
Chapter 1
Graphs Under Neutrosophic
Environment

In this chapter, we first present a concise review of neutrosophic sets. Thenwe present
certain types of single-valued neutrosophic graphs (neutrosophic graphs, for short),
including regular neutrosophic graphs, totally regular neutrosophic graphs, edge
regular neutrosophic graphs, irregular neutrosophic graphs, highly totally irregular
neutrosophic graphs, strongly totally irregular neutrosophic graphs, neighbourly edge
irregular neutrosophic graphs and strongly edge irregular neutrosophic graphs. We
describe applications of neutrosophic graphs.We also present energy of neutrosophic
graphs with applications. This chapter is due to [27, 124, 167, 176].

1.1 Introduction

By a graph, we mean an ordered pair G∗ = (X, E) such that X is the collection of
components taken as nodes or vertices and E is a relation on X , called edges. It is
often convenient to depict the relationships between pairs of elements of a system
by means of a graph or a digraph. The vertices of the graph represent the system
elements, and its edges or arcs represent the relationships between the elements. This
approach is especially useful for transportation, scheduling, sequencing, allocation,
assignment and other problems which can be modelled as networks. Such a graph-
theoretical model is often useful as an aid in communicating.

Zadeh [194] introduced the degree of membership/truth (T) in 1965 and defined
the fuzzy set. Atanassov [47] introduced the degree of nonmembership/falsehood (F)
in 1983 and defined the intuitionistic fuzzy set. Smarandache [163] introduced the
degree of indeterminacy/neutrality (I) as independent component in 1995 and defined
the neutrosophic set on three components (T, I, F)= (Truth, Indeterminacy, Falsity).
Fuzzy set theory and intuitionistic fuzzy set theory are useful models for dealing with
uncertainty and incomplete information. But they may not be sufficient in modelling
of indeterminate and inconsistent information encountered in real world. In order
to cope with this issue, neutrosophic (The words “neutrosophy” and “neutrosophic”
were invented by Smarandache in 1995. Neutrosophy is a new branch of philosophy
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2 1 Graphs Under Neutrosophic Environment

that studies the origin, nature and scope of neutralities, as well as their interactions
with different ideational spectra. It is the base of neutrosophic logic, a multiple-
value logic that generalizes the fuzzy logic and deals with paradoxes, contradictions,
antitheses, antinomies) set theory was proposed by Smarandache. However, since
neutrosophic sets are identified by three functions called truth-membership (T ),
indeterminacy-membership (I ) and falsity-membership (F) whose values are real
standard or non-standard subset of unit interval ]−0, 1+[, where −0 = 0 − ε, 1+ =
1 + ε, ε is an infinitesimal number. To apply neutrosophic set in real-life problems
more conveniently, Smarandache [165] and Wang et al. [172] defined single-valued
neutrosophic set which takes the value from the subset of [0, 1]. Thus, a single-valued
neutrosophic set is an instance of neutrosophic set and can be used expediently to
deal with real-world problems, especially in decision support.

A Geometric Interpretation of the Neutrosophic Set

We describe a geometric interpretation of the neutrosophic set using the neutro-
sophic cube A′B ′C ′D′E ′F ′G ′H ′ as shown in Fig. 1.1. In technical applications only
the classical interval [0, 1] is used as range for the neutrosophic parameters T, I and
F ; we call the cube ABCDEFGH the technical neutrosophic cube and its exten-
sion A′B ′C ′D′E ′F ′G ′H ′ the neutrosophic cube, used in the field where we need to
differentiate between absolute and relative notions. Consider a 3D Cartesian system
of coordinates, where T is the truth axis with value range in ]−0, 1+[, F is the false
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Fig. 1.1 A geometric interpretation of the neutrosophic set
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axis with value range in ]−0, 1+[, and I is the indeterminate axis with value range
in ]−0, 1+[.

We now divide the technical neutrosophic cube ABCDEFGH into three disjoint
regions:

1. The equilateral triangle BDE , whose sides are equal to
√
2, which represents the

geometrical locus of the points whose sum of the coordinates is 1. If a point Q is
situated on the sides of the triangle BDE or inside of it, then TQ + IQ + FQ = 1.

2. The pyramid E ABD situated in the right side of the ΔEBD, including its faces
ΔABD(base),ΔEBA andΔEDA(lateral faces), but excluding its facesΔBDE
is the locus of the points whose sum of their coordinates is less than 1. If P ∈
E ABD, then TP + IP + FP < 1.

3. In the left side ofΔBDE in the cube, there is the solid EFGCDEBD (excluding
ΔBDE) which is the locus of points whose sum of their coordinates is greater
than 1. If a point R ∈ EFGCDEBD, then TR + IR + FR > 1.

It is possible to get the sum of coordinates strictly less than 1 or strictly greater than
1. For example:
(1) We have a source which is capable to find only the degree of membership of an
element, but it is unable to find the degree of nonmembership.
(2) Another source which is capable to find only the degree of nonmembership of an
element.
(3) Or a source which only computes the indeterminacy.
Thus, when we put the results together of these sources, it is possible that their sum
is not 1, but smaller or greater.

On the other hand, in information fusion, when dealing with indeterminate mod-
els (i.e. elements of the fusion space which are indeterminate/unknown, such as
intersections we do not know if they are empty or not since we do not have enough
information, similarly for complements of indeterminate elements): if we compute
the believe in that element (truth), the disbelieve in that element (falsehood) and the
indeterminacy part of that element, then the sum of these three components is strictly
less than 1 (the difference to 1 is the missing information).

Definition 1.1 Let X be a space of points (objects). A single-valued neutrosophic
set A on a nonempty set X is characterized by a truth-membership function
TA : X → [0, 1], indeterminacy-membership function IA : X → [0, 1] and a falsity-
membership function FA : X → [0, 1]. Thus, A = {< x, TA(x), IA(x), FA(x) >

|x ∈ X}. There is no restriction on the sum of TA(x), IA(x) and FA(x) for all x ∈ X .
When X is continuous, a single-valued neutrosophic set A can be written as

A =
∫
X
〈(T (x), I (x), F(x))/x, x ∈ X〉.

When X is discrete, a single-valued neutrosophic set A can be written as
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A =
n∑

i=1

〈(T (xi ), I (xi ), F(xi ))/xi , xi ∈ X〉.

Example 1.1 Assume that the universe of discourse X = {x1, x2, x3}, where x1
describes the capability, x2 describes the trustworthiness, and x3 describes the prices
of the objects. It may be further assumed that the values of x1, x2 and x3 are in [0, 1]
and they are obtained from some questionnaires of some experts. The experts may
impose their opinion in three components, namely the degree of goodness, the degree
of indeterminacy and that of poorness to explain the characteristics of the objects.
Suppose A is a single-valued neutrosophic set of X such that

A = {< x1, 0.3, 0.5, 0.6 >,< x2, 0.3, 0.2, 0.3 >,< x3, 0.3, 0.5, 0.6 >},

where < x1, 0.3, 0.5, 0.6 > represents that the degree of goodness of capability is
0.3, degree of indeterminacy of capability is 0.5 and degree of falsity of capability
is 0.6.

Remark 1.1 When we consider that there are three different experts that are inde-
pendent (i.e. they do not communicate with each other), so each one focuses on one
attribute only (because each one is the best specialist in evaluating a single attribute).
Therefore, each expert can assign 1 to his attribute value [for (1, 1, 1)], or each expert
can assign 0 to his attribute value [for (0, 0, 0)], respectively.

When we consider a single expert for evaluating all three attributes, then he eval-
uates each attribute from a different point of view (using a different parameter)and
arrives to (1, 1, 1) or (0, 0, 0), respectively.

For example,we examine a student “Muhammad”; for his research in neutrosophic
graphs, he deserves 1; for his research in analytical mathematics, he also deserves 1;
and for his research in physics, he deserves 1.

Definition 1.2 Let A = {< x, TA(x), IA(x), FA(x) > |x ∈ X} and B = {< x,
TB(x), IB(x), FB(x) > |x ∈ X} be two single-valued neutrosophic sets, then opera-
tions are defined as follows:

• A ⊆ B if and only if TA(x) ≤ TB(x), IA(x) ≥ IB(x), FA(x) ≥ FB(x),
• A = B if and only if TA(x) = TB(x), IA(x) = IB(x) and FA(x) = FB(x),
• A ∩ B = {< x,min(TA(x), TB(x)),max(IA(x), IB(x)),max(FA(x), FA(x)) >

|x ∈ X},
• A ∪ B = {< x,max(TA(x), TB(x)),min(IA(x), IB(x)),min(FA(x), FA(x)) >

|x ∈ X},
• Ac = {< x, FA(x), 1 − IA(x), TA(x) > |x ∈ X},
• 0 = (0, 1, 1) and 1 = (1, 0, 0).

Yang et al. [176] introduced the concept of single-valued neutrosophic relations.

Definition 1.3 A single-valued neutrosophic relation on a nonempty set X is a
single-valued neutrosophic subset of X × X of the form
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B = {(yz, TB(yz), IB(yz), FB(yz)) : yz ∈ X × X},

where TB : X × X → [0, 1], IB : X × X → [0, 1], FB : X × X → [0, 1] denote
the truth-membership function, indeterminacy-membership function and falsity-
membership function of B, respectively.

Definition 1.4 Let B be a single-valued neutrosophic relation in X , the complement
and inverse of B are defined as follows, respectively

Bc = {〈(x, y), TRc (x, y), IRc (x, y), FRc (x, y)〉|(x, y) ∈ X × X}, ∀(x, y) ∈ X × X,

where

TRc(x, y) = FR(x, y),

IRc(x, y) = 1 − IR(x, y),

FRc(x, y) = TR(x, y).

B−1 = {〈(x, y), TR−1(x, y), IR−1(x, y), FR−1(x, y)〉|(x, y) ∈ X × X}, ∀(x, y) ∈ X × X,

where

TR−1(x, y) = TR(y, x),

IR−1(x, y) = IR(y, x),

FR−1(x, y) = FR(y, x).

Example 1.2 Let X = {x1, x2, x3, x4, x5}. A single-valued neutrosophic relation B
in X is given in Table1.1. By Definition1.4, we can compute Bc and B−1 which are
given in Tables1.2 and 1.3, respectively.

Definition 1.5 Let R, S be two single-valued neutrosophic relations in X .

1. The union R ∪ S of R and S is defined by

R ∪ S = {〈(x, y);max{TR(x, y), TS(x, y)};min{IR(x, y), IS(x, y)};
min{FR(x, y), FS(x, y)}〉|(x, y) ∈ X × X}.

2. The intersection R ∩ S of R and S is defined by

R ∩ S = {〈(x, y);min{TR(x, y), TS(x, y)};max{IR(x, y), IS(x, y)};
max{FR(x, y), FS(x, y)}〉|(x, y) ∈ X × X}.

Definition 1.6 Let R be a single-valued neutrosophic relation in X .

1. If∀ x ∈ X , TR(x, x) = 1 and IR(x, x) = FR(x, x) = 0, then R is called a reflexive
single-valued neutrosophic relation.
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Table 1.1 Single-valued neutrosophic relation B

B x1 x2 x3 x4 x5

x1 (0.2, 0.6, 0.4) (0, 0.3, 0.7) (0.9, 0.2, 0.4) (0.3, 0.9, 1) (1, 0.2, 0)

x2 (0.4, 0.5, 0.1) (0.1, 0.7, 0) (1, 1, 1) (1, 0.3, 0) (0.5, 0.6, 1)

x3 (0, 1, 1) (1, 0.5, 0) (0, 0, 0) (0.2, 0.8, 0.1) (1, 0.8, 1)

x4 (1, 0, 0) (0, 0, 1) (0.5, 0.7, 0.1) (0.1, 0.4, 1) (1, 0.8, 0.8)

x5 (0, 1, 0) (0.9, 0, 0) (0, 0.1, 0.7) (0.8, 0.9, 1) (0.6, 1, 0)

Table 1.2 Complement Bc of B

B x1 x2 x3 x4 x5

x1 (0.4, 0.4, 0.2) (0.7, 0.7, 0) (0.4, 0.8, 0.9) (0.1, 0.1, 3) (0, 0.8, 1)

x2 (0.1, 0.5, 0.4) (0, 0.3, 0.1) (1, 0, 1) (0, 0.7, 1) (1, 0.4, 0.5)

x3 (1, 0, 0) (0, 0.5, 1) (0, 1, 0) (0.1, 0.2, 0.2) (1, 0.2, 1)

x4 (0, 1, 1) (1, 1, 0) (0.1, 0.3, 0.5) (1, 0.6, 0.4) (0.8, 0.2, 1)

x5 (0, 0, 0) (0, 1, 0.9) (0.7, 0.9, 0) (1, 0.1, 0.8) (0, 0, 0.6)

Table 1.3 Inverse B− of B

B x1 x2 x3 x4 x5

x1 (0.2, 0.6, 0.4) (0.4, 0.5, 0.1) (0, 1, 1) (1, 0, 0) (0, 1, 0)

x2 (0, 0.3, 0.7) (0.1, 0.7, 0) (1, 0.5, 0) (0, 0, 1) (0.9, 0, 0)

x3 (0.9, 0.2, 0.4) (1, 1, 1) (0, 0, 0) (0.5, 0.7, 0.1) (0, 0.1, 0.7)

x4 (0.3, 0.9, 1) (1, 0.3, 0) (0.2, 0.8, 0.1) (0.1, 0.4, 1) (0.8, 0.9, 1)

x5 (1, 0.2, 0) (0.5, 0.6, 1) (1, 0.8, 1) (1, 0.8, 0.8) (0.6, 1, 0)

2. If ∀ x, y ∈ X , TR(x, y)=TR(y, x), IR(x, y) = IR(y, x) and FR(y, x)=FR(x, y),
then R is called a symmetric single-valued neutrosophic relation.

3. If∀ x ∈ X , TR(x, x) = 0 and IR(x, x) = FR(x, x) = 1, then R is called an antire-
flexive single-valued neutrosophic relation.

4. If ∀ x, y, z ∈ X ,

max
v∈X min{TR(x, y), TR(y, z)} ≤ TR(x, z),

min
v∈X max{IR(x, y), IR(y, z)} ≥ IR(x, z),

min
v∈X max{FR(x, y), FR(y, z)} ≥ FR(x, z),

then R is called a transitive single-valued neutrosophic relation.
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1.2 Certain Types of Neutrosophic Graphs

Definition 1.7 A single-valued neutrosophic graph on a nonempty X is a pair
G = (A, B), where A is single-valued neutrosophic set in X and B single-valued
neutrosophic relation on X such that

TB(xy) ≤ min{TA(x), TA(y)},
IB(xy) ≤ min{IA(x), IA(y)},
FB(xy) ≤ max{FA(x), FA(y)}

for all x, y ∈ X . A is called single-valued neutrosophic vertex set of G and B is
called single-valued neutrosophic edge set of G, respectively.

Remark 1.2 1. B is called symmetric single-valued neutrosophic relation on A.
2. If B is not symmetric single-valued neutrosophic relation on A, thenG = (A, B)

is called a single-valued neutrosophic directed graph (digraph).
3. X and E are underlying vertex set and underlying edge set of G, respectively.

Throughout this chapter, we will use neutrosophic set, neutrosophic relation and
neutrosophic graph, for short.

Example 1.3 Consider a crisp graph G∗ = (X, E) such that X = {a, b, c, d, e, f },
E = {ab, ac, bd, cd, be, c f, e f, bc}. Let A and B be the neutrosophic sets of X and
E , respectively, as shown in Table1.4. By simple calculations, it is easy to see that
G = (A, B) is a neutrosophic graph as shown in Fig. 1.2.

Definition 1.8 Aneutrosophic graphG = (A, B) is called complete if the following
conditions are satisfied:

TB(xy) = min{TA(x), TA(y)},
IB(xy) = min{IA(x), IA(y)},

Table 1.4 Neutrosophic sets

A a b c d e f

TA 0.2 0.3 0.4 0.3 0.5 0.4

IA 0.5 0.4 0.5 0.6 0.5 0.6

FA 0.7 0.6 0.4 0.8 0.6 0.6

B ab ac bd cd be cf ef bc

TB 0.2 0.1 0.2 0.3 0.2 0.1 0.4 0.2

IB 0.4 0.4 0.2 0.2 0.3 0.4 0.4 0.3

FB 0.7 0.5 0.6 0.7 0.5 0.5 0.5 0.6
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Fig. 1.2 Neutrosophic graph
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FB(xy) = max{FA(x), FA(y)},

for all x, y ∈ X .

Example 1.4 Consider a neutrosophic G=(A, B) on the nonempty set X = {a, b,
c, d} as shown in Fig. 1.3. By direct calculations, it is easy to see thatG is a complete.

Definition 1.9 Let A = {< x, TA(x), IA(x), FA(x) >, x ∈ X} be a neutrosophic set
of the set X . For α ∈ [0, 1], the α-cut of A is the crisp set Aα defined by

Aα = {x ∈ X : either (TA(x), IA(x) ≥ α) or FA(x) ≤ 1 − α}.

Let B = {< xy, TB(xy), IB(xy), FB(xy) >} be a neutrosophic set on E ⊆ X × X .
For α ∈ [0, 1], the α-cut is the crisp set Bα defined by

Bα = {xy ∈ E : either (TB(xy), IB(xy) ≥ α) or FB(xy) ≤ 1 − α}.
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Fig. 1.4 Neutrosophic graph and 0.4-level graph G0.4

Gα = (Aα, Bα) is a subgraph of crisp graph G∗.

Example 1.5 Consider a neutrosophic graph G on nonempty set X = {a, b, c, d, e}
as shown in Fig. 1.4.

For α = 0.4, we have

A0.4 = {b, c, d},
B0.4 = {bc, cd, bd}.

Clearly, the 0.4-level graph G0.4 = (A0.4, B0.4) is a subgraph of crisp graph G∗.

Definition 1.10 The order and the size of a neutrosophic graph G are denoted by
O(G) and S(G), respectively, and are defined as

O(G) =
(∑

s∈X
TA(s),

∑
s∈X

IA(s),
∑
s∈X

FA(s)

)
,

S(G) =
(∑
st∈E

TB(st),
∑
st∈E

IB(st),
∑
st∈E

FB(st)

)
.

Definition 1.11 The degree and the total degree of a vertex s of a neutrosophic graph
G are denoted by dG(s) = (dT (s), dI (s), dF (s)) and TdG(s) = (TdT (s), TdI (s),
TdF (s)), respectively, and are defined as
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Fig. 1.5 Neutrosophic graph

dG(s) =
⎛
⎝∑

s �=t

TB(st),
∑
s �=t

IB(st),
∑
s �=t

FB(st)

⎞
⎠ ,

TdG(s) =
⎛
⎝∑

s �=t

TB(st) + TA(s),
∑
s �=t

IB(st) + IA(s),
∑
s �=t

FB(st) + FA(s)

⎞
⎠ ,

for st ∈ E , where s ∈ X .

Example 1.6 Consider a neutrosophic graph G on the nonempty set X = {s1, s2, s3}
as shown in Fig. 1.5.

By direct calculations, we have O(G) = (1.5, 1.7, 1.6), S(G) = (0.9, 0.9, 1.7),

dG(s1) = (0.5, 0.6, 1.1), dG(s2) = (0.7, 0.5, 1.2), dG(s3) = (0.6, 0.7, 1.1),

TdG(s1) = (0.9, 1.2, 1.6), TdG(s2) = (1.2, 0.9, 1.9), TdG(s3) = (1.2, 1.4, 1.5).

Definition 1.12 A neutrosophic graph G is called a regular if each vertex has same
degree, that is,

dG(s) = (m1,m2,m3), for all s ∈ X.

Example 1.7 Consider a neutrosophic graph G on X = {s1, s2, s3, s4} as shown in
Fig. 1.6.

