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Foreword

The Konigsberg bridge problem originated in the city of Konigsberg, located on the
river Pregel. The city had seven bridges, which connected two islands with the
mainland. People staying there always wondered whether there was any way to
walk over all the bridges once and only once and return to the same place where
they started the walk. In 1736, Euler came out with the solution in terms of graph
theory. He proved that it was not possible to walk through the seven bridges exactly
one time. In coming to this conclusion, Euler formulated the problem in terms of
graph theory. Each landmark was represented as a point (node) and every bridge as
an edge. This led to the formation of graph theory. Graph theory is a beautiful part
of mathematics. Not only computer science is heavily based on graph theory, but
there are a lot of applications of graph theory in operational research, combinatorial
optimization and bioinformatics.

Neutrosophy was introduced by Smarandache in 1995, as a new branch of
philosophy, which is a generalization of dialectics. Neutrosophy is the base of
neutrosophic set, neutrosophic logic, neutrosophic probability and statistics, and
neutrosophic calculus that have many real applications. A single-valued neutro-
sophic set is a special neutrosophic set and can be used expediently to deal with the
real-world problems, especially in decision support.

This book presents readers with fundamental concepts, including single-valued
neutrosophic, neutrosophic graph structures, bipolar neutrosophic graphs, domi-
nation in bipolar neutrosophic graphs, bipolar neutrosophic planar graphs,
interval-valued neutrosophic graphs, interval-valued neutrosophic graph structures,
rough neutrosophic digraphs, neutrosophic rough digraphs, neutrosophic soft
graphs and intuitionistic neutrosophic soft graphs. This book also presents practical
applications of the concepts in real world. Therefore, the book presents a valuable
contribution for students and researchers in neutrosophic graphs and their
applications.

vii



viii Foreword

The author, Muhammad Akram, is a well-known international researcher in the
field of neutrosophic graphs and he manifests a great enthusiasm and strong
potential in developingthe neutrosophic environment and applying it to practical
problems.

Gallup, USA Florentin Smarandache
University of New Mexico



Preface

The concept of fuzzy sets was introduced by Zadeh in 1965. Since then, fuzzy sets
and fuzzy logic have been applied in many real applications to handle uncertainty.
The traditional fuzzy set uses one real value from the unit interval [0, 1] to represent
the grade of membership of fuzzy set defined on the universe. In some applications,
including an expert system, belief system and information fusion, we should con-
sider not only the truth-membership supported by the evident but also the
falsity-membership against by the evident. That is beyond the scope of fuzzy sets. In
1983, Atanassov introduced the intuitionistic fuzzy sets which are a generalization of
fuzzy sets. The intuitionistic fuzzy sets consider both truth-membership (T4 (x)) and
falsity-membership (Fa(x)) with Ta(x), Fa(x) € [0,1] and Ta(x)+ Fa(x) <1.
Intuitionistic fuzzy sets can only handle incomplete information and not the inde-
terminate information and inconsistent information which exist commonly in the
belief system. In intuitionistic fuzzy sets, hesitancy is 1 — T4 (x) — F(x) by default.
In a neutrosophic set [163], indeterminacy is quantified explicitly and truth-
membership, indeterminacy-membership and falsity-membership are independent.
This assumption is very important in a lot of situations such as information fusion
when we try to combine the data from different sensors. Neutrosophy was introduced
by Smarandache in 1995. “It is a branch of philosophy which studies the origin,
nature and scope of neutralities, as well as their interactions with different ideational
spectra”. Neutrosophy is the base of neutrosophic set, neutrosophic logic, neutro-
sophic probability and statistics, and neutrosophic calculus. A single-valued neu-
trosophic set is a special neutrosophic set and can be used expediently to deal with
the real-world problems, especially in decision support. Thus, a single-valued
neutrosophic set is a powerful general formal framework which generalizes the
concept of fuzzy set and intuitionistic fuzzy set. The work presented here intends to
overcome the lack of a mathematical approach towards indeterminate information
and inconsistent information. This monograph deals with single-valued neutrosophic
graphs and their applications. It is based on a number of papers by the author, which
have been published in various scientific journals. This book may be useful for
researchers in mathematics, computer scientists and social scientists alike.
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X Preface

In Chap. 1, a concise review of the single-valued neutrosophic sets is presented.
Certain types of single-valued neutrosophic (neutrosophic, for short) graphs are
discussed. Applications of neutrosophic graphs are described. Moreover, the energy
of neutrosophic graphs with applications is presented.

In Chap. 2, certain concepts of neutrosophic graph structures and some of their
properties are presented. Moreover, some interesting applications of neutrosophic
graph structures are discussed.

In Chap. 3, certain bipolar neutrosophic graphs are studied. Domination in
bipolar neutrosophic graphs is presented. Bipolar neutrosophic planar graphs and
bipolar neutrosophic line graphs are discussed. Further, some applications of
bipolar neutrosophic graphs are described.

In Chap. 4, the concept of interval-valued neutrosophic graphs is presented.
Certain types including k-competition interval-valued neutrosophic graphs, p-
competition interval-valued neutrosophic graphs and m-step interval-valued neu-
trosophic competition graphs are discussed.

In Chap. 5, certain notions of interval-valued neutrosophic graph structures are
presented. The concepts of interval-valued neutrosophic graph structures with
examples are elaborated. Moreover, the concept of @-complement of an
interval-valued neutrosophic graph structure is discussed. Finally, some related
properties, including p-complement, totally self-complementary and totally strong
self-complementary, of interval-valued neutrosophic graph structures are described.

In Chap. 6, the concepts of rough neutrosophic digraphs and neutrosophic rough
digraphs are presented. Further, applications of rough neutrosophic digraphs and
neutrosophic rough digraphs in decision-making problems are described. Moreover,
comparative analysis of rough neutrosophic digraphs and neutrosophic rough
digraphs is given.

In Chap. 7, the notions of neutrosophic soft graphs and intuitionistic neutro-
sophic soft graphs are presented. Further, applications of neutrosophic soft graphs
and intuitionistic neutrosophic soft graphs are discussed. Moreover, the notion of
neutrosophic soft rough graphs is described. Finally, in Chap. 8, applications of
neutrosophic soft rough graphs are considered.
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Chapter 1 ®)
Graphs Under Neutrosophic ez
Environment

In this chapter, we first present a concise review of neutrosophic sets. Then we present
certain types of single-valued neutrosophic graphs (neutrosophic graphs, for short),
including regular neutrosophic graphs, totally regular neutrosophic graphs, edge
regular neutrosophic graphs, irregular neutrosophic graphs, highly totally irregular
neutrosophic graphs, strongly totally irregular neutrosophic graphs, neighbourly edge
irregular neutrosophic graphs and strongly edge irregular neutrosophic graphs. We
describe applications of neutrosophic graphs. We also present energy of neutrosophic
graphs with applications. This chapter is due to [27, 124, 167, 176].

1.1 Introduction

By a graph, we mean an ordered pair G* = (X, E) such that X is the collection of
components taken as nodes or vertices and E is a relation on X, called edges. It is
often convenient to depict the relationships between pairs of elements of a system
by means of a graph or a digraph. The vertices of the graph represent the system
elements, and its edges or arcs represent the relationships between the elements. This
approach is especially useful for transportation, scheduling, sequencing, allocation,
assignment and other problems which can be modelled as networks. Such a graph-
theoretical model is often useful as an aid in communicating.

Zadeh [194] introduced the degree of membership/truth (T) in 1965 and defined
the fuzzy set. Atanassov [47] introduced the degree of nonmembership/falsehood (F)
in 1983 and defined the intuitionistic fuzzy set. Smarandache [163] introduced the
degree of indeterminacy/neutrality (I) as independent component in 1995 and defined
the neutrosophic set on three components (7', I, F)) = (Truth, Indeterminacy, Falsity).
Fuzzy set theory and intuitionistic fuzzy set theory are useful models for dealing with
uncertainty and incomplete information. But they may not be sufficient in modelling
of indeterminate and inconsistent information encountered in real world. In order
to cope with this issue, neutrosophic (The words “neutrosophy” and “neutrosophic”
were invented by Smarandache in 1995. Neutrosophy is a new branch of philosophy

© Springer Nature Singapore Pte Ltd. 2018 1
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that studies the origin, nature and scope of neutralities, as well as their interactions
with different ideational spectra. It is the base of neutrosophic logic, a multiple-
value logic that generalizes the fuzzy logic and deals with paradoxes, contradictions,
antitheses, antinomies) set theory was proposed by Smarandache. However, since
neutrosophic sets are identified by three functions called truth-membership (7'),
indeterminacy-membership (/) and falsity-membership (F) whose values are real
standard or non-standard subset of unit interval ]~0, 17[, where "0 =0 —¢, 1T =
1 + €, € is an infinitesimal number. To apply neutrosophic set in real-life problems
more conveniently, Smarandache [165] and Wang et al. [172] defined single-valued
neutrosophic set which takes the value from the subset of [0, 1]. Thus, a single-valued
neutrosophic set is an instance of neutrosophic set and can be used expediently to
deal with real-world problems, especially in decision support.

A Geometric Interpretation of the Neutrosophic Set

We describe a geometric interpretation of the neutrosophic set using the neutro-
sophic cube A’B’'C'D'E’ F'G' H' as shown in Fig. 1.1. In technical applications only
the classical interval [0, 1] is used as range for the neutrosophic parameters 7', I and
F; we call the cube ABCDEFGH the technical neutrosophic cube and its exten-
sion A’B’C’'D'E' F'G’ H' the neutrosophic cube, used in the field where we need to
differentiate between absolute and relative notions. Consider a 3D Cartesian system
of coordinates, where T is the truth axis with value range in ]70, 17[, F is the false

F’ E’(—0,7 0,11)

G/

D(0,1,0)

o D/(—0,1+, 0)

Fig. 1.1 A geometric interpretation of the neutrosophic set
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axis with value range in 170, 17[, and [ is the indeterminate axis with value range
in]70, 1.

We now divide the technical neutrosophic cube ABC D E F' G H into three disjoint
regions:

1. The equilateral triangle B D E, whose sides are equal to /2, which represents the
geometrical locus of the points whose sum of the coordinates is 1. If a point Q is
situated on the sides of the triangle BDE or inside of it, then Tp + I + Fp = 1.

2. The pyramid E A B D situated in the right side of the AE B D, including its faces
AABD(base), AE B A and AE D A(lateral faces), but excluding its faces ABDE
is the locus of the points whose sum of their coordinates is less than 1. If P €
EABD,then Tp + Ip + Fp < 1.

3. Intheleftside of ABDE in the cube, there is the solid EFGC DE B D (excluding
ABDE) which is the locus of points whose sum of their coordinates is greater
than 1. If apoint R € EFGCDEBD, then Tg + I + Fg > 1.

It is possible to get the sum of coordinates strictly less than 1 or strictly greater than
1. For example:

(1) We have a source which is capable to find only the degree of membership of an
element, but it is unable to find the degree of nonmembership.

(2) Another source which is capable to find only the degree of nonmembership of an
element.

(3) Or a source which only computes the indeterminacy.

Thus, when we put the results together of these sources, it is possible that their sum
is not 1, but smaller or greater.

On the other hand, in information fusion, when dealing with indeterminate mod-
els (i.e. elements of the fusion space which are indeterminate/unknown, such as
intersections we do not know if they are empty or not since we do not have enough
information, similarly for complements of indeterminate elements): if we compute
the believe in that element (truth), the disbelieve in that element (falsehood) and the
indeterminacy part of that element, then the sum of these three components is strictly
less than 1 (the difference to 1 is the missing information).

Definition 1.1 Let X be a space of points (objects). A single-valued neutrosophic
set A on a nonempty set X is characterized by a truth-membership function
Ty : X — [0, 1], indeterminacy-membership function 74 : X — [0, 1] and a falsity-
membership function F4 : X — [0, 1]. Thus, A = {< x, Ta(x), [4(x), Fa(x) >
|x € X}. There is no restriction on the sum of T4 (x), I4(x) and Fs(x) forall x € X.
When X is continuous, a single-valued neutrosophic set A can be written as

A= / ((T(x), I(x), F(x))/x,x € X).
X

When X is discrete, a single-valued neutrosophic set A can be written as
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n

A=) (TG, 1), F(x)/xi, xi € X).

i=1

Example 1.1 Assume that the universe of discourse X = {x, x3, x3}, where x;
describes the capability, x, describes the trustworthiness, and x3 describes the prices
of the objects. It may be further assumed that the values of x|, x, and x3 are in [0, 1]
and they are obtained from some questionnaires of some experts. The experts may
impose their opinion in three components, namely the degree of goodness, the degree
of indeterminacy and that of poorness to explain the characteristics of the objects.
Suppose A is a single-valued neutrosophic set of X such that

A=1{<x,03,05,06 >, <x,03,02,0.3 >, <x3,0.3,0.5,0.6 >},

where < x, 0.3,0.5, 0.6 > represents that the degree of goodness of capability is
0.3, degree of indeterminacy of capability is 0.5 and degree of falsity of capability
is 0.6.

Remark 1.1 When we consider that there are three different experts that are inde-
pendent (i.e. they do not communicate with each other), so each one focuses on one
attribute only (because each one is the best specialist in evaluating a single attribute).
Therefore, each expert can assign 1 to his attribute value [for (1, 1, 1)], or each expert
can assign 0 to his attribute value [for (0, 0, 0)], respectively.

When we consider a single expert for evaluating all three attributes, then he eval-
uates each attribute from a different point of view (using a different parameter)and
arrives to (1, 1, 1) or (0, 0, 0), respectively.

For example, we examine a student “Muhammad”; for his research in neutrosophic
graphs, he deserves 1; for his research in analytical mathematics, he also deserves 1;
and for his research in physics, he deserves 1.

Definition 1.2 Let A = {< x, Ta(x), I4(x), Fa(x) > |x € X} and B = {<ux,
Tp(x), Ip(x), Fp(x) > |x € X} be two single-valued neutrosophic sets, then opera-
tions are defined as follows:

e AC Bifandonlyif T4(x) < Tg(x), Is(x) = Ip(x), Fa(x) = Fp(x),

e A= Bifandonlyif Ts(x) = Tp(x), [4a(x) = Ig(x) and Fa(x) = Fg(x),

e ANB ={< x,min(T4(x), Tp(x)), max(l4(x), Ip(x)), max(F(x), Fa(x)) >
lx € X},

o AUB = {< x,max(Ts(x), Tg(x)), min(l,(x), Ip(x)), min(F,(x), Fa(x)) >
lx € X},

o A= {<x, Fa(x),1 — I4(x), T4(x) > |x € X},

e 0=(0,1,1)and 1 = (1,0, 0).

Yang et al. [176] introduced the concept of single-valued neutrosophic relations.

Definition 1.3 A single-valued neutrosophic relation on a nonempty set X is a
single-valued neutrosophic subset of X x X of the form
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B ={(yz, Ts(y2), Is(yz2), Fs(y2)) : yz € X x X},

where Tp : X x X — [0,1], I : X x X — [0,1], Fp: X x X — [0, 1] denote
the truth-membership function, indeterminacy-membership function and falsity-
membership function of B, respectively.

Definition 1.4 Let B be a single-valued neutrosophic relation in X, the complement
and inverse of B are defined as follows, respectively

BC:{((xv )’), TR"('xa y)v IR‘(xa y)a FR"(xﬂ )’)>|(x, )’) € X x X}v V()C, )’) € X x X’
where

TRC(-x’ Y) = FR(x3 y)v
IR”(X7 y) =1- IR(x7 y)s
FR"(xa y) = TR()C, y)

B~ = (((x, ), Tp—1 (0, 9), Ip—1(x, ¥), Fpe1(x, M)I(x,y) € X x X}, ¥(x,y) € X x X,

where

TR’] (-x’ )’) = TR()’, x)v

IR’] ()C, y) = IR(ys )C),

FR’](xv J’) = FR(yﬂ-x)'
Example 1.2 Let X = {x1, x2, X3, X4, Xs}. A single-valued neutrosophic relation B
in X is given in Table 1.1. By Definition 1.4, we can compute B¢ and B~! which are
given in Tables 1.2 and 1.3, respectively.
Definition 1.5 Let R, S be two single-valued neutrosophic relations in X.

1. The union R U S of R and S is defined by

RUS = {{(x, y); max{Tr(x, y), Ts(x, y)}; min{lr(x, ), Is(x, y) };
min{Fg(x, y), Fs(x, »}|(x,y) € X x X}.

2. The intersection R N S of R and S is defined by

RNS = {{(x,y); min{Tr(x, y), Ts(x, y)}; max{Ig(x, y), Is(x, y) };
max{Fr(x,y), Fs(x, Y}HIx,y) € X x X}.

Definition 1.6 Let R be a single-valued neutrosophic relation in X.

1. IfVx € X, Tr(x,x) = land Ix(x, x) = Fr(x, x) = 0, then R is called a reflexive
single-valued neutrosophic relation.
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B X1 X2 X3 X4 X5

X1 (0.2,0.6,0.4) |(0,0.3,0.7) 0.9,0.2,0.4) |(0.3,09,1) (1,0.2,0)
X2 (0.4,0.5,0.1) | (0.1,0.7,0) 1,1, 1 (1,0.3,0) (0.5,0.6, 1)
X3 0,1,1) (1,0.5,0) (0,0,0) (0.2,0.8,0.1) |(1,0.8,1)
X4 (1,0,0) 0,0,1) (0.5,0.7,0.1) |(0.1,0.4, 1) (1,0.8,0.8)
X5 0,1,0) (0.9,0,0) 0,0.1,0.7) (0.8,09,1) 0.6,1,0)
Table 1.2 Complement B¢ of B

B X1 X2 X3 X4 X5

X1 (0.4,0.4,0.2) | (0.7,0.7,0) (0.4,0.8,0.9) | (0.1,0.1,3) 0,08, 1)
X2 (0.1,0.5,0.4) | (0,0.3,0.1) (1,0, 1) 0,07, 1) (1,0.4,0.5)
X3 (1,0,0) 0,0.5,1) 0,1,0) (0.1,0.2,0.2) | (1,0.2,1)
X4 O, 1,1) (1,1,0) (0.1,0.3,0.5) | (1,0.6,0.4) 0.8,0.2, 1)
X5 0,0,0) 0,1,0.9) 0.7,0.9,0) (1,0.1,0.8) (0,0,0.6)
Table 1.3 Inverse B~ of B

B X1 X2 X3 X4 X5

X1 (0.2,0.6,0.4) | (0.4,0.5,0.1) | (0,1, 1) (1,0,0) 0,1,0)

X2 0,0.3,0.7) (0.1,0.7,0) (1,0.5,0) 0,0,1) 0.9,0,0)
X3 0.9,0.2,04) [(1,1,1) 0,0,0) (0.5,0.7,0.1) |(0,0.1,0.7)
X4 0.3,09,1) (1,0.3,0) (0.2,0.8,0.1) |(0.1,0.4, 1) 0.8,09,1)
X5 (1,0.2,0) 0.5,0.6, 1) (1,08, 1) (1,0.8,0.8) 0.6,1,0)

2. fVx,y € X, Tr(x, y)=Tr(y, x), Ir(x,y) = Ig(y, x) and Fr(y, x) = Fg(x, y),

then R is called a symmetric single-valued neutrosophic relation.

3. IfVx € X, Tr(x,x) = 0and Iz (x, x) = Fr(x, x) = 1,then R is called an antire-
flexive single-valued neutrosophic relation.
4. IfVx,y,z€e X,

ma}?( min{TR(-xa y)? TR(yv Z)} S TR(.X, Z)7
ve

mi)I(lmaX{IR(-xs y)v IR(y7 Z)} = IR(-xs Z)s
ve

mi}?max{FR(xa }’)» FR()’a Z)} 2 FR(xa Z)a
ve

then R is called a transitive single-valued neutrosophic relation.
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1.2 Certain Types of Neutrosophic Graphs

Definition 1.7 A single-valued neutrosophic graph on a nonempty X is a pair
G = (A, B), where A is single-valued neutrosophic set in X and B single-valued
neutrosophic relation on X such that

Tg(xy) = min{Ta(x), Ta(»)},
Ig(xy) = min{la(x), Ia(y)},
Fp(xy) = max{F4(x), Fa(y)}

for all x,y € X. A is called single-valued neutrosophic vertex set of G and B is
called single-valued neutrosophic edge set of G, respectively.

Remark 1.2 1. B is called symmetric single-valued neutrosophic relation on A.
2. If B is not symmetric single-valued neutrosophic relation on A, then G = (A, B)
is called a single-valued neutrosophic directed graph (digraph).
3. X and E are underlying vertex set and underlying edge set of G, respectively.

Throughout this chapter, we will use neutrosophic set, neutrosophic relation and
neutrosophic graph, for short.

Example 1.3 Consider a crisp graph G* = (X, E) such that X = {a, b, c,d, e, f},
E = {ab,ac,bd, cd, be, cf, ef, bc}. Let A and B be the neutrosophic sets of X and
E, respectively, as shown in Table 1.4. By simple calculations, it is easy to see that
G = (A, B) is a neutrosophic graph as shown in Fig. 1.2.

Definition 1.8 A neutrosophic graph G = (A, B) is called complete if the following
conditions are satisfied:

Tg(xy) = min{T(x), Ta(y)},
Ip(xy) = min{l4(x), I, (y)},

Table 1.4 Neutrosophic sets

A a b c d e f

Ta 0.2 0.3 0.4 0.3 0.5 04

14 0.5 0.4 0.5 0.6 0.5 0.6

Fa 0.7 0.6 04 0.8 0.6 0.6

B ab ac bd cd be cf ef bc

Tp 0.2 0.1 0.2 0.3 0.2 0.1 0.4 0.2
Ip 04 0.4 0.2 0.2 0.3 0.4 0.4 0.3
Fp 0.7 0.5 0.6 0.7 0.5 0.5 0.5 0.6
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Fig. 1.2 Neutrosophic graph a(0.2,0.5,0.7)
Q) @,
N ‘o
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0.2,0.3,0.6
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G - <
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s )
d(0.3,0.6,0.8)
¢(0.5,0.5,0.6) (0.4,0.4,0.5) £(0.4,0.6,0.6)
Fig. 1.3 Complete a(0.4,0.3,0.6) (0.2,0.3,0.6) b(0.2,0.4,0.5)
neutrosophic graph
= =)
S S
o 2l
(e} (e}
ol o & o
S NS ) &) S
! >0
o &
¢(0.1,0.4,0.7) (0.1,0.2,0.7) d(0.2,0.2,0.4)

Fp(xy) = max{F4(x), Fa(y)},

forall x,y € X.

Example 1.4 Consider a neutrosophic G =(A, B) on the nonempty set X = {a, b,
¢, d} as shown in Fig. 1.3. By direct calculations, it is easy to see that G is a complete.

Definition 1.9 Let A = {< x, Tq(x), [4(x), F5(x) >, x € X}beaneutrosophic set
of the set X. For « € [0, 1], the a-cut of A is the crisp set A, defined by

Ay, = {x € X :either (Ta(x), [4(x) > a)or Fa(x) <1 —a}.

Let B = {< xy, Tg(xy), I5(xy), Fg(xy) >} be a neutrosophic seton £ C X x X.
For a € [0, 1], the a-cut is the crisp set B, defined by

B, = {xy € E : either (Tg(xy), Ip(xy) > a) or Fp(xy) <1 —a}.
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040304 (40204 (050604
b

(0.3,0.3,0.3) (0.4,0.4,0.4)

(0.4,0.4,0.4)
(0.7,0.4,0.4) (d

—(©)(04.0.40.1)

(0.3,0.2,0.2)

(0.3,0.4,0.2)

Fig. 1.4 Neutrosophic graph and 0.4-level graph G 4

G, = (A,, B,) is a subgraph of crisp graph G*.

Example 1.5 Consider a neutrosophic graph G on nonempty set X = {a, b, ¢, d, e}
as shown in Fig. 1.4.
For o« = 0.4, we have

Ags = {b,c,d},
Bou = {be. cd. bd).

Clearly, the 0.4-level graph Go4 = (Ao4, Bo.4) is a subgraph of crisp graph G*.

Definition 1.10 The order and the size of a neutrosophic graph G are denoted by
0(G) and S(G), respectively, and are defined as

0(G) = (Z Ta(s), D Ials), ) FA(s>) :

seX seX seX
S(G) = (Z Ts(st), Y Ip(st), ) FB(st)> :
steE steE steE

Definition 1.11 The degree and the total degree of a vertex s of a neutrosophic graph
G are denoted by dg(s) = (dr(s),d;(s),dr(s)) and Tdg(s) = (Tdr(s), Td;(s),
Tdr(s)), respectively, and are defined as
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51(0.4,0.6,0.5)

53(0.6,0.7,0.4) & 540300 ®  52(0.5,0.4,0.7)

Fig. 1.5 Neutrosophic graph

dg(s) = | D T(st), Y Ip(st), Y Fg(st) |,

St s#t st

Tdg(s) = [ Y T(st) + Ta(s), Y Is(st) + Ia(s). Y Fg(st) + Fa(s) | .
sF#L s#t sF#t

for st € E, where s € X.

Example 1.6 Consider a neutrosophic graph G on the nonempty set X = {s, s2, 53}
as shown in Fig. 1.5.
By direct calculations, we have O(G) = (1.5, 1.7, 1.6), S(G) = (0.9, 0.9, 1.7),

dg(s1) = (0.5,0.6, 1.1), dg(s2) = (0.7,0.5, 1.2), dg(s3) = (0.6,0.7, 1.1),
Tdg(sy) = (0.9, 1.2,1.6), Tdg(s2) = (1.2,0.9,1.9), Tdg(s3) = (1.2, 1.4, 1.5).

Definition 1.12 A neutrosophic graph G is called a regular if each vertex has same
degree, that is,
dg(s) = (m1, my, m3), foralls € X.

Example 1.7 Consider a neutrosophic graph G on X = {sy, 52, 53, 54} as shown in
Fig.1.6.
By direct calculations, we have

dg(s1) = (0.2,1.2,0.8) = dg(s2) = dg(s3) = dg(s4).

Hence G is a regular neutrosophic graph.

Definition 1.13 A neutrosophic graph G is called a totally regular of degree
(ny, ny, n3) if
Tdg(s) = (ny,ny, n3), forall s € X.
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51(0.3,0.8,0.4)

52(0.1,0.8,0.9)

54(0.1,0.9,0.5)

$3(0.3,0.6,0.4)
Fig. 1.6 Regular neutrosophic graph

56(0.3,0.4,0.6) (0.1,0.2,0.5) $1(0.3,0.4,0.6)

©
<

55(0.3,0.4,0.6) $2(0.3,0.4,0.6)

KO
AN
&

54(0.3,0.4,0.6) (0.2,0.3,0.6) 53(0.3,0.4,0.6)

Fig. 1.7 Totally regular neutrosophic graph

Example 1.8 Consider a neutrosophic graph G on X = {sy, s2, 53, 4, S5, S6} as
shown in Fig. 1.7.
By direct calculations, we have

dg(s1) =(0.3,05,1.1) = dg(s2) = dg(s3) = dg(s4) = dg(s5) = dg (s6),
Tdg(s1) =(0.6,0.9,1.7) = Tdg(s2) = Tdg(s3) = Tdg(s4) = Tdg(s5) = Tdg(se).

Hence G is a totally regular neutrosophic graph.

Remark 1.3 The above two concepts are independent; that is, it is not necessary that
totally regular neutrosophic graph is regular neutrosophic graph and vice versa.

Example 1.9 Consider a neutrosophic graph G on X = {sy, 52, 53, 54} as shown in
Fig. 1.8.
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(0.2,0.3,0.4) $2(0.9,0.6,0.8)

51(0.7,0.4,0.6)

54(0.8,0.5,0.6)

55(1.0,0.7,0.8)

Fig. 1.8 Totally regular but not regular neutrosophic graph

(0.3,0.1,0.6) 52(0.5,0.4,0.7)

$1(0.7,0.5,0.8)

53(0.2,0.1,0.7)

Fig. 1.9 Neutrosophic graph

By direct calculations, we have

dg(s1) = (0.5,0.7,0.7), dg(s2) = (0.3,0.5,0.5),
dg(s3) = (0.2,0.4,0.5), dg(ss) = (0.4, 0.6,0.7),
Tdg(s1) = (1.2, 1.1, 1.3) = Tdg(s2) = Tdg(s3) = Tdg(s4).

Therefore, G is a totally regular neutrosophic graph but not a regular neutrosophic
graph.

Definition 1.14 The degree and the total degree of an edge st of a neutrosophic
graph G are denoted by dg (st) = (dr(st), d;(st), dr(st)) and Tdg (st) = (Tdr(st),
Td;(st), Tdp(st)), respectively, and are defined as

dg(st) = dg(s) + dg (1) — 2(Tg(st), I(st), Fp(st)),
Tdg(st) = dg(st) + (Tg(st), Ig(st), Fp(st)).

Example 1.10 Consider a neutrosophic graph G on X = {sy, 57, s3} as shown in
Fig.1.9.
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By direct calculations, we have
dg(s1) = (0.5,0.2,1.3), dg(s2) = (0.3,0.1,0.6), dg (s3) = (0.2,0.1,0.7).
e The degree of each edge is given as:

dg(s152) = dg(s1) +dg(s2) — 2(Tg(s152), Ip(s152), Fp(s152)),
= (0.7,0.5,0.8) + (0.5,0.4,0.7) — 2(0.3, 0.1, 0.6),
= (0.2,0.1,0.7).

dg(s153) = dg(s1) +dg(s3) — 2(Tg(s153), Ip(s153), Fp(s153)),
— (0.7.0.5,0.8) + (0.4,0.2,0.6) — 2(0.2.0.1,0.7).
= (0.3,0.1,0.6).

e The total degree of each edge is given as:

Tdg(s152) = dg(s152) + (T(s152), I(s152), Fp(s152)),
= (0.2,0.1,0.7) 4+ (0.3,0.1, 0.6),
— (0.5.0.2.1.3).

Tdg(sis3) = dg(s1s3) + (Tp(s153), Ip(s153), Fp(s153)),
— (0.3.0.1,0.6) + (0.2, 0.1,0.7),
— (05,02, 1.3).

Definition 1.15 The maximum degree of a neutrosophic graph G is defined as
A(G) = (Ar(G), A1(G), Ap(G)), where

Ar(G) = max{dr(s) : s € X},
A(G) = max{d;(s) : s € X},
Ap(G) = max{dr(s) : s € X}.

Definition 1.16 The minimum degree of a neutrosophic graph G is defined as
0(G) = (67(G), 0,(G), dp(G)), where

07(G) = min{dr(s) : s € X},
6;(G) = min{d;(s) : s € X},
0r(G) = min{dp(s) : s € X}.

Example 1.11 Consider the neutrosophic graph G as shown in Fig. 1.9. By direct
calculations, we have

A(G) =(0.5,0.2,1.3) and 6(G) = (0.2,0.1,0.6).
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52(0.3,0.4,0.6)

53(0.3,0.2,0.8)

51(0.1,0.4,0.9)

Fig. 1.10 Edge regular neutrosophic graph

Definition 1.17 A neutrosophic graph G on X is called an edge regular if every
edge in G has the same degree (¢1, g2, g3).

Example 1.12 Consider a neutrosophic graph G on X = {sy, 52, 53} as shown in
Fig.1.10.
By direct calculations, we have

dg(s1) =(0.2,04,1.2), dg(s2) =(0.2,0.4,1.2), dg(s3) =(0.2,0.4,1.2).
The degree of each edge is given below:

dg(s152) = dg(s1) +dg(s2) — 2(Tg(s152), Ip(s152), Fp(s5152)),
= (02,04,1.2) + (02,04, 1.2) —2(0.1,0.2, 0.6),
— (02,04, 1.2).

dg(s153) = dg(s1) +dg(s3) — 2(Tg(s153), Ip(s153), Fp(s153)),
=(0.2,04,1.2)+(0.2,04,1.2) —2(0.1,0.2,0.6),
=(0.2,04,1.2).

dg(5283) = dg(s2) +dg(s3) — 2(Tg(s253), Ip(5253), Fp(5253)),
=(0.2,04,1.2)+(0.2,04,1.2) —2(0.1,0.2,0.6),
= (0.2,0.4,1.2).
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Fig. 1.11 Totally edge 53(0.8,0.7,0.3) (0.5,0.4,0.2) 52(0.5,0.5,0.6)
regular neutrosophic graph ® °

$1(0.4,0.4,0.5)

It is easy to see that each edge of neutrosophic graph G has the same degree. Hence
G is an edge regular neutrosophic graph.

Definition 1.18 A neutrosophic graph G on X is called a fotally edge regular if
every edge in G has the same total degree (pi, p2, p3).

Example 1.13 Consider a neutrosophic graph G on X = {sy, s, s3} as shown in
Fig. 1.11.
By direct calculations, we have

dg(s;) = (0.8,0.8,0.7), dg(s2) =(0.9,0.8,0.7), dg(s3) =(0.9,0.8,0.4).
e The degree of each edge is given below:

dg(s152) = dg(s1) +dg(s2) — 2(Tg(s152), Ip(s152), Fp(s152)),
= (0.8,0.8,0.7) + (0.9,0.8,0.7) — 2(0.4,0.4, 0.5),
= (0.9,0.8,0.4).

dg(s183) = dg(s1) +dg(s3) — 2(Tg(s153), Ip(s153), Fp(s153)),
=(0.8,0.8,0.7) + (0.9, 0.8,0.4) — 2(0.4,0.4,0.2),
= (0.9,0.8,0.7).

dg(5283) = dg(s2) +dg(s3) — 2(Tg(s2583), Ip(5253), Fp(5253)),
=(0.9,0.8,0.7) + (0.9, 0.8,0.4) — 2(0.5,0.4,0.2),
— (0.8,0.8,0.7).

It is easy to see that dg (s152) # dg(s153) # dg(s253). So G is not an edge regular
neutrosophic graph.
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52(0.2,0.8,0.3)

Qﬁ? 54(0.7,0.5,0.4)
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53(0.9,0.6,0.2)

Fig. 1.12 Edge irregular and totally edge irregular neutrosophic graph

o The total degree of each edge is calculated as:

Tdg(s182) = dg(s152) + (Tg(s152), 15 (5152), Fr(5152)),
= (13,1.2,009).

Tdg(s153) = dg(s153) + (Tg(s153), 15 (s153), Fp(s153)),
— (13,1.2,0.9).

Tdg(s283) = dg(s253) + (Tg(5253), 15 (5253), Fp(5253)),
— (13,1.2,0.9).

It is easy to see that each edge of neutrosophic graph G has the same total degree.
So G is a totally edge regular neutrosophic graph.

Remark 1.4 A neutrosophic graph G is an edge regular neutrosophic graph if and
only if A4(G) = 64(G) = (q1, 92, 43)-

Example 1.14 Consider a neutrosophic graph G on X = {sy, $2, 53, 54} as shown in
Fig.1.12.

By direct calculations, we have
dg(s1) = (0.1,0.4,0.2), dg(s2) =(0.3,0.9,0.3),
dg(s3) = (0.3,0.9,0.3), dg(s4) = (0.1,0.4,0.2).
e The degree of each edge is given below:

dg(s152) = dg(s1) +dg(s2) — 2(Tg(s152), Ip(s152), Fp(s152)),
— (0.1,0.4,0.2) + (0.3,0.9,0.3) — 2(0.1, 0.4, 0.2),
= (0.2,0.5,0.1).
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Fig. 1.13 Complete neutrosophic graph

dg(5253) = dg(s2) +dg(s3) — 2(Tr(s253), Ip(5253), Fp(5253)),
= (0.3,0.9,0.3) + (0.3,0.9, 0.3) — 2(0.2, 0.5, 0.1),
= (0.2,0.8,0.4).

dg(5354) = dg(s3) + dg(sa) — 2(Tr(s354), I3(5354), Fp(5354)),
=(0.3,0.9,0.3) + (0.1,0.4,0.2) — 2(0.1,0.4,0.2),
= (0.2,0.5,0.1).

Itis easy to see that dg (s152) # dg (s253). So G is not an edge regular neutrosophic
graph.
e The total degree of each edge is calculated as:

Tdg(s152) = dg(s152) + (T(s152), Ig(s152), Fp(s152)),
= (0.3,0.9,0.3).

Tdg(s253) = dg(s253) + (T(s253), g (5253), Fp(s253)),
= (0.4,1.3,0.5).

Tdg(s3s4) = dg(s3s4) + (Tp(s384), Ip(5354), FB(5354)),
= (0.3,0.9,0.3).

It is easy to see that Tdg(s152) # Tdg(s253). So G is not a totally edge regular
neutrosophic graph.

Remark 1.5 A complete neutrosophic graph G may not be an edge regular neutro-
sophic graph.

Example 1.15 Consider a neutrosophic graph G on X = {sy, 53, 3, 4} as shown in
Fig.1.13.
By direct calculations, we have
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dg(s)) = (1.1,1.2,1.9), dg(s2) =(0.9,1.2,1.9),
dg(s3) = (1.4,1.2,2.4), dg(ss) = (1.4,1.4,2.0).

The degree of each edge is given below:

dg(s152) = dg(s1) +dg(s2) — 2(Tg(s152), Ip(5152), Fp(s152)),
=(1.1,1.2,1.9) 4 (0.9,1.2,1.9) — 2(0.3,0.3,0.5),
— (1.4,2.0,2.8).

dg(s153) = dg(s1) +dg(s3) — 2(Tg(s153), Ip(s153), Fp(s153)),
= (1.1, 1.2,1.9) + (1.4, 1.2,2.4) — 2(0.4. 0.4,0.8).
= (17.1.6,2.7).

dg(s154) = dg(s1) +dg(sa) — 2(T(s154), Ip(s154), Fp(5154)),
= (1.1,1.2,1.9) + (1.4, 1.4,2.0) — 2(0.4, 0.5, 0.6),
= (17.1.6.2.7).

dg (s253) = dg(s2) + dg(s3) — 2(Tp(s253), Ip(5253), Fp(s253)),
— (09,12, 1.9) + (1.4, 1.2, 2.4) — 2(0.3, 0.4, 0.8),
= (1.7,1.6,2.7).

dg(5254) = dg(s2) +dg(s4) — 2(T(s254), Ip(5254), Fp(5254)),
=(0.9,12,19)+(1.4,1.4,2.0) —2(0.3,0.5,0.6),
= (1.7,1.6,2.7).

dg(s3s4) = dg(s3) + dg(s4) — 2(Tp(5354), Ip(5354), Fp(s354)),
= (1.4,1.2,2.4) + (1.4, 1.4,2.0) — 2(0.7. 0.4, 0.8).
= (14,18,2.8).

It is easy to see that each edge of neutrosophic graph G has not the same degree.
Therefore, G is a complete neutrosophic graph but not an edge regular neutrosophic
graph.

Theorem 1.1 Let G be a neutrosophic graph. Then

Y da(st) =Y do-(st)(Tp(s1), Ip(st), Fp(st)),

steE steE

where dg+(st) = dg+(s) +dg=(t) — 2, forall s, t € X.
Theorem 1.2 Let G be a neutrosophic graph. Then

Y Tdg(st) = ) dg(st)(Tp(s1), Ip(s1), Fa(s0)) + S(G),

steE steE
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where dg+(st) = dg«(s) +dg+(t) — 2, forall s, t € X.

Proof Since the total degree of each edge in a neutrosophic graph G is Tdg(st) =
dg(st) + (Tg(st), Ig(st), Fp(st)). Therefore,

Y Tdg(st) =Y _(dg(st) + (Tp(s1), Ip(st), Fp(st)),

steE steE

D Tdg(st) =) da(st)+ Y (Ts(st), Ip(st), Fp(st)),
steE stek steE

> Tdg(st) =) da-(st)(Ts(st), Ig(st), Fp(st)) + S(G).
steE steE

This completes the proof.

Theorem 1.3 Let G* = (X, E) be an edge regular crisp graph of degree q and G
be an edge regular neutrosophic graph of degree (q1, q2, q3) of G*. Then the size of
Gis (%, B %), where |E| = m.

q
Proof Let G be an edge regular neutrosophic graph. Then,
dg(st) = (q1, 42, q3) and dg«(st) = q, foreachedge st € E.

Since,

D dg(st) =) dg(st)(Ts(st), Ip(s1), Fy(s1)),

steE steE
Y @1.92.93) = q Y_(Ts(st), Ig(s1), Fg(s0)),
steE steE

m(qi, q2, q3) = qS(G),
(mqi, mqs, mq3) = qS(G),
S(G) = (—’”ql 22, —’"‘”) .
q q q
This completes the proof.
Theorem 1.4 Let G* = (X, E) be an edge regular crisp graph of degree q and G
be a totally edge regular neutrosophic graph of degree (py, p2, p3) of G*. Then the
. . mp mp: mp —
size of G is (q—+‘l, qul qﬁ), where |E| = m.
Proof Let G be a totally edge regular neutrosophic graph of an edge regular crisp
graph G* = (X, E). Therefore,
dg(st) = (p1, p2, p3) and dg+(st) = g, foreachedge st € E.

Since,
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D Tdg(st) =Y dg-(st)(Tp(st), Ip(st), Fp(st)) + S(G),

steE steE
Y (prsp2 p3) =g Y _(Tp(s1), Ip(st), Fp(st) + S(G),
steE steE

m(p1, p2, p3) = qS(G) + S(G),
(mp1, mpy, mp3) = (g + 1)S(G),

mpy  mp>  mps3
S(G) = , , .
@ (q—i—l qg+1 q—l—l)

This completes the proof.

Theorem 1.5 Suppose that G is an edge regular neutrosophic graph of degree
(g1, q2, gq3) and a totally edge regular neutrosophic graph of degree (pi1, p2, p3)
of G*. Then, the size of G is m(p1 — q1, P2 — q2, P3 — q3), where |E| = m.

Proof Let G be an edge regular neutrosophic graph and a totally edge regular neu-
trosophic graph of a crisp graph G* = (X, E). Therefore,

dg(st) = (q1, 92, q3) and Tdg(st) = (p1, p2, p3), foreachedge st € E.

Tdg(st) = dg(st) + (Tg(st), I(st), Fp(st)),
D Tdg(st) =)y da(st)+ Y _(Tp(s), Ip(st), Fp(st)),

steE steE steE
m(plv P2, p3) = m(Ql? q2, 613) + S(G)s
S(G) = m(p1 — q1, P2 — q2, P3 — q3)-

This completes the proof.

Theorem 1.6 Let G* = (X, E) be a crisp graph, which is a cycle on m vertices. Sup-
pose that G be a neutrosophic graph of G*. Then ZskEX dg(sy) = ZmleE dg (sgsp).

Proof Let G be aneutrosophic graph of G*. Suppose that G* be acycle sy, 52, 53, . . .,
Sm, §1 on m vertices. Then

> de(sist) = dg(s152) + dg (s283) + -+ + d (sms1).

sksi€E
= [dg(s1) +dg(s2) — 2(T(s152), 1 (s152), F(s152))1ldcG (52)
+dc (s3) — 2(Tp(s253), 1 (s253), Fp(s253))] + -+ + [dG (sm)
+dc (s1) — 2(Tg(sms1), 1 (smS1), Fp(sms1))],
= 2dg(s1) +2dg(s2) + - - - + 2dG (sm) — 2(Tp(s152), I (s152), Fp(s152)),

—2(Tg(s253), Ip(s253), Fp(s253)) — -+« — 2(TB(sm51), IB(Sms1), FB(Sms1)),
=2 Z dg(sx) — 2 Z (T (sksi), 1 (skst), Fp(skst)),
skeX sksj€E

=Y do(si)+ Y da(si) =2 Y (Te(skst), Ip(skst), Fi(sesn),

skeX skeX skSI€E
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D dasi)+2 Y (Telsksi), Ip(sesi), Fp(sesi)

skeX skSi€E
=2 ) (Ta(sesi). Ip(sesi), Fa(sisn),
skSiEE
=Y do(s).
skeX

This completes the proof.

Theorem 1.7 Let G be a neutrosophic graph. Then B is a constant function if and
only if the following statements are equivalent:

(a) G is an edge regular neutrosophic graph.
(b) G is a totally edge regular neutrosophic graph.

Proof Let G be a neutrosophic graph. Suppose that B is a constant function, then
Tg(st) =1y, Ig(st) =1, Fp(st) =13, forall st € E.
(a) = (b): Assume that G is an edge regular neutrosophic graph, i.e.
dg(st) = (q1, q2, q3), foreachedge st € E.
This implies that
Tdg(st) = (4 +q1, 1 + q2, 13 + g3) foreach edge st € E.
This shows that G is an edge regular neutrosophic graph of degree
(h+q1. b+ g2, 13+ g3).
(b) = (a): Suppose that G is a totally edge regular neutrosophic graph, i.e.
Tdg(st) = (p1, p2, p3) forall st € E.

This implies that

dg(st) + (Tp(st), Ip(st), Fp(st)) = (p1, p2, p3).
This implies that

dg(st) = (p1, p2, p3) — 4(Tp(st), Ip(st), Fp(st)).
This implies that

dg(st) = (p1 — L1, p» — lb, p3 — I3) foreachedge st € E.
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Thus G is an edge regular neutrosophic graph of degree

(p1 —li, p2 — b, p3 — I3).
Hence the statements (a) and (b) are equivalent.

Conversely, suppose that (a) and (b) are equivalent. Assume that B is not a constant
function. This implies that

(Tg(st), Ip(st), Fp(st)) # (Tp(uv), Ip(uv), Fp(uv)),

for at least one pair of edges sz, uv € E.
Assume that G is an edge regular neutrosophic graph. This implies that

dg(st) = dg(uv) = (q1, 92, q3).
This implies that

Tdg(st) = dg(st) + (Tp(st), Ip(st), Fp(st)) = (q1, 92, q3) + (Tg(st), Ip(st), Fp(st)),

Tdg(uv) = dg(uv) + (Tp(uv), Ig(uv), Fgv)) = (q1, g2, q3) + (T (wv), Ip(uv), Fp(uv)).

Since
(T(st), Ig(st), Fp(st)) # (Tp(uv), Ip(uv), Fp(uv)).

This implies that Tdg (st) # Tdg(uv). This shows that G is not a totally edge regular

neutrosophic graph, which contradicts our supposition.
Now, suppose that G is a totally edge regular neutrosophic graph, i.e.

Tdg(st) = Tdguv) = (p1, p2, p3)-
This implies that
Tdg(st) = dg(st) + (Tp(st), Ip(st), Fp(st)) = dg (uv) + (Tp(uv), Ig(uv), Fpuv)).
This implies that
dg(st) — dg(uv) = (Tp(st), Ig(st), Fp(st)) — (Tp(uv), Ip(uv), Fp(uv)).

Since
(T (st), Ip(st), Fp(st)) # (Tp(uv), Ip(uv), Fp(uv)).

This implies that dg (st) — dg(uv) # 0. This implies that dg (st) # dg(uv).
This shows that G is not an edge regular neutrosophic graph, which contradicts our
supposition. Hence B is a constant function.
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51(0.1,0.2,0.3)

52(0.4,0.5,0.4)

53(0.7,0.6,0.5)

54(0.6,0.4,0.5)

Fig. 1.14 Neutrosophic graph

Theorem 1.8 Let G be a neutrosophic graph. Assume that G is both edge regular
neutrosophic of degree (q1, 42, q3) and totally edge regular neutrosophic graph of
degree (p1, p2, p3). Then B is a constant function.

Proof The proof is obvious.

Remark 1.6 The converse of Theorem 1.8 may not be true in general; that is, a
neutrosophic graph G, where B is a constant function, may or may not be edge
regular and totally edge regular neutrosophic graph.

Example 1.16 Consider a neutrosophic graph G on X = {s, 52, 53, 54} as shown in
Fig.1.14.

By direct calculations, we have
dg(s1) = (0.1,0.2,0.4), dg(s2) =(0.2,0.4,0.8),
dg(s3) = (0.2,0.4,0.8), dg(ss) =(0.1,0.2,0.4).
The degree of each edge is
dg(s1s2) = (0.1,0.2,0.4), dg(s2s3) = (0.2,0.4,0.8), dg(s3sa) = (0.1,0.2,0.4).
The total degree of each edge is
Tdg(s152) = (0.2,0.4,0.8), Tdg(s2s3) =(0.3,0.6,1.2).

It is clear from above calculations that G is neither an edge regular nor a totally edge
regular neutrosophic graph.
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Theorem 1.9 Let G be aneutrosophic graph of G* = (X, E), where B is a constant
Sfunction. If G is a regular neutrosophic graph, then G is an edge regular neutrosophic
graph.

Proof Assume that B is a constant function, that is,
Tg(st) =1y, Ig(st) =1, Fg(st) =13 forall st € E.
Suppose that G is a regular neutrosophic graph, that is,
dg(s) = (my,my, m3) forall s € X.

Now
dg(st) = dg(s) +dg (1) — 2(Tp(st), Ig(st), Fp(st)),
= (my, my, m3) + (my, ma, m3) — 2(ly, I, l),
=2(my — L, my — 1, m3 —3),
for all st € E. Hence G is an edge regular neutrosophic graph.

Theorem 1.10 Let G = (A, B) be a neutrosophic graph of G* = (X, E), where B
is a constant function. If G is a regular neutrosophic graph, then G is a totally edge
regular neutrosophic graph.

Proof Let B be a constant function, that is,
Tg(st) =1y, Ip(st) =1, Fp(st) =13 forall st € E.
Assume that G is a regular neutrosophic graph, that is,
dg(s) = (my,myp, m3), forall s € X.
Then G is an edge regular neutrosophic graph, that is,
dg(st) = (91, 92, q3)-
Now

Tdg(st) = dg(st) + (Tp(st), Ip(st), Fp(st)),
= (q1, 92, q3) + (1, 2, [3),
=2q1 +1l,q+ 1, g3+ 13),

for all st € E. Hence G is a totally edge regular neutrosophic graph.

Theorem 1.11 Suppose that G is a neutrosophic graph. Then G is both regular and
totally edge regular neutrosophic graph if and only if B is a constant function.
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Proof Let G* = (X, E) be a regular crisp graph. Suppose that G is a neutrosophic
graph of G*. Suppose that G is both regular and totally edge regular neutrosophic
graph, that is,

dg(s) = (my, my, m3), forall s € X,
Tdg(st) = (p1, p2, p3), forall st e E.

Now

Tdg(st) =dg(s) +dg(t) — (Tg(st), Ig(st), Fg(st)), V st e E,
(p1> P2, p3) = (my, my, m3)+(my, my, m3)—(Tp(st), Ip(st), Fp(st)),
(Tg(st), Ip(st), Fp(st)) = (2m — p1, 2my — py, 2m3 — p3),

for all st € E. Hence B is a constant function.
Conversely, let B be a constant function, that is,

Tg(st) =1y, Ig(st) =1, Fp(st) =13, forall st € E.
So

dg(s) = ) _(Tp(st), Is(st), Fp(st)), V s€X,

steE

= Z(ml,mz,ms),
steE
= (my, my, m3)dg«(s),

= (my, ma, mz)m.
This implies that
dg(s) = (mmy, mmy, mms), forall s € E.

Thus G is a regular neutrosophic graph. Now

Tdg(st) = Y (Tp(sa), Ip(sa), Fp(sa))+ Y (Tp(at), Ip(at), Fg(at)),

sacE, s#a ateE,a#t
+(T(st), Ip(st), Fp(st)) Vst € E,

Yo b+ Y b+ (b 1),

sacE, s#a ateE,a#t
= (l1, b, B)(dg+(s) — 1) + (1, I, B)dg+ (1) — 1) + (11, 12, I3),
=, b, B)(s =D+, b, ) =1+ 1, b, 13),
= (201,20, 253) (s — 1) + (I, 12, 13),
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for all st € E. Hence G is a totally edge regular neutrosophic graph.

Theorem 1.12 Let G* = (X, E) be a crisp graph. Suppose that G = (A, B) is a
neutrosophic graph of G*. Then B is a constant function if and only if G is an edge
regular neutrosophic graph.

Proof Let G be a regular neutrosophic graph, that is,
dg(s) = (my, my, m3), forall s € X.
Suppose that B is a constant function, that is,
Tg(st) =1y, Ig(st) =1, Fp(st) =13, forall st € E.
Now

dg(st) = dg(s) +dg(t) — 2(Tg(st), Ig(st), Fg(st)), V ste E.

= (my, my, m3) + (my, ma, m3) — 2(ly, I, [3),
this implies that
dg(st) = 2(my, my, m3) — 2(1y, I, I3), forall st € E.

Hence G is an edge regular neutrosophic graph.
Conversely, assume that G is an edge regular neutrosophic graph, that is,

dg(st) = (q1, 92, q3), foreachedge st € E.
Now

dg(st) = dg(s) +dg(t) — 2(Tg(st), Ig(st), Fg(st)), V ste E,
(g1, g2, q3) = (my, ma, m3) + (my, my, m3) — 2(Tp(st), Ip(st), Fp(st)),

this implies that

(q1, 92, g3) — 2my, 2my, 2m3)
3 ,

(Ts(s1), Ig(st), Fp(st)) = forall st € E.

Thus B is a constant function.

Definition 1.19 Let G* be an edge regular crisp graph. Then a neutrosophic graph
G of G* is called a partially edge regular.

Example 1.17 1t can be seen in Example 1.15 that G* is an edge regular crisp graph.
Therefore, G is a partially edge regular neutrosophic graph.



Certain Types of Neutrosophic Graphs 27

$1(0.3,0.4,0.6)
$2(0.4,0.7,0.8)
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Fig. 1.15 Full edge regular neutrosophic graph

Definition 1.20 A neutrosophic graph G is called a full edge regular if it is both
edge regular and partially edge regular.

Example 1.18 Consider a neutrosophic graph G on X = {s, 52, 53, 54} as shown in

Fig.1.15.
By direct calculations, we have

dg(s1) = (0.4,0.8,0.8), dg(s2) = (0.4,0.8,0.8),

dg(s3) = (0.4,0.8,0.8), dg(ss) = (0.4,0.8,0.8).

The degree of each edge is
dg(s152) = (0.4,0.8,0.8), dg(s2s3) = (0.4,0.8,0.8)

dc;(S3S4) = (04, 08, 08), d(;(S1S4) = (04, 08, 08)

It is clear from calculations that G is full edge regular neutrosophic graph.

Theorem 1.13 Let G be a neutrosophic graph, where B is a constant function. Then
G is full edge regular neutrosophic graph if it is full regular neutrosophic graph.

Proof Let G be a neutrosophic graph of a crisp graph G* = (X, E). Suppose that B
is a constant function, that is,

(Tp(st), Ig(st), Fp(st)) = (11,1, 13), foreachedge st € E.

Assume that G is full regular neutrosophic graph. Then G is both regular and partially

regular. Therefore,

dg(s) = (my,mp, m3) and dg+(s) =m, forall s € X.
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51(0.7,0.6,0.5)

54(0.9,0.7,0.3) 52(0.6,0.5,0.4)

53(0.8,0.6,0.7)

Fig. 1.16 Irregular neutrosophic graph

Since
dg(st) = dg(s) +dg:(t) — 2, forall st € E.

This shows that dg+(st) = 2m — 2. Therefore, G* is an edge regular neutrosophic
graph. Now

dg(st) =dg(s) +dg(t) — 2(Tp(st), Ip(st), Fp(st)), V steE.

= (my, ma, m3) + (my, my, m3) — 2(ly, I, l3),

this implies that
dg(st) =2(my — 1, my — I, m3 — [3).

This shows that G is an edge regular neutrosophic graph. Hence G is a full edge
regular neutrosophic graph.

Definition 1.21 A neutrosophic graph G is called an irregular if there exists a vertex
which is adjacent to vertices with distinct degrees.

Example 1.19 Consider a neutrosophic graph G on X = {sy, s2, 53, 54} as shown in
Fig.1.16.
By direct calculations, we have

dg(s1) = (0.6, 1.0,0.4), dg(s2) = (0.8,0.9,0.8),
dg(s3) = (0.8,0.9,0.8), dg(ss) = (0.6, 1.0, 0.4).

It is easy to see that s; is adjacent to vertices of distinct degrees. Therefore, G is an
irregular neutrosophic graph.

Definition 1.22 A neutrosophic graph G is called a totally irregular if there exists
a vertex which is adjacent to vertices with distinct total degrees.
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Fig. 1.17 Totally irregular neutrosophic graph

51(0.3,0.4,0.7)

52(0.5,0.2,0.4)

53(0.6,0.3,0.5)

Fig. 1.18 Strongly irregular neutrosophic graph

Example 1.20 Consider a neutrosophic graph G on X = {sy, s2, 53, 54} as shown in
Fig. 1.17.

By direct calculations, we have

Tdg(s1) = (1.1,0.5,1.2), Tdg(sy) = (1.4,0.8, 1.4),
Tdg(s3) = (1.1,0.5,1.2), Tdg(ss) = (1.2,0.6,1.1).

It is easy to see that s; is adjacent to vertices of distinct total degrees. Therefore, G
is a totally irregular neutrosophic graph.

Definition 1.23 A neutrosophic graph G is called strongly irregular if each vertex
has distinct degree.

Example 1.21 Consider a neutrosophic graph G on X = {s, 52, s3} as shown in
Fig.1.18.

By direct calculations, we have

dg(s1) = (0.3,0.3, 1.1), dg(s2) = (0.5,0.2,0.9), dg(s3) = (0.4,0.3,0.8).

From Fig. 1.18, it is clear that each vertex has distinct degree. Therefore, G is a
strongly irregular neutrosophic graph.



30 1 Graphs Under Neutrosophic Environment

Definition 1.24 A neutrosophic graph G is called strongly totally irregular neutro-
sophic graph if each vertex has distinct total degree.

Example 1.22 Consider the neutrosophic graph G as shown in Fig. 1.18. By direct
calculations, we have

Td(s1) = (0.6,0.7,1.8), Td(sy) = (1.0,0.4, 1.3), Td(s;) = (1.0, 0.6, 1.3).

Since each vertex has distinct total degree, G is a strongly totally irregular neutro-
sophic graph.

Definition 1.25 A neutrosophic graph G is called highly irregular if each vertex in
G is adjacent to vertices having distinct degrees.

Example 1.23 Consider the neutrosophic graph G as shown in Fig. 1.16. It is easy
to see that each vertex is adjacent to vertices of distinct degree; therefore, G is highly
irregular neutrosophic graph.

Definition 1.26 A neutrosophic graph G is called highly totally irregular if each
vertex in G is adjacent to vertices having distinct total degrees.

Example 1.24 Consider a neutrosophic graph G on X = {s, 52, 53, 54} as shown in
Fig.1.19.
By direct calculations, we have

Tdg(s1) =(0.8,0.8,0.7), Tdg(s2) =(0.3,0.4,0.7),

Tdg(s3) = (0.7, 1.0, 1.1), Tdg(ss) = (1.1, 1.1,0.7).

52(0.1,0.2,0.3)

51(0.5,0.4,0.3)

53(0.4,0.6,0.7)

54(0.7,0.5,0.3)

Fig. 1.19 Highly totally irregular neutrosophic graph
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From Fig. 1.19, it is clear that each vertex is adjacent to vertices of distinct degrees.
Therefore, G is highly totally irregular neutrosophic graph.

Definition 1.27 A connected neutrosophic graph G is called neighbourly edge irreg-
ular if every two adjacent edges in G have distinct degrees.

Example 1.25 Consider the neutrosophic graph G as shown in Fig. 1.18. It is easy
to see that every two adjacent edges in G have distinct degrees; therefore, G is
neighbourly edge irregular neutrosophic graph.

Definition 1.28 A connected neutrosophic graph G is called neighbourly edge
totally irregular neutrosophic graph if every two adjacent edges in G have distinct
total degrees.

Example 1.26 Consider the neutrosophic graph G as shown in Fig. 1.18. It is easy
to see that every two adjacent edges in G have distinct total degrees; therefore, G is
neighbourly edge totally irregular neutrosophic graph.

Definition 1.29 Let G* be a crisp graph. A neutrosophic graph G of G* is called
a strongly edge irregular neutrosophic graph if each edge in G has distinct degree;
that is, no two edges in G have the same degree.

Example 1.27 Consider a neutrosophic graph G on X = {sy, 5;, s3} as shown in
Fig.1.20.
By direct calculations, we have

dg(s1) = (0.8,0.8,0.4), dg(s2) =(0.6,0.3,0.4), dg(s3) =(0.8,0.7,0.2).
e The degree of each edge is given as:

dg(s152) = dg(s1) +dg(s2) — 2(Tg(s152), Ip(s152), Fp(s5152)),
— (0.8,0.8,0.4) + (0.6,0.3,0.4) — 2(0.3.0.2,0.3).
— (0.8.0.7,0.2).

) :’52(0.4,0.27 0.5)

$1(0.6,0.9,0.3)

(10°T°0°€°0)

)
$3(0.8,0.6,0.1)

Fig. 1.20 Strongly edge irregular neutrosophic graph
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51(0.5,0.7,0.2)

52(0.3,0.2,0.4)

54(0.5,0.3,0.6)

53(0.5,0.7,0.3)

Fig. 1.21 Strongly edge totally irregular neutrosophic graph

dg(s153) = dg(s1) +dg(s3) — 2(Tr(s153), Ip(s153), Fp(s153)),
— (0.8,0.8,0.4) + (0.8,0.7,0.2) — 2(0.5, 0.6, 0.1),
= (0.6,0.3,0.4).

dg(5253) = dg(52) + dg(s3) — 2(Tg(s253), Ip(5253), Fp(s5253)),
= (0.6,0.3,0.4) 4+ (0.8,0.7,0.2) — 2(0.3,0.1, 0.1),
= (0.8,0.8,0.4).

Since no two edges in G have the same degree, G is a strongly edge irregular neu-
trosophic graph.

Definition 1.30 A neutrosophic graph G is called a strongly edge totally irregular
neutrosophic graph if each edge in G has distinct total degree; that is, no two edges
in G have the same total degree.

Example 1.28 Consider a neutrosophic graph G on X = {s, 52, 53, 54} as shown in
Fig.1.21.
By direct calculations, we have

dg(s1) = (0.8,0.2,0.2), dg(s2) = (0.5,0.2,0.4),
dg(s3) = (0.7,0.3,0.6), dg(sq) = (1.0,0.3,0.4).
e The degree of each edge is given as:

dg(s152) = dg(s1) +dg(s2) — 2(Tg(5152), Ip(s152), Fp(s5152)),
=(0.8,0.2,0.2) + (0.5,0.2,0.4) — 2(0.3,0.1, 0.1),
=(0.7,0.2,0.4).
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dg(s154) = dg(s1) +dg(s4) — 2(Tp(s154), Ip(s154), Fp(5154)),
— (0.8,0.2,0.2) + (1.0, 0.3, 0.4) — 2(0.5,0.1,0.1).
= (0.8.0.3,0.4).

dg(5283) = dg(s2) +dg(s3) — 2(Tr(s253), Ip(5253), Fp(5253)),
= (0.5,0.2,0.4) + (0.7,0.3, 0.6) — 2(0.2, 0.1, 0.3),
= (0.8,0.3,0.4).

dg(5354) = dg(s3) + dg(sa) — 2(Tr(s354), I3(5354), Fp(5354)),
=(0.7,0.3,0.6) + (1.0,0.3,0.4) — 2(0.5,0.2, 0.3),
= (0.7,0.2,0.4).

e The total degree of each edge is given as:

Tdg(s152) = dg(s152) + (Ts(s152), 1p(s152), Fp(s152)),
— (0.7,0.2,0.4) + (0.3,0.1,0.1),
= (1.0,0.3,0.5).

Tdg(s154) = dg(s154) + (Tg(s154), Ip(5154), Fp(5154)),
= (0.8,0.3,0.4) 4+ (0.5,0.1,0.1),
= (1.3,04,0.5).

Tdg(s2s3) = dg(s253) + (T(s253), Ip(5253), Fp(s253)),
= (0.8,0.3,0.4) + (0.2,0.1,0.3),
= (1.0,0.4,0.7).

Tdg(s354) = dg(s354) + (T(s354), I(5354), Fp(5354)),
=(0.7,0.2,0.4) 4+ (0.5,0.2,0.3),
= (1.2.0.4,0.7).

33

Since no two edges in G have the same total degree, G is a strongly edge totally

irregular neutrosophic graph.

Remark 1.7 A strongly edge irregular neutrosophic graph G may not be strongly

edge totally irregular neutrosophic graph.

Example 1.29 Consider a neutrosophic graph G on X = {s1, 52, s3} as shown in

Fig.1.22.
By direct calculations, we have

dg(s) = (1.1,0.5,0.7), dg(s2) = (0.7,0.4,0.9), dg(s3) = (1.0, 0.3, 0.6).
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$1(0.9,0.3,0.6)

53(0.7,0.2,0.4)

52(0.4,0.9,0.5)

Fig. 1.22 Strongly edge irregular neutrosophic graph

51(0.6,0.3,0.5) $2(0.2,0.5,0.7)
(0.1,0.3,0.5)

(0.5,0.2,0.3)
(9°0°¢'0°¢°0)

(0.3,0.2,0.3)
54(0.7,0.9,0.2) $3(0.4,0.7,0.3)

Fig. 1.23 Strongly edge totally irregular neutrosophic graph

The degree of each edge is
dg(s152) = (1.0,0.3,0.6), dg(s2s3) = (1.1,0.5,0.7), dg(sis3) = (0.7,0.4,0.9).

Since all the edges have distinct degrees, G is a strongly edge irregular neutrosophic
graph. The total degree of each edge is

Td(;(S1S2) = (1.4, 06, 11) = ng(S2S3) = Tdc;(S1S3).

Since each edge of G has the same total degree therefore G is not a strongly edge
totally irregular neutrosophic graph.

Remark 1.8 A strongly edge totally irregular neutrosophic graph G may not be
strongly edge irregular neutrosophic graph.

Example 1.30 Consider a neutrosophic graph G on X = {sy, s2, 53, 54} as shown in
Fig.1.23.
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By direct calculations, we have
dg(s1) = (0.6,0.5,0.8), dg(s2) =(0.3,0.8,1.1),
dg(s3) = (0.5,0.7,0.9), dg(ss) = (0.8,0.4,0.6).
The degree of each edge is
dg(s152) = (0.7,0.7,0.9), dg(s2s3) = (0.4,0.5,0.8),
dg(s3s4) = (0.7,0.7,0.9), dg(s1s4) = (0.4,0.5,0.8).
It is easy to see that dg (s152) = dg(s354) and dg (s253) = dG(5154).
Therefore, G is not a strongly edge irregular neutrosophic graph.
The total degree of each edge is
Tdg(s1s2) = (0.8,1.0,1.4), Tdg(s2s3) = (0.6, 1.0,1.4),
Tdg(s3s4) = (1.0,0.9,1.2), Tdg(s1s4) = (0.9,0.7,1.1).

Since all the edges have distinct total degrees, G is a strongly edge totally irregular
neutrosophic graph.

Theorem 1.14 If G is a strongly edge irregular connected neutrosophic graph,
where B is a constant function, then G is a strongly edge totally irregular neutro-
sophic graph.

