaports of set A. By making a neutrosophic graph structure of all seaports, we can
examine between any two seaports, which kind of smuggling ismost frequent, we can
also tell that which seaport is most sensitive for particular kind of smuggling. Further,
we may get information about violently increasing smuggling through seaports in
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Fig. 2.24 Neutrosophic graph structure showing most frequent smuggling between any two sea-
ports

the whole world. That is why neutrosophic graph structures can be very helpful for
security forces to overcome the smuggling at seaports.

We now elaborate general procedure of our applications in the following Algo-
rithm.

Algorithm 2.4.1

Step 1. Input the set X = {A1, A2, . . . , An} of vertices and the neutrosophic vertex
set A defined on X .
Step 2. Input neutrosophic set of relationships or smuggling of a vertex with other
vertices and compute T , I and F of each pair of vertices using:
T (Ai A j ) ≤ min(T (Ai ), T (A j )), I (Ai A j ) ≤ min(I (Ai ), I (A j )),
F(Ai A j ) ≤ max(F(Ai ), F(A j )).
Step 3. Repeat Step 2 for all vertices in X .
Step 4. Define relations E1, E2, . . . , En on set X such that (X, E1, E2, . . . , En) is
a graph structure.
Step 5. Put an element in that relation for which value of T is high, and values of
I and F are low as compared to other relations.
Step 6. Write all elements of relations with their T , I and F values, resulting rela-
tions B1, B2, . . . , Bn are neutrosophic sets on E1, E2, E3, . . . , En , respectively,
and (A, B1, B2, . . . , Bn) is a neutrosophic graph structure.
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