By direct calculations, we have

dG(s1) = (0.2, 1.2, 0.8) = dG(s2) = dG(s3) = dG(s4).

Hence G is a regular neutrosophic graph.

Definition 1.13 A neutrosophic graph G is called a totally regular of degree
(n1, n2, n3) if

TdG(s) = (n1, n2, n3), for all s ∈ X.
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Fig. 1.7 Totally regular neutrosophic graph

Example 1.8 Consider a neutrosophic graph G on X = {s1, s2, s3, s4, s5, s6} as
shown in Fig. 1.7.

By direct calculations, we have

dG(s1) = (0.3, 0.5, 1.1) = dG(s2) = dG(s3) = dG(s4) = dG(s5) = dG(s6),

TdG(s1) = (0.6, 0.9, 1.7) = TdG(s2) = TdG(s3) = TdG(s4) = TdG(s5) = TdG(s6).

Hence G is a totally regular neutrosophic graph.

Remark 1.3 The above two concepts are independent; that is, it is not necessary that
totally regular neutrosophic graph is regular neutrosophic graph and vice versa.

Example 1.9 Consider a neutrosophic graph G on X = {s1, s2, s3, s4} as shown in
Fig. 1.8.
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s4(0.8, 0.5, 0.6)

s3(1.0, 0.7, 0.8)

s2(0.9, 0.6, 0.8)s1(0.7, 0.4, 0.6) (0.2, 0.3, 0.4)

(0.
3, 0

.4,
0.3

)

(0.1, 0.2, 0.4)

(0.1,0.2,0.1)

Fig. 1.8 Totally regular but not regular neutrosophic graph

s3(0.2, 0.1, 0.7)

s2(0.5, 0.4, 0.7)

s1(0.7, 0.5, 0.8)

(0.3, 0.1
, 0.6)

(0.2, 0.1, 0.7)

Fig. 1.9 Neutrosophic graph

By direct calculations, we have

dG(s1) = (0.5, 0.7, 0.7), dG(s2) = (0.3, 0.5, 0.5),

dG(s3) = (0.2, 0.4, 0.5), dG(s4) = (0.4, 0.6, 0.7),

TdG(s1) = (1.2, 1.1, 1.3) = TdG(s2) = TdG(s3) = TdG(s4).

Therefore, G is a totally regular neutrosophic graph but not a regular neutrosophic
graph.

Definition 1.14 The degree and the total degree of an edge st of a neutrosophic
graphG are denoted by dG(st) = (dT (st), dI (st), dF (st)) and TdG(st) = (TdT (st),
TdI (st), TdF (st)), respectively, and are defined as

dG(st) = dG(s) + dG(t) − 2(TB(st), IB(st), FB(st)),

TdG(st) = dG(st) + (TB(st), IB(st), FB(st)).

Example 1.10 Consider a neutrosophic graph G on X = {s1, s2, s3} as shown in
Fig. 1.9.
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By direct calculations, we have

dG(s1) = (0.5, 0.2, 1.3), dG(s2) = (0.3, 0.1, 0.6), dG(s3) = (0.2, 0.1, 0.7).

• The degree of each edge is given as:

dG(s1s2) = dG(s1) + dG(s2) − 2(TB(s1s2), IB(s1s2), FB(s1s2)),

= (0.7, 0.5, 0.8) + (0.5, 0.4, 0.7) − 2(0.3, 0.1, 0.6),

= (0.2, 0.1, 0.7).

dG(s1s3) = dG(s1) + dG(s3) − 2(TB(s1s3), IB(s1s3), FB(s1s3)),

= (0.7, 0.5, 0.8) + (0.4, 0.2, 0.6) − 2(0.2, 0.1, 0.7),

= (0.3, 0.1, 0.6).

• The total degree of each edge is given as:

TdG(s1s2) = dG(s1s2) + (TB(s1s2), IB(s1s2), FB(s1s2)),

= (0.2, 0.1, 0.7) + (0.3, 0.1, 0.6),

= (0.5, 0.2, 1.3).

TdG(s1s3) = dG(s1s3) + (TB(s1s3), IB(s1s3), FB(s1s3)),

= (0.3, 0.1, 0.6) + (0.2, 0.1, 0.7),

= (0.5, 0.2, 1.3).

Definition 1.15 The maximum degree of a neutrosophic graph G is defined as
Δ(G) = (ΔT (G),ΔI (G),ΔF (G)), where

ΔT (G) = max{dT (s) : s ∈ X},
ΔI (G) = max{dI (s) : s ∈ X},
ΔF (G) = max{dF (s) : s ∈ X}.

Definition 1.16 The minimum degree of a neutrosophic graph G is defined as
δ(G) = (δT (G), δI (G), δF (G)), where

δT (G) = min{dT (s) : s ∈ X},
δI (G) = min{dI (s) : s ∈ X},
δF (G) = min{dF (s) : s ∈ X}.

Example 1.11 Consider the neutrosophic graph G as shown in Fig. 1.9. By direct
calculations, we have

Δ(G) = (0.5, 0.2, 1.3) and δ(G) = (0.2, 0.1, 0.6).
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s1(0.1, 0.4, 0.9)

s2(0.3, 0.4, 0.6)

s3(0.3, 0.2, 0.8)

(0.1
, 0.2

, 0.6
)

(0
.1
,0
.2
,0
.6
)

(0
.1
, 0
.2
, 0
.6
)

Fig. 1.10 Edge regular neutrosophic graph

Definition 1.17 A neutrosophic graph G on X is called an edge regular if every
edge in G has the same degree (q1, q2, q3).

Example 1.12 Consider a neutrosophic graph G on X = {s1, s2, s3} as shown in
Fig. 1.10.

By direct calculations, we have

dG(s1) = (0.2, 0.4, 1.2), dG(s2) = (0.2, 0.4, 1.2), dG(s3) = (0.2, 0.4, 1.2).

The degree of each edge is given below:

dG(s1s2) = dG(s1) + dG(s2) − 2(TB(s1s2), IB(s1s2), FB(s1s2)),

= (0.2, 0.4, 1.2) + (0.2, 0.4, 1.2) − 2(0.1, 0.2, 0.6),

= (0.2, 0.4, 1.2).

dG(s1s3) = dG(s1) + dG(s3) − 2(TB(s1s3), IB(s1s3), FB(s1s3)),

= (0.2, 0.4, 1.2) + (0.2, 0.4, 1.2) − 2(0.1, 0.2, 0.6),

= (0.2, 0.4, 1.2).

dG(s2s3) = dG(s2) + dG(s3) − 2(TB(s2s3), IB(s2s3), FB(s2s3)),

= (0.2, 0.4, 1.2) + (0.2, 0.4, 1.2) − 2(0.1, 0.2, 0.6),

= (0.2, 0.4, 1.2).
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Fig. 1.11 Totally edge
regular neutrosophic graph

s1(0.4, 0.4, 0.5)

s2(0.5, 0.5, 0.6)s3(0.8, 0.7, 0.3)

(0
.4
, 0
.4
, 0
.5
)

(0.5, 0.4, 0.2)

(0
.4
,0
.4
,0
.2
)

It is easy to see that each edge of neutrosophic graph G has the same degree. Hence
G is an edge regular neutrosophic graph.

Definition 1.18 A neutrosophic graph G on X is called a totally edge regular if
every edge in G has the same total degree (p1, p2, p3).

Example 1.13 Consider a neutrosophic graph G on X = {s1, s2, s3} as shown in
Fig. 1.11.

By direct calculations, we have

dG(s1) = (0.8, 0.8, 0.7), dG(s2) = (0.9, 0.8, 0.7), dG(s3) = (0.9, 0.8, 0.4).

• The degree of each edge is given below:

dG(s1s2) = dG(s1) + dG(s2) − 2(TB(s1s2), IB(s1s2), FB(s1s2)),

= (0.8, 0.8, 0.7) + (0.9, 0.8, 0.7) − 2(0.4, 0.4, 0.5),

= (0.9, 0.8, 0.4).

dG(s1s3) = dG(s1) + dG(s3) − 2(TB(s1s3), IB(s1s3), FB(s1s3)),

= (0.8, 0.8, 0.7) + (0.9, 0.8, 0.4) − 2(0.4, 0.4, 0.2),

= (0.9, 0.8, 0.7).

dG(s2s3) = dG(s2) + dG(s3) − 2(TB(s2s3), IB(s2s3), FB(s2s3)),

= (0.9, 0.8, 0.7) + (0.9, 0.8, 0.4) − 2(0.5, 0.4, 0.2),

= (0.8, 0.8, 0.7).

It is easy to see that dG(s1s2) �= dG(s1s3) �= dG(s2s3). So G is not an edge regular
neutrosophic graph.
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s1(0.7, 0.5, 0.6)

s4(0.7, 0.5, 0.4)

s2(0.2, 0.8, 0.3)

s3(0.9, 0.6, 0.2)

(0
.1
, 0
.4
, 0
.2
)

(0.2, 0.5, 0.1)

(0
.1
, 0
.4
, 0
.2
)

Fig. 1.12 Edge irregular and totally edge irregular neutrosophic graph

• The total degree of each edge is calculated as:

TdG(s1s2) = dG(s1s2) + (TB(s1s2), IB(s1s2), FB(s1s2)),

= (1.3, 1.2, 0.9).

TdG(s1s3) = dG(s1s3) + (TB(s1s3), IB(s1s3), FB(s1s3)),

= (1.3, 1.2, 0.9).

TdG(s2s3) = dG(s2s3) + (TB(s2s3), IB(s2s3), FB(s2s3)),

= (1.3, 1.2, 0.9).

It is easy to see that each edge of neutrosophic graph G has the same total degree.
So G is a totally edge regular neutrosophic graph.

Remark 1.4 A neutrosophic graph G is an edge regular neutrosophic graph if and
only if Δd(G) = δd(G) = (q1, q2, q3).

Example 1.14 Consider a neutrosophic graph G on X = {s1, s2, s3, s4} as shown in
Fig. 1.12.

By direct calculations, we have

dG(s1) = (0.1, 0.4, 0.2), dG(s2) = (0.3, 0.9, 0.3),

dG(s3) = (0.3, 0.9, 0.3), dG(s4) = (0.1, 0.4, 0.2).

• The degree of each edge is given below:

dG(s1s2) = dG(s1) + dG(s2) − 2(TB(s1s2), IB(s1s2), FB(s1s2)),

= (0.1, 0.4, 0.2) + (0.3, 0.9, 0.3) − 2(0.1, 0.4, 0.2),

= (0.2, 0.5, 0.1).
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s1(0.4, 0.7, 0.5)

s2(0.3, 0.6, 0.2)

s3(0.7, 0.4, 0.8)

s4(0.8, 0.5, 0.6)

(0.3, 0.3, 0.5)

(0.3, 0.4, 0.8)

(0.7, 0.4
, 0.8)

(0
.4
, 0
.5
, 0
.6
)

(0.
4, 0

.4,
0.8

)
(0.3, 0.5, 0.6)

Fig. 1.13 Complete neutrosophic graph

dG(s2s3) = dG(s2) + dG(s3) − 2(TB(s2s3), IB(s2s3), FB(s2s3)),

= (0.3, 0.9, 0.3) + (0.3, 0.9, 0.3) − 2(0.2, 0.5, 0.1),

= (0.2, 0.8, 0.4).

dG(s3s4) = dG(s3) + dG(s4) − 2(TB(s3s4), IB(s3s4), FB(s3s4)),

= (0.3, 0.9, 0.3) + (0.1, 0.4, 0.2) − 2(0.1, 0.4, 0.2),

= (0.2, 0.5, 0.1).

It is easy to see that dG(s1s2) �= dG(s2s3). So G is not an edge regular neutrosophic
graph.

• The total degree of each edge is calculated as:

TdG(s1s2) = dG(s1s2) + (TB(s1s2), IB(s1s2), FB(s1s2)),

= (0.3, 0.9, 0.3).

TdG(s2s3) = dG(s2s3) + (TB(s2s3), IB(s2s3), FB(s2s3)),

= (0.4, 1.3, 0.5).

TdG(s3s4) = dG(s3s4) + (TB(s3s4), IB(s3s4), FB(s3s4)),

= (0.3, 0.9, 0.3).

It is easy to see that TdG(s1s2) �= TdG(s2s3). So G is not a totally edge regular
neutrosophic graph.

Remark 1.5 A complete neutrosophic graph G may not be an edge regular neutro-
sophic graph.

Example 1.15 Consider a neutrosophic graph G on X = {s1, s2, s3, s4} as shown in
Fig. 1.13.

By direct calculations, we have
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dG(s1) = (1.1, 1.2, 1.9), dG(s2) = (0.9, 1.2, 1.9),

dG(s3) = (1.4, 1.2, 2.4), dG(s4) = (1.4, 1.4, 2.0).

The degree of each edge is given below:

dG(s1s2) = dG(s1) + dG(s2) − 2(TB(s1s2), IB(s1s2), FB(s1s2)),

= (1.1, 1.2, 1.9) + (0.9, 1.2, 1.9) − 2(0.3, 0.3, 0.5),

= (1.4, 2.0, 2.8).

dG(s1s3) = dG(s1) + dG(s3) − 2(TB(s1s3), IB(s1s3), FB(s1s3)),

= (1.1, 1.2, 1.9) + (1.4, 1.2, 2.4) − 2(0.4, 0.4, 0.8),

= (1.7, 1.6, 2.7).

dG(s1s4) = dG(s1) + dG(s4) − 2(TB(s1s4), IB(s1s4), FB(s1s4)),

= (1.1, 1.2, 1.9) + (1.4, 1.4, 2.0) − 2(0.4, 0.5, 0.6),

= (1.7, 1.6, 2.7).

dG(s2s3) = dG(s2) + dG(s3) − 2(TB(s2s3), IB(s2s3), FB(s2s3)),

= (0.9, 1.2, 1.9) + (1.4, 1.2, 2.4) − 2(0.3, 0.4, 0.8),

= (1.7, 1.6, 2.7).

dG(s2s4) = dG(s2) + dG(s4) − 2(TB(s2s4), IB(s2s4), FB(s2s4)),

= (0.9, 1.2, 1.9) + (1.4, 1.4, 2.0) − 2(0.3, 0.5, 0.6),

= (1.7, 1.6, 2.7).

dG(s3s4) = dG(s3) + dG(s4) − 2(TB(s3s4), IB(s3s4), FB(s3s4)),

= (1.4, 1.2, 2.4) + (1.4, 1.4, 2.0) − 2(0.7, 0.4, 0.8),

= (1.4, 1.8, 2.8).

It is easy to see that each edge of neutrosophic graph G has not the same degree.
Therefore, G is a complete neutrosophic graph but not an edge regular neutrosophic
graph.

Theorem 1.1 Let G be a neutrosophic graph. Then

∑
st∈E

dG(st) =
∑
st∈E

dG∗(st)(TB(st), IB(st), FB(st)),

where dG∗(st) = dG∗(s) + dG∗(t) − 2, for all s, t ∈ X.

Theorem 1.2 Let G be a neutrosophic graph. Then

∑
st∈E

T dG(st) =
∑
st∈E

dG∗(st)(TB(st), IB(st), FB(st)) + S(G),
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where dG∗(st) = dG∗(s) + dG∗(t) − 2, for all s, t ∈ X.

Proof Since the total degree of each edge in a neutrosophic graph G is TdG(st) =
dG(st) + (TB(st), IB(st), FB(st)). Therefore,

∑
st∈E

T dG(st) =
∑
st∈E

(dG(st) + (TB(st), IB(st), FB(st))),

∑
st∈E

T dG(st) =
∑
st∈E

dG(st) +
∑
st∈E

(TB(st), IB(st), FB(st)),

∑
st∈E

T dG(st) =
∑
st∈E

dG∗(st)(TB(st), IB(st), FB(st)) + S(G).

This completes the proof.

Theorem 1.3 Let G∗ = (X, E) be an edge regular crisp graph of degree q and G
be an edge regular neutrosophic graph of degree (q1, q2, q3) of G∗. Then the size of
G is (

mq1
q ,

mq2
q ,

mq3
q ), where |E | = m.

Proof Let G be an edge regular neutrosophic graph. Then,

dG(st) = (q1, q2, q3) and dG∗(st) = q, for each edge st ∈ E .

Since,

∑
st∈E

dG(st) =
∑
st∈E

dG∗(st)(TB(st), IB(st), FB(st)),

∑
st∈E

(q1, q2, q3) = q
∑
st∈E

(TB(st), IB(st), FB(st)),

m(q1, q2, q3) = qS(G),

(mq1,mq2,mq3) = qS(G),

S(G) =
(
mq1
q

,
mq2
q

,
mq3
q

)
.

This completes the proof.

Theorem 1.4 Let G∗ = (X, E) be an edge regular crisp graph of degree q and G
be a totally edge regular neutrosophic graph of degree (p1, p2, p3) of G∗. Then the
size of G is (

mp1
q+1 ,

mp2
q+1 ,

mp3
q+1 ), where |E | = m.

Proof Let G be a totally edge regular neutrosophic graph of an edge regular crisp
graph G∗ = (X, E). Therefore,

dG(st) = (p1, p2, p3) and dG∗(st) = q, for each edge st ∈ E .

Since,
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∑
st∈E

T dG(st) =
∑
st∈E

dG∗(st)(TB(st), IB(st), FB(st)) + S(G),

∑
st∈E

(p1, p2, p3) = q
∑
st∈E

(TB(st), IB(st), FB(st)) + S(G),

m(p1, p2, p3) = qS(G) + S(G),

(mp1,mp2,mp3) = (q + 1)S(G),

S(G) =
(

mp1
q + 1

,
mp2
q + 1

,
mp3
q + 1

)
.

This completes the proof.

Theorem 1.5 Suppose that G is an edge regular neutrosophic graph of degree
(q1, q2, q3) and a totally edge regular neutrosophic graph of degree (p1, p2, p3)
of G∗. Then, the size of G is m(p1 − q1, p2 − q2, p3 − q3), where |E | = m.

Proof Let G be an edge regular neutrosophic graph and a totally edge regular neu-
trosophic graph of a crisp graph G∗ = (X, E). Therefore,

dG(st) = (q1, q2, q3) and TdG(st) = (p1, p2, p3), for each edge st ∈ E .

TdG(st) = dG(st) + (TB(st), IB(st), FB(st)),∑
st∈E

T dG(st) =
∑
st∈E

dG(st) +
∑
st∈E

(TB(st), IB(st), FB(st)),

m(p1, p2, p3) = m(q1, q2, q3) + S(G),

S(G) = m(p1 − q1, p2 − q2, p3 − q3).

This completes the proof.

Theorem 1.6 Let G∗ = (X, E) be a crisp graph, which is a cycle onm vertices. Sup-
pose that G be a neutrosophic graph of G∗. Then

∑
sk∈X dG(sk) =∑sk sl∈E dG(sksl).

Proof LetG be a neutrosophic graph ofG∗. Suppose thatG∗ be a cycle s1, s2, s3, . . . ,
sm, s1 on m vertices. Then

∑
sk sl∈E

dG(sksl ) = dG(s1s2) + dG(s2s3) + · · · + dG(sms1),

= [dG(s1) + dG(s2) − 2(TB(s1s2), IB(s1s2), FB(s1s2))][dG(s2)

+dG(s3) − 2(TB(s2s3), IB(s2s3), FB(s2s3))] + · · · + [dG(sm)

+dG(s1) − 2(TB(sms1), IB(sms1), FB(sms1))],
= 2dG(s1) + 2dG(s2) + · · · + 2dG(sm) − 2(TB(s1s2), IB(s1s2), FB(s1s2)),

−2(TB(s2s3), IB(s2s3), FB(s2s3)) − · · · − 2(TB(sms1), IB(sms1), FB(sms1)),

= 2
∑
sk∈X

dG(sk) − 2
∑

sk sl∈E
(TB(sksl ), IB(sksl ), FB(sksl )),

=
∑
sk∈X

dG(sk) +
∑
sk∈X

dG(sk) − 2
∑

sk sl∈E
(TB(sksl ), IB(sksl ), FB(sksl)),
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=
∑
sk∈X

dG(sk) + 2
∑

sk sl∈E
(TB(sksl ), IB(sksl ), FB(sksl ))

−2
∑

sk sl∈E
(TB(sksl ), IB(sksl ), FB(sksl )),

=
∑
sk∈X

dG(sk).