Proof Let G be a strongly edge irregular connected neutrosophic graph. Assume
that B is a constant function. Then

Tp(xy) =1, Ig(xy) =1, Fp(xy) =13, forall xy € E,

where [, [, and I3 are constants. Consider a pair of edges xy and uv in E.
Since G is a strongly edge irregular neutrosophic graph,

dg (xy) # dg(uv),

where xy and uv are a pair of edges in E. This shows that

dG(Xy) + (ll, 12, 13) ;ﬁ dG(uv) + (11, 12, 13)

This implies that

dg(xy) + (Tp(xy), Ip(xy), Fp(xy)) # dg(uv) + (Tp(uv), Ig(uv), Fg(uv)).
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Thus
Tdg(xy) # Tdg(uv),

where xy and uv are a pair of edges in E. Since the pair of edges xy and uv were
taken to be arbitrary, this shows that every pair of edges in G have distinct total
degrees.

Hence G is a strongly edge totally irregular neutrosophic graph.

Theorem 1.15 If G is a strongly edge totally irregular connected neutrosophic
graph, where B is a constant function, then G is a strongly edge irregular neu-
trosophic graph.

Proof Let G be a strongly edge totally irregular connected neutrosophic graph.
Assume that B is a constant function. Then

Tg(xy) =1y, Ig(xy) =10 and Fp(xy) =13, forall xy € E,

where [y, [, and /3 are constants. Consider a pair of edges xy and uv in L.
Since G is a strongly edge totally irregular neutrosophic graph,

Tdg(xy) # Tdg(uv),

where xy and uv are a pair of edges in E. This shows that
dg(xy) + (Tp(xy), Is(xy), Fp(xy)) # dguv) + (Tg(uv), Ig(uv), Fg(uv)).
This implies that
dg(xy) + (I, b, I3) # dg(uv) + (L, o, [3).

Thus
dg(xy) # dg(uv),

where xy and uv are a pair of edges in E. Since the pair of edges xy and uv were
taken to be arbitrary, this shows that every pair of edges in G have distinct degrees.
Hence G is a strongly edge irregular neutrosophic graph.

Remark 1.9 If G is both strongly edge irregular neutrosophic graph and strongly
edge totally irregular neutrosophic graph, then it is not necessary that B is a constant
function.

Example 1.31 Consider a neutrosophic graph G on X = {sy, 52, 53, 54, 54} as shown
in Fig. 1.24.
By direct calculations, we have

dg(s1) = (0.6,0.4,0.4), dg(s2) =(0.3,0.7,0.6), dg(s3) =(0.3,0.8,0.6),
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51(0.6,0.5,0.3)

52(0.4,0.5,0.2)
55(0.4,0.6,0.7)

54(0.3,0.5,0.3)

(0.2,0.4; 0.2)

53(0.2,0.4, 0.5)

Fig. 1.24 Neutrosophic graph

dg(ss) = (0.4,0.7,0.7), dg(ss) =(0.6,0.4,0.7).
The degree of each edge is
dg(s152) = (0.5,0.5,0.6), dg(s2s3) =(0.4,0.7,0.4), dg(s3sa) = (0.3,0.7,0.9),
dg(s485) = (0.6,0.5,0.4), dg(sss;) = (0.4,0.6,0.7).

It is easy to see that all the edges have distinct degrees. Therefore, G is a strongly
edge irregular neutrosophic graph.
The total degree of each edge is

Tdg(s152) = (0.7,0.8,0.8), Tdg(szs3) = (0.5,1.1,0.8), Tdg(s3s4) = (0.5, 1.1, 1.1),
Tdg (sas5) = (0.8,0.8,0.9), Tdg(sssy) = (0.8,0.7,0.9).

Since all the edges have distinct total degrees, G is a strongly edge totally irregular
neutrosophic graph. This shows that G is both strongly edge irregular neutrosophic
graph and strongly edge totally irregular neutrosophic graph, but B is not a constant
function.

Theorem 1.16 Let G be a strongly edge irregular neutrosophic graph. Then G is a
neighbourly edge irregular neutrosophic graph.

Proof Suppose that G is a strongly edge irregular neutrosophic graph. Then each
edge in G has distinct degree. This shows that every pair of edges in G have distinct
degrees. Therefore, G is a neighbourly edge irregular neutrosophic graph.
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$1(0.7,0.6,0.3)

(0.6,0.5,0.1)

$2(0.7,0.6,0.3) @ 3(0.7,0.6,0.3)

54(0.7,0.6,0.3)

Fig. 1.25 Neutrosophic graph

Theorem 1.17 Let G be a strongly edge totally irregular neutrosophic graph. Then
G is a neighbourly edge totally irregular neutrosophic graph.

Proof Suppose that G is a strongly edge totally irregular neutrosophic graph. Then
each edge in G has distinct total degree. This shows that every pair of edges in
G have distinct total degrees. Therefore, G is a neighbourly edge totally irregular
neutrosophic graph.

Remark 1.10 If G is a neighbourly edge irregular neutrosophic graph, then it is not
necessary that G is a strongly edge irregular neutrosophic graph.

Example 1.32 Consider a neutrosophic graph G on X = {sy, 52, 53, 4} as shown in
Fig.1.25.
By direct calculations, we have
dg(s1) = (0.6,0.5,0.1), dg(s2) = (1.2,1.0,0.2),
dg(s3) = (1.2,1.0,0.2), dg(s4) = (0.6,0.5,0.1).
The degree of each edge is
dc;(S1S2) = (06, 05, 01), d(;(S2S3) = (12, 10, 02), d(;(S3S4) = (06, 05, 01)

G 1is neighbourly edge irregular neutrosophic graph since every two adjacent edges
in G have distinct total degrees, that is,

dg(s152) # dg(s283) and dg(s253) # dg(s354).

Itiseasy toseethatdg (s152) = dg(s354). Therefore, G is not a strongly edge irregular
neutrosophic graph.
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Remark 1.11 If G is a neighbourly edge totally irregular neutrosophic graph, then
it is not necessary that G is a strongly edge totally irregular neutrosophic graph.

Example 1.33 Consider the neutrosophic graph G as shown in Fig. 1.25. The total
degree of each edge is

Tdg(s1s2) = (1.2,1.0,0.2), Tdg(sas3) = (1.8,1.5,0.3), Tdg(s1s2) = (1.2,1.0,0.2).

It is easy to see that every two adjacent edges in G have distinct total degrees, that
is,
Tdg(s152) # Tdg(s2s3), and Tdg(s2s3) # Tdg(s354).

Therefore, G is neighbourly edge totally irregular neutrosophic graph. It is easy to
see that Tdg(s152) = Tdg(s3s4). Hence G is not a strongly edge totally irregular
neutrosophic graph.

Theorem 1.18 Let G be a strongly edge irregular connected neutrosophic graph,
with B as constant function. Then G is an irregular neutrosophic graph.

Proof Let G be a strongly edge irregular connected neutrosophic graph, with B as
constant function. Then

Tg(xy) =1, Ig(xy) =1, Fp(xy)=1[;, foreachedge xy € E,

where /1, [, and /5 are constants. Also, every edge in G has distinct degrees, since G
is strongly edge irregular neutrosophic graph.
Let xy and yu be any two adjacent edges in G such that

dg(xy) # dg(yu).
This implies that
dg(x) +dg(y) — 2(Tp(xy), Ip(xy), Fp(xy)) # dg(y) + dg (u) — 2(Tp(yu), I3(yu), Fp(yu)).

This implies that

dg(x) +dg(y) —2(L, I2, 13) # dc(y) +dc () — 2(lh, I2, I3).

This shows that
dg(x) # dg(u).

Thus there exists a vertex y in G which is adjacent to the vertices with distinct
degrees. This shows that G is an irregular neutrosophic graph.

Theorem 1.19 Let G be a strongly edge totally irregular connected neutrosophic
graph, with B as constant function. Then G is an irregular neutrosophic graph.
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Proof Let G be a strongly edge totally irregular connected neutrosophic graph, with
B as constant function. Then

Tp(xy) =1, Ig(xy) =1, Fp(xy) =13, foreachedge xy € E,
where [, [, and I3 are constants. Also, every edge in G has distinct total degrees,

since G is strongly edge totally irregular neutrosophic graph.
Let xy and yu be any two adjacent edges in G such that

Tdg(xy) # Tdg(yu).
This implies that
dg(xy) + (Tp(xy), Is(xy), Fp(xy)) # dc(yu) + (Tp(yu), Ig(yu), Fp(yu)).
This implies that
dg(x) +dg(y) — (Tp(xy), Ip(xy), Fp(xy)) # dc(y) +dc ) — (Tg(yu), Ip(yu), Fp(yw)).

This implies that

do(x) +dg(y) —2(L, I2, 13) # dc(y) +dc ) — 2(l1, I2, I3).

This shows that
dg(x) # dg(u).

Thus there exists a vertex y in G which is adjacent to the vertices with distinct
degrees. This shows that G is an irregular neutrosophic graph.

Remark 1.12 If G is an irregular neutrosophic graph, with B as a constant function.
Then it is not necessary that G is a strongly edge irregular neutrosophic graph.

Example 1.34 Consider a neutrosophic graph G on X = {sy, $2, 53, 54} as shown in
Fig.1.26.
By direct calculations, we have
dg(s1) = (0.8,0.2,0.6), dg(sp) =(1.2,0.3,0.9),
dg(s3) = (0.8,0.2,0.6), dg(sq) = (1.2,0.3,0.9).
The degree of each edge is
dg(s150) = (1.2,0.3,0.9), dg(sas3) =(1.2,0.3,0.9), dg(sasq) = (1.6,0.4,1.2),

dg(s3s4) = (1.2,0.3,0.9), dg(s1s4) = (1.2,0.3,0.9).
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52(0.4,0.1,0.2)

$1(0.5,0.9,0.3) 53(0.5,0.2,0.9)

54(0.4,0.4,0.7)

Fig. 1.26 Irregular neutrosophic graph

Itis easy to see that all the edges have the same degree except the edge s,s4. Therefore,
G is not a strongly edge irregular neutrosophic graph.

Remark 1.13 If G is an irregular neutrosophic graph, with B as a constant function.
Then it is not necessary that G is a strongly edge totally irregular neutrosophic graph.

Example 1.35 Consider the neutrosophic graph G as shown in Fig. 1.26. The total
degree of each edge is

Tdg(s1s2) = (1.6,0.4,1.2), Tdg(sys3) = (1.6,0.4,1.2), Tdg(sys4) = (2.0,0.5,1.5),

Tdg(s3s4) = (1.6,0.4,1.2), Tdg(s154) = (1.6,0.4,1.2).

It is easy to see that all the edges have the same total degree except the edge s,s4.
Therefore, G is not a strongly edge totally irregular neutrosophic graph.

Theorem 1.20 Let G be a strongly edge irregular connected neutrosophic graph,
with B as a constant function. Then G is highly irregular neutrosophic graph.

Proof Let G be a strongly edge irregular connected neutrosophic graph, with B as
a constant function. Then

Tg(xy) =1, Ig(xy) =1, Fp(xy)=1[;, foreachedge xy € E,
where /1, [ and /3 are constants. Also every pair of adjacent edges in G have distinct
degrees.

Let y be any vertex in G which is adjacent to vertices y and u. Since G is strongly
edge irregular neutrosophic graph,

dg(xy) # dg(yu).
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This implies that
dg(x) +dg(y) — 2(Tp(xy), Ip(xy), Fp(xy)) # dg(y) +dc W) — 2(Ts(yu), Ig(yu), Fp(yu)).

This implies that

dg(x) +dc(y) — 201, 1, I3) # dg(y) +de(u) — 201, 1, 13).

This shows that
dg(x) # dg(u).

Thus there exists a vertex y in G which is adjacent to the vertices with distinct degrees.
Since y was taken to be an arbitrary vertex in G, all the vertices in G are adjacent to
vertices having distinct degrees. Hence G is a highly irregular neutrosophic graph.

Theorem 1.21 Let G be a strongly edge totally irregular connected neutrosophic
graph, with B as a constant function. Then G is highly irregular neutrosophic graph.

Proof Let G be a strongly edge totally irregular connected neutrosophic graph, with
B as a constant function. Then

Tp(xy) =1, Ip(xy) =1, Fp(xy) =13, foreachedge xy € E,

where /1, [, and /3 are constants. Also every pair of adjacent edges in G have distinct
total degrees.

Let y be any vertex in G which is adjacent to vertices x and u. Since G is strongly
edge totally irregular neutrosophic graph therefore,

Tdg(xy) # Tdg(yu).

This implies that
dg(xy) # dg(yu).

This implies that
dg(x) +dg(y) — 2(Tp(xy), Ip(xy), Fp(xy)) # dg(y) + dg(u) — 2(Tp(yu), Iz (yu), Fp(yu)).
This implies that

dg(x) +dg(y) = 2(l1, 1o, 1) # dg(y) +dg(u) = 2(11, o, 13).

This shows that
dg(x) # dg(u).

Thus there exists a vertex y in G which is adjacent to the vertices with distinct
degrees. Since y was taken to be an arbitrary vertex in G, therefore all the vertices
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52(0.4,0.4,0.1)

51(0.5,0.7,0.2)
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54(0.6,0.5,0.3) 55(0.8,0.6,0.2)

Fig. 1.27 Highly irregular neutrosophic graph

in G are adjacent to vertices having distinct degrees. Hence G is a highly irregular
neutrosophic graph.

Remark 1.14 If G is a highly irregular neutrosophic graph, with B as a constant
function. Then it is not necessary that G is strongly edge irregular neutrosophic
graph.

Example 1.36 Consider a neutrosophic graph G on X = {s, 52, 53, 54} as shown in
Fig.1.27.
By direct calculations, we have

dg(s1) = (0.8,0.2,0.2), dg(s2) =(0.4,0.1,0.1),
dg(s3) = (0.8,0.2,0.2), dg(ss) =(0.4,0.1,0.1).
The degree of each edge is
dc(s153) = (0.8,0.2,0.2), dg(s1s4) = (0.4,0.1,0.1), dg(sas3) = (0.4,0.1,0.1).

Since every vertex is adjacent to vertices with distinct degrees, G is a highly irregular
neutrosophic graph. Since the edges s;s4 and s,s3 in G have the same degree, i.e.
dg(s184) = dg(s253), G is not strongly edge irregular neutrosophic graph.

Remark 1.15 If G is a highly irregular neutrosophic graph, with B as a constant
function. Then itis not necessary that G is strongly edge totally irregular neutrosophic
graph.

Example 1.37 Consider the neutrosophic graph G as shown in Fig. 1.27. The total
degree of each edge is

Tdg(s1s3) = (1.2,0.3,0.3), Tdg(sis4) = (0.8,0.2,0.2), Tdg(s253) = (0.8,0.2,0.2).

Since the edges s1s4 and s,s53 in G have the same total degree, G is not a strongly
edge totally irregular neutrosophic graph.
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51(0.7,0.4,0.3) 52(0.5,0.6,0.4) p
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Fig. 1.28 Neutrosophic graph
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Fig. 1.29 Neutrosophic path P

Definition 1.31 A neutrosophic path is a sequence of distinct vertices x = xy, x2, X3,
..., X, = y such that, for all k, Tg (xgxr11) > 0, Ip(xrxr1) > 0and Fp(xpxpi1) >
0. A neutrosophic path is called a neutrosophic cycle if x = y.

Example 1.38 Consider a neutrosophic graph G on X = {sy, $2, 3, S4, S5} as shown
in Fig. 1.28.

The path from s, to s is shown with thick lines, and the cycle C from s, to s, is
shown with dashed lines in Fig. 1.28.

Theorem 1.22 Let G* = (X, E) be a path as shown in Fig. 1.29 on 2m(m > 1)

vertices and G be a neutrosophic graph. Let E\, Ey, Es, ..., Ey,_1 be the edges
in G having cy, ¢3, C3, . . ., Com—1 aS their membership values, respectively. Assume
thatc) <cy <c3 < - < Cop—1, Wherecy = (Iy, I, Fy), k=1,2,3,...,2m — 1.

Then G is both strongly edge irregular and strongly edge totally irregular neutro-
sophic graph.

Proof Let G be a neutrosophic graph of a crisp graph G* = (X, E). Assume that
G 1is a neutrosophic path on 2m(m > 1) vertices. Suppose that ¢, = (T, Ix, Fi) be
the membership values of the edges Ly in G, where k = 1,2,3,...,2m — 1. We
assume thatc; < ¢y <c¢3 < -+ < Coyp—i-

The degree of each vertex in G is calculated as:

dg(sy)) =c1 =T, 11, F1), for k=1.

dg(sy) = cx—1 + cx = (Ti—1, Ii—1, Fim1) + (Tis I, Fi),

Ty + Ty, -1 + Iy, Fiey + Fr), for k=2,3,...,2m — 1.
dc(som) = cam—1 = (Tom—1, am—1, Fam—1),  for k =2m.



1.2 Certain Types of Neutrosophic Graphs 45

The degree of each edge in G is calculated as:

dg(E1) = c2 = (Tp, b, Fp), for k=1.

dg(Lg) = cg—1 + cpt1 = (Tg—1, Ik—15 Fie—1) + Wt 15 ikt 15 Set+1),

(Tg=1 + Tg41, Ix=1 + I+1, Fe—1 + Frg1),  for k=2,3,...,2m —2.
com—2 = (Tom—2, Iom—2, Fom—2), for k=2m—1.

dG(Lom—1)

Since each edge in G has distinct degree, G is strongly edge irregular neutrosophic
graph. We now calculate the total degree of each edge in G as:

Tdg(Ey) =ci1+a=M0M+T, 11 + L, F1 + F), for k=1.
Tdg(Ly) = ck—1 + ck + k1 = (Te—1, k-1, Fe—1) + (Ties Iy Fi) + (Tiet1, Tet1, Frer1),
= (Tk—1 + Tic + Ti1,s =1 + Ik + 1y Fr—1 + Fie + Fier1),
for k=2,3,...,2m— 2.
Tdg(Lom-1) = cam—2 + c2m—1 = (Tom—2, om—2, Fam-2) + (Tom—1, om—1, Fom—1),
= (Tom—2 + Tom—1, m—2 + =1, Fam—2 + Fom—1), for k=2m —1.

Since each edge in G has distinct total degree, G is strongly edge totally irregular
neutrosophic graph. Hence G is both strongly edge irregular and strongly edge totally
irregular neutrosophic graph.

Definition 1.32 A complete bipartite graph is a graph whose vertex set can be parti-
tioned into two subsets X and X, such that no edge has both endpoints in the same
subset, and every possible edge that could connect vertices in different subsets is the
part of the graph. A complete bipartite graph with partition of size |X;| = m and
|X>| = n is denoted by K, »). A complete bipartite graph K ,, or K, 1) thatis a
tree with one internal vertex and n or m leaves is called a star §,, or S,,,.

Theorem 1.23 Let G* = (X, E) be a star Ky, 1) as shown in Fig. 1.30 and G be a
neutrosophic graph of G*. If each edge in G has distinct membership values, then G
is strongly edge irregular neutrosophic graph but not strongly edge totally irregular
neutrosophic graph.

Proof Let G be a neutrosophic graph of a crisp graph G* = (X, E). We assume that
G is a star Ky, 1). Let s, s1, 52, ..., s, be the vertices of the star K, 1), where s is
the centre vertex and sy, s, .. ., S, are the vertices adjacent to vertex s as shown in
Fig. 1.30. Suppose that ¢, = (Tx, I, Fy) be the membership values of the edges Ej
in G, wherek = 1,2, ..., m. We assume that ¢; # ¢y # ¢3 # - -+ # ¢, The degree
of each edge in G is calculated as:

dg(Ly) = dg(x) +dg (sk) — 2(T(ssk), Ip(ssk), Fp(ssi)),
=(c1,¢2,...scm) + (T, I, Fr) — 2(Tx, Iy, Fy),
= (T, I1, F1), (T2, I, F2), ..., (T, I, F) + (T, I, Fi) — 2(Tx, Ik, Fi),
=(M+DLHh+ - +Tp, h+Db+-+In, 1 +F+- -+ Fy) — (Ty, Ty, Ty,).
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Fig. 1.30 Neutrosophic graph

It is easy to see that each edge in G has distinct degree; therefore, G is strongly edge
irregular neutrosophic graph. We now calculate the total degree of each edge in G
as:

Tdg(Ly) = Tdg(x) + Tdg(sk) — (Te(ssk), Ip(ssk), Fp(ssi)),
=(c1,¢25 o5 ) + Tk, I, F)(Ty, I, Fio),
=Ty, I, F1),(Ty, I, F2), ..., (T, L, Fr),
=T+ T+ 4T i+ L+ Ly Fy+ Fat+ -+ Fy).

Since all the edges in G have the same total degree, G is not a strongly edge totally
irregular neutrosophic graph

Definition 1.33 The m-barbell graph By, ,, is the simple graph obtained by con-
necting two copies of a complete graph K, by a bridge.

Theorem 1.24 Let G be a neutrosophic graph of G* = (X, E), the m-barbell graph
Bgu,my as shown in Fig. 1.31. If each edge in G has distinct membership values, then
G is a strongly edge irregular neutrosophic graph but not a strongly edge totally
irregular neutrosophic graph.

Proof Let G be aneutrosophic graph of a crisp graph G* = (X, E). Suppose that G*
is a m-barbell graph, then there exists a bridge, say xy, connecting m new vertices to
each of its end vertices x and y. Let b = (T, I, F) be the membership values of the
bridge xy. Suppose that xi, x», ..., x,, and yi, y2, ..., V, are the vertices adjacent
to vertices x and y, respectively. Let ¢, = (Tk, I, F}) be the membership values
of the edges E; with vertex x, where k = 1,2,...,manda; <ay < --- < ay. Let
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T

Tm

Fig. 1.31 Neutrosophic graph

¢, = (T, I, F,) be the membership values of the edges E; with vertex y, where
k=1,2,...,mandcy <c, <---<cp.Assumethatc) <cy <--- <cp <c/1 <
C/2 < --- < ¢, < b. The degree of each edge in G is calculated as:

dg(xy) = dg(x) +dg(y) — 2D,

dg (L)

dg (Ey)

cl—l—cg—l—-n—l—cm—l—b—i—c;+c,2+--~+c;n+b—2b,

(T1, Iy, FY) + (Ta, Iy, F2) + -+ + (T, I Fn) + (Ty, 1y, Fy) + (T, Iy, Fy)
e (T Dy F)

M+D+ - 4TwLh+ L+ -+ Iy, FI+ P2+ + Fp)

ATy ATyt Ty Iy + Iy 4o+ Ly, Fy + Fy -+ Fpy).

dg(x) +dg(xg) —2ci, where k=1,2,...,m.
cr+ey+-Fom+b+cop — 2,

(T, I, F)) + (T2, I, B2) + -+ (T, I, Fp) + (T, I, F) — by,
M+hLh++Tu+T.Hh+ D+ -+ In+t L1+ F+- -+ Fnt+ F)
— Tk, Ik, F).

= dg () +dGOy) —2¢;, where k=1,2,...,m.

:c/]+c,2+-~-+c;n+b+c;<—2c;<,

:(Tl,11,Fl)+(Tz,12,F2)+~-~+(Tm,1m,Fm)+(T,I,F)—Ck,

= (T +Ty+ ATy A0, 1+ Iy 4+ Ly +i, Fy + Fy+ -+ Fpy + )

—(Ty, I, Fp).
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It is easy to see that all the edges in G have distinct degrees; therefore, G is strongly
edge irregular neutrosophic graph. The total degree of each edge in G is calculated
as:

Tdg(xy) = dg(xy) + D,
=citat o tmtetototao,+b,
(T, I, Fi) + (T, I, F2) + -+« + (T, L Fi)
+(T}, I, F) + (Ty, Iy, Fy) + -+ (T, Ly, Fo) 4+ (T, 1, F),
=N+Lh+-+Tp h+hLh+- -+ Iy, i +F 4+ Fy)
+(T + Ty 44T Ly + L+ + 1, Fy+ Fy+-+Fy) + (T, I, F).

Tdg(Ly) = dg(Ly) +ck, where k=1,2,...,m.
=ci+c+- - +em+b+ok — 2 + ok,
=T, L, F)+ T, L, )+ -+ (T, by, F) + (T, 1, F),
=MN+D+ - +Ty+T.h+Lh+- -+l + 1,1+ P+ 4+ Fy + F).

Tdg(Ey) :dG(Ek)-i-C;(, where k=1,2,...,m.
=c/l+c/2+-~~+c;n+b+c;(—26}(+c;c,
= (T} 1), F)) + (Ty, Iy, Fy) + -+ (Ty L. Fap) + (T 1. F),
=T+ T+ Ty + T+ Iy Ly + I Fy + Fy -+ Fyy + F).

Since each edge L, and E} in G has the same total degree, where k = 1,2, ..., m,
G is not a strongly edge totally irregular neutrosophic graph.

1.3 Applications of Neutrosophic Graphs

1.3.1 Social Network Model

Graphical models have many applications in our daily life. Human being is the most
adjustable and adapting creature. When human beings interact with each other, more
or less they leave an impact(good or bad) on each other. Naturally a human being
has influence on others. We can use neutrosophic digraph to examine the influence
of the people on each other’s thinking in a group. We can investigate a person’s
good influence and bad influence on the thinking of others. We can examine the
percentage of uncertain influence of that person. The neutrosophic digraph will tell
us about dominating person and about highly influenced person.

Consider I = {Malik, Haider, Imran, Razi, Ali, Hamza, Aziz} set of seven per-
sons in a social group on whatsapp. Let A = {(Malik, 0.6, 0.4, 0.5), (Haider, 0.5, 0.6,
0.3), (Imran, 0.4, 0.3, 0.2), (Razi, 0.7, 0.6, 0.4), (Ali, 0.4, 0.1, 0.2), (Hamza, 0.6,
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Tab!e 1.5 Neutrosophic set Edge T I F

B of edges -
(Hamza, Malik) 0.6 0.4 0.4
(Hamza, Haider) 0.5 0.3 0.3
(Hamza, Razi) 0.3 0.3 0.4
(Hamza, Aziz) 0.3 0.3 0.4
(Malik, Haider) 0.5 04 0.5
(Imran, Haider) 0.4 0.3 0.3
(Aziz, Malik) 0.5 0.2 0.5
(Razi, Imran) 0.3 0.3 0.4
(Razi, Ali) 04 0.1 0.4
(Ali, Aziz) 0.3 0.1 0.5

0.4,0.1), (Aziz, 0.7, 0.3, 0.5)} be the neutrosophic set on the set I where truth value
of each person represents his good influence on others, falsity value represents his bad
influence on others, and indeterminacy value represents uncertainty in his influence.
Let J = {(Hamza, Malik), (Hamza, Haider), (Hamza, Razi), (Hamza, Aziz), (Malik,
Haider), (Imran, Haider), (Aziz, Malik), (Razi, Imran), (Razi, Ali), (Ali, Aziz)} be
the set of relations on /. Let B be the neutrosophic set on the set J as shown in
Table 1.5.

The truth, indeterminacy and falsity values of each edge are calculated using
Tg(xy) < Ta(x) ATa(y), Ip(xy) < Ia(x) A 14(y), Fp(xy) < Fa(x) V Fs(y).The
neutrosophic digraph G = (A, B) is shown in Fig. 1.32. This neutrosophic digraph
shows that Hamza has influence on Malik, Haider, Razi and Aziz. We can see that
Hamza’s good influence on Haider is 50%, on Malik is 60%, on Razi is 30% and
on Aziz is 30%. His bad influence on Haider, Malik, Razi and Aziz is 30, 40, 40
and 40%, respectively. Similarly his uncertain influence on Haider, Malik, Razi and
Aziz is 30, 40, 30 and 30%, respectively. We can investigate that out-degree of vertex

Malik(0.6,0.4,0.5) Haider(0.5,0.6,0.3) Imran(0.4,0.3,0.2)
(0.5,0.4,0.5) (0.4,03,0.3)
S S S
& @ ©
° =] =]
[3] ) (98]
° = °
& @ =
_ (0.3,0.3,0.4) ,
Aziz(0.7,0.3,0.5) Razi(0.7,0.6,0.4)

Ali(0.4,0.1,0.2)

Fig. 1.32 Neutrosophic digraph
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Hamza is highest, that is, four. This shows that Hamza is dominating person in this
social group. On the other hand, Haider has highest in-degree, that is, three. It tells
us that Haider is highly influenced by others in this social group.

We now explain general procedure of this applications through following
Algorithm 1.3.1.

Algorithm 1.3.1

Step 1. Inputthe set of vertices I ={/[y, I», ..., I,} and a neutrosophic set A which
is defined on set /.

Step 2. Input the set of relations J = {Jy, J», ..., Ju}.

Step 3. Compute the truth-membership degree, indeterminacy degree and falsity-
membership degree of each edge using Definition 1.7.

Step4. Compute the neutrosophic set B of edges.

Step 5.  Obtain a neutrosophic digraph G = (A, B).

1.3.2 Detection of a Safe Root for an Airline Journey

We consider a neutrosophic set of five countries: Germany, China, USA, Brazil
and Mexico. Suppose we want to travel between these countries through an airline
journey. The airline companies aim to facilitate their passengers with high quality
of services. Air traffic controllers have to make sure that company planes must
arrive and depart at right time. This task is possible by planning efficient routes for
the planes. A neutrosophic graph of airline network among these five countries is
shown in Fig. 1.33 in which vertices and edges represent the countries and flights,
respectively.

(0.3,0.2,0.2)

China
(0.9,0.2,0.4)

(0.2,0.1,0.3)

Mexico
(0.5,0.2,0.3)

(0.1,0.1,0.2)

Fig. 1.33 Neutrosophic graph of an airline network
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The truth-membership degree of each vertex indicates the strength of that coun-
try’s airline system. The indeterminacy-membership degree of each vertex demon-
strates how much the system is uncertain. The falsity-membership degree of each
vertex tells the flaws of that system. The truth-membership degree of each edge
interprets that how much the flight is save. The indeterminacy-membership degree
of each edge shows the uncertain situations during a flight such as weather conditions,
mechanical error and sabotage. The falsity-membership degree of each edge indicates
the flaws of that flight. For example, the edge between Germany and China indicates
that the flight chosen for this travel is 80% safe, 10% depending on uncertain sys-
tems and 20% unsafe. The truth-membership degree, the indeterminacy-membership
degree and the falsity-membership degree of each edge are calculated by using the
following relations.

Tp(xy) < min{Ty(x), To(y)},
Ip(xy) < min{l,(x), 14(y)},
Fp(xy) < max{F,(x), F4(y)}, x,y € X.

Sometimes due to weather conditions, technical issues or personal problems, a pas-
senger missed his direct flight between two particular countries. So, if he has to go
somewhere urgently, then he has to choose indirect route as there are indirect routes
between these countries. For example, if a passenger missed his flight from Germany
to USA, then there are four indirect routes given as follows.

P;: Germany to China then China to USA.

P> Germany to China, China to Mexico then Mexico to USA.

P3: Germany to China, China to Brazil, then Brazil to USA.

P,: Germany to China, China to Brazil, Brazil to Mexico then Mexico to USA.

‘We will find the most suitable route by calculating the lengths of all these routes. That
route is the most suitable whose truth-membership value is maximum, indeterminacy-
membership value is minimum, and falsity-membership value is minimum. After
calculating the lengths of all the routes, we get L(P;) = (1.5,0.3,0.3), L(P,) =
(1.3,0.5,0.7), L(P3) = (1.3,0.3,0.6) and L(Ps) = (1.4,0.5, 1.0).

From Fig.1.33, it looks like travelling through Germany to USA is the most
protected route, but after calculating the lengths, we find that the protected route
is P; because of uncertain conditions. Similarly, one can find the protected route
between other countries.

We now present the general procedure of our method which is used in our appli-
cation from Algorithm 1.3.2.

Algorithm 1.3.2

Step 1. Input the degrees of truth-membership, indeterminacy-membership and
falsity-membership of all m vertices(countries).

Step 2. Calculate the degrees of truth-membership, indeterminacy-membership
and falsity-membership of all edges using the following relations.
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Tg(xy) = min{Ts(x), T4 ()},
Ig(xy) < min{l4(x), 14(y)},
Fp(xy) < max{Fa(x), Fa(y)}, x,yeX.

Step 3.  Calculate all the possible routes P between the countries.
Step 4. Calculate the lengths of all the routs Py using the following formula,

m—1 m—1 m—1
L(P) = (Z Tg(xixisn), Y Ip(xixipn), Y FB(xixi+1)) , k=12....n

i=1 i=1 i=1

Step 5. Find the protected route with maximum truth-membership degree,
minimum indeterminacy-membership degree and minimum falsity-
membership degree.

1.3.3 Selection of Military Weapon

Since in decision-making problems, there is a number of uncertainties, and in some
situations, there exist some relations among attributes in a multiple-attribute decision-
making problem. So, it is an interesting area of applications in neutrosophic graph
theory. A multiple-attribute decision-making problem is solved under the general
framework of neutrosophic graphs.

A military unit is planning to purchase new artillery weapons, and there are six
feasible artillery weapons (alternatives) x;(i = 1,2, ..., 6) to be selected. When
making a decision, the attributes considered are as follows:

(1) a; — assault fire capability indices.

(2) ay— reaction capability indices.

(3) a3— mobility indices.

(4) as— survival ability indices.

Among these four attributes, a;, a,, a4 are of benefit type (beneficial), and a3 is of
cost type (nonbeneficial); the evaluation values are contained in the decision matrix
A = (a;j)ex4 listed in Table 1.6.

Normalized values of an attribute assigned to the alternatives are calculated by
using the following formula and shown in Table 1.7:

_m 1 o _ Ja forbeneficial attribute,
rij = Ty Ly Fij) = {Ezij for nonbeneficial attribute.
i=1,2,...,6; j=1,2,3,4, where a;; is the complement of a;;, such that a;; =
(Fij, 1 — Lij, Tij). . . . .

Relative importance of attributes is also assigned (see table 2 in [136]). Let the
decision-maker select the following assignments:
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Table 1.6 Neutrosophic decision matrix A = (a;;)ox4

53

Weapons | a; a as as
X1 (0.5,0.3,0.6) (0.6,0.3,0.2) (0.4,0.5,0.1) (0.1,0.7,0.5)
X2 (0.6,0.1,0.2) (0.2,0.1,0.4) (0.2,0.3,0.4) (0.3,0.4,0.1)
X3 (0.1,0.5,0.3) (0.3,0.2,0.5) (0.7,0.2,0.1) (0.5,0.1,0.2)
X4 (0.3,0.4,0.2) (0.4,0.5,0.1) (0.3,0.1,0.4) (0.5,0.3,0.4)
X5 (0.1,0.2,0.4) (0.2,0.7,0.3) (0.1,0.3,0.5) (0.2,0.1,0.5)
X6 (0.5,0.1,0.7) (0.5,0.1,0.4) (0.3,0.2,0.6) (0.4,0.2,0.6)
Table 1.7 Neutrosophic decision matrix R = (r;;j)¢x4 of normalized data
Weapons | a; a as as
X1 (0.5,0.3,0.6) (0.6,0.3,0.2) (0.1,0.5,0.4) (0.1,0.7,0.5)
X2 (0.6,0.1,0.2) (0.2,0.1,0.4) (0.4,0.7,0.2) (0.3,0.4,0.1)
X3 (0.1,0.5,0.3) (0.3,0.2,0.5) (0.1,0.8,0.7) (0.5,0.1,0.2)
X4 (0.3,0.4,0.2) (0.4,0.5,0.1) (0.4,0.9,0.3) (0.5,0.3,0.4)
X5 (0.1,0.2,0.4) (0.2,0.7,0.3) (0.5,0.7,0.1) (0.2,0.1,0.5)
X6 (0.5,0.1,0.7) (0.5,0.1,0.4) (0.6,0.8,0.3) (0.4,0.2,0.6)
ai ar as aq
a - —— (0.045, 0.410, 0.865) (0.665, 0.045, 0.335) (0.045, 0.590, 0.745)

a (0.865, 0.590, 0.045) - — = (0.135, 0.665, 0.335) (0.590, 0.410, 0.255)
az | (0.335,0.955, 0.665) (0.335,0.335,0.135) - (0.410, 0.255, 0.135)
441 (0.745,0.410, 0.045) (0.255,0.590, 0.590) (0.135,0.745, 0.410) - ==

R=

The weapon selection attribute neutrosophic digraph given in Fig. 1.34, represents
the presence as well as relative importance of four attributes a;, a,, as and a4 which
are the vertices of the digraph. The weapon selection index is calculated using the
values of A; and r;; for each alternative weapon, where A; is the value of i th attribute
represented by the weapon x; and 7;; is the relative importance of the ith attribute
over jth attribute.

For first weapon x, substituting values of A|, A,, A3 and A4 in above matrix R,
we get

ai ap az aq
(0.5, 0.3, 0.6) (0.045, 0.410, 0.865) (0.665, 0.045, 0.335) (0.045, 0.590, 0.745)
ai
a (0.865, 0.590, 0.045) (0.6,0.3,0.2) (0.135, 0.665, 0.335) (0.590, 0.410, 0.255)
Ri=

az | (0.335,0.955,0.665) (0.335,0.335,0.135) (0.1, 0.5,0.4)
441 (0.745,0.410, 0.045) (0.255,0.590, 0.590) (0.135,0.745, 0.410)

(0.410, 0.255, 0.135)
(0.1,0.7,0.5)

Now we calculate the permanent function value of above matrix using computer
program, that is, per (R1) = (0.4117, 1.3482, 0.4884). The permanent function is
nothing but the determinant of a matrix but considering all the determinant terms as
positive terms [87]. So, the weapon selection index values of different weapons are:
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Fig. 1.34 Weapon selection (0.045,0.410, 0.865)
attribute neutrosophic
digraph

(0.745,0.410, 0.045)
(0.135,0.665, 0.335)

(0.410,0.255, 0.135)

x; = (0.4117, 1.3482, 0.4884),
xy = (0.4224,1.0522, 0.3415),

x3 = (0.4098, 1.1991, 0.4782),
x4 = (0.5173, 1.5801, 0.3468),
xs = (0.3272, 1.3426, 0.4429),
x¢ = (0.6113,0.9950, 0.6179).

Calculate the score function s(x;)=T7;+1—1;+1—F;, of the weapons
xi(i =1,2,...,6),respectively: s(x;) = 0.5751, s(xp) = 1.0287, s(x3) = 0.7325,
s(x4) = 0.5904, s(xs5) = 0.5417, s(x¢) = 0.9984. Thus, we can rank the weapons:

X2 > Xg > X3 > X4 > X1 > X5.

Therefore, the best choice is the second weapon (x;).

1.4 Energy of Neutrosophic Graphs

If we change min by max in indeterminacy-membership of Definition 1.7, then we
have the following definition of neutrosophic graph.

Definition 1.34 A neutrosophic graph on a nonempty set X is a pair G = (A, B),
where A is a neutrosophic set in X and B is a neutrosophic relation on X such that
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Tp(xy) < min{T4(x), T4(y)},
Ip(xy) < max{l4(x), Ia(y)},
Fp(xy) < max{F,(x), F4(y)}, forallx,y € X.

—
If B is not symmetric on A, then D = (A, B) is called neutrosophic digraph.

Example 1.39 Consider a graph G* = (X, E) where X = {x|, x2, X3, X4, X5, X6,
)C7} and E = {xl)Cz, X2X3, X3X4, X4X1, X1X5, X1X6, X1X7, X3X5, X3X6, X3X7, X2X5, X5X6,
X6Xx7, X4x7}. Let G = (A, B) be a neutrosophic graph on V as shown in Fig. 1.35
defined by

A X1 X2 X3 X4 X5 X6 X7
T4 0.6 04 0.5060.30.20.2
I4 050.10304040504
F40.7030209050.60.8

B X1X) X2X3 X3X4 X4X] X1X5 X1X6 X1X7 X3X5 X3X6 X3X7 X2X5 X5X6 X6X7 X4X7
Tg 02 03 03 05 02 0.1 02 02 01 02 02 02 01 02
Ig 0.1 0.1 02 03 04 03 03 03 03 02 01 01 04 03
Fp 04 03 07 06 06 06 07 04 04 05 04 06 07 0.7

We now define and investigate the energy of a graph within the framework of neu-
trosophic set theory.

Definition 1.35 The adjacency matrix A(G) of a neutrosophic graph G = (A, B)
is defined as a square matrix A(G) = [aji], ajx = (T (xjxr), Ip(xjxi), Fp(x;xp)),
where Tg(x;xi), Ip(xjx;) and Fp(x;x;) represent the strength of relationship,
strength of undecided relationship and strength of nonrelationship between x; and
Xy, respectively.

The adjacency matrix of a neutrosophic graph can be expressed as three matri-
ces: first matrix contains the entries as truth-membership values, second con-
tains the entries as indeterminacy-membership values, and the third contains the
entries as falsity-membership values, i.e., A(G) = (A(Tp(x;x1)), Ap(xjxi)),
A(Fp(xjx1))).

Definition 1.36 The spectrum of adjacency matrix of a neutrosophic graph A(G) is
definedas (M, N, O), where M, N and O are the sets of eigenvalues of A(T (x;xy)),
A(lp(xjx;)) and A(Fg(x;xi)), respectively.

Example 1.40 The adjacency matrix A(G) of aneutrosophic graph givenin Fig. 1.35
is



56 1 Graphs Under Neutrosophic Environment

Fig. 1.35 Single-valued neutrosophic graph

(0,0,0)  (0.2,0.1,04) {0,0,0) (0.5,0.3,0.6) {0.2,0.4,0.6) (0.1,0.3,0.6) (0.2,0.3,0.7)
0.2,0.1,04)  (0,0,0) (0.3,0.1,0.3) (0,0,0) (0.2,0.1,0.4) (0,0,0) (0,0, 0)
(0,0,0)  (0.3,0.1,03)  {0,0,0) (0.3,0.2,0.7) {0.2,0.3,0.4) (0.1,0.3,0.4) (0.2,0.2,0.5)

(0.5,0.3,0.6)  {(0,0,0) (0.3,0.2,0.7)  {0,0,0) (0,0,0) (0,0,0)  (0.2,0.3,0.7)
(0.2,0.4,0.6) (0.2,0.1,0.4) (0.2,0.3,0.4)  {0,0,0) (0,0,0) (0.2,0.1,0.6)  {0,0,0)
(0.1,0.3,0.6)  (0,0,0) {0.1,0.3,04) (0,0,0) {0.2,0.1,0.6) (0,0,0) (0.1,0.4,0.7)
(0.2,0.3,0.7)  (0,0,0) {0.2,0.2,0.5) (0.2,0.3,0.7)  (0,0,0) (0.1,0.4,0.7)  (0,0,0)

The spectrum of a neutrosophic graph G given in Fig. 1.35 is as follows:

Spec(Tp(xjxi)) = {—0.7137, —0.2966, —0.2273, 0.0000, 0.0577, 0.2646, 0.9152},
Spec(Ip(x;xi)) = {—0.7150, —0.4930, —0.0874, —0.0308, 0.0507, 0.2012, 1.0743},
Spec(Fp(xjx;)) = {—1.2963, —1.1060, —0.5118, —0.0815, 0.1507, 0.5510, 2.2938}.

Therefore,

Spec(G) = {(—0.7137, —0.7150, —1.2963), (—0.2966, —0.4930, —1.1060),
(—0.2273, —0.0874, —0.5118), (0.0000, —0.0308, —0.0815),
(0.0577,0.0507, 0.1507), (0.2646, 0.2012, 0.5510),
(0.9152,1.0743, 2.2938)}.
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Definition 1.37 The energy of a neutrosophic graph G = (A, B) is defined as,

E(G) =(E(Tp(x;x)), E(Ip(x;x1)), E(Fg(x;xi)))
=<Z XL D IGE D |m|>-
A eM (jeN 7],-;0

Definition 1.38 Two neutrosophic graphs with the same number of vertices and the
same energy are called equienergetic.

Theorem 1.25 Let G = (A, B) be a neutrosophic graph and A(G) be its adjacency
matrix. If Ay = Ao = -2 M, Q=2 Q= = Grand g =1y = -+ - = 0, are the
eigenvalues of A(Tg(xjx1)), A(Ip(xjxi)) and A(Fp(x;jxi)), then

D 3PY z=z

j= =1
;€0

~.

1
X,eM g

2. = Z (TB(xek)) )

1<j<k=<n

( > (IB(ijk))z),
1<j<k<n

'Z ( 3 (FB<xjxk>)2).

j=1 1<j<k<n
1n,€0

<

E

Proof 1. Since A(G) is a symmetric matrix whose trace is zero, its eigenvalues are
real with zero sum.
2. By matrix trace properties, we have

(AT (xx))?) = 3 N2
j=1
)\ eM

tr((A(Ts(x;x))?) = 0+ T5(x1x2) + -+ + Ty (x1x)) 4+ (T3 (ex1) +0+ - -+
+ T5(xax,) + - + (Tp (xax1) + T (xux2) + - - - + 0)

=2( > (T

1<j<k=<n
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Hence Y )\3 = 2( > (TB(xjxk))z).Analogously,wecan show that C]? =

j=1 I<j<k<n j=1

N EM GEN
2( > (13(xjxk))2> and Zn?=2( > (Fs(xjxw)z)-
1<j<k<n j=1 I<j<k=n
1n,€0

‘We now give upper and lower bounds on energy of a neutrosophic graph G, in terms of
the number of vertices and the sum of squares of truth-membership, indeterminacy-
membership and falsity-membership values of edges.

Theorem 1.26 Let G = (A, B) be a neutrosophic graph on n vertices with adja-
cency matrix A(G) = (A(Tp(x;xr)), A(Ip(x;xi)), A(Fp(x;xi))), then

1.\/2 S (T + 00— DITI < E(Ty50)

1<j<k=<n
< \/Zn S (Tpxjx0)?

I<j<k=<n

2. 123 Upex))? +nn— DT < E(Ip(x;x0)

I<j<k<n

< [2n ) Us(xjx))?

I<j<k<n

3. 1203 (Feex)) +n — DIF|E < E(Fp(xjx0)

I<j<k<n

< [2n ) (Fplxjxo).

I<j<k<n

where |T|,|I| and |F| are the determinant of A(Tg(x;xr)), A(Ip(x;xr)) and
A(Fg(x;xy)), respectively.

Proof 1.Upperbound: Apply Cauchy—Schwarz inequality tothe n numbers 1, 1, ...,
1 and |A(], [A2], ..., [\l then

DTN =Va | D INE (1.1)

SN =2 DD - (1.2)

J=1 j=1 l<j<k=n
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By comparing the coefficients of A"~ in the characteristic polynomial [T (A — ;) =

j=1
| A(G) — M|, we have
o A== Y (Trlxgx)). (1.3)
1<j<k=<n 1<j<k=<n
Substituting (1.3) in (1.2), we obtain
DN =20 ) (Talxx). (1.4)

j=1 1<j<k=<n

Substituting (1.4) in (1.1), we obtain

SV 2 Y T = \/2n S Ty

j=1 1<j<k<n 1<j<k=zn
Therefore,
E(Tp(xjx0)) < [2n Y (Tg(xjxe)?.
1<j<k=<n
Lower bound:
n 2 n
ETpexon* =[S ] =Y P +2| Y
j=1 j=1 1<j<k<n
2n(n — 1)
=2 ]<j2<£<n<TB<x,»xk>)2 + T AM{A A

Since AM{IAj el = GM{IAj |} 1< j <k <n,

E(Tp(xjx)) = (2 D0 (Telxjx)? +nn — HGM{IN A}

1<j<k<n

It can also be seen that

2 2 2

n(—1) n -1 n n
2
GM{|AjAk|}=( I1 |A,Ak|) =(1‘[|A,|"1) =(1‘[|A,|) =|T}|s.
j=1 =1

1<j<k<n
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Therefore,

E(Tp(xjx) = (20 Y (T(xjx))? +nn — D)|T|7.

1<j<k<n

Thus, analogously, we can show that

2| 3 s +n— DI | < EUg(xjx0)

1<j<k<n

< (2| ) Usxx))?

1<j<k=<n

2| Y (FeGjx)? +nm— DIFIE | < EFa))

I<j<k<n

< 2n| D0 (Falxjx)?

1<j<k=<n

We now define and investigate the Laplacian energy of a graph under neutrosophic
environment and investigate its properties.

Definition 1.39 Let G = (A, B) be a neutrosophic graph on n vertices. The degree
matrix, D(G) = (D(T5(x;x)), DU (xjx0)). D(Fp(x;x))) = [djel, of Gisan x
n diagonal matrix defined as,

d' _ dg(xj') lf] =k,
* =10 otherwise

Definition 1.40 The Laplacian matrix of a neutrosophic graph G = (A, B) is
defined as L(G) = (L(Tp(xjxi)), L(Ip(x;x1)), L(Fp(x;x;))) = D(G) — A(G),
where A(G) is an adjacency matrix and D(G) is a degree matrix of a neutrosophic
graph G.

Definition 1.41 The spectrum of Laplacian matrix of a neutrosophic graph L(G) is
definedas (M, Ny, O),where M, N, and Oy are the sets of Laplacian eigenvalues
of L(Tg(x;jxx)), L(Ip(x;jxx)) and L(Fp(x;xy)), respectively.

Theorem 1.27 Let G = (A, B) be a neutrosophic graph, and let L(G) =
(L(Tg(xjxx)), LUp(xjxi)), L(Fp(xjxy))) be the Laplacian matrix of G. If U1 >
P> >0,, o1 >y > >, and | > Yy > -+ > 1), are the eigenvalues
of L(Tg(x;x;)), L(Ip(xjx;)) and L(Fp(x;xi)), respectively, then



1.4 Energy of Neutrosophic Graphs 61

1 Z 19, 22( Z TB(xjxk)>, Z (pj=2< Z IB()ijk)>
j=1 1<j<k<n j=1 1<j<k=<n
19j€ML i,O,'ENL
> Y= 2( > FB(xjxk))
j=1 1<j<k<n
V€0,
2 Z 193 =2 ( Z (Tg (ijk))2) + dTZ'B(Xij)(xj)’
i=1 1<j<k=<n j=1
DjeM, = !
Z 4‘03 =2 ( Z (IB(xjxk))z) + Z dlzg(Xij)(xj)’
i—1 I<j<k< =1
WiENL = " !
L oUi=2 (1 > (FB<xjxk))2> 2 iy ) ()
ij—OL <j<k= j=

Proof 1. Since L(G)isasymmetric matrix with nonnegative Laplacian eigenvalues,

n

D0 =tr(L(G) =Y dryxx) =2 Y Talxjxe)
j=1 j=1 1<j<k=<n
v;eM

Similarly, it is easy to show that

Z pj=2 Z Ip(xjxi)
=1

1<j<k<n
ijENL

n

dowi=2 Y. Fslxjx)

j=1 I<j<k<n
P;€0L

2. By definition of Laplacian matrix, we have

dryxy(x1) —Te(x1x2) ... —Tp(xixy)

—Tp(x2x1) dry(xjxp(x2) - .. —Tp(X2xy)
L(Tp(xjx)) = : . )

—Tp(xpx1) —Tp(xpx2) ... dry(x;x) (Xn)

By trace properties of a matrix, we have tr((L(Tp(x jxk)))z) = Y 19% where
j=1
19_;€ML
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tr(L(Tp(xjx0))%) = (7, o (1) + T3(xix2) + -+ + T3 (x1%,))
H(T(x2x1) + d, 0 (02) + -+ + T3 (x222))
o (T o) + Tg(nxa) + -+ + d7 g ()

n

=2 > T | + D d7, o x)-

1<j<k<n j=1

92
Therefore, j; U5 = 2( >

1<j<k<n

(Tp (Xij))2> + Z:l d%B(xjxk)(xj). Analogously,
0jeM, =
we can show that

n n
doer=2 Y Ul |+ di ()
j=1 1<j<k<n j=1

W/ENL

1<j<k=n j=
P;e0r

Z wf =2 Z (Fp(x;x))? | + Zdig(xjxk)(xj)-
j=1 !

Definition 1.42 The Laplacian energy of a neutrosophic graph G = (A, B) is
defined as LE(G) = (LE(Tg(x;xx)), LE(Ig(x;xi)), LE(Fp(x;x)) = (Y lojl,
j=1

Y11, Y I7j1) where
j=1 j=1

2( > TB(xjxk))
_19 B 1<j<k<n

Qj J n s
2( Z IB(xjxk))
1<j<k<n
& =¢i— . ’
2( Z FB()Cij))
1<j<k=<n
Tj = 1/}j — n .

Theorem 1.28 Let G = (A, B) be a neutrosophic graph on n vertices and let

L(G) = (L(Tp(xjxi)), LUp(xjxi)), L(Fp(xjxx))) be the Laplacian matrix of G,
then

1. LE(Tg(x;xk))
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0 2 2: TE(ijk)
1<j<k=n
= |20 D0 Tl +n ) | drygn () - . :
1<j<k<n Jj=1
\
2. LE(IB (ijk))
; 21 Zk Ip(xjxi)
<Jj<k=n
< 2 Y Um0 40y [ diyugn () — —— :
\ 1<j<k<n Jj=1 "
3. LE(FB(ijk))
n 2 Z FB(ijk)
1<j<k=<n
< > Fplem? +n ) | deym () = ,
1<j<k<n j=1

Proof Apply Cauchy—Schwarz inequality tothe n numbers 1, 1, ..., L and |o1|, |02,
» lon|, and we have Z lojl < /ny/> i1 lojl*and LE(Tp(x;x1)) < /n/2Mr =
A/ 2n M7 . We know that
2] 2;( TB()C Xk)
Mr= Y (Tp(xjx)*+ 3 Z dry(xin) (X)) — + ,

1<j<k=<n
Therefore, it can be proved that

LE(Tp(xjx;))
n 2 Z TB(.Xij)
1<j<k<n
< |2 D0 TGP 4n Y | dryegn () - ——— :
1<j<k=<n i=1
\ =) <K= J
LE(Ip(x;xi))

2 Z IB(ijk)

" 1<j<k<n

< |2 Y s 0 ) | diygn @) - ——— :

1<j<k<n i=1
\ =J = J
LE(Fp(xjx;))
n 2 Z FB(Xj)Ck)
1<j<k=<n
< (20 ) (Fepx))?+n Y | drya ) — —

1<j<k=<n Jj=1

Theorem 1.29 Let G = (A, B) be a neutrosophic graph on n vertices and let
L(G) = (L(Tg(xjxx)), LUp(x;xt)), L(Fp(x;xx))) be the Laplacian matrix of G,
then
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LE(Tp(xjxi))
: n 2 Z TB ()ijk)
1<j<k=<n
>2 Z (T (ijk))2 + E Z dTB(ijk)(xj) - n ’
1<j<k=<n j=1
\
LE(Ip(xjxy))

2 Z [B()ijk)

n

1 1<j<k<n
>2 Z (g (xjx))* + 5 Z Ay (X)) = ;. ,
\ 1<j<k<n j=1
LE(Fp(xjxi))

2 Z FB()Cij)

n
1<j<k=<n

1
>2 Z (FB(ijk))2 + E Z dFB(x_ka)(xj) -

I<j<k<n j=I

e

2
|.Qj|) =Y loj*+2 > lojox|=4Mrand LE(Tp(xjx;))>2
=1 =1

1<j<k<n
2 Y Ty 2
l<j<k=n
drym)(xj) — ——— ,

Proof Here (

J
VMy. Since My = Y (Tp(xx))* + 3 )y

I<j<k<n j=1

LE(Tp(xjxi))
! . 2 Z TB(ijk)
1<j<k<n
22| )0 (TeG)) + 5 30 | draan () - . :
\ 1<j<k<n j=1
LE(Ip(x;jx))
1 n 2 Z ]B()ijk)
1<j<k<n
22 Y s + 5 ) | i () — "
1<j<k<n j=1
LE(Fp(xjxi))
] n 2 Z FB(Xj.Xk)
1<j<k=<n
>2 Z (FB(xjxk))z"‘EZ dpyx0 (X)) — "
\ 1<j<k=<n j=1

Definition 1.43 The signless Laplacian matrix of a neutrosophic graph G = (A, B)
is defined as L™(G) = (Lt (Tg(xjxk)), LT (Ip(x;x;)), LY (Fp(x;x1))) = D(G) +
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A(G), where D(G) and A(G) are the degree matrix and the adjacency matrix,
respectively, of a neutrosophic graph G. The spectrum of signless Laplacian matrix
of aneutrosophic graph L™ (G) is defined as (M +, Ny+, Or+), where M+, Np+ and
O+ are the sets of signless Laplacian eigenvalues of L™ (Tg(x;x¢)), Lt (I5(x;xy))
and LT (Fp(x;xi)), respectively.

1.5 Application to Group Decision-Making

Group decision-making is a commonly used tool in human activities, which deter-
mines the optimal alternative from a given finite set of alternatives using the eval-
uation information given by a group of decision-makers or experts. With the rapid
development of society, group decision-making plays an increasingly important role
when dealing with the decision-making problems. Recently, many scholars have
investigated the approaches for group decision-making based on different kinds of
decision information. However, in order to reflect the relationships among the alter-
natives, we need to make pairwise comparisons for all the alternatives in the process
of decision- making. Preference relation is a powerful quantitative decision technique
that supports experts in expressing their preferences over the given alternatives. For a
set of alternatives X = {x|, x,, ..., x,,}, the experts compare each pair of alternatives
and construct preference relations, respectively. If every element in the preference
relations is a neutrosophic number, then the concept of the neutrosophic preference
relation (NPR) can be put forth as follows:

Definition 1.44 A NPR on the set X = {x|, x2, ..., x,} is represented by a matrix
R = (rjt)nxn, where rjp=(xjxi, T (xjx), I (xjxi), F(xjx)) forall j, k=1,2,...,
n. For convenience, let rjy = (Tjx, Ik, Fji) where Tj; indicates the degree to which
the object x; is preferred to the object x;, Fjx denotes the degree to which the
object x; is not preferred to the object x, and [ is interpreted as an indeterminacy-
membership degree, with the conditions: T, Ijx, Fjx € [0, 1], Tjx = Fyj, Fjr =
Tkj» Ijk+1kj = 1, Tjj = Ijj = Fjj 205, forallj,k = 1,2, BN (N

A group decision-making problem concerning the ‘Alliance partner selection of a
software company’ is solved to illustrate the applicability of the proposed concepts
of energy of neutrosophic graphs in realistic scenario.

1.5.1 Alliance Partner Selection of a Software Company

Eastsoft is one of the top five software companies in China [77]. It offers a rich
portfolio of businesses, including product engineering solutions, industry solutions,
and related software products and platform and services. It is dedicated to becoming
a globally leading IT solution and service provider through continuous improvement
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Table 1.8 NPR of the expert from the engineering management department

Ry ai ar as as as

ay (0.5,0.5,0.5) |(0.4,0.6,0.3) |(0.2,0.4,0.6) |(0.7,0.6,0.3) |(0.3,0.1,0.6)
a (0.3,0.4,0.4) |(0.5,0.5,0.5) |(0.7,0.3,0.8) |(0.4,0.1,0.4) |(0.1,0.3,0.5)
a3 (0.6,0.6,0.2) |(0.8,0.7,0.7) |(0.5,0.5,0.5) |(0.3,0.6,0.4) |(0.2,0.3,0.4)
as (0.3,0.4,0.7) |(0.4,0.9,0.4) |(0.4,0.4,0.3) |(0.5,0.5,0.5) |(0.3,0.1,0.3)
as (0.6,0.9,0.3) |(0.5,0.7,0.1) |(0.4,0.7,0.2) |(0.3,0.9,0.3) |(0.5,0.5,0.5)
Table 1.9 NPR of the expert from the human resource department

Ry ai a as ay as

ay (0.5,0.5,0.5) |(0.5,0.3,0.1) |(0.1,0.7,0.5) |(0.3,0.9,0.5) |(0.2,0.7,0.8)
a (0.1,0.7,0.5) |(0.5,0.5,0.5) |(0.5,0.1,0.6) |(0.6,0.7,0.1) |(0.4,0.6,0.8)
a3 (0.5,0.3,0.1) |(0.6,0.9,0.5) |(0.5,0.5,0.5) |(0.9,0.2,0.3) [(0.1,0.4,0.1)
as (0.5,0.1,0.3) |(0.1,0.3,0.6) |(0.3,0.8,0.9) |(0.5,0.5,0.5) |(0.8,0.4,0.2)
as (0.8,0.3,0.2) |(0.8,0.4,0.4) |(0.1,0.6,0.1) |(0.2,0.6,0.8) |(0.5,0.5,0.5)
Table 1.10 NPR of the expert from the finance department

R3 ai a as as as

ay (0.5,0.5,0.5) |(0.9,0.8,0.7) |(0.1,0.7,0.2) |(0.4,0.3,0.1) |(0.6,0.3,0.6)
a (0.7,0.2,0.9) |(0.5,0.5,0.5) |(0.4,0.3,0.6) |(0.6,0.3,0.4) |(0.7,0.2,0.9)
a3 (0.2,0.3,0.1) |(0.6,0.7,0.4) |(0.5,0.5,0.5) |(0.1,0.2,0.4) |{0.6,0.2,0.8)
ay (0.1,0.7,0.4) |(0.4,0.7,0.6) |(0.4,0.8,0.1) |(0.5,0.5,0.5) |{0.6,0.7,0.3)
as (0.6,0.7,0.6) |(0.9,0.8,0.7) |(0.8,0.8,0.6) |(0.3,0.3,0.6) |(0.5,0.5,0.5)

of organization and process, competence development of leadership and employees,
and alliance and open innovation. To improve the operation and competitiveness
capability in the global market, Eastsoft plans to establish a strategic alliance with
a transnational corporation. After numerous consultations, five transnational corpo-
rations would like to establish a strategic alliance with Eastsoft; they are HP ay,
PHILIPS a,, EMC a3, SAP a4 and LK as. To select the desirable strategic alliance
partner, three experts e; (i = 1, 2, 3) are invited to participate in the decision anal-
ysis, who come from the engineering management department, the human resource
department and the finance department of Eastsoft, respectively. Based on their expe-
riences, the experts compare each pair of alternatives and give individual judgments
using the following NPRs R; = (r{{)sxs (i = 1,2, 3):

The neutrosophic digraphs D; corresponding to NPRs R; (i =1, 2, 3) given in
Tables 1.8, 1.9 and 1.10 are shown in Figs. 1.36, 1.37 and 1.38.

The energy of a neutrosophic digraph is the sum of absolute values of the real part
of eigenvalues of D. The energy of each neutrosophic digraph D; (i = 1, 2, 3) is cal-
culated as E(D;) = (3.2419, 3.5861, 3.2419), E(D,) = (3.2790, 3.9089, 3.2790),



67

1.5 Application to Group Decision-Making

(0.6,

Fig. 1.36 Neutrosophic digraph

E(D;) = (4.1587,3.5618, 4.1587). Then the weight of each expert can be deter-

mined as,

<i<m.

E((Dp)) E((Dr);) ]

E((Dr)i)
Y EWDr)) Y EWDpD) Y. EWDg))
=1 =
= (0.3133,

The weights are calculated as w; = (0.3219, 0.3561, 0.3219), w,
(0.3501, 0.2998, 0.3501). Utilize the aggregation operator
(r:))sxs (i = 1,2, 3) into the collective NPR

“

0.3735, 0.3133), w3 = (0. _
to fuse all the individual NPRs R; = (r};
(rjx)sx5 as shown in Table1.11. Here we apply the neutrosophic weighted

@\"
1(70)")

R =(r;
averaging (NWA) operator [59] to fuse the individual NPR
. w; ([)
1_[ (I Jjk )
i=1

s

@O @ (s) @)
J;)—<1—]_[(1—Tj,§) :

i=1 i=1

NWA(), 7.
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(0'5’ 0.3, 0.1)

0.3, 0.2)

(0.8,

Fig. 1.37 Neutrosophic digraph

Draw a directed network corresponding to a collective NPR above, as shown
in Fig.1.39. Then under the condition Tjx > 0.5 (j,k =1, 2, 3, 4, 5), a partial
diagram is drawn, as shown in Fig. 1.40.

Calculate the out-degrees out-d(a;) (j=1, 2, 3, 4, 5) of all criteria in a partial
directed network as follows: out-d(a;) = (0.6951, 0.4973, 0.2912), out-d(a,) =
(1.0813,0.4608, 0.9258), out-d(az) = (1.2580, 1.0430, 0.8911), out-d(as) =
(0.6093,0.2811, 0.2689), out-d(as) = (1.9907, 1.8177,0.9005). According to
membership degrees of out-d(a;) (j =1, 2, 3, 4, 5), we get the ranking of
the factors a; (j =1,2,3,4,5) as as > az > a > a; > a4. Thus, the best choice
is LK as. Now elements of the Laplacian matrices of the neutrosophic digraphs
L(D;) = RiL (i =1,2,3)showninFigs.1.36,1.37, 1.38 are provided in Tables 1.12,

1.13 and 1.14.
The Laplacian energy of each neutrosophic digraph is calculated as

LE(D;) = (3.2800, 4.0000, 3.8893),

LE(D,) = (3.3600, 4.0000, 3.8798),
LE(D3) = (4.6806, 4.5858, 4.9687). Then the weight of each expert can be deter-

mined as
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(0.9,0.8,0.7)

Fig. 1.38 Neutrosophic digraph

LE((Dr):) LE((Dr1)i) LE((Dr):)

- . sy , 1=1,2,...,m.
IZLE((DT)I) IZLE((Dz)z) IZLE((DF)Z)
=1 -1 -1

w; = (0.2937, 0.3581, 0.3482), w, = (0.2989, 0.3559, 0.3452), w3 = (0.3288,
0.3221, 0.3490) based on which, using the NWA operator, the fused NPR is deter-
mined, as shown in Table 1.15. In the directed network corresponding to a collec-
tive NPR above, we select those neutrosophic numbers whose membership degrees
Ty =0.5(j, k=1, 2, 3, 4, 5), and resulting partial diagram is shown in Fig. 1.41.

Calculate the out-degrees out-d(a;) (j =1, 2, 3, 4, 5) of all criteria in a par-
tial directed network as follows out-d(a;) = (0.6719, 0.5050, 0.2622), out-d(a,) =
(1.0333,0.4563,0.8874), out-d(az) = (1.2122, 1.0354, 0.8534), out-d(as) =
(0.5881, 0.2821, 0.2478), out-d(as)=(1.9228, 1.8333, 0.8201). According to mem-
bership degrees of out-d(a;) (j =1, 2, 3, 4, 5), we get the ranking of the
factors aj, j =1,2,3,4,5 as as > a3 > a > a; > a4. Thus, the best choice is
LK as. Now, the elements of the signless Laplacian matrices of the neutrosophic
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6951, 0.4973, 0.2912)

0
0.4341, 0.3898, 0.577

5520, 0'3428)

(06737 0.55

Fig. 1.39 Directed network of the fused NPR
digraphs L™(D;) = RiL+ (i =1,2,3) shown in Figs. 1.36, 1.37 and 1.38 are given
in Tables1.16, 1.17 and 1.18. The signless Laplacian energy of each neutro-
sophic digraph is calculated as LE" (D)) = (3.3244, 4.7474, 3.5570), LE*(D,) =

(3.3826, 4.0000, 3.4427), LE*(D3) = (4.5859, 4.4103, 4.7228). Then the weight

of each expert is
LE*((Dr):) LET((Dy);) LET((DF)))
Wi = m > m > m 4 - 1’ 2’ » M,
> LET((Dr)) Y LE*((Dp)) Y LE*((Dp))
=1 =1 =1
w3 = (0.3343,

w; = (0.2859, 0.4082, 0.3059), w, = (0.3125,0.3695, 0.3180),
0.3215, 0.3443), based on which fuse all the individual NPRs R; = (r{}))sxs (i =
1, 2, 3) into the collective NPR R = (rj;)sx5, by using the NWA operator, as shown
in Table 1.19. In the directed network corresponding to a collective NPR above, we
select those neutrosophic numbers whose membership degrees Tj; > 0.5 (j, k =
1, 2, 3, 4, 5), and resulting partial diagram is shown in Fig. 1.42.