This completes the proof.

Theorem 1.7 Let G be a neutrosophic graph. Then B is a constant function if and
only if the following statements are equivalent:

(a) G is an edge regular neutrosophic graph.
(b) G is a totally edge regular neutrosophic graph.

Proof Let G be a neutrosophic graph. Suppose that B is a constant function, then

TB(st) = l1, IB(st) = l2, FB(st) = l3, for all st ∈ E .

(a) ⇒ (b): Assume that G is an edge regular neutrosophic graph, i.e.

dG(st) = (q1, q2, q3), for each edge st ∈ E .

This implies that

TdG(st) = (l1 + q1, l2 + q2, l3 + q3) for each edge st ∈ E .

This shows that G is an edge regular neutrosophic graph of degree

(l1 + q1, l2 + q2, l3 + q3).

(b) ⇒ (a): Suppose that G is a totally edge regular neutrosophic graph, i.e.

TdG(st) = (p1, p2, p3) for all st ∈ E .

This implies that

dG(st) + (TB(st), IB(st), FB(st)) = (p1, p2, p3).

This implies that

dG(st) = (p1, p2, p3) − 4(TB(st), IB(st), FB(st)).

This implies that

dG(st) = (p1 − l1, p2 − l2, p3 − l3) for each edge st ∈ E .
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Thus G is an edge regular neutrosophic graph of degree

(p1 − l1, p2 − l2, p3 − l3).

Hence the statements (a) and (b) are equivalent.
Conversely, suppose that (a) and (b) are equivalent. Assume that B is not a constant

function. This implies that

(TB(st), IB(st), FB(st)) �= (TB(uv), IB(uv), FB(uv)),

for at least one pair of edges st, uv ∈ E .
Assume that G is an edge regular neutrosophic graph. This implies that

dG(st) = dG(uv) = (q1, q2, q3).

This implies that

TdG(st) = dG(st) + (TB(st), IB(st), FB(st)) = (q1, q2, q3) + (TB(st), IB(st), FB(st)),

TdG(uv) = dG(uv) + (TB(uv), IB(uv), FB(uv)) = (q1, q2, q3) + (TB(uv), IB(uv), FB(uv)).

Since
(TB(st), IB(st), FB(st)) �= (TB(uv), IB(uv), FB(uv)).

This implies that TdG(st) �= TdG(uv). This shows thatG is not a totally edge regular
neutrosophic graph, which contradicts our supposition.

Now, suppose that G is a totally edge regular neutrosophic graph, i.e.

TdG(st) = TdG(uv) = (p1, p2, p3).

This implies that

TdG(st) = dG(st) + (TB(st), IB(st), FB(st)) = dG(uv) + (TB(uv), IB(uv), FB(uv)).

This implies that

dG(st) − dG(uv) = (TB(st), IB(st), FB(st)) − (TB(uv), IB(uv), FB(uv)).

Since
(TB(st), IB(st), FB(st)) �= (TB(uv), IB(uv), FB(uv)).

This implies that dG(st) − dG(uv) �= 0. This implies that dG(st) �= dG(uv).
This shows that G is not an edge regular neutrosophic graph, which contradicts our
supposition. Hence B is a constant function.
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Fig. 1.14 Neutrosophic graph

Theorem 1.8 Let G be a neutrosophic graph. Assume that G is both edge regular
neutrosophic of degree (q1, q2, q3) and totally edge regular neutrosophic graph of
degree (p1, p2, p3). Then B is a constant function.

Proof The proof is obvious.

Remark 1.6 The converse of Theorem1.8 may not be true in general; that is, a
neutrosophic graph G, where B is a constant function, may or may not be edge
regular and totally edge regular neutrosophic graph.

Example 1.16 Consider a neutrosophic graph G on X = {s1, s2, s3, s4} as shown in
Fig. 1.14.

By direct calculations, we have

dG(s1) = (0.1, 0.2, 0.4), dG(s2) = (0.2, 0.4, 0.8),

dG(s3) = (0.2, 0.4, 0.8), dG(s4) = (0.1, 0.2, 0.4).

The degree of each edge is

dG(s1s2) = (0.1, 0.2, 0.4), dG(s2s3) = (0.2, 0.4, 0.8), dG(s3s4) = (0.1, 0.2, 0.4).

The total degree of each edge is

TdG(s1s2) = (0.2, 0.4, 0.8), TdG(s2s3) = (0.3, 0.6, 1.2).

It is clear from above calculations that G is neither an edge regular nor a totally edge
regular neutrosophic graph.
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Theorem 1.9 Let G be a neutrosophic graph of G∗ = (X, E), where B is a constant
function. If G is a regular neutrosophic graph, then G is an edge regular neutrosophic
graph.

Proof Assume that B is a constant function, that is,

TB(st) = l1, IB(st) = l2, FB(st) = l3 for all st ∈ E .

Suppose that G is a regular neutrosophic graph, that is,

dG(s) = (m1,m2,m3) for all s ∈ X.

Now

dG(st) = dG(s) + dG(t) − 2(TB(st), IB(st), FB(st)),

= (m1,m2,m3) + (m1,m2,m3) − 2(l1, l2, l3),

= 2(m1 − l1,m2 − l2,m3 − l3),

for all st ∈ E . Hence G is an edge regular neutrosophic graph.

Theorem 1.10 Let G = (A, B) be a neutrosophic graph of G∗ = (X, E), where B
is a constant function. If G is a regular neutrosophic graph, then G is a totally edge
regular neutrosophic graph.

Proof Let B be a constant function, that is,

TB(st) = l1, IB(st) = l2, FB(st) = l3 for all st ∈ E .

Assume that G is a regular neutrosophic graph, that is,

dG(s) = (m1,m2,m3), for all s ∈ X.

Then G is an edge regular neutrosophic graph, that is,

dG(st) = (q1, q2, q3).

Now

TdG(st) = dG(st) + (TB(st), IB(st), FB(st)),

= (q1, q2, q3) + (l1, l2, l3),

= 2(q1 + l1, q2 + l2, q3 + l3),

for all st ∈ E . Hence G is a totally edge regular neutrosophic graph.

Theorem 1.11 Suppose that G is a neutrosophic graph. Then G is both regular and
totally edge regular neutrosophic graph if and only if B is a constant function.
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Proof Let G∗ = (X, E) be a regular crisp graph. Suppose that G is a neutrosophic
graph of G∗. Suppose that G is both regular and totally edge regular neutrosophic
graph, that is,

dG(s) = (m1,m2,m3), for all s ∈ X,

TdG(st) = (p1, p2, p3), for all st ∈ E .

Now

TdG(st) = dG(s) + dG(t) − (TB(st), IB(st), FB(st)), ∀ st ∈ E,

(p1, p2, p3) = (m1,m2,m3)+(m1,m2,m3)−(TB(st), IB(st), FB(st)),

(TB(st), IB(st), FB(st)) = (2m1 − p1, 2m2 − p2, 2m3 − p3),

for all st ∈ E . Hence B is a constant function.
Conversely, let B be a constant function, that is,

TB(st) = l1, IB(st) = l2, FB(st) = l3, for all st ∈ E .

So

dG(s) =
∑
st∈E

(TB(st), IB(st), FB(st)), ∀ s ∈ X,

=
∑
st∈E

(m1,m2,m3),

= (m1,m2,m3)dG∗(s),

= (m1,m2,m3)m.

This implies that

dG(s) = (mm1,mm2,mm3), for all s ∈ E .

Thus G is a regular neutrosophic graph. Now

TdG(st) =
∑

sa∈E,s �=a

(TB(sa), IB(sa), FB(sa)) +
∑

at∈E,a �=t

(TB(at), IB(at), FB(at)),

+(TB(st), IB(st), FB(st)) ∀st ∈ E,

=
∑

sa∈E,s �=a

(l1, l2, l3) +
∑

at∈E,a �=t

(l1, l2, l3) + (l1, l2, l3),

= (l1, l2, l3)(dG∗(s) − 1) + (l1, l2, l3)(dG∗(t) − 1) + (l1, l2, l3),

= (l1, l2, l3)(s − 1) + (l1, l2, l3)(t − 1) + (l1, l2, l3),

= (2l1, 2l2, 2l3)(s − 1) + (l1, l2, l3),
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for all st ∈ E . Hence G is a totally edge regular neutrosophic graph.

Theorem 1.12 Let G∗ = (X, E) be a crisp graph. Suppose that G = (A, B) is a
neutrosophic graph of G∗. Then B is a constant function if and only if G is an edge
regular neutrosophic graph.

Proof Let G be a regular neutrosophic graph, that is,

dG(s) = (m1,m2,m3), for all s ∈ X.

Suppose that B is a constant function, that is,

TB(st) = l1, IB(st) = l2, FB(st) = l3, for all st ∈ E .

Now

dG(st) = dG(s) + dG(t) − 2(TB(st), IB(st), FB(st)), ∀ st ∈ E .

= (m1,m2,m3) + (m1,m2,m3) − 2(l1, l2, l3),

this implies that

dG(st) = 2(m1,m2,m3) − 2(l1, l2, l3), for all st ∈ E .

Hence G is an edge regular neutrosophic graph.
Conversely, assume that G is an edge regular neutrosophic graph, that is,

dG(st) = (q1, q2, q3), for each edge st ∈ E .

Now

dG(st) = dG(s) + dG(t) − 2(TB(st), IB(st), FB(st)), ∀ st ∈ E,

(q1, q2, q3) = (m1,m2,m3) + (m1,m2,m3) − 2(TB(st), IB(st), FB(st)),

this implies that

(TB(st), IB(st), FB(st)) = (q1, q2, q3) − (2m1, 2m2, 2m3)

2
, for all st ∈ E .

Thus B is a constant function.

Definition 1.19 Let G∗ be an edge regular crisp graph. Then a neutrosophic graph
G of G∗ is called a partially edge regular.

Example 1.17 It can be seen in Example1.15 that G∗ is an edge regular crisp graph.
Therefore, G is a partially edge regular neutrosophic graph.
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Fig. 1.15 Full edge regular neutrosophic graph

Definition 1.20 A neutrosophic graph G is called a full edge regular if it is both
edge regular and partially edge regular.

Example 1.18 Consider a neutrosophic graph G on X = {s1, s2, s3, s4} as shown in
Fig. 1.15.

By direct calculations, we have

dG(s1) = (0.4, 0.8, 0.8), dG(s2) = (0.4, 0.8, 0.8),

dG(s3) = (0.4, 0.8, 0.8), dG(s4) = (0.4, 0.8, 0.8).

The degree of each edge is

dG(s1s2) = (0.4, 0.8, 0.8), dG(s2s3) = (0.4, 0.8, 0.8)

dG(s3s4) = (0.4, 0.8, 0.8), dG(s1s4) = (0.4, 0.8, 0.8).

It is clear from calculations that G is full edge regular neutrosophic graph.

Theorem 1.13 Let G be a neutrosophic graph, where B is a constant function. Then
G is full edge regular neutrosophic graph if it is full regular neutrosophic graph.

Proof Let G be a neutrosophic graph of a crisp graph G∗ = (X, E). Suppose that B
is a constant function, that is,

(TB(st), IB(st), FB(st)) = (l1, l2, l3), for each edge st ∈ E .

Assume thatG is full regular neutrosophic graph. ThenG is both regular and partially
regular. Therefore,

dG(s) = (m1,m2,m3) and dG∗(s) = m, for all s ∈ X.
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Fig. 1.16 Irregular neutrosophic graph

Since
dG∗(st) = dG∗(s) + dG∗(t) − 2, for all st ∈ E .

This shows that dG∗(st) = 2m − 2. Therefore, G∗ is an edge regular neutrosophic
graph. Now

dG(st) = dG(s) + dG(t) − 2(TB(st), IB(st), FB(st)), ∀ st ∈ E .

= (m1,m2,m3) + (m1,m2,m3) − 2(l1, l2, l3),

this implies that
dG(st) = 2(m1 − l1,m2 − l2,m3 − l3).

This shows that G is an edge regular neutrosophic graph. Hence G is a full edge
regular neutrosophic graph.

Definition 1.21 Aneutrosophic graphG is called an irregular if there exists a vertex
which is adjacent to vertices with distinct degrees.

Example 1.19 Consider a neutrosophic graph G on X = {s1, s2, s3, s4} as shown in
Fig. 1.16.

By direct calculations, we have

dG(s1) = (0.6, 1.0, 0.4), dG(s2) = (0.8, 0.9, 0.8),

dG(s3) = (0.8, 0.9, 0.8), dG(s4) = (0.6, 1.0, 0.4).

It is easy to see that s1 is adjacent to vertices of distinct degrees. Therefore, G is an
irregular neutrosophic graph.

Definition 1.22 A neutrosophic graph G is called a totally irregular if there exists
a vertex which is adjacent to vertices with distinct total degrees.
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Fig. 1.17 Totally irregular neutrosophic graph
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Fig. 1.18 Strongly irregular neutrosophic graph

Example 1.20 Consider a neutrosophic graph G on X = {s1, s2, s3, s4} as shown in
Fig. 1.17.

By direct calculations, we have

TdG(s1) = (1.1, 0.5, 1.2), TdG(s2) = (1.4, 0.8, 1.4),

TdG(s3) = (1.1, 0.5, 1.2), TdG(s4) = (1.2, 0.6, 1.1).

It is easy to see that s1 is adjacent to vertices of distinct total degrees. Therefore, G
is a totally irregular neutrosophic graph.

Definition 1.23 A neutrosophic graph G is called strongly irregular if each vertex
has distinct degree.

Example 1.21 Consider a neutrosophic graph G on X = {s1, s2, s3} as shown in
Fig. 1.18.

By direct calculations, we have

dG(s1) = (0.3, 0.3, 1.1), dG(s2) = (0.5, 0.2, 0.9), dG(s3) = (0.4, 0.3, 0.8).

From Fig. 1.18, it is clear that each vertex has distinct degree. Therefore, G is a
strongly irregular neutrosophic graph.
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Definition 1.24 A neutrosophic graph G is called strongly totally irregular neutro-
sophic graph if each vertex has distinct total degree.

Example 1.22 Consider the neutrosophic graph G as shown in Fig. 1.18. By direct
calculations, we have

Td(s1) = (0.6, 0.7, 1.8), Td(s2) = (1.0, 0.4, 1.3), Td(s3) = (1.0, 0.6, 1.3).

Since each vertex has distinct total degree, G is a strongly totally irregular neutro-
sophic graph.

Definition 1.25 A neutrosophic graph G is called highly irregular if each vertex in
G is adjacent to vertices having distinct degrees.

Example 1.23 Consider the neutrosophic graph G as shown in Fig. 1.16. It is easy
to see that each vertex is adjacent to vertices of distinct degree; therefore, G is highly
irregular neutrosophic graph.

Definition 1.26 A neutrosophic graph G is called highly totally irregular if each
vertex in G is adjacent to vertices having distinct total degrees.

Example 1.24 Consider a neutrosophic graph G on X = {s1, s2, s3, s4} as shown in
Fig. 1.19.

By direct calculations, we have

TdG(s1) = (0.8, 0.8, 0.7), TdG(s2) = (0.3, 0.4, 0.7),

TdG(s3) = (0.7, 1.0, 1.1), TdG(s4) = (1.1, 1.1, 0.7).
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s4(0.7, 0.5, 0.3)
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(0.2, 0.3, 0.2)
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2, 0
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)

(0.1, 0.1, 0.2)

Fig. 1.19 Highly totally irregular neutrosophic graph
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From Fig. 1.19, it is clear that each vertex is adjacent to vertices of distinct degrees.
Therefore, G is highly totally irregular neutrosophic graph.

Definition 1.27 Aconnected neutrosophic graphG is called neighbourly edge irreg-
ular if every two adjacent edges in G have distinct degrees.

Example 1.25 Consider the neutrosophic graph G as shown in Fig. 1.18. It is easy
to see that every two adjacent edges in G have distinct degrees; therefore, G is
neighbourly edge irregular neutrosophic graph.

Definition 1.28 A connected neutrosophic graph G is called neighbourly edge
totally irregular neutrosophic graph if every two adjacent edges in G have distinct
total degrees.

Example 1.26 Consider the neutrosophic graph G as shown in Fig. 1.18. It is easy
to see that every two adjacent edges in G have distinct total degrees; therefore, G is
neighbourly edge totally irregular neutrosophic graph.

Definition 1.29 Let G∗ be a crisp graph. A neutrosophic graph G of G∗ is called
a strongly edge irregular neutrosophic graph if each edge in G has distinct degree;
that is, no two edges in G have the same degree.

Example 1.27 Consider a neutrosophic graph G on X = {s1, s2, s3} as shown in
Fig. 1.20.

By direct calculations, we have

dG(s1) = (0.8, 0.8, 0.4), dG(s2) = (0.6, 0.3, 0.4), dG(s3) = (0.8, 0.7, 0.2).

• The degree of each edge is given as:

dG(s1s2) = dG(s1) + dG(s2) − 2(TB(s1s2), IB(s1s2), FB(s1s2)),

= (0.8, 0.8, 0.4) + (0.6, 0.3, 0.4) − 2(0.3, 0.2, 0.3),

= (0.8, 0.7, 0.2).

s3(0.8, 0.6, 0.1)

s2(0.4, 0.2, 0.5)

s1(0.6, 0.9, 0.3)

(0.3, 0.2
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.3
,0

.1
,0

.
)1

Fig. 1.20 Strongly edge irregular neutrosophic graph
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Fig. 1.21 Strongly edge totally irregular neutrosophic graph

dG(s1s3) = dG(s1) + dG(s3) − 2(TB(s1s3), IB(s1s3), FB(s1s3)),

= (0.8, 0.8, 0.4) + (0.8, 0.7, 0.2) − 2(0.5, 0.6, 0.1),

= (0.6, 0.3, 0.4).

dG(s2s3) = dG(s2) + dG(s3) − 2(TB(s2s3), IB(s2s3), FB(s2s3)),

= (0.6, 0.3, 0.4) + (0.8, 0.7, 0.2) − 2(0.3, 0.1, 0.1),

= (0.8, 0.8, 0.4).

Since no two edges in G have the same degree, G is a strongly edge irregular neu-
trosophic graph.

Definition 1.30 A neutrosophic graph G is called a strongly edge totally irregular
neutrosophic graph if each edge in G has distinct total degree; that is, no two edges
in G have the same total degree.

Example 1.28 Consider a neutrosophic graph G on X = {s1, s2, s3, s4} as shown in
Fig. 1.21.

By direct calculations, we have

dG(s1) = (0.8, 0.2, 0.2), dG(s2) = (0.5, 0.2, 0.4),

dG(s3) = (0.7, 0.3, 0.6), dG(s4) = (1.0, 0.3, 0.4).

• The degree of each edge is given as:

dG(s1s2) = dG(s1) + dG(s2) − 2(TB(s1s2), IB(s1s2), FB(s1s2)),

= (0.8, 0.2, 0.2) + (0.5, 0.2, 0.4) − 2(0.3, 0.1, 0.1),

= (0.7, 0.2, 0.4).
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dG(s1s4) = dG(s1) + dG(s4) − 2(TB(s1s4), IB(s1s4), FB(s1s4)),

= (0.8, 0.2, 0.2) + (1.0, 0.3, 0.4) − 2(0.5, 0.1, 0.1),

= (0.8, 0.3, 0.4).

dG(s2s3) = dG(s2) + dG(s3) − 2(TB(s2s3), IB(s2s3), FB(s2s3)),

= (0.5, 0.2, 0.4) + (0.7, 0.3, 0.6) − 2(0.2, 0.1, 0.3),

= (0.8, 0.3, 0.4).

dG(s3s4) = dG(s3) + dG(s4) − 2(TB(s3s4), IB(s3s4), FB(s3s4)),

= (0.7, 0.3, 0.6) + (1.0, 0.3, 0.4) − 2(0.5, 0.2, 0.3),

= (0.7, 0.2, 0.4).