Calculate the out-degrees out-d(a;) (j =1, 2, 3, 4, 5) of all criteria in a par-
tial directed network as follows out-d(a;) = (0.6777, 0.4843, 0.2943), out-d(a,) =
(1.0412, 0.4099, 0.9309), out-d(az) = (1.2265, 1.0084, 0.9005), out-d(as) =

out-d(as) = (1.9395, 1.7873, 0.9212). According

(0.5980, 0.2483, 0.2740),
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4973,0.2912)

(0.6951,0

(929270 ‘L8920 ‘TSEG"0)

(0.5328, 0.6807, 0.2421)

Fig. 1.40 Partial directed network of the fused NPR

to membership degrees of out-d(a;) (j =1, 2, 3, 4, 5), we get the ranking of
the factors a; (j = 1,2,3,4,5) asas > az > a > a; > ay. Thus, the best choice is
LK as.

1.5.2 Real-Time Example

The proposed concepts of energy, Laplacian energy and signless Laplacian energy
of a neutrosophic graph are explained here through a real-time example. We have
taken the website http://www.pantechsolutions.net modelled as a neutrosophic graph
by considering the navigation of the customer. We have taken the four links: 1.
microcontroller boards, 2. log-in html, 3. and 4. project kits for our calculation. A
neutrosophic graph of this site for four different time periods is considered. The
energy, Laplacian energy and signless Laplacian energy of a neutrosophic graph
are calculated for each of these periods. The energy, Laplacian energy and signless
Laplacian energy are represented in terms of bar graphs. In the website http://www.
pantechsolutions.net (accessed on 8§ May 2012). The above four links are considered
for the period 16 January 2018 to 15 February 2018, and for this graph, as shown in
Fig. 1.43, we have


http://www.pantechsolutions.net
http://www.pantechsolutions.net
http://www.pantechsolutions.net
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Table 1.12 Elements of the Laplacian matrix of the neutrosophic digraph D
RIL aj an as as as
a; | (1.6,1.7,1.8) (-0.4,-0.6,—0.3) |(=0.2,—0.4,-0.6) |(—0.7,—0.6,—0.3) |(—0.3, —0.1, —0.6)
ay | (—0.3,-0.4,—0.4) | (1.5 1.1,2.1) (=0.7,—0.3,—0.8) | (—0.4, —0.1, —0.4) | (=0.1,—0.3, —0.5)
a3 | (—0.6,-0.6,-0.2) |(-0.8,-0.7,—0.7) |(1.9,2.2,1.7) (=0.3,-0.6, —0.4) | (=0.2, —0.3, —0.4)
ay | (=0.3,-04,-0.7) |(—0.4,-0.9,-04) |(-0.4,-04,—-03) |(1.4,18,1.7) (=0.3, —0.1, —0.3)
as | (—=0.6,—0.9,—0.3) | (=0.5,—0.7,—0.1) |(—0.4,—0.7,—0.2) |(—0.3,—0.9,—0.3) |(1.8,3.2,-0.9)
Table 1.13 Elements of the Laplacian matrix of the neutrosophic digraph D>
R2L ay ap as a4 as
ap | (1.1,2.6,1.9) (=0.5,-0.3,-0.1) |(-=0.1,-0.7,-0.5) |(=0.3,-0.9,-0.5) |(-0.2,-0.7, —0.8)
ay | (=0.1,-0.7,-0.5) |(1.6,2.1,2.0) (=0.5,—0.1,—0.6) | (=0.6,—0.7, =0.1) |{—0.4, 0.6, —0.8)
a3 | (=0.5,-0.3,—0.1) | (—0.6,-0.9,—0.5) | (2.1, 1.8,1.0) (=0.9, —0.2, —0.3) | (—0.1, —0.4, —0.1)
ag | (=0.5,-0.1,-0.3) |(=0.1,-0.3,-0.6) |(-0.3,—-0.8,—-0.9) |(1.7,1.6,2.0) (—0.8,-0.4, -0.2)
as | (—0.8,-0.3,-0.2) |(—0.8,—-0.4,-04) |(-0.1,-0.6,—0.1) |(-0.2,-0.6,—0.8) |(1.9,1.9,1.5)
Table 1.14 Elements of the Laplacian matrix of the neutrosophic digraph D3
R%‘ aj an as as as
ay | (2.0,2.1, 1.6) (-0.9,-0.8,—0.7) |(-0.1,—0.7,—-0.2) |{—0.4,-0.3,-0.1) |(—0.6, —0.3, —0.6)
ay | (=0.7,-0.2,—0.9) | (2.4,1.0,2.8) (=0.4, —0.3,—0.6) | (—0.6,—0.3, —0.4) | (—0.7, —0.2, —0.9)
a3 | (-0.2,-0.3,-0.1) |(-0.6,-0.7,—0.4) |(L.5,1.4,1.7) (=0.1,-0.2,—0.4) | (=0.6,-0.2, —0.8)
ay | (=0.1,-0.7,-0.4) |(—0.4,-0.7,-0.6) |(-0.4,-0.8,—0.1) |(1.5,2.9,1.4) (=0.6,—0.7, —0.3)
as | (0.6, —0.7,—0.6) | (=0.9,—0.8,—0.7) |(—0.8,—0.8,=0.6) |(—0.3,—0.3,—0.6) | (2.6,2.6,2.5)

Spec(Ty (xjxx)) = {—0.3442, —0.1000, 0.0066, 0.4376},
Spec(ly (x;xx)) = {—0.6630, —0.2742, 0.0774, 0.8598},
Spec(Fy (xjxx)) = {—0.6703, —0.3296, 0.0299, 0.9701},
E(Ty(xjxr)) = 0.8884, E(Iy(xjx)) = 1.8744, E(Fy(x;xi)) = 1.9999.
Therefore, E(G1) = (0.8884, 1.8744, 1.9999).
Laplacian Spec(Ty (x;xx)) = {0, 0.2492, 0.5244, 0.8264},
Laplacian Spec(fy (x;x;)) = {0, 0.6975, 1.1757, 1.5269},
Laplacian Spec(Fy (x;xx)) = {0, 0.7605, 1.4139, 1.6256},
LE(Ty(xjx;)) = 1.1016, LE(Iy (xjx¢)) = 2.0051, LE (Fy(x;x;)) = 2.2790.
Therefore, LE(G) = (1.1016, 2.0051, 2.2790).

Signless Laplacian Spec(Ty (x;x;)) = {—0.3183, —0.1339, —0.0555, 0.5076},
Signless Laplacian Spec(fy (x;xx)) = {—0.6764, —0.2500, 0.0385, 0.8879},
Signless Laplacian Spec(Fy (x;x;)) = {—0.7056, —0.2572, —0.0582, 1.0211},
LE*(Ty(xjx¢)) = 1.0153, LE*(Iy (xjxy)) = 1.8529, LE™ (Fy(x;x;)) = 2.0421.

Therefore, LE*(G;) = (1.0153, 1.8529, 2.0421).
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(0.6719, 0.5050, 0.2622)

(0.5087,0.6829, 0.2158)

Fig. 1.41 Partial directed network of the fused NPR

(r8€2°0 ‘02920 ‘8616°0)
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Table 1.16 Elements of the signless Laplacian matrix of the neutrosophic digraph D

RILJr ap an a3 ay as
aj (1.6,1.7,1.8) |(0.4,0.6,0.3) |(0.2,0.4,0.6) |(0.7,0.6,0.3) |(0.3,0.1,0.6)
aj (0.3,04,0.4) |(1.5,1.1,2.1) |(0.7,0.3,0.8) |(0.4,0.1,0.4) |(0.1,0.3,0.5)
as (0.6,0.6,0.2) |(0.8,0.7,0.7) |(1.9,2.2,1.7) |(0.3,0.6,0.4) |(0.2,0.3,0.4)
as (0.3,0.4,0.7) [(0.4,0.9,04) |(04,04,0.3) |(1.4,1.8,1.7) [(0.3,0.1,0.3)
as (0.6,0.9,0.3) |(0.5,0.7,0.1) |(0.4,0.7,0.2) |(0.3,0.9,0.3) |(1.8,3.2,0.9)

Table 1.17 Elements of the signless Laplacian matrix of the neutrosophic digraph D,

RZLJr ap an a3 a, as
aj (1.1,2.6,1.9) |(0.5,0.3,0.1) |(0.1,0.7,0.5) |(0.3,0.9,0.5) |(0.2,0.7,0.8)
aj (0.1,0.7,0.5) |(1.6,2.1,2.0) |(0.5,0.1,0.6) |(0.6,0.7,0.1) |(0.4,0.6,0.8)
as (0.5,0.3,0.1) [(0.6,0.9,0.5) |(2.1,1.8,1.0) |(0.9,0.2,0.3) |(0.1,0.4,0.1)
as (0.5,0.1,0.3) |(0.1,0.3,0.6) |(0.3,0.8,0.9) |(1.7,1.6,2.0) |(0.8,0.4,0.2)
as (0.8,0.3,0.2) [(0.8,0.4,0.4) |(0.1,0.6,0.1) |(0.2,0.6,0.8) |(1.9,1.9,1.5)
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Table 1.18 Elements of the signless Laplacian matrix of the neutrosophic digraph D3

R§‘+ ai a as as as

aj (2.0,2.1,1.6) [(0.9,0.8,0.7) |(0.1,0.7,0.2) |(0.4,0.3,0.1) |(0.6,0.3,0.6)
aj (0.7,0.2,0.9) |(2.4,1.0,2.8) |(0.4,0.3,0.6) |(0.6,0.3,0.4) |(0.7,0.2,0.9)
asz (0.2,0.3,0.1) |(0.6,0.7,0.4) |(1.5,1.4,1.7) |(0.1,0.2,0.4) |(0.6,0.2,0.8)
as (0.1,0.7,0.4) |(0.4,0.7,0.6) |(0.4,0.8,0.1) |(1.5,2.9,1.4) |(0.6,0.7,0.3)
as (0.6,0.7,0.6) |(0.9,0.8,0.7) |(0.8,0.8,0.6) |(0.3,0.3,0.6) |(2.6,2.6,2.5)

For the period 16 February 2018 to 15 March 2018 (see Fig. 1.44), we have

Spec(Ty (xjx;)) = {—0.4245, —0.1714, 0.0215, 0.5744},

Spec(ly (xjx;)) = {—0.7909, —0.5799, 0.0536, 1.3173},

Spec(Fy (x;x;)) = {—0.5037, —0.3400, 0.0007, 0.8430},

E(Ty(x;x)) = 1.1919, E(Iy(x;x;)) = 2.7418, E(Fy (x;x;)) = 1.6874.
Therefore, E(G») = (1.1919, 2.7418, 1.6874).

Laplacian Spec(Ty (x;xx)) = {0, 0.4200, 0.6908, 1.0892},

Laplacian Spec(fy (x;xz)) = {0, 0.8716, 1.7656, 2.3629},

Laplacian Spec(Fy (x;xx)) = {0, 0.5672, 1.1546, 1.4783},

LE(Ty(xjx;)) = 1.36, LE(Iy(xjx;)) = 3.2569, LE(Fy(x;xi)) = 2.0657.
Therefore, LE(G,) = (1.36, 3.2569, 2.0657).

Signless Laplacian Spec(Ty (x;x;)) = {—0.4023, —0.1931, —0.0585, 0.6538},
Signless Laplacian Spec(Iy (x;x;)) = {—0.7962, —0.5500, —0.1538, 1.5000},
Signless Laplacian Spec(Fy (x;xx)) = {—0.5321, —0.2209, —0.2000, 0.9530},
LE*(Ty(xjxi)) = 1.3076, LE* (Iy (xjx¢)) = 2.9999, LE™ (Fy(x;x;)) = 1.9059.
Therefore, LE™T(G,) = (1.3076, 2.9999, 1.9059).

For the period 16 March 2018 to 15 April 2018 (see Fig. 1.45), we have

Spec(Ty (x;x;)) = {—0.6287, —0.3884, 0.0004, 1.0168},
Spec(ly (x;x;)) = {—1.0779, —0.5696, 0.0698, 1.5776},

Spec(Fy (x;x;)) = {—0.8184, —0.4650, 0.0051, 1.2783},

E(Ty (x;x:)) = 2.0343, E(Iy (x;x;)) = 3.2949, E(Fy (x;x;)) = 2.5668.
Therefore, E(G3) = (2.0343, 3.2949, 2.5668).

Laplacian Spec(Ty (x;xx)) = {0, 0.2604, 1.4221, 1.7175},

Laplacian Spec(fy (x;x;)) = {0, 1.2472, 2.3360, 2.6168},

Laplacian Spec(Fy (x;xx)) = {0,0.8182, 1.6721, 2.3097},

LE(Ty(xjxx)) = 2.8792, LE(Iy(xjx;)) = 3.7056,L E(Fy (x;x;)) = 3.1636.
Therefore, LE(G3) = (2.8792, 3.7056, 3.1636).
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78
(0.6777,0.4843, 0.2943)

(0c9z°0 ‘6T€T°0 ‘ezeg 0)

(0.65
05174, 79)

(0.5118, 0.6663, 0.2465)

(z1,0.2,0.3,0.1)

Fig. 1.42 Partial directed network of the fused NPR

Fig. 1.43 Neutrosophic
graph G

(x2,0.4,0.1,0.3)

(z3,0.3,0.1,0.2) (0.1,0.2,0.3)

Signless Laplacian Spec(7y (x;x;)) = {—0.6816, —0.3513, —0.2007, 1.2336},

Signless Laplacian Spec(Iy (x;x;)) = {—1.1436, —0.4542, —0.0553, 1.6531},
Signless Laplacian Spec(Fy (x;xx)) = {—0.8066, —0.4000, —0.2632, 1.4698},

LE*(Ty(xjxi)) = 24671, LE*(Iy(xjxi)) = 3.3062, LE* (Fy (xjxi)) = 2.9395
Therefore, LET(G3) = (2.4671, 3.3062, 2.9395).
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Fig. 1.44 Neutrosophic (1,0.6,0.3,0.2)
graph G»

(x3,0.4,0.2,0.1) (0.2,0.7,0.4) (22,0.3,0.1,0.3)
Fig. 1.45 Neutrosophic (21,0.6,0.1,0.2)
graph G3

(x3,0.8,0.4,0.1) (0.4,0.5,0.6) (22,0.7,0.3,0.1)
Fig. 1.46 Neutrosophic (z1,0.4,0.5,0.3)
graph G4

(x3,0.5,0.2,0.1) (0.1,0.7,0.3) (22,0.6,0.3,0.2)
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3.5 T T T T
I Truth-membership — —
[ Indeterminacy-membership

3 | I Falsity-membership 1

0 1 1 1 1

Jan-Feb Feb—Mar Mar-April April-May

Fig. 1.47 Energy of neutrosophic graphs

Finally, for the period 16 April 2018 to 15 May 2018 (see Fig. 1.46), we have

Spec(Ty (x;x;)) = {—0.5716, —0.0973, 0.0027, 0.6662},
Spec(Iy (xjx)) = {—1.0878, —0.5755, 0.0435, 1.6198},

Spec(Fy (x;x;)) = {—0.7686, —0.3985, 0.0990, 1.0680},

E(Ty(xjxp)) = 1.3378,E(Iy (x;x:)) = 3.3265,E(Fy (x;x;)) = 2.3342.
Therefore, E(G,) = (1.3378, 3.3265, 2.3342).

Laplacian Spec(Ty (x;xx)) = {0,0.5637,0.7641, 1.2721},

Laplacian Spec(fy (x;xx)) = {0, 1.1660, 2.0643, 2.9697},

Laplacian Spec(Fy (x;xx)) = {0, 0.8207, 1.5544, 1.8249},

LE(Ty(xjxi)) = 1.4725, LE(Iy (xjx)) = 3.868, LE(Fy(x;x;)) = 2.5586.
Therefore, LE(G4) = (1.4725, 3.8680, 2.5586).

Signless Laplacian Spec(Ty (x;x;)) = {—0.5588, —0.1017, —0.0500, 0.7105},
Signless Laplacian Spec(fy (x;x;)) = {—1.0582, —0.5617, —0.2105, 1.8304},
Signless Laplacian Spec(Fy (x;xi)) = {—0.7996, —0.3562, 0.0413, 1.1145},
LE*(Ty(xjxi)) = 14211, LE*(Iy (xjxi)) = 3.6608, LE™ (Fy(x;x;)) = 2.3116.
Therefore, LE*(G4) = (1.4211, 3.6608, 2.3116).

The bar graphs, shown in Figs.1.47, 1.48 and 1.49, represent the energy,
Laplacian energy and signless Laplacian energy of four links for the above four peri-
ods corresponding to the truth-membership, indeterminacy-membership and falsity-
membership values. From the above bar graphs, the energy, Laplacian energy and
signless Laplacian energy of truth-membership for the period March to April are high
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4

I Truth-membership

35| [T Indeterminacy-membership ]
: I Falsity-membership

25}

Jan_—Feb Feb_—Mar Ma:April ApFMay
Fig. 1.48 Laplacian energy of neutrosophic graphs

4

I Truth-membership

350 [T Indeterminacy-membership |
: I Falsity-membership

3, —_— -

05}

Jan-Feb Feb-Mar Mar-April April-May

Fig. 1.49 Signless Laplacian energy of neutrosophic graphs

as compared to other periods; the energy, Laplacian energy and signless Laplacian
energy of indeterminacy-membership for the period April to May are high; and the
energy, Laplacian energy and signless Laplacian energy of falsity-membership for
the period March to April are high.



Chapter 2 ®)
Graph Structures Under Neutrosophic e
Environment

A single-valued neutrosophic graph structure (neutrosophic graph structure, for
short) is a generalization of neutrosophic graph. In this chapter, we present the notion
of neutrosophic graph structures and explore some properties of neutrosophic graph
structures. Moreover, we discuss the concept of ¢p-complement of neutrosophic graph
structure and present certain operations of neutrosophic graph structures elaborated
with examples. Further, we discuss some applications of neutrosophic graph struc-
tures in decision-making. This chapter is due to [33, 34, 151].

2.1 Introduction

Sampathkumar [151] introduced the graph structure which is a generalization of
undirected graph and is quite useful in studying some structures like graphs, signed
graphs, labelled graphs and edge-coloured graphs.

Definition 2.1 A graph structure G* = (X, E\, ..., E,) consists of a nonempty
set X together with relations E1, E», ..., E, on X which are mutually disjoint such
that each E;, 1 <i < n, is symmetric and irreflexive.

One can represent a graph structure G* = (X, Ey, ..., E,) in the plane just like a
graph where each edge is labelled as E;, 1 <i <n.

Example 2] Let X = {r] s, r3, rg, r5} and E] = {(r] s rz), (}’3, r4), (r] , 7'4)},
E, ={(r1,r3), (r1,rs)}, E3 ={(r2, r3), (r4, rs)} be mutually disjoint, symmetric and
irreflexive relations on set X. Thus G = (X, E|, E», E3) is a graph structure and is
represented in plane as a graph where each edge is labelled as E, E; or E5 (Fig.2.1).

Definition 2.2 Let ¢ be a permutation on {E\, Es, ..., E,}. Then ¢-complement
of a graph structure G* denoted by G** is obtained by replacing E; by ¢(E;),
1<i<n.
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T1

E1 E2

T2

T3 El T4

Fig. 2.1 Graph structure G* = (X, E|, E3, E3)

G* is self-complementary if it is isomorphic to G*%°, where ¢ is not an identity
permutation. G* is rotally strong self-complementary if it is identical to G*¢ for all
permutations ¢ on {E1, Es, ..., E,}.

Definition 2.3 If graph structure G* is connected and contains no cycle, in other
words, its underlying graph is a tree, then it is called a tree. G* is an E;-tree if
subgraph structure induced by E;-edges is a tree. Similarly, G* is an E\E; ... E,—
tree if G* is an E;—tree for each i € {1, 2, ..., n}. G* is an E;-forest, if subgraph
structure induced by E;-edges is a forest.

Definition 2.4 Let G} = (X, E|, E,, ..., E,) and G5 = (X', E{, E}, ..., E)) be
two graph structures, Cartesian product of G7 and Gj is defined as: G} x G} =
(X xX',E\xE|,E; X E},...,E, x E}),where E; x E!={(bid, b,d) |d € X',
biby € E;}U{(bdy,bdy) | b e X,did, € E}}, i =(1,2,...,n).

Definition 2.5 Let G} = (X, E|, E,, ..., E,) and G = (X', E{, E}, ..., E,) be
two graph structures, cross product of G} and Gj is defined as: G} * G; = (X *
X/, E; % Ei, E, % E/, oL ELx Er,z)’ where E; x Ez/ = {(bldl, bzdz) | b1b2 € E;,
d1d2 € El/}, i = (1, 2, . ,I’l).

Definition 2.6 Let G} = (X, E|, E,, ..., E,) and G5 = (X', E|, E}, ..., E)) be
two graph structures, lexicographic product of G} and G is defined as: G| o G}
=(XeX ,E eE|,E;eE}, ....,E,eE)), where E; ¢ E = {(bd|,bd;) | b € X,
d]d2 (S El/} @) {(b]d], bzdz) | b]bz (S] E,‘, dldz (S El,},l = (1, 2, ey n)

Definition 2.7 Let G} = (X, E\, E,, ..., E,) and G5 = (X', E{, E}, ..., E,) be
two graph structures, strong product of G} and G3 is defined as: G X G} =
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(XRX,E\RE|, E;KE). ... E, K E,), where E; X E={(bid. byd) | d € X',
biby € E;yU{(bdy,bdy) | b € X,d\dy € E[} U {(bidy, bydy) | bibs € E;, didy €
E}i=(2....n).

Definition 2.8 Let G} = (X, E|, E,, ..., E,) and G = (X', E{, E}, ..., E,) be
two graph structures, composition of G} and G3 is defined as: G} o G5 = (X o
X ,EioE|,E;0E),...,E,0E}), where E; o El = {(bid, byd) | d € X', bib; €
E,’} U {(bdl,bdz) | b e X, d1d2 € E{}U{(bldl,bgdz) | blbz S Ei, dl,dz € X' such
thatd; #dr}, i = (1,2,...,n).

Definition 2.9 Let G} = (X, E, E3, ..., E,) and G5 = (X', E{, E;, ..., E,) be
two graph structures, union of G} and G3 is defined as: GTUGs = (X UX', E U
E|,E;UE},...,E,UE.).

Definition 2.10 Let G} = (X, E|, E», ..., E,) and G} = (X', E{, E}, ..., E)) be
two graph structures, join of G} and G} is defined as: G} + G = (X + X', E| +

E\,E,+E}, ...,E,+E)),whereX+X =XUX',E;+ E/=E; UE;UE/ for
i=(,2,...,n). E{/ contains all those edges, joining the vertices of E and E’.

2.2 Neutrosophic Graph Structures

Definition 2.11 Let X be a nonempty set and £, E,, ..., E, relationson X. G =
(A, By, By, ..., By,) is called a single-valued neutrosophic graph structure if

A ={<n,T;(n), l;(n), F;(n) >:n € X}
is a single-valued neutrosophic set on X and
B; ={< (m,n), T(m,n), I(m,n), F(m,n) >: (m,n) € E;}
is a single-valued neutrosophic set on E; such that

Ti(m,n) < min{T (m), T(n)}, I;(m,n) < min{l(m), I(n)},
F;(m,n) < max{F(m), F(n)},VYm,n € X.

Note that 7;(m,n) = 0 = I;(m,n) = F;(m,n) forall (m,n) € X x X — E; and
0=<Ti(m,n)+ Ii(m,n) + Fi(m,n) <3 forall (m,n) € E;,

where X and E; (i = 1,2, ..., n) are underlying vertex and underlying i-edge sets

of G, respectively.

Throughout this chapter, we will use neutrosophic set, neutrosophic relation and
neutrosophic graph structure, for short.
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¢4(0.6,0.9,0.7) ¢3(0.5,0.7,0.6)

B1(0.5,0.7,0.6)

B1(0.3,0.3,0.4) B1(0.3,0.5,0.4)

¢5(0.4,0.5,0.5) 42(0.4,0.7,0.5)

B>(0.1,0.4,0.2)
B(0.2,0.4,0.3)

B(0.1,0.4,0.2) B2(0.2,0.6,0.3)
B1(0.3,0.2,0.3)

¢6(0.3,0.4,0.4) q1(0.3,0.6, 0.4)

Fig. 2.2 Single-valued neutrosophic graph structure

Definition 2.12 Let G = (A, By, B», ..., B,) be a neutrosophic graph structure of
G*.If H = (A, B{, B), ..., B)) is a neutrosophic graph structure of G* such that

T'(n) < T(n), I'(n) < I(n), F'(n) > F(n),Vn € X,
T/(m,n) < T;(m, n), I;(m,n) < I;(m, n) and F/(m,n) > Fi(m,n),Vm,n € E,,

wherei = 1,2, ...,n. Then H is called a neutrosophic subgraph structure of neu-
trosophic graph structure G.

Example 2.2 Let G* = (X, E|, E;) be a graph structure, where X = {q1, ¢2, g3,
g4, 95, 96}, E1 = {q196, 9293, 4394, q4qs}, E2 = {9192, 4596, 9496, q193}. Now we
define neutrosophic sets A, B, B, on X, Ey, E», respectively.

Let A = {(¢q1,0.3,0.6,0.4), (¢2,0.4,0.7,0.5), (¢3,0.5,0.7,0.6), (g4,0.6,0.9,
0.7), (g5,0.4,0.5,0.5), (g6,0.3,0.4,0.4)}, B; = {(q196,0.3,0.2,0.3), (g293,0.3,
0.5,0.4), (g394,0.5,0.7,0.6), (ga4qs,0.3,0.3,0.4)}, B, = {(¢1¢92,0.2,0.6,0.3),
(4596, 0.1, 0.4, 0.2),(q496, 0.1,0.4,0.2), (q193,0.2,0.4,0.3)}. By direct calcula-
tions, it is easy to show that G = (A, B;, By) is a neutrosophic graph structure
of G* as shown in Fig.2.2.

Definition 2.13 A neutrosophic graph structure H = (A’, B}, B, ..., B)) is called
an induced subgraph structure of G by a subset R of X if

T'n)=Tm),I'(n)=1n), F'(n)=F@n),Vn € E,
T/(m,n) = T;(m, n), I;(m,n) = I;(m, n) and F/(m,n) = F;(m,n),Ym,n € E,

wherei =1,2,...,n.

Definition 2.14 A neutrosophic graph structure H = (A’, B}, B}, ..., B)) iscalled
a spanning subgraph structure of G if A’ = A and
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Fig. 2.3 Neutrosophic graph n1(0.5,0.2,0.3) n2(0.7,0.3,0.4)
structure G ®
B1(0.5,0.2,0.4)
©
=)
o~
S >
S S
Q
B2(0.4,0.3,0.6)
@
n4(0.7,0.3,0.6) n3(0.4,0.3,0.5)
Fig. 2.4 Neutrosophic n1(0.4,0.1,0.4) n2(0.6,0.2,0.5)
subgraph structure ®

B11(0.4,0.1,0.5)

B12(0.4,0.1,0.7)

B12(0.3,0.2,0.7)

n4(0.6,0.2,0.7) n3(0.3,0.2,0.6)

T/(m,n) < T;(m,n), I;(m,n) < I;(m,n) and F/(m,n) > F;(m,n),i = 1,2, ..., n.

Example 2.3 Consider a graph structure G* = (X, E;, E;) and let A, B, B, be
neutrosophic subsets of X, E;, E,, respectively, such that

A ={(n,0.5,0.2,0.3), (n2,0.7,0.3,0.4), (n3, 0.4, 0.3, 0.5), (14, 0.7, 0.3, 0.6)},
Bi = {(mn2,0.5,0.2,0.4), (nan4,0.7,0.3, 0.6)},
B, = {(n3n4, 0.4, 0.3,0.6), (n1n4,0.5,0.2, 0.6)}.

Direct calculations show that G = (A, Bj, B,) is a neutrosophic graph structure of
G* as shown in Fig.2.3.

Example 2.4 A neutrosophic graph structure K = (A’, Byj, By) shown in Fig.2.4
is a neutrosophic subgraph structure of G = (A, By, B,) shown in Fig.2.3.

Definition 2.15 Let G = (A, By, B», ..., B,) be a neutrosophic graph structure of
G*. Thenmn € E; is called B;-edge or simply B;-edge if T; (m, n) > Oor I;(m,n) >
Oor F;(m, n) > 0 orall three conditions hold. Consequently, support of B; is defined
as:
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Fig. 2.5 Strong neutrosophic graph structure G = (A, By, B>)

supp(B;) = {mn € B; : T;(m,n) > 0}U{mn € B; : [;(m,n) > 0}
U{mn € B; : F;(m,n) >0},i =1,2,...,n.

Definition 2.16 B;-path in a neutrosophic graph structure G = (A, By, By, ..., By)
is a sequence of distinct vertices ny, ny, ..., n, (except choice that n,, = n;) in X,
such that n;_n; is a neutrosophic B;-edge forall j =2, ..., m.

Definition 2.17 A neutrosophic graph structure G = (A, By, B», ..., B,) is called
B;-strong for some i € {1,2,...,n}if

T:(m,n) = min{T (m), T (n)}, I;(m,n) = min{l (m), I (n)}

and
F;(m,n) = max{F (m), F(n)}, Vmn € supp(B;).

Furthermore, neutrosophic graph structure G is called strong if it is B;-strong for all
ief{l,2,...,n}

Example 2.5 Consider a neutrosophic graph structure G = (A, By, B) as shown in
Fig.2.5. Then G is a strong neutrosophic graph structure since it is both B;- and
B,-strong.

Definition 2.18 A neutrosophic graph structure G = (A, By, B,, ..., B,) is called
complete if G is a strong neutrosophic graph structure, supp(B;) # ¢ for all i =
1,2, ..., n and for every pair of vertices m, n € X, mn is a B;-ed ge for some i.
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Fig. 2.6 Complete n1(0.5,0.4,0.5)
neutrosophic graph structure

B2(0.4,0.7,0.8)
n3(0.5,0.7,0.6) n2(0.4,0.7,0.8)

Example 2.6 Let G = (A, By, B») be a neutrosophic graph structure of graph
structure G* = (X, Ey, E») such that X = {ny, n,, n3}, E1 = {niny} and E, =
{nons, nins3} as shown in Fig.2.6. By simple calculations, it can be seen that G
is a strong neutrosophic graph structure. Moreover, supp(B)) # ¢, supp(B) # ¢,
and each pair of vertices in X is either a Bj-edge or an B;-edge. So G is a complete,
i.e. B| By-complete neutrosophic graph structure.

Definition 2.19 Let G = (A, By, By, ..., B,) be a neutrosophic graph structure.
Then truth strength, indeterminacy strength and falsity strength of a B;-path Pp, =
ni, ny, ..., n, are denoted by T.Pp,, I.Pp, and F.Pp,, respectively, and defined as

m

T.Pg, = /\[Tg(njoinp)1. 1.Ps = \Uf (njinp)]. F.Pg = \/[Fg(njnp].
j=2 j=2 j=2

Example 2.7 Consider a neutrosophic graph structure G = (A, By, B;) as shown in
Fig.2.6. We found that Pg, = n,, n3, n; is a By-path. So T.Pg, = 0.4, I.Pg, = 0.4
and F.Pp, =0.8.

Definition 2.20 Let G = (A, By, By, ..., B,) be a neutrosophic graph structure.
Then

(i)  Bj-truth strength of connectedness between m and n is defined as:
Tge(mn) = \/{Tl;; (mn)} such that Tél (mn) = (TL{,[_1 o Tél_)(mn) for j >2
j>1
and
Tj (mn) = (Ty, o Ty )(mn) = \/(Tg,_ (mz) A Ty (zn)).

Zz
(i)  B;-indeterminacy strength of connectedness between m and n is defined as:

1°(mn) = \/ {I} (mn)} such that Iy (mn) = (I[,jl o I )(mn) for j > 2 and
j=1

I3 (mn) = (Iy, o I3)(mn) = \/ (I}, (mz) A I (zn)).
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(iii)  B;-falsity strength of connectedness between m and n is defined as:
Fg’(mn) = /\{FEJ?,- (mn)} such that Féi(mn) = (Fé:l o Féi)(mn) for j >2
j=l
and
Fj (mn) = (Fy, o Fy)(mn) = [\ (Fj (m2) v Fj (zn)).

z

Definition 2.21 A neutrosophic graph structure G = (A, By, By, ..., B,) is a B;-
cycle if

(supp(A), supp(B1), supp(B>), ..., supp(By)) is a B;-cycle.

Definition 2.22 A neutrosophic graph structure G = (A, By, B,, ..., B,) is a B;-
cycle (for some i) if G is a B;-cycle, no unique B;-edge mn is in G such that

Tp,(mn) = min{Tp, (rs) : rs € E; = supp(B;)},

or
Ig,(mn) = min{lp, (rs) : rs € E; = supp(B;)},

or
Fg,(mn) = max{Fp,(rs) :rs € E; = supp(B;)}.

Example 2.8 Consider a neutrosophic graph structure G = (A, By, B,) as shown in
Fig.2.5. Then G is a B;-cycle and neutrosophic By — cycle, since (supp(A), supp
(B1), supp(B,)) is a Bj-cycle and there is no unique Bj-edge satisfying above con-
dition.

Definition 2.23 LetG = (A, By, B», ..., B,) beaneutrosophic graph structure and

p be a vertex in G. Let (A, B;, Bé, ..., B)) be a neutrosophic graph structure
induced by X \ {p} such that, for all v # p, w # p,

Ty (p)=0=I4(p)=Fua(p), Tg;(pv) = 0 = I (pv) = Fp/(pv), Vedges pv € G,
Ty (v) =Ta(v), Lo (v) = 14(v), Fa(v) = Fa(v),
TB/;(vw) = Tp, (vw), IB/;(vu)) = I (vw) and FB/;(vw) = Fp (vw).
Then p is neutrosophic B;-cut vertex for any i if
Tg (vw) > Tgf(vw), Iz (vw) > Igf?(vw) and Fg’ (vw) > Fg?(vw),

for some v, w € X \ {p}. Note that p is a

e B; — T neutrosophic cut vertex if 75" (vw) > Tz’ (vw),
e B; — I neutrosophic cut vertex if Ig’(vw) > 137 (vw),
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e B; — F neutrosophic cut vertex if Fgf’(vw) > Fg?(vw).

Example 2.9 Consider a neutrosophic graph structure G = (A, Bj, B;) as shown
in Fig.2.7 and let G’ = (A’, B{, B}) be a neutrosophic subgraph structure of neu-
trosophic graph structure G found by deleting vertex n,. Deleted vertex n, is a
neutrosophic Bj-I cut vertex since

I (nans) =04 > 0.3 = I;?(ngns), I3 (n3ng) = 0.7 = Ig?(n3n4),

and
I3 (n3ns) = 0.4 > 0.3 = I;?(n3n5).

Definition 2.24 Suppose G = (A, By, B», ..., B,) be a neutrosophic graph struc-
ture and mn be B;-edge. Let (A’, B, B, ..., B)) be a neutrosophic spanning sub-
graph structure of G, such that V edges mn # rs,
Tp(mn) =0 = Ip(mn) = Fg(mn), Tp (rs) = Tp,(rs),
Ip/(rs) = Ip,(rs) and Fp/(rs) = Fp,(rs).
Then mn is a neutrosophic B;-bridge if

Ty (vw) > Ty (vw), Ip°(vw) > I’ (vw) and Fg" (vw) > Fp’(vw),

for some v, w € X. Note that mn is a

e B; — T neutrosophic bridge if Tgf’(vw) > T (vw),
e B; — I neutrosophic bridge if Igf’(vw) > 17 (vw),
e B; — F neutrosophic bridge if Fgf(vw) > Fg?(vw).

n2(0.4,0.7,0.5)

N

Q'% 03 (00-? 0
A B 6,

%0 2(0.2,0.4,0.3) "2
S 2 i 5
A= S S
A < ~
S s s
S = =
3 S )

%, = = B>(0.1,0.4,0.2) &
2,5%5 o
g 3 oY
)0;) ’0.4) A\

n5(0.4,0.5,0.6)

Fig. 2.7 Neutrosophic graph structure G = (A, By, B»)
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Example 2.10 Consider the neutrosophic graph structure G = (A, By, B;) as shown
in Fig.2.7 and G’ = (A’, B}, B}) be a neutrosophic spanning subgraph structure of
neutrosophic graph structure G which is found by deleting B;-edge (n,n5). Edge
(nyns) is a neutrosophic Bj-bridge. Since

Ty (nans) = 0.4 > 0.3 = Tg{o(ngn5),
I3 (nans) = 0.4 > 0.3 = Ig?(l’lzns)

and
Fg?(nznf,) =05>0= Fg?(n2n5)

Definition 2.25 A neutrosophic graph structure G = (A, By, B,, ..., B,) is a B;-
tree if

(supp(A), supp(By1), supp(Ba), ..., supp(By))

is a B;-tree. In other words, G is a B;-tree if a subgraph of G induced by supp(B;)
generates a tree.

Definition 2.26 A neutrosophic graph structure G = (A, By, Ba, ..., By) is B;-tree
if G has a neutrosophic spanning subgraph structure H = (A, B}, B, ..., B,) such
that for all B;-edges mn notin H, H is a B]-tree,

T, (mn) < Ty’ (mn), Ig,(mn) < I (mn) and Fg,(mn) > Fp; (mn).

In particular, G is a:

e neutrosophic B;-T tree if T, (mn) < Tg’(mn),
e neutrosophic B;-I tree if I, (mn) < I3 (mn),
e neutrosophic B;-F tree if Fp, (mn) > Fg’(mn).

Example 2.11 Consider the neutrosophic graph structure G = (A, By, B,) as shown
in Fig.2.8, which is a B;-tree. It is not a Bj-tree but a neutrosophic Bj-tree since it
has a neutrosophic spanning subgraph (A’, By, Bj) as a Bj-tree, which is obtained
by deleting B;-edge n,ns from G.

Moreover,

TB1 (I’lzl’lS) =02<03= Tg?(l’lzn5), 131 (I’lgi’l5) =0.1<03= I;f’/(ngn5)
and

Fg (nans) = 0.6 > 0.5 = Fg?,(nzns).

Definition 2.27 A neutrosophic graph structure G; = (A4, Bi1, B12, ..., B1,) of
the graph structure G} = (X1, E11, E12, ..., Ey,) is isomorphic to neutrosophic
graph structure G = (A2, By, B, ..., By,) of the graph structure G5 = (X», Eai,
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B, .

., E»y) if we have (f, ¢) where f : X; — X, is a bijection and ¢ is a permu-
tation on set {1, 2, ..., n} and following relations are satisfied

Ta (m) = Ta,(f(m)), 14, (m) = I4,(f(m)), Fa,(m) = Fa,(f(m)),
for allm € X, and

T, (mn) = Tg,,, (f (m) f(n)), Ig, (mn) = Ip,,, (f(m)f(n),

Fg, (mn) = FBz«nm (f(m)f(n)),
forallmn e Ey;,i=1,2,...,n

Example 2.12 Let G, = (A, By, By) and G, = (A’, B}, B}) be two neutrosophic
graph structures as shown in Fig.2.9. G is isomorphic G, under (f, ¢) where f :
X — X' is a bijection and ¢ is a permutation on set {1, 2} defined as ¢(1) = 2,
¢(2) = 1 and following relations are satisfied

Ta(ni) = Ta(f(n), Ia(ni) = 14 (f (1)), Fa(ny) = Fa(f(ny)),
forall n; € X, and

Ty, (ninj) = Tpy, (f () f(n))), Ig, (ninj) = I

1o (i) f(nj)),
FB,.(ninj) = FB

’

o (F) f))),
Vl’l,'l’lj € E;andi =1, 2.

Definition 2.28 A neutrosophic graph structure G; = (A, B11, Bia,
the graph structure G = (X, Eq1, Ei2,

ces B ln) of
., E1,) is identical to neutrosophic graph

93
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n3(0.2,0.7,0.8) m2(0.5,0.5,0.6)

14(0.2,0.3,0.5)

n1(0.3,0.3,0.4) m4(0.2,0.3,0.5) m1(0.3,0.3,0.4)

n2(0.5,0.5, 0.6) m3(0.2,0.7,0.8)

Fig. 2.9 Isomorphic neutrosophic graph structures
structure G, = (Az, Ba1, Bay, ..., Byy,) of graph structure G5 = (X», Ez, B, ...,
E,,) if f : X; — X, is a bijection and following relations are satisfied:
Ta,(m) = Ta,(f(m)), 1a,(m) = Ix,(f(m)), Fa,(m) = Fa,(f(m)),
for allm € X, and
Tp, (mn) = Tg, (f(m) f(n)), Ip,(mn) = Ip, (f(m)f(n)),
Fp, (mn) = Fg, (f(m) f (n)),

forallmn € Ej;andi =1,2,...,n.

Example 2.13 Let G, = (A, By, By) and G, = (A, B, B}) be two neutrosophic
graph structures of graph structures G} = (X, E|, E;) and G} = (X', E{, E}),
respectively, as shown in Figs.2.10 and 2.11. Neutrosophic graph structure G is
identical to G, under f : X — X’ defined as

fn) =my, f(na) =my, f(n3) =my, f(ng) =ms, f(ns) =ms, f(ne) =ms,
f(n7) =mz, f(ng) =me, Ta(ni) =Ty (f(ni)),
Ta(ni) = Ia (f (i), Fa(ni) = Fa(f(n:)),
foralln; € X and

T (ninj) = T (f i) f (n)), 1, (ninj) = Iy (f (i) f(n)), Fp;(ninj) = Fp:(f (ni) f(n)),
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n5(0.7,0.6,0.5)

74(0.6,0.5,0.4)

n6(0.4,0.5,0.2)

n7(0.5,0.3,0.6)

Fig. 2.10 Neutrosophic graph structure G

ms(0.7,0.6, 0.5)

m7(0.5,0.3,0.6)

Fig. 2.11 Neutrosophic graph structure G

forallmn; € E;andi =1, 2.

Definition 2.29 LetG = (A, By, B,, ..., B,) be aneutrosophic graph structure and
¢ be a permutation on {By, B,, ..., B,}andon {1, 2, ..., n} defined by ¢(B;) = B;
if and only if ¢(i) = j for all i. If mn € B; for any i and

TB;* (mn) = Ta(m) A Ta(n) — \/ Ty(p;)(mn), IB;o(mn) = Ia(m) A la(n) — \/ Iy(p;)(mn),
J#i Ji

Fye(mn) = Fo(m) v Fx(n) — N\ Tos)(mn), i =1,2,....n,
J#i

then mn € Bf , Where k is selected such that
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n1(0.3,0.4,0.7) n1(0.3,0.4,0.7)

[ ® L g
n2(0.5,0.6,0.4) B»(0.5,0.4,0.3) n3(0.7,0.5,0.3) n5(0.5,0.6,0.4) Q7(0.5,0.5,0.4) n3(0.7,0.5,0.3)

Fig. 2.12 Neutrosophic graph structures G, G

TBf‘ (mn) > TBio (mn), ]Bf (mn) > IBio (mn) and FB;° (mn) > Bm (mn) for all i,

then neutrosophic graph structure (A, Blo , Bg) s B,f ) is called ¢-complement of
G and denoted by G%°.

Example 2.14 Let G = (A, By, B, B3) be a neutrosophic graph structure shown in
Fig.2.12 and ¢ be a permutation on {1, 2, 3} defined as:

o(1) =2, ¢(2) =3, ¢(3) = 1. By direct calculations, we found that
nins € Bg’,nzm € Bl,nlnz € B So, G = (A, B1 , B2, B; )1sgz$ -complement of
neutrosophic graph structure G as shown in Fig.2.12.

Proposition 2.1 ¢-complement of a neutrosophic graph structure G = (A, By,

By, ..., By) is always a strong neutrosophic graph structure. Moreover, if ¢(i) =
k, where i,k € {1,2,...,n}, then all By-edges in neutrosophic graph structure
(A, By, B>, ..., B,) become B;b-edges in

(A, B, BS,....BY).

Proof According to the definition of ¢-complement,

Tyo(mn) = Ta(m) A Ta(n) = \/ Ty, (mn),
J#

Iyo(mn) = La(m) A La(n) = \/ Los,) Omn),
J#

Fye(mn) = Fa(m) Vv Fa(n) = /\ Fyn,)(mn),
J#L
fori € {1, 2, ..., n}. For expression of truthness in ¢-complement:
Since
Tp(m) A Ta(n) = 0, \/ Ty, (mn) > 0 and Tg, (mn) < Ta(m) A Ta(n), VB;,
J#i

we see that
\/ Tocs,)(mn) < Ta(m) A Ta(n),
j#i
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which implies that

Tp(m) A Ta(n) = \/ Ty, (mn) = 0.
J#i

Therefore, Tyo(mn) > 0 Vi. Moreover, Ty (mn) achieves its maximum value when
\Vi Ty(p;)(mn) is zero. It is obvious that when ¢(B;) = By and mn is a By-edge then

j\7 Ty(p;)(mn) gets zero value. So
J#i
Tyo(mn) = Ta(m) ATa(n), for (mn) € By, ¢(Bi) = B.
Similarly, we have
Lgo(mn) = In(m) A 1a(n), for (mn) € By, ¢(B;) = B.
In the similar way for expression of falsity in ¢-complement:
Since
Fy(m) v Fo(n) =0, /\ Fys,)(mn) > 0and Fg,(mn) < Fs(m) v FA(n)¥B;,
J#

we see that
/\ Fy;)(mn) < Fa(m) Vv Fa(n),
J#i

which implies that
Fa(m) v Fa(n) = )\ Fy,)(mn) > 0.
j#i

Therefore, F . (mn) is nonnegative for all i. Moreover, F s (mn) attains its maximum

value when /\ Fy(p;)(mn) becomes zero. It is clear that When ¢(B;) = By and mn
J#
is a By-edge then /\ Fy g, (mn) gets zero value. So
J#

FB;»(mn) = Fa(m) Vv Fs(n) for (nn) € By, ¢(B;) = By.

This completes the proof.

Definition 2.30 LetG = (A, By, Bs, ..., B,) beaneutrosophic graph structure and
¢ be a permutation on {1, 2, ..., n}. Then

(i) If G is isomorphic to ‘G‘ﬁc, then G is said to be self-complementary.
(ii) If G is identical to G?¢, then G is said to be strong self-complementary.
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n2(0.4,0.5,0.6)

B1(0.4,0.4,0.6)

n1(0.7,0.4,0.5)

(¢0°'€'0'2°0)eg

n6(0.4,0.5,0.6) n4(0.4,0.5,0.5)

n7(0.2,0.3,0.4) n5(0.2,0.3,0.3) n3(0.2,0.3,0.4)

Fig. 2.13 Totally strong self-complementary neutrosophic graph structure

Definition 2.31 Suppose G = (A, By, By, ..., B,) be a neutrosophic graph struc-
ture. Then

(i) If G is isomorphic to G, for all permutations ¢ on {1, 2, ..., n}, then G is
totally self-complementary.
(ii) If G is identical to G?¢, for all permutations ¢ on {1, 2, ..., n}, then G is

totally strong self-complementary.

Remark 2.1 All strong neutrosophic graph structures are self-complementary or
totally self-complementary neutrosophic graph structures.

Example 2.15 A neutrosophic graph structure G = (A, By, B, B3) inFig.2.13is a
totally strong self-complementary neutrosophic graph structure.

Theorem 2.1 A neutrosophic graph structure is totally self-complementary if and
only if it is strong neutrosophic graph structure.

Proof Consider a strong neutrosophic graph structure G and a permutation ¢ on
{1,2,...,n}. By Proposition 2.1, ¢-complement of a neutrosophic graph structure
G = (A, By, By, ..., By,) is always a strong neutrosophic graph structure. More-
over, if (i) = k, where i, k € {1,2, ..., n}, then all B;-edges in neutrosophic graph
structure (A, Bj, B,, ..., B,) become Bf)-edges in (A, B(/), Bg), R B,(f). This leads

T, (mn) =Ta(m) ATa(n) = TB:a(mn), Ip (mn) = I,(m) A Ix(n) = IB,?” (mn)

and
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Fg (mn) = Fa(m) V Fa(n) = Fpe(mn).

Hence, under the mapping (identity mapping) f : X — X, G and G? are isomorphic
such that

Ta(m) = Ta(f(m)), Ia(m) = I4(f (m)), Fa(m) = Fa(f(m)),
Ty, (mn) = Tgo(f(m) f(n)) = Tyo(mn), Ip,(mn) = Lo (f (m)f(n)) = Igo(mn),
Fp (mn) = Fpo(f (m) f(n)) = Fpo(mn),

forallmn € Ey, qb"(k) =iandk =1, 2, ..., n. Thisis satisfied for every permuta-
tion ¢ on {1, 2, ..., n}. Hence, G is totally self-complementary neutrosophic graph
structure. Conversely, let for every permutation ¢ on {1,2,...,n}, G and G? are
isomorphic. Then according to the definition of isomorphism of neutrosophic graph
structures and ¢-complement of neutrosophic graph structure,

T (mn) = Tgo(f(m) f(n)) = Ta(f (m)) A Ta(f (n)) = Ta(m) A Ta(n),
I, (mn) = Ipo(f(m) f(n)) = Ia(f (m)) A La(f (n)) = Ta(m) A La(n),
Fp (mn) = Fpo(f (m) f(n)) = Fa(f(m)) vV Ta(f (n)) = Fa(m) A Ta(n),

forallmn € Eryandk = 1,2, ..., n.Hence, G is strong neutrosophic graph structure.

Remark 2.2 Every self-complementary neutrosophic graph structure is totally self-
complementary.

Theorem 2.2 If G* = (X, E|, E», ..., E,) is a totally strong self-complementary
graph structure and A = (Ta, L4, Fy) is aneutrosophic subset of X where Tx, 14, Fa
are constant valued functions, then a strong neutrosophic graph structure of G* with
neutrosophic vertex set A is always a totally strong self-complementary neutrosophic
graph structure.

Proof Consider three constants p, g, r € [0, 1], such that Ty(m) = p, [4(m) =
q, Fa(m) =r Ym € X. Since G* is totally self-complementary strong graph struc-
ture, so there is a bijection f : X — X for any permutation gb_l on{l,2,...,n},
such that for any E-edge (mn), (f(m)f(n)) [an E;-edge in G* ] is an E-edge in
G**”'¢. Hence, for every Bi-edge (mn), (f(m)f(n)) [a B;-edgein G ]is a B,f-edge
in G®'*. Moreover, G is strong neutrosophic graph structure. Thus,

Tpg(m) = p =Ta(f(m)), Ia(m) = q = 15(f(m)), Fa(m) =r = Fo(f(m)), Vm € X,

T, (mn) = Ta(m) A Ta(n) = Ta(f (m)) ATa(f (n)) = Tyo (f (m) f (n)),
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g (mn) = Ta(m) A Lx(n) = Ta(f(m)) A La(f () = Lpo(f(m) f(n)),
Fp (mn) = Fa(m) vV Ia(n) = Fa(f (m)) vV Fa(f (n)) = Fpo(f(m) f(n)),

forallmn € E;andi = 1,2, ..., n. This shows that G is self-complementary strong
neutrosophic graph structure. Every permutation ¢ and ¢~' on {1,2, ..., n} satisfy
above expressions; thus G is totally strong self-complementary neutrosophic graph
structure.

Remark 2.3 Converse of Theorem 2.2 may not be true, for example a neutrosophic
graph structure shown in Fig. 2.13 is a totally strong self-complementary, it is strong
and its underlying graph structure is a totally strong self-complementary but T4, 14,
F 4 are not constant functions.

2.3 Operations on Neutrosophic Graph Structures

In this section, we present the operations on neutrosophic graph structures.

Definition 2.32 LetG,=(A, Bi1, B2, ..., Biy)and G, = (A3, By, B, ..., Byy,)
be neutrosophic graph structures of the graph structures G} = (X1, Eq1, Ep2, ..., Ein)
and G5 = (X, Ea1, En, ..., Ey,), respectively. The Cartesian product of G and
G», denoted by

G X Gy = (A1 X Ay, By X Ba1, Bia X By, ..., By, X By,),

is defined by the following:

Tia xan(qr) = (Ty, X Ta,)(qr) = Ty, (q) A Ta,(r)

@) TIia xan(qr) = (Ia, X 1a,)(qr) = 14,(q) A 14, (r)

Faixay(gr) = (Fa, X Fa,)(qr) = Fa, (q) V Fa,(r)

forall gr € E; x Ey,

T, x B (qr1)(gr2) = (T, x T, )(qr1)(gr2) = T, (q) N Tp, (r112)
(ii) I, x o) (qri)(qry) = (Up, % 1p,)(qri)(gr2) = 14,(q) A I, (rir2)
FB,xBy)(qri)(qr2) = (Fp, x Fp,)(qr1)(qr2) = Fa,(q) V Fp, (r112)
for allq € X[, rirn € Ez,',

T, x B (@17)(q2r) = (T, x T,)(q1r)(qar) = Ta,(r) A T, (q192)
(iii) I, x o) (q17)(q2r) = (U, x Ip,)(q17)(qor) = 1a,(r) A Ip,(q192)
FB,xBy)(q1r)(qar) = (Fp,, X Fp,)(q1r)(qar) = Fa,(r) V F3,(q192)
forallr € X5, q192 € Ey;.

Example 2.16 Consider G; = (Ay, By1, Bi2) and G, = (A,, By, By) are neu-
trosophic graph structures of graph structures G| = (X, Ey, E12) and G5 =
(X2, Ez1, Enp), respectively, as shown in Fig.2.14, where E|; = {q1q2}, E12 =
{4394}, E21 = {rir2}, Ex = {r2r3}.
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¢1(0.5,0.2,0.6)

71(0.2,0.2,0.3)

r2(0.3,0.3,0.4)

r3(0.5,0.4,0.5)
43(0.4,0.3,0.4) G2 = (A2, Ba1, B22)
G1=(A1, Bi1, Bi2)

Fig. 2.14 Neutrosophic graph structures
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T 4 O3 0 »(‘b\
*0.5) o

Fig. 2.15 Cartesian product of two neutrosophic graph structures

Cartesian productof G| and G, definedas G| x Gp={A| X A3, By; x By, Bjy X
By} is shown in the Fig.2.15.

Theorem 2.3 The Cartesian product Gi x G, = (A; X Ay, Byy X By, Bya X
By, ..., By, X Ba,) of two neutrosophic graph structures G| and G, of the graph
structures G| and G} is a neutrosophic graph structure of G| x Gj.

Proof According to the definition of Cartesian product, there are two cases:

Case 1. Whengqg € Xy, rir; € Ey;
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T(BliXBz,‘)((qu)(qu)) = TAl(q) A TBz,‘ (rir2)
< Tp, (g) A[Ta,(r1) ATy, (r2)]
= [T, (@) ATa,(r))] AlTa,(q) ATy, (r2)]
= Ta,xa)(@r1) A Tea, xa,)(qr2),
I, xB)((qr1)(qr2)) = 14,(q) A Iy, (rir2)
<5, (q) ANa, (r1) A g, (r2)]
= [14,(q) A 12, (r1)] A (q) A 14,(1r2)]
= Ta, x4 (qr1) A Lia,xa,)(qra),
F(BUXBzi)((qu)(qu)) = FA[(‘]) \% FBZ,- (rir2)

S Fu(q) VI[Fa,(r) V Fa,(r2)]

=[Fa,(q)V Fa,(r)] V[Fa,(q)V Fa,(r2)]
= Fa,xa)(@r1) vV Fa,xa,(qr2),

for gry, gry € X1 x Xo.
Case2. Whengqg € X,,r1m € Ey;

T8, xB,) ((11q) (r2q)) = Ta,(q) A T, (r112)
< T, (@) A [Ta, (r1) A Ta, (r2)]
= [Ta,(q) AN Ta, (r)] AN[Ta,(q) A Ta, (r2)]
= Tiaxa)(r19) A Ta, x4, (r29),
1B, x B,y ((r1@)(r29)) = 1a,(q) A I, (r172)
< 1a,(q) A U4, (r1) A 14, (r2)]
= [La,(q) AN A, (rD)] AU, (@) A, (r2)]
= T, xan(11q) A Lia,xa,) (r2q),
FB,:x8,)((r1q)(r2q)) = Fa,(q) V F,(r1r2)
< Fa, (@) V[Fa (r1) V Fa,(r2)]

= [Fa,(q@) V Fa,(r)] V [Fa,(q) V Fa,(r2)]
= Fa,x4,)(1q) V Fia xa,) (nq),
for riq, g € X; x X».
Both cases are satisfied Vi € {1,2, ..., n}
Definition 2.33 Let G, =(A, Bi1, Bya,

.o+, Bip)and Gy = (A, Ba1, B, ..., Byy)
be neutrosophic graph structures. The cross product of G| and G, denoted by

G1 %Gy = (A1 % Ay, Byi * By1, Bio * By, ..., By, * Byy),
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q171(0.2,0.2,0.6) q172(0.3,0.2,0.6) q173(0.5,0.2,0.6)
[ ]

B * 321(0.2, 0.2, 0.8)

B11 * B21(0.2,0.2,0.8)

[ J
QQT1(0.2,0.2,0.8) QQT2(0.3,0‘3,0.8) QQT3(0.5,0.3,0.8)

q371(0.2,0.2,0.4) 4372(0.3,0.3,0.4) q373(0.4,0.4,0.5)
[ ]

Bi12 * B22(0.3,0.3,0.6)

Bia * 322(0.3, 0.3, 0.6)

[ ]
qa71(0.2,0.2,0.6) qar2(0.3,0.3,0.6) qa73(0.5,0.3,0.6)

Fig. 2.16 Cross product of two neutrosophic graph structures

is defined by the following:

Tiaxa,)(qr) = (Ta, * Ta,)(qr) = Ta,(q) A Ta,(r)
(i) Tiaean(qr) = (Ia, % 1a)(qr) = 14,(q) A 1a,(r)
Fiaan(qr) = (Fa, % Fa))(qr) = Fa, (@) V Fa,(r)
forall gr € X| x X3,
T(B,+By)(q171)(q2r2) = (T, * T, )(q17r1)(q2r2) = T, (q192) A T, (r1r2)
(i) { Iy« (q1r1)(qar2) = (I, * Ip,)(q1r1)(q2r2) = I, (q192) A Ip, (r1r2)

Fpmon (qir)(qar2) = (Fp,, * Fp,))(q1r1)(q2r2) = Fp,(q192) V F,,(ri12)
forall giq> € Ey;, 1112 € Ey;.

Example 2.17 Cross product of two neutrosophic graph structures G| and G, shown
in Fig.2.14 is defined as G| * G, = {A| * Ay, By1 * Bay, Biz * By} and is shown in
the Fig.2.16.

Theorem 2.4 The cross product Gy * G, = (A; * Ay, By * By1, Bia % B, ...,
B\, * By,) of two neutrosophic graph structures of the graph structures G x| and G’
is a neutrosophic graph structure of G} * G35.
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Proof For all giry, gory € X1 % X5

T(B,x8,) ((q1r1)(q2r2)) = Tp,,(q192) A Tp,, (r1r2)
< [Ta,(q1) A Ta(g2)] A[Ta,(r1) A Ta,(r2)]
= [Ta,(q) A Ta,(r))] ATa,(q2) A Ta,(r2)]
= Tiaxa2)(q171) N Tia x4, (@272),

I(B,;+,)((q171)(q212)) = I, (q192) N I, (r172)
< Ua (g0 A4 (q2)] A Ua,(r1) A sy (r2)]
= [1a,(q1) A L4, (rD] A A (q2) A 14,(r2)]
= Tiaxan (@171 A L xay)(q2r2),

Fi i« ((qir1)(q2r2)) = Fp,.(q192) V Fp, (rir2)
< [Fa,(q1) vV Fa,(@2)] V [Fa,(r1) V Fa,(r2)]
= [Fa,(q1) V Fa,(r1)] V [Fa,(q2) V Fa,(r2)]
= Fiaxan(@irD) V Fasay (qar2),

fori € {1,2,...,n}.

Definition 2.34 LetGl = (Al, B“, Blg, ey B],l) and Gz = (Az, le, Bzg, ey an)
be neutrosophic graph structures. The lexicographic product of G| and G,, denoted
by

GieGy= (A e Ay, Bjye By, Bye B, ..., By, e By),

is defined by the following:

Tia,00,)(qr) = (T4, @ Tp,)(qr) = Ta,(g) A Ta,(r)
() La10n,)(qr) = (14, @ 14,)(qr) = 1a,(q) A 14,(7)
Flajeny)(qr) = (Fa, @ F4,)(qr) = Fa,(q) V Fa,(r)
forall gr € X x X»,
T(B,e8:)(qr1)(gr2) = (T, @ T, )(gr1)(qr2) = Ta,(q) A T, (r172)
(i) I(B,e8,)(qr1)(gr2) = (I, ® Ip,)(qr1)(qr2) = 14,(q) A Ip, (r172)
F(B,eB,)(qr1)(qr2) = (Fp, ® Fp,)(qr1)(qr2) = Fa,(q) V Fp, (rir2)
forallg € Xy, riry € Ey;,
T(B, e, (q171)(g212) = (T, ® T, ) (q171)(q212) = T, (q192) N T, (r112)
(iii) § I(ByeB) (q1r1)(q2r2) = (I, ® Ip,)(q1r1)(q2r2) = Ip,,(q192) A I, (r172)
F(ByeBy)(q171)(q2r2) = (Fp,, @ Fp,)(q171)(q2r2) = Fp,,(q192) V Fp, (r1r2)
for all g1q, € Ey;, rir2 € Ey;.

Example 2.18 Lexicographic product of two neutrosophic graph structures G| and
G, shown in Fig.2.14 is defined as
G1eG,={A| e Ay, Bjj @ By, Bj; @ By} and is shown in the Fig.2.17.
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q171(0.2,0.2,0.6)B11 @ B21(0.2,0.2,0.6) q172(0.3,0.2, 0.6) q273(0.5,0.3,0.8)

Bi1 e B21(0.2,0.2,0.8 Bi2 e B2>(0.3,0.2,0.6)

Bi1 e B21(0.2,0.2,0.8) B2 @ B22(0.3,0.3,0.8)

271(0.2,0.2,0.8) B11 @ B21(0.2,0.2,0.8)272(0.3,0.3,0.8)  g175(0.5,0.2, 0.6)

qa71(0.2,0.2,0.6) q372(0.3,0.3,0.4)B12 @ B22(0.3,0.3,0.5)g373(0.4,0.3)

Bi1 e B21(0.2,0.2,0.6 B13 e B32(0.3,0.3,0.6)

Bi1 e B21(0.2,0.2,0.4) B2 @ B33(0.3,0.3,0.6)

4571(0.2,0.2,0.4) qar2(0.3,0.3,0.6)B12 ® B22(0.3, 0.3, 0.6)qa75(0.5, 0.3, 0.6)

Fig. 2.17 Lexicographic product of two neutrosophic graph structures

Theorem 2.5 The lexicographic product G, e G, = (A;e Ay, B e By, By
e By, ..., By, @ By,) of two neutrosophic graph structures of the graph structures
G71 and G5 is a neutrosophic graph structure of G} e G3.

Proof According to the definition of lexicographic product, there are two cases:

Case 1. Whengqg € Xy, rir € Ey;

T(B,08,)((qr1)(qr2)) = Ta, (@) A T, (r172)
< Ta (q) A [Ta,(r1) ATy, (r2)]
= [Ta, (@) A Ta,(rD)] A[Ta,(q) A Ta,(r2)]
= Ta1042)(q71) A Tia,04y)(q72),

I(B),0By) ((qr1)(gr2)) = 1a,(q) A Ip,, (r112)
< 1a,(q) A, (r) A 1a,(r2)]
= [a, (@) A 1a,(r)] AT (g) A 14, (r2)]
= I(a,0,)(q71) A L4104, (qT2),
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F(B,e8,)((qr1)(qr2)) = Fa,(q) V Fp,,(r112)
< Fa (@) V[Fa,(r1) V Fa,(r2)]
= [Fa, (@) V Fa,(r1)] V [Fa, (@) V Fa,(r2)]
= Fla,0a)(qr1) V Fa,ea,)(qr2),

fOI’ql"l,ql"z € X0 X,.
Case 2. Whenqq; € Ey;, 7172 € Ey;

T(B,08,)((q171)(q212)) = T, (q192) A Tp,, (r112)
< [Ta,(q1) A Ta,(g2)] A[Ta,(r1) A Ta,(r2)]
= [Ta,(q) A Ta,(r1)] AN T4, (q2) A Ta,(r2)]
= T(a10a0)(q171) A T(a04,)(q272),

I (e, ((q171)(q2r2)) = I, (q192) A I, (r172)
< [a, (q) A A (g2)] A a,(r) A a,(r2)]
= [1a,(q1) A L4, (rD] A LA (g2) A 14,(r2)]
= L1040 (@171) A L (A 0ay)(q212),

Fige8,)((q171)(q212)) = Fp,,(q192) V Fp, (r1r2)
< [Fa (gD Vv Fa,(g2)] V [Fa,(r1) V Fa,(r2)]
= [Fa,(q1) V Fa,(r1))] V [Fa,(q2) V Fa,(r2)]
= Fla1ea)(q171) V Fla,04,)(q272),

for qiri, qar € X1 ° Xz.
Both cases are satisfied fori € {1, 2, ..., n}.

Definition 2.35 LetG1 = (Al, Bn, Blg, ey B]n) and G2 = (Ag, le, Bzg, ey an)
be neutrosophic graph structures. The strong product of G| and G,, denoted by

GIXGy= (A XAy, B X By, BinX By, ..., By, X Byy),

is defined by the following:

T4, R4, (qr) = (Ta, W Ta,)(gr) = Ta,(q) A Ta,(r)
() Tamay)(qr) = (Ia, W 1a,)(qr) = 14,(q) A 1a,(r)
Famay(qr) = (Fa, B Fa,)(gr) = Fa(q) V Fa,(r)
for all gr € X; x X»,
T(3,,®B,)(qr1)(qr2) = (Tp,, KW Tp,)(qr1)(qr2) = Ta,(q) N Tp, (r112)
(i1) I8, B, (qr1)(gr2) = (Ig, X Ip,)(gr1)(qr2) = 1a,(q) A Ip, (r1r2)
F(B,,®B,)(qr1)(qr2) = (Fp, W Fp,)(qr1)(qr2) = Fa,(q) V Fp,, (rir2)
for allq € X, rirn € E2i,
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Fig. 2.18 Strong product of two neutrosophic graph structures

T(8,®B,)(q17)(q2r) = (T, W Tp,)(q17)(q2r) = T, (r) A T, (q192)

(i) { Iy (@1r)(qar) = (I, ® 15,)(qir)(qar) = 1a,(r) A I, (q192)
Fip,®8,)(qir)(q2r) = (Fp,, W Fp,)(qir)(q2r) = Fa,(r) V Fp,(q192)
forallr € X, q192 € E1i,
T8, &8y (q111)(q2r2)=(Ts,, ¥ Tp, ) (q171)(q2r2)=TB,,(q192) N T, (r1r2)
iv)  Isimen (q1r1)(qar2) = (g, W 1p,)(q171)(q2r2) = 1B, (q192) A g, (r1r2)

Feg,®B,)(q1r1)(qar2)=(Fp,, X Fp,)(q171)(q2r2)=Fp,, (q192) V Fp, (r17r2)
for all g1q> € Ey;, riry € En;.