• The total degree of each edge is given as:

TdG(s1s2) = dG(s1s2) + (TB(s1s2), IB(s1s2), FB(s1s2)),

= (0.7, 0.2, 0.4) + (0.3, 0.1, 0.1),

= (1.0, 0.3, 0.5).

TdG(s1s4) = dG(s1s4) + (TB(s1s4), IB(s1s4), FB(s1s4)),

= (0.8, 0.3, 0.4) + (0.5, 0.1, 0.1),

= (1.3, 0.4, 0.5).

TdG(s2s3) = dG(s2s3) + (TB(s2s3), IB(s2s3), FB(s2s3)),

= (0.8, 0.3, 0.4) + (0.2, 0.1, 0.3),

= (1.0, 0.4, 0.7).

TdG(s3s4) = dG(s3s4) + (TB(s3s4), IB(s3s4), FB(s3s4)),

= (0.7, 0.2, 0.4) + (0.5, 0.2, 0.3),

= (1.2, 0.4, 0.7).

Since no two edges in G have the same total degree, G is a strongly edge totally
irregular neutrosophic graph.

Remark 1.7 A strongly edge irregular neutrosophic graph G may not be strongly
edge totally irregular neutrosophic graph.

Example 1.29 Consider a neutrosophic graph G on X = {s1, s2, s3} as shown in
Fig. 1.22.

By direct calculations, we have

dG(s1) = (1.1, 0.5, 0.7), dG(s2) = (0.7, 0.4, 0.9), dG(s3) = (1.0, 0.3, 0.6).
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Fig. 1.22 Strongly edge irregular neutrosophic graph
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Fig. 1.23 Strongly edge totally irregular neutrosophic graph

The degree of each edge is

dG(s1s2) = (1.0, 0.3, 0.6), dG(s2s3) = (1.1, 0.5, 0.7), dG(s1s3) = (0.7, 0.4, 0.9).

Since all the edges have distinct degrees, G is a strongly edge irregular neutrosophic
graph. The total degree of each edge is

TdG(s1s2) = (1.4, 0.6, 1.1) = TdG(s2s3) = TdG(s1s3).

Since each edge of G has the same total degree therefore G is not a strongly edge
totally irregular neutrosophic graph.

Remark 1.8 A strongly edge totally irregular neutrosophic graph G may not be
strongly edge irregular neutrosophic graph.

Example 1.30 Consider a neutrosophic graph G on X = {s1, s2, s3, s4} as shown in
Fig. 1.23.



1.2 Certain Types of Neutrosophic Graphs 35

By direct calculations, we have

dG(s1) = (0.6, 0.5, 0.8), dG(s2) = (0.3, 0.8, 1.1),

dG(s3) = (0.5, 0.7, 0.9), dG(s4) = (0.8, 0.4, 0.6).

The degree of each edge is

dG(s1s2) = (0.7, 0.7, 0.9), dG(s2s3) = (0.4, 0.5, 0.8),

dG(s3s4) = (0.7, 0.7, 0.9), dG(s1s4) = (0.4, 0.5, 0.8).

It is easy to see that dG(s1s2) = dG(s3s4) and dG(s2s3) = dG(s1s4).
Therefore, G is not a strongly edge irregular neutrosophic graph.
The total degree of each edge is

TdG(s1s2) = (0.8, 1.0, 1.4), TdG(s2s3) = (0.6, 1.0, 1.4),

TdG(s3s4) = (1.0, 0.9, 1.2), TdG(s1s4) = (0.9, 0.7, 1.1).

Since all the edges have distinct total degrees, G is a strongly edge totally irregular
neutrosophic graph.

Theorem 1.14 If G is a strongly edge irregular connected neutrosophic graph,
where B is a constant function, then G is a strongly edge totally irregular neutro-
sophic graph.

Proof Let G be a strongly edge irregular connected neutrosophic graph. Assume
that B is a constant function. Then

TB(xy) = l1, IB(xy) = l2, FB(xy) = l3, for all xy ∈ E,

where l1, l2 and l3 are constants. Consider a pair of edges xy and uv in E .
Since G is a strongly edge irregular neutrosophic graph,

dG(xy) �= dG(uv),

where xy and uv are a pair of edges in E . This shows that

dG(xy) + (l1, l2, l3) �= dG(uv) + (l1, l2, l3).

This implies that

dG(xy) + (TB(xy), IB(xy), FB(xy)) �= dG(uv) + (TB(uv), IB(uv), FB(uv)).
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Thus
TdG(xy) �= TdG(uv),

where xy and uv are a pair of edges in E . Since the pair of edges xy and uv were
taken to be arbitrary, this shows that every pair of edges in G have distinct total
degrees.

Hence G is a strongly edge totally irregular neutrosophic graph.

Theorem 1.15 If G is a strongly edge totally irregular connected neutrosophic
graph, where B is a constant function, then G is a strongly edge irregular neu-
trosophic graph.

Proof Let G be a strongly edge totally irregular connected neutrosophic graph.
Assume that B is a constant function. Then

TB(xy) = l1, IB(xy) = l2 and FB(xy) = l3, for all xy ∈ E,

where l1, l2 and l3 are constants. Consider a pair of edges xy and uv in L .
Since G is a strongly edge totally irregular neutrosophic graph,

TdG(xy) �= TdG(uv),

where xy and uv are a pair of edges in E . This shows that

dG(xy) + (TB(xy), IB(xy), FB(xy)) �= dG(uv) + (TB(uv), IB(uv), FB(uv)).

This implies that

dG(xy) + (l1, l2, l3) �= dG(uv) + (l1, l2, l3).

Thus
dG(xy) �= dG(uv),

where xy and uv are a pair of edges in E . Since the pair of edges xy and uv were
taken to be arbitrary, this shows that every pair of edges in G have distinct degrees.

Hence G is a strongly edge irregular neutrosophic graph.

Remark 1.9 If G is both strongly edge irregular neutrosophic graph and strongly
edge totally irregular neutrosophic graph, then it is not necessary that B is a constant
function.

Example 1.31 Consider a neutrosophic graph G on X = {s1, s2, s3, s4, s4} as shown
in Fig. 1.24.

By direct calculations, we have

dG(s1) = (0.6, 0.4, 0.4), dG(s2) = (0.3, 0.7, 0.6), dG(s3) = (0.3, 0.8, 0.6),
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Fig. 1.24 Neutrosophic graph

dG(s4) = (0.4, 0.7, 0.7), dG(s5) = (0.6, 0.4, 0.7).

The degree of each edge is

dG(s1s2) = (0.5, 0.5, 0.6), dG(s2s3) = (0.4, 0.7, 0.4), dG(s3s4) = (0.3, 0.7, 0.9),

dG(s4s5) = (0.6, 0.5, 0.4), dG(s5s1) = (0.4, 0.6, 0.7).

It is easy to see that all the edges have distinct degrees. Therefore, G is a strongly
edge irregular neutrosophic graph.

The total degree of each edge is

TdG(s1s2) = (0.7, 0.8, 0.8), TdG(s2s3) = (0.5, 1.1, 0.8), TdG(s3s4) = (0.5, 1.1, 1.1),

TdG(s4s5) = (0.8, 0.8, 0.9), TdG(s5s1) = (0.8, 0.7, 0.9).

Since all the edges have distinct total degrees, G is a strongly edge totally irregular
neutrosophic graph. This shows that G is both strongly edge irregular neutrosophic
graph and strongly edge totally irregular neutrosophic graph, but B is not a constant
function.

Theorem 1.16 Let G be a strongly edge irregular neutrosophic graph. Then G is a
neighbourly edge irregular neutrosophic graph.

Proof Suppose that G is a strongly edge irregular neutrosophic graph. Then each
edge in G has distinct degree. This shows that every pair of edges in G have distinct
degrees. Therefore, G is a neighbourly edge irregular neutrosophic graph.
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Fig. 1.25 Neutrosophic graph

Theorem 1.17 Let G be a strongly edge totally irregular neutrosophic graph. Then
G is a neighbourly edge totally irregular neutrosophic graph.

Proof Suppose that G is a strongly edge totally irregular neutrosophic graph. Then
each edge in G has distinct total degree. This shows that every pair of edges in
G have distinct total degrees. Therefore, G is a neighbourly edge totally irregular
neutrosophic graph.

Remark 1.10 If G is a neighbourly edge irregular neutrosophic graph, then it is not
necessary that G is a strongly edge irregular neutrosophic graph.

Example 1.32 Consider a neutrosophic graph G on X = {s1, s2, s3, s4} as shown in
Fig. 1.25.

By direct calculations, we have

dG(s1) = (0.6, 0.5, 0.1), dG(s2) = (1.2, 1.0, 0.2),

dG(s3) = (1.2, 1.0, 0.2), dG(s4) = (0.6, 0.5, 0.1).

The degree of each edge is

dG(s1s2) = (0.6, 0.5, 0.1), dG(s2s3) = (1.2, 1.0, 0.2), dG(s3s4) = (0.6, 0.5, 0.1).

G is neighbourly edge irregular neutrosophic graph since every two adjacent edges
in G have distinct total degrees, that is,

dG(s1s2) �= dG(s2s3) and dG(s2s3) �= dG(s3s4).

It is easy to see that dG(s1s2) = dG(s3s4). Therefore,G is not a strongly edge irregular
neutrosophic graph.
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Remark 1.11 If G is a neighbourly edge totally irregular neutrosophic graph, then
it is not necessary that G is a strongly edge totally irregular neutrosophic graph.

Example 1.33 Consider the neutrosophic graph G as shown in Fig. 1.25. The total
degree of each edge is

TdG(s1s2) = (1.2, 1.0, 0.2), TdG(s2s3) = (1.8, 1.5, 0.3), TdG(s1s2) = (1.2, 1.0, 0.2).

It is easy to see that every two adjacent edges in G have distinct total degrees, that
is,

TdG(s1s2) �= TdG(s2s3), and TdG(s2s3) �= TdG(s3s4).

Therefore, G is neighbourly edge totally irregular neutrosophic graph. It is easy to
see that TdG(s1s2) = TdG(s3s4). Hence G is not a strongly edge totally irregular
neutrosophic graph.

Theorem 1.18 Let G be a strongly edge irregular connected neutrosophic graph,
with B as constant function. Then G is an irregular neutrosophic graph.

Proof Let G be a strongly edge irregular connected neutrosophic graph, with B as
constant function. Then

TB(xy) = l1, IB(xy) = l2, FB(xy) = l3, for each edge xy ∈ E,

where l1, l2 and l3 are constants. Also, every edge in G has distinct degrees, since G
is strongly edge irregular neutrosophic graph.

Let xy and yu be any two adjacent edges in G such that

dG(xy) �= dG(yu).

This implies that

dG(x) + dG(y) − 2(TB(xy), IB(xy), FB(xy)) �= dG(y) + dG(u) − 2(TB(yu), IB(yu), FB(yu)).

This implies that

dG(x) + dG(y) − 2(l1, l2, l3) �= dG(y) + dG(u) − 2(l1, l2, l3).

This shows that
dG(x) �= dG(u).

Thus there exists a vertex y in G which is adjacent to the vertices with distinct
degrees. This shows that G is an irregular neutrosophic graph.

Theorem 1.19 Let G be a strongly edge totally irregular connected neutrosophic
graph, with B as constant function. Then G is an irregular neutrosophic graph.
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Proof Let G be a strongly edge totally irregular connected neutrosophic graph, with
B as constant function. Then

TB(xy) = l1, IB(xy) = l2, FB(xy) = l3, for each edge xy ∈ E,

where l1, l2 and l3 are constants. Also, every edge in G has distinct total degrees,
since G is strongly edge totally irregular neutrosophic graph.

Let xy and yu be any two adjacent edges in G such that

TdG(xy) �= TdG(yu).

This implies that

dG(xy) + (TB(xy), IB(xy), FB(xy)) �= dG(yu) + (TB(yu), IB(yu), FB(yu)).

This implies that

dG(x) + dG(y) − (TB(xy), IB(xy), FB(xy)) �= dG(y) + dG(u) − (TB(yu), IB(yu), FB(yu)).

This implies that

dG(x) + dG(y) − 2(l1, l2, l3) �= dG(y) + dG(u) − 2(l1, l2, l3).

This shows that
dG(x) �= dG(u).

Thus there exists a vertex y in G which is adjacent to the vertices with distinct
degrees. This shows that G is an irregular neutrosophic graph.

Remark 1.12 If G is an irregular neutrosophic graph, with B as a constant function.
Then it is not necessary that G is a strongly edge irregular neutrosophic graph.

Example 1.34 Consider a neutrosophic graph G on X = {s1, s2, s3, s4} as shown in
Fig. 1.26.

By direct calculations, we have

dG(s1) = (0.8, 0.2, 0.6), dG(s2) = (1.2, 0.3, 0.9),

dG(s3) = (0.8, 0.2, 0.6), dG(s4) = (1.2, 0.3, 0.9).

The degree of each edge is

dG(s1s2) = (1.2, 0.3, 0.9), dG(s2s3) = (1.2, 0.3, 0.9), dG(s2s4) = (1.6, 0.4, 1.2),

dG(s3s4) = (1.2, 0.3, 0.9), dG(s1s4) = (1.2, 0.3, 0.9).
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Fig. 1.26 Irregular neutrosophic graph

It is easy to see that all the edges have the same degree except the edge s2s4. Therefore,
G is not a strongly edge irregular neutrosophic graph.

Remark 1.13 If G is an irregular neutrosophic graph, with B as a constant function.
Then it is not necessary thatG is a strongly edge totally irregular neutrosophic graph.

Example 1.35 Consider the neutrosophic graph G as shown in Fig. 1.26. The total
degree of each edge is

TdG(s1s2) = (1.6, 0.4, 1.2), TdG(s2s3) = (1.6, 0.4, 1.2), TdG(s2s4) = (2.0, 0.5, 1.5),

TdG(s3s4) = (1.6, 0.4, 1.2), TdG(s1s4) = (1.6, 0.4, 1.2).

It is easy to see that all the edges have the same total degree except the edge s2s4.
Therefore, G is not a strongly edge totally irregular neutrosophic graph.

Theorem 1.20 Let G be a strongly edge irregular connected neutrosophic graph,
with B as a constant function. Then G is highly irregular neutrosophic graph.

Proof Let G be a strongly edge irregular connected neutrosophic graph, with B as
a constant function. Then

TB(xy) = l1, IB(xy) = l2, FB(xy) = l3, for each edge xy ∈ E,

where l1, l2 and l3 are constants. Also every pair of adjacent edges in G have distinct
degrees.

Let y be any vertex in G which is adjacent to vertices y and u. Since G is strongly
edge irregular neutrosophic graph,

dG(xy) �= dG(yu).
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This implies that

dG(x) + dG(y) − 2(TB(xy), IB(xy), FB(xy)) �= dG(y) + dG(u) − 2(TB(yu), IB(yu), FB(yu)).

This implies that

dG(x) + dG(y) − 2(l1, l2, l3) �= dG(y) + dG(u) − 2(l1, l2, l3).

This shows that
dG(x) �= dG(u).

Thus there exists a vertex y inGwhich is adjacent to the verticeswith distinct degrees.
Since y was taken to be an arbitrary vertex in G, all the vertices in G are adjacent to
vertices having distinct degrees. Hence G is a highly irregular neutrosophic graph.

Theorem 1.21 Let G be a strongly edge totally irregular connected neutrosophic
graph, with B as a constant function. Then G is highly irregular neutrosophic graph.

Proof Let G be a strongly edge totally irregular connected neutrosophic graph, with
B as a constant function. Then

TB(xy) = l1, IB(xy) = l2, FB(xy) = l3, for each edge xy ∈ E,

where l1, l2 and l3 are constants. Also every pair of adjacent edges in G have distinct
total degrees.

Let y be any vertex in G which is adjacent to vertices x and u. Since G is strongly
edge totally irregular neutrosophic graph therefore,

TdG(xy) �= TdG(yu).

This implies that
dG(xy) �= dG(yu).

This implies that

dG(x) + dG(y) − 2(TB(xy), IB(xy), FB(xy)) �= dG(y) + dG(u) − 2(TB(yu), IB(yu), FB(yu)).

This implies that

dG(x) + dG(y) − 2(l1, l2, l3) �= dG(y) + dG(u) − 2(l1, l2, l3).

This shows that
dG(x) �= dG(u).

Thus there exists a vertex y in G which is adjacent to the vertices with distinct
degrees. Since y was taken to be an arbitrary vertex in G, therefore all the vertices
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Fig. 1.27 Highly irregular neutrosophic graph

in G are adjacent to vertices having distinct degrees. Hence G is a highly irregular
neutrosophic graph.

Remark 1.14 If G is a highly irregular neutrosophic graph, with B as a constant
function. Then it is not necessary that G is strongly edge irregular neutrosophic
graph.

Example 1.36 Consider a neutrosophic graph G on X = {s1, s2, s3, s4} as shown in
Fig. 1.27.

By direct calculations, we have

dG(s1) = (0.8, 0.2, 0.2), dG(s2) = (0.4, 0.1, 0.1),

dG(s3) = (0.8, 0.2, 0.2), dG(s4) = (0.4, 0.1, 0.1).

The degree of each edge is

dG(s1s3) = (0.8, 0.2, 0.2), dG(s1s4) = (0.4, 0.1, 0.1), dG(s2s3) = (0.4, 0.1, 0.1).

Since every vertex is adjacent to vertices with distinct degrees,G is a highly irregular
neutrosophic graph. Since the edges s1s4 and s2s3 in G have the same degree, i.e.
dG(s1s4) = dG(s2s3), G is not strongly edge irregular neutrosophic graph.

Remark 1.15 If G is a highly irregular neutrosophic graph, with B as a constant
function. Then it is not necessary thatG is strongly edge totally irregular neutrosophic
graph.

Example 1.37 Consider the neutrosophic graph G as shown in Fig. 1.27. The total
degree of each edge is

TdG(s1s3) = (1.2, 0.3, 0.3), TdG(s1s4) = (0.8, 0.2, 0.2), TdG(s2s3) = (0.8, 0.2, 0.2).

Since the edges s1s4 and s2s3 in G have the same total degree, G is not a strongly
edge totally irregular neutrosophic graph.
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Fig. 1.28 Neutrosophic graph
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Fig. 1.29 Neutrosophic path P

Definition 1.31 Aneutrosophic path is a sequenceof distinct vertices x = x1, x2, x3,
. . . , xn = y such that, for all k, TB(xkxk+1) > 0, IB(xkxk+1) > 0 and FB(xkxk+1) >

0. A neutrosophic path is called a neutrosophic cycle if x = y.

Example 1.38 Consider a neutrosophic graph G on X = {s1, s2, s3, s4, s5} as shown
in Fig. 1.28.

The path from s2 to s1 is shown with thick lines, and the cycle C from s2 to s2 is
shown with dashed lines in Fig. 1.28.

Theorem 1.22 Let G∗ = (X, E) be a path as shown in Fig.1.29 on 2m(m > 1)
vertices and G be a neutrosophic graph. Let E1, E2, E3, . . . , E2m−1 be the edges
in G having c1, c2, c3, . . . , c2m−1 as their membership values, respectively. Assume
that c1 < c2 < c3 < · · · < c2m−1, where ck = (Tk, Ik, Fk), k = 1, 2, 3, . . . , 2m − 1.
Then G is both strongly edge irregular and strongly edge totally irregular neutro-
sophic graph.

Proof Let G be a neutrosophic graph of a crisp graph G∗ = (X, E). Assume that
G is a neutrosophic path on 2m(m > 1) vertices. Suppose that ck = (Tk, Ik, Fk) be
the membership values of the edges Lk in G, where k = 1, 2, 3, . . . , 2m − 1. We
assume that c1 < c2 < c3 < · · · < c2m−1.

The degree of each vertex in G is calculated as:

dG(s1) = c1 = (T1, I1, F1), f or k = 1.

dG(sk) = ck−1 + ck = (Tk−1, Ik−1, Fk−1) + (Tk, Ik, Fk),

= (Tk−1 + Tk, Ik−1 + Ik, Fk−1 + Fk), f or k = 2, 3, . . . , 2m − 1.

dG(s2m) = c2m−1 = (T2m−1, I2m−1, F2m−1), f or k = 2m.
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The degree of each edge in G is calculated as:

dG(E1) = c2 = (T2, I2, F2), f or k = 1.

dG(Lk) = ck−1 + ck+1 = (Tk−1, Ik−1, Fk−1) + (tk+1, ik+1, fk+1),

= (Tk−1 + Tk+1, Ik−1 + Ik+1, Fk−1 + Fk+1), f or k = 2, 3, . . . , 2m − 2.

dG(L2m−1) = c2m−2 = (T2m−2, I2m−2, F2m−2), f or k = 2m − 1.

Since each edge in G has distinct degree, G is strongly edge irregular neutrosophic
graph. We now calculate the total degree of each edge in G as:

TdG(E1) = c1 + c2 = (T1 + T2, I1 + I2, F1 + F2), f or k = 1.

TdG(Lk) = ck−1 + ck + ck+1 = (Tk−1, Ik−1, Fk−1) + (Tk , Ik , Fk) + (Tk+1, Ik+1, Fk+1),

= (Tk−1 + Tk + Tk+1, Ik−1 + Ik + Ik+1, Fk−1 + Fk + Fk+1),

f or k = 2, 3, . . . , 2m − 2.

TdG(L2m−1) = c2m−2 + c2m−1 = (T2m−2, I2m−2, F2m−2) + (T2m−1, I2m−1, F2m−1),

= (T2m−2 + T2m−1, I2m−2 + I2m−1, F2m−2 + F2m−1), f or k = 2m − 1.

Since each edge in G has distinct total degree, G is strongly edge totally irregular
neutrosophic graph. HenceG is both strongly edge irregular and strongly edge totally
irregular neutrosophic graph.

Definition 1.32 A complete bipartite graph is a graph whose vertex set can be parti-
tioned into two subsets X1 and X2 such that no edge has both endpoints in the same
subset, and every possible edge that could connect vertices in different subsets is the
part of the graph. A complete bipartite graph with partition of size |X1| = m and
|X2| = n is denoted by K(m,n). A complete bipartite graph K(1,n) or K(m,1) that is a
tree with one internal vertex and n or m leaves is called a star Sn or Sm .

Theorem 1.23 Let G∗ = (X, E) be a star K(m,1) as shown in Fig.1.30 and G be a
neutrosophic graph of G∗. If each edge in G has distinct membership values, then G
is strongly edge irregular neutrosophic graph but not strongly edge totally irregular
neutrosophic graph.

Proof Let G be a neutrosophic graph of a crisp graph G∗ = (X, E). We assume that
G is a star K(m,1). Let s, s1, s2, . . . , sm be the vertices of the star K(m,1), where s is
the centre vertex and s1, s2, . . . , sm are the vertices adjacent to vertex s as shown in
Fig. 1.30. Suppose that ck = (Tk, Ik, Fk) be the membership values of the edges Ek

in G, where k = 1, 2, . . . ,m. We assume that c1 �= c2 �= c3 �= · · · �= cm . The degree
of each edge in G is calculated as:

dG(Lk) = dG(x) + dG(sk) − 2(TB(ssk), IB(ssk), FB(ssk)),

= (c1, c2, . . . , cm) + (Tk , Ik , Fk) − 2(Tk , Ik , Fk),

= (T1, I1, F1), (T2, I2, F2), . . . , (Tm , Im , Fm) + (Tk , Ik , Fk) − 2(Tk , Ik , Fk),

= (T1 + T2 + · · · + Tm , I1 + I2 + · · · + Im , F1 + F2 + · · · + Fm) − (Tk , Tk , Tk).
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Fig. 1.30 Neutrosophic graph

It is easy to see that each edge in G has distinct degree; therefore, G is strongly edge
irregular neutrosophic graph. We now calculate the total degree of each edge in G
as:

TdG(Lk) = TdG(x) + TdG(sk) − (TB(ssk), IB(ssk), FB(ssk)),

= (c1, c2, . . . , cm) + (Tk, Ik, Fk)(Tk, Ik, Fk),

= (T1, I1, F1), (T2, I2, F2), . . . , (Tm, Im, Fm),

= (T1 + T2 + · · · + Tm, I1 + I2 + · · · + Im, F1 + F2 + · · · + Fm).

Since all the edges in G have the same total degree, G is not a strongly edge totally
irregular neutrosophic graph

Definition 1.33 The m-barbell graph B(m,m) is the simple graph obtained by con-
necting two copies of a complete graph Km by a bridge.

Theorem 1.24 Let G be a neutrosophic graph of G∗ = (X, E), the m-barbell graph
B(m,m) as shown in Fig.1.31. If each edge in G has distinct membership values, then
G is a strongly edge irregular neutrosophic graph but not a strongly edge totally
irregular neutrosophic graph.

Proof LetG be a neutrosophic graph of a crisp graphG∗ = (X, E). Suppose thatG∗
is am-barbell graph, then there exists a bridge, say xy, connectingm new vertices to
each of its end vertices x and y. Let b = (T, I, F) be the membership values of the
bridge xy. Suppose that x1, x2, . . . , xm and y1, y2, . . . , ym are the vertices adjacent
to vertices x and y, respectively. Let ck = (Tk, Ik, Fk) be the membership values
of the edges Ek with vertex x , where k = 1, 2, . . . ,m and a1 < a2 < · · · < am . Let
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Fig. 1.31 Neutrosophic graph

c
′
k = (T

′
k , I

′
k, F

′
k) be the membership values of the edges Ek with vertex y, where

k = 1, 2, . . . ,m and c1 < c2 < · · · < cm . Assume that c1 < c2 < · · · < cm < c
′
1 <

c
′
2 < · · · < c

′
m < b. The degree of each edge in G is calculated as:

dG(xy) = dG(x) + dG(y) − 2b,

= c1 + c2 + · · · + cm + b + c
′
1 + c

′
2 + · · · + c

′
m + b − 2b,

= (T1, I1, F1) + (T2, I2, F2) + · · · + (Tm , Im , Fm) + (T
′
1, I

′
1, F

′
1) + (T

′
2, I

′
2, F

′
2)

+ · · · + (T
′
m , I

′
m , F

′
m),

= (T1 + T2 + · · · + Tm , I1 + I2 + · · · + Im , F1 + F2 + · · · + Fm)

+(T
′
1 + T

′
2 + · · · + T

′
m , I

′
1 + I

′
2 + · · · + I

′
m , F

′
1 + F

′
2 + · · · + F

′
m).

dG(Lk) = dG(x) + dG(xk) − 2ck , where k = 1, 2, . . . ,m.

= c1 + c2 + · · · + cm + b + ck − 2ck ,

= (T1, I1, F1) + (T2, I2, F2) + · · · + (Tm , Im , Fm) + (T, I, F) − bk ,

= (T1 + T2 + · · · + Tm + T, I1 + I2 + · · · + Im + I, F1 + F2 + · · · + Fm + F)

−(Tk , Ik , Fk).

dG(Ek) = dG(y) + dG(yk) − 2c
′
k , where k = 1, 2, . . . ,m.

= c
′
1 + c

′
2 + · · · + c

′
m + b + c

′
k − 2c

′
k ,

= (T
′
1, I

′
1, F

′
1) + (T

′
2, I

′
2, F

′
2) + · · · + (T

′
m , I

′
m , F

′
m) + (T, I, F) − c

′
k ,

= (T
′
1 + T

′
2 + · · · + T

′
m + t, I

′
1 + I

′
2 + · · · + I

′
m + i, F

′
1 + F

′
2 + · · · + F

′
m + f )

−(T
′
k , I

′
k , F

′
k).
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It is easy to see that all the edges in G have distinct degrees; therefore, G is strongly
edge irregular neutrosophic graph. The total degree of each edge in G is calculated
as:

TdG(xy) = dG(xy) + b,

= c1 + c2 + · · · + cm + c
′
1 + c

′
2 + · · · + c

′
m + b,

= (T1, I1, F1) + (T2, I2, F2) + · · · + (Tm , Im , Fm)

+(T
′
1, I

′
1, F

′
1) + (T

′
2, I

′
2, F

′
2) + · · · + (T

′
m , I

′
m , F

′
m) + (T, I, F),

= (T1 + T2 + · · · + Tm , I1 + I2 + · · · + Im , F1 + F2 + · · · + Fm)

+(T
′
1 + T

′
2 + · · · + T

′
m , I

′
1 + I

′
2 + · · · + I

′
m , F

′
1 + F

′
2 + · · · + F

′
m) + (T, I, F).

TdG(Lk) = dG(Lk) + ck , where k = 1, 2, . . . ,m.

= c1 + c2 + · · · + cm + b + ck − 2ck + ck ,

= (T1, I1, F1) + (T2, I2, F2) + · · · + (Tm , Im , Fm) + (T, I, F),

= (T1 + T2 + · · · + Tm + T, I1 + I2 + · · · + Im + I, F1 + F2 + · · · + Fm + F).

TdG(Ek) = dG(Ek) + c
′
k , where k = 1, 2, . . . ,m.

= c
′
1 + c

′
2 + · · · + c

′
m + b + c

′
k − 2c

′
k + c

′
k ,

= (T
′
1, I

′
1, F

′
1) + (T

′
2, I

′
2, F

′
2) + · · · + (T

′
m , I

′
m , F

′
m) + (T, I, F),

= (T
′
1 + T

′
2 + · · · + T

′
m + T, I

′
1 + I

′
2 + · · · + I

′
m + I, F

′
1 + F

′
2 + · · · + F

′
m + F).

Since each edge Lk and Ek in G has the same total degree, where k = 1, 2, . . . ,m,
G is not a strongly edge totally irregular neutrosophic graph.

1.3 Applications of Neutrosophic Graphs

1.3.1 Social Network Model

Graphical models have many applications in our daily life. Human being is the most
adjustable and adapting creature. When human beings interact with each other, more
or less they leave an impact(good or bad) on each other. Naturally a human being
has influence on others. We can use neutrosophic digraph to examine the influence
of the people on each other’s thinking in a group. We can investigate a person’s
good influence and bad influence on the thinking of others. We can examine the
percentage of uncertain influence of that person. The neutrosophic digraph will tell
us about dominating person and about highly influenced person.

Consider I = {Malik, Haider, Imran, Razi, Ali, Hamza, Aziz} set of seven per-
sons in a social group onwhatsapp. Let A={(Malik, 0.6, 0.4, 0.5), (Haider, 0.5, 0.6,
0.3), (Imran, 0.4, 0.3, 0.2), (Razi, 0.7, 0.6, 0.4), (Ali, 0.4, 0.1, 0.2), (Hamza, 0.6,
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Table 1.5 Neutrosophic set
B of edges

Edge T I F

(Hamza, Malik) 0.6 0.4 0.4

(Hamza, Haider) 0.5 0.3 0.3

(Hamza, Razi) 0.3 0.3 0.4

(Hamza, Aziz) 0.3 0.3 0.4

(Malik, Haider) 0.5 0.4 0.5

(Imran, Haider) 0.4 0.3 0.3

(Aziz, Malik) 0.5 0.2 0.5

(Razi, Imran) 0.3 0.3 0.4

(Razi, Ali) 0.4 0.1 0.4

(Ali, Aziz) 0.3 0.1 0.5

0.4, 0.1), (Aziz, 0.7, 0.3, 0.5)} be the neutrosophic set on the set I where truth value
of each person represents his good influence on others, falsity value represents his bad
influence on others, and indeterminacy value represents uncertainty in his influence.
Let J = {(Hamza, Malik), (Hamza, Haider), (Hamza, Razi), (Hamza, Aziz), (Malik,
Haider), (Imran, Haider), (Aziz, Malik), (Razi, Imran), (Razi, Ali), (Ali, Aziz)} be
the set of relations on I . Let B be the neutrosophic set on the set J as shown in
Table1.5.

The truth, indeterminacy and falsity values of each edge are calculated using
TB(xy) ≤ TA(x) ∧ TA(y), IB(xy) ≤ IA(x) ∧ IA(y), FB(xy) ≤ FA(x) ∨ FA(y). The
neutrosophic digraph G = (A, B) is shown in Fig. 1.32. This neutrosophic digraph
shows that Hamza has influence on Malik, Haider, Razi and Aziz. We can see that
Hamza’s good influence on Haider is 50%, on Malik is 60%, on Razi is 30% and
on Aziz is 30%. His bad influence on Haider, Malik, Razi and Aziz is 30, 40, 40
and 40%, respectively. Similarly his uncertain influence on Haider, Malik, Razi and
Aziz is 30, 40, 30 and 30%, respectively. We can investigate that out-degree of vertex

Malik(0.6,0.4,0.5) Haider(0.5,0.6,0.3) Imran(0.4,0.3,0.2)

Razi(0.7,0.6,0.4)

Ali(0.4,0.1,0.2)

Aziz(0.7,0.3,0.5)
Hamza(0.6,0.4,0.1)

(0.5,0.4,0.5) (0.4,0.3,0.3)
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Fig. 1.32 Neutrosophic digraph
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Hamza is highest, that is, four. This shows that Hamza is dominating person in this
social group. On the other hand, Haider has highest in-degree, that is, three. It tells
us that Haider is highly influenced by others in this social group.

We now explain general procedure of this applications through following
Algorithm1.3.1.

Algorithm 1.3.1

Step 1. Input the set of vertices I = {I1, I2, . . . , In} and a neutrosophic set Awhich
is defined on set I .

Step 2. Input the set of relations J = {J1, J2, . . . , Jn}.
Step 3. Compute the truth-membership degree, indeterminacy degree and falsity-

membership degree of each edge using Definition1.7.
Step 4. Compute the neutrosophic set B of edges.
Step 5. Obtain a neutrosophic digraph G = (A, B).

1.3.2 Detection of a Safe Root for an Airline Journey

We consider a neutrosophic set of five countries: Germany, China, USA, Brazil
and Mexico. Suppose we want to travel between these countries through an airline
journey. The airline companies aim to facilitate their passengers with high quality
of services. Air traffic controllers have to make sure that company planes must
arrive and depart at right time. This task is possible by planning efficient routes for
the planes. A neutrosophic graph of airline network among these five countries is
shown in Fig. 1.33 in which vertices and edges represent the countries and flights,
respectively.

Germony
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Fig. 1.33 Neutrosophic graph of an airline network
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The truth-membership degree of each vertex indicates the strength of that coun-
try’s airline system. The indeterminacy-membership degree of each vertex demon-
strates how much the system is uncertain. The falsity-membership degree of each
vertex tells the flaws of that system. The truth-membership degree of each edge
interprets that how much the flight is save. The indeterminacy-membership degree
of each edge shows the uncertain situations during a flight such asweather conditions,
mechanical error and sabotage. The falsity-membership degree of each edge indicates
the flaws of that flight. For example, the edge between Germany and China indicates
that the flight chosen for this travel is 80% safe, 10% depending on uncertain sys-
tems and 20% unsafe. The truth-membership degree, the indeterminacy-membership
degree and the falsity-membership degree of each edge are calculated by using the
following relations.

TB(xy) ≤ min{TA(x), TA(y)},
IB(xy) ≤ min{IA(x), IA(y)},
FB(xy) ≤ max{FA(x), FA(y)}, x, y ∈ X.

Sometimes due to weather conditions, technical issues or personal problems, a pas-
senger missed his direct flight between two particular countries. So, if he has to go
somewhere urgently, then he has to choose indirect route as there are indirect routes
between these countries. For example, if a passenger missed his flight fromGermany
to USA, then there are four indirect routes given as follows.

P1: Germany to China then China to USA.
P2: Germany to China, China to Mexico then Mexico to USA.
P3: Germany to China, China to Brazil, then Brazil to USA.
P4: Germany to China, China to Brazil, Brazil to Mexico then Mexico to USA.

Wewill find themost suitable route by calculating the lengths of all these routes. That
route is themost suitablewhose truth-membership value ismaximum, indeterminacy-
membership value is minimum, and falsity-membership value is minimum. After
calculating the lengths of all the routes, we get L(P1) = (1.5, 0.3, 0.3), L(P2) =
(1.3, 0.5, 0.7), L(P3) = (1.3, 0.3, 0.6) and L(P4) = (1.4, 0.5, 1.0).

From Fig. 1.33, it looks like travelling through Germany to USA is the most
protected route, but after calculating the lengths, we find that the protected route
is P1 because of uncertain conditions. Similarly, one can find the protected route
between other countries.

We now present the general procedure of our method which is used in our appli-
cation from Algorithm1.3.2.

Algorithm 1.3.2

Step 1. Input the degrees of truth-membership, indeterminacy-membership and
falsity-membership of all m vertices(countries).

Step 2. Calculate the degrees of truth-membership, indeterminacy-membership
and falsity-membership of all edges using the following relations.



52 1 Graphs Under Neutrosophic Environment

TB(xy) ≤ min{TA(x), TA(y)},
IB(xy) ≤ min{IA(x), IA(y)},
FB(xy) ≤ max{FA(x), FA(y)}, x, y ∈ X.

Step 3. Calculate all the possible routes Pk between the countries.
Step 4. Calculate the lengths of all the routs Pk using the following formula,

L(Pk) =
(
m−1∑
i=1

TB(xi xi+1),

m−1∑
i=1

IB(xi xi+1),

m−1∑
i=1

FB(xi xi+1)

)
, k = 1, 2, . . . , n.

Step 5. Find the protected route with maximum truth-membership degree,
minimum indeterminacy-membership degree and minimum falsity-
membership degree.

1.3.3 Selection of Military Weapon

Since in decision-making problems, there is a number of uncertainties, and in some
situations, there exist some relations among attributes in amultiple-attribute decision-
making problem. So, it is an interesting area of applications in neutrosophic graph
theory. A multiple-attribute decision-making problem is solved under the general
framework of neutrosophic graphs.

A military unit is planning to purchase new artillery weapons, and there are six
feasible artillery weapons (alternatives) xi (i = 1, 2, . . . , 6) to be selected. When
making a decision, the attributes considered are as follows:
(1) a1− assault fire capability indices.
(2) a2− reaction capability indices.
(3) a3− mobility indices.
(4) a4− survival ability indices.
Among these four attributes, a1, a2, a4 are of benefit type (beneficial), and a3 is of
cost type (nonbeneficial); the evaluation values are contained in the decision matrix
A = (ai j )6×4, listed in Table1.6.

Normalized values of an attribute assigned to the alternatives are calculated by
using the following formula and shown in Table1.7:

ri j = 〈Ti j , Ii j , Fi j 〉 =
{
ai j for beneficial attribute,
āi j for nonbeneficial attribute.

i = 1, 2, . . . , 6; j = 1, 2, 3, 4, where āi j is the complement of ai j , such that āi j =
〈Fi j , 1 − Ii j , Ti j 〉.