Example 2.19 Strong product of two neutrosophic graph structures G, and G,
shown in Flg 2.14 is defined as Gl X G2 = {Al X A2, B]] X Bz], B]2 X B22} and

is shown in the Fig.2.18.

Theorem 2.6 ThestrongproductG1 X Gr,=(A1 X Ay, By X By, Bp X By, ...,
B, X By,) of two neutrosophic graph structures of the graph structures G and G
is a neutrosophic graph structure of G{ X G3.

Proof According to the definition of strong product, there are three cases:

Case 1. Whengqg € Xy, rir € Ey;
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T(3,®B,)((qr1)(gr2)) = Ta,(q) A T, (r112)
< Ta, (@) AN[Ta,(r1) A Ta,(r2)]
= [Tr,(q) A Ta,(r))] A[Ta, (@) A Ta,(r2)]
= Ta,R4ay) (qr1) A Tia,RA,) (g72),
I(,®8,)((qr1)(gr2)) = 14,(q) N Ip, (r172)
< 1a (@) A4, (r1) A a,(r2)]
= [Ia,(q) A La,(r))] A a, (@) A 14, (r2)]
= l(a,Ra,)(qr1) A LaR4,)(qT2),
Fp,®B,)((qr1)(gr2)) = Fa,(q) V Fp, (r1r2)
< Fp (@) V [Fa,(r1) V Fa,(r2)]
= [Fa, (@) V Fa,(r)] V [Fa, (@) V Fa,(r2)]
= Fa,R4,)(qr1D) V Fara,)(gra),

for gry, gry € X1 K X5.
Case2. Whengqg € X5, € Ey;

T(8,®B,)((r19)(r2q)) = Ta,(q) A T, (r112)
< Tay(q) AT, (r) A Ta,(r2)]
= [Ta,(q) AT, (r)] A[Ta,(g) A Ta, (r2)]
= Ta,R4,) (11q) A Ta,04,)(129),
I(3,&8,) (r19)(r2q)) = 14,(q) N Ip,,(r17r2)
< 1a, (@) A4, (r) A a (2)]
= [1a,(q) A LA, (r)] Ay (q) A L4, (r2)]
= I(a,Ra,) (11q) N La,R4,)(r29),
Fp,®B,)((r1q)(r2q)) = Fa,(q) V Fp,,(r1r2)
< Fa, (@) V[Fa (r1) V Fa,(r2)]
= [Fa,(q) vV Fa,(r1))] V [Fa,(q) V Fa,(r2)]
= Fa,Ra) (11q) V Fa,Ra,)(rnq),

for riq, rng € X1 X X5.
Case 3. Forall gig, € Ey;, 111, € Ey;

T(8,R8,)((q171)(q2r2)) = Tp,;(q192) A T, (r1712)
< [Ta,(q1) A Ta,(g2)] A[Ta,(r1) A Ta,(r2)]
= [Ta,(q1) A Ta,(ri)] A T4, (g2) A Ta,(r2)]
= T(a,84,)(q171) A T(a,R4,)(q272),
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I(3,®8,)((q171)(q272)) = I, (q192) A I, (r1712)
< Ua, (1) A 14, (q2)] Aa,(r1) A La,(r2)]
= [1a,(q1) A La,(r)] A Ua, (2) A 14, (r2)]
= l(a,Ra,)(q171) N I(4,R4,)(g272),

Fp,®8,)((q171)(q212)) = F,,(q192) V FB,, (r172)
< [Fa,(q1) V Fa, (@2)] V [Fa,(r1) V Fa,(r2)]
= [Fa,(q1) V Fa,(r)] V [Fa,(q2) V Fa,(r2)]
= Fa,ran (@171 V Fa,ra,(q2r2),

forqlrl,qzrz (S X] |X’X2
All cases are satisfied fori =1, 2, ..., n.

Definition 2.36 LetG,=(A, By1, B12, ..., Bj,)and G, =(A,, By, By, ..., Byy,)
be neutrosophic graph structures. The composition of G| and G,, denoted by

G10Gy=(A10Ay, Bj1oBay, Bipo By, ..., By, 0 By,

is defined by the following:

Tia,0a,)(qr) = (Ta, 0 Ta,)(gr) = T4, (q) N Ty, (r)

() 1 Liaonn(gr) = (Ia, 0 1a,)(gr) = Ia,(q) A La,(r)

Fiajon)(qr) = (Fa, 0 Fa,)(qr) = Fa, (q) V Fa,(r)

forall gr € X; x X,

T(B];oBzi)(qu)(qr2) = (TBl, ° TBzi)(qu)(qrz) = T, @A T, (rir2)

(ii) I(By0By)(qr1)(gr2) = (Ip; o I, )(qr1)(qr2) = 14,(q) A I, (r112)

F(py08,)(qri)(qr2) = (Fp, o Fp,)(qri)(qr2) = Fa,(q) V Fg, (rir2)

forallg € Xy, riry € Ey,

T(BuoBz,)(CIl")((h”) = (TBU © TBZ/')(qlr)(qzr) = TA2 (r) A TB“(QICIZ)

(iii) I8y;08,) (q17)(q2r) = (Ip,; 0 1B, )(q1r)(q2r) = 1a,(r) A Ip,(q192)

F(BlioBzi)(er)(QZV) = (FB]i ° FBzi)(qlr)(QZr) = FAz(r) 4 FBli(CIIQZ)
forallr € X5, q19> € Ey;,

. T(Byi0By) (q171)(q212) = (TBy; © T, )(q171)(q2r2) = T, (q1q2) N Ta, (r1) A Ta,(r2)

(iv) I(B);0B)(q171)(q212) = (IB; 0 Iy )(q171)(q212) = IB,;(q1G2) A 1a,(r1) A 14, (r2)

F(BliOBzi)(qlrl)(quZ) = (FBli o Fp,)(q1r1)(q2r2) = Fpy, (@192) V Fay (r)) V Fay (r2)

for all g1q> € Ey;, rir; € Ey; such that ry # .

Example 2.20 Composition of two neutrosophic graph structures G; and G, shown
in Fig.2.14 is defined as G| o G, = {A| 0 A3, By; o By, Bi; o By} and is shown in
the Fig.2.19.

Theorem 2.7 The composition GioGy = (Ao Ay, BjjoBy,Bip0By,...,
Bin 0 By,) of two neutrosophic graph structures of the graph structures G} and
G} is a neutrosophic graph structure of G o G3.
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Fig. 2.19 Composition of two neutrosophic graph structures

Proof According to the definition of composition, there are three cases:

Case 1. Wheng € Xy, rir; € Ey;

T(By108,)((qr1)(gr2)) = Ta,(q) A T, (r112)
< Ta, (@) AN[Ta,(r1) A Ta,(r2)]
= [Ta,(q) A Ta,(r1)] AlTa,(q) A Ta,(r2)]
= T(a,08,)(@r1) A T(a,04,)(q12),
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I(B,08,)((qr1)(q12)) = Ia,(q) N I, (r172)
< 1a,(q) A, (r) A 1a,(r2)]
= [a, (@) A 1a,(r)] A4, (g) A L4, (r2)]
= lA,0a)(qT1) A L(a0a,)(qT2),

FB,08,)((qr1)(qr2)) = Fa,(q) V Fp,,(r112)
< Fa (@) V [Fa,(r1) V Fa,(r2)]
= [Fa,(q@) V Fa,(r)] V[Fa, (@) V Fa,(r2)]
= Fla04y)(q71) V Fla,04y)(qT2),

forqu,qrz € Xl OXQ.
Case2. Whengqg € X5, r1r € Ey;

T(B,08,) ((r1q)(r2q)) = Ta,(q) A Tp,, (r1r2)
< T, (@) A[Ta,(r1) A Ty, (r2)]
= [Ta,(q) AT, (r)] A[Ta,(q) ATy, (r2)]
= T(a10a0) (1) A T(a104,)(r29),

I(B,;08,)((r1q) (r2q)) = 1a,(q) N Ip,, (r17r2)

< 1a,(q) A4, (r1) A4, (r2)]
= [a, (@) A 1a, (r)] AT (q) A L4, (r2)]
= laj0a) (119) A L(aj0a) (12q),

FB108,)((rq)(r2q)) = Fa,(q) V Fp,(r112)
< Fa,(q@) V[Fa (r1) V Fa, ()]
= [Fa,(q) V Fa,(r1))] V [Fa, (@) V Fa,(r2)]
= Fla04y)(r19) V Fla,04,)(r29),

forrlq,rzq € X|0X>,.
Case 3. Forall q1q» € Eyj;, 11,2 € Xy suchthatry # rp

T(8,.08,)((q171)(q212)) = T, (q1G2) N Ta,(r1) A Tx,(r2)
< [T, (q1) A Ta, (g2)] A Ta,(r1) A Ta,(r2)
= [Ta,(q1) A Ta,(r))] A T4, (q2) A Ta,(r2)]
= Ta104y)(@171) A Ta,045)(g212),

I(B,08,) ((q171)(q2r2)) = I, (q1G2) N 14, (r1) A 1a,(12)
< [a, (g1) A la(g2)] A s, (r1) A La,(r2)]
= [, (g1) A L4, (r)] AU (g2) A 14, (r2)]
= la0a) (@171) A L(a oAy (q212),

111
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Fig. 2.20 Union of two neutrosophic graph structures

FB,08,) ((q171)(q212)) = Fp,,(q1G2) V Fa,(r1) V Fu,(12)
< [Fa,(q1) vV Fa (@2)] V [Fa,(r1) V Fa,(r2)]
= [Fa,(q1) V Fa,(r1)] V [Fa,(q2) V Fa,(r2)]
= Fa,04)(q171) V Fa,04,)(g272),

for qiry, gory € X1 0 X».
All cases are satisfied fori =1, 2, ..., n.

Definition 2.37 LetG] = (A1 s B| 1 Blg, ey B]n) and Gz = (Az, Bz] , Bzz, ey an)
be neutrosophic graph structures. The union of G, and G,, denoted by

Gi1UG, =(A1UAy, Bi1 UBy, BpUBp, ..., By, U By,),

is defined by following:

Tiauay)(q) = (Ta, UTa)(q) = Ta,(q) V Ta,(q)
) La0a,)(q) = (Ia, U 1a,)(q) = 14,(q) V 14,(q)
Fauan (@) = (Fa, UFa)(q) = Fa(q) N Fa,(q)
forallg € X; U X>,
T(BliUBzi)(qr) = (TBli U TBZi)(qr) = TBli (gr) v TBZi (gr)
(ii) I(B,uBy)(gr) = (Ip, U Ip,)(qr) = Ip,(qr) V Ip, (q1)
Fi,up,(gr) = (Fp, U Fp,)(qr) = Fg, (qr) A Fg,(qr)
forall gr € Ey; U Ey;.

Example 2.21 Union of two neutrosophic graph structures G; and G, shown in
Fig.2.14 is defined as G; U G, = {A| U Ay, B11 U By, B1» U By} and is shown in
the Fig.2.20.

Theorem 2.8 The union G] 0] GZ = (Al U Az, B“ U le, BIZ U Bgz, ey Bln U
By,) of two neutrosophic graph structures of the graph structures G| and G% is
a neutrosophic graph structure of G{ U G3.
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Proof Let q1q» € E1; U E,;. Here we consider two cases:

Case 1. Wheng, g2 € X;,thenaccording to Definition2.37, T4, (q1) = Ta,(q2) =
T, (q192) =0, 14,(q1) = 14,(q2) = Ip,;(q192) =0, Fa,(q1) = Fa,(q2) = Fp,
(q192) =0, s0

T(,uB,)(q192) = T, (q192) V T, (q192)
= Tg,(q192) VO
S [Ta,(q1) ATp(g2)] VO
= [Ta,(q1) V O] A [T4,(g2) Vv O]
=[Ta,(q1) V Ta, (q] A [Ta,(q2) V Ta,(g2)]
= Tia,uay)(q1) A Tia,0a,)(q2)s

I(8,,uB,)(q192) = IB,;(q192) V 1B, (q192)
= Ip,(q192) VO
< Ua, (q1) A4, (g2)] VO
= [{4,(q1) VO] A [1a,(q2) V O]
= [La,(q1) V 1a, (gD A [1a,(q2) V 1a,(g2)]
= Ia,0a,)(q1) A Liauay)(q2),

Fi,uB,)(9192) = F5,,(q192) N F,,(q192)
= Fp,(q192) N O
< [Fa, (q1) V Fa,(q2)] AO
= [Fa,(q1) AO]V [Fa,(g2) A O]
= [Fa,(q1) N Fa,(qD)]V [Fa,(q2) A Fa,(g2)]
= Fa,0a,)(q1) V Fauay(q2),

fOI’ql,qz (S X] U X2.

Case 2. Whengi, g2 € X,,thenaccording to Definition2.37, T4, (q1) = Ta,(q2) =
T, (q192) =0, 14,(q1) = 14,(q2) = I, (q192) =0, F4,(q1) = Fa,(q2) = Fp,
(q192) =0, so

T(,uB,)(q192) = T, (q192) V T, (q192)
= T3, (q192) VO
< [Ta,(q1) A Ta,(g2)] VO
= [Ta,(q1) V 0] A [T4,(q2) Vv O]
= [Ta,(q1) V Ta, (@I A [Ta,(q2) V Ta,(q2)]
= Tia,uay)(q1) A Tia,0a,)(q2)s
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I(,uB) (q192) = I, (q192) V 1B, (q192)
= Ip,(q192) VO
< [Ua,(q) A 1A, (g2)] VO
= [1a,(q1) V O] A [1,(g2) Vv 0]
= [L4,(q1) V 14,(q1)] A [14,(q2) V 14,(q2)]
= Ia,0a,)(q1) A 14,045 (q2),

Fep,us (@192) = Fp,,(q192) N Fp,,(q192)
= F5,(q192) NO
< [Fa,(q1) V Fa,(q2)] AO
= [Fa,(q1) AO]V [Fa,(g2) A O]
= [Fa,(q1) A Fa,(q)]V [Fa,(q2) A Fa,(q2)]
= Fla,uay(q1) V Fauay(q2),

fOI‘ql,qZ (S X] U Xz.
Both cases are satisfied Vi € {1, 2, ..., n}. This completes the proof.

Theorem 2.9 Let G* = (X1 U Xy, E\1UEy, EpUEy, ..., E, UE),) be the
union oftwo graph structures G{ = (X1, E11, E12, ..., E1,) and G5 = (X2, Ey, Ex,
..., Eay). Then every neutrosophic graph structure G = (A, By, Ba, ..., B,) of G*
is union of two neutrosophic graph structures Gy = (A1, By1, Bia, ..., By,) and G,
= (Ay, By, By, ..., By,) of graph structures G| and G, respectively.

Proof First we define Ay, A,, By; and By; fori € {1,2,...,n} as:
Ta (@) = Ta(q), 1a,(q) = 14(q), Fa,(q) = Fa(q), ifg € X;
Ta,(q) = Ta(q), 14,(q) = 14(q), Fa,(q) = Fa(q), if g € X5

T, (q192) = T (q192), I, (q192) = I8 (q192), F,(q192) = F,(q192), if qiq» €
E\i, T3, (q192) = T, (q192), I, (q192) = 1B.(q192), F,,(q192) = FB,(q192),ifq19> €
E25.ThenA = A1 UA2 and B; = B1; U By;,1 € {1,2,...,71}.

Now forqiq» € Eyi, k=1,2,i=1,2,...,n

T3, (q192) = Tp,(q192) < Ta(q1) N Ta(q2) = T4, (q1) A Ta,(q2),

Ip.(q192) = Ip,(q192) < 1a(q1) N 14(q2) = 14,(q1) N 14, (q2),

Fg,(q192) = F,(q192) < Fa(q1) vV Fa(q2) = Fa(q1) V Fa,(q2),

ie.

G = (Ag, Bii, Bra, . . ., Biy) is a neutrosophic graph structure of G, k = 1, 2.
Thus G = (A, By, B, ..., B,), a neutrosophic graph structure of G* = G} U G3, is
union of two neutrosophic graph structures G| and G,.

Definition 2.38 LetG] = (A] s B[], B[2, ey B]n) and Gz = (Az, Bz] s Bzz, ey an)
be neutrosophic graph structures and let X; N X, =@. The join of G| and G,, denoted
by
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¢1(0.5,0.2,0.6) 44(0.7,0.3,0.6)

(€'0'2°0°2°0) T+

Bi1 +/B21{0.7, 1.2

( .
42(0.7,0.3,0.8) 43(0.4,0.3,0.4)

Fig. 2.21 Join of two neutrosophic graph structures

G+ Gy = (A1 + Ay, Bii + Bay, Bio + By, ..., By + Bay),

is defined by the following:

Tia1+42) (@) = Tia,ua,) ()
() LA, +4,)(q) = Iia,uan (@)

Fa,+a)(q) = Fiauay(q)

forallg € X| U X»,

T(y+8:)(qr) = T(s,UB)(gT)
(i) I(B,+8,)(qr) = I(8,UBy)(qT)
F(Bli"rBZi)(qr) = F(BI;UBz,»)(CI”)
forall gr € Ej; U Ey;,
T(BI,-+BZ,-)(C]’") - (TB],- + TB;,)(C]V) = TA] (C]) AN TAz (r)
(ii1) I, +B,)(qr) = (Up, + Ip,)(qr) = I4,(q) N 14, (r)
F(B]i"rBZi)(qr) = (FBli + Fle)(qr) = FAl(q) \% FAz(r)
forallg € Xy, r € X».

Example 2.22 Join of two neutrosophic graph structures G; and G, shown in
Fig.2.14 is defined as G| + G, = {A| + A3, By + By, Bz + By} and is shown
in the Fig.2.21.

Theorem 2.10 The join G| + G, = (A} + Ay, Bi1 + Ba1, Bia+ Ba, ..., Bin +
Bo,,) of two neutrosophic graph structures of the graph structures G} and G5 is a
neutrosophic graph structure of G7 + G5.

Proof Let q1q> € E1; + E,;. Here we consider three cases:

Case 1. Whengi, g2 € X;,thenaccording to Definition 2.38, T4, (q1) = Ta,(q2) =
T, (q192) =0, 1a,(q1) = 14,(q2) = Ip,,(q192) =0, Fa,(q1) = Fa,(q2) =
Fg, (q192) =0, so,

T3,+8.)(q192) = Tp,,(q192) V T, (q192)
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= Tg,(q192) VO

< [Ta,(q1) ATy (g2)] VO

= [Ta,(q1) V O] A [T4,(q2) V 0]

= [Ta,(q1) V Ta, (DI A [T, (q2) V Ta,(q2)]
= Tia+4) (@) A Tia,+4,)(q2),

I, 18,)(q192) = I, (q192) V I, (q192)
= Ip,(q192) VO
< [a,(q1) N 14,(g2)] VO
= [14,(q1) VO] A [14,(q2) V O]
= [1a,(q1) V 14,(q1)] A [14,(q2) V 14,(q2)]
= I +40)(@1) A Lia+45)(q2),

FB,+8,)(q192) = Fp,,(q192) N Fp,(q192)
= Fg,(q192) NO
< [Fa,(q1) V Fa,(q2)] NO
= [Fa,(q1) ANO]V [Fa,(g2) A O]
= [Fa, (@) N Fa,(q)]V [Fa, (g2) A Fa,(g2)]
= Fla,+4)(qD) V Fa,+4,)(q2),

forql,qz e X+ X».

Case 2. Whengi, g2 € X,,thenaccording to Definition 2.38, T4, (q1) = Ta,(q2) =
T, (q192) =0, Ia,(q1) = 1a,(q2) = Ip,(q192) =0, Fa,(q1) = Fa,(q2) =
FBli (QIQZ) =0, so0

T8, +8,)(q192) = T8,,(q192) V T, (q192)
= T3, (q192) VO
< [Ta,(q1) A Ta,(g2)] VO
= [Ta,(q1) vV O] A [T4,(g2) Vv O]
= [Ta,(q1) V Ta,(qD]I A [T, (g2) V Ta,(g2)]
= Ta+42)(q1) N T(a,+4,)(q2),
I, +8,)(q192) = I, (q192) V I, (q192)
=1p,(q192) VO
< Ua,(q1) N 14,(g2)] VO
= [14,(q1) vV O] A [14,(q2) v 0]
= [14,(q1) V 14,(q1)] A [14,(q2) V 14,(q2)]
= La,+4) (@) A Lia,+4,)(q2),
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FB,+8:)(q192) = Fp,,(q192) N Fp,(q192)
= Fp,(q192) N O
< [Fa,(q1) V Fa,(g2)] AO
= [Fa,(q1) AO]V [Fa,(q2) A O]
= [Fa,(q) N Fa,(q)]V [Fa, (g2) A Fa,(q2)]
= Fa+4,)(q1) V Fa+4,)(q2),

fOI'ql,QQ (S X] +X2
Case 3. When q; € X1, g2 € X5, then according to Definition 2.38,
Ta (q2) = Ta,(q1) =0, 14,(q2) = 14,(q1) =0, Fa,(q2) = Fa,(q1) =0, s0

T(Bi+8:)(q192) = Ta, (q1) A Ta,(q2)
= [Ta,(q1) V O] A [Ta,(g2) Vv 0]
= [Ta,(q1) V Ta, (g A [Ta,(q2) V T, (q2)]
= Tia,+4)(q1) N Ta+4,)(q2),

LB, +8,)(q192) = 1a,(q1) A 14,(q2)
= [1a,(q1) V Ol A [14,(gq2) Vv 0]
= [1a,(q1) V 14, (qD] A [14,(q2) V 14,(q2)]
= La,+4)(q1) N Lia,+4,)(q2),

Fp,+8,)(q192) = Fa,(q1) V Fa,(q2)
= [Fa,(q1) ANO]V [Fa,(q2) A O]
= [Fa,(q1) N Fa,(q)]V [Fa,(g2) A Fa,(q2)]
= Fa,+4)(qD) V Fa,+4,)(q2)s

fOI‘ql,qg e X + X,.

All cases are satisfied Vi € {1,2,...,n}.

Theorem 2.11 IfG* = (X + X2, E11 + Eoi, Ev2 + En, ..., E1y + Eoy) isjoin of
two graph structures G| = (X1, E11, E1a, ..., E\n) and G} = (X2, Eay, Ea, . . .,
E»,). Then every strong neutrosophic graph structure G = (A, By, B, ..., B,) of
G is join of two strong neutrosophic graph structures G| = (A1, By1, B2, ..., Biy)
and G, = (A2, By, By, ..., By,) of graph structures G and G3, respectively.

Proof First we define Ay and By; fork =1,2andi =1,2,...,n as:
Ta (q) = Ta(q), 14,(q) = 14(q), Fa,(q) = Fa(q), if g € Xi

T, (q192) = T (q192), I, (q192) = 1B (q1q2), FB,(q192) = Fp,(q192), if qiq> €
Ey;
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Now for qiq» € Eyi, k=1,2,i=1,2,...,n
T3, (q192) = Tp,(q192) = Ta(q1) N Ta(g2) = Ta, (q1) A T4, (q2),
Ip.(q192) = Ip,(q192) = 14(q1) A 1a(q2) = Ia,(q1) N 14,(q2),
Fp.(q192) = Fp,(q192) = Fa(q1) vV Ta(q2) = Ta,(q1) V T4, (q2),
ie.
Gy = (A, Byi, Bia, . .., By,) is a strong neutrosophic graph structure of G§, k=1,2.
Moreover, G is join of G and G, as shown:
Using Definitions 2.37and 2.38, A = A{ U A, = A; + A, and B; = B|; U By, =
Bii + B2, Vq192 € E1; U Ey;.
When q1q> € Ej; + Ey (Ej; U Ey),ie.q € X;and gy € X,
T (q192) = Ta(q1) A Ta(q2) = Ta,(q1) A Ta,(q2) = T(,+8,)(q192)s
I (q192) = 14(q1) N 14(q2) = 14, (q1) N 14,(q2) = I(B,+B,)(q192),
Fp,(q192) = Fa(q1) V Fa(q2) = Fa,(q1) V Fa,(q2) = F3,+8,)(q192),
Calculations are similar when q; € X,,¢q, € X;.Itistruewheni = 1, 2, ..., n. This
completes the proof.

2.4 Applications of Neutrosophic Graph Structures

Graph structures are amazing source of graph-theoretical notions to represent the
most prominent relations between objects. But these graph structures do not repre-
sent all real-world relations. Therefore, fuzzy graph structures are important to repre-
sent the relations between objects of uncertain systems existing in nature. However,
graph structures and fuzzy graph structures are failed to depict the most prominent
relations between objects in many real-world phenomenons due to natural existence
of indeterminacy or neutrality. It increases the utility of neutrosophic graph structures.

2.4.1 Detection of Crucial Crimes During Maritime Trade

Waters are very important for trade in whole world but crimes through waters are
increasing day by day. Crimes held during maritime trade are in abundance but
some are very crucial including human trafficking, illegal carrying of weapons, black
money transfer, smuggling of precious metals, drug trafficking and smuggling of rare
plants and animals. Using neutrosophic graph structure, we can easily investigate the
fact that between any two countries which maritime crime is chronic and increasing
rapidly with time. Moreover, we can decide which country is most sensitive for
particular type of maritime crimes. We consider a set X consisting of eight countries.

X={Bangladesh, Malaysia, Singapore, United Arab Emirates, Pakistan, India,
Kenya, Italy}. Let A be the neutrosophic set on X, defined in Table2.1.

In Table 2.1, T depicts the importance of that particular country in the world due
to its geographic position, F indicates the degree of its nonimportance in the world,
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Table 2.1 Neutrosophic set A of eight countries

Country T 1 F

Bangladesh 0.8 0.7 0.6
Malaysia 0.7 0.7 0.8
Singapore 0.9 0.5 0.5
United Arab Emirates | 1.0 0.5 0.6
Pakistan 0.9 0.5 0.5
India 0.8 0.7 0.7
Kenya 0.7 0.6 0.7
Italy 0.9 0.6 0.5

Table 2.2 Neutrosophic set of crimes between Pakistan and other countries during maritime trade

Type of crime (P, UAE) (P, B) (P, M) (P, S)
Human (0.7,0.4,0.5) (0.8,0.3,0.4) (0.7,0.4,0.2) (0.6,0.4,0.2)
trafficking

Illegal carrying of | (0.6, 0.3, 0.6) (0.7,0.3,0.4) (0.4,0.5,0.5) (0.4,0.3,0.5)
weapons
Black money (0.6,0.3,0.2) (0.7,0.5,0.4) (0.2,04,0.3) (0.9,0.2,0.2)
transfer
Smuggling of (0.8,0.3,0.2) (0.6, 0.3,0.3) (0.2,04,0.3) (0.8,0.5,0.5)
precious metals
Drug trafficking | (0.7, 0.3, 0.3) (0.5,04,0.3) (0.6, 0.5, 0.6) (0.8,0.4,0.3)
Smuggling of (0.3,0.5,0.5) 0.4,0.3,0.4) (04,04,0.5) (0.2,0.3,0.3)
rare plants and
animals

and I expresses, to which extent it is undecided/indeterminate to be beneficial for
the world, geographically.

Let Bangladesh = B, Malaysia = M, Singapore = S, United Arab Emirates = UAE,
Pakistan = P, India = I, Kenya = K, Italy = IT.

In Tables2.2,2.3,2.4,2.5, 2.6, 2.7 and 2.8, we have shown the values of 7', I and
F of different crimes for each pair of countries.

Many relations on set X can be defined, let we define six relations on X as:

E| =Human trafficking, E, =Illegal carrying of weapons, E3 = Black money transfer,
E, = Smuggling of precious metals, E5 = Drug trafficking, E¢ = Smuggling of rare
plants and animals, such that (X, Ey, E», E3, E4, Es, Eg) is a graph structure. An
element in a relation detects that kind of crime during maritime trade between those
two countries.

As (X, E|, E,, E3, E4, Es, Eg) is a graph structure, an element will not be in
more than one relations, so it can appear just once. Therefore, we will consider it an
element of that relation for which its percentage of truth is high, and percentage of
both falsity and indeterminacy is low as compared to other relations.
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Table 2.3 Neutrosophic set of crimes between UAE and other countries during maritime trade

Type of crime (UAE, B) (UAE, M) (UAE, S) (UAE, I)
Human (0.7,0.3,0.4) (0.6, 0.2, 0.5) (0.3,0.2,0.5) (0.6,0.4,0.2)
trafficking

Illegal carrying of | (0.5, 0.2, 0.2) (0.5,0.3,0.2) (0.4,0.3,0.5) (0.4,0.3,0.5)
weapons

Black money (0.6, 0.3,0.3) (0.6, 0.2,0.3) (0.6, 0.2,0.3) (0.6, 0.4,0.5)
transfer

Smuggling of (0.6,0.2,0.2) (0.6, 0.3,0.3) (0.6, 0.3,0.3) (0.8,0.3,0.2)
precious metals

Drug trafficking | (0.6, 0.2, 0.2) (0.5,04,0.3) (0.7,0.3,0.2) (0.7,0.4,0.3)
Smuggling of (0.3,0.4,0.4) (0.4,0.3,0.4) (0.4,0.2,0.5) (0.3,0.3,0.3)
rare plants and

animals

Table 2.4 Neutrosophic set of crimes between Bangladesh and other countries during maritime

trade

Type of crime (B, M) (B, S) B, (B, K)
Human (0.6,0.3,0.4) (0.8,0.3,0.2) (0.5,0.2,0.5) (0.6, 0.4, 0.5)
trafficking

Illegal carrying of | (0.5, 0.2, 0.5) (0.5,0.3,0.2) (0.7,0.3,0.5) (04, 0.3,0.5)
weapons

Black money 0.4,0.2,0.2) (0.7,0.4,0.3) (0.1, 0.1, 0.2) (0.1,0.3,0.4)
transfer

Smuggling of 0.4,0.2,0.2) (0.6, 0.3,0.3) (0.2,0.3,0.3) 0.2,0.2,0.4)
precious metals

Drug trafficking | (0.6, 0.2, 0.2) (0.5,0.4,0.3) (0.6,0.3,0.5) (0.5,0.4,0.4)
Smuggling of (0.2,0.3,0.3) (0.3,0.2,0.3) (0.2,0.1,0.4) (0.5,0.2,0.2)
rare plants and

animals

According to given data, we write the elements in relation to their truth, falsity
and indeterminacy values, resulting sets are neutrosophic sets on E;, E,, E3, Ey,
Es, E¢, respectively. We can name these sets as Bj, By, B3, By, Bs, Bg, respectively.
Let
E| ={(Bangladesh, Pakistan), (Malaysia, Pakistan), (Bangladesh,
Singapore)},

E, ={(Pakistan, India)},

E; ={(Singapore, Pakistan)},

Ey={(India, Singapore), (United ArabEmirates, India)},
Es ={(Italy, Pakistan), (India, Italy)},

E¢ ={(Kenya, Singapore)}.

And corresponding neutrosophic sets are:
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Table 2.5 Neutrosophic set of crimes between Malaysia and other countries during maritime trade

Type of crime M, S) M, D M, K) M, IT)
Human (0.5,0.3,0.4) (0.6, 0.2,0.3) (0.3,0.2,0.5) (0.6,0.4,0.5)
trafficking

Illegal carrying of | (0.6, 0.2, 0.2) (0.5,0.3,0.2) (0.4,0.3,0.5) (0.4,0.3,0.5)
weapons

Black money (0.6, 0.3,0.3) 0.2,0.2,0.3) 0.2,0.2,0.3) 0.2,0.4,0.5)
transfer

Smuggling of 0.6,0.2,0.2) (0.6,0.3,0.3) (0.2,0.3,0.3) (0.2,0.2,0.6)
precious metals

Drug trafficking | (0.5, 0.2,0.2) (0.5,0.4,0.3) (0.4,0.3,0.6) (0.7,0.4,0.2)
Smuggling of (0.3,0.4,0.4) (0.4,0.3,0.4) (0.6,0.2,0.2) (0.5,0.3,0.3)
rare plants and

animals

Table 2.6 Neutrosophic set of crimes b

etween Singapore and other countries during maritime trade

Type of crime (S, 1) S, K) (S,1IT) P 1)

Human (0.5,0.3,0.4) (0.3,0.2,0.5) (0.3,0.2,0.5) (0.6, 0.4, 0.6)
trafficking

Illegal carrying of | (0.7, 0.4, 0.5) (0.5,0.3,0.2) (0.4,0.3,0.5) (0.8,0.2,0.4)
weapons

Black money (0.5,0.3,0.4) (0.6,0.2,0.3) (0.6,0.2,0.3) (0.7,0.4,0.5)
transfer

Smuggling of (0.8,0.3,0.7) (0.6,0.3,0.3) (0.6,0.3,0.3) (0.6,0.2,0.4)
precious metals

Drug trafficking | (0.7, 0.3, 0.4) (0.5,0.4,0.3) (0.6,0.3,0.2) (0.8,0.4,0.4)
Smuggling of (0.7, 0.5, 0.6) (0.4,0.3,0.4) (0.6,0.2,0.5) (0.7,0.3,0.3)
rare plants and

animals

By ={((B, P),0.8,0.2,0.2),(M, P),0.7,0.4,0.2),((B, S), 0.8,0.3,0.2)},

B, ={((P,1),0.8,0.2,0.4)},

B3 ={((S, P),0.9,0.2,0.2), },

B, =1{(,S),0.8,0.3,04),(UAE, I),0.8,0.3,0.2)},
Bs={((IT, P),0.9,0.3,0.3),(({,1T7),0.8,0.3,0.3)},
Bs ={((K, §),0.7,0.2,0.4)}.

Clearly, (A, By, By, B3, B, Bs, Bg) is a neutrosophic graph structure as shown
in Fig.2.22.

In neutrosophic graph structure shown in Fig.2.22, every edge detects most fre-
quent crime between adjacent countries during maritime trade. For instance, most
frequent maritime crime between Pakistan and Singapore is black money transfer, its
strength is 90%, weakness is 20% and indeterminacy is 20%. We can also note that
for relation human trafficking, vertex Pakistan has highest vertex degree, it means
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Table 2.7 Neutrosophic set of crimes between Italy and other countries during maritime trade

Type of crime T, P) (T, UAE) dT, B) AT, 1)
Human (0.5,0.3,0.4) (0.3,0.2,0.5) (0.3,0.2,0.5) (0.6, 0.4, 0.6)
trafficking

Illegal carrying of | (0.8, 0.3, 0.3) (0.6, 0.3,0.2) (0.4,0.3,0.5) (0.7,0.3,0.5)
weapons

Black money (0.6, 0.3,0.3) (0.5,0.2,0.3) 0.2,0.2,0.3) (0.5,0.4,0.5)
transfer

Smuggling of (0.7,0.3,0.3) (0.6, 0.3,0.3) (0.2,0.3,0.3) (0.7,0.3,0.6)
precious metals

Drug trafficking | (0.9, 0.3, 0.3) (0.6, 0.4, 0.3) (0.7,0.3,0.5) (0.8,0.3,0.3)
Smuggling of (0.3,0.4,0.4) (0.4,0.3,0.4) (0.6,0.2,0.5) (0.7,0.3,0.3)
rare plants and

animals

Table 2.8 Neutrosophic set of crimes between Kenya and

other countries during maritime trade

Type of crime (K, P) (K, UAE) K, D (K, IT)
Human (0.5,0.3,0.4) (0.6, 0.2, 0.5) (0.5,0.2,0.5) (0.6, 0.4, 0.5)
trafficking

Illegal carrying of | (0.6, 0.2, 0.5) (0.5,0.3,0.4) (0.5,0.3,0.5) (0.4,0.3,0.5)
weapons

Black money (0.5,0.3,0.3) (0.5,0.2,0.3) (0.5,0.2,0.3) (0.5,0.4,0.5)
transfer

Smuggling of 0.4,0.2,0.2) (0.6, 0.3,0.3) (0.6, 0.3,0.3) 0.4,0.2,0.4)
precious metals

Drug trafficking | (0.7, 0.2, 0.2) (0.5,04,0.3) (0.5,0.3,0.5) (0.8,0.4,0.2)
Smuggling of 0.3,0.4,0.4) (0.7,0.3,0.4) 0.6,0.2,0.4) (0.7,0.3,0.3)
rare plants and

animals

Pakistan is most sensitive country for human trafficking. Moreover, according to our
neutrosophic graph structure, most frequent crime is human trafficking. It means
that navy and maritime forces of these eight countries should take action to control
human trafficking.

2.4.2 Decision-Making of Prominent Relationships

Among the countries of this world, various types of relationships exist, for example
friendship, rival or enemy, religious affection, trade, political and military. Between
any two countries, all relationships are not of same strength. Some relationships are
comparatively stronger than other relationships. In general, it is difficult and time
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Bangladesh

Fig. 2.22 Neutrosophic graph structure showing most crucial maritime crime between any two
countries

consuming to judge all relationships among the countries and to decide the most
prominent one. But through neutrosophic graph structure, we can represent all these
in easiest way and can be judged even in a single glance on graph. Moreover, we
can be aware of the status of relationship, that is, what is percentage of its strength,
weakness and in how much percentage it is indeterminate. We can also examine
which pair of countries are in same kind of relationship. We consider a set X of eight
countries.

X = {America, Russia, China, Japan, Pakistan, India, Iran, Saudi
Arabia}. Let A be the neutrosophic set on X, defined in Table 2.9.

In Table2.9, T indicates positive impact (strength) of a particular country for
whole world, F indicates negative impact (weakness), and / expresses that in what
percentage or magnitude that country’s position is undecided or indeterminate for
global world. Let we denote the countries with alphabets: A = America, R = Russia,
CH = China, J = Japan, P = Pakistan, I = India, IR = Iran, S = Saudi Arabia.

In Tables2.10, 2.11, 2.12, 2.13, 2.14 and 2.15, we have shown the 7', I and F
values of different relationships for each pair of countries.
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Table 2.9 Neutrosophic set A of a few countries on globe

Country T 1 F

America 0.9 0.3 0.2
Russia 0.7 0.4 0.3
China 0.8 0.4 0.4
Japan 0.8 0.5 0.4
Pakistan 0.7 0.6 0.7
India 0.7 0.8 0.6
Iran 0.7 0.7 0.6
Saudi Arabia 0.6 0.9 0.7

Table 2.10 Neutrosophic set of relationships between America and other countries

Type of (A,R) (A, CH) (A, P) (A D (A, IR)
relation

Friendship (0.0,0.2,0.3) [(0.2,0.3,04) [(0.2,0.1,0.4) |(0.5,0.3,0.5) |(0.1,0.3,0.5)
Rival or (0.7,0.1,0.1) |(0.8,0.2,0.1) {(0.3,0.2,0.4) |(0.3,0.2,0.4) |(0.5,0.2,0.4)
enemy

Religious 0.4,02,0.2) |(0.1,0.3,0.2) |(0.1,0.1,0.2) |(0.1,0.3,0.4) |(0.1,0.1,0.2)
affection

Trade (0.3,0.1,0.1) |(0.5,0.2,0.2) {(0.1,0.2,0.2) |(0.1,0.1,0.5) |(0.6,0.1,0.3)
Politics 0.6,0.1,0.1) |(0.4,0.3,0.2) |(0.6,0.1,0.1) |(0.7,0.3,0.2) |(0.7,0.3,0.1)
Military (0.2,0.3,0.3) [(0.3,0.2,0.3) [(0.5,0.1,0.4) |(0.6,0.2,0.2) |(0.2,0.3,0.2)

Table 2.11 Neutrosophic set of

relationships between Russia and other countries

Type of (R, CH) R, 1)) R, P) R, D (R, IR)
relation

Friendship (0.5,0.2,0.3) |(0.5,0.2,0.3) |(0.3,0.3,0.4) |(0.4,0.3,0.3) |(0.1,0.1,0.5)
Rival or (0.6,0.2,0.2) |(0.6,0.2,0.2) |(0.3,0.3,0.3) |(0.2,0.2,0.4) |(0.4,0.1,0.3)
enemy

Religious (0.1,0.1,0.4) |(0.2,0.1,0.3) |(0.1,0.1,0.4) |(0.4,0.4,0.3) |(0.2,0.1,0.5)
affection

Trade 0.4,0.1,0.3) |(04,0.2,0.3) |(04,0.1,0.4) |(0.5,0.2,0.3) |(0.4,0.1,0.3)
Politics 0.7,0.3,0.4) |(0.7,0.1,0.3) |(0.4,0.1,0.3) |(0.5,0.2,0.3) |(0.7,0.4,0.5)
Military 0.2,0.1,04) |(0.4,0.1,0.3) |(0.7,0.1,0.3) (0.7,0.2,0.4) |(0.2,0.1,0.3)

We can define many relations on set X, let we define six relations on X as:
E| = Friendship, E, = Rival or Enemy, E3 = Religious affection, E4 = Trade, Es =
Politics, Eq = Military, such that (X, E, E,, E3, E4, Es, E¢) is a graph structure. An
element in a relation indicates that these two countries have a particular relationship.
As (X, Ey, E», E3, E4, Es, Eg) is a graph structure, so an element will not be in
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Table 2.12 Neutrosophic set of relationships between China and other countries

Type of (CH,J)) (CH, P) (CH, D) (CH, IR) (CH, S)
relation

Friendship (0.5,0.2,0.3) |(0.7,0.1,0.1) |(0.2,0.3,0.6) |(0.1,0.4,0.6) |(0.2,0.4,0.6)
Rival or 0.6,0.2,0.2) |(0.1,0.1,0.7) |(0.7,0.2,0.2) |(0.3,0.3,0.6) |(0.2,0.3,0.5)
enemy

Religious (0.1,0.1,0.4) |(0.3,0.3,0.6) |(0.4,0.4,0.3) |(0.2,0.2,0.5) [(0.1,0.4,0.6)
affection

Trade (0.1,0.1,0.3) |(0.6,0.1,0.1) |(0.4,0.2,04) |(0.7,0.1,0.3) |(0.5,04,0.2)
Politics (0.8,0.4,04) |(0.2,04,0.3) |(0.6,0.2,0.2) |(0.7,0.2,0.2) |(0.6,0.4,0.3)
Military (0.4,0.2,0.3) |(0.6,0.2,0.3) |(0.1,0.4,0.2) |(0.2,0.4,0.6) |(0.1,0.4,0.6)
Table 2.13 Neutrosophic set of relationships between Japan and other countries

Type of d.A) d,P) a0 (U, IR) a.s)
relation

Friendship (0.5,0.3,04) |(0.2,0.3,0.6) |(0.3,0.4,0.3) |(0.2,0.5,0.6) |(0.1,0.4,0.6)
Rival or (0.7,0.3,0.3) |(0.3,0.4,0.6) |(0.2,0.3,0.5) |(0.2,0.4,0.4) [(0.3,0.4,0.4)
enemy

Religious (0.1,0.3,0.3) |(0.1,0.4,0.5) |(0.4,0.4,0.5) |(0.1,0.5,0.6) | (0.1,0.4,0.6)
affection

Trade (0.1,0.3,04) |(0.7,0.3,0.2) |(0.7,0.2,0.1) |(0.6,0.4,0.6) |(0.6,0.5,0.7)
Politics (0.8,0.3,0.3) |(0.6,0.4,0.2) |(0.6,0.5,0.2) |(0.6,0.3,0.1) | (0.4,0.3,0.4)
Military (0.2,0.3,0.3) |(0.4,0.4,04) |(0.5,0.4,0.3) |(0.2,0.4,0.6) |(0.1,0.4,0.6)
Table 2.14 Neutrosophic set of relationships between Saudi Arabia and other countries

Type of (L IR) S, D (S, 1R) (S, A) (S,R)
relation

Friendship 0.2,0.4,04) |(0.1,0.7,0.6) |(0.2,0.4,0.6) |(0.4,0.3,0.6) |(0.2,0.2,0.6)
Rival or (0.6,0.3,0.6) |(0.5,0.4,0.5) |(0.5,0.4,04) |(0.4,0.2,0.5) |(0.4,0.2,0.4)
enemy

Religious (0.1,0.4,0.6) |(0.3,0.4,0.6) |(0.6,0.4,0.2) |(0.1,0.1,0.7) |(0.2,0.1,0.6)
affection

Trade (0.4,0.4,0.5) |(0.1,0.4,0.6) |(0.3,0.4,0.6) |(0.2,0.1,0.6) |(0.1,0.1,0.3)
Politics (0.7,0.4,0.2) |(0.3,0.4,0.6) |(0.6,0.4,0.6) |(0.6,0.2,0.3) |(0.6,0.4,0.6)
Military (0.2,0.5,0.6) |(0.1,0.4,0.6) |(0.2,0.3,0.7) |(0.1,0.1,0.7) |(0.2,0.1,0.5)

more than one relation. So, we will put it in that relation for which percentage of
truth is high, percentage of both falsity and indeterminacy is low as compared to
other relationships, using above-mentioned data.

‘We write the elements in relations with their truth, falsity and indeterminacy values
according to given data, resulting sets are neutrosophic sets on E;, E;, E3, Ey4, Es,
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Table 2.15 Neutrosophic set of relationships between Pakistan and other countries

Type of relation ()] (P, IR) (P, S)

Friendship (0.1,0.4,0.6) (0.5,0.4,0.5) (0.5,0.1,0.1)
Rival or enemy (0.7,0.1,0.1) 0.4,04,0.5) (0.3, 0.6, 0.6)
Religious affection 0.4,0.4,0.6) (0.7,0.4,0.5) 0.6, 0.1,0.1)
Trade (0.3,0.3,0.6) 0.4,0.4,0.5) (0.3,0.2,0.6)
Politics (0.6,0.2,0.2) (0.5,0.4,0.5) 0.2,0.4,0.5)
Military (0.1,0.2,0.6) (0.2,04,0.6) (0.1,0.4,0.6)

Eg, respectively. We can name these sets as By, By, B3, B4, Bs, Bg, respectively. Let
B, ={((P,CH),0.7,0.1,0.1)},

B, ={((P,1),0.7,0.1,0.1), ((A, R),0.7,0.1,0.1), ((A,CH), 0.8,0.2,0.1),
(I,CH),0.7,0.2,0.2)},

B ={((P, S),0.6,0.1,0.1), (P, IR),0.7,0.4,0.5)},

By ={((P,J),0.7,0.3,0.2), (({, J),0.7,0.2,0.1)},

Bs ={((P, A),0.6,0.1,0.1), ((A, 1),0.7,0.3,0.2), ((A, S), 0.6,0.2,0.3),
((A,IR),0.7,0.3,0.1), ((A, J),0.8,0.3,0.3)},

Bs={((P, R),0.7,0.1,0.3), ((R, 1),0.7,0.2,0.4)}.

Clearly, (A, By, B, B3, B4, Bs, Bg) is a neutrosophic graph structure as shown in
Fig.2.23.

In neutrosophic graph structure shown in Fig. 2.23, every edge indicates the most
prominent relationship of adjacent vertices(countries), for example most prominent
relationship between Pakistan and China is friendship, it is 70% strong, 10% weak
and 10% indeterminate. It can be noted that for the relation politics, vertex America
has highest degree, it shows that America is the most prominent country for having
political relationship with other countries in A. Further, we can tell that China and
India, America and Russia, Pakistan and India have common relationship, that is,
they are rival or enemy of each other. Moreover, according to our neutrosophic graph
structure most frequent relation is politics, it means that among these eight countries
politics is dominating relationship.

This neutrosophic graph structure depicts most prominent relationships among
some elements (countries) of A. By taking large neutrosophic graph structure, most
dominating relationships among all the countries of A can be detected. On the similar
basis, we can make a neutrosophic graph structure for all countries across the world,
in order to find the status and strength of prominent relationships among them. From
neutrosophic graph structure, we can also determine that which pair of countries
have common relationships. Further, we can find which country is most prominent
for having a particular kind of relationship with other countries. Most frequent rela-
tionship in the neutrosophic graph structure will indicate that this relationship is
prevailing in the world. So, using neutrosophic graph structure, it is quite easy to
judge, in which direction this world is moving? whether it is moving towards peace
or war/Cold War.
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Fig. 2.23 Neutrosophic graph structure showing most prominent relationship between any two
vertices(countries)

2.4.3 Detection of Most Frequent Smuggling

Smuggling on the seaports are increasing rapidly with time. There are 4,764 seaports
on Atlantic ocean, Arctic ocean, Indian ocean, Pacific ocean, etc. These seaports
are very useful and advantageous for import and export of different types of goods
through out the world. Besides, there are also many disadvantages of these seaports.
Crimes held on seaports are in abundance, but Smuggling of different kinds like
human smuggling, weapons smuggling, black money smuggling, gold and diamond
smuggling, smuggling of ivory and drug smuggling are most alarming. A lot of time
and labour is required to collect and manipulate the data from all seaports to judge
that which type of smuggling is frequent. But using neutrosophic graph structure, we
can easily investigate the fact that between any two seaports which type of smuggling
is chronic and increasing violently. Moreover, we can decide which seaport is most
sensitive for smuggling, globally and need to be focused by security teams. We
consider a set X consisting of eight seaports.

X= {Chalna, Penang, Singapore, Dubai, Karachi, Mumbai, Mombasa, Gioia
Tauro}. Let A be the neutrosophic set on X, defined in Table 2.16.

In Table 2.16, T depicts the importance of that particular seaport in the world due
to its geographic position, F indicates the degree of its nonimportance in the world,
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Table 2.16 Neutrosophic set A of eight seaports

Country T 1 F

Chalna 0.7 0.6 0.5
Penang 0.6 0.6 0.7
Singapore 0.8 0.4 0.4
Dubai 0.9 0.4 0.5
Karachi 0.8 0.4 0.4
Mumbai 0.7 0.6 0.6
Mombasa 0.6 0.5 0.6
Gioia Tauro 0.8 0.5 0.4

Table 2.17 Neutrosophic set of smuggling between Karachi and other seaports

Type of (K, DU) (K, ©C) (K, P) (XK, S)
smuggling

Human (0.6,0.3,0.4) (0.7,0.2,0.3) (0.6,0.3,0.1) (0.5,0.3,0.1)
smuggling

Weapons (0.5,0.2,0.5) (0.6,0.2,0.3) (0.3,0.4,04) (0.3,0.2,0.4)
smuggling

Black money (0.5,0.2,0.1) (0.6,0.4,0.3) (0.1,0.3,0.2) (0.8,0.1,0.1)
smuggling

Gold and (0.7,0.2,0.1) (0.5,0.2,0.2) (0.1,0.3,0.2) (0.7,0.4,0.4)
diamond

smuggling
Drug smuggling | (0.6, 0.2, 0.2) (0.4,0.3,0.2) (0.5,0.4,0.5) (0.7,0.3,0.2)
Smuggling of 0.2,04,0.4) (0.3,0.2,0.3) (0.3,0.3,0.4) (0.1,0.2,0.2)
ivory

and I expresses, to which extent it is undecided/indeterminate to be beneficial for
the world, geographically.

Let Chalna = C, Pengang = P, Singapore = S, Dubai = DU, Karachi = K, Mumbai
= MU, Mombasa = MO, Gioia Tauro = GT.

In Tables2.17, 2.18, 2.19, 2.20, 2.21, 2.22 and 2.23, we have shown the values of
T, I and F of different smuggling for each pair of seaports.

Many relations on set X can be defined, let we define six relations on X as:

E| = Human smuggling, E, = Weapons smuggling, E3 = Black money smuggling,
E, = Gold and diamond smuggling, E5 = Drug smuggling, Es = Smuggling of ivory,
such that (X, E, E,, E3, E4, Es, E¢) is a graph structure. An element in a relation
detects that kind of smuggling between those two seaports.

As (X, E|, E,, E3, E4, Es, Eg) is a graph structure, an element will not be in
more than one relations, so it can appear just once. Therefore, we will consider it an
element of that relation for which its percentage of truth is high, and percentage of
both falsity and indeterminacy is low as compared to other relations.
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Table 2.18 Neutrosophic set of smuggling between Dubai and other seaports
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Type of (DU, ©) (DU, P) (DU, S) (DU, MU)
smuggling

Human 0,6, 0.2,0.3) (0.5,0.1,0.4) (0.2,0.1,0.4) (0.5,0.3,0.1)
smuggling

‘Weapons 0.4,0.1,0.1) 0.4,0.2,0.1) (0.3,0.2,0.4) (0.3,0.2,0.4)
smuggling

Black money (0.5,0.2,0.2) (0.5,0.1,0.2) (0.5,0.1,0.2) (0.5,0.3,0.4)
smuggling

Gold and (0.5,0.1,0.1) 0.5,0.2,0.2) (0.5,0.2,0.2) (0.7,0.2,0.1)
diamond

smuggling

Drug smuggling | (0.5, 0.1,0.1) 0.4,0.3,0.2) (0.6,0.2,0.1) (0.6,0.3,0.2)
Smuggling of (0.2,0.3,0.3) (0.3,0.2,0.3) (0.3,0.1,0.4) 0.2,0.2,0.2)
ivory

Table 2.19 Neutrosophic set of smuggling between Chalna and other seaports

Type of C.P) (S) (C,MU) (C,MO)
smuggling

Human (0.5,0.2,0.3) (0.7,0.2,0.1) (0.4,0.1,0.4) (0.5,0.3,0.4)
smuggling

Weapons (0.4,0.1,0.4) (0.4,0.2,0.1) (0.6,0.2,0.4) (0.3,0.2,0.4)
smuggling

Black money 0.4,0.2,0.2) (0.7,0.4,0.3) (0.1,0.1,0.2) (0.1,0.3,0.4)
smuggling

Gold and (0.3,0.1,0.1) (0.5,0.2,0.2) (0.1,0.2,0.2) (0.1,0.1,0.3)
diamond

smuggling

Drug smuggling | (0.5, 0.1, 0.1) (0.4,0.3,0.2) (0.5,0.2,04) (0.4,0.3,0.3)
Smuggling of (0.2,0.3,0.3) (0.3,0.2,0.3) (0.2,0.1,0.4) (0.5,0.2,0.2)

ivory

According to given data, we write the elements in relations with their truth, falsity
and indeterminacy values, so the resulting sets are neutrosophic sets on Ey, Ej,
E;, E4, Es, Eg, respectively. We can name these sets as By, By, B3, By, Bs, Bg,

respectively. Let

E, ={(Chalna, Karachi), (Penang, Karachi), (Chalna, Singapore)},

E, ={(Karachi, Mumbai)},
E3 ={(Singapore, Karachi)},

Ey={(Mumbai, Singapore), (Dubai, Mumbai)},
Es ={(GioiaTauro, Karachi), (Mumbai,Gioia Tauro)},

Es ={(Mombasa, Singapore)}.

And corresponding neutrosophic sets are:
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Table 2.20 Neutrosophic set of smuggling between Penang and other seaports

Type of ®,S) (P, MU) (P, MO) (P, GT)
smuggling

Human 0.4,0.2,0.3) (0.5,0.1,0.2) (0.2,0.1,0.4) (0.5,0.3,0.4)
smuggling

‘Weapons (0.5,0.1,0.1) 0.4,0.2,0.1) (0.3,0.2,0.4) (0.3,0.2,0.4)
smuggling

Black money (0.5,0.2,0.2) (0.1, 0.1, 0.2) (0.1, 0.1, 0.2) (0.1,0.3,0.4)
smuggling

Gold and (0.5,0.1,0.1) 0.5,0.2,0.2) (0.1,0.2,0.2) (0.1, 0.1, 0.5)
diamond

smuggling

Drug smuggling |(0.4,0.1,0.1) 0.4,0.3,0.2) (0.3,0.2,0.5) (0.6,0.3,0.1)
Smuggling of (0.2,0.3,0.3) (0.3,0.2,0.3) (0.5,0.1,0.1) (0.4,0.2,0.2)
ivory

Table 2.21 Neutrosophic set of smuggling between Singapore and other seaports

Type of (S, MU) (S, MO) (S, GT) (K, MU)
smuggling

Human (0.4,0.2,0.3) 0.2,0.1,0.4) (0.2,0.1,0.4) (0.5,0.3,0.5)
smuggling

Weapons (0.6,0.3,0.4) (0.4,0.2,0.3) (0.3,0.2,0.4) (0.7,0.1,0.3)
smuggling

Black money (0.4,0.2,0.3) (0.5,0.1,0.3) (0.5,0.1,0.2) (0.6,0.3,0.4)
smuggling

Gold and (0.7,0.2,0.6) (0.5,0.2,0.4) (0.5,0.2,0.2) (0.5,0.1,0.3)
diamond

smuggling

Drug smuggling | (0.6, 0.2, 0.3) (0.4,0.3,0.4) (0.5,0.2,0.1) (0.7,0.3,0.3)
Smuggling of (0.6, 0.4, 0.5) (0.6,0.1,0.3) (0.5,0.1,0.4) (0.6,0.2,0.2)
ivory

B ={((C, K),0.7,0.2,0.3),((P, K),0.6,0.3,0.1),((C, S),0.7,0.2,0.1)},

B, ={((K,MU),0.7,0.1, 0.3)},
B3 ={((S,K),0.8,0.1,0.1), },
By={(MU, §),0.7,0.2,0.3), (DU, MU),0.7,0.2,0.1)},
Bs ={((GT, K),0.8,0.2,0.2), (MU, GT),0.7,0.2,0.2)},
Bs={((MO,S),0.6,0.1,0.3)}.

Clearly, (A, By, By, B3, B, Bs, Bg) is a neutrosophic graph structure as shown
in Fig.2.24.

In neutrosophic graph structure shown in Fig.2.24, every edge detects most fre-
quent smuggling between adjacent seaports. For instance, most frequent smuggling
between Karachi and Singapore is black money smuggling, its strength is 80%, weak-
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Table 2.22 Neutrosophic set of smuggling between Gioia Tauro and other seaports
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Type of (GT,K) (GT, DU) (GT,O) (GT, MU)
smuggling

Human 0.4,0.2,0.3) 0.2,0.1,0.4) (0.2,0.1,0.4) (0.5,0.3,0.5)
smuggling

‘Weapons (0.7,0.2,0.2) (0.5,0.2,0.1) (0.3,0.2,0.4) (0.6,0.2,0.4)
smuggling

Black money (0.5,0.2,0.2) 0.4,0.1,0.2) (0.1, 0.1, 0.2) (0.4,0.3,0.4)
smuggling

Gold and (0.6,0.2,0.2) 0.5,0.2,0.2) (0.1,0.2,0.2) (0.6,0.2,0.5)
diamond

smuggling

Drug smuggling | (0.8, 0.2,0.2) 0.5,0.3,0.2) 0.6,0.2,0.4) 0.7,0.2,0.2)
Smuggling of (0.2,0.3,0.3) (0.3,0.2,0.3) (0.5,0.1,0.4) (0.6,0.2,0.2)
ivory

Table 2.23 Neutrosophic set of smuggling between Mombasa and other seaports

Type of MO, K) (MO, DU) (MO, MU) (MO, GT)
smuggling

Human (0.4,0.2,0.3) (0.5,0.1,0.4) (0.4,0.1,0.4) (0.5,0.3,0.4)
smuggling

Weapons (0.5,0.1,0.4) (0.4,0.2,0.3) (0.4,0.2,0.4) (0.3,0.2,0.4)
smuggling

Black money 0.4,0.2,0.2) (0.4,0.1,0.2) (0.4,0.1,0.2) (0.4,0.3,0.4)
smuggling

Gold and (0.3,0.1,0.1) (0.5,0.2,0.2) (0.5,0.2,0.2) (0.3,0.1,0.3)
diamond

smuggling

Drug smuggling | (0.6, 0.1, 0.1) (0.4,0.3,0.2) (0.4,0.2,0.4) (0.6,0.3,0.1)
Smuggling of (0.2,0.3,0.3) (0.6,0.2,0.3) (0.5,0.1,0.3) (0.6,0.2,0.2)
ivory

ness is 10% and indeterminacy is 10%. We can also note that for relation human
smuggling, vertex Karachi has highest vertex degree, it means Karachi is most sen-
sitive seaport for human smuggling. Moreover, according to our neutrosophic graph
structure most frequent smuggling is human smuggling. It means that at these eight
seaports, security forces should take action to control human smuggling.

This neutrosophic graph structure detects most frequent smuggling between some
seaports of set A. By making a neutrosophic graph structure of all seaports, we can
examine between any two seaports, which kind of smuggling is most frequent, we can
also tell that which seaport is most sensitive for particular kind of smuggling. Further,
we may get information about violently increasing smuggling through seaports in
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Drug smuggling
(0.8,0.2,0.2)

Human smuggling
(0.7,0.2,0.3)

Fig. 2.24 Neutrosophic graph structure showing most frequent smuggling between any two sea-
ports

the whole world. That is why neutrosophic graph structures can be very helpful for
security forces to overcome the smuggling at seaports.

We now elaborate general procedure of our applications in the following Algo-
rithm.

Algorithm 2.4.1
Step 1. Input the set X = {A1, Ay, ..., A,} of vertices and the neutrosophic vertex
set A defined on X.
Step 2. Input neutrosophic set of relationships or smuggling of a vertex with other
vertices and compute 7', I and F of each pair of vertices using:
T(AiA)) < min(T(A). T(A))), I(A;A;) <min(I(A;), I(A))).
F(A;Aj) < max(F(A;), F(A))).
Step 3. Repeat Step 2 for all vertices in X.
Step 4. Define relations Ey, E», ..., E, onset X such that (X, E|, Es, ..., E,)is
a graph structure.
Step 5. Put an element in that relation for which value of T is high, and values of
I and F are low as compared to other relations.
Step 6. Write all elements of relations with their 7', I and F values, resulting rela-
tions Bj, By, ..., B, are neutrosophic sets on E;, E,, E3, ..., E,, respectively,
and (A, By, By, ..., B,) is a neutrosophic graph structure.



Chapter 3 ®)
Certain Bipolar Neutrosophic Graphs e

In this chapter, we present a concise review of bipolar neutrosophic sets. We
present operations on bipolar single-valued neutrosophic graphs (bipolar neutro-
sophic graphs, for short). We discuss certain bipolar neutrosophic graphs, including
totally regular bipolar neutrosophic graphs, totally irregular bipolar single-valued
neutrosophic graphs and edge regular bipolar neutrosophic graphs. We study domi-
nation in bipolar neutrosophic graphs. We present bipolar neutrosophic planar graphs
and bipolar neutrosophic line graphs. We also describe some applications of bipolar
neutrosophic graphs. This chapter is due to [19, 25].

3.1 Introduction

In 1994, Zhang [201] introduced the notion of bipolar fuzzy sets (YinYang bipolar
fuzzy sets, Yin represents the negative side while yang represents the positive side in
a system) and relations. Bipolar fuzzy sets are extension of fuzzy sets whose mem-
bership degree ranges [—1, 1]. In a bipolar fuzzy set, if the degree of membership is
zero, then we say the element is unrelated to the corresponding property; membership
degree (0, 1] indicates that the object satisfies a certain property, whereas the member-
ship degree [—1, 0) indicates that the element satisfies the implicit counter property.
Positive information represents what is considered to be possible, and negative infor-
mation represents what is granted to be impossible. Actually, a variety of decision-
making problems are based on two-sided bipolar judgements on a positive side and a
negative side. Smarandache [163] incorporated indeterminacy-membership function
as independent component and defined neutrosophic set on three components truth,
indeterminacy and falsehood. However, from practical point of view, Wang et al.
[172] defined single-valued neutrosophic sets where degree of truth-membership,
indeterminacy-membership and falsity-membership belong to [0, 1]. Deli et al. [74]
extended the ideas of bipolar fuzzy sets and neutrosophic sets to bipolar neutro-
sophic sets (bipolar single-valued neutrosophic sets) and studied its operations and
applications in decision-making problems.
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Definition 3.1 A bipolar fuzzy set on a nonempty set X has the form C={(y, u*(y),
1 (y)):y € X}where ut : X — [0,1] and = : X — [—1, 0] are mappings. The
positive membership value p*(y) represents the strength of truth or satisfaction of
an element y to a certain property corresponding to bipolar fuzzy set C, and p~(y)
denotes the strength of satisfaction of an element y to some counter property of
bipolar fuzzy set C. If 4 (y) # 0 and p~(y) = 0, it is the situation when y has only
truth satisfaction degree for property C. If u=(y) # 0 and p*(y) = 0, it is the case
that y is not satisfying the property of C but satisfying the counter property to C. It
is possible for y that 4 (y) # 0 and p~(y) # 0 when y satisfies the property of C
as well as its counter property in some part of X.

Definition 3.2 A bipolar single-valued neutrosophic set on a nonempty set X is an
object of the form

C={0, T, IZ), FE3), T ), Ic (), FE (») 1 y € X}

where TC+, Ig, FEL : X — [0,1]and T, I, F; : X — [—1, 0] are mappings. The
positive values 77 (y), I (), FZ (y) denote respectively the truth-, indeterminacy-
and falsity-membership degrees of an element y € X, whereas T (y), I (),
F¢ (y) denote the implicit counter property of the truth-, indeterminacy- and falsity-
membership degrees of the element y € X corresponding to the bipolar neutrosophic
set C.

Definition 3.3 A bipolar single-valued neutrosophic relation on a nonempty set X
is a bipolar neutrosophic subset of X x X of the form

D ={(yz, Tj (y2), I, (y2), Fiy (v2), Tp (v2), I (y2), Fp(y2)) = yz € X x X}

where TZ{, I;, Fg, T,, I,, F are defined by the mappings Tg, I;, Fg X X
X —[0,11and T, I, F : X x X — [-1,0].

3.2 Bipolar Neutrosophic Graphs

Definition 3.4 A bipolar single-valued neutrosophic graph on a nonempty set X is
apair G = (C, D), where C is a bipolar single-valued neutrosophic set on X and D
is a bipolar single-valued neutrosophic relation in X such that

TE(2) <TEWATE(2),  I5(yz) < IF() AL (2),
Fr(y2) S FFWVFI (@), Tp2)>Ts )V IT(2),
Iy 002 IO VIE(@),  Fp(yz) = Fo () AFz(2)

for all y, z € X. Note that D(yz) = (0,0,1,0,0, —1) forall yz € X x X \ E.
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Table 3.1 Bipolar C X y z
neutrosophic set C T
T, 0.3 0.5 0.4
1r 0.4 0.4 0.3
Ft 0.5 0.2 0.2
T, —0.6 —0.1 -0.5
I —0.5 —0.8 -0.5
Fo -0.2 -0.2 -0.5
Table 3.2 Bipolar D Xy yz Xz
neutrosophic relation D T
Ty 0.3 0.3 0.3
15 0.4 0.4 0.4
Fp 0.5 0.2 0.5
T, —0.1 —0.1 -0.5
I, —0.8 —0.8 —0.5
Fy -0.2 -0.5 -0.5

Fig. 3.1 Bipolar
neutrosophic graph G

(0.3,0.3,0.5, 0.5, —0.5, —0.5)

L

2(0.4,0.3,0.2,—0.5, —0.5, —0.5)

Throughout this chapter, we will use bipolar neutrosophic set, bipolar neutro-

sophic relation and bipolar neutrosophic graph, for short.