Relative importance of attributes is also assigned (see table 2 in [136]). Let the
decision-maker select the following assignments:
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Table 1.6 Neutrosophic decision matrix A = (ai j )6×4

Weapons a1 a2 a3 a4

x1 〈0.5, 0.3, 0.6〉 〈0.6, 0.3, 0.2〉 〈0.4, 0.5, 0.1〉 〈0.1, 0.7, 0.5〉
x2 〈0.6, 0.1, 0.2〉 〈0.2, 0.1, 0.4〉 〈0.2, 0.3, 0.4〉 〈0.3, 0.4, 0.1〉
x3 〈0.1, 0.5, 0.3〉 〈0.3, 0.2, 0.5〉 〈0.7, 0.2, 0.1〉 〈0.5, 0.1, 0.2〉
x4 〈0.3, 0.4, 0.2〉 〈0.4, 0.5, 0.1〉 〈0.3, 0.1, 0.4〉 〈0.5, 0.3, 0.4〉
x5 〈0.1, 0.2, 0.4〉 〈0.2, 0.7, 0.3〉 〈0.1, 0.3, 0.5〉 〈0.2, 0.1, 0.5〉
x6 〈0.5, 0.1, 0.7〉 〈0.5, 0.1, 0.4〉 〈0.3, 0.2, 0.6〉 〈0.4, 0.2, 0.6〉

Table 1.7 Neutrosophic decision matrix R = (ri j )6×4 of normalized data

Weapons a1 a2 a3 a4

x1 〈0.5, 0.3, 0.6〉 〈0.6, 0.3, 0.2〉 〈0.1, 0.5, 0.4〉 〈0.1, 0.7, 0.5〉
x2 〈0.6, 0.1, 0.2〉 〈0.2, 0.1, 0.4〉 〈0.4, 0.7, 0.2〉 〈0.3, 0.4, 0.1〉
x3 〈0.1, 0.5, 0.3〉 〈0.3, 0.2, 0.5〉 〈0.1, 0.8, 0.7〉 〈0.5, 0.1, 0.2〉
x4 〈0.3, 0.4, 0.2〉 〈0.4, 0.5, 0.1〉 〈0.4, 0.9, 0.3〉 〈0.5, 0.3, 0.4〉
x5 〈0.1, 0.2, 0.4〉 〈0.2, 0.7, 0.3〉 〈0.5, 0.7, 0.1〉 〈0.2, 0.1, 0.5〉
x6 〈0.5, 0.1, 0.7〉 〈0.5, 0.1, 0.4〉 〈0.6, 0.8, 0.3〉 〈0.4, 0.2, 0.6〉

a1 a2 a3 a4

R=
a1
a2
a3
a4

⎡
⎢⎢⎢⎢⎣

− − − 〈0.045, 0.410, 0.865〉 〈0.665, 0.045, 0.335〉 〈0.045, 0.590, 0.745〉
〈0.865, 0.590, 0.045〉 − − − 〈0.135, 0.665, 0.335〉 〈0.590, 0.410, 0.255〉
〈0.335, 0.955, 0.665〉 〈0.335, 0.335, 0.135〉 − − − 〈0.410, 0.255, 0.135〉
〈0.745, 0.410, 0.045〉 〈0.255, 0.590, 0.590〉 〈0.135, 0.745, 0.410〉 − − −

⎤
⎥⎥⎥⎥⎦ .

Theweapon selection attribute neutrosophic digraph given in Fig. 1.34, represents
the presence as well as relative importance of four attributes a1, a2, a3 and a4 which
are the vertices of the digraph. The weapon selection index is calculated using the
values of Ai and ri j for each alternative weapon, where Ai is the value of i th attribute
represented by the weapon xi and ri j is the relative importance of the i th attribute
over j th attribute.

For first weapon x1, substituting values of A1, A2, A3 and A4 in above matrixR,
we get

a1 a2 a3 a4

R1=
a1
a2
a3
a4

⎡
⎢⎢⎢⎢⎣

〈0.5, 0.3, 0.6〉 〈0.045, 0.410, 0.865〉 〈0.665, 0.045, 0.335〉 〈0.045, 0.590, 0.745〉
〈0.865, 0.590, 0.045〉 〈0.6, 0.3, 0.2〉 〈0.135, 0.665, 0.335〉 〈0.590, 0.410, 0.255〉
〈0.335, 0.955, 0.665〉 〈0.335, 0.335, 0.135〉 〈0.1, 0.5, 0.4〉 〈0.410, 0.255, 0.135〉
〈0.745, 0.410, 0.045〉 〈0.255, 0.590, 0.590〉 〈0.135, 0.745, 0.410〉 〈0.1, 0.7, 0.5〉

⎤
⎥⎥⎥⎥⎦ .

Now we calculate the permanent function value of above matrix using computer
program, that is, per (R1) = 〈0.4117, 1.3482, 0.4884〉. The permanent function is
nothing but the determinant of a matrix but considering all the determinant terms as
positive terms [87]. So, the weapon selection index values of different weapons are:
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Fig. 1.34 Weapon selection
attribute neutrosophic
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x1 = 〈0.4117, 1.3482, 0.4884〉,
x2 = 〈0.4224, 1.0522, 0.3415〉,
x3 = 〈0.4098, 1.1991, 0.4782〉,
x4 = 〈0.5173, 1.5801, 0.3468〉,
x5 = 〈0.3272, 1.3426, 0.4429〉,
x6 = 〈0.6113, 0.9950, 0.6179〉.

Calculate the score function s(xi ) = Ti + 1 − Ii + 1 − Fi of the weapons
xi (i = 1, 2, . . . , 6), respectively: s(x1) = 0.5751, s(x2) = 1.0287, s(x3) = 0.7325,
s(x4) = 0.5904, s(x5) = 0.5417, s(x6) = 0.9984. Thus, we can rank the weapons:

x2 � x6 � x3 � x4 � x1 � x5.

Therefore, the best choice is the second weapon (x2).

1.4 Energy of Neutrosophic Graphs

If we change min by max in indeterminacy-membership of Definition1.7, then we
have the following definition of neutrosophic graph.

Definition 1.34 A neutrosophic graph on a nonempty set X is a pair G = (A, B),
where A is a neutrosophic set in X and B is a neutrosophic relation on X such that
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TB(xy) ≤ min{TA(x), TA(y)},
IB(xy) ≤ max{IA(x), IA(y)},
FB(xy) ≤ max{FA(x), FA(y)}, for all x, y ∈ X.

If B is not symmetric on A, then D = (A,
−→
B ) is called neutrosophic digraph.

Example 1.39 Consider a graph G∗ = (X, E) where X = {x1, x2, x3, x4, x5, x6,
x7} and E = {x1x2, x2x3, x3x4, x4x1, x1x5, x1x6, x1x7, x3x5, x3x6, x3x7, x2x5, x5x6,
x6x7, x4x7}. Let G = (A, B) be a neutrosophic graph on V as shown in Fig. 1.35
defined by

A x1 x2 x3 x4 x5 x6 x7
TA 0.6 0.4 0.5 0.6 0.3 0.2 0.2
IA 0.5 0.1 0.3 0.4 0.4 0.5 0.4
FA 0.7 0.3 0.2 0.9 0.5 0.6 0.8

B x1x2 x2x3 x3x4 x4x1 x1x5 x1x6 x1x7 x3x5 x3x6 x3x7 x2x5 x5x6 x6x7 x4x7
TB 0.2 0.3 0.3 0.5 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.2 0.1 0.2
IB 0.1 0.1 0.2 0.3 0.4 0.3 0.3 0.3 0.3 0.2 0.1 0.1 0.4 0.3
FB 0.4 0.3 0.7 0.6 0.6 0.6 0.7 0.4 0.4 0.5 0.4 0.6 0.7 0.7

We now define and investigate the energy of a graph within the framework of neu-
trosophic set theory.

Definition 1.35 The adjacency matrix A(G) of a neutrosophic graph G = (A, B)

is defined as a square matrixA(G) = [a jk], a jk = 〈TB(x j xk), IB(x j xk), FB(x j xk)〉,
where TB(x j xk), IB(x j xk) and FB(x j xk) represent the strength of relationship,
strength of undecided relationship and strength of nonrelationship between x j and
xk , respectively.

The adjacency matrix of a neutrosophic graph can be expressed as three matri-
ces: first matrix contains the entries as truth-membership values, second con-
tains the entries as indeterminacy-membership values, and the third contains the
entries as falsity-membership values, i.e., A(G) = 〈A(TB(x j xk)), A(IB(x j xk)),
A(FB(x j xk))〉.
Definition 1.36 The spectrum of adjacency matrix of a neutrosophic graphA(G) is
defined as 〈M, N , O〉, whereM , N and O are the sets of eigenvalues ofA(TB(x j xk)),
A(IB(x j xk)) and A(FB(x j xk)), respectively.

Example 1.40 The adjacencymatrixA(G) of a neutrosophic graph given in Fig. 1.35
is



56 1 Graphs Under Neutrosophic Environment

0.
2,
0.
1,
0.
4

0.
2,
0.
1,
0.
6

0.
1,
0.
4,
0.
7

0.
2,
0.
3,
0.
7

0.2, 0
.1, 0.

4

0.3, 0
.2, 0.

7

0.5, 0
.3, 0.

6

0.3, 0
.1, 0.

3

0.2, 0.4, 0.6

0.2, 0.3, 0.4

0.2, 0.2, 0.5

0.2, 0.3, 0.7

0.1, 0.3, 0.6

0.1, 0.3, 0.4

x 1
0.
6,
0.
5,
0.
7

x 3
0.
5,
0.
3,
0.
2

x2 0.4, 0.1, 0.3

x4 0.6, 0.4, 0.9

x5
0.3,

0.4,
0.5

x7
0.2,

0.4,
0.8

x
6
0.
2,
0.
5,
0.
6

Fig. 1.35 Single-valued neutrosophic graph

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈0, 0, 0〉 〈0.2, 0.1, 0.4〉 〈0, 0, 0〉 〈0.5, 0.3, 0.6〉 〈0.2, 0.4, 0.6〉 〈0.1, 0.3, 0.6〉 〈0.2, 0.3, 0.7〉
〈0.2, 0.1, 0.4〉 〈0, 0, 0〉 〈0.3, 0.1, 0.3〉 〈0, 0, 0〉 〈0.2, 0.1, 0.4〉 〈0, 0, 0〉 〈0, 0, 0〉

〈0, 0, 0〉 〈0.3, 0.1, 0.3〉 〈0, 0, 0〉 〈0.3, 0.2, 0.7〉 〈0.2, 0.3, 0.4〉 〈0.1, 0.3, 0.4〉 〈0.2, 0.2, 0.5〉
〈0.5, 0.3, 0.6〉 〈0, 0, 0〉 〈0.3, 0.2, 0.7〉 〈0, 0, 0〉 〈0, 0, 0〉 〈0, 0, 0〉 〈0.2, 0.3, 0.7〉
〈0.2, 0.4, 0.6〉 〈0.2, 0.1, 0.4〉 〈0.2, 0.3, 0.4〉 〈0, 0, 0〉 〈0, 0, 0〉 〈0.2, 0.1, 0.6〉 〈0, 0, 0〉
〈0.1, 0.3, 0.6〉 〈0, 0, 0〉 〈0.1, 0.3, 0.4〉 〈0, 0, 0〉 〈0.2, 0.1, 0.6〉 〈0, 0, 0〉 〈0.1, 0.4, 0.7〉
〈0.2, 0.3, 0.7〉 〈0, 0, 0〉 〈0.2, 0.2, 0.5〉 〈0.2, 0.3, 0.7〉 〈0, 0, 0〉 〈0.1, 0.4, 0.7〉 〈0, 0, 0〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The spectrum of a neutrosophic graph G given in Fig. 1.35 is as follows:

Spec(TB(x j xk)) = {−0.7137,−0.2966,−0.2273, 0.0000, 0.0577, 0.2646, 0.9152},
Spec(IB(x j xk)) = {−0.7150,−0.4930,−0.0874,−0.0308, 0.0507, 0.2012, 1.0743},
Spec(FB(x j xk)) = {−1.2963,−1.1060,−0.5118,−0.0815, 0.1507, 0.5510, 2.2938}.

Therefore,

Spec(G) = {〈−0.7137,−0.7150,−1.2963〉, 〈−0.2966,−0.4930,−1.1060〉,
〈−0.2273,−0.0874,−0.5118〉, 〈0.0000,−0.0308,−0.0815〉,
〈0.0577, 0.0507, 0.1507〉, 〈0.2646, 0.2012, 0.5510〉,
〈0.9152, 1.0743, 2.2938〉}.
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Definition 1.37 The energy of a neutrosophic graph G = (A, B) is defined as,

E(G) = 〈E(TB(x j xk)), E(IB(x j xk)), E(FB(x j xk))
〉

=
〈

n∑
j=1

λ j∈M

|λ j |,
n∑
j=1

ζ j∈N

|ζ j |,
n∑
j=1

η j∈O

|η j |
〉

.

Definition 1.38 Two neutrosophic graphs with the same number of vertices and the
same energy are called equienergetic.

Theorem 1.25 Let G = (A, B) be a neutrosophic graph andA(G) be its adjacency
matrix. If λ1 ≥ λ2 ≥ · · · ≥ λn, ζ1 ≥ ζ2 ≥ · · · ≥ ζn and η1 ≥ η2 ≥ · · · ≥ ηn are the
eigenvalues of A(TB(x j xk)), A(IB(x j xk)) and A(FB(x j xk)), then

1.
n∑
j=1

λ j∈M
λ j = 0,

n∑
j=1

ζ j∈N
ζ j = 0,

n∑
j=1

η j∈O
η j = 0

2.
n∑
j=1

λ j∈M
λ2
j = 2

( ∑
1≤ j<k≤n

(TB(x j xk))2
)
,

n∑
j=1

ζ j∈N
ζ2j = 2

( ∑
1≤ j<k≤n

(IB(x j xk))2
)

,

n∑
j=1

η j∈O
η2
j = 2

( ∑
1≤ j<k≤n

(FB(x j xk))2
)
.

Proof 1. SinceA(G) is a symmetric matrix whose trace is zero, its eigenvalues are
real with zero sum.

2. By matrix trace properties, we have

tr((A(TB(x j xk)))
2) =

n∑
j=1

λ j∈M

λ2
j

tr((A(TB(x j xk)))
2) = (0 + T 2

B (x1x2) + · · · + T 2
B (x1xn)) + (T 2

B(x2x1) + 0 + · · ·
+ T 2

B (x2xn)) + · · · + (T 2
B(xnx1) + T 2

B(xnx2) + · · · + 0)

= 2

⎛
⎝ ∑

1≤ j<k≤n

(TB(x j xk))
2

⎞
⎠ .
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Hence
n∑
j=1

λ j∈M
λ2
j = 2

( ∑
1≤ j<k≤n

(TB(x j xk))2
)
.Analogously,wecan show that

n∑
j=1

ζ j∈N
ζ2j =

2

( ∑
1≤ j<k≤n

(IB(x j xk))2
)
and

n∑
j=1

η j∈O
η2
j = 2

( ∑
1≤ j<k≤n

(FB(x j xk))2
)
.

Wenowgive upper and lower bounds on energy of a neutrosophic graphG, in terms of
the number of vertices and the sum of squares of truth-membership, indeterminacy-
membership and falsity-membership values of edges.

Theorem 1.26 Let G = (A, B) be a neutrosophic graph on n vertices with adja-
cency matrix A(G) = 〈A(TB(x j xk)),A(IB(x j xk)),A(FB(x j xk))〉, then

1.
√
2
∑

1≤ j<k≤n

(TB(x j xk))2 + n(n − 1)|T | 2
n ≤ E(TB(x j xk))

≤
√
2n

∑
1≤ j<k≤n

(TB(x j xk))2

2.
√
2
∑

1≤ j<k≤n

(IB(x j xk))2 + n(n − 1)|I | 2
n ≤ E(IB(x j xk))

≤
√
2n

∑
1≤ j<k≤n

(IB(x j xk))2

3.
√
2
∑

1≤ j<k≤n

(FB(x j xk))2 + n(n − 1)|F | 2
n ≤ E(FB(x j xk))

≤
√
2n

∑
1≤ j<k≤n

(FB(x j xk))2.

where |T |, |I | and |F | are the determinant of A(TB(x j xk)),A(IB(x j xk)) and
A(FB(x j xk)), respectively.

Proof 1.Upper bound:ApplyCauchy–Schwarz inequality to then numbers 1, 1, . . . ,
1 and |λ1|, |λ2|, . . . , |λn|, then

n∑
j=1

|λ j | ≤ √
n

√√√√ n∑
j=1

|λ j |2 (1.1)

⎛
⎝ n∑

j=1

λ j

⎞
⎠

2

=
n∑
j=1

|λ j |2 + 2

⎛
⎝ ∑

1≤ j<k≤n

λ jλk

⎞
⎠ . (1.2)
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By comparing the coefficients ofλn−2 in the characteristic polynomial
n∏
j=1

(λ − λ j ) =
|A(G) − λI |, we have

∑
1≤ j<k≤n

λ jλk = −
∑

1≤ j<k≤n

(TB(x j xk))
2. (1.3)

Substituting (1.3) in (1.2), we obtain

n∑
j=1

|λ j |2 = 2
∑

1≤ j<k≤n

(TB(x j xk))
2. (1.4)

Substituting (1.4) in (1.1), we obtain

n∑
j=1

|λ j | ≤ √
n
√
2
∑

1≤ j<k≤n

(TB(x j xk))2 =
√
2n

∑
1≤ j<k≤n

(TB(x j xk))2.

Therefore,

E(TB(x j xk)) ≤
√
2n

∑
1≤ j<k≤n

(TB(x j xk))2.

Lower bound:

(E(TB(x j xk)))
2 =

⎛
⎝ n∑

j=1

|λ j |
⎞
⎠

2

=
n∑
j=1

|λ j |2 + 2

⎛
⎝ ∑

1≤ j<k≤n

|λ jλk |
⎞
⎠

= 2

⎛
⎝ ∑

1≤ j<k≤n

(TB(x j xk))
2

⎞
⎠+ 2n(n − 1)

2
AM{|λ jλk |}.

Since AM{|λ jλk |} ≥ GM{|λ jλk |}, 1 ≤ j < k ≤ n,

E(TB(x j xk)) ≥

√√√√√2

⎛
⎝ ∑

1≤ j<k≤n

(TB(x j xk))2 + n(n − 1)GM{|λ jλk |}
⎞
⎠.

It can also be seen that

GM{|λ jλk |} =
⎛
⎝ ∏

1≤ j<k≤n

|λ jλk |
⎞
⎠

2
n(n−1)

=
⎛
⎝ n∏

j=1

|λ j |n−1

⎞
⎠

2
n(n−1)

=
⎛
⎝ n∏

j=1

|λ j |
⎞
⎠

2
n

= |T | 2n .
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Therefore,

E(TB(x j xk)) ≥
√
2
∑

1≤ j<k≤n

(TB(x j xk))2 + n(n − 1)|T | 2
n .

Thus, analogously, we can show that
√√√√√2

⎛
⎝ ∑

1≤ j<k≤n

(IB(x j xk))2 + n(n − 1)|I | 2
n

⎞
⎠ ≤ E(IB(x j xk))

≤

√√√√√2n

⎛
⎝ ∑

1≤ j<k≤n

(IB(x j xk))2

⎞
⎠

√√√√√2

⎛
⎝ ∑

1≤ j<k≤n

(FB(x j xk))2 + n(n − 1)|F | 2
n

⎞
⎠ ≤ E(FB(x j xk))

≤

√√√√√2n

⎛
⎝ ∑

1≤ j<k≤n

(FB(x j xk))2

⎞
⎠.

We now define and investigate the Laplacian energy of a graph under neutrosophic
environment and investigate its properties.

Definition 1.39 Let G = (A, B) be a neutrosophic graph on n vertices. The degree
matrix, D(G) = 〈D(TB(x j xk)), D(IB(x j xk)), D(FB(x j xk))〉 = [d jk], of G is a n ×
n diagonal matrix defined as,

d jk =
{
dG(x j ) if j = k,
0 otherwise

Definition 1.40 The Laplacian matrix of a neutrosophic graph G = (A, B) is
defined as L(G) = 〈L(TB(x j xk)), L(IB(x j xk)), L(FB(x j xk))〉 = D(G) − A(G),
where A(G) is an adjacency matrix and D(G) is a degree matrix of a neutrosophic
graph G.