Example 3.1 Consider a bipolar neutrosophic graph on set X = {x, y, z}. Let C
be a bipolar neutrosophic set on X given in Table3.1 and D be a bipolar single-
valued neutrosophic relation in X given in Table3.2. Routine calculations show that
G = (C, D) is a bipolar neutrosophic graph. The bipolar neutrosophic graph G is

shown in Fig.3.1.
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Definition 3.5 A bipolar neutrosophic graph G = (C, D) is called strong bipolar
neutrosophic graph if

Ty =TEWMATE@, 15020 = IEMAIEQ@, Fp(y2) = FEO) V FE (),
Tp(y2) =T WM VT (@), IpG)=I0VI-(2), FpOhz)=FcO)AF:(2),
forall yz € E, E is the set of edges.

Definition 3.6 A bipolar neutrosophic graph G = (C, D) is called complete bipolar
neutrosophic graph if

To () =TZ WM ATE@, 156 =10 AR, Fi)=Fiy) Vv FiQ,
To ) =T VTs(2), Ip(y2)=1-()VI-(2), Fp(yz)=F-() AF:(2),
forall y,z e X.

Definition 3.7 The Cartesian product of two bipolar neutrosophic graphs G| and
G, is denoted by the pair G| x G, = (C; x C,, D| x D) and defined as,

Td e, =TE ) A TS (), IE e, ) =150 A E D,
FE e, 0) = FE )V FEL®Y), Tér e, () = T5 )V T (),
Io e, ) = 1c,(¥) VI, (y), Fe wc,(¥) = Fo,(y) A Fe, ().

forall y € X; x X,. The membership values of the edges in G| x G, can be cal-
culated as,

L T, 5, (1 y2) 01, 22) = T (v) AT, (3222), T yp, (01, ¥2) (015 22)) =
Te,(y) vV Tp,(y222), forall y; € Xy, y222 € Es,

2. T30, (1, ¥2) (@1, y2) = T, (120 ATE(32)s Ty p, (01, 2) (21, y2)) =
Tp,(01z1) V T, (), forall yizy € Ey, y2 € Xo,

3. 15 0, (1, y2) (01, 22)) = IE, () A5 (3222), Ly, (1, 2) (01, 22)) =
Ic,(y1) V Ip,(222), forall yy € Xy, y225 € En,

415, (1, y2) (21, y2) = 15, (120 AE(30)s T p, (1, Y2 (21, ¥2)) =
Ip,(nz1) Vg, (2), forall yizy € Ey, y2 € X,

5. Fpop, (1, y2) (31, 22) = FEL 1) V F (0222), Fp, (01, y2) (31, 22)) =
Feo,(31) A Fp,(02z2), forall y; € Xy, y222 € En,

6. Fp o, (01, y2)(z1, 2)) = Fp (z1) V FE,(v2), Fp o p, (01, y2) (21, y2)) =
Fp (nz1) A Fe,(y2), forall yiz; € Ey, ys € X».

Example 3.2 Let G| = (Cy, D) and G, = (C,, D;) be two bipolar neutrosophic
graphs as shown in Fig.3.2.

The Cartesian product of G| and G, is shown in Fig.3.3.

Proposition 3.1 The Cartesian product of bipolar neutrosophic graphs is a bipolar
neutrosophic graph.

Definition 3.8 Let G| = (Cy, D)) and G, = (C,, D,) be two bipolar neutrosophic
graphs of G| = (X1, E1) and G} = (X», E»), respectively, where C; and C; are
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Fig. 3.2 Two bipolar neutrosophic graphs

(3,92)(0.4,0.4,0.5, 0.4, —0.4, —0.5) (z4,y2)(0.4,0.4,0.7, —0.4, —0.4, —0.7)
(0.4,0.4,0.7, —0.4, —0.4, —0.7)

(0.3,0.3,0.7, —0.3, —0.3, —0.7) (0.5,0.4,0.7, —0.5, —0.4, =0.7)
(4,51)(0.3,0.3,0.7, 0.3, 0.3, —0.7)  (3,¥3)(0.5,0.4,0.6, —0.5, —0.4, —0.6)

(24,93)(0.6,0.4,0.7, —0.6, —0.4, —0.7)

(#3,91)(0.3,0.3,0.5, 0.3, —0.3, —0.5)

Fig. 3.3 Cartesian product of two bipolar neutrosophic graphs

bipolar neutrosophic sets on X; and X»,, and D; and D, are bipolar neutrosophic
relations in X and X», respectively. The union of G| and G, is a pair G| U G, =
(Cy U Cy, D1 U Dy) such thatforall x, y € X,

1. If x € Xy,x ¢ X», then (C; U Cp)(x) = Cy(x).
2. If x € X5, x ¢ X, then (C; U Cy)(x) = Ca(x).
3. Ifx € X; N X5, then
I (x) + 1 (x)
2
Ie, (x) + I, (x)
2

(€ UC)E) = (T v T (), LFE () A FE (),

Te, (x) AN Tg, (x), s Fe (x) Vv Fe, (x)).

If E| and E; are the sets of edges in G| and G,, then D; U D, can be defined as:
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21(0.6,0.3,0.7, —0.6, —0.3, —0.7) 24(0.8,0.4,0.7, —0.8, —0.4, —0.7)
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22(0.8,0.4,0.9, —0.8, —0.4, —0.9) 23(0.5,0.4,0.5,—0.5, —0.4, —0.5)

Fig.34 G, UG,

1. If xy € E|, xy ¢ E,, then (D1 U D;)(xy) = Di(xy).
2. If xy € Ep,xy ¢ Ey, then (D; U Dy)(xy) = Da(xy).
3. If xy € E; N E;, then

I (xy) + I} (xy)
2
I, (xy) + Ip,(xy)
2

(D1 U Dy)(xy) = (T (xy) v T, (xy),  Fj (xy) A FJ (xy),

Tp, (xy) ATy (xy), L Fp (xy) V Fpy (xy)).

Example 3.3 The union of two bipolar neutrosophic graphs G and G, shown in
Fig.3.2 is defined as G| U G, = {C; U C,, D1 U D5} and is represented in Fig. 3.4.

Proposition 3.2 The union of bipolar neutrosophic graphs is a bipolar neutrosophic
graph.

Definition 3.9 The intersection of two bipolar neutrosophic graphs G, = (Cy, D)
and G, = (C,, D) isapair G; N G, = (C; N Cy, D1 N D,) where Cy, Cp, D and
D, are given in Definition3.8. The membership values of vertices and edges in
G1 N Gy is defined such that forall y € X; N X»,

15 () + 1
(QHQMF4H@Mnaw£&;rQ2

Ic, (v) + 1c,(y)
2

JFE) Y FL (),

Te, () v T, (), Fe () A FG, ().
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Fig.3.5 G| + G

15, (y2) + 15, (y2)
2
Ip, (y2) +1p,(y2)
2

(D1 N Dy)(yz) = (T (y2) A T, (y2), L Ff (v v F (v2),

Tp (y2) v Tp,(y2),

forall yz € E1 N E;.

. Fp, (y2) A Fp, (7)),

Definition 3.10 The join of two bipolar neutrosophic graphs G| = (Cy, Dy) and
G, = (Cy, D») is defined by the pair G| + G, = (C; + C,, D1 + D;) such that
Ci+C, =C1UCQCy, forall x € X; U X,, and the membership values of the edges
in G| + G, are defined as,

1. D; + pz =Dy U Dy, forallxy € E; U E.
2. Let E be the set of all edges joining the vertices of G| and G»; then for all
Xy € E', where x € X; and y € X»,

(D1 + Do) (xy) =(Tpy, ey) AT, (ey), I (ey) AT (o), Fiy (xy) v FS (k)
Tp, )V T (e9), I (ey) V I (x9), Fpy (x3) A Fpy (x)).

Example 3.4 Join of two bipolar neutrosophic graphs G| and G, shown in Fig.3.2
is defined as G| + G, = {C| + C;, D| + D»} and is represented in Fig.3.5.

Proposition 3.3 The join of bipolar neutrosophic graphs is a bipolar neutrosophic
graph.

Definition 3.11 The cross product of two bipolar neutrosophic graphs
G, = (Cy, Dy) and G, = (C,, D») is denoted by the pair G| * G, = (C; * C,, Dy %
D,) such that
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23y1(0.3,0.3,0.5, —0.3, 0.3, —0.5)23y2 (0.4, 0.4, 0.5, —0.4, —0.4, —0.5) #3y3(0.5,0.4,0.6, 0.5, —0.4, —0.6)

(0.3,0.3,0,7, —0,3, —0.3, —0. 0.4,0.4,0.7,-0.4, 0.4, —0.7)

(0.3,0.3,0.7, —0.3, —0.3, 0.7, 0.4,0.4,0.7,—0.4, —0.4, —0.7)

#491(0-3,0.3,0.7, 0.3, —0.3, —0.7)r4y2(0.4, 0.4, 0.7, 0.4, —0.4, —0.7) €4y3(0.6, 0.4, 0.7, —0.6, —0.4, —0.7)

Fig. 3.6 Cross product of two bipolar neutrosophic graphs

Td e, ) = TE ) AT, (), I e, 0 = 15 ) AT ),
Féoe,(0) = FL ) v FE (), Tewe, ) =T, () V Tg, (),
Iewe, ) =1, (1) V I, (), Fec,(Y) = Fo,(y) N Fe, (),

forall y e X;| x X».

L T5 5 (1, y2) (21, 22)) = T3, (niz) AT (1222), Ty op, (01, ¥2) (21, 22)) =
Tp, (v1z1) vV T, (y222), forall yiz; € Ey, y225 € En,

2. I p (1 y2) (21, 22)) = I, (nz) A (0222), Iy ,p, (1 ¥2) (21, 22)) =
Ip, (nz1) V Ip, (y222), forall y1z; € Ey, y222 € E,

3. Fpp, (01, y) (@1, 22) = Fj (nz) V Ff (0222), Fpp, (1, v2) (21, 22)) =
Fp (n1z1) A Fp (y222), forall yizy € Ey, 222 € Es.

Proposition 3.4 The cross product of bipolar neutrosophic graphs is a bipolar neu-
trosophic graph.

Example 3.5 The cross product of two bipolar neutrosophic graphs G and G, shown
in Fig.3.2 is defined as G| * G, = {C; * C3, D * D;} and is shown in Fig.3.6.

Definition 3.12 The lexicographic product of two bipolar neutrosophic graphs G| =
(C1, Dy) and G, = (C,, Dy) is denoted by G| e G, and defined as a pair (C; e
C,, D e D») such that

T, 0) = TE () A TS (), Id e, =I5 A TE (),
Fl oo, () = FE )V FL(), Terue, ) =T () V T (),
Ige,) =15, VI, (), F& e, () = F&o () A Fg(9),

forall y e X;| x X».

L T3 op, (0, ) (3. 22) = TE ) AT (3222), Ty up, (0, ¥2) (3, 22)) =
Te,(y) v Tp, (y222), forall y € Xy, y220 € En,

2. I3 o, (s y2) (3, 22)) = IE,(0) A (3222), 1y up, (3, ¥2) (9, 22)) =
I, (y) vV Ip, (0n2z2), forall y € Xy, y225 € En,
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Fig. 3.7 Lexicographic product of two bipolar neutrosophic graphs

3. Fpup, (0, 9D, 22)) = FE(D) YV F (3222), Fpup, (3, ¥2) (v, 22)) =
Fo,(y) A Fp,(0nz2), forall y € Xy, y222 € E.

4. Tp o, (1, ¥2) (21, 22)) = Ty, (1210) A T, (1222), - Ty, up, (01, Y2 (21, 22)) =
Tp,(v1z1) V T, (y222), forall y1zy € Ey, y225 € En,

5. 15,4, (1, 2) (215 22)) = 15, (1210) A TS (3222), 1y op, (01, ¥2) (21, 22)) =
I, (nz1) V I, (0nz2), forall yiz1 € Ey, y222 € Eo,

6. Fp up, (1, ¥2)(21,22)) = Fpy (1121) V Fpy (3222), Fp,op, (01, ¥2) (21, 22)) =
Fp, (0nz1) A Fp, (y222), forall yi1z1 € Ey, y220 € E».

Proposition 3.5 The lexicographic product of bipolar neutrosophic graphs is a bipo-
lar neutrosophic graph.

Example 3.6 The lexicographic product of two bipolar neutrosophic graphs G| and
G, shown in Fig.3.2, is given in Fig.3.7.

Definition 3.13 The strong product of two bipolar neutrosophic graphs G| =
(Ci1, Dy) and G, = (C,, D) is denoted by G| X G, and defined as a pair (C; X
C,, D; X D,) such that
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Téme, ) = TE, () A Ty, (), I e, ) = 1,5 A E ),
Flae,0) = FE ) v FE (), Teme, ) =Te, () V Tg, (),
Io e, (V) =1c,(0) V ¢, (y), Fome, (V) = Fo,(y) A Fe,(y),

forall y e X x X».

L Tp g, (0, y2) (v, 22)) = T () ATy, (1222), Tpy p, (0, ¥2) (3, 22)) =
Te, () V Tp,(0nz2), forall y € Xy, 22 € Ey,

2. 15 gp, (0 y2) (9, 22)) = 15 ) A LS, (30222), Ty g (9, 92 (0, 22)) =
Ic,(y) V I, (0nz2), forall y € Xy, 222 € Es,

3. Fpwp, (0, ) (0, 22)) = FEL () V Fp,(1022), Fpyp, (0, 32) (0, 22) =
Fo () A Fp,(0222), forall y € Xy, y222 € Ea,

4. Tp gp, (01, 21, 2) = Ty (nz) ATE @), T gp, (1, 2(21,2) =
Tp (nz1) VT, (2), forall yizy € Ey, z € X,

5. 15 mp, (1, D1, 2) = 15 z) MG @), Ty gy (1,221, 2) =
I, (nz1) Vg, (2), forall yiz) € Ey, z € Xa,

6. Fpwp, (1,221, 2) = Ff (mz) V FE (@), Fpgp (01, 2)(21,2) =
Fp (n1z21) A Fe,(2), forall y1z; € Ey, z € Xa,

7. Tpp, (1, y2) (@1, 22)) = T, (1120 AT, (3222), Ty i, (01, ¥2)(21, 22)) =
Tp, (nz1) V Tp,(0nz2), forall yizy € Ey, y222 € Eo,

8. I mp, (1, ¥y2) (21, 22)) = 15 (1210) A, (3222), Iy, (V15 32) (21, 22)) =
Ip, (nz1) V I, (0nz2), forall yizi € Ey, y222 € Es,

9. F;I]gl)z(()’h ¥2)(z1,22)) = Fpy (3121) V Fjy (1222), Fpsp, (1, y2)
(z1,22)) = Fp, (0121) A Fp,(y222), forall yi1z; € Ey, y222 € En.

Example 3.7 The strong product G; X G, of two bipolar neutrosophic graphs G
and G,, shown in Fig. 3.2, is given in Fig.3.8.

Proposition 3.6 The strong product of bipolar neutrosophic graphs is a bipolar
neutrosophic graph.

Definition 3.14 The complement of a bipolar neutrosophic graph G = (C, D) is
defined as a pair G° = (C¢, D¢) such thatforall y € X and yz € Y2,

TE () =TF (), I5() = IT (), FL () = FE (),
To(y) =T5 (), I (y) = 15 (), F(y) = FE(y).

Th(2) =TEWATE (@) — Tp (v2), Tp(yz) =T () VTS (2) — Tpy (y2),
I3 = IZO) AN IEGR) — 15 (), Ip(yz2) =15 () vV IG(2) — I (y2),
Fi(y2) = FX )V FE(2) — Fy(b2), Fp(v2) = FZ(9) A Fg (2) — Fpy (2).



3.2 Bipolar Neutrosophic Graphs

21%1(0.3,0.3,0. 7 -0.3,-0.3,-0.7)

2491(0.3,0.3,0.7, =0.3, —0.3, —0.7)

Fig. 3.8 Strong product of two bipolar neutrosophic graphs
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Remark 3.1 A bipolar neutrosophic graph G is said to be self-complementary if

G~

Ge.

Theorem 3.1 Let G be a self-complementary bipolar neutrosophic graph, then

1
D T500) =5 ) TEM AT ).

y#Z

1
D FEG =5 FE0VFE Q).

y#zZ

1
DI =5 ) leMV Q.

Y#Z

y#Z

Y#z

Y#Z

1
DI =Y I AL,

y#Z

y#Z

1
DT =353 T VT Q.

y#Z

y#z

1
Y Fra) =5 Fe)AF: Q).

y#z

V#Z

Theorem 3.2 Let G = (C, D) be a bipolar neutrosophic graph such that for all

v, z€X,
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+ 1 + + — 1 - -
Th(yz) = ETC W ATF (), Tp(yz) = ETC ) VI (2),

+ 1 + + - 1 - -
I5.(yz) = EIC WM AIE(R), Ip(y2) = EIC VI (2),

+ 1 + + - 1 - -
Fpe(yz) = SFc () V Fc @), Fpe(yz) = SFc (3) A Fe ).

Then G is self-complementary bipolar neutrosophic graph.

Proof Let G° = (C¢, D) be the complement of bipolar neutrosophic graph
G = (C, D), then by Definition 3.14,

Th(yz) =TZ () ATF(2) — Ty (y2)
1
Th(y2) =TZ () ATH(2) — ETCJF(}’) ATF(2)

1
Tp.(yz) = 3 cOATI(2)

Th.(y2) = Ty (y2)
Tp(y2) =Tc (y) VT (2) — Ty (y2)

1
Tpe(ya) =Te MV T @ = ST () VT @)

1
Tpe(y2) = 5T () VI (2)

Tp(yz) = Tp (y2)
Similarly, it can be shown that

I5.(v2) = IS (v2), Ip.(yz) = I, (y2),
Fp.(y2) = Fy(y2), Fp.(yz) = Fp (y2).

Hence, G is self-complementary.

Definition 3.15 The degree of a vertex y in a bipolar neutrosophic graph
G = (C, D) is denoted by deg(y) and defined by the 6—tuple as,

deg(y) = (degy (¥), deg;(y), degp(y), degr(y), deg; (), degp(y)), =

(X Ty0a), X 1500, X Fy02, ¥ Ty, X 1,02, X Fp(2).

yz€E yz€E yz€E yzeE yz€E yzeE
The term degree is also referred as neighbourhood degree.

Definition 3.16 The closed neighbourhood degree of a vertex y in a bipolar neutro-
sophic graph is denoted by deg[y] and defined as,

deg[y] = (degy[yl, deg/[yl. degjlyl. degz[yl. deg; [yl degglyl,
= (degF (y) + T2 (), degf (y) + I (y), degi(y) + FF(y),
deg; (y) + TS (v), deg; (v) + TS (), degr () + F ().
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Definition 3.17 A bipolar neutrosophic graph G is known as a regular bipolar neu-
trosophic graph if all vertices of G have same degree. A bipolar neutrosophic graph
G is known as a fotally regular bipolar neutrosophic graph if all vertices of G have
same closed neighbourhood degree.

Theorem 3.3 A complete bipolar neutrosophic graph is totally regular.

Theorem 3.4 Let G = (C, D) be a bipolar neutrosophic graph, thenC = (T ", I,
F*,T~, 1", F7) is a constant function if and only if the following statements are
equivalent:

1. G is a regular bipolar neutrosophic graph,

2. G is totally regular bipolar neutrosophic graph.

Proof Assume that C is a constant function and for all y € X,

TH(y) =kr, 15 (y) =k, Fi(y) = kr,
To () =ky, I5(y) = k;, Fo(y) =k

where kr, k;, kfr, k}, k}, k} are constants.
(1) = (2) Suppose that G is a regular bipolar neutrosophic graph and

deg(y) = (pr, p1,» pr, nr, ny, np), forally € X.

Now consider,

deg[y] = (degy (y) + T (), deg; (») + 15 (), degr (v) + FZ (),
degr (y) + T (v), deg; (v) + T (), deg (v) + FZ ()
= (pr +kr,pr +ki, pr+kp,nr + k}, ny +k;, nr —l—k})
for all y € X. It is proved that G is totally regular bipolar neutrosophic graph.

(2) = (1) Suppose that G is totally regular bipolar neutrosophic graph and for all
yeX

deglyl = (pr, Pp» Pr> ps Nps M)
= (deg} () + kr. deg] (y) + k7. deg} (y) + kr, degy () + k7,
deg; (v) + kp, deg () + k)
= deg(y) = (pp —kr, p; — ki, pp—kp, nyp —k, ny —ky, np —kp).

forall y € X. Thus, G is a regular bipolar neutrosophic graph. Conversely, assume
that the conditions are equivalent. Let

deg()’) = (CTvcls CF,dT,d[,dF), deg[y] = (c,]"vc/[3c,[-"sd/]"7d,[7d}:‘)'



146 3 Certain Bipolar Neutrosophic Graphs
By Definition3.16 for all y € X,

deg[y] = deg(y) + (TZ (), IZ (). FE ). Te ). 12 (), FE()),
deg[y] — deg(y) = (TF (), IZ (), FE (), TE (1), 15 (), FE ()
=T I, FE), TZ (), I (), FZ ()

’ ’ ’ ! ’ ’
:(CT_CT»CI_ClacF_CF»dT_dTadj_dladp_dF)-

Hence, C = (c/T —cr, c’, —cy, c'F —cr, d’T —dr, d} —dy, d;p —dF) is a constant
function which completes the proof.

Definition 3.18 A bipolar neutrosophic graph G is said to be irregular if at least two
vertices have distinct degrees. If all vertices do not have same closed neighbourhood
degrees, then G is known as totally irregular bipolar neutrosophic graph.

Theorem 3.5 Let G = (C, D) be a bipolar neutrosophic graph and C=(TC+, IC+,
Fl, Tz, I, F) be a constant function, then G is an irregular bipolar neutrosophic
graph if and only if G is a totally irregular bipolar neutrosophic graph.

Proof Assume that G is an irregular bipolar neutrosophic graph, then at least two
vertices of G have distinct degrees. Let y and z be two vertices such that deg(y) =
ri, 2, 13, 81, 52, 83), deg(z) = (r;,ré, r3 s;, 5’2, s;) where r; # rl for some
i =1,2,3. Since C is a constant function, assume that C = (ky, kp, k3, 1, [, [3).
Thus,

deg[y] = deg(y) + (k1, ko, k3, 11, I, 13)
deglyl = (ri + ki, 12 + ko, 3+ k3, 51+ 11,80 + 1o, 53+ 13)
and deg[z] = (ry + ki, ry + ko, ry + k3, 5y + 11,55 + Lo, 53+ 13).

Clearly r; + k; # rlf + k;, forsomei = 1, 2, 3; therefore, y and z have distinct closed
neighbourhood degrees. Hence, G is a totally irregular bipolar neutrosophic graph.
The converse part is similar.

Definition 3.19 If G = (C, D) be a bipolar neutrosophic graph and y, z are two
vertices in G, then we say that y dominates z if

Ty =TEWATI (), Tpyz) =T: () VT (2),
17D =10 AIE (), T2 =150 VI (2),
Fl(yz) = FX () V Fi(2), Fy(y2) = Fo () A Fg (2).

Asubset D' C Y is a dominating set if foreach z € X \ D', there exists y € D' such
that y dominates z. A dominating set D" is minimal if for every y € D', D"\ {y}
is not a dominating set. The domination number of G is the minimum cardinality
among all minimal dominating sets of G, denoted by A\(G).
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2(0.5,0.2,0.3, 0,2, 0.2, —0.7) y(0.6,0.1,0.2, =0, 2, —0.3, —0.7)

(0.5,0.1,0.3,—0,2, —0.2, —0.7)

(0.5,0.2,0.3, —0,2,—0.2, —0.7)
0.4,0.2,0.2, —0,2, —0.3, —0.6)
£(0.7,0.3,0.1,—0,2, —0.3, —0.7)

o

S R
(0.4,0.2,0.2, -0, 2, —0.2, —0.5) @_6»,0

2(0.5,0.2,0.3, —0, 3, 0.2, —0.5) w(0.5,0.2,0.2,—0,2,—0.3, —0.5)

Fig. 3.9 Bipolar neutrosophic graph G

Example 3.8 Consider a bipolar neutrosophic graph as shown in Fig.3.9. The set
{x, w} is a minimal dominating set, and A(G) = 2

Theorem 3.6 If G| and G, are two bipolar neutrosophic graphs with D/1 and D/2
as dominating sets, then

MG UGy) = MG)) + MNG,) — |Dy N Dy

Proof Since D/l and D/2 are dominating sets of G| and G, D/l U D/2 is a dominating
set of G U G,. Therefore, A\(G{ U G;) < |D; U D/2|. It only remains to show that
D, U D), is the minimal dominating set. On contrary, assume that D' = D, U D, \
{y} is a minimal dominating set of G| U G,. There are two cases.

Casel.If y € D/1 and y ¢ D’z, then D/1 \ {y} is not a dominating set of G; which
implies that D; U D, \ {y} = D' isnotadominating setof G; U G,. A contradiction,
hence, D/l U D/2 is a minimal dominating set and

MG UG,) =|D,UD,|,
= MG UG2) = MG)) + MNGy) — |D, N D).

Case2. If y € D'2 and y ¢ D;, same contradiction can be obtained.

Theorem 3.7 If G| and G, are two bipolar neutrosophic graphs with X1 N X, # 0,
then

MGy + G2) = min{A(G1), A(G2), 2}.

Proof Let y; € X; and y, € X», since G| + G is a bipolar neutrosophic graph, we
have



148 3 Certain Bipolar Neutrosophic Graphs

T3 0,012 = T& Lo, ) ATE 0, (02)),
T ip,01y2) =Tc 10,0V Te yc,(02),
150, 012) = 16 o, (0) AL ¢, (02)),
Ip i, 1>2) =Ic 1 c,(0) Vi c,(02),
F o, 01y2) = F e, ) V FE L (),
Fpip,0y2) = Fe oo, 0 A Feyc,(32)).
Hence, any vertex of G| dominates all vertices of G,, and similarly, any vertex of

G, dominates all vertices of G. So, {y;, y»} is a dominating set of G| + G,.If D is
a minimum dominating set of G| + G», then D is one of the following forms,

1. D = Dy where, A\(G) = |Dy],

2. D = D, where, A(G) = |D»|,

3. D ={y, y»} where y; € X; and y, € X». {y} and {y,} are not dominating sets
of G or G, respectively.

Hence, A\(G| + G») = min{\(G1), A\(G»), 2}.
Theorem 3.8 Let Gy = (Cy, Dy) and G, = (C;, D;) be two bipolar neutrosophic

graphs. If for y; € Xy, TCJ: (y1) > 0 and y, dominates z, in G, then (y1, y2) domi-
nates (y1, z2) in G| x Gy.

Proof Since y, dominates z5,

Ty, (3222) = T (32) AT (22), Tp (1222) = TG, (v2) V T, (22),
I (3n22) =I5 (00) ANE(z0), I (1222) = I, (2) V I, (22),
Ffh (122) = FEL0m) v FE(22), Fp,(322) = F,() A Fe (),

For y; € X1, take (y1, z2) € X x X,. By Definition3.7,

Tp, 0, (1, y2) (01, 22)) = T¢, (v1) A Ty, (3222),
= T2, (o) A (TG, (02) A TE (22)),
= (T2, (y) A TE ) A (T, () A T (22)),

=T¢ e, 01, YD) ATE L 0, (01, 22).

Tp,wp, (1, ¥2) (31, 22)) = T, (1) V T, (3222),
=Tc, )V (Te,(02) Vv T, (22))),
= (T, y1) vV T, (32) vV (T, (y1) V T, (22)),
=Tc,xc, V1, ¥2) V T e, (015 22)-
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Similarly, it can be proved that

15 0, (1, )1, 22)) = 180, s y2) AE e, 1 22),
I p, (1, y2) (V15 22)) = I e, 01, ¥2) Vg 0, (V15 22),
Ff o, (1 )15 22) = FE o, 01, 2) V FE o, (1 22),
Fp v, (1, y2) (01, 22)) = F e, 0192) A Fe e, 015 22)-

Hence, (y1, y2) dominates (y1, z2) and the proof is complete.

Proposition 3.7 If G| and G, are bipolar neutrosophic graphs and for z; € X»,
TCJZ (z2) > 0 and y; dominate z; in Gy, then (y1, 22) dominates (z1, z2) in G| X G.

Theorem 3.9 If D/1 and D’2 are minimal dominating sets of G| = (Cy, D) and
Gy = (Cy, D»), respectively. Then D/l x X, and X x D/2 are dominating sets of
Gl X Gz and

MG x Gy) < min(|D, x X,|, |X; x D,)). (3.1)

Proof To prove inequality Eq. 3.1, we need to show that D; X X, and X; X D'2 are
dominating sets of G| x G,. Let (z1, 22) ¢ D/1 X X, then z; ¢ D/l. Since D/1 is a
dominating set of G, there exists y; € D; that dominates z;. By Proposition3.7,
(y1, 72) dominates (zi, z2) in G| X G;. Since (z1, z2) was taken to be arbitrary,
D’1 X X» is a dominating set of G| x G,. Similarly, X x D/2 is a dominating set if
G x G». Hence, the proof.

Theorem 3.10 Let D; and D/2 be the dominating sets of G| = (Cy, D) and G, =
(C3, D), respectively. Then D; X D/2 is a dominating set of the cross product G| *
G, and /

MG x Gy) = |D; x Dy|. (3.2)

Proof Let (z1,22) € X1 x X2\ D} x D, then z; € X; \ D| and z; € X» \ D;.
Since D; and D'2 are dominating sets, there exist y; € D'1 and y, € D'2 such that
y1 dominates z; and y, dominates z,. Consider,

5,20, (01, Y2) (21, 22)) = T, (n1z1) A Tpy, (1222),
= (T, () ATE (210) A TE (92) A TE (22)),
= (T& (y) A TE (92) A (T (21) A TE (22)),

= T¢ e, 01, v2) A TE o, (21 22).

It shows that (y;, y») dominates (z, z2). Since (y;, y») was taken to be arbitrary,
every element of X; x X, \ D; x D, is dominated by some element of D} x D,. It
only remains to show that D/1 X D/2 is a minimal dominating set.

On contrary, assume that D is a minimal dominating set of G| % G, such that
|D'| < |D| x D,|.
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Let (t1,1) € D; X D'2 such that (¢, 1) ¢ D, ie. t € D; and 1, € D’z, then there
exist ti € X1\ D,1 and té € Xo\ D/2 which are only dominated by ¢, and #,, respec-
tively. Hence, no element other than (¢, t,) dominates (t;, té); so (t1,h) e D. A
contradiction, thus \(G * G3) = |D; x D,|.

Corollary 3.1 If G| and G, are two bipolar neutrosophic graphs, y, dominates z,
in Gy and y, dominates 7, in G, then (y;, z1) dominates (y», z2) in G * G».

Definition 3.20 In a bipolar neutrosophic graph two vertices y and z are
independent if

Ty (o) <TEW ATE(2), Tp(yz) > To () Vv T: (2),
Iy < IO AIE (), Ip(v2) > I6(y) VI (2), (3.3)
Fp(yz) < FX(y) VvV FZ(2), Fp(y2) > F&(y) A Fg (2).

An independent set N of a bipolar neutrosophic graph is a subset N of A such
that for all y, z € N Eq.3.3 are satisfied. An independent set is maximal if for every
t € X\ N, N U {t}is not an independent set. An independent number is the maximal
cardinality among all maximal independent sets of a bipolar neutrosophic graph. It
is denoted by a(G).

Theorem 3.11 If G| and G, are bipolar neutrosophic graphs on X and X, respec-
tively, such that X1 N X, = @, then a(G U G;) = a(G1) + a(G)).

Proof Let Ny and N, be maximal independent sets of G| and G,. Since Ny N N, = @,
N U N, is a maximal independent set of G; U G,. Hence, a(G; U G,) = a(Gy) +
a(G)).

Theorem 3.12 Let G| and G, be two bipolar neutrosophic graphs, then a(G +
G2) = a(Gy) vV a(Gy).

Proof Let Nj and N, be maximal independent sets. Since every vertex of G; domi-
nates every vertex of G, in G| 4+ G. Hence, maximal independent set of G| + G,
is either Ny or N,. Thus, a(G| + G2) = a(Gy) V a(G)).

Theorem 3.13 If Ny and N, are maximal independent sets of G| and G, respec-
tively, and X1 N X, = @. Then a(G X G,) = |N| X Ny| + |N| where

N ={0i.z):yi € X1\ N1,z € Xo\ No, yiyi+1 € E1,zizi+1 € E2, i =1,2,3,...}.
Proof N; and N, are maximal independent sets of G| and G5, respectively. Clearly,
N x N, is an independent set of G| x G, as no vertex of N; x N, dominates any
other vertex of N; x N,. Consider the set of vertices

N ={(i,z):y € X1\ N1,z € Xo\ N2, yiyiv1 € E1, 2:2i41 € En}.

It can be seen that no vertex (y;,z;) € N, for each i =1, 2,3, ..., dominates
(yi+1, Zi+1) € N.Hence, N' = (N; x N>) U N is an independent set of G| x G».
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Assume that S = N' U {(yi,zj)}, forsomei # j,y; € X1\ Nyandz; € X5 \ Np,is
a maximal independent set. Without loss of generality, assume that j =i + 1, then
(i, z;) is dominated by (y;, z;). A contradiction, hence N " is a maximal independent
setand (G, x G,) = [N'| = |N; x Na| + |N]|.

Theorem 3.14 If D/1 and D/2 are minimal dominating sets of G| and G, then X| X
X5\ D; X D’2 is a maximal independent set of G1 * G, and a(G * G,) = nyny —
MG x Gy) where ny and ny are the number of vertices in G| and G, respectively.

The proof is obvious.

Theorem 3.15 An independent set of a bipolar neutrosophic graph G = (C, D) is
maximal if and only if it is independent and dominating.

Proof If N is a maximal independent set of G, then for every y € X \ N, N U {y}
is not an independent set. For every vertex y € X \ N, there exists some z € N such
that

Ty (o) =TEW) ATE(2), Tpyz) =T () Vv ITE (2),
ISy =10 A IE (), Ip(2) =1:() VI (2),
Fi(yz) = FEX(y)V FZ(2), Fp(yz) = FZ (y) A FZ(2).

Thus, y dominates x, and hence, N is both independent and dominating set.

Conversely, assume that D is both independent and dominating set but not max-
imal independent set. So there exists a vertex y € X \ N such that N U {y} is an
independent set, i.e. no vertex in N dominates y, a contradiction to the fact that N is
a dominating set. Hence, N is maximal.

Theorem 3.16 Any maximal independent set of a bipolar neutrosophic graph is a
minimal dominating set.

Proof If N is a maximal independent set of a bipolar neutrosophic graph, then by
Theorem3.15, N is a dominating set. Assume that N is not a minimal dominating
set, then there always exist at least one z € N for which N \ {z} is a dominating set.
On the other hand if N \ {z} dominates Y \ {/NV \ {z}}, at least one vertex in N \ {z}
dominates z. A contradiction to the fact that N is an independent set of bipolar
neutrosophic graph G. Hence, N is a minimal dominating set.

3.3 Applications to Multiple Criteria Decision-Making

Multiple criteria decision-making refers to making decisions in the presence of mul-
tiple, usually conflicting, criteria. Multiple criteria decision-making problems are
common in everyday life. We present multiple criteria decision-making method for
the identification of risk in decision support systems. The method is explained by
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an example for prevention of accidental hazards in chemical industry. The pro-
posed methodology can be implemented in various fields in different ways, for
instance, multicriteria decision-making problems with bipolar neutrosophic infor-
mation. However, our main focus is the identification of risk assessments in industry
which is described in the following steps. The bipolar neutrosophic information con-

sists of a group of risks/alternatives R = {r, r», ..., r,} evaluated on the basis of
criteria C = {cy, ¢z, ..., cn}. Here r;, i = 1,2, ..., n is the possibility for the cri-
teriacg, k = 1,2, ..., m and r; are in the form of bipolar neutrosophic values. This

method is suitable if we have a small set of data and experts are able to evaluate
the data in the form of bipolar neutrosophic information. Take the values of r;; as
rik = (T I, Fi T Ly F).

Step 1. Construct the table of the given data.

Step 2. Determine the average values usmg the followmg blpolar neutrosophlc aver-

ageoperator,A,—l(Z l_[ 1]’ l_[ ij? l_[ ij’ 1_[ 1]’ ZI_ ]_[ ij?

Z l—[Ff) foreachi =1,2,...,

Step 3. Construct the weighted average matrix.

Choose the weight vector w = (wy, wa, ..., w,). According to the weights for each
alternative, the weighted average table can be calculated by multiplying each average
value with the corresponding weight as:

ﬁizAiw,», i=1,2,...,n.

Step 4. Calculate the normalized value for each alternative/risk ; using the formula,

= [P+ U7+ (FP 4+ (L= TP 4+ (—1+ [+ (—1+ 2,
3.4
foreachi = 1,2, ..., n. The resulting table indicates the preference ordering of the
alternatives/risks. The alternative/risk with maximum «; value is most dangerous or
more preferable.

Example 3.9 Chemical industry is a very important part of human society. These
industries contain large amount of organic and inorganic chemicals and materials.
Many chemical products have a high risk of fire due to flammable materials, large
explosions, oxygen deficiency, etc. These accidents can cause the death of employs,
damages to building, destruction of machines and transports, economical losses, etc.
Therefore, it is very important to prevent these accidental losses by identifying the
major risks of fire, explosions and oxygen deficiency.

A manager of a chemical industry Y wants to prevent such types of accidents
that caused the major loss to company in the past. He collected data from witness
reports, investigation teams and nearby chemical industries and found that the major
causes could be the chemical reactions, oxidizing materials, formation of toxic sub-
stances, electric hazards, oil spill, hydrocarbon gas leakage and energy systems. The
witness reports, investigation teams and industries have different opinions. There is
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Table 3.3 Bipolar neutrosophic data

Fire Oxygen deficiency Large explosion
Chemical exposures (0.5,0.7,0.2, —0.6, (0.1,0.5,0.7, =0.5, 0.6,0.2,0.3, =04,
-0.3, —=0.7) -0.2, —-0.8) 0.0, —0.1)
Oxidizing materials 0.9,0.7,0.2, —0.8, (0.3,0.5,0.2, 0.5, (0.9,0.5,0.5, —0.6,
—0.6, —0.1) -0.5,-0.2) -0.5,-0.2)
Toxic vapour cloud (0.7,0.3,0.1, —0.4, (0.6,0.3,0.2, —0.5, (0.5,0.1,0.2, —0.6,
—0.1, —0.3) —0.3, —0.3) —-0.2,-0.2)
Electric hazard 0.3,0.4,0.2, —0.6, 0.9,04, 0.6, —0.1, 0.7, 0.6, 0.8, —0.7,
-0.3, —=0.7) -0.7, —=0.5) -0.5,-0.1)
Oil spill (0.7,0.5,0.3, —0.4, 0.2,0.2,0.2, —0.7, 0.9,0.2,0.7, 0.1,
-0.2,-0.2) —0.4, —-0.4) —0.6, —0.8)
Hydrocarbon gas (0.5,0.3,0.2, —0.5, (0.3,0.2,0.3,-0.7, (0.8,0.2,0.1, —0.1,
leakage -0.2,-0.2) —-0.4, —0.3) —-0.9, -0.2)
Ammonium nitrate (0.3,0.2,0.3, —0.5, 0.9,0.2,0.1, 0.0, (0.6,0.2,0.1, —0.2,
—0.6, —0.5) —0.6, —0.5) —0.3, -0.5)

bipolarity in people’s thinking and judgement. The data can be considered as bipolar
neutrosophic information. The bipolar neutrosophic information about company Y
old accidents is given in Table 3.3.

By applying bipolar neutrosophic average operator on Table 3.3, the average val-
ues are given in Table3.4.

With regard to the weight vector (0.35, 0.80, 0.30, 0.275, 0.65, 0.75, 0.50) asso-
ciated to each cause of accident, the weighted average values are obtained by multi-
plying each average value with corresponding weight and are given in Table 3.5.

Using Eq. 3.4, the resulting normalized values are shown in Table 3.6.

The accident possibilities can be placed in the following order: toxic vapour
cloud > electric hazard > hydrocarbon gas leakage > chemical exposures > ammo-
nium nitrate > oxidizing materials > oil spill where the symbol > represents partial
ordering of objects. It can be easily seen that the formation of toxic vapour clouds,
electrical and energy systems and hydrocarbon gas leakage are the major dangers to
the chemical industry. There is a very little danger due to oil spill. Chemical expo-
sures, oxidizing materials and ammonium nitrate have an average accidental danger.
Therefore, industry needs special precautions to prevent the major hazards that could
happen due the formation of toxic vapour clouds.

Graph theory is considered an important part of Mathematics for solving countless
real-world problems in information technology, psychology, engineering, combina-
torics and medical sciences. Everything in this world is connected, for instance,
cities and countries are connected by roads, railways are linked by railway lines,
flight networks are connected by air, electrical devices are connected by wires, pages
on internet by hyperlinks, components of electric circuits by various paths. Scien-
tists, analysts and engineers are trying to optimize these networks to find a way to
save millions of lives by reducing traffic accidents, plane crashes, circuit shots and
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Table 3.4 Bipolar neutrosophic average values

Average value
Chemical exposures (0.39, 0.023, 0.014, —0.04, —0.167, —0.515)
Oxidizing materials (0.619, 0.032, 0.001, —0.08, —0.483, —0.165)
Toxic vapour cloud (0.53, 0.003, 0.001, —0.04, —0.198, —0.261)
Electric hazard (0.570, 0.032, 0.032, —0.014, —0.465, —0.422)
Oil spill (0.558, 0.007, 0.014, —0.009, —0.384, —0.445)
Hydrocarbon gas leakage (0.493, 0.004, 0.002, —0.011, —0.543, —0.229)
Ammonium nitrate (0.546, 0.003, 0.001, 0.0, —0.464, —0.417)

Table 3.5 Bipolar neutrosophic weighted average table

Average value

Chemical exposures (0.1365, 0.0081, 0.0049, —0.0140, —0.0585, —0.1803)
Oxidizing materials (0.4952, 0.0256, 0.0008, —0.0640, —0.3864, —0.1320)
Toxic vapour cloud (0.1590, 0.0009, 0.0003, —0.012, —0.0594, —0.0783)
Electric zard (0.2850, 0.0160, 0.0160, —0.0070, —0.2325, —0.2110)
Oil spill (0.1535, 0.0019, 0.0039, —0.0025, —0.1056, —0.1224)
Hydrocarbon gas leakage (0.3205, 0.0026, 0.0013, —0.0072, —0.3530, —0.1489)
Ammonium nitrate (0.4095, 0.0023, 0.0008, 0.0, —0.3480, —0.2110)

Table 3.6 Normalized values Normalized value

Chemical exposures 1.5966
Oxidizing materials 1.5006
Toxic vapour cloud 1.6540
Electric hazard 1.6090
Oil spill 1.4938

Hydrocarbon gas leakage 1.6036

Ammonium nitrate 1.5089

pollution. Graphs are used to find such graphical representations of networks. But
there is always an uncertainty and degree of indeterminacy in data which can be dealt
using bipolar neutrosophic graphs.

3.3.1 Bipolar Neutrosophic Graphs for the Reduction
of Pollution

Major living organisms on the Earth are human beings, plants and animals. Their
survival is strongly dependent on air, water and land. The interaction between living
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Table 3.7 Bipolar neutrosophic set C of living organisms and life elements

Elements TS 1t Fg T Ic FY

Human beings | 0.7 0.3 0.8 -0.9 —0.1 -0.9
Animals 0.8 0.4 0.7 -0.8 -0.3 —-0.8
Plants 0.9 0.3 0.6 —-0.8 —-0.2 —0.8
Air 0.9 0.3 0.6 -0.7 -0.3 —0.8
Water 0.8 0.2 0.6 -0.7 -04 —0.8
Land 0.8 0.3 0.7 —0.8 -04 -0.9

Table 3.8 Bipolar neutrosophic set D of pairs of living organisms and life elements

Elements T I} Fy T, Iy FY

(Human beings, animals) | 0.7 0.3 0.6 —0.8 —0.1 —0.7
(Human beings, plants) | 0.7 0.3 0.6 —0.8 —0.1 —-0.5
(Human beings, air) 0.7 0.3 0.8 —-0.7 —0.1 —-0.9
(Human beings, water) 0.6 0.2 0.7 —0.6 —0.1 —-0.8
(Human beings, land) 0.7 0.2 0.7 -0.8 —-0.1 —-0.7
(Animals, air) 0.6 0.3 0.6 -0.7 -0.2 -0.7
(Animals, water) 0.8 0.2 0.6 —-0.7 —-0.3 —-0.8
(Animals, land) 0.8 0.3 0.7 —-0.7 —-0.3 —-0.6
(Plants, air) 0.9 0.2 0.5 -0.7 —-0.2 —-0.6
(Plants, water) 0.8 0.2 0.6 —0.7 —-0.2 —0.7
(Plants, land) 0.8 0.1 0.7 —-0.8 -0.2 —0.6
(Water, land) 0.8 0.2 0.6 —-0.7 -0.3 —-0.8

organisms and life elements has good, bad or indeterminable effects. We can show
this effecting processes using a bipolar neutrosophic graph. We consider a set A of
living organisms and life elements in the realm of nature as: A = {human beings,
animals, plants, air, water, land}. Further we consider a bipolar neutrosophic set C
on set A, as shown in Table 3.7.

In Table3.7, T}, F; of a living organism or life element shows its positive and
negative impacts on nature and /. show indeterminacy/ambiguity of its impact.
Whereas T, FY denote nature’s negative impact on living organism or life element
and I is the percentage of negative ambiguous impact. We now consider a set
E C X x X = {(human beings, animals), (human beings,plants), (human beings,
air), (human beings, water), (human beings, land), (animals, air), (animals, water),
(animals, land), (plants, air), (plants, water), (plants, land), (water, land) }. Moreover,
we define a bipolar neutrosophic set D on set A as shown in Table 3.8.

In Table3.8, T, T, of a pair denote the percentage of positive and negative
impacts on each other. Similarly F,,, F}) and I}, I,; represent the percentage of
positive and negative false and intermediate effects. A bipolar neutrosophic graph
G = (C, D) is shown in Fig. 3.10.
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Human
beings

(0.8,0.2,0.6,-0.7, —0.3, ~0.8)

Fig. 3.10 Bipolar neutrosophic graph identifying highly responsible factors for pollution

In this bipolar neutrosophic graph, vertex human being has highest F,; value, that
is, 0.8 and lowest F' g value, that is —0.9 for air which shows that human beings
are highly responsible for air pollution and also highly effected by it as compared
to other pollution types. Animals and plants have highest F,; values for land, 0,7,
0.7, respectively; it shows that they have major contribution in land pollution as
compared to other types of pollution. Moreover, animals and plants have lowest F L])V
values for water —0.8, —0.7, respectively; it indicates they are strongly effected by
water pollution. This bipolar neutrosophic graph can be a guideline for ENGOs and
other pollution control and health organizations that they should prevail awareness
and try to take steps to increase positive interaction of human beings with air and
take preventive measures to save animals and plants from water pollution. Further,
it emphasizes to minimize land pollution by animals and plants. The method for the
construction of a structure among living things is given in Algorithm3.3.1.

Algorithm 3.3.1 Structure among living things

1. Input the n number of objects L, Ly, ..., L,.
2. Input the bipolar neutrosophic set C of objects.
3. doifroml —n

4. do jfrom1l — n
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5. read*, &;

6. if(i <j,&; #(0,0,1,0,0,—1))then
7. Draw an edge between L; and L ;.
8. D(L;L;) =&;

9. end if

10. end do
11. end do

3.3.2 Domination in Bipolar Neutrosophic Graphs

Domination has a wide variety of applications in communication networks, coding
theory, fixing surveillance cameras, detecting biological proteins and social networks,
etc. Consider the example of a TV channel that wants to set up transmission stations
in a number of cities such that every city in the country gets access to the channel
signals from at least one of the stations. To reduce the cost for building large stations
itis required to set up minimum number of stations. This problem can be represented
by a bipolar neutrosophic graph in which vertices represent the cities and there is an
edge between two cities if they can communicate directly with each other. Consider
the network of ten cities {Cy, C3, ..., Cio}. In the bipolar neutrosophic graph, the
degree of each vertex represents the level of signals it can transmit to other cities and
the bipolar neutrosophic value of each edge represents the degree of communication
between the cities. The graph is shown in Fig.3.11. D = {Cg, Cjg} is the minimum
dominating set. It is concluded that by building only two large transmitting stations
in Cg and Cjg, a high economical benefit can be achieved. The method of calculating
the minimum number of stations is described in the following Algorithm3.3.2.

Algorithm 3.3.2 Finding minimum number of stations

1. Enter the total number of possible locations 7.

2. Input the adjacency matrix [Cjj],x, of transmission stations Cy, C, ..., C,.
3.k=0,D=0

4. doi from1 — n

5. do jfromi+1—n

6. if (T, 1T, F*,T~, 17, F)(C,C)) =

7. (T, It FH, T, I, F)(C)HN(TH, IT,F*,T~, 1, F7)(C;) then
8. CiGD,k=k+l,xk=Ci

9. end if
10. end do
11. end do

12. Arrange X \ D = {xpy1, Xk42, .- -, Xu}=J, p=0,g =1
13. doi from 1 — k

14, D = D\ Xp—it1s Xp—i+1 = Xpt1

15. do j fromk — n+1
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C5(0.9,0.7,0.2,-0.2, —0.6, —0.1)
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dom from1 — k —1
if (T, 17, F*, T, I, F ) (x,x;) =
(TH, I, F*, T, I, F ) )N(T, [T, F*, T, I—, F)
(x;) then
D=D,p=p+lLk=k—-1,d, =x;,
q = q + 1 stop the loop
else if m = k — 1) then
D=D,D =0
end if
end do
end do
end do
if (DU (U_,d;)UJ = X) then

D is a minimal dominating set.

else

There is no dominating set.
end if
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Fig. 3.11 Domination in bipolar neutrosophic graph
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3.4 Bipolar Neutrosophic Planar Graphs

Definition 3.21 Let A be anonempty set with generic elements in A denoted by x. A
bipolar neutrosophic multiset C drawn from A is characterized by the three positive
functions: count truth-membership of CT/, count indeterminacy-membership of
C1} and count falsity-membership of C F such that

CTH(x): X - R,

CIf(x): X — R",

CFlf(x): X — RY,
for x € X, where RT is the set of all real number multisets in the real unit inter-
val [0, 1]. The three negative functions: count truth-membership of CT., count
indeterminacy-membership of C /- and count falsity-membership of C F> such that

CT(x): X - R,

Clo-(x): X - R,

CF(x): X - R,

for x € X, where R~ is the set of all real number multisets in the real unit interval
[—1, 0]. Then, a bipolar single-valued neutrosophic multiset A is defined as follows.

A= {(x,(THE), (THEX), ..., (THEWX)),

((IHE@), UHE@), ..., UDEX)),
(FHYE@), (FHE®), ..., (FDE X)),
(THe(x), (THe (), ..., (THe(x)),

(e @), UHe (), ...y D)),
(FHZ ), (FHZ(), ..oy (FDZ(0)))x € X1,

where the positive truth-, indeterminacy- and falsity-membership sequences are
given as,

(THE@), (THEE), ... (THEWX)),
((NE@), UDHE@), ..., TDEX)),
(FHYE@), (FHE®), ..., (FDEX)).

These sequences may be in decreasing or increasing order. The sum of (T2)*(x),
(INEX), (FHE(x) €10, 1] satisfies the following condition: 0 < sup(T7)&(x) +
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sup(I)) 5 (x) +sup(F)E(x) <3, for x € X, 1 <i <gq. The negative truth-,
indeterminacy- and falsity-membership sequences,

(THEC), (THEE), ..., (THEX)),
(e ), UDHe (), ...y D (x)),
(FHe ), (FHZ(), ..., (FD(x)),

may be in decreasing or increasing order. The sum of (T ) (x), (I )C(x) (F ’)C(x) €
[—1, 0] satisfies the condition: —3 < inf(7" )e () + inf (I )e(x) + mf(F’)C(x) <0
forx € X and 1 <i < q. For convenience, a bipolar neutrosophic multiset C can be
denoted by the simplified form: C = {(x, (T)Jcr(x),-, (I)ér(x)i, (F)Jcr(x),-, (T) ¢ ()i,
(De@)i (Mgl € X, 1 <i <q).

Definition 3.22 Let C = (T7, I}, FX, T, 15, FZ) be a bipolar neutrosophic set
on A and D = {(xy, Ty (xy)i, I, (xy)i, Fpy )i, Tpy (xy)i I (xy)i, Fp(xy)i),
1 <i <mlxy € X x X} be a bipolar neutrosophic multiset of X x X such that

Ty (xy)i < TE(x) ATZ(y),
Ty (xy)i = To (x) v To(y),
15 (xey) < 15 AL (),
Ip(xy)i = 10 (x) vV 15 (y),
Fp(xy)i < FE(x) v FZ(y),
Fp(xy)i = Fo (x) A Fe (),

AR e

forall 1 <i <m. Then, G = (C, D) is called a bipolar neutrosophic multigraph.

There may be more than one edge between the vertices x and y. The positive values
Tg xy)i, Ig xy)i, F g (xy); represent truth, indeterminacy and falsity of the edge xy
in G, whereas the negative values T, (xy);, I, (xy);, F, (xy); represent the implicit
counter property of the truth-, indeterminacy- and falsity-membership degrees of
the edge xy in G. m denotes the number of edges between the vertices. In bipolar
neutrosophic multigraph G, D is said to be bipolar neutrosophic multiedge set.

Example 3.10 Let C = (TF, I}, FZ,T;, 15, FZ) be a bipolar neutrosophic set
on X = {a, b, c,d}, given in Table3.9, and D = (T3, I}, F}\, Ty, I,,, Fpy) be a
bipolar neutrosophic multiedge set on {ab, ab, ab, bc,bd} = E C X x X defined
in Table 3.10.

By direct calculations, it can be seen from Fig. 3.12 that it is a bipolar neutrosophic
multigraph.

Definition 3.23 Let D = {(xy, Ty (xy)i, I (xy)i, Fff (xy)i, Ty (xy)i, 15 (xy)i,
Fy(xy)i), 1 <i <m|xy € X x X} be a bipolar neutrosophic multiedge set in
bipolar neutrosophic multlgraph G. The degree of a vertex x e X, denoted by

deg(x),is defined by deg(x) = (Z Ty (xy)is 2 I (xy)i, Z Fp(xy);, Z Ty (xY)i,
i=1 i=1 i=1 i=1

> Iy (i, ; Fp (xy)).
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Table 3.9 Bipolar neutrosophic set C

161

C a b c d

Th 0.5 0.4 0.5 0.4
1F 0.3 0.2 0.4 0.3
Ft 0.3 0.4 0.3 0.4
T, —0.5 —0.4 -0.5 —0.4
I -0.3 —0.2 —0.4 -0.3
Fo -0.3 —0.4 -0.3 0.4

Table 3.10 Bipolar neutrosophic multiedge set D
D ab ab ab bc bd
Th 0.2 0.1 0.2 0.3 0.1
I 0.2 0.1 0.2 0.1 0.2
Fp 0.2 0 0.2 0.3 0.2
T, -0.2 —0.1 —0.2 -0.3 —0.1
I -0.2 —0.1 -0.2 —0.1 -0.2
Fp -0.2 -0 —0.2 -0.3 —0.2
(0.2,0.2,0.2, 0.2, —0.2, —0.2) /Q.b)
/Q'%
/Q_bf'\
D“Qf%g%
S\

a(0.5,0.3,0.3,—0.5, —0.3, —0.3)

¢(0.5,0.4,0.3, 0.5, —0.4, —0.3)
(0.3,0.1,0.3, —0.3, —0.1, —0.3)

(0.1,0.1,0,—0.1, 0.1, 0)

(0.2,0.2,0.2,-0.2, —0.2, —0.2)

d(0.4,0.3,0.4, —0.4, —0.3, —0.4)

Fig. 3.12 Bipolar neutrosophic multigraph

Example 3.11 In Example 3.10, the degree of vertices a, b, ¢, d are calculated as,

deg(a) = (0.5,0.5,0.4, —0.5, —0.5, —0.4),
deg(b) = (0.9, 0.8,0.9, —0.9, —0.8, —0.9),

deg(c) =(0.3,0.1,0.3, -0.3, —0.1, —0.3),
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Fig. 3.13 Bipolar neutrosophic complete multigraph

deg(d) = (0.1,0.2,0.2, —0.1, —0.2, —0.2).

Definition 3.24 Let D = {(xy, Tg(xy),-, Ig(xy),-, Fz)r(xy),-, T, (xy)i, Ip(xy)i,
Fy(xy)i),1 <i <m|xy € X x X} be abipolar neutrosophic multiedge set in bipo-
lar neutrosophic multigraph G. A multiedge xy of G is strong if the following
conditions are satisfied,

LT ATEO)) < T ey,

o0V TE ) = Ty ey,

LE@) A IEO)Y < I ey,

HE@ vV IZO)) = 1 ()i,

TFE@) v FE()) = F oy,

1FE(x) AFE(y)} < Fp(xy);, forall 1 <i <m.

AN o e

Definition 3.25 Let D = {(xy, Ty (xy)i, 15 (xy)i, Fpy (xy)is Ty (xy)i, Iy (xy)i,
Fy(xy)i),1 <i <m|xy € X x X} be abipolar neutrosophic multiedge set in bipo-
lar neutrosophic multigraph G. A bipolar neutrosophic multigraph G is complete if
the following conditions are satisfied.

TE ) AT} = Tp (xy)i,

Te () VvTe} =Ty (xy),

1Ex) AED)Y = IS (xy)i,

Ic () V Ig () = I ey,

FE@) v FE() = Fi @),

Fox)ANFo(y)} = Fpy(xy), forallx,y € X,1 <i <m.

AR e e

Example 3.12 Consider a bipolar neutrosophic multigraph G as shown in Fig. 3.13.
By routine calculations, it is easy to see that Fig.3.13 is a bipolar neutrosophic
complete multigraph.

Suppose that geometric insight for bipolar neutrosophic graphs has only one crossing
between single bipolar valued neutrosophic edges,

(ab, T (ab);, 15 (ab);, F(ab);, T (ab);, I, (ab);, F, (ab);) and

(cd, TZ (cd)i, 1} (cd)i, Fjy(cd)i, Tp (cd)i, I, (cd)i, Fp(cd);). We note that:
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If (ab, Tg(ab)i, Ig(ab),«, F;(ab)i, T, (ab);, I, (ab);, Fp(ab);)
=(,1,1,-1,—-1,-1),
(cd, Tg(cd)i, I;(cd);, Fg(cd),-, T, (cd)i, I (cd)i, Fpy(cd);)
= (0,0,0,0,0,0),
or (ab, Tj (ab);, 15 (ab);, Fj(ab);, T, (ab);, I}, (ab);, Fj (ab);)
=(0,0,0,0,0,0),
(cd, Tg(cd)[, I;(cd)i, Fg(cd),-, T, (cd)i, I, (cd);, Fp(cd);)
=(,1,1,-1,—-1,-1),

then bipolar neutrosophic graph has no crossing,

If (ab, T[J{(ab)i, Ig(ab)i, F[J,r(ab),-, T, (ab);, I, (ab);, Fp, (ab);)
=(,1,1,-1,—1,-1),

(cd, Tg(cd)i, Iz;(cd),», Fg'(cd)i, T, (cd);, I} (cd);, Fpy(cd);)
=(,1,1,-1, -1, -1),

then there exists a crossing for the representation of the graph.

Definition 3.26 The strength of the bipolar neutrosophic edge ab can be measured
by the following value,

Sap = ((St+)abs (S1+)abs (SF+)ab> (ST-)abs (S1-)abs (SF-)ab)
TS (ab); 1) (ab); Fp (ab);
- (Tg(a) ATEB) 1F (@) ANIE(b) Fi(a) v FE(b)
T, (ab); I}, (ab); F;, (ab);
T (a)V Tz (b) Iz(a) VI (b) Fg(a) A Fg(b))'

Definition 3.27 Let G be a bipolar neutrosophic multigraph. An edge ab is said to
be a strong if

(S7+)ap = 0.5, (Sr+)ap = 0.5, (Sp+)ap = 0.5,
(S7-)ap < —0.5, (81-)ap = —0.5, (SF-)ap < —0.5.

Otherwise, it is called a weak edge.

Definition 3.28 Let G = (C, D) be a bipolar neutrosophic multigraph such that D
contains two edges as,

(ab, T7 (ab);, I} (ab);, F;;(ab);, Ty, (ab);, I, (ab);, F;, (ab);)

and
(cd, Tg(cd)j, I;(cd)j, FD+(cd)j, Ty (cd)j, Ip(cd)j, Fyy(cd)j),
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intersected at a point P, where i and j are fixed integers. We define the intersecting
value at the point Q as,

So = ((S1+) 0, (87+) 0+ (SF+) 05 (ST-) 05 (S7-) 95 (SF-) )
_ <(ST+)ab + (St4)ea (S1+)ap + (S1+)ea (SF-)ap + (SF+)ca
2 ’ 2 ’ 2
(S7-)ab + (S7-)ea (Si-)ap + (S1-)ea (SF-)ap + (SF—)cd)
2 ’ 2 ’ 2 ’

3

If the number of point of intersections in a bipolar neutrosophic multigraph increases,
planarity decreases. Thus for bipolar neutrosophic multigraph, Sy is inversely pro-
portional to the planarity. We now introduce the concept of a bipolar neutrosophic
planar graph.

Definition 3.29 Let G be a bipolar neutrosophic multigraph and Q;, Q», ..., Q. be
the points of intersection between the edges for a certain geometrical representation,
G is said to be a bipolar neutrosophic planar graph with bipolar neutrosophic planarity

value f = (fr+, fi+, fr+, fr-, fi-, fr-) where
f = (fr+, fr+, fr+, fr-, fi-, fr-),
1

N (1 +{(Sr)g, + (S1+)g, + -+ + (S1+)0.}

1
1+ {(S[+)Q, + (S[+)Q2 + -+ (S”)Qz}
1
1 +{(SF)g, + (Sp+)o, + -+ (SF+)QZ}’
1
—1—={(S7r)o, + (Sr-)o, + -+ (Sr)o.}
1
—1—={(S1)o, + (Si)o, + -+ (Si)o.}
1

).

—1—{(SFr-)o, +(SFr-)g, +---+(Sr-)o.}
Clearly, f = (fr+, fi+, fr+, fr-, fi-, fr-) is bounded and

O<fT+§l, 0<f1+§1, 0<fF+§1,
-1 < fr- <0, -1 < fi- <0, -1 < fr- <0.

If there is no point of intersection for a certain geometrical representation of a
bipolar neutrosophic planar graph, then its bipolar neutrosophic planarity value is
(1,1,1, -1, —1, —1). We conclude that every bipolar neutrosophic graph is a bipolar
neutrosophic planar graph with certain bipolar neutrosophic planarity value.
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Example 3.13 Let X ={a, b,c,d,e}and E = {ab, ac, ad, ad, bc, bd, cd, ce, ae,
de, be}.Let C = (T 1, Ig, FZI, 1., 1;, F) be abipolar neutrosophic set on A and
D= (T3, 1}, F}, Ty, 1;,, Fp) be a bipolar neutrosophic multiedge set on X x X
defined in Tables3.11 and 3.12.
The bipolar neutrosophic multigraph as shown in Fig. 3.14 has two point of inter-

sections P; and P,. P is a point between the edges

(ad,0.2,0.2,0.1, 0.2, —0.2, —0.1),

(bc,0.2,0.2,0.1, 0.2, —0.2, —0.1),

and P, is between
(ad,0.3,0.3,0.1, —0.3, —0.3, —0.1),

(bc,0.2,0.2,0.1, 0.2, —0.2, —0.1).
For the edge (ad, 0.2,0.2,0.1, —0.2, —0.2, —0.1),
Saa = (0.4,0.4,0.5, 0.4, —0.4, —0.5).
For the edge (ad, 0.3,0.3, 0.1, —0.3, —0.3, —0.1),

Sad = (0.6,0.6,0.5, —0.6, —0.6, —0.5),

Table 3.11 Bipolar neutrosophic set C

A a b c d e

Tt 0.5 0.4 0.3 0.6 0.6
ir 0.5 0.4 0.3 0.6 0.6
Fg 0.2 0.1 0.1 0.2 0.1
TS -0.5 —0.4 -03 -0.6 —0.6
Ic -0.5 —0.4 -0.3 —0.6 —0.6
Fg -0.2 —0.1 —0.1 -0.2 —0.1

Table 3.12 Bipolar neutrosophic multiedge set D

B ab ac ad ad bc bd cd ae ce de be

Tg 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Ig 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2
F;; 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
T, -02 |-02 |-02 |-03 |-02 |-0.2 |-0.2 |-0.2 |[-0.2 |—-0.2 |-0.2
I, -02 |-02 |-02 |-03 |-02 |-0.2 |-02 |-0.2 |[-0.2 |—-0.2 |-0.2
Fp -0.1r |-0.1 |-0.1 |-0.1 |-0.1 |-0.1 |-0.1 |-0.1 |-0.1 |—=0.1 |-0.1
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Fig. 3.14 Neutrosophic planar graph

and for the edge (bc, 0.2,0.2,0.1, —0.2, —0.2, —0.1),

Spe = (0.6667, 0.6667, 1, —0.6667, —0.6667, —1).

For the first point of intersection P, intersecting value Sp, is (0.5334, 0.5334, 0.75,
—0.5334, —0.5334, —0.75). For the second point of intersection P, Sp,, the inter-
secting value is (0.63335, 0.63335, 0.75, —0.63335, —0.63335, —0.75). Therefore,
the bipolar neutrosophic planarity value for the bipolar neutrosophic multigraph
shown in Fig.3.14 is (0.461, 0.461, 0.4, —0.461, —0.461,—0.4).

Theorem 3.17 Let G be a bipolar neutrosophic complete multigraph. The planarity
value, f = (fr+, fi+, fr+, fr-, fi-, fr-), of G is given by

fr+ = , [+ fp+ = O0< fr+ + f1++ fp+ <3,
o

:l—i—nQ’ 1—|—nQ

1 1 1
= e = ———— =3 = fr- + fi- + fp- <0,

—l—nQ —l—nQ —l—nQ

where n g is the number of point of intersections between the edges in G.

Definition 3.30 A bipolar neutrosophic planar graph G is called strong bipolar
neutrosophic planar graph if the bipolar neutrosophic planarity value f=(fr+, fi+,
fr+, fr-, fi-, fr-) of G satisfies the following conditions,
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fT* > 0.5, f[+ > 0.5, fp+ <0.5,
fr- < =05, fi- <-0.5, fr+ = —0.5.

Theorem 3.18 Let G be a strong bipolar neutrosophic planar graph. The number
of points of intersections between strong edges in G is at most one.

Proof Let G be a strong bipolar neutrosophic planar graph. Assume that G has at
least two point of intersections P; and P, between two strong bipolar neutrosophic
edges in G. For any strong edge

(ab, T (ab);, I}; (ab);, Fjy (ab);, T (ab);. I, (ab);, Fj (ab),),

+ 1 + + - 1 - -
Ty (ab); > ETC (@) NT; (b), Ty (ab); < ETC (@) v T (b),
+ Loy + - - -
ID(ab)i > EIC (a)/\lc (b), ID(ab)i =< EIC (a)VIC (),
+ 1 + + - 1 - -
Fj(ab); < EFC (a)\/FC (b), Fp(ab); > EFC (a)/\FC b).

It shows that

(8S7+)ap = 0.5, (S1+)ap = 0.5, (Sp+)ap < 0.5,
(S7-)ap < =05, (S1-)ap < 0.5, (SF-)ap = —0.5.

Thus for two intersecting strong bipolar neutrosophic edges, we have
(ab, Tj (ab);, I} (ab);, Fj;(ab);, T, (ab);, I}, (ab);, Fpy(ab),),

(cd, T3 (cd);j, I} (cd);, Fy(cd)j, Tp (cd);, I (cd);, Fp(cd);).

(S7+)ab -; (ST+)ca > 0.5, w > (.5,
(SF+)ab ;‘ (SF+)cd < 057 (ST*)ab ;‘ (ST*)cd < _05’
CRIECATI Cra 2O o g

That is,

(St+)o, = 0.5, (S1+)g, = 0.5, (SF+)o, <0.5,
(ST—)Q] < -0.5, (S]—)Q] < —0.5, (SF—)Q] > —0.5.

Similarly, we can prove that
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(S7)0, > 05, (Si+)g, =05, (Spi)g, <0.5,
(S7)0, < =05, (S;1)g, < =05, (Sp)g, > —0.5.

=14+ Sr+)o, +(Sr+)o, =2, =14+ (Sr-)o, +(Sr-)g, < -2,
14+ (S, + (), =2, —1+S1-)g, +(Si-)g, <2,
1+ (Sr+)o, +(Srv)o, <2, —1+(Sk-)g, + (SF-)g, = —2.
Therefore,
f ! <05, f ! > —0.5
+ = D, - = > —0.95,
T U+ Sro)g + 1), T U+ S0, + S1) 0,
1 1
= <0.5, - = > 0.5,
L SR PR T PR I = e ¥ G
1 1
I = o + G~ 7 = I 5ia + G

It contradicts the fact that the bipolar neutrosophic graph is a strong bipolar neu-
trosophic planar graph. Thus, number of point of intersections between strong edges
cannot be two. Obviously, if the number of point of intersections of strong bipolar
neutrosophic edges increases, the bipolar neutrosophic planarity value decreases.
Similarly, if the number of point of intersection of strong edges is one, then the
bipolar neutrosophic planarity value

fre > 0.5, fr+ > 0.5, fr+ > 0.5,
fr- < —0.5, fi- < —0.5, fi- < —0.5.

Any bipolar neutrosophic planar graph without any crossing between edges is a strong
bipolar neutrosophic planar graph. Thus, we conclude that the maximum number of
point of intersections between the strong edges in G is one.

Face of a bipolar neutrosophic planar graph is an important parameter. Face of
a bipolar neutrosophic graph is a region bounded by bipolar neutrosophic edges.
Every bipolar neutrosophic face is characterized by bipolar neutrosophic edges in its
boundary. If all the edges in the boundary of a bipolar neutrosophic face have T+, I,
F*,T~,I" and F~ values (1,1, 1, —1, -1, —1) and (0, 0, 0, 0, 0, 0), respectively,
it becomes crisp face. If one of such edges is removed or has T+, I, F*, T—, I~
and F~ values (0,0,0,0,0,0) and (1, 1, 1, —1, —1, —1), respectively, the bipolar
neutrosophic face does not exist. So the existence of a bipolar neutrosophic face
depends on the minimum value of strength of bipolar neutrosophic edges in its
boundary. A bipolar neutrosophic face and its T+, I, F*, T—, I~, and F~ values
of a bipolar neutrosophic graph are defined below.

Definition 3.31 Let G be a bipolar neutrosophic planar graph and
D = {(xy, TSy, I5xy)i, Fiyey)i, Tp (xy)i, Ip(xy)i, Fp(xy)), i =1, 2,



3.4 Bipolar Neutrosophic Planar Graphs 169

...,m|lxy € X x X}. A bipolar neutrosophic face of G is a region, bounded by the
set of bipolar neutrosophic edges E’ C E, of a geometric representation of G. The
truth, indeterminacy and falsity values of the bipolar neutrosophic face are:

T} (xy);
1. min %,migmmey},
T (x) AT (y)
Tp (xy)i
2. max &,lfifmpcyeE’},
To (x) vTe(y)
I (xy)i
3. min %,1§i§m|xyeE’},
Ic(x)/\lc(y)
I (xy)i
4. max &,lfz’gmuyeE/},
Ic(x)VIc()’)
F(xy)i
5. max %,15i§m|xyeE’},
Fe(x) Vv Fo(y)

) { Fp(xy)i
min { —2—-———
Fo () AN Fo ()

Definition 3.32 A bipolar neutrosophic face is called strong bipolar neutrosophic
face if its positive true and indeterminacy value is greater than 0.5 but false value
is lesser than 0.5, and negative true and indeterminacy value is less than —0.5 but
false value is greater than —0.5. Otherwise, face is weak. Every bipolar neutrosophic
planar graph has an infinite region which is called outer bipolar neutrosophic face.
Other faces are called inner bipolar neutrosophic faces.

1§i§m|xyeE/}.

Example 3.14 Consider a bipolar neutrosophic planar graph as shown in Fig. 3.15.
The bipolar neutrosophic planar graph has the following faces.

e Bipolar neutrosophic face F) is bounded by the edges
(v1v2,0.5,0.5,0.1, =0.5, =0.5, =0.1), (vov3, 0.6, 0.6, 0.1, —0.6, —0.6, —0.1),
(v1v3,0.5,0.5,0.1, -0.5, =0.5, =0.1).
e Outer bipolar neutrosophic face F, surrounded by edges
(v1vs3, 0.5, 0.5, 0.1, —0.5, —0.5, —0.1), (v1v4, 0.5, 0.5, 0.1, —0.5, —0.5, —0.1),
(v2v4, 0.6, 0.6, 0.1, —0.6, —0.6, —0.1), (vov3, 0.6, 0.6, 0.1, —0.6, —0.6, —0.1).
e Bipolar neutrosophic face F3 is bounded by the edges
(v1v, 0.5, 0.5, 0.1, 0.5, —0.5, —0.1), (v2v4, 0.6, 0.6, 0.1, —0.6, —0.6, —0.1),
(v1v4,0.5,0.5,0.1, =0.5, —0.5, —0.1).

Clearly, the positive truth, indeterminacy and falsity values of a bipolar neutrosophic
face F) are 0.833, 0.833 and 0.333, respectively, and the negative truth, indetermi-
nacy and falsity values of a bipolar neutrosophic face F; are —0.833, —0.833 and
—0.333, respectively. The positive truth, indeterminacy and falsity values of a bipo-
lar neutrosophic face F3 are 0.833, 0.833 and 0.333, respectively, and the negative
truth, indeterminacy and falsity values of a bipolar neutrosophic face F3 are —0.833,
—0.833 and —0.333, respectively. Thus, F; and F3 are strong bipolar neutrosophic
faces.
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Fig. 3.15 Faces in bipolar neutrosophic planar graph

We now introduce dual of bipolar neutrosophic planar graph. In bipolar neu-
trosophic dual graph, vertices are corresponding to the strong bipolar neutrosophic
faces of the bipolar neutrosophic planar graph and each bipolar neutrosophic edge
between two vertices is corresponding to each edge in the boundary between two
faces of bipolar neutrosophic planar graph. The formal definition is given below.

Definition 3.33 Let G be a bipolar neutrosophic planar graph, and let

D = {(ey. T ey I Goydis F ey Ty ey Iy Geydis Fpy o). i = 1, 2,
...,mlxy e X x X}. Let F\, F,, ..., F; be the strong bipolar neutrosophic faces
of G. The bipolar neutrosophic dual graph of G is a bipolar neutrosophic pla-
nar graph G’ = (X', C’, D), where X' ={x;,i =1,2,...,k}, and the vertex x;
of G’ is considered for the face F; of G. The truth-membership, indeterminacy
and falsetruth-membership values of vertices are given by the mapping C' =
(TE, 15, FL, To, 10, Fo) : X — [0, 1] x [0, 1] x [0, 1] x [—1,0] x [—1, 0] x
[—1, 0] such that

T (x;) = max{Tj (uv);, 1 <i < pluv is an edge of the boundary of the strong
bipolar neutrosophic face F;},
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T; (x;) = min{Tp, (uv);, 1 <i < pluvisanedge of the boundary of the strong bipo-
lar neutrosophic face F;},

IEL, (x;) = max{lz;, (uv);, 1 <i < pluvisanedge of the boundary of the strong bipo-
lar neutrosophic face F;},

I (x;) =min{l,, (uv);, 1 <i < pluvisanedge of the boundary of the strong bipo-
lar neutrosophic face F; },

Fg,(xi) = min{Fg,(uv)i, 1 <i < pluv is an edge of the boundary of the strong
bipolar neutrosophic face F;},

Fe (x;) = max{Fp, (uv);,1 <i < pluv is an edge of the boundary of the strong
bipolar neutrosophic face F; }.

There may exist more than one common edges between two faces F; and F; of
G. Thus, there may be more than one edges between two vertices x; and x; in
bipolar neutrosophic dual graph G'. Let (T +)); (x;x;), (")}, (x;x;) and (F ), (x;x )
denote the positive truth-, indeterminacy- and falsity-membership values of the /th
edge between x; and x, and let (T’)ID (xix;), (I’)ID (x;x;) and (F’)ID (x;x;) denote
the negative truth-, indeterminacy- and falsity-membership values of the /th edge
between x; and x;. The positive and negative truth, indeterminacy and falsity values
of the bipolar neutrosophic edges of the bipolar neutrosophic dual graph are given
as

T (ix ) = (T wv);, I3 (aix) = N (),
Fi(xix) = (FHh ), Tp (xix;) = (T (uv);,
I (xixj) = (I (uv);, Fp (xix;) = (F)h(uv);.

where (uv); is an edge in the boundary between two strong bipolar neutrosophic faces
Fiand F; and 1 <! < s, where s is the number of common edges in the boundary
between F; and F; or the number of edges between x; and x;. If there be any strong
pendant edge in the bipolar neutrosophic planar graph, then there will be a self-loop in
G’ corresponding to this pendant edge. The edge truth-membership, indeterminacy-
membership and falsity-membership values of the self-loop are equal to the truth-
membership, indeterminacy-membership and falsity-membership values of the pen-
dant edge. Single-valued neutrosophic dual graph of bipolar neutrosophic planar
graph does not contain point of intersection of edges for a certain representation, so
it is bipolar neutrosophic planar graph with planarity value (1, 1,1, —1, —1, —1).
Thus, the bipolar neutrosophic face of bipolar neutrosophic dual graph can be simi-
larly described as in bipolar neutrosophic planar graphs.

Example 3.15 Consider abipolar neutrosophic planar graph G = (X, A, B) as shown
in Fig.3.16 such that A = {a,b,c,d},

C ={(a,0.6,0.6,0.2, -0.6, —-0.6, —-0.2), (»,0.7,0.7,0.2, —-0.7, —0.7, =0.2),
(c,0.8,0.8,0.2,-0.8,-0.8, -0.2), (d,0.9,0.9,0.1,-0.9, 0.9, —0.1)},
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Fig. 3.16 Neutrosophic dual
graph

D = {(ab,0.5,0.5,0.01, —0.5, —0.5, —0.01), (ac, 0.4, 0.4, 0.01, —0.4, —0.4, —0.01),
(be, 0.6, 0.6, 0.01, —0.6, —0.6, —0.01), (cd, 0.7, 0.7, 0.01, —=0.7, —0.7, —0.01),
(ad, 0.55,0.55,0.01, —0.55, —0.55, —0.01), (bc, 0.45, 0.45, 0.01, —0.45,
—0.45, —0.01)}.

The bipolar neutrosophic planar graph has the following faces.

e Bipolar neutrosophic face F) is bounded by
(ab,0.5,0.5,0.01, —0.5, —0.5, —0.01), (ac, 0.4, 0.4, 0.01, —0.4, —0.4, —0.01),
(bc, 0.45, 0.45,0.01, —0.45, —0.45, —0.01).

e Bipolar neutrosophic face F; is bounded by
(ad, 0.55, 0.55, 0.01, —0.55, —0.55, —0.01), (cd, 0.7, 0.7, 0.01, —0.7, —0.7,
—0.01), (ac, 0.4,0.4,0.01, —0.4, —0.4, —0.01).

e Bipolar neutrosophic face Fj is bounded by
(bc, 0.45, 0.45, 0.01, —0.45, —0.45, —0.01), (bc, 0.6, 0.6, 0.01, —0.6, —0.6,
—0.01).

e Outer bipolar neutrosophic face Fj is surrounded by
(ab,0.5,0.5,0.01, —0.5, —0.5, —0.01), (bc, 0.6, 0.6, 0.01, —0.6, —0.6, —0.01),
(ed, 0.7, 0.7, 0.01, —0.7, —0.7, —0.01), (ad, 0.55, 0.55, 0.01, —0.55, —0.55,
—0.01).

Routine calculations show that all faces are strong bipolar neutrosophic faces. For
each strong bipolar neutrosophic face, we consider a vertex for the bipolar neutro-
sophic dual graph. So the vertex set X' = {x|, xp, X3, x4}, where the vertex x; is taken
corresponding to the strong bipolar neutrosophic face F;,i = 1, 2, 3, 4. Thus,
TZ(x1) = max{0.5,0.4,0.45} = 0.5, T, (x2) = max{0.55,0.7, 0.4} = 0.7,
TG (x1) = min{—0.5, —0.4, —0.45} = —0.5,
T (x2) = min{—0.55, —0.7, 0.4} = —0.7,
I, (x1) = max{0.5, 0.4, 0.45} = 0.5, I, (x2) = max{0.55,0.7, 0.4} = 0.7,
I (x1) = min{—0.5, —0.4, —0.45} = —0.5,
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15, (x2) = min{—0.55, —0.7, —0.4} = —0.7,
FZ(x1) = min{0.01,0.01, 0.01} = 0.01, F/, (x2) = min{0.01, 0.01, 0.01} = 0.01,
F5,(x1) = max{—0.01, —0.01, —0.01} = —0.01,
Fg(x2) = max{—0.01, —0.01, —0.01} = —0.01,
T, (x3) = max{0.45, 0.6} = 0.6, T/, (x4) = max{0.5, 0.6,0.7,0.55} = 0.7,
T5 (x3) = min{—0.45, —0.6} = —0.6,
T, (x4) = min{—0.5, —0.6, —0.7, —0.55} = —0.7,

1},(x3) = max{0.45, 0.6} = 0.6, I, (x4) = max{0.5,0.6,0.7,0.55} = 0.7,

FZ,(x3) = min{0.01,0.01} = 0.01, F,(x4) = min{0.01, 0.01,0.01,0.01} = 0.01.
Fei(x3) = max{—0.01, —0.01} = —0.01,
F,(x4) = max{—0.01, —=0.01, —0.01, —0.01} = —0.01.

There are two common edges ad and cd between the faces F, and F4 in G. Hence
between the vertices x; and x4, there exist two edges in the bipolar neutrosophic dual
graph of G. Truth-membership, indeterminacy-membership and falsity-membership
values of these edges are given as

Tg,(xzx@ = Tg(cd) =0.7, Tg,(xzx4) = Tg(ad) 0.55,
Ig,(x2x4) = I;(cd) = 0.7, I;,(x2x4) = I;(ad) 0.55,
Fg,(xg)u) = F;(cd) =0.01, Fg’,(xz)u) = Fg(ad) = 0.01,
Th(x2x4) =TpH(cd) = =07, Tp(x2x4) =T, (ad) = —0.55,
I (xoxs) = Ip(cd) =07, I, (xoxs) = 1,(ad) = —0.55,
Fp (x2x4) = Fpy(ed) = —0.01, Fp (x2x4) = Fpy(ad) = —0.01.

The truth-membership, indeterminacy-membership and falsity-membership values
of other edges of the bipolar neutrosophic dual graph are calculated as

TZ,’,(xlm) = Tg(bc) = 0.45, Tg,(xlxz) = Tg(ac) = 04,
Tg,(x]x4) = TD+(ab) = 0.5, Tg,(x3x4) = Tg,(bc) = 0.6,
Ty (x1x3) =T, (be) = =045, Tp(x1x2) = Tp, (ac) = —0.4,
T, (x1x4) =Ty (ab) = —0.5,  Tp(x3x4) = Tp, (be) = —0.6,
Ig,(x1x3) = Ig(bc) =045, Ig(xlxz) = Ig(ac) = 04,
Ig,(x1x4) = Ig(ab) = 0.5, Ig,(x3x4) = Ig,(bc) = 0.6,
Iy (x1x3) = I5(bc) =—-045, I, (x1x2) =1,(ac) = —0.4,
I (x1x4) = I5(ab) =05, I, (x3x4) = I, (bc) = —0.6,
Fg,(xl)@) = T;(bc) = 0.01, Fg,(xlxz) = F;(ac) = 0.01,
Fg,(xl)u) = Fz)r(ab) =0.01, Fg,(x3x4) = Fz)r(bc) = 0.01,
Fp (x1x3) = T, (be) = 0.01, Fp (x1x2) = Fpy(ac) = 0.01,
Fp (x1x4) = Fpy(ab) = 0.01, Fp (x3x4) = Fpy(be) = 0.01.
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Thus, the bipolar neutrosophic edge set of bipolar neutrosophic dual graph is com-
puted as

D’ = {(x1x3,0.45,0.45,0.01, —0.45, —0.45, —0.01),
(x1x2, 0.4,0.4,0.01, —0.4, —0.4, —0.01),
(x1x4,0.5,0.5,0.01, —0.5, —0.5, —0.01),
(x3x4, 0.6, 0.6, 0.01, —0.6, —0.6, —0.01),
(x2x4,0.7,0.7,0.01, —0.7, —0.7, —0.01),
(x2x4, 0.55,0.55,0.01, —0.55, —0.55, —0.01)}.

In Fig. 3.16, the bipolar neutrosophic dual graph G’ = (X', C’, D') of G is drawn by
dotted line.

Weak edges in planar graphs are not considered for any calculation in bipolar neu-
trosophic dual graphs.

Theorem 3.19 Let G = (X, C, D) be a bipolar neutrosophic planar graph without
weak edges and the bipolar neutrosophic dual graph of G be G' = (X', C', D).
The truth-membership, indeterminacy-membership and falsity-membership values
of bipolar neutrosophic edges of G’ are equal to truth-membership, indeterminacy-
membership and falsity-membership values of the bipolar neutrosophic edges of G.

3.5 Applications of Neutrosophic Planar Graphs

Graph is considered an important part of Mathematics for solving countless real-
world problems in information technology, psychology, engineering, combinatorics
and medical sciences. Everything in this world is connected, for instance, cities and
countries are connected by roads, railways are linked by railway lines, flight networks
are connected by air, electrical devices are connected by wires, pages on internet by
hyperlinks, components of electric circuits by various paths. Scientists, analysts and
engineers are trying to optimize these networks to find a way to save millions of
lives by reducing traffic accidents, plane crashes and circuit shots. Planar graphs
are used to find such graphical representations of networks without any crossing
or minimum number of crossings. But there is always an uncertainty and degree of
indeterminacy in data which can be dealt using bipolar neutrosophic graphs. We now
present applications of bipolar neutrosophic graphs in road networks.

3.5.1 Road Network Model to Monitor Traffic

Roads are a mean of frequent and unacceptable number of fatalities every year. Road
accidents are increasing due to dense traffic, negligence of drivers and speed of
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vehicles. Traffic accidents can be minimized by modelling road networks to monitor
the traffic, apply quick emergency services and to take action against the speedily
going vehicles quickly. The practical approach of bipolar neutrosophic planar graphs
can be applied to construct road networks, as these are the combination of vertices
and edges along with the degree of truth, indeterminacy and falsity. The method for
the construction of road network is given in Algorithm3.5.1.

Algorithm 3.5.1 Construction of a road network

1. Input: The n number of location Ly, Ly, ..., L.

2. Input: The bipolar neutrosophic set of cities.

3. Input: The adjacency matrix of & = [£;;],xx of cities.
4. doi from1 — n

5 do jfrom1 — n

6. if(i <j,&; #(0,0,1,0,0,—1))then
7 Draw an edge between L; and L ;.
8. B(L;Lj) =¢&;

9. end if

10. end do

11. end do

Consider the problem of road networks between six locations Ly, Ly, L3, L4, Ls, Lg.
The degree of memberships of cities and roads between cities is given in Tables 3.13
and 3.14. The positive degree of membership 7 (x) of each vertex x represents the

Table 3.13 Bipolar neutrosophic set of cities

A L1 L2 L3 L4 LS L6

Ty 0.7 0.5 0.8 0.6 0.5 0.4
17 0.4 0.4 0.2 0.1 0.4 0.5
F¥ 0.2 0.3 0.2 0.1 0.4 0.5
T} -0.2 —-0.3 -0.2 —0.1 —-0.4 -0.5
Iy -0.4 —0.4 -0.2 —0.1 —0.4 -0.5
Fn -0.7 —0.5 —0.8 —0.6 -0.5 0.4

Table 3.14 Bipolar neutrosophic set of roads

A LiLj LiLg LyLs LoLy LiLs LsLg LyLs LiLg L4Lg
Tg 0.4 0.4 0.5 0.5 0.5 0.4 0.5 0.4 0.4
Ig 0.2 0.4 0.2 0.1 0.2 0.4 0.4 0.2 0.1
Fl[; 0.2 0.5 0.3 0.1 0.4 0.4 0.3 0.5 0.5
Tg —-0.2 —-0.2 -0.3 —0.1 -0.2 —-0.4 -0.3 -0.2 —0.1
Iy —-0.4 —-0.4 —-0.2 —0.1 -0.2 —-0.4 —-0.4 -0.2 —0.1
Fg —-0.7 —-0.4 —-0.8 —-0.6 -0.8 —-0.4 -0.5 -0.8 —0.6
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Fig. 3.17 Bipolar
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percentage that vehicles travelling to or from this city are dense, I (x) and F*(x)
represent the indeterminacy and falsity in this percentage. The negative degree of
membership 7~ (x) represents the percentage that traffic is not dense, /= (x) and
F~(x) represent the indeterminacy and falsity in this percentage. The positive degree
of memberships of each edge xy indicates the percentage of truth, indeterminacy and
falsity of road accidents through this road. The negative degree of memberships of
xy shows the percentage of truth, indeterminacy and falsity that the road is safer.
The bipolar neutrosophic model of road connections between the cities is shown
in Fig.3.17. This bipolar neutrosophic model can be used to check and monitor
the percentage of annual accidents. Also, by monitoring and taking special security
actions, the total number of accidents can be minimized.

3.5.2 Electrical Connections

Graph theory is extensively used in designing circuit connections and installation of
wires in order to prevent crossing which can cause dangerous electrical hazards. The
twisted and crossing wires are a serious safety risk to human life. There is a need
to install electrical wires to reduce crossing. Bipolar neutrosophic planar graphs can
be used to model electrical connections and to study the degree of damage that can
cause due to the connection.

Consider the problem of setting electrical wires between five electrical utilities
and power plugs E;, E», E3, E4, Es5 in a factory as shown in Fig. 3.18. The positive
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Fig. 3.18 Electrical
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degree of membership T (E;) of each vertex E; represents the percentage of faults
and electrical sparks of utility or power plug E; ; IT(E;) and F?(E;) represent the
indeterminacy and falsity in this percentage. The negative degree of membership
T~ (E;) represents the percentage that E; is updated and safer; /= (x) and F~ (x)
represent the indeterminacy and falsity in this percentage. The positive degree of
memberships of each edge E;E; indicates the percentage of truth, indeterminacy
and falsity of electrical hazards through this connection. The negative degree of
memberships of E; E; shows the percentage of truth, indeterminacy and falsity that
the connection is safer. The crossing of wires can be reduced if we change the
geometrical representation of Fig. 3.18. The other representation is shown in Fig. 3.19
which has only one crossing, at point P;, between the edges E|E4 and E, Es. The
electrical damage at crossing point P; can be reduced by using better electrical
wires between E| and E4, E; and Es. The method for the construction of bipolar
neutrosophic planar graph is given in Algorithm3.5.2.

Algorithm 3.5.2 Construction of bipolar neutrosophic planar graph

1. Input: The n number of utilities E;, E», ..., E, and p number of connections
€1,€2, ... ,ep.

2. Input: The bipolar neutrosophic set of utilities.

3. Input: The points of intersection P, Ps, ..., P,.

4. doi from1 — r

5 P; is a point of intersection between e; and ey.

6 Change the graphical representation of one of the edges e; and ey.
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Fig. 3.19 Bipolar
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7. if There is no new point of intersection in this representation then
8. Keep this graphical representation.
9. else

10. Keep the previous graphical representation.

11. end if

12. end do

3.6 Bipolar Neutrosophic Line Graphs

Definition 3.34 Let L(G*) = (Y, Z) be line graph of the crisp graph G* = (X, E).
Let Ai=(T,, I}, Fy.T,, I;, Fy)and By = (T, I, Fg, Ty, Ig, Fyg) be
bipolar neutrosophic sets on A and E, respectively. A, = (T:2 1:{2 Fy Ty, 1y,
FA_2) and B, = (Té;, I;’z, Fg_z, TB_Z, IEZ, Fg_z) are bipolar neutrosophic sets on Y and
Z, respectively. Then, a bipolar neutrosophic line graph of the bipolar neutrosophic
graph G = (A}, B)) is a bipolar neutrosophic graph L(G) = (A,, B,) such that

L TS (Sy) =Ty (x) = Ty (uyvy), Ty, (Sy) = Ty (x) = Ty (urvy),
2. 17 (So) =I5 (x) = I (uevi), I (Se) = I (x) = I (uxvy),

3. Fy(So) = Fy (x) = Fy (e0,), Fr.(S,) = Fy (¥) = Fy (it,0,),
4. T4 (8:8y) = Ty (x) ATH (y), Ty, (8:8y) = T (x) v Ty (),
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Table 3.15 Bipolar reX

A(x)

neutrosophic set A

(0.7,0.4,0.4, -0.4, —0.4, —0.7)

(0.8,0.5,0.5,-0.5, —0.7, —0.8)

(0.9,0.6,0.6, —0.6, —0.5, —0.7)

(0.6,0.6,0.4, —0.4, —0.5, —0.5)

Q|0 | S

(0.7,0.4,0.2, 0.3, —0.3, —0.6)

Table 3.16 Bipolar xye X xX

B(xy)

neutrosophic relation B )
a

(0.7,0.4,0.4,-0.4,-0.4, -0.7)

ac

(0.6,0.3,0.2, -0.2, —0.3, —0.6)

be

(0.5,0.2,0.2,-0.2, —0.3, —0.6)

bd

(0.5,0.5,0.4,-0.4,-0.5, -0.5)

cd

(0.3,0.4,04,-0.3,-0.5,-0.5)

de

(0.6,0.3,0.2, -0.2, —0.3, —0.6)

a(0.7,0.4,0.4, 0.4, —0.4,—0.7)  5(0.8,0.5,0.5,—0.5

(0.7,0.4,0.4, —0.4, —0.4, —0.7)
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(0.5,0.5,0.4, —0.4, —0.5, —0.5)
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Fig. 3.20 Bipolar neutrosophic graph G

5. 15(5:8,) = 15 (0) A (0, I5,(8:8)) = I (0) V I (),
6. Fp(5:5,) = Fy () V Fy ), Fg(5:5,) = Fy (x) A Fy (),

VS, S, €Y, S5, e Z

Example 3.16 Let A be a bipolar neutrosophic set on X = {a, b, ¢, d, e}, given in
Table 3.15, and B be a bipolar neutrosophic relation on X, given in Table 3.16. It can
be seen that G = (A, B) as shown in Fig.3.20 is a bipolar neutrosophic graph. The
bipolar neutrosophic line graph of Fig.3.20 is shown in Fig.3.21.

Proposition 3.8 L(G) = (A,, By) is a bipolar neutrosophic line graph of some
bipolar neutrosophic graph G = (A, By) if and only if
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Fig. 3.21 Bipolar neutrosophic line graph

T (8:8)) = TH(S) ATEH(S)), Ta(S:8,) = Ty (S) v Ty, (S)),
I5(8:8,) = I5(S) AT (S, 15,(5:8)) = I5,(S) V I1,(5,)),
F(8:8,) = FL.(S) V FL(S)), Fp(S:S,) = Fy (S0 A Fa(S)),

forall §,, S, €Y.

Definition 3.35 Consider two bipolar neutrosophic graphs G; = (A}, By)and G, =

(A2, By). A mapping ¥ : X| — X, is called homomorphism iy : G| — G, if

@ { T () < T, 1 () < L W@)), Fi () < FEL@G)),
T, () = T, (00, 1y, (6 = L (0(x0), Fy (x) = FfL(h(x1),
Ty (xiy1) < Ty, ()Y (), Ty, (xiyn) = Ty (D) (),

(b) I%F(xm) < I, @)Y (), Iy (riyn) = I, @)Y (),
Fg (xiy1) < Fg,b(x)Y(1)), F (x1y1) = Fg (b)),

for all x; € Xy, x1y1 € E|. The weak vertex isomorphism of bipolar neutrosophic
graphs is a bijective homomorphism ¢ : G; — G, such that

© { Ty () =T W), Iy () = I (W), F (x)) = Fy ((x1),
Ty (x1) =Ty, (p(x0)), Ty (x1) = Ty, (p(x1), Fy (x1) = Fy (¥ (x1),

for all x; € X and ¢ : G; — G is called weak line isomorphism if

Ty (x1y1) = T, (px)P()), Ty, (xiy1) = T, (P(x1)P (1)),
(d) Iy (xiy1) = Ig (b)), g (xiyn) = I (PP (),
Fg (xiy1) = Fgx)¥(n),  Fg (ay) = Fg (b)),

for all x;y; € E,. The weak isomorphism ) : G| — G, of two bipolar neutrosophic
graphs G, and G, is bijective homomorphism and satisfies (c) and (d). The weak
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isomorphism may not preserve the weights of the edges but preserves the weights of
vertices.

Proposition 3.9 The weak isomorphism of two bipolar neutrosophic graphs G and
G, is an isomorphism between their crisp graphs G| and G,.

Theorem 3.20 Let L(G) = (A, By) be a bipolar neutrosophic line graph corre-
sponding to a bipolar neutrosophic graph G = (A, B}). Then,

(1) there is a week isomorphism between G and L(G) if and only if G* is a cyclic
graphandV v e X, x € E,

T @) = T (), I} () = I} (X), Fi () = F} (x),
Ty () = Ty ), Iy (v) = I; (X), Fy (v) = Fj (x),

ie. Ay = (T/fl, IXI, F;rl, Ty, 14, Fy)and By = (TB+1, I;l, F;l, Ty, Ig, Fg)
are constant functions on the sets A and E, respectively, taking on same value.
(i) If v is a weak isomorphism between G and L(G), then v is an isomorphism.

Proof Consider a weak isomorphism ¢ : G = L(G). By Proposition3.8, G* =
(V, E)isacycle.Let X = {vj, vp, ..., v }and E = {x; = vjvp, X3 = V03, ..., X, =
v,v1}, where vivavs ... v, is a cycle. Define bipolar neutrosophic sets
TS ) =si, I} () =], Fi () =5/,
Ty, (i) =1, Iy () =1}, Fy (v) =1
Ty, () = Ty, ivi1) = ri, 15, (6) =I5, vig1) =r{, F () = Fg ivin) =1/,
Ty, (xi) = T, (vivis1) = qis 1, (xi) = Ip (vivig1) = qf, Fp (xi) = Fg (vivit1) = g/,
i=12,....n v, =v.Fors) =55 =8, Sy =514, =t/,t/,,=
t{, thay1 = 11, we have

/ / / " " "

Fi SSiASip1, T SSpASL, T S8 VS, 3.5)
! I ! " " A

g >t Vtiy, q =6Vt q =t At (3.6)

1 <i <n.Now
X = {lea SXZ’ SX39 M) an}a Y = {les)qv SXZSX37 ) anle}‘
Thus, for r,, 1 = r;, we obtain

Ti(Sy) =T () = iy IE(Sy) =I5 () = rly Fi(Se) = F () =1/’

i

Ty (Se,Sx.,) = Tg (x)) ATg (xis1) =ri Ariga,

IEZ(S""SX'*') = IIJ;] (xi) A 11; (xXiy1) =71 AT,



182 3 Certain Bipolar Neutrosophic Graphs
Fi (S, Si) = Fah () V Fif (i) = 1/ v 1l
For ¢,+1 = q1, we obtain
Ty (S) =Ty () =qi, 1;,(S) = Iy (x) =q). Fi,(S) = Fy () =g,
T, (Sx:Sx) = T (xi) V Ty (Xig1) = Gi V qit1,
Ig (S5, Suy) = I (X)) V I (xiv1) = q; V qi 11,
Fg (Sy,Sx.) = Fg (xi) A Fp (xix1) =g/ A gy,
for 1 <i <n, v,y = v;. Since ¢ is isomorphism of G onto L(G™), is a bijection
of A onto Y. Also 1) preserves the adjacency. Hence, ¢ induces a permutation 7’ of
{1,2,...,n} such that
Y = Susu0r
Vivig1 = YDV it1) = So oo Sovarn ey 1 <@ <n—1L
Thus, we conclude that
si=TF W) < T @) =T; (Sonivmin) = T Or i) Vr)+1) = Friiys
5| = 12_1 (v) < IXZ W (vi)) = IXZ (Sopriyvan) = 1143—1 Ve Vri+1) = Ty
si = Fi (i) < Fy,(0@) = Fi (Su,u000) = F, 0y Vmir) = 1),
i =T, () =T, (i) =Ty, (So,000.,) = Tp, vy Vea+1) = g,
=15 ()= Iy @) =13, (Su.ivmen) = Ip Ori)Vei)+1) = Gy
' =Fy )= Fy (@) = Fy (So,v000) = Fp, OriVra)+1) = @y

+ +
ri = Tg (Viviy1) < Ty (Y (i)Y (Vit1))
_ 7+
- TBz (S”w’u)“w’(fm SUW’(/+])UW’([+])+1 )
= Ty (Vi) Uriyr1) A Tg (Ve Ur 1) 41)

=Tr@i) NTri+1)-
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ri =I5 (ivip1) < 15 W)Y (vig))

_ gt
- 132 (Svﬁ’(i)vw/(i)+l Svﬁ’(i+1)v7r’<1+1>+1)

= I (W) Uriy+1) AL (U Urn+1)

o ’
=Ty N1y

Similarly,

rl = Fg (ivig) < Fg (0¥ ig1)
=Fg (S

2 NV (1) V(i) +1 Svﬂ’(i+l)v7r’([+l)+l )
+ +
= Fp (ve@yvrm+1) V Fg (Ve a4 Vri41)+1)

o ”
=Tray Y it

\%

qi = Ty (Viviy1) > Ty (Y (i)Y (Vit1))
= TB; (SUW/(i)vﬂ’(iH—l S”w/(i+1)“n’(i+l)+l)

= Tg, (V@) Vr)+1) V Tg (U (i+1) V(1) +1)
=g vV qdri+1)-

q; = Iy (Wivigr) = I (P(0i)(vig1))
= 11;2 (Svﬁ/(i)vw/(,)+1 Svﬂ/(i+1)vw1<i+1>+1)

= Iy, (Vri)Vri+1) V Ig (Vr+1) Ve +1)+1)

/ !
=qriy Y Doty
Similarly,

g/ = Fg (vivig1) = Fg (Y)Y (vig1))
= FEZ (SUW’(i)vﬂ’(i)+l SUW’(i+l)vﬂ’(f+l)+l)

= Fp (Vi) Ve iy+1) A Fp (Ve +1) U i+1)+1)

o ”

= riy N+

for 1 <i < n. That is,

si < Tway, 8P < r;,(i), i < r;r/,(i), (3.7)
!’ / " "
L2496y 4 Z49p6yy, L Z 490 (3.8)
! / / " " "
Ti S Twiy Aoy, T S Togy ANy Ti < Ty Y Togianys (3.9)

9 Z 4wy V et 4 Z dogy Y gy 42 Doay N Drsn)- (3.10)
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Thus, r; < rpgy, 1 < r/,(i), rl <rl, (l), a > qrays 4 = Dy 90 = 40 (l), and so

/ //
) = I () o) = Ty Mo = Py 470 Z G @) Dy Z Do)
q’, 0 = >q’, iy for all 1 < i < n. Continuing, we obtain

i S rpgy < S rpigy < Fi,
HOSThay S ST ST
r Sl S Sre <0
qi Z 4y = 0 = qri) = is

’ ! ! I
4G Z9v@ Z " Z iy = i

" " 4 "

9% Zqri = Zpiay) = 49>
where 77+ is identity map. So, r; = r, G, =1l iy rl = "7/7//([)’ gi =gy, 4. =
Qi 4 = Qi forall 1 < i < n. But, by (3. 9) (3.10) we also have r; < rp i+ =

/ / ’ " //
Titsly =T m+D = = z+landr < Fen =i 4 Z Gy = q,+1,q, > qp (1) =
‘1;+1 and g/ > qu) = qu, which together with r,.1 =7y, r ”H rl, rnJrl =
"

rGnv1 = q1> Gy =41 4ny = 4qy» implies r; =ry, rl =ry, ' =r{, ¢ = q1,
g, =qi,q/ =qi. foralli =1,2,...,n. Hence by (3.5)—(3.8), we get

r=-:--=r=8=-=35,
_ Y A A 7
ry = =r, =5 = =5s,,
" o__ "no__no_ "
ry = =r, =85 = =9,
q1 = =qp =0 = =1y,
’ ’ ’ ’
qlz...zqnztl:...:tn’
" o__ /A Y /4
ql_"'_qn_tl_ _tn‘

Thus, we proved the conclusion about A; and B; being constant function, but we
have also shown that (ii) holds. The converse part of (i) is obvious.

3.7 Application of Bipolar Neutrosophic Line Graphs

Child kidnapping is an illegal removal of children from the guardians for the sake of
ransom and profit. According to a US estimate, about 800,000 children are missing
every year. These type of criminal activities threaten the parents and have huge impact
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on society. Child kidnappers are in common practise to spread their network. It always
remain a difficult task for the security agencies to detect and expose such networks.
The telephone network of criminals can be used to detect the people involved in child
kidnapping. Graphs are a key tool to study such networks. As the data structures in
such cases contain only observations about the suspect, there is always uncertainty
in data. Bipolar neutrosophic graphs can be used to reduce uncertainty in data and
to detect the involvement of suspect in child kidnapping. If there are n number of
suspects under investigation, then the procedure for the detection of suspects involved
in kidnappers network is given in Algorithm3.7.1.

Algorithm 3.7.1 Detection of suspects involved in child kidnapping

1. Enter the number of suspects n.

Enter the membership value p(s;) = (T (s;), IT(si), FT(si), T~ (sp), I7(s;),
F~(s;)) of each suspect s;, | <i <n.
3.  Enter the adjacency matrix of the suspects’ network & = [;;]nxn-
4. doifroml1ton
5. do j from 1 to n
6
7
8

N

R(s;)) = (T*(s;), I (sp), F(s:), T~ (s3), I~ (s1), F~(s7))
if(TH(s;) >0o0rI"(s;) > 0o0r T (s;) < 0or I (s;) <0)then
. R(s;) = R(si) + p1(s:)
9. end if

10. end do

11. enddo

12. doi from1ton

13. T(si) =2+ TT(R(s;:)) — IT(R(s;)) — FT(R(s:))
14. N(si) =2 =T (R(s;) + I (R(s)) + F*(R(s:))
15. S(si) =T (si)) — N(si)

16. end do

17. A=0

18. doifrom1ton

19. A = max{A, S(s;)}

20. end do

21. doifromlton

22. if(A = S(s;))then

23. print*, s; is the most suspicious person.

24. end if

25. end do

Description and time complexity: The algorithms start by taking the input of mem-
bership values and adjacency matrix; therefore, the time complexity of lines 1-3
is O(n?). The loops from lines 4—11 calculate the sum values for each s; so, the
time complexity of these loops is O(n?). The do loop from lines 12—15 calculate
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(0.7,0.4,0.4, —0.4, —0.4, —0.7)

(0.8,0.5,0.5,~0.5, 0.7, ~0.8)
(80— 20— ‘60— ‘¢"0 ‘5’0 ‘80)

Fig. 3.22 Telephone connection among suspects

the strength of exactness of observations against each s;, 1 <i < n; the time com-
plexity is O(n). Lines 17-25 calculate and print the suspect with maximum strength
of involving in criminal activities; therefore, lines 17-25 has time complexity O(n).
Thus, the net time complexity of the Algorithm3.7.1 is O(n?).

An example of a bipolar neutrosophic graph with five suspects sy, 52, 53, 4, S5 iS
shown in Fig. 3.22. The positive degree of membership (T+, I, F*) of each suspect
shows the strength of truth, indeterminacy and falsity of observation to be involved in
criminal network. The negative degree of membership (T ~, I, F~) of each suspect
shows the strength of truth, indeterminacy and falsity of observation that he/she is
innocent. The positive degree of membership (T, I, F*) of each edge shows the
strength of truth, indeterminacy and falsity that the two suspects are in contact for
criminal activities. The negative degree of membership (7, I~, F~) of each edge
shows the strength of truth, indeterminacy and falsity that the two suspects are in con-
tact for some other purpose. Using Algorithm 3.7.1, sum values sum (s;) and strength
of each suspect S(s;), | <i <5, are shown in Table 1.17. For each i, sum(s;) can be
obtained by taking the sum of membership value of each vertex and membership val-
ues of the incident edges. Also, T (s;) =2 + TH(R(s;)) — IT(R(s;)) — FT(R(s;)),
N(si) =2 =T~ (R(s:)) + IT(R(s:)) + FT(R(s;)) and S(s;) = T(si) — N(s;). In
Table 3.17, column 4 indicates the strength of correctness of observations against
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Table 3.17 Strength of exactness of observations

Suspects s; | R(s;) (T (si), N(si)) S(si)
S1 3.1,2.3,2.2,-2.0, 2.3, =3.1) 0.6,-1.4) 2.0
$2 3.1,1.7,1.8,—1.8,—1.9, —-3.2) 0.6, —1.8) 2.4
53 (3.1,2.2,2.1,-1.9, —2.1, =3.0) (0.8-1.2) 2.0
S4 2.7,2.4,2.8,—-2.4,-2.3,-2.7) (0.5, —0.6) 0.1
S5 (3.5,1.8,1.9,—-1.9, -2.0, —=3.5) (1.8, —1.6) 3.4

the suspect in the investigation. For example, the strength of ss5 shows the greatest
exactness of the investigation report against s5, whereas the strength of s4 shows the
least exactness of observations against s4. S(s4) indicates that s, may be innocent;
therefore, the security agency should take it into consideration from the beginning.



Chapter 4 ®
Graphs Under Interval-Valued ez
Neutrosophic Environment

In this chapter, we present the concept of interval-valued neutrosophic
competition graphs. We then discuss certain types, including k-competition interval-
valued neutrosophic graphs, p-competition interval-valued neutrosophic graphs and
m-step interval-valued neutrosophic competition graphs. Moreover, we present the
concept of m-step interval-valued neutrosophic neighbourhood graphs. This chapter
is due to [12].

4.1 Introduction

In 1975, Zadeh [199] introduced the notion of interval-valued fuzzy sets as an
extension of fuzzy sets [194] in which the values of the membership degrees are
intervals of numbers instead of the numbers. Interval-valued fuzzy sets provide a
more adequate description of uncertainty than traditional fuzzy sets. It is therefore
important to use interval-valued fuzzy sets in applications, such as fuzzy control.
One of the computationally most intensive parts of fuzzy control is defuzzification.
Smarandache [165] and Wang et al. [172] presented the notion of single-valued neu-
trosophic sets to apply neutrosophic sets in real-life problems more conveniently.
In single-valued neutrosophic sets, three components are independent and their val-
ues are taken from the standard unit interval [0, 1]. Wang et al. [170] presented the
concept of interval-valued neutrosophic sets, which is more precise and more flex-
ible than the single-valued neutrosophic set. An interval-valued neutrosophic set is
a generalization of the concept of single-valued neutrosophic set, in which three
membership (7, I, F') functions are independent, and their values belong to the unit
interval [0, 1].

Definition 4.1 An interval-valued fuzzy set I in X is defined by

1= {(s,[T](s), T{(s)]) : s € X},

© Springer Nature Singapore Pte Ltd. 2018 189
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where T (s) and T} (s) are fuzzy subsets of X such that 7 (s) < T"(s) forall x € X.
An interval-valued fuzzy relation on X is an interval-valued fuzzy set J in X x X.

Definition 4.2 For any two interval-valued neutrosophic sets
L= (7 (0, ' @)L [ (), B 0] I (0, K ()]

and
I = (T (x), T O, L} (), LYo, LF (x), F'(x)])

in X, we define:

1.

1UJ = {(x, max(T} (x), T} (x)), max (T} (x), T} (x)), max([} (x), I} (x)),
max (I} (x), I}*(x)), min(F} (x), F}(x)), min(F(x), Fi*(x))) : x € X}.

1NJ = {(x, min(T} (x), T} (x)), min(T{* (x), T} (x)), min(I{ (x), I} (x)),
min(/{' (x), I} (x)), max(F} (x), F{(x)), max(F{"(x), F{'(x))) : x € X}.

4.2 Interval-Valued Neutrosophic Graphs

Definition 4.3 An interval-valued neutrosophic graph on a nonempty set X is a
pair G = (A, B), where A is an interval-valued neutrosophic set on X and B is an
interval-valued neutrosophic relation on X such that

1. Th(xy) < min(T5(x), T{(»), T4 (xy) < min(T (x), T4 (),
2. I(xy) < min(Z}(x), I} (y)), I (xy) < min(I%(x), I5(y)).
3. Fh(xy) <min(Fi(x), F\(y)), Fi(xy) < min(FY(x), F4(y)), forall x,y € X.

Note that B is called symmetric relation on A.

Example 4.1 Consider a graph G* such that X = {a, b, ¢}, E = {ab, bc, ac}. Let
A be an interval-valued neutrosophic subset of X and let B be an interval-valued
neutrosophic subset of E C X x X, as shown in the following tables.

By routine calculations, it can be observed that the graph shown in Fig.4.1 is an
interval-valued neutrosophic graph.

Definition 4.4 An interval-valued neutrosophic digraph on a nonempty set X is
a pair G = (A, 79)), (in short, G), where A = ([T}, T41, [}, I4LIF', F%]) is an
interval-valued neutrosophic set on X and B = ([T}, Tj1, [15,141,[F5,F¥4]) is an
interval-valued neutrosophic relation on X, such that:



4.2 Interval-Valued Neutrosophic Graphs 191

A la |b |c B |ab |bc |ac
T% 10.2]0.2/0.2 TL10.1]0.1[0.1
T410.4/0.5(0.8 +10.3]0.3(0.3
1%, 10.3(0.3]0.3 14 10.2{0.2(0.2
I4%10.7(0.4]0.8 %10.3[0.3]0.3
F'10.4/0.2]0.2 FL10.2{0.2(0.2
F10.5(0.9]0.7 %10.5]0.7|0.5

([0.2,0.4],[0.3,0.7], [0.4, 0.5])

([0.1,0.3], [0.2,0.3], [0.2,0.7])

b([0.2,0.5], [0.3,0.4], [0.2,0.9]) ¢([0.2,0.8],[0.3,0.8], [0.2,0.7])

Fig. 4.1 Interval-valued neutrosophic graph

1 1 1 u u u
L. Tp(s,w) < T,y(s) ATy(w), Tg(s,w) <TH(s) ATy (w),
P — —
2. I(s,w) < I4(s) A T (w), I4(s, w) < I%(s) A T4(w),
3. Fi(s,w) < FL(s) A FL(w) Fi(s,w) < FU(s) A F'(w), foralls,w e
. B\ =LA A > B> = Iy A > 5
X.

Example 4.2 'We construct an interval-valued neutrosophic digraph G = (A, ?) on
X ={a, b, c} as shown in Fig.4.2.

Definition 4.5 Let G be an interval-valued neutrosophic digraph; then interval-
valued neutrosophic out-neighbourhoods of a vertex s is an interval-valued neutro-
sophic set

NF(s) = (X7, (1O, 1@, (1@, 1097, [FO7, 707,
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Fig. 4.2 Interval-valued
neutrosophic digraph

¢([0.1,0.2],[0.2,0.4], [0.3,0.7))

where

X+ = {w|[Th(s, w) > 0, T (s, w) > 0], [I4(s, w) > 0, I(s, w) > O], [F& (s, w) > 0, Fi(s, w) > 0]}
s = B\, » Lp s, s LIS, » Lpls, s B\, » 'plS, s

+ + — +
suchthat 7™ : X+ — [0, 1],definedby 70" (w) = Tk(s, w), " : X} — [0, 1],
+ — + +
defined by Ts(”) (w) =Tg(s, w), IS(I) : X; — [0, 1], defined by IS(I) (w) =
—_— + + — +
Ih(s,w), I : X — [0, 1], defined by I8 (w) = I4(s, w), FO" : X} — [0, 1],
o+ Ly F@t . x+ w*
defined by F" (w) = Fy(s,w), F : X7 — [0, 1], defined by F"*' (w) =
—_
Fg(s, w).
—
Definition 4.6 Let G be an interval-valued neutrosophic digraph; then interval-

valued neutrosophic in-neighbourhoods of a vertex s is an interval-valued neutro-
sophic set

N~ (s) =X, [1" ., 7,1 1 1L [FO 1)),
where
— 1 u 1 u
X, ={wl[Tz(w,s) >0, Ty(w,s) > 0], [Ig(w,s) >0, Ig(w,s) > 0],

[Fy(w,s) >0, Fg(w,s) > 0]},

_ , — ,

suchthat 7™ : X7 — [0, 1],definedby .0 (w) = Th(w, s), T : X; — [0, 1],

defined by T (w) = T§(w,s), 1P : X7 — [0,1], defined by I (w) =
[N _ _ —_—> —

Ih(w, s), 1™ : X7 — [0, 1],definedby I (w) = I4(w, s), FP™ : X7 — [0, 1],
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Fig. 4.3 Interval-valued
neutrosophic digraph

[
0,

o =
S S
= o
° o
& 2
S =
o w
= =
2 S
e =
w o
$ . P
§ (10.1,0.2],[0.2,0.3), [0.2, 0.5)) ® )
Table 4.1 'Interval-valued s NT(s)
neutrosophic out-
neighbourhoods a {(b, 0.1, 0.2], [0.2, 0.3], [0.1, 0.6]), (c, [0.1, 0.2],
[0.1,0.3], [0.2, 0.6])}
b ?
c {(b, [0.1,0.2], [0.2, 0.3], [0.2, 0.5])}
Table 4.2 .InFerval—Valued s N~ (s)
neutrosophic in-
neighbourhoods 9
{(a, [0.1,0.2], [0.2, 0.3], [0.1, 0.6]), (c, [0.1, 0.2],
[0.2,0.3],10.2,0.5D}
c {(a, [0.1,0.2], [0.1, 0.3], [0.2, 0.6])}

_ —_— _ _
defined by F" (w) = Fi(w,s), F" : X7 — [0, 1], defined by F“ (w) =
—
Fp(w,s).

Example 4.3 Consider an interval-valued neutrosophic digraph G = (A, 7?)) on
X ={a, b, c} as shown in Fig.4.3.

We have Tables4.1 and 4.2 representing interval-valued neutrosophic out- and
in-neighbourhoods, respectively.

Definition 4.7 The height of interval-valued neutrosophic set A = (s, [T, T{1,
[Ié, 141, [F/l{, F}]) in universe of discourse X is defined as,

h(A) = ([h} (A), ki (A)], [hh (A), K (A)], hh (A), hE(A)D),

= ([sup T} (s), sup T ()1, [sup Iy (s), sup 1% ()1, [inf Fl(s), inf F4(s)]), for all
seX seX seX seX seX seX

s € X.
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Fig. 4.4 Interval-valued
neutrosophic digraph

<([0.1,0.2], 0.2, 0.4], 0.3, 0.7])

Table 4.3 Interval-valued s NT(s)
neutrosophic out-
neighbourhoods a {(b, [0.1, 0.2], [0.2, 0.3], [0.1, 0.6]), (c, [0.1, 0.2],
[0.1,0.3],[0.2, 0.6])}
b ?
c {(b, [0.1,0.2],[0.2, 0.3], [0.2, 0.5])}

Definition 4.8 An interval-valued neutrosophic competition graph of an interval-
valued neutrosophic graph 8 = (A, 73)) is an undirected interval-valued neutro-
sophic graph C(G) = (A, W) which has the same vertex set as in 8 and there is an
edge between two vertices s and w if and only if N*(s) N N*(w) # @. The truth-
membership, indeterminacy-membership and falsity-membership values of the edge
(s, w) are defined as,

1. Tl (s, w) = (Th(s) A ThH(w)R (NT(s) N NF(w), Ti (s, w) = (Th(s) A TE(w))
R{(NT(s) " N*(w),

2. Il (s, w) = (I4(s) A L ()RS (NT(s) NNF(w), T (s, w) = (14(s) A T4(w))
Ry (NT(s) N N* (w),

3. Fl(s,w) = (F(s) A FL(w)RS(N*(s) N NF(w), Fit,(s, w) = (Fi(s) A Fi(w))
R (N*(s) NNt (w),

forall s, w € X.

Example 4.4 Consider an interval-valued neutrosophic digraph G = (A, 73)) on
X ={a, b, c} as shown in Fig.4.4.

We have Tables4.3 and 4.4 representing interval-valued neutrosophic out- and
in-neighbourhoods, respectively.

Then interval-valued neutrosophic competition graph of Fig.4.4 is shown in
Fig.4.5.
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Table 4.4 .InFerval—Valued s N™(s)
neutrosophic in-
neighbourhoods 4

{(a, [0.1,0.2], [0.2, 0.3], [0.1, 0.6]), (c, [0.1, 0.2],
[0.2,0.3],[0.2,0.5])}

c {(a, [0.1,0.2],[0.1,0.3], [0.2,0.6])}
Fig. 4.5 Interval-valued b([0.6,0.8],[0.3,0.8],[0.2,0.9])
neutrosophic Y
competition graph
N o
55 %,
o S
& %
A /:/0
Q 7
»X\ ([0.01,0.04], [0.04, 0.12], [0.06, 0.42]) 4/0
> @ ®
\a A
N 2

Definition 4.9 Consider an interval-valued neutrosophic graph G = (A, B), where
A = (A}, AY], [AS, A3), [AS, AD))and B = ([Bj, By, B}, B}, [Bj, BY)]; then an
edge (s, w), s, w € X is called independent strong if

1 1
E[A’l () A AL (w)] < Bl(s, w), E[A‘f(s) A A% (w)] < BY(s, w),

1 1
E[Aé(s) A AL (w)] < Bi(s, w), F[A5(5) A A5 (w)] < B3 (s, w),
1 1
E[Ag(s) A AL (w)] > Bi(s, w), E[Ag‘(s) A Aj(w)] > BY(s, w).

Otherwise, it is called weak.
We state the following theorems without their proofs.

Theorem 4.1 Suppose 6) is an interval-valued neutrosophic digraph. If N*(s) N
— =

N*(w) contains only one element of G, then the edge (s, w) of C( G ) is independent

strong if and only if

IIN"(s) "NNT(w)]|s > 0.5, |[NF(s) N N*(w)]|s« > 0.5,
[INT() NNt )]l > 0.5, [[NT(s) NNt (w)]|;« > 0.5,
[INT(s)N N+(w)]|f/ < 0.5, |[NT(s)Nn N+(w)]|fu < 0.5.

Theorem 4.2 If all the edges of an interval-valued neutrosophic digraph 6 are
independent strong, then
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Bl(s, w) . Bl (s, w) .
Al A A w2~ T (AT A AT (w2 T T
Bé(s, w) By (s, w)
(AL(s) A ALw)? 7 (AS(s) A ARw)? 0>
Bé(s, w) B3 (s, w) <05,

)

(A5(s) A Af(w))? B (A5(s) A A5 (w))?

for all edges (s, w) in (C(E)).

Definition 4.10 The interval-valued neutrosophic open-neighbourhood (interval-
valued neutrosophic open-neighbourhood) of a vertex s of an interval-valued neutro-
sophic graph G = (A, B) is interval-valued neutrosophic set N(s) = (Xj, [Tsl , T,
(1], "], [F!, F"]), where

X, = {w|[B!(s, w) > 0, B'(s, w) > 0], [B(s, w) > 0, B¥(s, w) > 0],
[BL(s, w) > 0, BY(s, w) > 0]},

and T! : X; — [0, 1] defined by T!(w) = Bi(s, w), T : X; — [0, 1] defined by
T!(w) = BY(s,w), I' : X; — [0, 1]defined by I!(w) = Bi(s,w), I" : X; — [0, 1]
defined by IJ'(w) = Bj (s, w), Ff : X5 — [0, 1] defined by FS’(w) = Bé(s, w), F':
X — [0, 1] defined by F(w) = B5(s, w). For every vertex s € X, the interval-
valued neutrosophic singleton set, A, = (s, [AY, A1, [AY, AY'], [AY, AY) such
that: Al : {s} — [0, 1], AY : {s} — [0, 1], A} : {s} — [0, 1], A% : {s} — [0, 1],
A2 (s} — [0, 1], AY : {s} — [0, 1], defined by AY(s) = Al (s), AY(s) = AU(s),
Al(s) = AL(s), AY(s) = A4(s), AY(s) = AL(s) and AY (s) = Al(s), respectively.
The interval-valued neutrosophic closed-neighbourhood (interval-valued neutro-
sophic closed-neighbourhood) of a vertex s is N[s] = N(s) U A;.

Definition 4.11 Suppose G = (A, B) is an interval-valued neutrosophic graph.
Interval-valued neutrosophic open-neighbourhood graph (interval-valued neutro-
sophic open-neighbourhood-graph) of G is an interval-valued neutrosophic graph
N(G) = (A, B’) which has the same interval-valued neutrosophic set of vertices
in G and has an interval-valued neutrosophic edge between two vertices s, w € X in
N(G) if and only if N(s) N N(w) is a nonempty interval-valued neutrosophic set in
G. The truth-membership, indeterminacy-membership, falsity-membership values
of the edge (s, w) are given by:

BY (s, w) = [A}(s) A A{(w)]h{ (N(s) N N(w)),
B}/ (s, w) = [A%(s) A A (w)]hb(N(s) N N(w)),
BY (s, w) = [A}(s) A Af(w)]h5(N(s) N N(w)),
BY (s, w) = [A}(s) A AY(w)]h} (N(s) N N(w)),
BY (s, w) = [A%(s) A A§(w)]hs(N(s) N N(w)),
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By (s, w) = [A4(s) A A5 (w)]h§(N(s) N N(w)), respectively.

Definition 4.12 Suppose G = (A, B) is an interval-valued neutrosophic graph.
Interval-valued neutrosophic closed-neighbourhood graph (interval-valued neutro-
sophic closed-neighbourhood-graph) of G is an interval-valued neutrosophic graph
N(G) = (A, B’) which has the same interval-valued neutrosophic set of vertices
in G and has an interval-valued neutrosophic edge between two vertices s, w € X in
N[G] if and only if N[s] N N[w] is a nonempty interval-valued neutrosophic set in
G. The truth-membership, indeterminacy-membership, falsity-membership values
of the edge (s, w) are given by:

BY'(s, w) = [A](s) A Al (w)]h} (N[s] N N[w]),
BY (s, w) = [A}(s) A Ah(w)1hh(N[s] N N[w)),
BY (s, w) = [A4(s) A Al(w)1hy(N[s] N N[w]),
BY'(s, w) = [A}(s) A Al (w)]h} (N[s] N N[w]),
BY'(s, w) = [A4(s) A A5 (w)]hs (N[s] N N[w]),
BY'(s, w) = [A4(s) A A§(w)]1h4(N[s] N N[w]), respectively.

We now discuss the method of construction of interval-valued neutrosophic com-
petition graph of the Cartesian product of interval-valued neutrosophic digraph in
following theorem.

Theorem 4.3 Let C(G)) = (A, B)) and C(G) = (As, By) be two interval-valued

neutrosophic competition graphs of interval-valued neutrosophic digraphs G| =
— — — . - — O

(Ay, Ly) and G, = (Ay, L), respectively. Then C(G,00G;) = GC(C_})I)*I:IC(G_;)* UG

where GC(a)*DC Gy s an interval-valued neutrosophic graph on the crisp graph

(X1 x X, E UE ), (C(E:)* and (C((_;;)* are the crisp competition graphs
%

N C(GH* TG
of G\ and G, respectively. GU is an interval-valued neutrosophic graph on (X; x
X5, E D) such that:

1. E9 = {(s1, 2) (w1, wa) : wy € N7 (s7)*, wy € NT(s52)*}

Ecg)DEcg,. ={(s1.)(s1,w2) 151 € Xy, 50ws € E ).

U{(s1, 2) (w1, 52) @ 82 € Xo, sywy € Ez .}
! ! 1 1 / ! 1
2. Ty ga, = Ty, (51) ATy, (52), Iy oa, = 1y, (1) A1y, (52), Fyon =
Fy (s1) A Fj (52),
Ty oa, = TA, (s1) AT (52), Iy ma, = 14, (51) A TG (52), Fioa =

Fi () A Fi (52).
3 Th((Gs1, 52) (51, w2) = [TL (51) A T (52) A T ()] X Vi {T (1) A
T (s2a2) A T2 (waar)},
2 2

(s1,52)(s1,w2) € Eg 2 JOE =, ax € (NT(s2) N N (w2))".
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Ip((s1, 82)(s1, w)) = [T} (s1) A TY (52) AT (w2)] X Ve, {I (s1) A

I1 (s20) A 1 (waa)),

(s1.52)(s1,w2) € Eg 2 OE = . az € (NT(s2) N NF (w2))™.

FL((s1,52)(s1, w)) = [Ff;, (s A Ff;z(sz) A ngz(wz)] X Vaz{Ff\, (s A

FL. (s202) A L (wa)},

(s1.52)(s1,w2) € Eg 2 OE = . az € (NT(s2) N NF (w2))™.

Ty ((s1,52)(s1, w2)) = [T§ (s1) ATy (s2) ATx (wa)] X Vg, (T4 (s1) A
é(szaz) A Té(wzaz)},

(s1,52)(s1,w2) € Eg 2 OE =, az € (NT(s2) N NF (w2))".

I ((s1, 52) (s1, w2)) = [I§, (s1) AT, (s2) AT (w)] X Vg, (I (s1) A
2—';(8202) A 1%; (waa2)},

(s1,52)(s1,w2) € Ep 2 JOE =, az € (NT(s2) N NF (w2))".

Fy((s1,52)(s1, w2)) = [Fy (s1) A Fj (s2) A Fg (w2)] X Vg, {F§ (s1) A

F%;(Szaz) A F%;(wzaz)},

(s1,52)(s1,w2) € Eg 2 JOE =, ax € (NT(s2) N NF (w2))".

T((s1. 89w, 52)) = [Ty, (s1) A Ty, (wi) A T4 (52)] x Va {T} (52) A

T (s1a0) A T (wian)},

(s1,52) (w1, 5) € Eg gz OE =, a1 € (N"(sp) NN (wp)*.

Ip((s1,s)(wi, $2)) = [L} (s1) ALY (wi) ATy (52)] X Vo {1 (52) A

IL(s1a) A L (wian)},

(s1,5)(w1,5) € E, gz OE =, a1 € (NT(sp) NN (wp)*.

Fy((s1,$2) (i, $2)) = [F4 (s1) A Fly (w1) A Fy (52)] X Vo {T4 (52) A

FL(s1a1) A FL (wian)},

(51,591, 5) € E, gz OE 2., a1 € (NT(sp) NN (wp)*.

Ty ((s1,52)(wr, 82)) = [T§ (1) A T4 (wi) ATy (s2)] X Vo {T 4, (52) A

TZ”:(SMH) A T&(w1al)},

(51,521, 5) € Eg gz OE =, a1 € (NT(sp) NN (wp)*.

Ip((s1, 52) (w1, 82)) = [I}, (s1) AT (wi) AT (52)] X Vo, {1, (s2) A

I%(slal) A I}] (wian)},

(s1.82) (w1, 82) € Eg ) OBz, a1 € (NT(s) NNT(wy)".

Fy((s1, s2) (w1, $2)) = [F§ (s1) A Fj (wi) A Fg (s2)] x Vo, (T4 (52) A
%(slal) A FLi](wlal)},

(51,501, 5) € Ec gz OE 2., a1 € (NT(sp) NN (wp)*.

T ((s1, s2)(wi, wo)) = [T} (s1) A Ty, (wi) ATy (52) ATy ()] X [T (s1) A

TLL] (wys1) A T/iz(wz) A Té (s2w2)],

(s1, wi)(s2, wy) € EV.
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16. I5((s1, $2)(wy, wa)) = [I/I;I(Sl) A I,{;l(wl) A 112(52) A I,lqz(w2)] x [Ii\,(sl) A
IL (wis1) A Ty, (w2) A L5 (s3w2)],
L 2 Ly
(s1, w1)(s2, wp) € E.
17. Fi((s1, $2)(wy, wp)) = [Fi‘l(sl) A F,{gl(wl) A foz(sz) A
Fa, )] X [F) (1) A Fp (wisi) A Fy () A FL (sw2)],
(s1, w1)(s2, wy) € EV.
18. Ty ((s1,52)(wi, w)) = [T§ (s1) ATy (wi) ATx (s2) ATy (w2)] X [T§ (s1) A
é(wlsl) A Tg (w2) A Tf: (s2wa)],
(s1, w1)(s2, wp) € EX.
19. Ty ((s1, s2)(wi, w2)) = [Ig (s1) A L5 (wi) A Ty (s2) AT, (w2)] X [ (s1) A
%(wlsl) ATy (w2) A Ié(szwz)],
(s1, w1)(s2, w2) € EX.
20. Fy((s1, s2)(wy, w2)) = [Fy (s1) A F (wi) A Fj (s2) A
Fj, (w2)] x [Fy (s1) A FLi](wlsl) A Fj (w2) A Fé(szwz)],

(s1, wi)(s2, wy) € EV.

4.3 k-Competition Interval-Valued Neutrosophic Graphs

In this section, we discuss an extension of interval-valued neutrosophic competi-
tion graphs, called k-competition interval-valued neutrosophic graphs.

Definition 4.13 The cardinality of an interval-valued neutrosophic set A is
denoted by

|Al = ([1ALs, |l ], [1ALs [ALi ], [IAL g 1AL ]).

where [|Als, |Ali], [|Ali#, |Ali] and [|A] s, |Alp«] represent the sum of truth-
membership values, indeterminacy-membership values and falsity-membership val-
ues, respectively, of all the elements of A.