Definition 1.41 The spectrum of Laplacian matrix of a neutrosophic graph L(G) is
defined as 〈ML , NL , OL〉, whereML , NL andOL are the sets ofLaplacian eigenvalues
of L(TB(x j xk)), L(IB(x j xk)) and L(FB(x j xk)), respectively.

Theorem 1.27 Let G = (A, B) be a neutrosophic graph, and let L(G) =
〈L(TB(x j xk)), L(IB(x j xk)), L(FB(x j xk))〉 be the Laplacian matrix of G. If ϑ1 ≥
ϑ2 ≥ · · · ≥ ϑn, ϕ1 ≥ ϕ2 ≥ · · · ≥ ϕn and ψ1 ≥ ψ2 ≥ · · · ≥ ψn are the eigenvalues
of L(TB(x j xk)), L(IB(x j xk)) and L(FB(x j xk)), respectively, then
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1.
n∑
j=1

ϑ j∈ML

ϑ j = 2

( ∑
1≤ j<k≤n

TB(x j xk)

)
,

n∑
j=1

ϕ j∈NL

ϕ j = 2

( ∑
1≤ j<k≤n

IB(x j xk)

)

n∑
j=1

ψ j∈OL

ψ j = 2

( ∑
1≤ j<k≤n

FB(x j xk)

)

2.
n∑
j=1

ϑ j∈ML

ϑ2
j = 2

( ∑
1≤ j<k≤n

(TB(x j xk))2
)

+
n∑
j=1

d2
TB (x j xk )

(x j ),

n∑
j=1

ϕ j∈NL

ϕ2
j = 2

( ∑
1≤ j<k≤n

(IB(x j xk))2
)

+
n∑
j=1

d2
IB (x j xk )

(x j ),

n∑
j=1

ψ j∈OL

ψ2
j = 2

( ∑
1≤ j<k≤n

(FB(x j xk))2
)

+
n∑
j=1

d2
FB (x j xk )

(x j ).

Proof 1. Since L(G) is a symmetricmatrixwith nonnegativeLaplacian eigenvalues,

n∑
j=1

ϑ j∈ML

ϑ j = tr(L(G)) =
n∑
j=1

dTB (x j xk )(x j ) = 2

⎛
⎝ ∑

1≤ j<k≤n

TB(x j xk)

⎞
⎠ .

Similarly, it is easy to show that

n∑
j=1

ϕ j∈NL

ϕ j = 2

⎛
⎝ ∑

1≤ j<k≤n

IB(x j xk)

⎞
⎠

n∑
j=1

ψ j∈OL

ψ j = 2

⎛
⎝ ∑

1≤ j<k≤n

FB(x j xk)

⎞
⎠ .

2. By definition of Laplacian matrix, we have

L(TB(x j xk)) =

⎛
⎜⎜⎜⎝

dTB (x j xk )(x1) −TB(x1x2) . . . −TB(x1xn)
−TB(x2x1) dTB (x j xk )(x2) . . . −TB(x2xn)

...
...

. . .
...

−TB(xnx1) −TB(xnx2) . . . dTB (x j xk )(xn)

⎞
⎟⎟⎟⎠ .

By trace properties of a matrix, we have tr((L(TB(x j xk)))2) =
n∑
j=1

ϑ j∈ML

ϑ2
j where
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tr((L(TB(x j xk)))
2) = (d2

TB (x j xk )(x1) + T 2
B (x1x2) + · · · + T 2

B (x1xn))

+(T 2
B (x2x1) + d2

TB (x j xk )(x2) + · · · + T 2
B (x2xn))

+ · · · + (T 2
B (xnx1) + T 2

B (xnx2) + · · · + d2
TB (x j xk )(xn))

= 2

⎛
⎝ ∑

1≤ j<k≤n

(TB(x j xk))
2

⎞
⎠+

n∑
j=1

d2
TB (x j xk )(x j ).

Therefore,
n∑
j=1

ϑ j∈ML

ϑ2
j = 2

( ∑
1≤ j<k≤n

(TB(x j xk))2
)

+
n∑
j=1

d2
TB (x j xk )

(x j ). Analogously,

we can show that

n∑
j=1

ϕ j∈NL

ϕ2
j = 2

⎛
⎝ ∑

1≤ j<k≤n

(IB(x j xk))
2

⎞
⎠+

n∑
j=1

d2
IB (x j xk )(x j )

n∑
j=1

ψ j∈OL

ψ2
j = 2

⎛
⎝ ∑

1≤ j<k≤n

(FB(x j xk))
2

⎞
⎠+

n∑
j=1

d2
FB (x j xk )(x j ).

Definition 1.42 The Laplacian energy of a neutrosophic graph G = (A, B) is

defined as LE(G) = 〈LE(TB(x j xk)), LE(IB(x j xk)), LE(FB(x j xk))
〉 = 〈 n∑

j=1
|� j |,

n∑
j=1

|ξ j |,
n∑
j=1

|τ j |
〉
where

� j = ϑ j −
2

( ∑
1≤ j<k≤n

TB(x j xk)

)

n
,

ξ j = ϕ j −
2

( ∑
1≤ j<k≤n

IB(x j xk)

)

n
,

τ j = ψ j −
2

( ∑
1≤ j<k≤n

FB(x j xk)

)

n
.

Theorem 1.28 Let G = (A, B) be a neutrosophic graph on n vertices and let
L(G) = 〈L(TB(x j xk)), L(IB(x j xk)), L(FB(x j xk))〉 be the Laplacian matrix of G,
then

1. LE(TB(x j xk))
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≤

√√√√√√2n
∑

1≤ j<k≤n

(TB(x j xk))2 + n
n∑
j=1

⎛
⎜⎝dTB (x j xk )(x j ) −

2
∑

1≤ j<k≤n
TB(x j xk)

n

⎞
⎟⎠

2

,

2. LE(IB(x j xk))

≤

√√√√√√2n
∑

1≤ j<k≤n

(IB(x j xk))2 + n
n∑
j=1

⎛
⎜⎝dIB (x j xk )(x j ) −

2
∑

1≤ j<k≤n
IB(x j xk)

n

⎞
⎟⎠

2

,

3. LE(FB(x j xk))

≤

√√√√√√2n
∑

1≤ j<k≤n

(FB(x j xk))2 + n
n∑
j=1

⎛
⎜⎝dFB (x j xk )(x j ) −

2
∑

1≤ j<k≤n
FB(x j xk)

n

⎞
⎟⎠

2

.

Proof Apply Cauchy–Schwarz inequality to the n numbers 1, 1, . . . , 1 and |�1|, |�2|,
. . . , |�n|, andwehave

n∑
j=1

|� j | ≤ √
n
√∑n

j=1 |� j |2 and LE(TB(x j xk)) ≤ √
n
√
2MT =

√
2nMT . We know that

MT = ∑
1≤ j<k≤n

(TB(x j xk))2 + 1
2

n∑
j=1

(
dTB (x j xk )(x j ) −

2
∑

1≤ j<k≤n
TB (x j xk )

n

)2

,

Therefore, it can be proved that

LE(TB(x j xk))

≤

√√√√√√2n
∑

1≤ j<k≤n

(TB(x j xk))2 + n
n∑
j=1

⎛
⎜⎝dTB (x j xk )(x j ) −

2
∑

1≤ j<k≤n
TB(x j xk)

n

⎞
⎟⎠

2

,

LE(IB(x j xk))

≤

√√√√√√2n
∑

1≤ j<k≤n

(IB(x j xk))2 + n
n∑
j=1

⎛
⎜⎝dIB (x j xk )(x j ) −

2
∑

1≤ j<k≤n
IB(x j xk)

n

⎞
⎟⎠

2

,

LE(FB(x j xk))

≤
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Theorem 1.29 Let G = (A, B) be a neutrosophic graph on n vertices and let
L(G) = 〈L(TB(x j xk)), L(IB(x j xk)), L(FB(x j xk))〉 be the Laplacian matrix of G,
then
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Proof Here

(
n∑
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|� j |
)2

=
n∑
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|� j |2 + 2
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Definition 1.43 The signless Laplacian matrix of a neutrosophic graphG = (A, B)

is defined as L+(G) = 〈L+(TB(x j xk)), L+(IB(x j xk)), L+(FB(x j xk))〉 = D(G) +
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A(G), where D(G) and A(G) are the degree matrix and the adjacency matrix,
respectively, of a neutrosophic graph G. The spectrum of signless Laplacian matrix
of a neutrosophic graph L+(G) is defined as 〈ML+ , NL+ , OL+〉, whereML+ , NL+ and
OL+ are the sets of signless Laplacian eigenvalues of L+(TB(x j xk)), L+(IB(x j xk))
and L+(FB(x j xk)), respectively.

1.5 Application to Group Decision-Making

Group decision-making is a commonly used tool in human activities, which deter-
mines the optimal alternative from a given finite set of alternatives using the eval-
uation information given by a group of decision-makers or experts. With the rapid
development of society, group decision-making plays an increasingly important role
when dealing with the decision-making problems. Recently, many scholars have
investigated the approaches for group decision-making based on different kinds of
decision information. However, in order to reflect the relationships among the alter-
natives, we need to make pairwise comparisons for all the alternatives in the process
of decision-making. Preference relation is a powerful quantitative decision technique
that supports experts in expressing their preferences over the given alternatives. For a
set of alternatives X = {x1, x2, . . . , xn}, the experts compare each pair of alternatives
and construct preference relations, respectively. If every element in the preference
relations is a neutrosophic number, then the concept of the neutrosophic preference
relation (NPR) can be put forth as follows:

Definition 1.44 A NPR on the set X = {x1, x2, . . . , xn} is represented by a matrix
R = (r jk)n×n , where r jk=〈x j xk, T (x j xk), I (x j xk), F(x j xk)〉 for all j, k=1, 2, . . . ,
n. For convenience, let r jk = 〈Tjk, I jk, Fjk〉 where Tjk indicates the degree to which
the object x j is preferred to the object xk , Fjk denotes the degree to which the
object x j is not preferred to the object xk , and I jk is interpreted as an indeterminacy-
membership degree, with the conditions: Tjk, I jk, Fjk ∈ [0, 1], Tjk = Fkj , Fjk =
Tkj , I jk + Ik j = 1, Tj j = I j j = Fj j = 0.5, for all j, k = 1, 2, . . . , n.

A group decision-making problem concerning the ‘Alliance partner selection of a
software company’ is solved to illustrate the applicability of the proposed concepts
of energy of neutrosophic graphs in realistic scenario.

1.5.1 Alliance Partner Selection of a Software Company

Eastsoft is one of the top five software companies in China [77]. It offers a rich
portfolio of businesses, including product engineering solutions, industry solutions,
and related software products and platform and services. It is dedicated to becoming
a globally leading IT solution and service provider through continuous improvement
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Table 1.8 NPR of the expert from the engineering management department

R1 a1 a2 a3 a4 a5

a1 〈0.5, 0.5, 0.5〉 〈0.4, 0.6, 0.3〉 〈0.2, 0.4, 0.6〉 〈0.7, 0.6, 0.3〉 〈0.3, 0.1, 0.6〉
a2 〈0.3, 0.4, 0.4〉 〈0.5, 0.5, 0.5〉 〈0.7, 0.3, 0.8〉 〈0.4, 0.1, 0.4〉 〈0.1, 0.3, 0.5〉
a3 〈0.6, 0.6, 0.2〉 〈0.8, 0.7, 0.7〉 〈0.5, 0.5, 0.5〉 〈0.3, 0.6, 0.4〉 〈0.2, 0.3, 0.4〉
a4 〈0.3, 0.4, 0.7〉 〈0.4, 0.9, 0.4〉 〈0.4, 0.4, 0.3〉 〈0.5, 0.5, 0.5〉 〈0.3, 0.1, 0.3〉
a5 〈0.6, 0.9, 0.3〉 〈0.5, 0.7, 0.1〉 〈0.4, 0.7, 0.2〉 〈0.3, 0.9, 0.3〉 〈0.5, 0.5, 0.5〉

Table 1.9 NPR of the expert from the human resource department

R2 a1 a2 a3 a4 a5

a1 〈0.5, 0.5, 0.5〉 〈0.5, 0.3, 0.1〉 〈0.1, 0.7, 0.5〉 〈0.3, 0.9, 0.5〉 〈0.2, 0.7, 0.8〉
a2 〈0.1, 0.7, 0.5〉 〈0.5, 0.5, 0.5〉 〈0.5, 0.1, 0.6〉 〈0.6, 0.7, 0.1〉 〈0.4, 0.6, 0.8〉
a3 〈0.5, 0.3, 0.1〉 〈0.6, 0.9, 0.5〉 〈0.5, 0.5, 0.5〉 〈0.9, 0.2, 0.3〉 〈0.1, 0.4, 0.1〉
a4 〈0.5, 0.1, 0.3〉 〈0.1, 0.3, 0.6〉 〈0.3, 0.8, 0.9〉 〈0.5, 0.5, 0.5〉 〈0.8, 0.4, 0.2〉
a5 〈0.8, 0.3, 0.2〉 〈0.8, 0.4, 0.4〉 〈0.1, 0.6, 0.1〉 〈0.2, 0.6, 0.8〉 〈0.5, 0.5, 0.5〉

Table 1.10 NPR of the expert from the finance department

R3 a1 a2 a3 a4 a5

a1 〈0.5, 0.5, 0.5〉 〈0.9, 0.8, 0.7〉 〈0.1, 0.7, 0.2〉 〈0.4, 0.3, 0.1〉 〈0.6, 0.3, 0.6〉
a2 〈0.7, 0.2, 0.9〉 〈0.5, 0.5, 0.5〉 〈0.4, 0.3, 0.6〉 〈0.6, 0.3, 0.4〉 〈0.7, 0.2, 0.9〉
a3 〈0.2, 0.3, 0.1〉 〈0.6, 0.7, 0.4〉 〈0.5, 0.5, 0.5〉 〈0.1, 0.2, 0.4〉 〈0.6, 0.2, 0.8〉
a4 〈0.1, 0.7, 0.4〉 〈0.4, 0.7, 0.6〉 〈0.4, 0.8, 0.1〉 〈0.5, 0.5, 0.5〉 〈0.6, 0.7, 0.3〉
a5 〈0.6, 0.7, 0.6〉 〈0.9, 0.8, 0.7〉 〈0.8, 0.8, 0.6〉 〈0.3, 0.3, 0.6〉 〈0.5, 0.5, 0.5〉

of organization and process, competence development of leadership and employees,
and alliance and open innovation. To improve the operation and competitiveness
capability in the global market, Eastsoft plans to establish a strategic alliance with
a transnational corporation. After numerous consultations, five transnational corpo-
rations would like to establish a strategic alliance with Eastsoft; they are HP a1,
PHILIPS a2, EMC a3, SAP a4 and LK a5. To select the desirable strategic alliance
partner, three experts ei (i = 1, 2, 3) are invited to participate in the decision anal-
ysis, who come from the engineering management department, the human resource
department and the finance department of Eastsoft, respectively. Based on their expe-
riences, the experts compare each pair of alternatives and give individual judgments
using the following NPRs Ri = (r (i)

jk )5×5 (i = 1, 2, 3):
The neutrosophic digraphs Di corresponding to NPRs Ri (i = 1, 2, 3) given in

Tables1.8, 1.9 and 1.10 are shown in Figs. 1.36, 1.37 and 1.38.
The energy of a neutrosophic digraph is the sum of absolute values of the real part

of eigenvalues of D. The energy of each neutrosophic digraph Di (i = 1, 2, 3) is cal-
culated as E(D1) = 〈3.2419, 3.5861, 3.2419〉, E(D2) = 〈3.2790, 3.9089, 3.2790〉,
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Fig. 1.36 Neutrosophic digraph

E(D3) = 〈4.1587, 3.5618, 4.1587〉. Then the weight of each expert can be deter-
mined as,

wi =

⎛
⎜⎜⎝ E((DT )i )

m∑
l=1

E((DT )l)

,
E((DI )i )

m∑
l=1

E((DI )l)

,
E((DF )i )

m∑
l=1

E((DF )l)

⎞
⎟⎟⎠ , 1 ≤ i ≤ m.

The weights are calculated as w1 = 〈0.3219, 0.3561, 0.3219〉, w2 = 〈0.3133,
0.3735, 0.3133〉, w3 = 〈0.3501, 0.2998, 0.3501〉. Utilize the aggregation operator
to fuse all the individual NPRs Ri = (r (i)

jk )5×5 (i = 1, 2, 3) into the collective NPR
R = (r jk)5×5 as shown in Table1.11. Here we apply the neutrosophic weighted
averaging (NWA) operator [59] to fuse the individual NPR.

NWA(r (1)
jk , r (2)

jk , . . . , r (s)
jk ) =

〈
1 −

s∏
i=1

(
1 − T (i)

jk

)wi

,

s∏
i=1

(
I (i)
jk

)wi

,

s∏
i=1

(
F (i)
jk

)wi
〉
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Fig. 1.37 Neutrosophic digraph

Draw a directed network corresponding to a collective NPR above, as shown
in Fig. 1.39. Then under the condition Tjk ≥ 0.5 ( j, k = 1, 2, 3, 4, 5), a partial
diagram is drawn, as shown in Fig. 1.40.

Calculate the out-degrees out-d(a j ) ( j=1, 2, 3, 4, 5) of all criteria in a partial
directed network as follows: out-d(a1) = 〈0.6951, 0.4973, 0.2912〉, out-d(a2) =
〈1.0813, 0.4608, 0.9258〉, out-d(a3) = 〈1.2580, 1.0430, 0.8911〉, out-d(a4) =
〈0.6093, 0.2811, 0.2689〉, out-d(a5) = 〈1.9907, 1.8177, 0.9005〉. According to
membership degrees of out-d(a j ) ( j = 1, 2, 3, 4, 5), we get the ranking of
the factors a j ( j = 1, 2, 3, 4, 5) as a5 � a3 � a2 � a1 � a4. Thus, the best choice
is LK a5. Now elements of the Laplacian matrices of the neutrosophic digraphs
L(Di ) = RL

i (i = 1, 2, 3) shown in Figs. 1.36, 1.37, 1.38 are provided in Tables1.12,
1.13 and 1.14.

The Laplacian energy of each neutrosophic digraph is calculated as
LE(D1) = 〈3.2800, 4.0000, 3.8893〉,
LE(D2) = 〈3.3600, 4.0000, 3.8798〉,
LE(D3) = 〈4.6806, 4.5858, 4.9687〉. Then the weight of each expert can be deter-
mined as
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Fig. 1.38 Neutrosophic digraph

wi =

⎛
⎜⎜⎝ LE((DT )i )

m∑
l=1

LE((DT )l)

,
LE((DI )i )

m∑
l=1

LE((DI )l)

,
LE((DF )i )

m∑
l=1

LE((DF )l)

⎞
⎟⎟⎠ , i = 1, 2, . . . ,m.

w1 = 〈0.2937, 0.3581, 0.3482〉, w2 = 〈0.2989, 0.3559, 0.3452〉, w3 = 〈0.3288,
0.3221, 0.3490〉 based on which, using the NWA operator, the fused NPR is deter-
mined, as shown in Table1.15. In the directed network corresponding to a collec-
tive NPR above, we select those neutrosophic numbers whose membership degrees
Tjk ≥ 0.5 ( j, k = 1, 2, 3, 4, 5), and resulting partial diagram is shown in Fig. 1.41.