Example 4.5 The cardinality of an interval-valued neutrosophic set A = {(a, [0.5,
0.71, [0.2, 0.8], [0.1, 0.3]), (b, [0.1, 0.2], [0.1, 0.5], [0.7, 0.9]), (c, [0.3, 0.5], [0.3,
0.81,[0.6,0.9)}in X = {a, b, c} is
|Al = ([|Ali, [Alw ], [ AL, [Ali ], [|ALpe JA] 0 ])
= ([0.9,1.4],]0.6,2.1],[1.4, 2.1]).

We now discuss k-competition interval-valued neutrosophic graphs.

Definition 4.14 Let k be a nonnegative number. Then k-competition interval-valued
— -

neutrosophic graph C;(G) of an interval-valued neutrosophic digraph G = (A,

—

B) is an undirected interval-valued neutrosophic graph G = (A, B) which has
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same interval-valued neutrosophic set of vertices as in G and has an interval-

valued neutrosophic edge between two vertices s, w € X in (Ck(g) if and only
if [(N* () NNFw))[pw >k, [(NT(s) N NT(w))|w > k, [(NF(s) "NF ()]s > £k,
|(NT(s) N NF(w)[ie > k, [(NF(s) " N*(w))| s+ > k and [(NF(s) "NF(w))[ 0 >
k. The interval-valued truth-membership value of edge (s, w) in Cy, (8) is tg (s,w) =
I

%[;ﬁ,(s) A th (w)]hk (NF(s) N NT(w)), where k! = |(N*(s) N N*(w))|; and
tg(s, w) = k?k?_k [75(s) At (w)]h{ (Nt (s) NNT(w)), where &} =|(NT(s)N
N*(w))|, the interval-valued indeterminacy-membership value of edge (s, w)

— I
in Ci(G) is ib(s, w) =S (s) A (w) R, (NT(s) NN (w)), where

k)
Kb = [(N*(s) N N*(w)) [, and ity (s, w) = S5 [i% (5) A i w) TS (N () N NF(w)),

where k; = [(N*(s) N NT(w))|«, the interval-valued falsity-membership value of
. = 1
edge (s, w) in Co(G) is f(s, w) = ST Lf4E) A FL@)IRSE' () NNF (),

where k; = [(NF(s) N N+ (w))| 1, and fi(s, w) = %[f;; (s) A f4w)RE(NT(s) N

N*(w)), where k§ = |(NT(s) N Nt (w))] u.

Example 4.6 Consider an interval-valued neutrosophic digraph G = (A, 73)) on
X ={s,w,a,b, c},suchthat A = {(s,[0.4, 0.5],[0.5, 0.7],[0.8, 0.9]), (w, [0.6, 0.7],
[0.4,0.6], [0.2,0.3]), (a, [0.2,0.6], [0.3, 0.6], [0.2, 0.6]), (b, [0.2, 0.6], [0.1, 0.6],
[0.2,0.6]), (c, [0%7], [0.3,0.5], [0.2,0.6])}, and B :i?z)) [0.1,0.4], [0.3,
0.6],10.2, 0.6]), ((s, b),[0.2, 0.4],[0.1, 0.5],[0.2, 0.6]), ((s, ¢),[0.2, 0.5],[0.3, 0.5],
— —

[0.2,0.6)]), ((w_,a)), [0.2,0.5], [0.2,0.5], [0.2,0.3]), ((w, b), [0.2,0.6], [0.1, 0.6],
[0.2,0.3]), ((w, ¢), [0.2,0.7], [0.3, 0.5], [0.2, 0.3])}, as shown in Fig.4.6.

We calculate N*(s) = {(a, [0.1, 0.4], [0.3, 0.6], [0.2, 0.6]), (b, [0.2,0.4], [0.1,
0.5], [0.2, 0.6]), (c, [0.2,0.5], [0.3,0.5], [0.2, 0.6])} and N*(w) = {(a, [0.2,0.5],
[0.2,0.5], [0.2, 0.3]), (b, [0.2,0.6], [0.1, 0.6], [0.2,0.3]), (c, [0.2,0.7], [0.3, 0.5],
[0.2, 0.3])}. Therefore, N*(s) N N*(w) = {(a, [0.1, 0.4], [0.2, 0.5], [0.2, 0.3]), (b,
[0.2,0.4], [0.1,0.5], [0.2, 0.3]), (c, [0.2,0.5], [0.3, 0.5], [0.2, 0.3)}. So, k\ = 0.5,
k' =13, ky = 0.6, k¥ = 1.5, k5 = 0.6 and k% = 0.9. Let k = 0.4, then, t4(s,
w) = 0.02, 14 (s, w) = 0.56,i% (s, w) = 0.06,i%(s,w) = 0.82, f4(s,w) = 0.02and
fp (s, w) = 0.11. This graph is depicted in Fig.4.7.

Theorem 4.4 Let 8 = (4, ?) be an interval-valued neutrosophic digraph. If

RNT() NNT(w)) =1, BSNT(s) NNT(w)) =1, hyNT(s) NNT(w)) =1,
RY(NT(s) "NNT(w)) =1, AS(NT(s) NNt (w)) =1, Rh4(NT(s) NNT(w)) =1,

and

I(NT () "NF @)l > 2k, [(NF() NNT @)y > 2k, [(NT () "NF ()| o1 < 2k,
|(NT () "NF )| > 2k, [(NT () NNF))|ju > 2k, [(NF(s) NNT(w))| pu < 2k,
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\02’0_6\) ([0.2,0.6], [0.3,0.6], 0.2, 0.6])

044\,\0-3'0'6\‘

)
5([0.4,0.5], [0.5,0.7], [0.8,0.9]) 0_2_0_5\-\“2’0
2,080

b([0.2,0.6], [0.1,0.6], [0.2,0.6])

w([0.6,0.7], [0.4,0.6], [0.2, 0.3])

¢([0.2,0.7],[0.3,0.5], [0.2,0.6])

Fig. 4.7 0.4-competition interval-valued neutrosophic graph

Then the edge (s, w) is independent strong in C; (5)).

Proof Let 8 = (A, 79)) be an interval-valued neutrosophic digraph. Let C; (8) be
the corresponding k-competition interval-valued neutrosophic graph. If 2 (N*(s) N
N*(w)) = 1 and [(N*(s) " N*(w))|s > 2k, then k! > 2k and therefore,

1

%@JO:thU“ﬂA$WMMWWQONWM)
1

l kll_k ! !
or, fp(s,w)= o [14(s) A 1y(w)]
1
th(s, w) K —k

[ Adw] K

> 0.5.
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If A (NT(s) N NT(w)) = 1 and [(NT (s) N Nt (w))|« > 2k, then k| > 2k and there-
fore,

u

k k
(s, w) = “ T [14(s) A £ )R (N (5) NN (w))

k
or, (s, w) = lk; [£4(s) A 14 (w)]
1
tu u __
s w) Kok s
[14(s) A1y (w)] kY

If hh,(N* (s) NNt (w)) = 1 and |(N*(s) N N*(w))|; > 2k, then k, > 2k and there-
fore,

I
i(s,w) = kal k[ig(s) A il (w) RS (NT () NN (w))
2
I _
or,  ij(s, ) = = i4(s) A i (w)]
2
ipw) _kok o
i) Aibw)] K

If A5 (Nt (s) NNT(w)) = 1and [(N*(s) N NT(w))|;« > 2k, then ky > 2k and there-
fore,

u

K —k
i (s, w) = Z——[i4(s) A% (W) (NF () NN (w))

ks
or, (s, w) = Zk: [i4(s) A i (w)]
2
™ lB(S’.lf) = k2 ;k > 0.5.
[ (s) AP (w)] kY

If AL (N (s) N NF(w)) = 1and |(NF(s) "N (w))| s+ < 2k, then k} < 2k and there-
fore,

kL —k
fo(s,w) = 3k, [f4(s) A f1(w)R5(NT () N NT (w))
3
1 kl3_k 1 l
or, fp(s,w)= o [fa(s) A fa(w)]
3
fllg(s, w) kl3—k

< 0.5.

[Fl) A flw)] K
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If A5 (NT(s) NNt (w)) = Land [(NT(s) N Nt (w))| s« < 2k, thenk} < 2k and there-
fore,

u

ke — k
(s, w) = 3k—u[f}{(8) A fi)]hs(N*(s) NNF (w))
3
ke — k
ks
faow) K-k
[fi() A fi(w)] k3

Lfx() A fi(w)]

or, fgp(s,w)=

< 0.5.

Hence, the edge (s, w) is independent strong in (Ck(?;)).

4.4 p-Competition Interval-Valued Neutrosophic Graphs

In this section, we define another extension of interval-valued neutrosophic compe-
tition graphs, called p-competition interval-valued neutrosophic graphs.

Definition 4.15 The support of an interval-valued neutrosophic set A = (s, [T},
TN, 14, 141, [FY, F4]) in X is the subset of X defined by

supp(A) = {s € X : [Ty(s) # 0, Tj () # 01, [1}(s) # O, [§(s) # O],
[Fi(s) # 1, Fi(s) # 11}

and |supp(A)| is the number of elements in the set.

Example 4.7 The support of an interval-valued neutrosophic set A = {(a, [0.5, 0.7],
[0.2, 0.8], [0.1, 0.3]), (b, [0.1, 0.2], [0.1, 0.5], [0.7, 0.9]), (c, [0.3, 0.5], [0.3, 0.8],
[0.6,0.9]), (d, [0, 0], [0, O, [1, 1D} in X = {a, b, ¢, d} is supp(A) = {a, b, c} and
lsupp(A)| = 3.

We now define p-competition interval-valued neutrosophic graphs.

Definition 4.16 Let p be a positive integer. Then p-competition interval-valued
neutrosophic graph C? (8) of the interval-valued neutrosophic digraph 8 = (A,
E)) is an undirected interval-valued neutrosophic graph G = (A, B) which has
same interval-valued neutrosophic set of vertices as in G and has an interval-

valued neutrosophic edge between two vertices s, w € X in C”(g) if and only if
|supp(N*(s) N N*(w))| > p. The interval-valued truth-membership value of edge

(s, w) in CP(C) is 1(s, w) = ELE (5) At (w) IR} (NF (5) N NF (), and
ta(s,  w) = E2EG(s) At (w)]hY(NF(s) NN*(w)), the interval-valued

indeterminacy-membership value of edge (s, w) in (C”(E)) is ig(s, w) =
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D (5) A i )RS (NF(s) NN (w)), and (s, w) = ELEi (5) A
ifl(w)]hg(NJr(s)ﬂN*(w)), the interval-valued falsity-membership value of
edge (s, w) in CP(G) is fhGso w) = ELE[F ) A fL)R(NT(s) N
N*(w)), and f§(s, w):w—)ﬂ[fg(s)AfX(w)]hg(N+(s)ﬂN*(w)), where
i = [supp(N*(s) N N*(w))].

Example 4.8 Consider an interval-valued neutrosophic digraph G = (A, 7?)) on
X ={s, w,a,b, c},suchthat A = {(s,[0.4, 0.5],[0.5, 0.7],[0.8, 0.9]), (w,[0.6, 0.7],
[0.4,0.6], [0.2, 0.3]), (a, [0.2,0.6], [0.3, 0.6], [0.2, 0.6]), (b, [0.2, 0.6], [0.1, 0.6],
[0.2,0.6]), (c, [Oﬂﬂ, [0.3,0.5], [0.2,0.6])}, and B ﬂgﬁ)) [0.1,0.4], [0.3,
0.6],10.2, 0.6]), ((s, b),[0.2, 0.4],[0.1, 0.5],[0.2, 0.6]), ((s, ¢),[0.2, 0.5],[0.3, 0.5],
B —_

[0.2,0.6]), ((w, a), [0.2,0.5], [0.2,0.5], [0.2, 0.3]), ((w, b), [0.2,0.6], [0.1, 0.6],
[0.2, 0.3]), (m, [0.2,0.7], [0.3, 0.5], [0.2, 0.3])}, as shown in Fig.4.8.

We calculate N*(s) = {(a, [0.1, 0.4], [0.3, 0.6], [0.2, 0.6]), (b, [0.2,0.4], [0.1,
0.5], [0.2, 0.6]), (c, [0.2,0.5], [0.3,0.5], [0.2, 0.6])} and N*(w) = {(a, [0.2, 0.5],
[0.2,0.5], [0.2,0.3]), (b, [0.2,0.6], [0.1, 0.6], [0.2,0.3]), (c, [0.2,0.7], [0.3, 0.5],
[0.2,0.3])}. Therefore, N*(s) N N*(w) = {(a, [0.1,0.4], [0.2,0.5], [0.2,0.3]),
(b, 10.2,0.4], [0.1,0.5], [0.2,0.3]), (¢, [0.2,0.5], [0.3,0.5], [0.2,0.3)}. Now,
i = [supp(N*(s) N N*(w))| = 3. For p = 3, we have, r5 (s, w) = 0.02, (s, w) =
0.08, ik (s, w) = 0.04, i%(s, w) = 0.1, fh(s, w) = 0.01 and fi(s, w) = 0.03. This
graph is depicted in Fig.4.9.

We state the following theorem without its proof.

Theorem 4.5 Let 6 = (A, 73)) be an interval-valued neutrosophic digraph. If

RY(NT(s) NNT(w)) =1, hNT() NNt (w)) =1, hy(NT(s) NNt (w)) =0,
RUNT(s) NNT(w)) =1, A4NT(s) NNTw)) =1, AN (s) NNt (w)) =0,

i1 =
inCl2V(G), then the edge (s, w) is strong, wherei = |supp(N*(s) N N*(w))|. (Note
that for any real number s, [s]|=greatest integer not exceeding s.)

4.5 m-Step Interval-Valued Neutrosophic Competition
Graphs

We define here another extension of interval-valued neutrosophic competition graph
known as m-step interval-valued neutrosophic competition graph. We will use the
following notations:

P", . Aninterval-valued neutrosophic path of length m from s to w,
P77 A directed interval-valued neutrosophic path of length m from s to w,

S, w
N (s) : m-step interval-valued neutrosophic out-neighbourhood of vertex s,
N (s) : m-step interval-valued neutrosophic in-neighbourhood of vertex s,
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Fig. 4.9 3-competition interval-valued neutrosophic graph

N,»(s) : m-step interval-valued neutrosophic neighbourhood of vertex s,

N,,(G): m-step interval-valued neutrosophic neighbourhood graph of the interval-
valued neutrosophic graph G,

—

C,(G): m-step interval-valued neutrosophic competition graph of the interval-valued
-

neutrosophic digraph G .
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Definition 4.17 Suppose 6) = (A, 7?)) is an interval-valued neutrosophic digraph.
The m-step interval-valued neutrosophic digraph of 6 is denoted by 8,,, = (A, B),
where interval-valued neutrosophic set of vertices of 6 is same with interval-valued
neutrosophic set of vertices of 8,,, and has an edge between s and w in 8,,, if and
only if there exists an interval-valued neutrosophic directed path ?;”w in 8

Definition 4.18 The m-step interval-valued neutrosophic out-neighbourhood of ver-
— —
tex s of an interval-valued neutrosophic digraph G = (A, B) is interval-valued

neutrosophic set

Tt + (Dt . + nt +
Ni) =X ® L G0 i L 9, £97)), where

N s

X" = {w] there exists a directed interval-valued neutrosophic path of length m
from s to w, P™ 1, (D7 X+t [0, 1], 1@ - X+ — [0, 1], iD7 : X+ — [0, 1]
) s,wis by . K ’ s by . K ) s by . s ) )
i X = [0, 1], £O07 1 X — [0,1] £ 1 X} — [0, 1] are defined by 1" =
. 1 2 . - (u)+ . u > .
min{¢’ (s, 52), (51, $2) isanedge of P’ }, ;" = min{t"(sy, s2), (51, 52) is an edge
Pm 10M in{i! i Bm St il
of PU L i =min{i’(s1, 52), (51, 52) isanedge of P’ }, i = min{i"(sy, s2),

- Bm OF — minf Flis o ; P
(s1, $2) is an edge of Ps,w}, [0 =min{f(s1, 52), (51, 52) is an edge of Ps,w},

+ . — . = .
£ = min{ f“(sy, 52), (51, 52) is an edge of P o}, respectively.
Example 4.9 Consider an interval-valued neutrosophic digraph G = (A, 7?)) on
X ={s,w,a,b,c,d},suchthat A = {(s, [0.4, 0.5], [0.5,0.7], [0.8, 0.9]), (w, [0.6,
0.7], [0.4, 0.6], [0.2, 0.3]), (a, [0.2,0.6], [0.3, 0.6], [0.2, 0.6]), (b, [0.2,0.6], [0.1,
0.6], [0.2, 0.6]), (c, [0.2,0.7], [0.3,0.5], [0.2,0.6]), d([0.2, 0.6], [0.3, 0.6], [0.2,
— —
0.6])}, and B = {((s, a), [0.1, 0.4], [0.3, 0.6], [0.2, 0.6]), ((a, ¢), [0.2,0.6], [0.3,
— —
0.5], [0.2,0.6]), ((a, d), [0.2,0.6], [0.3,0.5], [0.2, 0.4]), ((w, ), [0.2,0.6], [0.1,
0.61,[0.2,0.3D), ((b, ¢),10.2,0.4],[0.1, 0.2],[0.1, 0.3]), ((b, d),[0.1, 0.3],0.1, 0.2],
[0.2, 0.4])}, as shown in Fig.4.10.
We calculate 2-step interval-valued neutrosophic out-neighbourhoods as, NJ (s) =
{(c, [0.1,0.4], [0.3,0.5], [0.2,0.6]), (d, [0.1,0.4], [0.3,0.5], [0.2,0.4])} and
NJ (w) = {(c, [0.2,0.4], [0.1,0.2], [0.1, 0.3]), (4, [0.1, 0.3], [0.1, 0.2], [0.2, 0.3])}.

Definition 4.19 The m-step interval-valued neutrosophic in-neighbourhood of ver-

tex s of an interval-valued neutrosophic digraph G = (A, B) is interval-valued
neutrosophic set

No(s) = (X7, 1P, e 1, G0, i L, D7, £471), where

X, = {w] there exists a directed interval-valued neutrosophic path of length m
from w to s, ?’w"’s}, tO" X7 — [0, 1], 1" : X7 — [0, 11, : X7 — [0, 1],
i X7 = [0,1], fO7 X7 — [0,1] £ : X7 — [0, 1] are defined by 1" =

m
w,s

. ! > . - ()~ . u > .
min{t' (s, 52), (51, s2) isanedge of P '}, = min{t“(sy, s2), (51, 52) is an edge
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5([0.4,0.5], [0.5,0.7], [0.8, 0.9]) w([0.6,0.7],[0.4,0.6], 0.2, 0.3])
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¢([0.2,0.7],[0.3,0.5], [0.2, 0.6]) d([0.2,0.6], 0.3, 0.6], [0.2, 0.6])

Fig. 4.10 Interval-valued neutrosophic digraph

P i (O in{i! 4 Bm P(u)” sl
of P} i” = min{i’(s1, 52), (51, 52) isanedge of P (}, i = min{i"(sy, 52),
: Bm - gl X : Bm
(s1, s2) is an edge of P [}, f{” = min{f"(s1, s2), (51, s2) is an edge of P },

_ — —
£ = min{ f“(s1, 2), (51, 52) is an edge of P s> respectively.

Example 4.10 Consider an interval-valued neutrosophic digraph G = (A, 79)) on

X ={s,w,a,b,c,d}, such that A = {(s,[0.4, 0.5], [0.5,0.7], [0.8, 0.9]), (w, [0.6,

0.7], [0.4, 0.6], [0.2, 0.3]), (a, [0.2, 0.6], [0.3, 0.6], [0.2, 0.6]), (b, [0.2, 0.6], [0.1,

0.6], [0.2,0.6]), (c, [0.2,0.7], [0.3,0.5], [0.2,0.6]), d([0.2, 0.6], [0.3, 0.6], [0.2,
— —

0.6])}, and B = {((s, a), [0.1,0.4], [0.3,0.6], [0.2,0.6]), ((a, c), [0.2,0.6], [0.3,
— —

0.5], [0.2,0.6]), ((a, d), [0.2,0.6], [0.3,0.5], [0.2, 0.4]), ((w, b), [0.2,0.6], [0.1,

0.6],[0.2,0.3]), ((b, ¢),10.2, 0.4],[0.1, 0.2],[0.1, 0.3]), ((b, d),[0.1, 0.3],[0.1, 0.2],

[0.2,0.4])}, as shown in Fig.4.11.
We calculate 2-step interval-valued neutrosophic in-neighbourhoods as, N; (s) =

{(c,[0.1,0.4],0.3,0.5], [0.2,0.6]), (d, [0.1,0.4], [0.3,0.5], [0.2,0.4])} and N (w) =
{(c, [0.2,0.4], [0.1,0.2], [0.1,0.3]), (d, [0.1,0.3], [0.1,0.2], [0.2,0.3])}.

Definition 4.20 Suppose E) = (A, 7?)) is an interval-valued neutrosophic digraph.
The m-step interval-valued neutrosophic competition graph of interval-valued neu-
trosophic digraph 8 is denoted by C,, (6) = (A, B) which has same interval-valued
neutrosophic set of vertices as in 6 and has an edge between two vertices s, w € X
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5([0.4,0.5],[0.5,0.7], [0.8,0.9]) w([0.6,0.7],[0.4,0.6], [0.2, 0.3])

¢([0.2,0.7],[0.3,0.5], 0.2, 0.6]) d([0.2,0.6],0.3,0.6], [0.2, 0.6])

Fig. 4.11 Interval-valued neutrosophic digraph

in (Cm(?;)) if and only if (Nj;(s) N NZ(w)) is a nonempty interval-valued neutro-
sophic set in G . The interval-valued truth-membership value of edge (s, w) in
Cp(G)is th(s, w) = [th () Aty (w) IR, (NF (s) N NF(w)), and 14 (s, w) = [£4(s) A
4 (w)1hY} (N} (s) NN (w)), the interval-valued indeterminacy-membership value of
edge (s, w) in cm(ﬁ) is il (s, w) = [i',(s) A iy (w)]h5(NF(s) NNE (w)), and i (s,

w) = [i4(s) A il (w)]hs (N (s) NN (w)), the interval-valued falsity-membership
value of edge (s, w) in (Cm(g) is fL(s,w) = [fL(s) A FL)IRL(NE () NN (w)),

and fg (s, w) = [f{() A £ ()] (N (s) NN (w)).

The 2-step interval-valued neutrosophic competition graph is illustrated by the fol-
lowing example.

Example 4.11 Consider an interval-valued neutrosophic digraph G = (A, 7?)) on

X ={s,w,a,b,c,d},such that A = {(s, [0.4, 0.5], [0.5, 0.7], [0.8, 0.9]), (w, [0.6,

0.7], [0.4, 0.6], [0.2, 0.3]), (a, [0.2,0.6], [0.3, 0.6], [0.2, 0.6]), (b, [0.2, 0.6], [0.1,

0.6], [0.2, 0.6]), (c, [0.2,0.7], [0.3,0.5], [0.2,0.6]), d([0.2,0.6], [0.3, 0.6], [0.2,
—> —

0.6])}, and B = {((s, a), [0.1, 0.4], [0.3, 0.6], [0.2, 0.6]), ((a, ¢), [0.2,0.6], [0.3,
— —_—

0.5], [0.2,0.6]), ((a, d), [0.2,0.6], [0.3,0.5], [0.2, 0.4]), ((w, ), [0.2,0.6], [0.1,

0.61,[0.2,0.3D), ((b, ¢),10.2,0.4],[0.1, 0.2],[0.1, 0.3]), ((b, d),[0.1, 0.3],0.1, 0.2],

[0.2, 0.4])}, as shown in Fig.4.12.

We calculate NJ (s) = {(c, [0.1, 0.4], [0.3, 0.5], [0.2, 0.6]), (d, [0.1,0.4], [0.3,
0.5], [0.2,0.4])} and N3 (w) = {(c, [0.2, 0.4], [0.1, 0.2], [0.1, 0.3]), (d, [0.1,0.3],
[0.1, 0.2],[0.2, 0.3])}. Therefore, N3 (s) N Nj (w) = {(c, [0.1, 0.4],[0.1, 0.2],[0.2,
0.6), (d, [0.1, 0.3],[0.1,0.2], [0.2, 0.4])}. Thus, 5 (s, w) = 0.04, £ (s, w) = 0.20,
it (s, w) = 0.04,i%(s,w) = 0.12, f5(s,w) = 0.04 and f4 (s, w) = 0.12. This graph
is depicted in Fig.4.13.
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5([0.4,0.5], [0.5,0.7], [0.8, 0.9]) w([0.6,0.7],[0.4,0.6], [0.2, 0.3])

¢(0.2,0.7],[0.3,0.5], [0.2,0.6]) d([0.2,0.6], 0.3, 0.6], [0.2,0.6])

Fig. 4.12 Interval-valued neutrosophic digraph

5([0.4,0.5], [0.5,0.7], [0.8,0.9]) w([0.6,0.7],[0.4,0.6], [0.2, 0.3])
@

([0.04,0.20], [0.04, 0.12], [0.04, 0.12])

a([0.2,0.6], 0.3, 0.6], [0.2, 0.6]) 5([0-2,0.6],[0.1,0.6], [0.2, 0.6])
(] { ]
Y [
¢([0.2,0.7),0.3,0.5], [0.2, 0.6]) d([0.2,0.6], 0.3, 0.6], (0.2, 0.6])

Fig. 4.13 2-Step interval-valued neutrosophic competition graph

If a predator s attacks one prey w, then the linkage is shown by an edge m in
an interval-valued neutrosophic digraph. But, if predator needs help of many other
mediators si, $2, ..., Sm—1, then linkage among them is shown by interval-valued
neutrosophic dlrected path P s in an interval-valued neutrosophic digraph. So,
m-step prey in an interval-valued neutrosophic digraph is represented by a vertex
which is the m-step out-neighbourhood of some vertices. Now, the strength of an
interval-valued neutrosophic competition graphs is defined below.

Definition 4.21 Let 8 = (A, ?) be an interval-valued neutrosophic digraph. Let
w be a common vertex of m-step out- nelghbourhoods of vertices sl, 82, veey SI.

AlSO let BZ(Ml,Ul) B 1(u2, v2), B 1@y, v,) and B"(Ml,vl) B (Mz,vz)
B”(u,, v,) be the minimum 1nterval Valued truth- membershlp values, B S, vl)

Bz(uz, V2),... Bz(u,, v,) and 32 (uy, v1), B2 (uz, v2), . B2 (u,, v,) be the mini-
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— — —
mum indeterminacy-membership values, Bé (uy, v1), Bé (uz, v17), ..., Bé (u,, v,) and
By (uy,v1), By (u2, v2), ..., By(u,, v,) be the maximum false-membership values,

= - — )
of edges of the paths P!, P{ ..., P, respectively. The m-step prey w € X
is strong prey if

— — —

Bi(u;,v;)) > 0.5, By(u;,v;) > 0.5, Bi(u;,v;) <0.5,

— — —

B{(u;,v;) > 0.5, By(u;,v;) >0.5, Bj(u;,v) <05, foralli =1,2,...,r.

The strength of the prey w can be measured by the mapping S : X — [0, 1], such
that:

S B e ool S B o+ S B v
Sw) = { > 1B (ui, v)] + ;[Bl (i v)]+ Y _[By(ui, v7)]

i=1 i=1

r r — r
+ 3 IBE (w01 = S [B i v)] = Y (BE (s, v»]}.
i=1 i=1 i=1

Example 4.12 Consider an interval-valued neutrosophic digraph 8 = (A, 75')) as
shown in Fig.4.12, the strength of the prey c is equal to

(02+0.2)+(0.6+0.4)+(0.1+0.1) + (0.6 +0.2) — (0.2 4+ 0.1) — (0.3 +0.3)

=15
2

> 0.5.

Hence, c is strong 2-step prey.

We state the following theorem without its proof.

Theorem 4.6 Ifaprey w of?;) = (A, 73)) is strong, then the strength of w, S(w) >
0.5.

Remark: The converse of the above theorem is not true; i.e., if S(w) > 0.5, then all
preys may not be strong. This can be explained as: Let S(w) > 0.5 for a prey w in

—_
G . So,

1 r — r r —
S(w) = ;{ S8 vl + Y (Bl s, vl + S [Bh(ur, v)]
i=1 i=1 i=1
r r — r
+ S 0B i, v = 3 B, w1 — Bl (i, v,-)]}.

i=1 i=I i=l
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Hence,
T r N
{ > 1B (ui, v)] + Z[E)f‘(uh vl + Y _[Byu;, vi)]
i=1 i=1 i=1
(5 B B :
+ > [BY (i, vi)] Z[ 3(u,,v,)]—2[ 2(u,,v,)]} >

i=1

This result does not necessarily imply that

— — —
Bi(u,-, v;) > 0.5, Bé(u,-, v;) > 0.5, Bé(u,-, v;) < 0.5,

— — —

By (u;,v;) > 0.5, Bj(u;,v;) >0.5, Bi(u;,v;) <05, foralli =1,2,...,r

PWL

Since, all edges of the directed paths P Sws P P 5 4 are not strong. So, the

—>
converse of the above statement is not true; i.e., if S(w) > 0.5, the prey w of G may
not be strong. Now, m-step interval-valued neutrosophic neighbourhood graphs are
defines below.

Definition 4.22 The m-step interval-valued neutrosophic out-neighbourhood of ver-

— —
tex s of an interval-valued neutrosophic digraph G = (A, B) is interval-valued
neutrosophic set

Nou(s) = (X, [T), T, (1L, 11, [F!, F*]), where

X, = {w] there exists a directed interval-valued neutrosophic path of length m from
stow, P" ), T!: Xy — [0, 1], T : X, — [0, 1], I! - X, — [0, 1], I : X; — [0,
11, F! : Xy — [0, 1], F* : X, — [0, 1], are defined by T = min{t’(sl,S2), (51, $2)
is an edge of P 4 o T =min{t" (s, 52), (51, 52) is an edge of P s, b Ly = min{il(sl,
52), (51, 82) is an edge of P{" }, [ = min{i“(s1, 52), (s1, 52) is an edge of P, },
Ff = min{ f!(s1, 52), (51, 57) is an edge of P, Y, Fy = min{ f" (s, s2), (51, 52) is an
edge of "}, respectively.

Definition 4.23 Suppose G = (A, B) is an interval-valued neutrosophic graph.
Then m-step interval-valued neutrosophic neighbourhood graph N, (G) is defined
by N,»(G) = (A, B) where A = ([A’l,A”] [AL, A%),[AL, AY]), B = ([B, B"],[Bl,
BY), (B, BYD), Bl : X x X — [0,1], B : X x X — [0, 1], B : X x X — [0, 1],
BY:X x X —[0,1], B,: X x X — [0, 1], and BY : X x X — [0, —1] are such
that:

Bl(s, w) = AL (s) A AL (w)h! (N, (5) NN, (w)),
Bi(s, w) = Ab(s) A Ab(w)hb (N, (s) NN, (w)),
Bi(s, w) = AL(s) A AL (W) (N, (s) NN, (w)),



212 4 Graphs Under Interval-Valued Neutrosophic Environment

Bl (s, w) = AY(s) A AY(w)hY (N, (s) N N, (w)),
B (s, w) = A%(s) A A (w)hs (N, (s) NN,y (w)),
B;‘ (s, w) = A5(s) A A5 (w)h5 (N, (s) NN, (w)), respectively.

We state the following theorems without their proofs.

Theorem 4.7 Ifallpreys ofa) = (A, 7?)) are strong, then all edges of C,, (8) = (A,
B) are strong.

A relation is established between m-step interval-valued neutrosophic competi-
tion graph of an interval-valued neutrosophic digraph and interval-valued neutro-
sophic competition graph of m-step interval-valued neutrosophic digraph.

Theorem 4.8 If G is an interval-valued neutrosophic digraph and G, is the m-step
interval-valued neutrosophic digraph of G, then C(G ,,) = C,,(G).

Theorem 4.9 Let 6) = (A, 73)) be an interval-valued neutrosophic digraph. If m >
—
| X|, then C,,,(G) = (A, B) has no edge.

Theorem 4.10 If all the edges of interval-valued neutrosophic digraph G = (A,
— —>
B) are independent strong, then all the edges of C,,( G ) are independent strong.



Chapter 5 ®)
Interval-Valued Neutrosophic Graph oo
Structures

In this chapter, we present certain notions of interval-valued neutrosophic graph
structures. We elaborate the concepts of interval-valued neutrosophic graph struc-
tures with examples. Moreover, we discuss the concept of ¢-complement of an
interval-valued neutrosophic graph structure. Finally, we describe some related prop-
erties, including ¢-complement, totally self-complementary and totally strong self-
complementary, of interval-valued neutrosophic graph structures. This chapter is due
to [35].

5.1 Introduction

Zadeh [199] introduced interval-valued fuzzy set theory which is an extension of
fuzzy set theory [194]. Membership degrees in an interval-valued fuzzy set are inter-
vals rather than numbers, and uncertainty is reflected by length of interval member-
ship degree. Interval-valued fuzzy set theory has numerous applications in various
fields of science and technology, including fuzzy control, artificial intelligence, oper-
ations research and decision-making. An interval-valued neutrosophic graph con-
stitutes a generalization of the notion interval-valued fuzzy graph. Atanassov [47]
proposed an extension of fuzzy sets by adding a new component, called intuitionistic
fuzzy sets. The concept of intuitionistic fuzzy sets is more meaningful and inventive
due to the presence of degree of truth, indeterminacy and falsity-membership. The
intuitionistic fuzzy sets have more describing possibilities as compared to fuzzy sets.
The hesitation margin of an intuitionistic fuzzy set is its uncertainty by default, and
sum of truth-membership degree and falsity-membership degree does not exceed
unity. In many phenomenons, including information fusion, uncertainty and inde-
terminacy is doubtlessly quantified. Smarandache [165, 166] proposed the idea of
neutrosophic sets, and he mingled tricomponent logic, nonstandard analysis and
philosophy. For convenient and advantageous usage of neutrosophic sets in science
and engineering, Wang et al. [ 169] proposed the notion of single-valued neutrosophic
sets, whose three independent components have values in standard unit interval [0, 1].

© Springer Nature Singapore Pte Ltd. 2018 213
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Neutrosophic set theory being a generalization of fuzzy set theory and intuitionistic
fuzzy set theory is more practical, advantageous and applicable in various fields,
including medical diagnosis, control theory, topology, decision-making problems
and in many more real-life problems. Wang et al. [170] proposed the notion of
interval-valued neutrosophic sets, which is more precise and flexible than the single-
valued neutrosophic sets. An interval-valued neutrosophic set is a generalization of
the notion of single-valued neutrosophic set, in which three independent components
(¢, 1, f) are intervals which are subsets of standard unit interval [0, 1].

Definition 5.1 A graph structure G* = (X, E\, ..., E,) consists of a nonempty set
X together with relations Ey, E3, ..., E, on X which are mutually disjoint such that
each E;, 1 < j <t,is symmetric and irreflexive.

Definition 5.2 The interval-valued neutrosophic set 1 on set X is defined by
I=A{r [t~ (), t"OLLE @), i" L L), fH(@)]) :r € X}, where 17, 7, i,
i*t, f,and f* are functions from U to [0, 1] such that:

tYr) <tT(r),i (r) <it(@)and f~(r) < fT(r)forallr € X.

5.2 Notions of Interval-Valued Neutrosophic Graph
Structures

Definition 5.3 (V;,-,, =, 1L, 0,...,1I) is called an interval-valued neutrosophic
graph structure of graph structure G* = (X, Ey, E», ..., E;) if

I={(r [t ), "ML L), i" ML L), fT)D :r e X}

and 1; = { (o). 167 (09 07 o)L U5 (ros) i o)L L (), £ (ras)D)
(r,s) € E; } are interval-valued neutrosophic sets on X and E, respectively, such
that:

Lot (r,s) < min{t~(r), 17 (s)}, tf(r, s) < min{t*(r), 17 (s)},
2. i5(r,s) <min{i=(r),i" ()}, i} (r,s) <min{it(r),it(s)),
3. fj_(r, s) <min{f~(r), f(s)}, fj+(”’ s) <min{f* (), £+ (s)},

where 7, tj.*, i i;r, fi ,and f;r are functions from E; to [0, 1] such that
17 (r,s) = t;’(r, $), 05 (r,s) < i;'(r, s)and f;7(r,5) < fj+(r, s) forall (r,s) € E;.
In this paper we will use s in place of ordered pair (7, s) which represents an

edge between vertices r and s.

Example 5.1 Consider the graph structure G* = (X, E|, E;) such that X = {r|, ry,
r3, I"4}, El = {r1r3, ryra, r3r4}, Ez = {r1r4, r2r3}. By deﬁning interval-valued neu-
trosophic sets I, I} and I, on X, E; and E, respectively, we draw an interval-valued
neutrosophic graph structure as shown in Fig.5.1.
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Fig. 5.1 Interval-valued 72([0.2,0.3],[0.4,0.5], (0.3, 0.4])
neutrosophic graph structure

15([0.2,0.3], 0.4, 0.5}, [0.2,0.3))

r3([0.3,0.4], 0.6, 0.7], [0.3,0.4])

Definition 5.4 Let é,-v = (I,1;,I,...,1,) be an interval-valued neutrosophic
graph structure of graph structure (GS) G* = (X,E, E,, ..., E). If
I-Vll-v =(I'.I{,I;,..., I]) is an interval-valued neutrosophic graph structure of G*
such that

=) <t (r),i" () =i~ (), f7r) = [ (),
1) 7)), 1) i), fT) < f,

(7(rs) < 17(rs), i (r) < (s, £} (r) < f7 (),
1 (rs) <t (rs), i (rs) < i (rs), [T (rs) < £ (rs),
forallr € Xandrs € E;, j=1,2,...,¢t.

Then H;, is called an interval-valued neutrosophic subgraph structure of interval-
valued neutrosophic graph structure G;,.

Example 5.2 Consider an interval-valued neutrosophic graph structure H;, =
(I, I, I) of graph structure G* = (X, E|, E,) as illustrated in Fig.5.2. Through
direct calculations, it is shown that H;, is an interval-valued neutrosophic subgraph
structure of interval-valued neutrosophic graph structure Gy shown in Fi g.5.1.

Definition 5.5 An interval-valued neutrosophic graph structure H, = (I',1 0
L, ..., 1)) is called an induced subgraph structure of interval-valued neutrosophic
graph structure Giv by Q C X if

1)y =t(r),i" (r)=i"(r), [~ (r)= f~(r),
1) =5 (r), i) =it (), ) = ),

t]’._(rs) =1; (rs), i;._(rs) =i (rs), f]f_(rs) = f; (rs), t;.+(rs) = t;'(rs),
i}+(rs) = i;(rs), ffr(rs) = f]f(rs), forallr,s e Q,j=1,2,...,¢.
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Fig. 5.2 Interval-valued r2([0.1,0.2], [0.3,0.4], [0.2, 0.3])
neutrosophic subgraph
structure

s

=

¥

(=)

)

=3

5

<

=

=

75([0.2,0.3], [0.5,0.6], [0.2, 0.3])

Fig. 5.3 Interval-valued 72([0.2,0.3],0.4,0.5], (0.3, 0.4])
neutrosophic-induced w 7
subgraph structure 8 (/Qéj 0

1([0.2,0.3], [0.4,0.5], [0.2, 0.3])

N

73([0.3,0.4], 0.6, 0.7], [0.3, 0.4])

Example 5.3 An interval-valued neutrosophic graph structure Hy, = (I’, I, L)) of
graph structure G* = (X, E;, E») showninFig.5.3 is aninterval-valued neutrosophic-
induced subgraph structure of interval-valued neutrosophic graph structure Giy =
(I, I, I,) represented in Fig.5.1.

Definition 5.6 An interval-valued neutrosophic graph structure Hy, = (I, 1 0
L, ..., 1)) is called spanning subgraph structure of interval-valued neutrosophic
graph structure é,-v =, I, L,....,I)ifI'=1 and

t}_(rs) < tj_(rs), i}_(rs) < ij_(rs), f;_(rs) < fj_(rs),

1Rrs) <t (rs), i (rs) <if(rs), fT(rs) < 7 (rs), j =121
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Fig. 5.4 Interval-valued
neutrosophic spanning
subgraph structure

Example 5.4 An interval-valued neutrosophic graph structure H;, = (I’, I 1. 1)
shown in Fig.5.4 is an interval-valued neutrosophic spanning subgraph structure of
interval-valued neutrosophic graph structure G;,, = (I, I, I») represented in Fig. 5.1.

Definition 5.7 Let G iw=U, 1, I, ..., I;) be aninterval-valued neutrosophic graph
structure. Then edge rs € I; is called an interval-valued neutrosophic I -edge or in
short an /;-edge if

t7(rs) > Oori; (rs) > Oor f; (rs) > 0ort/(rs) > 0 orif(rs) >0 or
fj.‘"(rs) >0

or all of conditions are satisfied. Hence support of /; is defined as;

supp(l;) =
{rs €I :t;(rs) >0 U{rsel;: i;(rs) >0tU{rsel;: fj’(rs) > 0}U
{rs el :t;“(rs) >0lU{rsel;: i;.“(rs) >0)Ufrsel;: fj.’L(rs) > 0},
j=12,...,¢t.

Definition 5.8 An /;-path in an interval-valued neutrosophic graph structure Giy =
I, I, I, ..., I;)isasequence ry, 2, ..., I, of distinct vertices (except r, =r;) in X
such that r;_yr; is an interval-valued neutrosophic /;-edge forall j =2,3,...,¢.

Definition 5.9 An interval-valued neutrosophic graph structure éiv = (I, I,
L, ..., I;)is Ij-strong forany j € {1,2,...,t}if
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r2([0.3,0.4],[0.6,0.7], [0.3,0.4]) r1(]0.4,0.5],[0.6,0.7], [0.4, 0.5))
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Fig. 5.5 Strong interval-valued neutrosophic graph structure

t;(rs) = min{r~(r), t~(s)}, i;(rs) =min{i ~(r), i (s)},
fi(rs) =min{f~(r), [~ ()}, tf(rS) = minf{r*(r), 17 (s)},
iF(rs) = min{i T (1), it (), f7(rs) = min{ £ (), £ (s),

for all rs € supp(I;). If Gy, is I;-strong for all j € {1,2, ..., t}, then G, is called
a strong interval-valued neutrosophic graph structure.

Example 5.5 Consider an interval-valued neutrosophic graph structure é,-v =(1, I,
I, I3) as shown in Fig. 5.5. G;, is a strong interval-valued neutrosophic graph struc-
ture, since it is 1y, I, and I3 strong.

Definition 5.10 An interval-valued neutrosophic graph structure éiv =, L,
b, ..., I,) is called complete , if

v

1. Gj, is a strong interval-valued neutrosophic graph structure.
2. Supp(I;) # W, forall j =1,2,...,¢.
3. Forallr,s € X, rsisan I; — edge for some j.

Example 5.6 Let é,-v =(1, I, I, I3) be an interval-valued neutrosophic graph struc-
ture of graph structure G* = (X, E, E,, E3), and it is shown in Fig.5.6, where
X ={ri,r2, 13,714,175, 76}, E1 = {1176, 1172, 1214, T2¥'5, 12¥g, Fars}, Ey = {rar3, 576,
rira}, and E3 = {rrs, rsr3, rar3, 1113, rarg}. By direct calculations, we can show that
Givisa strong interval-valued neutrosophic graph structure. Moreover, supp (1) #
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71([0.2,0.3],[0.3,0.4], [0.5, 0.6]) 72([0.3,0.4],[0.3,0.4], [0.5, 0.6])

P /](/Qe Q@
20 1,(10.2,0.3], [0.3,0.4], [0.5, 0.6 >

e(/Q% 3, 11(02,03],[0.3,04],[05,0.6) ) \Q.A«Q‘B\lg‘?:

7 30 o8
-2, Q- w» A
% o, 038 N

Q 7] A . b

r5([0.2,0.3],[0.2,0.3], 0.3, 0.4])

Fig. 5.6 Complete interval-valued neutrosophic graph structure

@, supp(ly) # ¥, supp(l3) # @, and each pair r;r; of nodes in X is either an /;—
edge or I—edge or I3— edge. Hence Giyisa complete interval-valued neutrosophic
graph structure, that is, I; I, [3—complete interval-valued neutrosophic graph struc-
ture.

Definition 5.11 Let éiu =, 11, I,...,1,) be an interval-valued neutrosophic
graph structure. The truth strength [t~.Pp, t*.Plj], indeterminacy strength [i™.Pr,
i*.Py ] and falsity strength [f~. Py, f*.P;] of an I;-path, P, =r,rp, ..., 1, are
defined as:

(17 Py, t7. P =| Alty, (1ol /\[l;;(rkﬂk)]}
Lk=2 k=2

=Py, i+ Py = | Al (il /"\[z',t(rk_lrk)]]
Lk=2 k=2

Lf~Py fHP) = | ALF Gecamol, /"\[f,j(rklrk)]].
Lk=2 k=2

Example 5.7 Consider an interval-valued neutrosophic graph structure éiv =, 1,
1) of graph structure G* = (X, Ey, E;) as shown in Fig.5.7. For I,-path P, =
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r2([0.3,0.4], [0.4,0.5], [0.3,0.4])

75([0.3,0.4], [0.4,0.5], [0.3,0.4])

Fig. 5.7 Interval-valued neutrosophic graph structure Giv=W,1, 1)

F1LFsi 13t [t P, t1.PL]1=[0.2,0.3],[i~. Py, it.P,]=[0.1,0.2] and [f~.Py,,
f+.PL1=103,04].

Definition 5.12 Let éiu =, 11, 1I,...,1I;) be an interval-valued neutrosophic
graph structure. Then

o [;—Truth strength of connectedness between two nodes r and s is defined by:

(1, (rs), 17 (rs)] = [\/ {17/ rs)}, \/ {17 (rs)}] such that

[t,j(rs),t (rs)]-[(t‘“‘”ot, “))(rs) (ﬁ(’ b t,t(l))(rs)] fori > 2 and
[t_z(rs) t (rs)]—[(t ot, )(rs), (t1,- otl )(rs)]
[\/(t, (ry)/\l (ys)) \/(t '(ry) At EOON!
o /; —Indetermtnacy stren gth of connectedness between two nodes r and s is defined
by'
li7, (rs), ip Tors)] = [\/{f’ (rs)}, \/{t+’ (rs)}] such that

i>1 i>1
i) (), i ) = 1G; 7" 0ip DYrs), GV 0 V) (rs)] fori > 2 and
[il_z(rs) i+2(rs)]=[(i_l oil_l)(rs) (i+‘ oz, Yrs)]
[va, ry) A it (), \/(z“(ry)m, ().

o /; —Falslty strength of connectedness between two nodes r and s is defined by:

RN 1= VU 09 VST ) such that
Lf ), £ (rs)] = [(f,j o 1, (]))(rs) (f“"” o f;/)(rs)] fori > 2 and
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Fig. 5.8 Interval-valued 74([0.2,0.3],[0.2, 0.3], [0.4, 0.5])
neutrosophic I-cycle

0.6])

75([0.10.2], (0.4, 0.5], [0.5,
71(]0.3,0.4], [0.4,0.5], [0.5, 0.6))

12((0.1,0.2], [0.4,0.5], [0.5,0.6])

L7 2s), [ = 107 o frDas), (f o fH )]
=V e A S o) VU e A )]
y y

Definition 5.13 An interval-valued neutrosophic graph structure éiv =, L,
b, ..., I,)is called an I;-cycle if (supp(I),
supp(Iy), supp(lp), ..., supp(l;))isan I; — cycle.

Definition 5.14 An interval-valued neutrosophic graph structure éév = (I, 1,
I, ..., I,) is an interval-valued neutrosophic /;-cycle (for some j) if G;, is an ;-
cycle and no unique /;-edge rs exists in Gy such that:

[t,j(rs), t,t(rs)] = [min{t,:(uv) cuv e l; =supp(l))},

min{t;;(uv) cuv € Ij =supp(I;)}] or

[il_j(rs), i;:(rs)] = [min{i;(uv) cuv € Ij =supp(l;)},

min{i;:(uv) cuv € Ij = supp(l;)}] or

Ly (rs). £ (rs)] = [min{ £ (uv) : wv € 1; = supp(I)},

min{f;/_”(uv) cuv € I; = supp(j)}].

Example 5.8 Consider an interval-valued neutrosophic graph structure
Cv}iv = (I, I, I) of graph structure G* = (X, E, E>) as shown in Fig.5.8. This
interval-valued neutrosophic graph structure G, is an I,-cycle, that is, rj —rqy —
ry — r3 — r1, and no unique />-edge rs exists in Giv satisfying following condition:
2y, (rs), tZ(rs)] = [min{z;, (uv) : uv € I, = supp(l)},

min{t;} (uv) : uv € I = supp(l)}] or

[is, (rs), i,t(rs)] = [min{i}, (uv) : uv € I, = supp(h)},

min{i ;| (uv) : uv € I = supp(I)}] or

Lfy, (rs), fry (rs)] = [min{ f, (uv) : uv € I = supp(L)},

min{f,j(uv) cuv € I = supp()}].
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Definition 5.15 Let é,-u =, 1L, 05L,.. o I;) be an interval-valued neutrosophic
graph structure and ‘r’ be a vertex of Gy,. If (I',I], I, ..., I;) is an interval-
valued neutrosophic subgraph structure of G, induced by U \ {r} such that for

allu #r,v#r
t,r)=i,(r) = f;, (r) = t;_(ru) = i;,_(ru) = fl;(ru) =0,
) =if(r)= fiir)y=t, p,(rw) = i (ru) = f,f(ru) =0,
[ty (w), 17 )] = [t; (), 1] ()], [i;(u),iﬁ(u)] = [i; ), if ()],
L ), frr )] = Lf; ), fF )],
[l,/ (uv), t 1 S )] = [f/ (uv), tf(uv)] [i;(uv), iZ(MU)] = [i,;(uv), i;;(uv)],

Lfy, o). £ o)l = L @), f; @o)l.

for all edges ru,uv € Gy, then vertex r is an interval-valued neutrosophic 1;
cut-vertex, if
1. t7°uv) > t,, *(uv), t, ) > t,too(uv), [t,joo(uv), t,too(uv)] N
[ (uv),tﬁ’o(uv)] =
2. (uv) >, (uv), l *(uv) >l *(uv), [ *(uv), l Cmv)]1 N
[l,j,°°(uv), z}?oo(uv)] =
30 [ ) > ), [P W) > [ ), L W), S )l n
Lf % @), [ o)l =9

for some u, v € X \ {r}. Note that vertex r is an

e interval-valued neutrosophic I; — t cut-vertex, if tl_oo(uv) > 1,7 (uv),
J

©uv) > t;foo(uv), [t,;°°(uv), 2 wv)IN [, (uv), tf/oo(uv)] =0

o interval-valued neutrosophic I; — i cut-vertex, 1fl, (uv) > il_,oo(uv)
*(uv) >l *(uv), [l_oo(uv) l (uv)]ﬂ[ *uv), l (uv)]
. lnterval valued neutrosophic I; — f cut—vertex 1f f, (uv) > f;, % (uv),

5 @) > o), L o), £ @o)lN [f @), f7 )] =0

Example 5.9 Consider an interval-valued neutrosophic graph structure
Gy, =, I, I) of graph structure G* = (X, E, E,) as represented in Fig.5.9. H;,
=(I', I, I}) is an interval-valued neutrosophic subgraph structure of interval-valued
neutrosophic graph structure G'iv, which is obtained by deleting vertex r, and shown
in Fig.5.10.
The vertex r; is an interval-valued neutrosophic I; — i cut-vertex. Since

i, (rars) = 0.3, i7°°(r4r5) =0.5, i+°°(r4r5) =04, i;lroo(mrs) =0.6.

Clearly i}, ®(rars) =05 > 03 =i, (r4r5) z ©(rqrs) = 0.6 > 04 = l+ (r4r5)
lig, > (rars), i (rars)) N [if, Oo("4r5) l;roo(mrs)] [0.5,0.6] N [0.3,0.4] =
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Definition 5.16 Let éiu =, 11, I,...,1I;) be an interval-valued neutrosophic
graph structure and rs be an I; — edge. If (I',I], I, ..., I;) is an interval-valued
neutrosophic spanning subgraph structure of Gy, such that

t(rs) =i, (rs) = f,f(rs) =0, tlf(rs) = i;f(rs) = flf(rs) =0,
[t (wx), 17, ()] = [t (wx), 17 ()], iy, (wx), iy (wx)] = [i; (wx),

[/ (w'x)]7
Lfy (), £ )] = [ @), f wo),

for all edges wx # rs, then edge rs is an interval-valued neutrosophic /;-bridge if
1. t;7%(uv) > tl, *(uv), t (uv) > tlfoo(uv), [t,joo(uv), t,too(uv)]ﬂ
[ (), 1% @)l = j
2. (uv) >, *(uv), l (uv) >l ©(uv), [ *(uv), l )N
[l,/°°(uv) i °°(uv)] =
3. ff (uv) > f,< (uv),f > (uv) > f (), [f7,* @v), £,/ @v)In
[ @), [ wn)] =9

for some u, v € X. Note that edge rs is an

o interval-valued neutrosophic I; — t bridge, if t;oo(uv)

> t,;oo(uv), t}roo(uv) > t,’;(’o(uv), [t,:oo(uv), t}f_oo(uv)]ﬂ [t, > (uv), t+°°(uv)] =
o interval-valued neutrosophic 1; — i bridge, if i1_°°(uv)

> °°(uv) 11+°°(uv) >z+°°(uv) [i}, °°(uv) sz(uv)]ﬂ[ °°(uv),t ®uv)] =
° mterval valued neutrosophlc I; — f bridge, if f,j (uv)

> f,“"’(uv) Fi@) > f), f @), f2w@ln 1f, > w),

f (uv)] =

Example 5.10 Consider an interval-valued neutrosophic graph structure Gy =
(I, I, I) of graph structure G* = (X, E;, E;) as shown in Fig.5.11. H;, = I, 1, 1)
is an interval-valued neutrosophic spanning subgraph structure of interval-valued
neutrosophic graph structure G, obtained by deleting an I;-edge r,rs and shown in
Fig.5.12. The edge r,rs is an interval-valued neutrosophic /; — bridge since

l;oo(rer) =0.2, I;loo(rg?}) =0.7, t1+1,°°(r2r5) = 0.3, I;lroo(l’gr5) = O.S.l‘;loo(l"gﬁ)
=07 > 02 = t1?°°(r2r5) t,+°°(r2r5) =08 > 03 = t;l?°°(r2r5), [tgw(rzrs),
t;l'oo(rzr5)] N [tl?oo(rzrs), t;,'oo(rzrs)]= [0.7,0.8]1 N [0.2,0.3] = 4.
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. il_l,oo(rer) =03, i;%(rrs) =0.5, l,,°°(r2r5) =04, '+°°(r2r5) =
0.6. l, (r2r5) =05>03 =i, (r2r5) l, ®(ryrs) =0.6 > 04—1 (r2r5)
[lll (rars), l ®(rars)] N i, (r2r5) l ®(ryors5)]=[0.5, 0.6]1 N [0.3, 0.4] =

° fIl, (rars) = 0.3, I °°(r2r5) = 0.5, f['}'oo(rzrs) =04, fl':'oo(rzr5) =0.7.
[, (rrs) =05 > 03 = fllToo(rzrs), ,T°°(r2r5) =07 > 04 = lefoo(rzr5),

Lf % @rars), [ (rars)I O [ f1]7°°(r2r5), f]TOO(rer)] =
[0.5,0.71N[0.3,0.4] =

Definition 5.17 An interval-valued neutrosophic graph structure Giv = (I 1,
DL, ..., 1) is an Ij-tree if (supp(I), supp(ly), supp(l>), ...,supp(l;))is an I; —
tree. Alternatively, Giyisan ] j-tree, if Giyhasa subgraph induced by supp(I;) that
forms a tree.

Definition 5.18 An interval-valued neutrosophic graph structure Giv = (I 1,
b, ..., I) is an interval-valued neutrosophic I;-tree if G;, has an interval-valued
neutrosophic spanning subgraph structure H;, = (I”, I 7, L, ..., 1) such that for
all /;-edges rs not in I:Iiv,

H;, is an I‘;/-tree and

. t, (rs) < tl,, (rs), t1+(rs) < tI,, (rs), [t;(rs), t;;(rs)] N
(1 (r8), 1% (rs)] =

2. 11 (rs) <1,,, > (rs), 11 (rs) <l,/, > (rs), i} (rs) iy (rs)]ﬂ
[11, (rs),l C(rs)] =

3y 8 < ), f,j (rs) < £509), U ), S 910
Lf, ), £ (r9)] =0

In particular,

° (v?,, is an interval-valued neutrosophic 1; —t tree if t17 (rs) < t,?oo (rs), tlt (rs)
J

< t1+,,°°(rs) [t, (rs), t; (rs)] N [t ®(rs), t;'j,,oo(rs)] =

e G, is an mterval-valued neutrosophic I; —1i tree if i,:(rs) < il_,_,oo(rs), i;:(rs)
J
< 11,, 2 (rs), lig (rs) i (rs)] N[, (rs), iﬁ’o(rs)] =0
J J
° G,UIS an lnterval—valuedneutrosophic I; — ftreeif ff(rs) < f,?"o(rs), flj(rs)
J

<f ®(rs), [f, (rs), f[ (rs)] ﬂ[fl,, (uv), f Cwv)] =

Example 5.11 Consider an interval-valued neutrosophic graph structure Giy =
(I, I, I) of graph structure G* = (X, E|, E,) as shown in Fig.5.13. This interval-
valued neutrosophic graph structure is I»-tree, not [;-tree. But it is interval-valued
neutrosophic I; — ¢ tree, since it has an interval-valued neutrosophic spanning sub-
graph structure H;, = (1", I . I)) as an I{-tree, which is obtained by deleting /,-edge
rprs from G,U and shown in Fig.5.14. By direct calculations, we found that
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Fig. 513 Giy= (I, I, I)

2([0.4,0.5], [0.7,0.8], [0.5, 0.6))

Fig. 514 H;, =", 1], 1})

RS T ‘7"2'(&0.4,0‘5}[0.7,0.8],[0.570.6])

é?}l([o.s, 0.4], [0.6,0.7],[0.5,0.6)
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Fig. 5.15 Interval-valued r4([0.3,0.4],[0.2,0.3],[0.5, 0.6])
neutrosophic graph structure
Givi =W, I, )

72([0.6,0.7], [0.5,0.6], [0.5, 0.6])

71([0.4,0.5],[0.3,0.4], [0.4, 0.5])

1, (rars) = 0.3, t,,, (rars) = 0.5, 1} (rars) = 0.1, 1 (rars) = 0.2,
tI (rars) =0.1 <03 = tl/, (rors), t, (rars) =02 <05= tl,/ (rars),
[tl{ (r2rs), t,+~°°(rzrs)] [t (rars), 1} (rars)1 =[0.3,0.5] N [0.1,0.2] =

Definition 5.19 An interval-valued neutrosophic graph structure ém = (I, I11,
Iia, ..., Ii;) of graph structure GT = (X, Eyy, E2, ..., Ey;) is isomorphic to

interval-valued neutrosophic graph structure é,-vz = (I, Ioy, I, . .., I;) of graph
structure G5 = (X», Ez, E, ..., Ey), if there is a pair (f, ¢), where f : Uy — U,
is bijection and ¢ is a permutation on set {1, 2, ..., ¢t} such that:

(1), 17 (] = [, (£, 5D, T ()i 1 = [ (£ ), i (F O,
Lfi () O] = L (FD £ (F D],

[t (rs). 1 (rs)] = [r,;,( ROGGYION) r,;( (@O FEN,
li, (rs). if )] = lip,  (FO L)L (FE )],
L ). 75 )1 = Ui (PO FO). fiE (FEFO)],

forallr € Xy,rs € l;,je{1,2,...,t}

Example 5.12 Let é,vl =(I, 1, ) and é,vz = (I', I{, I}) be two interval-valued
neutrosophic graph structures of two GSs G| = (X, Ey, E») and G, = (X', E}, E})
as shown in Figs.5.15 and 5.16, respectively.

é,-vl and é,-vz are isomorphic under ( f, ¢), where f : U — U’ is bijection and
@ is permutation on set {1, 2} defined as ¢(1) = 2, ¢(2) = 1, such that:
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Fig. 5.16 Interval-valued 51([0.4,0.5],[0.3,0.4], [0.4,0.5])
neutrosophic graph structure
Gio=(I', 1, 1))

0.6])

([0.3,0.4],0.2,0.3], [0.4,0.5])

55([0.3,0.4],[0.7,0.8], [0.5,

1

54([0.3,0.4],[0.2,0.3],[0.5,0.6])

17 (i), 1] )] = [t (F (i) 17 (F i),
iy (r)sif ()] = Lip (F i) i (F )],
L7 o), 7D = L (), [ (F ],
(17, rir), 1 (rir)] = [y, (F ) f (), 1 (F ) f )],
lig, (rira), i rir)] = Ly, (F ) f @), i (F @) f )],
Lf7, i), £ a0l = Ly, (FO F @), fr7 (F @) £ o],

o)
forallr; € X, rirp e l;, j € {l,2}and i, k € {1, 2, 3, 4}.

Definition 5.20 An interval-valued neutrosophic graph structure ém = (I, Iy,
Iis, ..., I ;) of graph structure G} = (X1, Eyi, Evo, ..., Eyy) is identical to interval-
valued neutrosophic graph structure é,-uz = (I, Ip1, I, . .., Ip;) of graph structure
G = (X2, Ey1, Exy, ..., Ey)if f: Uy — U, is abijection, such that

[t,(r), £ ()] = [, (F O, 7 N T ()i (01 = T (£ ), i CF G,
Lfi (), £ 1 = L (F ), fiE (D],

(17, (rs). 1y, (rs)] = [y, (f (") f (). 177 (f () ()],
[iy, (rs), i7 (r)] = [iy, (FO) £ (), i (£ F @],
L, ), fit )] = Uf 5, (PO F 6D, f,(F ) F(sD],

forallr € Xy, rs € Xyj,j €{1,2,...,t}

Example 5.13 Let Ginn = (I, I, 1) and Gy = (I, I{, I) be two interval-valued
neutrosophic graph structures of the graph structures G = (X, Ey, E;) and G} =
(X', E|, E}), respectively, as shown in Figs.5.17 and 5.18, respectively.

Interval-valued neutrosophic graph structure G 1 is identical to G, under f:X—
X’ defined as :
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1>([0.3,0.4],[0.3,0.4], [0.4, 0.5])
76([0.5,0.6], 0.5, 0.6], [0.5, 0.6]) r3([0.6,0.7],[0.4, 0.5],[0.6,0.7]) ~

r5([0.5,0.6], [0.6,0.7],[0.6,0.7]) r4([0.7,0.8],[0.5,0.6], [0.7,0.8])
Fig. 5.17 Interval-valued neutrosophic graph structure Givl

53([0.7,0.8],[0.5,0.6],[0.7,0.8])  s6([0.5,0.6], [0.6,0.7], [0.6,0.7))

57([0.6,0.7],[0.6,0.7], [0.6, 0.7))

54([0.6,0.7],[0.4,0.5], [0.6, 0.7]) ss([0.5,0.6], 0.5, 0.6], [0.5,0.6])

Fig. 5.18 Interval-valued neutrosophic graph structure Giv

f@r) =82, f(r) =51, f(r3) = 54, f(ra) = 53, f(rs) =55, f(r6) = 58, f(r7) = 57,

f(rg) = s6. Moreover,
[t (i), 1 ()] = [t (F i) 1 (F ri))],

lif (), if )] = [iy (f (), i (fF )],
Ly i)y [l = U (F))s [ (F i,
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[t (rir). 1 (riro)] = [t (£ ) £ 0 1 () £ )],
li7, (rir), i, (i) = Lip (F ) £ ), 77 (£ ) ()],
Ly (rir). £ (riro)] = [f,; () ), f,; OGN

forallr; € X, riry € Ej, j € {1,2},i.k € {1,2,...,8}.

5.3 ¢@-Complement of Interval-Valued Neutrosophic Graph
Structure

Definition 5.21 Let éiv = (,1,I,...,1,) be an interval-valued neutrosophic
graph structure and ¢ be a permutation on {/y, I, ..., I;} on the set {1,2,...,¢},
thatis, ¢(I;) = I; if and only if ¢(j) = forall j. If rs € I; and

[tl} (rs), t;/; )] =1ty r) At (s) — \/ t(;(m(rs),
10 A 6) = V1 (o)L Ty (rs), i ()] =
iy (r) ANij(s) — ;/} ’w(z)(”) i ) A l;r(s) \/ iw(ll)(rs)],

J #j

[ rs), S 0rs)] =
L7 YA ST = N Loy ), [T A 7 6) =\ [, ],
I#j I#]j

j=12,...,t, thenrs € I?, where u is selected, such that

o 1(r5) = 1 (r9). 15) = 15r9). U (7). 1. (r)] V[ 17 (1) 15 (5)] =

L] ll(,;(VS) = llw(rs) llw(rs) = qu;(VS) [lw(rs) llw(VS)]ﬂ[llw(l’S) l[(,;(}’S)]—

i fI(P(rS) = fl‘ﬂ(rs) f[‘ﬁ(rs) = flw(rs) f[‘/)(rs) f[‘ﬂ(rs)] N [ f[‘ﬂ(rs) fl‘ﬂ(rs)] -
Y

for all j. Then interval-valued neutrosophic graph structure (1, 1Y, Iy, ..., I7) is

said to be ¢-complement of interval-valued neutrosophic graph structure Gy and
denoted by G

Example 5.14 Let I = {(r1,[0.4,0.5],[0.4,0.5],[0.7,0.8]), (r2, [0.6,0.7], [0.6,
0.71, [0.4, 0.5]), (r3, [0.8,0.9],[0.5, 0.6], [0.3,0.4])}, I, = {(r1r3, [0.4,0.5],[0.4,
0.51,10.3,0.4D)}, I, = {(rprs3,[0.6,0.7],[0.4,0.5],[0.3,0.4D}, I3 = {(rirz, [0.4,
0.5],[0.3,0.4],[0.4,0.5])} be interval-valued neutrosophic subsets of
U ={r1,r,r}, Ey={rr}, E;={rr}, Ez = {rir}, respectively. Obviously,
éiv = (I, I, I, I3) is an interval-valued neutrosophic graph structure of GS G*
= (X, Ey, E,, E3) as shown in Fig.5.19.



232 5 Interval-Valued Neutrosophic Graph Structures

Fig. 5.19 é,—v = r2([0.6,0.7], (0.6, 0.7], [0.4, 0.5]) r3([0.8,0.9], [0.5, 0.6], [0.3, 0.4])
4, I, b, I3) 15([0.6,0.7], (0.4, 0.5], [0.3, 0.4])

71([0.4,0.5], [0.4,0.5], [0.7, 0.8])

Fig.5.20 G;, = r2([0.6,0.7], [0.6,0.7], [0.4, 0.5])

a1y, 13.19) -
% 5
S =]
= )
IS =
) N <)
o ) =]
~ S n
s & =3
5 X o =
= &g 2 S
) o0
R g
c I£([0.4,0.5],[0.4,0.5],[0.3,0.4]) £

Simple calculations of edges rirs, rars, riry € Iy, I, I3, respectively, show that
riry € I ,rars € IY ,riry € 1).S0,GY =(1, If, 1}, 1) is p-complement of interval-
valued neutrosophic graph structure G;, as shown in Fig.5.20.