Calculate the out-degrees out-d(a j ) ( j = 1, 2, 3, 4, 5) of all criteria in a par-
tial directed network as follows out-d(a1) = 〈0.6719, 0.5050, 0.2622〉, out-d(a2) =
〈1.0333, 0.4563, 0.8874〉, out-d(a3) = 〈1.2122, 1.0354, 0.8534〉, out-d(a4) =
〈0.5881, 0.2821, 0.2478〉, out-d(a5)=〈1.9228, 1.8333, 0.8201〉.According to mem-
bership degrees of out-d(a j ) ( j = 1, 2, 3, 4, 5), we get the ranking of the
factors a j , j = 1, 2, 3, 4, 5 as a5 � a3 � a2 � a1 � a4. Thus, the best choice is
LK a5. Now, the elements of the signless Laplacian matrices of the neutrosophic
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Fig. 1.39 Directed network of the fused NPR

digraphs L+(Di ) = RL+
i (i = 1, 2, 3) shown in Figs. 1.36, 1.37 and 1.38 are given

in Tables1.16, 1.17 and 1.18. The signless Laplacian energy of each neutro-
sophic digraph is calculated as LE+(D1) = 〈3.3244, 4.7474, 3.5570〉, LE+(D2) =
〈3.3826, 4.0000, 3.4427〉, LE+(D3) = 〈4.5859, 4.4103, 4.7228〉. Then the weight
of each expert is

wi =

⎛
⎜⎜⎝ LE+((DT )i )

m∑
l=1

LE+((DT )l)

,
LE+((DI )i )

m∑
l=1

LE+((DI )l)

,
LE+((DF )i )

m∑
l=1

LE+((DF )l)

⎞
⎟⎟⎠ , i = 1, 2, . . . ,m,

w1 = 〈0.2859, 0.4082, 0.3059〉, w2 = 〈0.3125, 0.3695, 0.3180〉, w3 = 〈0.3343,
0.3215, 0.3443〉, based on which fuse all the individual NPRs Ri = (r (i)

jk )5×5 (i =
1, 2, 3) into the collective NPR R = (r jk)5×5, by using the NWA operator, as shown
in Table1.19. In the directed network corresponding to a collective NPR above, we
select those neutrosophic numbers whose membership degrees Tjk ≥ 0.5 ( j, k =
1, 2, 3, 4, 5), and resulting partial diagram is shown in Fig. 1.42.

Calculate the out-degrees out-d(a j ) ( j = 1, 2, 3, 4, 5) of all criteria in a par-
tial directed network as follows out-d(a1) = 〈0.6777, 0.4843, 0.2943〉, out-d(a2) =
〈1.0412, 0.4099, 0.9309〉, out-d(a3) = 〈1.2265, 1.0084, 0.9005〉, out-d(a4) =
〈0.5980, 0.2483, 0.2740〉, out-d(a5) = 〈1.9395, 1.7873, 0.9212〉. According
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Fig. 1.40 Partial directed network of the fused NPR

to membership degrees of out-d(a j ) ( j = 1, 2, 3, 4, 5), we get the ranking of
the factors a j ( j = 1, 2, 3, 4, 5) as a5 � a3 � a2 � a1 � a4. Thus, the best choice is
LK a5.

1.5.2 Real-Time Example

The proposed concepts of energy, Laplacian energy and signless Laplacian energy
of a neutrosophic graph are explained here through a real-time example. We have
taken the website http://www.pantechsolutions.net modelled as a neutrosophic graph
by considering the navigation of the customer. We have taken the four links: 1.
microcontroller boards, 2. log-in html, 3. and 4. project kits for our calculation. A
neutrosophic graph of this site for four different time periods is considered. The
energy, Laplacian energy and signless Laplacian energy of a neutrosophic graph
are calculated for each of these periods. The energy, Laplacian energy and signless
Laplacian energy are represented in terms of bar graphs. In the website http://www.
pantechsolutions.net (accessed on 8May 2012). The above four links are considered
for the period 16 January 2018 to 15 February 2018, and for this graph, as shown in
Fig. 1.43, we have

http://www.pantechsolutions.net
http://www.pantechsolutions.net
http://www.pantechsolutions.net
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Table 1.12 Elements of the Laplacian matrix of the neutrosophic digraph D1

RL
1 a1 a2 a3 a4 a5

a1 〈1.6, 1.7, 1.8〉 〈−0.4, −0.6, −0.3〉 〈−0.2, −0.4,−0.6〉 〈−0.7, −0.6, −0.3〉 〈−0.3, −0.1, −0.6〉
a2 〈−0.3, −0.4,−0.4〉 〈1.5, 1.1, 2.1〉 〈−0.7, −0.3, −0.8〉 〈−0.4, −0.1, −0.4〉 〈−0.1, −0.3, −0.5〉
a3 〈−0.6, −0.6, −0.2〉 〈−0.8, −0.7, −0.7〉 〈1.9, 2.2, 1.7〉 〈−0.3, −0.6, −0.4〉 〈−0.2, −0.3, −0.4〉
a4 〈−0.3, −0.4,−0.7〉 〈−0.4, −0.9, −0.4〉 〈−0.4,−0.4, −0.3〉 〈1.4, 1.8, 1.7〉 〈−0.3, −0.1, −0.3〉
a5 〈−0.6, −0.9, −0.3〉 〈−0.5, −0.7, −0.1〉 〈−0.4,−0.7, −0.2〉 〈−0.3, −0.9, −0.3〉 〈1.8, 3.2, −0.9〉

Table 1.13 Elements of the Laplacian matrix of the neutrosophic digraph D2

RL
2 a1 a2 a3 a4 a5

a1 〈1.1, 2.6, 1.9〉 〈−0.5, −0.3, −0.1〉 〈−0.1, −0.7, −0.5〉 〈−0.3, −0.9, −0.5〉 〈−0.2, −0.7, −0.8〉
a2 〈−0.1, −0.7, −0.5〉 〈1.6, 2.1, 2.0〉 〈−0.5, −0.1, −0.6〉 〈−0.6, −0.7, −0.1〉 〈−0.4, −0.6, −0.8〉
a3 〈−0.5, −0.3, −0.1〉 〈−0.6, −0.9, −0.5〉 〈2.1, 1.8, 1.0〉 〈−0.9, −0.2, −0.3〉 〈−0.1, −0.4,−0.1〉
a4 〈−0.5, −0.1, −0.3〉 〈−0.1, −0.3, −0.6〉 〈−0.3, −0.8, −0.9〉 〈1.7, 1.6, 2.0〉 〈−0.8, −0.4,−0.2〉
a5 〈−0.8, −0.3, −0.2〉 〈−0.8, −0.4, −0.4〉 〈−0.1, −0.6, −0.1〉 〈−0.2, −0.6, −0.8〉 〈1.9, 1.9, 1.5〉

Table 1.14 Elements of the Laplacian matrix of the neutrosophic digraph D3

RL
3 a1 a2 a3 a4 a5

a1 〈2.0, 2.1, 1.6〉 〈−0.9, −0.8, −0.7〉 〈−0.1, −0.7, −0.2〉 〈−0.4, −0.3, −0.1〉 〈−0.6, −0.3, −0.6〉
a2 〈−0.7, −0.2, −0.9〉 〈2.4, 1.0, 2.8〉 〈−0.4,−0.3, −0.6〉 〈−0.6, −0.3, −0.4〉 〈−0.7, −0.2,−0.9〉
a3 〈−0.2, −0.3, −0.1〉 〈−0.6, −0.7, −0.4〉 〈1.5, 1.4, 1.7〉 〈−0.1, −0.2, −0.4〉 〈−0.6, −0.2,−0.8〉
a4 〈−0.1, −0.7, −0.4〉 〈−0.4, −0.7, −0.6〉 〈−0.4,−0.8, −0.1〉 〈1.5, 2.9, 1.4〉 〈−0.6, −0.7, −0.3〉
a5 〈−0.6, −0.7, −0.6〉 〈−0.9, −0.8, −0.7〉 〈−0.8, −0.8, −0.6〉 〈−0.3, −0.3, −0.6〉 〈2.6, 2.6, 2.5〉

Spec(TY (x j xk)) = {−0.3442,−0.1000, 0.0066, 0.4376},
Spec(IY (x j xk)) = {−0.6630,−0.2742, 0.0774, 0.8598},
Spec(FY (x j xk)) = {−0.6703,−0.3296, 0.0299, 0.9701},
E(TY (x j xk)) = 0.8884, E(IY (x j xk)) = 1.8744, E(FY (x j xk)) = 1.9999.
Therefore, E(G1) = 〈0.8884, 1.8744, 1.9999〉.
Laplacian Spec(TY (x j xk)) = {0, 0.2492, 0.5244, 0.8264},
Laplacian Spec(IY (x j xk)) = {0, 0.6975, 1.1757, 1.5269},
Laplacian Spec(FY (x j xk)) = {0, 0.7605, 1.4139, 1.6256},
LE(TY (x j xk)) = 1.1016, LE(IY (x j xk)) = 2.0051, LE(FY (x j xk)) = 2.2790.
Therefore, LE(G1) = 〈1.1016, 2.0051, 2.2790〉.

Signless Laplacian Spec(TY (x j xk)) = {−0.3183,−0.1339,−0.0555, 0.5076},
Signless Laplacian Spec(IY (x j xk)) = {−0.6764,−0.2500, 0.0385, 0.8879},
Signless Laplacian Spec(FY (x j xk)) = {−0.7056,−0.2572,−0.0582, 1.0211},
LE+(TY (x j xk)) = 1.0153, LE+(IY (x j xk)) = 1.8529, LE+(FY (x j xk)) = 2.0421.
Therefore, LE+(G1) = 〈1.0153, 1.8529, 2.0421〉.
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Fig. 1.41 Partial directed network of the fused NPR

Table 1.16 Elements of the signless Laplacian matrix of the neutrosophic digraph D1

RL+
1 a1 a2 a3 a4 a5

a1 〈1.6, 1.7, 1.8〉 〈0.4, 0.6, 0.3〉 〈0.2, 0.4, 0.6〉 〈0.7, 0.6, 0.3〉 〈0.3, 0.1, 0.6〉
a2 〈0.3, 0.4, 0.4〉 〈1.5, 1.1, 2.1〉 〈0.7, 0.3, 0.8〉 〈0.4, 0.1, 0.4〉 〈0.1, 0.3, 0.5〉
a3 〈0.6, 0.6, 0.2〉 〈0.8, 0.7, 0.7〉 〈1.9, 2.2, 1.7〉 〈0.3, 0.6, 0.4〉 〈0.2, 0.3, 0.4〉
a4 〈0.3, 0.4, 0.7〉 〈0.4, 0.9, 0.4〉 〈0.4, 0.4, 0.3〉 〈1.4, 1.8, 1.7〉 〈0.3, 0.1, 0.3〉
a5 〈0.6, 0.9, 0.3〉 〈0.5, 0.7, 0.1〉 〈0.4, 0.7, 0.2〉 〈0.3, 0.9, 0.3〉 〈1.8, 3.2, 0.9〉

Table 1.17 Elements of the signless Laplacian matrix of the neutrosophic digraph D2

RL+
2 a1 a2 a3 a4 a5

a1 〈1.1, 2.6, 1.9〉 〈0.5, 0.3, 0.1〉 〈0.1, 0.7, 0.5〉 〈0.3, 0.9, 0.5〉 〈0.2, 0.7, 0.8〉
a2 〈0.1, 0.7, 0.5〉 〈1.6, 2.1, 2.0〉 〈0.5, 0.1, 0.6〉 〈0.6, 0.7, 0.1〉 〈0.4, 0.6, 0.8〉
a3 〈0.5, 0.3, 0.1〉 〈0.6, 0.9, 0.5〉 〈2.1, 1.8, 1.0〉 〈0.9, 0.2, 0.3〉 〈0.1, 0.4, 0.1〉
a4 〈0.5, 0.1, 0.3〉 〈0.1, 0.3, 0.6〉 〈0.3, 0.8, 0.9〉 〈1.7, 1.6, 2.0〉 〈0.8, 0.4, 0.2〉
a5 〈0.8, 0.3, 0.2〉 〈0.8, 0.4, 0.4〉 〈0.1, 0.6, 0.1〉 〈0.2, 0.6, 0.8〉 〈1.9, 1.9, 1.5〉
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Table 1.18 Elements of the signless Laplacian matrix of the neutrosophic digraph D3

RL+
3 a1 a2 a3 a4 a5

a1 〈2.0, 2.1, 1.6〉 〈0.9, 0.8, 0.7〉 〈0.1, 0.7, 0.2〉 〈0.4, 0.3, 0.1〉 〈0.6, 0.3, 0.6〉
a2 〈0.7, 0.2, 0.9〉 〈2.4, 1.0, 2.8〉 〈0.4, 0.3, 0.6〉 〈0.6, 0.3, 0.4〉 〈0.7, 0.2, 0.9〉
a3 〈0.2, 0.3, 0.1〉 〈0.6, 0.7, 0.4〉 〈1.5, 1.4, 1.7〉 〈0.1, 0.2, 0.4〉 〈0.6, 0.2, 0.8〉
a4 〈0.1, 0.7, 0.4〉 〈0.4, 0.7, 0.6〉 〈0.4, 0.8, 0.1〉 〈1.5, 2.9, 1.4〉 〈0.6, 0.7, 0.3〉
a5 〈0.6, 0.7, 0.6〉 〈0.9, 0.8, 0.7〉 〈0.8, 0.8, 0.6〉 〈0.3, 0.3, 0.6〉 〈2.6, 2.6, 2.5〉

For the period 16 February 2018 to 15 March 2018 (see Fig. 1.44), we have

Spec(TY (x j xk)) = {−0.4245,−0.1714, 0.0215, 0.5744},
Spec(IY (x j xk)) = {−0.7909,−0.5799, 0.0536, 1.3173},
Spec(FY (x j xk)) = {−0.5037,−0.3400, 0.0007, 0.8430},
E(TY (x j xk)) = 1.1919, E(IY (x j xk)) = 2.7418, E(FY (x j xk)) = 1.6874.
Therefore, E(G2) = 〈1.1919, 2.7418, 1.6874〉.

Laplacian Spec(TY (x j xk)) = {0, 0.4200, 0.6908, 1.0892},
Laplacian Spec(IY (x j xk)) = {0, 0.8716, 1.7656, 2.3629},
Laplacian Spec(FY (x j xk)) = {0, 0.5672, 1.1546, 1.4783},
LE(TY (x j xk)) = 1.36, LE(IY (x j xk)) = 3.2569, LE(FY (x j xk)) = 2.0657.
Therefore, LE(G2) = 〈1.36, 3.2569, 2.0657〉.

Signless Laplacian Spec(TY (x j xk)) = {−0.4023,−0.1931,−0.0585, 0.6538},
Signless Laplacian Spec(IY (x j xk)) = {−0.7962,−0.5500,−0.1538, 1.5000},
Signless Laplacian Spec(FY (x j xk)) = {−0.5321,−0.2209,−0.2000, 0.9530},
LE+(TY (x j xk)) = 1.3076, LE+(IY (x j xk)) = 2.9999, LE+(FY (x j xk)) = 1.9059.
Therefore, LE+(G2) = 〈1.3076, 2.9999, 1.9059〉.

For the period 16 March 2018 to 15 April 2018 (see Fig. 1.45), we have

Spec(TY (x j xk)) = {−0.6287,−0.3884, 0.0004, 1.0168},
Spec(IY (x j xk)) = {−1.0779,−0.5696, 0.0698, 1.5776},
Spec(FY (x j xk)) = {−0.8184,−0.4650, 0.0051, 1.2783},
E(TY (x j xk)) = 2.0343, E(IY (x j xk)) = 3.2949, E(FY (x j xk)) = 2.5668.
Therefore, E(G3) = 〈2.0343, 3.2949, 2.5668〉.

Laplacian Spec(TY (x j xk)) = {0, 0.2604, 1.4221, 1.7175},
Laplacian Spec(IY (x j xk)) = {0, 1.2472, 2.3360, 2.6168},
Laplacian Spec(FY (x j xk)) = {0, 0.8182, 1.6721, 2.3097},
LE(TY (x j xk)) = 2.8792, LE(IY (x j xk)) = 3.7056,LE(FY (x j xk)) = 3.1636.
Therefore, LE(G3) = 〈2.8792, 3.7056, 3.1636〉.
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Fig. 1.42 Partial directed network of the fused NPR

Fig. 1.43 Neutrosophic
graph G1
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Signless Laplacian Spec(TY (x j xk)) = {−0.6816,−0.3513,−0.2007, 1.2336},
Signless Laplacian Spec(IY (x j xk)) = {−1.1436,−0.4542,−0.0553, 1.6531},
Signless Laplacian Spec(FY (x j xk)) = {−0.8066,−0.4000,−0.2632, 1.4698},
LE+(TY (x j xk)) = 2.4671, LE+(IY (x j xk)) = 3.3062, LE+(FY (x j xk)) = 2.9395.
Therefore, LE+(G3) = 〈2.4671, 3.3062, 2.9395〉.
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Fig. 1.44 Neutrosophic
graph G2
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Fig. 1.45 Neutrosophic
graph G3

x1, 0.6, 0.1, 0.2

0.4, 0.5, 0.6 x2, 0.7, 0.3, 0.1

0.
6,
0.
8,
0.
4

x3, 0.8, 0.4, 0.1

0.5, 0.6, 0.3

x4, 0.2, 0.5, 0.3

0.1, 0.7, 0.40.1
, 0.

5, 0
.7

Fig. 1.46 Neutrosophic
graph G4
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Fig. 1.47 Energy of neutrosophic graphs

Finally, for the period 16 April 2018 to 15 May 2018 (see Fig. 1.46), we have

Spec(TY (x j xk)) = {−0.5716,−0.0973, 0.0027, 0.6662},
Spec(IY (x j xk)) = {−1.0878,−0.5755, 0.0435, 1.6198},
Spec(FY (x j xk)) = {−0.7686,−0.3985, 0.0990, 1.0680},
E(TY (x j xk)) = 1.3378,E(IY (x j xk)) = 3.3265,E(FY (x j xk)) = 2.3342.
Therefore, E(G4) = 〈1.3378, 3.3265, 2.3342〉.

Laplacian Spec(TY (x j xk)) = {0, 0.5637, 0.7641, 1.2721},
Laplacian Spec(IY (x j xk)) = {0, 1.1660, 2.0643, 2.9697},
Laplacian Spec(FY (x j xk)) = {0, 0.8207, 1.5544, 1.8249},
LE(TY (x j xk)) = 1.4725, LE(IY (x j xk)) = 3.868, LE(FY (x j xk)) = 2.5586.
Therefore, LE(G4) = 〈1.4725, 3.8680, 2.5586〉.

Signless Laplacian Spec(TY (x j xk)) = {−0.5588,−0.1017,−0.0500, 0.7105},
Signless Laplacian Spec(IY (x j xk)) = {−1.0582,−0.5617,−0.2105, 1.8304},
Signless Laplacian Spec(FY (x j xk)) = {−0.7996,−0.3562, 0.0413, 1.1145},
LE+(TY (x j xk)) = 1.4211, LE+(IY (x j xk)) = 3.6608, LE+(FY (x j xk)) = 2.3116.
Therefore, LE+(G4) = 〈1.4211, 3.6608, 2.3116〉.

The bar graphs, shown in Figs. 1.47, 1.48 and 1.49, represent the energy,
Laplacian energy and signless Laplacian energy of four links for the above four peri-
ods corresponding to the truth-membership, indeterminacy-membership and falsity-
membership values. From the above bar graphs, the energy, Laplacian energy and
signless Laplacian energy of truth-membership for the periodMarch toApril are high
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Fig. 1.48 Laplacian energy of neutrosophic graphs
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Fig. 1.49 Signless Laplacian energy of neutrosophic graphs

as compared to other periods; the energy, Laplacian energy and signless Laplacian
energy of indeterminacy-membership for the period April to May are high; and the
energy, Laplacian energy and signless Laplacian energy of falsity-membership for
the period March to April are high.
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