Proposition 5.1 @-complement of an interval-valued neutrosophic graph structure
Giw=U1,0,....1)isa strong interval-valued neutrosophic graph structure.
Moreover, if ¢(j) = u, where j,u € {1,2,...,t}, then all I,-edges in interval-
valued neutrosophic graph structure (I, I, I, ..., I;) become If—edges in (1,17,
L, ... I).

Proof By definition of ¢-complement,

[t rs)e 051 = 1ty () A7) =\ 15, ). 17 ) At ) =\ 17 )l (5.1)
/ / I#]j I#j

ligps). i, =Tlif O i) =\ i ). if O nif )=\ il el (5.2)
J i I#j I#j

Uy rs)s fael =17 O A f &) =\ L), [T A FF© =\ g1, (5.3)
! ! I#£] I#£]
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for j € {1, 2,...,t}. For expression of truth-membership value:
As t/(rynt; (s) >0, t; (r) At} (s) > 0 and \/t o (rs) =0, \/t ap(rs) = 0.

Since t, (rs) <t; (r) At; (s), t] (rs) <t () /\t *(s), for all I This implies
\/ touy(Ts) <t (r) Aty (s)and \/ t(p(m(rs) <t (r) At/ (s).Itshowsthatt; (r) A

t, (r) \/ touy(Ts) =0, 1 (r) \/ w(,)(rs) > 0. Hence t[}(rs) >0 and

(rs) > 0 for all j. Furthermore, tﬂ’ (rs) andt (rs) obtain maximum value when

\/ tuy(rs) and \/ tw(,)(rs) are zero. Obv1ous1y, when ¢(I;) =1, and rs is an

1 edge then \/ Ty 1)(rs) and \/ t 11)(rs) acquire zero value. Hence

[t;ip(rs), t;%(rs)] =0, Aty 6), tf ) ALF®) for (rs) € Ly, o) =1,.  (5.4)
For expression of indeterminacy-membership value:
As if (r)Aif(s) =0, i (r)Aif(s) >0 and \/ iy (rs) =0, \/ iqf(,l)(rs) > 0.
I#] I#j

Since i;(rs) <i;(r) NI (s), i}t(rs) < i;”(r) A i;“(s), for all I;. This implies
V iy (rs) <ip (r) Ady(s)and \/ i;r(ll)(rs) <if(r) Aij(s).Itshowsthati; (r) A
I#] I#]

iy -V i (rs) =0, ifr—\V i;'(ll)(rs) >0. Hence i,(rs)>0 and
1% 1% J

i;;(rs) > 0, for all j. Furthermore, i,}(rs) and i;;(rs) achieve maximum value
j j j

when z¥‘ iy (rs) and l>s/' i(:(m(rs) are zero. Obviously, when ¢(I;) = I, and rs
j j
is an I,-edge then \/ i (rs) and \ i;(m(rs) get zero value. Hence
I#] 1#]
li g (rs), iﬁ,(rs)] =[if Ay 6), if ) AT ©) for (rs) € Ly, o) =1,.  (5.5)
J J
For expression of falsity-membership value:

AS SOV ST 20 O A6 2 0ad V) (r9) 20,V £, 2
J J

0.Since f; (rs) < f; (r) A ff(s),f,jf(rs) < f;7(r) A £ (s),forall I;. This implies
l}ﬁ/ Foiunrs) = fr () A fi(s) and 1\/ f(;zll)(rs) < f;7(r) A £ (s). Tt shows that
i #j

LA fro) = l>/_ Foup(rs) =0, ff(r) — ;/‘ foiup(rs) = 0.Hence f,(rs) > 0
J J /

and 14; (rs) > 0, for all j. Furthermore, f 10 (rs) and ;5, (rs) obtain maximum value
j j j

when \/ fouy (rs) and \V ;I,)(rs) are zero. Obviously, when ¢(I;) = I, and rs is
I#] I#]

an I,-edge then \/ fq)—( () and \/ f(;; 1n(Ts) acquire zero value. Hence
1#] 1#]

L7 Grs)e oG =L O A SO [ O A fFOL for (5) € I o)) = I (5.6)
J J
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71([0.8,0.9], (0.4, 0.5], [0.5,0.6])

Fig. 5.21 Totally strong self-complementary interval-valued neutrosophic graph structure

From expressions (4), (5) and (6), it is clear that

t7 (rs) = min{t~(r), 1~ (d)}, i} (rs) = min{i~(r), i~ ()},
fi (rs) = min{f~ (=), f~ ()}, t+(rS) =min{r"(r), 17 (s)},
+(rS) = min{i*(r), i (s)}, f+(rS) = min{ f*(r), fT(s)},

Hence G, is a strong interval — valuedneutrosophicgraphstructure and all
I,,-edges in interval-valued neutrosophic graph structure (Z, I, I, ..., I;) become
[f-edgesin (1, 1}, I, ..., I).

Definition 5.22 Let éiu =, 1, I,...,I;) be an interval-valued neutrosophic
graph structure and ¢ be a permutation on {1, 2, ..., t}. Then

(i) Gy is self-complementary interval-valued neutrosophic graph structure if Giv
is isomorphic to G¥°.

(ii) Gw is strong self-complementary interval-valued neutrosophic graph structure
if G, is identical to GW

Definition 5.23 Let é,-u = (I, 11, I,...,1I;) be an interval-valued neutrosophic
graph structure. Then

1 Gw is totally self- complementary interval-valued neutrosophic graph structure
if Gy is isomorphic to G?, for all permutations ¢ on {1, 2, ..., t}.

(i) Gy is totally strong self—complementary interval-valued neutrosophlc graph
structure if G,v is identical to G , for all permutations ¢ on {1, 2, ..., t}.
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Example 5.15 An interval-valued neutrosophic graph structure éiv =, 1, I, L)
shown in Fig.5.21 is identical to ¢—complement for all permutations ¢ on set
{1, 2, 3}. Hence it is totally strong self-complementary interval-valued neutrosophic
graph structure.

Theorem 5.1 An interval-valued neutrosophic graph structure is totally self-
complementary if and only if it is a strong interval-valued neutrosophic graph
structure.

Proof Consider a strong interval-valued neutrosophic graph structure G,y and
permutation ¢ on {1,2, ..., t}. By Proposition5.1, ¢-complement of interval-valued

neutrosophic graph structure G;, = (I, I}, I», ..., I;) is a strong interval-valued
neutrosophic graph structure. Moreover, if o ) = Jj, where j,ue{l,2,..., 1},
then all 7,-edges in interval-valued neutrosophic graph structure (I, I, I, ..., I;)
become I;”-edges in(1,17,17, ..., 1), this leads

tl_u(rs) =t (At (s) = t,_;,)(rs), i,_u(rs) =i, (N ANij(s) = il_f(rs),
Frrs) = [T A f7 () = fro(rs) 5 (rs) = i (1) At (s) = £(rs),

iF(rs) = if (1) A i (5) :i}(riv),f,j(rs) = £ ) A ) = é;(rs).

Therefore, under f : U — U (identity mapping), Gy and (V;;pv are isomorphic such

that:
()=t (fr), iy () =iy (f(r), fi (1) = f7 (f(r),
1) =1 (fr),if () =i (f(r), fi(r) = fi7(f(r).

1, (rs) = f,}(f(f’)f(s)) = t[j‘?(rs)v 1 (rs) = tf]w(f(r)f(s)) = tf;;(rs),
i,(rs) =i (fOVf ) =i (rs), iy (rs) =il (f() [ () = i (rs),
Fr@9) = [pF@FE) = f09), [H05) = FESOF6) = £105),

forallrs € Iu,forgo’l(u) =j;ju=12,...,t.

This holds for every permutation ¢ on {1,2,...,t}. Hence G iv 18 totall}i self-
complementary interval-valued neutrosophic graph structure. Conversely, let G;, be
isomorphic to G;"U for each permutation ¢ on {1, 2, ..., t}. Moreover, according to

the definitions of isomorphism of interval-valued neutrosophic graph structures and
@-complement of an interval-valued neutrosophic graph structure

1, (rs) =1,(f(r) f(8)) =1, (f) At (f()) =1, (r) Aty (5),
1 (rs) = t,*%(f(V)f(S)) =1, (fON A (F() =1, () At (s),

i) =i (fOfE)) =i (FON NI (f($)) =i () Aip(s),
i (rs) = if;_o(f(r)f(S)) =i (fON NI () =i () Aif (s),
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fIZ(I’S) = f[E(f(r)f(S)) = f]i(f(r)) N f[i(f(s)) = f[i(r) N f[i(s),
firs) = ,ju?(f(r)f(s)) =T (FO) A6 = f0) A fi (),

forallrsel,,u=1,2,...,t. Hence é,-v is a strong interval-valued neutrosophic
graph structure.

Remark 5.1 Every self-complementary interval-valued neutrosophic graph structure
is totally self-complementary.

Theorem 5.2 If G* = (X, Ey, E,, ..., E;) is a totally strong self-complementary
graph structure and I = ([t ,t] ), [i; ,i; 1. Lfy, f;] is an interval-valued neutro-
sophic subset of X, where t; i, , f,, tf, i;‘, f1+ are constant functions, then every
strong interval-valued neutrosophic graph structure of G* with interval-valued neu-
trosophic vertex set I is a totally strong self-complementary interval-valued neutro-
sophic graph structure.

Proof Leta,a’ €[0,1],b,b' € [0, 1] and ¢, ¢’ € [0, 1] be six constants and

ty(r)y=a,i;(r)=b, fy (N =c,tf(r)=d,if(r)=V, ffr)=C,
forallr € X.

Since G* is a totally strong self-complementary GS, so for every permutation ¢!

on {1, 2,...,t} there is a bijection f : X — U, such that for every I, —edge (rs),
(f(n)f(s)) [an /;-edge in G* ] is an I,-edge in Gs‘pfl“. Thus for every I,,-edge (rs),
v v ol
(f(r)f(s)) [an I;-edge in G;, ] is an I/-edge in Givw .
Moreover, G, is a strong interval-valued neutrosophic graph structure, so

)y =a=t1,(fr), iy(r)=b=i,(fr), f; (N =c= [ (f(r),
gy =d=17(f0r), if () =b =i (f), fi7)=c = f(f0r)),

forall r € X, and

1, (rs) =t () ANt (s) =t (f(r) At (f(s) = t,}(f(r)f(S)),
ip (rs) =iy (r)ynip(s) =i, (f(r) ANip(f(s)) = i,_f(f(r)f(S)),
fr,rs) = fr )y Nif(s) = fr (fD A [ (f(s) = f,}(f(r)f(S)),
t(rs) =t/ () A1 () =17 (fF ) At (f(9)) =1, (f () f(5)),
if(rs) =i (D) Nif () =i (fFO) Aif(f(9) = i,’;(f(r)f(S)),
fies) = fifey nif () = [ A ) = ,j_;(f(r)f(S)),

forallrsel;, j=1,2,...,¢t.
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This shows G, isa strong self-complementary interval-valued neutrosophic graph
structure. This satisfies for each permutation ¢ and ¢! on set {1, 2, ..., ¢}, thus é,-v
is a totally strong self-complementary interval-valued neutrosophic graph structure.
This completes the proof.

Remark 5.2 Converse of Theorem5.2 may not true; for example, a interval-
valued neutrosophic graph structure depicted in Fig.5.21 is totally strong self-
complementary interval-valued neutrosophic graph structure, and it is also strong
interval-valued neutrosophic graph structure with a totally strong self-complementary
underlying graph structure, but ¢, , i, f; I_,t;“, i ;’, f;" are not the constant functions.



Chapter 6 ®)
Graphs Under Neutrosophic Hybrid st
Models

Rough sets and single-valued neutrosophic sets are mathematical models to deal with
incomplete and vague information. These two models can be combined into two
frameworks for modelling and processing incomplete information in information
systems. Thus, single-valued neutrosophic rough set model and rough single-valued
neutrosophic set model are hybrid models, which give more precision, flexibility
and compatibility to the system as compared to the classic and fuzzy models. In this
chapter, we present rough single-valued neutrosophic digraphs (rough neutrosophic
digraphs, for short) and neutrosophic rough digraphs and describe methods of their
construction. We consider the concept of self-complementary rough neutrosophic
digraphs. We discuss regular neutrosophic rough digraphs. We also give a compara-
tive analysis of rough neutrosophic digraphs and neutrosophic rough digraphs. This
chapter is due to [16, 123, 162].

6.1 Introduction

Pawlak [142] introduced the concept of rough set. He was a Polish mathematician
(citizen of Poland) and computer scientist. Rough means approximate or inexact.
Rough set theory expresses vagueness in terms of a boundary region of a set not
in terms of membership function as in fuzzy set. The idea of rough set theory is
a generalization of classical set theory to study the intelligence systems containing
inexact, uncertain or incomplete information. It is an effective drive for bestowal
with uncertain or incomplete information. Rough set theory is a novel mathematical
approach to imprecise knowledge. Rough set theory expresses vagueness by means
of a boundary region of a set. The emptiness of boundary region of a set shows that
this is a crisp set, and nonemptiness shows that this is a rough set. Nonemptiness
of boundary region also describes the deficiency of our knowledge about a set. A
subset of a universe in rough set theory is expressed by two approximations which
are known as lower and upper approximations. Equivalence classes are the basic
building blocks in rough set theory, for upper and lower approximations.

© Springer Nature Singapore Pte Ltd. 2018 239
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/ The set of objects X

/ Upper approximation of Y’
; 7, ////%/ K / Set Y’

4///// \\> Lower approximation of Y’

Fig. 6.1 Diagram of a rough set

Neutrosophic set and rough set are two different theories to deal with uncertain,
imprecise and incomplete information. Due to the limitation of human knowledge to
understand the complex problems, it is very difficult to apply only a single type of
uncertainty method to deal with such problems. Therefore, it is necessary to develop
hybrid models by incorporating the advantages of many other different mathematical
models dealing the uncertainty. Thus, by combining these two mathematical tools,
Broumi et al. [61] introduced the concept of rough neutrosophic sets. Yang et al.
[177] proposed single-valued neutrosophic rough sets by combining single-valued
neutrosophic sets and rough sets, and established an algorithm for decision-making
based on single-valued neutrosophic rough sets on two universes.

Definition 6.1 Let X be a nonempty finite universe and R an equivalence relation
on X. A pair (X, R) is called a Pawlak approximation space. Let Y be a subset of
X, then the lower and upper approximations of Y are defined as follows:

RY)={xe X:[x]g C Y},
RY)={x e X:[x]gNY # ¢},

where
[x]Ig ={y € X:(x,y) € R}

denotes equivalence class of R containing x. R and R are called the lower and upper
approximations operators, respectively. The pair (R(Y), R(Y)) is called a Pawlak
rough set.

The graphical representation of rough set is shown in Fig. 6.1

Example 6.1 Let X = {1,2,3,4,5,6}beauniverse and R = {{1, 5}, {2, 3}, {4, 6}}
an equivalence relation on X. Let Y = {2, 3, 5}. Then
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(g ={1,5}=[Blr LY but [1]gNY # B #[5]gNY
21k ={2,3} =Bl SYbut BlgNY #F #[2]r NY
[4g ={4,6)=[6lg £ Y but[4]gNY =0

Hence R(Y) = {2, 3} and

R(Y)={1,2,3,5}

bd(X) =R(Y) —R(Y) ={1,5} # 0

Thus, (R(Y), ?(Y)) is a rough set w.r.t. R.

Definition 6.2 Let X be a nonempty universe and R an equivalence relation on X.
Let A be a neutrosophic set on X, defined as

A={<x,Tas(x), [4(x), Fa(x) >: x € X}.

Then lower and upper approximations of A in the approximation space (X, R)
denoted by RA and R A, respectively, are defined as follows:

RA = {< x, Trea)(x), Iray(x), Freay(x) >:y € [x]r, x € X},
RA = {< x, Ty (), Fgoa)(0), Frea)(x) >ty € [x]g, x € X},

where

Ten®) = N\ Tay), Tra® = \/ Ta(,

yelx]g yelx]g
g™ =\ L), Iga®=\/ 1@y,
YE[x]r yelx]r
Fray(®) = \/ Fa), Fra® = /\ Fa(y).
Yelx]r yelx]lg

A pair (RA, RA) is called rough neutrosophic set.

6.2 Rough Neutrosophic Digraphs

Definition 6.3 Let X be a nonempty set and R an equivalence relation on X. Let A
be a single-valued neutrosophic set on X, defined as

A={<x,Ts(x), [4(x), Fa(x) >: x € X}.

Then the lower and upper approximations of A represented by RA and R A, respec-
tively, are characterized as single-valued neutrosophic sets in X such thatVx € X,
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R(A) = {< x, Treay(x), Ircay(x), Freay(x) >1y € [x]r},
E(A) ={<ux, TK(A)(x)a IK(A)(X)» Fﬁ(A)(x) >y € [x]r},

where

Try®) = N\ Ta). Tr@ = \/ Ta().

yelxlr yelxlr
Iny@ = N\ LG, ran®=\/ L),
yelxlr yelxlr
Fray(x) = \/ Fa®). Froy@ = J\ Fa).
yelx]g yelx]r

Let E € X x X and S be an equivalence relation on E such that
((x1, x2), (y1, ¥2)) € § & (x1, y1), (x2, y2) € R.
Let B be a single-valued neutrosophic seton £ C X x X defined as
B ={<xy, Tp(xy), Ip(xy), Fp(xy) >: xy € X x X},
such that

Tp(xy) < min{Tra(x), Tra(y)},
Ig(xy) < min{lga(x), Ira(y)},
Fp(xy) < max{Fg,(x), Fga(»)}, Vx,y € X.

Then the lower and upper approximations of B represented by SB and S B are defined
as follows

SB = {<xy, Tsp(xy), Isp(xy), Fsg(xy) >: wz € [xy]s, xy € X x X},
SB = {< xy, Tsp(xy), lsp(xy), Fgp(xy) >: wz € [xyls, xy € X x X},

where,

TswGy) =\ Tswz), Tsp@y)= \/ Tswa),

wz€elxyls wz€lxyls
L) =\ Iswz), LGy = \/ Izw2),

wzelxyls wzelxyls
Fsipy(xy) = \/ Fp(wz), Fsp(xy) = /\ Fp(wz).

wzelxyls wzelxyls

A pair SB = (SB, SB) is called a rough single-valued neutrosophic relation.
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Definition 6.4 A rough single-valued neutrosophic digraph on a nonempty set X is
a four-ordered tuple G = (R, RA, S, SB) such that

(a) R is an equivalence relation on X.

(b) S isan equivalence relationon £ C X x X.

(c) RA = (RA, RA) is a rough single-valued neutrosophic set on X.

(d SB=(SB, SB)isa rough single-valued neutrosophic relation on X.

(e) (RA, SB)isarough single-valued neutrosophic digraph where G = (RA, SB)
and G = (RA, S B) are lower and upper approximate single-valued neutrosophic
digraphs of G such that

Tsp(x,y) < min{Tra(x), Tra(y)},
Isp(x,y) < min{lga(x), Ira(¥)},
Fsp(x,y) < max{Fra(x), Fra(y)},

and

T5p(x, y) < min{Tg, (x), Tg, (M)},
I5p(x, y) < min{lz,(x), I, (»)},
Fsp(x,y) < max{Fg,(x), Fg,(»)}, Yx,y € X.

Throughout this chapter, we will use a rough neutrosophic set, rough neutrosophic
relation and rough neutrosophic digraph, for short.

Example 6.2 LetX = {a, b, c, d}beasetand R an equivalence relation on X defined
as:

0
0
1
1

S O ==
O O ==
_—— O O

Let A1={a,0.2,0.4,0.9), (b,0.1,0.3,0.5), (c,0.2,0.3,0.6), (d,0.5,0.6, 0.7)}
be a neutrosophic set on X. The lower and upper approximations of A are given by

RA; ={(a,0.1,0.3,0.9), (5,0.1,0.3,0.9), (¢, 0.2,0.3,0.7), (d,0.2,0.3,0.7)},
RA| ={(a,0.2,0.4,0.5), (b,0.2,0.4,0.5), (c, 0.5,0.6,0.6), (d, 0.5, 0.6, 0.6)}.

Let E = {(a, b), (b, ¢), (b,d), (c,d)} € X x X and S be an equivalence relation on
E defined as:

1000
0110
S=10110
000 1
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a(0.1,0.3,0.9) b(0.1,0.3,0.9) a(0.2,0.4,0.5) b(0.2,0.4, 0.5)
i (0.1,0.2,0.4) (0.1,0.2,0.4)
) ) =
oS S RS 2
i o A 3
» S N S
) = .
N —
S S
(0.2,0.1,0.5) (0.2,0.1,0.5)
-
d(0.2,0.3,0.7) ¢(0.2,0.3,0.7) d(0.5,0.6,0.6) ¢(0.5,0.6,0.6)
Ql = (EAlvﬁBl) él = (ﬁAl,gBl)

Fig. 6.2 Rough neutrosophic digraph G| = (G, G1)

Let B; = {((a, b),0.1,0.2,0.4), ((b,c),0.1,0.3,0.6), ((b,d),(l.l,O.Z, 0.6),
((¢,d),0.2,0.1,0.5)} be a neutrosoph_ic set on E and SB; = (§B;, SBy) a rough
neutrosophic relation, where S B and S B; are given as:

SBy = {((a, b), 0.1,0.2,0.4), (b, ¢), 0.1,0.2, 0.6), (b, d), 0.1,0.2, 0.6), ((c, d), 0.2, 0.1,0.5)},
SBy = {((a, b), 0.1,0.2,0.4), (b, ¢), 0.1,0.3, 0.6), (b, d), 0.1,0.3, 0.6), (¢, d), 0.2, 0.1, 0.5)}.

Thus, G| = (RA,, SBy) and G| = (RA,, SB)) are neutrosophic digraphs as shown
in Fig. 6.2.

Example 6.3 Let X = {a, b, c} be a crisp set and R an equivalence relation on X
defined as:

1 00
R=]1011
011

Let A, = {(a,0.1,0.7, 0.8),@, 0.9,0.6,0.5), (¢,0.2,0.4,0.3)} be a neutrosoghic
set on X and RA,; = (RA;, RA,) a rough neutrosophic set, where RA, and RA,
are given as:

RA; = {(a,0.1,0.7,0.8), (b, 0.2, 0.4,0.5), (c, 0.2, 0.4, 0.5)},
RA; = {(a,0.1,0.7,0.8), (b, 0.9, 0.6, 0.3), (c, 0.9, 0.6, 0.3)}.

Let E = {(a, b), (b,c)} € X x X and S be an equivalence relation on E defined as:

S=[(1) ﬂ

Let B, = {((a, b),0.1,0.4,0.7), ((b, ¢), 0.2, 0.3,0.2)} be a neutrosophic set on E,
then by definition we have
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b(0.2,0.4,0.5) 5(0.9,0.6,0.3)

a(0.1,0.7,0.8) ¢(0.2,0.4,0.5) a(0.1,0.7,0.8) ¢(0.9,0.6,0.3)

Qz = (EA27§BQ) 62 = (RAQ,EBQ)

Fig. 6.3 Rough neutrosophic digraph G = (G,, G2)

SBy, ={((a,b),0.1,0.4,0.7), ((b, ¢),0.2,0.3,0.2)},
SBy = {((a, b),0.1,0.4,0.7), (b, ¢),0.2,0.3,0.2)}.

Thus, G, = (RA>, SB,) and G, = (RA,, SB;) are neutrosophic digraphs as shown
in Fig. 6.3.

Definition 6.5 Let G| = (G, G,) and G, = (G,, G,) be two rough neutrosophic
digraphs on a set X. Then the lexicographic product of G| and G, is a rough
neutrosophic digraph G =G, © G2 = (G, © G,, 51 @62), where G, © G, =
(RAi ® RA,, 5B, © §B>) and G; ©® G, = (RA| © RA>, SB; ©® SB») are neutro-
sophic digraphs, respectively, such that

(1)  Tra,0RA, (X1, x2) = min{TRra, (x1), Tra, (x2)},
IRA ORA, (X1, X2) = min{lga, (x1), Tra, (x2)},
FRrAj0RA, (X1, X2) = max{Fga, (x1), Tra, (x2)}, V (x1,x2) € RA| X RA2,
TsB,0sB, ((x, x2), (x, y2)) = min{Tra, (x), Tsp, (x2, y2)},
IsB,0sB, ((x, x2), (x, y2)) = min{/ga, (x), Isp, (x2, ¥2)},
Fsp 08B, ((x, x2), (x, y2)) = max{Fga, (x), Fsp, (x2,y2)}, Vx € RAy, (x2, y2) € SB>,
Tsp,osB, ((x1,x2), (¥1, ¥2)) = min{Tsp, (x1, 1), Tsp, (x2, y2)},
IsB,0sB, ((x1, x2), (1, y2)) = min{/sp, (x1, y1), IsB, (x2, y2)},
Fsp 08B, ((x1, x2), (y1, y2)) = max{Fsp, (x1, y1), Fsp,(x2,y2)}, ¥ (x1,¥1) € $By, (x2, y2) € SB>.
() Tga,0rA, (01, x2) = min{Tx, (x1), Ty, (x2)},
Ij A, 0RA, (X1, X2) = min{lg, (x1), Tgy, (x2)},
Fra ora, %1, X2) = max{Fg, (x1), Ty, (12)}, V (x1,x2) € RA| X RA,,
Tgp, o5p, (X, x2), (x, y2)) = min{Tg, (x), Tgp, (x2, y2)},
Isp 055, (X, X2), (x, y2)) = min{lg,, (x), I5p, (x2, y2)},
Fsp o5, (X, x2), (x, y2)) = max{Fg,, (X), Fgp, (x2, y2)}, Vx € RAL, (x2, y2) € SBa,
Tsp, 035, ((x1, x2), (y1, ¥2)) = min{Tgp (x1, y1), Tgp, (x2, y2)},
Isp 058, (X1, X2), (¥1, ¥2)) = min{l5p (x1, 1), I55, (x2, y2)},

Fsp, 058, (X1, %2), (1, y2)) = max{Fsp, (x1, 1), Fsp, (x2. y2)}, ¥ (31, 1) € SB1. (x2, 2) € SBy.
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((a,a),0.1,0.3,0.9) ((a,b),0.1,0.3,0.9) ((a,c),0.1,0.3,0.9)
(0.1,0.3,0.9) (0.1,0.3,0.9)

((b,a),0.1,0.3,0.9) ((b,¢),0.1,0.3,0.9)

(¢, a),0.1,0.3,0.8)

((d,a),0.1,0.3,0.8) ((d,b),0.2,0.3,0.7)

(0.1,0.3,0.7) (0.1,0.3,0.7)

((d, ¢),0.2,0.3,0.7)

Fig.64 G, ©G, = (RA| ® RA», SB1 © SBy)

Example 6.4 Consider the two rough neutrosophic digraphs G; and G, as shown in
Figs.6.2 and 6.3. The lexicographic product of Gy and G2 is G = G| © G, = (G, ©
G,,G10G,), where G, ©G, = (RA; O RAy,SBi©SB,) and G, O G, =
(RA|; © RA,, SB; © SB;) are neutrosophic digraphs as shown in Figs. 6.4 and 6.5.

Definition 6.6 The strong product of two rough neutrosophic digraphs G; and
G, is a rough neutrosophic digraph G = G| X G, = (G, X G,, G, X G,), where
G, XG,=(RA|XRA,,SB X SB;)and G| X G, = (RA; X RA,, SB; X SBy)
are neutrosophic digraphs, respectively, such that

1) Tga,®Rra, x, y) = min{Tga, (x), Tra, (M)},
IEAHXEAZ (x,y) = min{]EA] (x), IgAz(y)}’
Fra,RRa, (%, y) = max{Fra, (x), Fra,(»)}, V (x,y) € RA| x RA,
Tsp,Rsp, (X, x2), (x, y2)) = min{Tra, (x), Tsp, (x2, y2)},
Isp 5B, (X, x2), (x, y2)) = min{lga, (x), Isp, (x2, y2)},
Fgp Rsp, (X, x2), (x, y2)) = max{Fgra, (x), Fsp, (x2,y2)}, Vx € RAj, (x2,y2) € SBs,
Tsp,Rsp, (51, ¥). (y1, ¥)) = min{Tsp, (x1, y1), Tra, (N}
Isp,®sp, (1, ¥), (1, ¥)) = min{Igp, (x1, y1), Ira, ()},
Fsp Rsp, (X1, ¥), (y1, ¥)) = max{Fgp, (x1, y1), Fra, ()}, ¥V (x1,y1) € SBi,y € RA3,
Tsp,Rsp, (X1, x2), (y1, y2)) = min{Tsp, (x1, y1), Tsp, (x2, y2)},
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((a,a),0.1,0.4,0.8) ((a,0),0.2,0.4,0.5) ((a,¢),0.2,0.4,0.5)
(0.1,0.4,0.7) (0.2,0.3,0.5)

((br a)’0'110'41 0'8) -((b7 C),0.270.470.5)

(0.1,0.4,0.7)

((d,a),0.1,0.6,0.8) ((d, b),0.5, 0.6, 0.6) ((d,¢),0.5,0.6,0.6)

(0.1,0.4,0.7) (0.2,0.3,0.6)

Fig. 6.5 61 @Ez = (EA] QFAQ,SB] OEBz)

Isp,Rsp, (X1, x2), (y1, y2)) = min{lgp, (x1, y1), IsB, (x2, y2)},

Fsp Rsp, (X1, x2), (y1, y2)) = max{Fgg, (x1, y1), Fsp, (x2, y2)}, V (x1,y1) € SBy, (x2, y2) € SBs.

(2)  Tgp®EA, & ¥) =min{Tg, (x), Tz, M}
Ig A, ®RA, %, Y) = min{lg, (x), Iz, (1)),
Fra &R, %0 ) = max{Fg, (), Fry, (D) ¥ (x,5) € RA1 X RAy,
Tsp,®55, (X, x2), (x, y2)) = min{Tg,, (x), Tgp, (x2, y2)},
Isp, msp, (%, x2), (x, y2)) = min{lz, (x), I5p, (x2, ¥2)},
Fgp )38, (X, %2), (¥, y2)) = max{Fg, (x), Fgp, (x2,y2)}, Vx € RAy, (x2, y2) € SBa,
Tsp,®58, (X1, ), (1, ) = min{Tsp (x1, y1), Tpa, M}
Isp, =55, (X1, ), (1, ¥)) = min{l5p (x1, y1), Iga, M},
Fsp s, (X1, ), (71, ¥) = max{Fgp (x1, y1), Fra, M} ¥ (1, y1) € SBy.y € RAs,
Tsp,®sp, (X1, x2), (1, y2)) = min{Tgp (x1, y1), Tgp, (x2, y2)},
Isp )58, (X1, X2), (y1, y2)) = min{lgp (x1, y1), I5p, (x2, y2)},

Fsp, 858, (X1, %2), (1, y2)) = max{Fgp (x1, 1), Fgp, (¥2,y2)}, ¥ (x1, 1) € SBy, (x2, y2) € SBy.

Example 6.5 Consider the two rough neutrosophic digraphs G, and G, as shown
in Figs.6.2 and 6.3. The strong product of G| and G, is G = G| X G, = (G, X
G,,G X G,), where G,XG,= (RA; K RA,, SBiXSB;) and G, X G, =
(RA; X RA,, SB; X SB,) are neutrosophic digraphs as shown in Figs. 6.6 and 6.7.
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((a,a),0.1,0.3,0.9) ((a,b),0.1,0.3,0.9) ((a,¢),0.1,0.3,0.9)
(0.1,0.3,0.9) (0.1,0.3,0.9) -
— I [=)
2 2 Z
A 1 0
B @, R 2, 2
~ 20 ~ 30 o
S g = Y &
((b,a),l0.1,0.3,0.9) (b,b),0.1,0.3,0.9) ((b,¢),0.1,0.3,0.9)
(0.1,0.3,0.9) (0.1,0.3,0.9)
A 2 2
) 2 =] =] —
3 e 0 o ©, of e
/| 32 = Z2, S P
=k oy 2 R
S < a
((c| a),0.%,0.3,0.8) (¢,b),0)2,0.3,0. ((¢,¢)]0.2,0.3,0.7)
3,0.7)
2 2, ~
e ’ 0.] o
T 50 »
g 2 o
— =
S o
N &
(0.1,0.3,0.7) (0.1,0.3,0.7)
) d,c),0.2,0.3,0.7
((d,a),0.1,0.3,0.8) ((d, b),0.2,0.3,0.7) (@) )
Fig. 6.6 Rough neutrosophic digraph G| X G,
((a,a),0.1,0.4,0.8) ((a,b),0.2,0.4,0.5) ((a,¢),0.2,0.4,0.5)
(0.1,0.4,0.7) (0.2,0.3,0.5)
—_ —~ >
E s, 2 z
o '9;0 = -O
o ?) Ji\) N
- o S
=) & =
((b,a),9.1,0.4,0.8) (b,1),0.2,0.4,0.5) ((b,¢),0.2,0.4,0.5)
(0.1,0.4,0.7) (0-2,0.3,0.5)
—~ © 3 ~
ad Lo £ © o Cl
<. "3:0 o j, 0 = —
a Q) & Lo o ©
° z ‘%) q\2
= > = =
S e g |&
({¢,a),4.1,0.6,0.8) (0.1,0.4,0.7) (¢,),0.5,0.6,0%)
((c,¢)},0.5,0.6,0.6)
0 —~
« <. 2o o 5 20 o
<. = 2 | = 4 o
— o = o —
S = 3 @ =}
S5 ] o &
&
(0.1,0.4,0.7) \ (0.2,0.3,0.6)
((d,a),0.1,0.6,0.8) ((d,b),0.5,0.6,0.6) ((d,¢),0.5,0.6,0.6)

Fig. 6.7 Rough neutrosophic digraph G| X G»
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Definition 6.7 Let G| = (G, G,) and G, = (G,, G,) be two rough neutrosophic
digraphs on a set X. Then the rejection of G| and G, is a rough neutrosophic digraph
G = Gi|G2 = (G,1Gy, G1|G), where  G,|G, = (RA||RA3, SBi|SB,) and
G1/G, = (RA||RA,, SB;|SB;) are neutrosophic digraphs, respectively, such that

(M) TRA||RA, (X1, %2) = min{TRA, (x1), TRA, (x2)},
IRA||RAy (x1. x2) = min{IR A, (x1), TRA, (x2)},
FRA|IRAy (X1, x2) = max{FRa, (x1), TRa, (x2)}, V (x1, x2) € RA| X RA),
TsB)|5By ((x, x2), (x,y2)) = min{TrA, (x), TRA, (x2), TRA, (32)}.
Isp 5By ((x,x2). (x, y2)) = min{Ig A, (x), IRA, (x2). IR A, (2)},
FsBy15By (%, x2), (x, y2)) = max{Fra, (x), FRa, (x2), FRA, (y2)},V x € RA{, (x2,2) ¢ SB2,
Tspy|5By ((x1,2). (y1,2)) = min{TrA, (x1), Tra| (V1): TRA, (2D}
IsB 5B,y ((x1,2), (y1,2)) = min{Iga, (x1), IrA; (V1): [RA, (D)},
FsBy1sBy (X1, 2), V1, 2)) = max{Fra, (x1), FRa; (1), FRA, (@}, YV (x1,y1) & SB1, 2 € RA3,
TsB,|5By (1, %2), (¥1, y2)) = min{TRA| (¥1), TRA| (V1)s TRAy (¥2), TRA, (¥2)},
IsB|SB, ((x1,x2), (¥1, y2)) = min{iga, (x1), IRa; (Y1), TRA, (X2), IRA, (¥2)}

FsB18By (X1, x2), (¥1, y2)) = max{Fra, (x1). FRa; (1), FRAy (%2), FRA, (2)}, ¥ (x1. 1) ¢ SB1, (x2.y2) ¢ SB).

@ TrayRay*1:32) = min{TR (X1), Ty, (2)}
IRy [RAy @1-x2) = min{lg 4 (¥1), Ty, (2)),
FRa R, 10 32) = max{Fgy (1), Ty, ()}, Y (¥1,x2) € RA| x RA,
Tsp, 5, (¥ ¥2). (¥, y2)) = min{T, (1), Tgy, (x2). Ty, (v2)},
Igp, 5B, ((¥. x2), (¥, y2)) = min{lz, (0, Igy, (12), Igy, (72)),
F5p, 58, (4 x2). (x, y2)) = max{F, (x), Fgy, (x2). Fgy, (1)} Vx € RAy, (x2,y2) ¢ 5By,
T§Bl‘§32((xl 2, 01.2) = min{TﬁAl (x1). TRay (69N Tmz(z)},
I3, (5B, ((1.2). 01, ) = min{lz, (@) TRy, G0 Iz, ()
Fsp, 58, (1,2, 01,2) = max{Fp, (1), Fga, O, Fra, @) Y1, 31) ¢ SB1, 2 € RAg,
TSp, 58, (1. 2), 1, 32)) = min{Tx . (¥1), Ty (V1) Ty, (02). Ty, 02D
3B, 158, ((1,%2), (V1. 32)) = min{lgy (1) Iz O, Tg g, (02). T g, (02)),

Fgp, (5, (1. %2), (31, 32)) = max{Fgy (x1). Fry (). Fry, (52). Fra, 5201 Y (51, 31)  SB. (12, 32) ¢ SBy.

Example 6.6 Consider the two rough neutrosophic digraphs G, and G, as shown
in Figs. 6.8 and 6.9. The rejection of G and G, is G = GG, = (G,1G,, G11G>),

where G,|G, = (RA{|RA,, SB|SB,) and G|G, = (RA|RAy, SB|SB,) are
neutrosophic digraphs as shown in Figs.6.10 and 6.11.

Definition 6.8 The tensor product of two rough neutrosophic digraphs G; and G,
is arough neutrosophic digraph G = (G, x G,, G| * Gy), where G, *G, =(RA »
RA,, 8By xSB;) and G;+G, = (RA; »RA,,SB; x SB;) are neutrosophic
digraphs, respectively, such that
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Fig. 6.8 Rough neutrosophic digraph G| = (G, G1)
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Fig. 6.9 Rough neutrosophic digraph G2 = (G,, G2)
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((d, ¢),0.2,0.1,0.9)

Fig. 6.10 G||G, = (RA||RA2, SB||SB>)
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Fig. 6.11 G1|G> = (RA{|RA;, SB1|SB;)

(1) Tra;xRA, (x,y) = min{Tra, (x), Tra, ()},
IRA xR A, (x,y) = min{lga, (x), Ira, (M)},

FRA«RA, (X, y) = max{Fga,(x), FrRa,(»)}, Y (x,y) € RA| x RA;,

TrA+RA, (X1, X2), (Y1, ¥2)) = min{Tsp, (x1, y1), Tsp, (x2, y2)},
IRA\xRA, (X1, X2), (¥1, ¥2)) = min{lsp, (x1, 1), IsB, (x2, y2)},
FrAjsrA, (X1, X2), (01, y2)) = max{Fsp, (x1, y1), Fsp, (x2, y2)}, V¥ (x1,y1) € SB1, (x2,y2) € SBa.

@) Trapgra, & y) = min{Tg, (x), Tga, (N}
TgaRa, 6 Y) =min{Ig, (), Iz s, ),
FrayRa, (06 9) = max{Fry, () Fra, (), ¥ (x,3) € RA| x RAs,
TRa, R, (1, x2), (y1, ¥2)) = min{Tgp (x1, y1), Tgp, (¥2, y2)}
IR a1wRa, (1. X2), (y1, y2)) = min{lgg (x1, y1), Igp, (x2. y2)}

Fraga, (51, %2), (31, y2)) = max{Fgp, (x1, y1), F5p,(x2, y2)}, V¥ (x1,31) € §By, (x2, y2) € §By.

Example 6.7 Let X| = {a, b, c} and X, = {w, x, y, z} be two crisp sets. Let G| =
(G, 51) and G, = (G,, 52) be two rough neutrosophic digraphs on X; and
X,, respectively, where G|, = (RA;, $B;) and G, = (EAl , EBI) are neutrosophic
digraphs as shown in Fig.6.12.

G, = (RA,, SBy)and G, = (RA,, S B,) are also neutrosophic digraphs as shown
in Fig.6.13.

The tensor product of G; and G2 is G = G| » G2 = (G, * G,, G, *62), where
G, *G, = (RA; *RA,, SB; xSB,) and G| x G, = (RA| x RAy, SB| x SBy) are
neutrosophic digraphs as shown in Figs. 6.14 and 6.15, respectively.
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a(0.2,0.1,0.6) a(0.2,0.1,0.3)

(0.2,0.1,0.5) (0.2,0.1,0.5)
5(0.8, 0.6, 0.5) ¢(0.2,0.1,0.6) 5(0.8,0.6,0.5) ¢(0.9,0.3,0.4)

G, Gy
Fig. 6.12 Rough neutrosophic digraph G1 = (G, G1)

w(0.4,0.2,0.6) w(0.8,0.5,0.1)

(0.2,0.1,0.1)  (0.4,0.2,0.3) (0.3,02,0.1)  (0.4,0.2,0.3)
2(0.4,0.2,0.6) 4(0.4,0.2,0.6) 2(0.9,0.8,0.4) 2(0.8,0.5,0.1)  ¢(0.8,0.5,0.1)  2(0.9,0.8,0.4)
G, G2

Fig. 6.13 Rough neutrosophic digraph G, = (G,, G2)

((a,),0.2,0.1,0.6) ((a,),0.2,0.1,0.6) ((a,9),0.2,0.1,0.6) ((a,2),0.2,0.1,0.6)

((b,w),0.4,0.2,0.6)
(¢090°8°0°(2°q))

((¢;w),0.2,0.1,0.6) (¢, ),0.2,0.1,0.6) ((c,y),0.2,0.1,0.6) (¢, 2),0.2,0.1,0.6)

Fig. 6.14 Ql *Qz = (RA1 xRA>,SB; » SBy)
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((a,w),0.2,0.1,0.3) ((a,),0.2,0.1,0.3) ((a,9),0.2,0.1,0.3) ((a,2),0.2,0.1,0.4)

((b,w),0.8,0.5,0.5)
(60°9°0'8°0(29))

((¢c,0),0.8,0.3,0.4) ((¢,x),0.8,0.3,0.4) ((e,v),0.8,0.3,0.4) ((c, 2),0.9,0.3,0.4)
Fig. 6.15 GixGy = (EA] * RA2, SB) *EBQ)
Definition 6.9 A rough neutrosophic digraph G = (G, G) is self-complementary if
G and G’ are isomorphic, that is, G = G’ and G = G.

Example 6.8 Let X = {a, b, c} be a set and R an equivalence relation on X defined
as:

10
R=|(01
10

—_ O =

Let A = {(a, 0.2, 0.4, 0.8), (b, 0.2, 0.4, 0.8), (c, 0.4, 0.6, 0.4)} be a neutrosophic
set on X. The lower and upper approximations of A are given as
RA ={(a,0.2,0.4,0.8), (,0.2,0.4,0.8), (c,0.2,0.4, 0.8)},
RA ={(a,0.4,0.6,0.4), (b,0.2,0.4,0.8), (c, 0.4,0.6,0.4)}.

Let E ={aa,ab,ac,ba} C X x X and S be an equivalence relation on E
defined as

S = O =

0
0
0
1

O = O =
S o = O

Let B = {(aa,0.1,0.3,0.2), (ab,0.1,0.2,0.4), (ac,0.2,0.2,0.4), (ba,0.1,0.2,
0.4)} be a neutrosophic set on E and SB = (SB, SB) a rough neutrosophic rela-
tion, where SB and S B are given as

SB={(aa,0.1,0.2,0.4), (ab,0.1,0.2,0.4), (ac,0.1,0.2,0.4), (ba, 0.1,0.2, 0.4)},
SB={(aa,0.2,0.3,0.2), (ab,0.1,0.2,0.4), (ac,0.2,0.3,0.2), (ba, 0.1,0.2, 0.4)}.
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¢(0.2,0.4,0.8) ¢(0.4,0.6,0.4)

o
» »
o 0.2,0:4) o "/0.1,02,09)
. &
ﬁ (0.1,0.2,0.4) & (0.1,0.2,0.4)
< a(0.2,0.4,0.8) b(0.2,0.4,0.8) ~= a(0.4,0.6,0.4) b(02,0.4,0.8)
G=aG' G=a'

Fig. 6.16 Self-complementary rough neutrosophic digraph G = (G, G)

Thus, G = (RA, SB) and G = (RA, S B) are neutrosophic digraphs as shown in
Fig. 6.16. The complement of G is G’ = (G', G'), where G' = G and G = G are
neutrosophic digraphs as shown in Fig. 6.16, and it can be easily shown that G and
G’ are isomorphic. Hence, G = (G, G) is a self-complementary rough neutrosophic
digraph.

Theorem 6.1 LetG = (G, G) be aself-complementary rough neutrosophic digraph.

Then
1
Z Tsp(wz) = 5 Z (Tra(w) A Tra(2)),
w,zeX w,zeX
1
D Issw) =5 Y7 (Ura(w) A lga(2)),
w,zeX w,zeX
1
D Fsswa) =5 3 (Fra(w) v Fra(2)),
w,z€X w,zeX
1
> Tsswa) =5 3 (Tga(w) A Ty (),
w,zeX w,zeX
1
> Igp(wz) = 3 > Ugaw) A Tz (2),
w,z€X w,zeX
1
" Fopwa) =5 3 (Fra) v Fra()).
w,zeX w,zeX

Proof Let G = (G, G) be a self-complementary rough neutrosophic digraph. Then
there exist two isomorphisms g : X —> X andg : X —> X, respectively, such that

Tray(g(w)) = Tra(w),

Iray(g(w)) = Iga(w),

Fray(g(w)) = Fra(w), Yw € X,
Tispy (g(w)g(2)) = Tsp(wz),
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Iispy (g(w)g(2)) = Isp(wz),
Fispy(g(w)g(z)) = Fsp(wz), Yw,z € X.

and

Tgay(G(w)) = Tgy(w),

Igay (@(w)) = Iz, (w),

Fray(@w)) = Fga(w), Yw e X,
Ti5py (g(w)g(2)) = Tgp(wz),
I55y (G(w)g(2)) = I5p(w2),
Fpy ((w)g(2)) = Fsp(wz), Yw,z € X.

By Definition of compliment, we have

Tispy (g(w)g(2)) = (Tra(w) A Tga(2)) — Tsp(wz)
Tsp(wz) = (Tra(w) A Tra(2)) — Tsp(wz)

Y Tsp(wz) = Y (Tra(w) ATra(2) — Y Tsp(w2)

w,zeX w,zeX w,zeX
2 Y Tpwz) = Y (Tra(w) A Tra(2))
w,zeX w,zeX

1
> Tsswa) =3 ) (Tea(w) A Tra(2)

w,zeX w,zeX
Iispy (g(w)g(2)) = (Ira(w) A Iga(2)) — Isp(wz)
Isp(wz) = (Ipa(w) A Iga(2)) — Isp(wz)

Y Ispwz) = Y (Upa(w) Alga@) = Y Isp(w2)

w,z€X w,zeX w,zeX
2 Y Ispwz) = Y (Iga(w) A Iga(2))
w,zeX w,zeX
1
D Isswd) =5 3 Ura(w) A (@)
w,zeX w,zeX

Fispy(g(w)g(z)) = (Fra(w) V Fra(2)) — Fsp(wz)
Fsp(wz) = (Fra(w) Vv Fra(2)) — Fsp(wz)
Y Fsgwz) = Y (Fra(w)V Fra(2)) — Y Fsp(wz)

w,zeX w,zeX w,zeX

23" Fsg(wz) = Y (Fra(w) V Fra(2))

w,z€X w,zeX
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1
D Fspwa) == ) (Fra(w) v Fra(2)

w,z€X w,zeX

Similarly, it can be shown that

1
Z Tsp(wz) = 5 Z (Tra(w) A Tga(2)
w,zeX w,zeX

1
> Ispwa) =5 3 (s (w) A Iy ()
w,z€X w,z€X

1
Y. Fpwa) =3 Y (Fa(w) v Fra ).
w,z€X w,zeX

This completes the proof.

6.3 Applications of Rough Neutrosophic Digraphs

6.3.1 Optimal Flight Path for Weather Emergency Landing

In this application, we use the concept of rough neutrosophic digraph for decision-
making in real-life problems. To obtain the optimal decision, we use the following
formula:

Sij = Ty, Is;, Fs,),

where
Tra(vi)*Tg,(v))
3— (TQR(Uivvj)+T§5(Uisvj)_T§R(Uiavj)*T§B (vi JJ/)) ’
Ira (0)*I5 4 (v))
37(’58(”1’auj)+1§B(Uivvj)71§B(Uivvf)*lfg(uivvj)) ’

Faa (0)Fga (v))
Fs, = Fsp ® Fsp(vi,vj) = A .
3= (P (1)) + Fyy (ui0,)— s (00 Fy(vr.v,) )

TSij = T§B D TEB(UZ" UI) =

G) { Isy = Isp ® Igp(vi, vj) =

Flight planning is the process of producing a flight plan to describe a proposed
aeroplane flight. Flight plan generally includes basic information such as depar-
ture and arrival points, estimated time en route, alternate airports in case of bad
weather. The presented application provides alternate airports for a plane in case of
bad weather.

Suppose X = {Chicago(CHI), Beijing(BJ), Lahore(LHR), Paris(PAR), Istanbul
(IST)} be the set of cities under consideration and R an equivalence relation on X,
where equivalence classes represent cities having same characteristics.
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10010
01101
R=|101101
10010
01101

Assume that a flight Boeing 747 of Pakistan International Airways (PIA) travels
to these cities. In case of bad weather, the flight will be directed to the city with good
weather condition among the cities under consideration.

Let A={(CHL, 0.1, 0.2, 0.8), (BJ, 0.9, 0.7, 0.5), (LHR, 0.8, 0.4, 0.3), (PAR, 0.6, 0.5, 0.4), (IST, 0.2, 0.4, 0.6)}

be a neutrosophic set on X which describe the characteristic of each city, and
RA = (RA, RA) arough neutrosophic set, where RA and RA are lower and upper
approximations of A, respectively, as follows:

RA = {(CHI,0.1,0.2,0.8), (BJ,0.2,0.4,0.6), (LHR,0.2,0.4,0.6), (PAR,0.1,0.2,0.8), (/S7,0.2,0.4,0.6)}
RA = {(CHI,0.6,0.5,0.4), (BJ,0.9,0.7,0.3).(LHR, 0.9,0.7,0.3), (PAR, 0.6,0.5,0.4), (IST, 0.9,0.7,0.3)}.

Let E = {(BJ,CHI),(LHR,CHI), (BJ, LHR), (IST, BJ), (PAR, BJ), (PAR, LHR)}

be a subset of X x X and S an equivalence relation on £ defined as:

S == OO -
[cNeNeNe N ™)
S OO = OO
S == OO
S == O o~
—_0 O O O O

where S represents the equivalence classes of “weather between different cities”.
For example the relationships (BJ,CHI), (IST,BJ) and (PAR,BJ) belong to the same
equivalence class. This means that weather between Beijing and Chicago is the same
as the weather between Paris and Beijing.

Let B = {((BJ, CHI), 0.1, 0.1, 0.3), (LHR, CHI), 0.1, 0.2, 0.3), (BJ, LHR), 0.1, 0.3, 0.2),
((IST, BJ),0.2,0.1,0.1), (PAR, BJ),0.1,0.1,0.4), (PAR, LHR), 0.2,0.2,0.3))}

be a neutrosophic set on E which describes the comparison of weathers of the cities
under consideration. Let SB = (SB, SB) be a rough neutrosophic set, where SB
and S B are lower and upper approximations of B, respectively, as follows:
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(0.1,0.1,0.4)
(Be,O.Z,_O@ (15,0.2,0.4,0.6)

258

(0.1,0.3,0.2)

(Ch,0.1,0.2,0.8)

(Lh,0.2,0.4,0.6)

(0.2,0.2,0.3)
(Pa,0.1,0.2,0.8)
(0.2,0.1,0.1)
(I5,0.9,0.7,0.3)

Fig. 6.17 G = (RA, SB)

(Be,0.9,0.7,0.3)

(0.1,0.3,0.2)

(Ch,0.6,0.5,0.4)

(0.2,0.2,0.3)

(Lh, 0.9,®

(Pa,0.6,0.5,0.4)

Fig. 6.18 G = (RA,SB)

SB={(BJ,CHI),0.1,0.1,0.4), (LHR,CHI),0.1,0.2,0.3), (BJ, LHR)0.1,0.3,0.2),
(IS8T, BJ),0.1,0.1,0.4), (PAR,BJ),0.1,0.1,0.4), (PAR,LHR),0.2,0.2,0.3))},

SB ={((BJ,CHI),02,0.1,0.1), (LHR,CHI),0.1,0.2,0.3), (BJ, LHR)0.1,0.3,0.2),
(UST,BJ),0.2,0.1,0.1), ((PJ,BJ),0.2,0.1,0.1), (PAR, LHR), 0.2,0.2,0.3))}.

Thus, G = (RA, SB) and G = (RA, SB) are neutrosophic digraphs as shown in

Figs.6.17 and 6.18.
To find the city with good weather condition, we use the formula which we

mentioned in equation (i).
Our decision is ¢ if e = max(Tsp @ Tgp)(e;i), where e; = (v;, vj). By direct
calculations, we have
Tsp @ T55(BJ,CHI) =0.044, Isp @ I55(BJ,CHI) = 0.071,
Fsp @ F53(BJ,CHI) = 0.094.
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Tsp @ T55(LHR,CHI) =0.043, Isp ® I53(LHR,CHI) = 0.076,
Fsp @ Fs(LHR,CHI) = 0.096.

Tsp ® T55(BJ, LHR) =0.064, Isp ® I55(BJ, LHR) =0.112,

Fsgp ® F55(BJ, LHR) = 0.068.

Tsp ® T55(IST, BJ) = 0.066, Isp @ I55(IST, BJ) = 0.100,

Fsp @ F55(IST, BJ) = 0.070.

Tsp @ T53(PAR, BJ) =0.033, Isp ® I53(PAR, BJ) = 0.050,

Fsp ® F53(PAR, BJ) = 0.094.

Tsp @® Tsz(PAR, LHR) = 0.034, Isp @ I53(PAR, LHR) = 0.155,
Fsp ® Fsg(PAR, LHR) = 0.096.

Hence the weather condition between Istanbul and Beijing is good, and Boeing 747
can use this path in case of weather emergency.

We present an algorithm for the above-mentioned application. The presented algo-
rithm can be applied to avoid lengthy calculations when dealing with a large number
of objects.

Algorithm 6.3.1 1. Input the vertex set X.
2. Construct an equivalence relation R on the set X.
3. Calculate the approximation sets RA and RA.
4. Input the edge set E € X x X.
5. Construct an equivalence relation S on E.
6. Calculate the approximation sets SB and SB.
7. Calculate the score value, by using the formula

Tra(vi) * T4 (v))

3 — (Tsp (i, v)) + Tgp (i, vj) — Tsp(vi, vj) * Tsp (vi, v)))
Ira(vi) * I54(v))

3— (Isp (i, v)) + L i, v)) — Isp(vi, v)) * Igp(vi, v)))
Fra(vi) * Fg (vj)

3 — (Fsp i, vj) + Fsp(vi, vj) — Fsp(vi, vj) * Fsp(vi, v)))

Tsp @ Tgp(vi, vj) =

Isp @ Igp(vi,vj) =

Fsp @ Fgp(vi,vj) =

8. Decision is ey if e = max(Tsp @ T5)(e;), where e; = (v;, v;).

9. If ¢; has more than one value, then any one of S(v;) may be chosen.

6.3.2 Suitable Investment Company

Investment is a very good way of getting profit, and wisely invested money surely
gives certain profit. The most important factors that influence individual investment
decision are: company’s reputation, corporate earnings and prices per share. In this
application, we combine these factors into one factor: company’s status in industry,
to describe overall performance of the company. Let us consider an individual Mr.
Shahid who wants to invest his money. For this purpose, he considers some private
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companies which are telecommunication company (TC), carpenter company (CC),
real estate (RE) business, vehicle leasing (VL) company, advertising (AD) company,
textile testing (TT) company. Let X = {TC, CC, RE, VL, AD, TT } be a set. Let R
be an equivalence relation defined on X as follows:

SO = O = O =
[N elelBall =]
S = O = O
—_o = O OO
S = O = O =
—_o = O OO

Let A={(TC, 0.3,04,0.1), (CC, 0.8, 0.1, 0.5), (RE, 0.1, 0.2, 0.6), (VL, 0.9,
0.6, 0.1), (AD, 0.2, 0.5, 0.2), (TT, 0.8, 0.6, 0.5)} be a neutrosophic set on X
with three components corresponding to each company, which represents its status
in the industry and RA = (RA, RA) a rough neutrosophic set, where RA and RA
are lower and upper approximations of A, respectively, as follows:

RA = {(TC,0.1,0.2,0.6), (CC,0.8,0.1,0.5), (RE, 0.1,0.2,0.6), (VL, 0.8, 0.6, 0.5), (AD,
0.1,0.2,0.6), (TT, 0.8, 0.6,0.5)},
RA = {((TC,0.3,0.5,0.1), (CC,0.8,0.1,0.5), (RE, 0.3,0.5,0.1), (VL, 0.9, 0.6, 0.1), (AD,
0.3,0.5,0.1), (TT, 0.9, 0.6, 0.1)}.
Let E = {(TC,CC),(TC, AD),(TC, RE), (CC, VL), (CC,TT), (AD, RE), (TT, VL)},

be the set of edges and S an equivalence relation on E defined as follows:

|95

I
OO OO OO -
SO = O = = O
SR OO == 0O
SO == O OO
SO == O OO

S = OO == O
—_—0 O O O oo

Let B = {((TC,CC),0.1,0.1,01), ((TC, AD),0.1,0.2,0.1), ((TC, RE), 0.1,0.2,0.1),
((€cc,vL),0.8,0.1,05), ((CC,TT),0.8,0.1,0.5), ((AD, RE), 0.1,0.2,0.1),
((TT,VL),0.8,0.6,0.1)}

be a neutrosophic set on E which represents relationship between companies and
SB = (SB, SB) a rough neutrosophic relation, where SB and SB are lower and
upper approximations of B, respectively, as follows:
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(0.1,0.1,0.1)

TC(0.1,0.2,0.6) CC(0.8,0.1,0.5)

(1'0TO1°0)

(0.8,0.1,0.5)

(0.1,0.2,0.1)

(0.8,0.6,0.1)
RE(0.1,0.2,0.6)

VL(0.8,0.6,0.5)

TT(0.8,0.6,0.5)

G = (RA.SB)

(0.1,0.1,0.1)

TC(0.3,0.5,0.1) C€C(0.8,0.1,0.5)

(10T010)

(0.8,0.1,0.5)

(0.1,0.2,0.1)

(0.8,0.6,0.1)
RE(0.3,0.5,0.1) VL(0.9,0.6,0.1)

G = (RA,SB)

Fig. 6.19 Rough neutrosophic digraph G = (G, G)

SB = {((TC,CC),0.1,0.1,0.1), ((TC, AD),0.1,0.2,0.1), ((TC, RE),0.1,0.2,0.1),
((cc,vL),08,0.1,0.5), ((CC,TT),0.8,0.1,0.5), ((AD, RE),0.1,0.2,0.1),
((TT,VL),0.8,0.6,0.1)},

SB ={((TC,CC),0.1,0.1,0.1), ((TC, AD),0.1,0.2,0.1), ((TC, RE),0.1,0.2,0.1),

((€cC,vL),08,0.1,0.5), ((CC,TT),0.8,0.1,0.5), ((AD, RE)0.1,0.2,0.1),
((TT,VL),0.8,0.6,0.1)}.

Thus, G = (RA, SB) and G = (RA, SB) are rough neutrosophic digraphs as
shown in Fig. 6.19.

In order to find out the most suitable investment company, we define the score
values

N T(;)+1(v;) — F(vj)
S(v;) = Z 3—(T(vivj)-i-I(Uin)_F(vivj))’

where
7oy = 20 E T ;T(”"),
1y = 2100 ;va),
Py = E@)+F@)

2 ’



262 6 Graphs Under Neutrosophic Hybrid Models

and

T(viv)) + T (v;v))

T (viv;) = 5 ,
I(viv)) + 1 (v;v;)

I(vv)) = —_
F(vivj) + F(viv))

F(vivj)z J ) / .

of each selected company and industry decision is vy if vy = max S(v;). By calcu-

lation, we have

S(TC)=0.4926, S(CC)=1.4038, S(RE)=0.0667, S(VL)=0.3833,
S(AD) =0.1429 and S(TT) = 1.3529. Clearly, CC is the optimal decision. There-
fore, the carpenter company is selected to get maximum possible profit. We present
our proposed method as an algorithm. This algorithm returns the optimal solution
for the investment problem.

Algorithm 6.3.2 1. Input the vertex set X.
Construct an equivalence relation R on the set X.
Calculate the approximation sets RA and RA.
Input the edge set £ € X x X.

Construct an equivalence relation S on E.
Calculate the approximation sets SB and SB.
Calculate the score value, by using the formula

NNk LD

N T(;)+1(v;) — F(v;)
Swy= 3, 3— (T () + 1 (viv;) — F(uiv)))

U,'UjEE

8. The decision is S(v;) = ma;é S(v;).
v €

9. If v, has more than one value, then any one of S(v;) may be chosen.

6.4 Neutrosophic Rough Digraphs

Definition 6.10 Let X be a nonempty universe and Ra single-valued neutrosophic
relation on X. Let A be a single-valued neutrosophic set on X, defined as

A={<x,Tas(x), [2(x), Fa(x) >: x € X}.

Then the lower and upper approximations of A represented by E A and RA, respec-
tively, are characterized as single-valued neutrosophic sets in X such that Vx € X
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RA = {< x, Ty (0), Igou) (), Fopy(x) >:y € X},

RA={<x,T5 (), I (x),F: (x)>:yeX}

R(A) R(A) R(A)
where
Tia () = N\ (Fax, ) v Ta(y),
yex
Tia@) =\ (1= Iz ) A La (),
yex
Fia@) = \/ (Tax, ) A Fa)),
yex
and

5,0 = \/ (Tp(x, ») A Ta()),

yeX

I, = \ (Txx, ) v (),
yeX

Fz 0 = \ (Falx, ») V Fa().
yeX

A pair @A, EA) is called a single-valued neutrosophic rough set.

Definition 6.11 Let X be a nonempty set and Ra single-valued neutrosophic toler-
ance relation on X. Let A be a neutrosophic set on X defined as:

A={<x,Tas(x), [2(x), Fa(x) >: x € X}.

Then the lower and upper approximations of A represented by E A and RA, respec-
tively, are characterized as single-valued neutrosophic sets in X such thatV x € X

RA = (< x, Ty, (), I3, (0), Fa(0) > y € X},

RA = {< x, TEA(X)’ IEA(X)’ FEA(X) >y € X},
where

Tia@) =\ (Fa(x. y) v Ta),

yeX

Ipa@) = N\ (1= 1 ) V L),

yeX
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Fia® = \/ (Tpr, ) A Fa)),
yeX

and

T5, () =\/ (T, ») A Ta (),

yeX

I, ) = \/ (Tz(x, ) A 14 (),
yeX

Fz, ) =\ (Falx, ) vV Fa)).
yeX

Let EC X x X and Sbea single-valued neutrosophic tolerance relation on E such
that

To((x1, x2)(¥1, ¥2)) =min{Tp(x1, y1), T(x2, ¥2)},
T ((x1, x2)(y1, y2)) =min{lz(x1, y1), 13(x2, y2)},
Fy((x1, x2) (1, y2)) =max{Fy(x1, y1), Fp(x2, y2)}.

Let B be a neutrosophic set on E defined as:
B ={<uxy, Tp(xy), Ip(xy), Fp(xy) >: xy € E},
such that
Tp(xy) <min{Tg, (), Tg, (M),

I5(xy) <min{lz,(x). L\ (),
Fp(xy) <max{Fg, (x). Fz, (0} Yx.y€X.

Then the lower and the upper approximations of B represented by S B and EB are
defined as follows:

SB = {< xy, Tz (xy), I35(xy), Fsz(xy) >: xy € E},
SB = {< xy, TEB(xy), IEB(xy), FEB(xy) >:xy € E},
where

Topey) = N\ (Fs((x), (w2) Vv Tg(w2)),

wzeE

Iy ey =\ (0= I((xy), w2)) V I5(w2)),

wzeE
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Fypey) = \/ (T5((xy), (w2) A Fp(w2)),

wzeE

and

T5, 00 = \/ (T3((xy), w2)) A T(w2)),

wzeE

I, 00 = \/ (Is((xy), (w2) A Tp(w)),
wzeE

Fe,n) = /\ (Fs((xy), w2) v Fp(w2)).
wzeE

A pair SB = (EB, SB) is called single-valued neutrosophic rough relation.
Definition 6.12 A single-valued neutrosophic rough digraph on a nonempty set X
is a four-ordered tuple G = (R, RA, S, SB) such that

(a) Risa single-valued neutrosophic tolerance relation on X.
(b) S is asingle-valued neutrosophic tolerance relation on £ € X x X.

(c) RA = (EA ,_IéA) is a single-valued neutrosophic rough set on X.
(d) SB = (ﬁ B,SB)isa single-valued neutrosophic rough relation on X.
() (RA, SB) is a neutrosophic rough digraph, where G = (RA, SB) and G =

(RA, $B) arelower and upper approximate single-valued neutrosophic digraphs
of G such that

Tsp(xy) = min{Tp, (x), Tz, (M)},

Igp(xy) = minflg, (x), Iz, (0},

Fip(xy) = max{Fz,(x), Fp,(V)},

T3, (xy) = min{Tz, (x), Tz, (V)}

Iz (xy) < min{lz (x), I, (V)},

FEB(xy) < max{FEA(x), FEA(y)}, Vx,yeX.

Throughout this chapter, we will use neutrosophic rough set, neutrosophic rough
relation and neutrosophic rough digraph, for short.

Example 6.9 Let X = {p, q,r, s, t} be a nonempty set and Ra neutrosophic toler-
ance relation on X which is given as:
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14 q r N t
1, 1,0) (05,0.2,03) (0.1,09,04) (0.6,05,02) (02 0.1,0.8)
(0.5,0.2,0.3) (1,1,0) (0.3,0.7,0.5)  (0.1,0.9,0.6) (0.6,0.5,0.1)
(0.1,0.9,0.4)  (0.3,0.7,0.5) (1,1,0) (0.2,0.8,0.7)  (0.1,0.9, 0.6)
0.6,0.5,02)  (0.1,0.9,0.6) (0.2,0.8,0.7) (1,1,0) (0.2,0.3,0.1)
(02,0.1,0.8)  (0.6,0.5,0.1) (0.1,09,0.6) (0.2,0.3,0.1) (1, 1,0)

~ Y YR T

LetA;={(p,0.2,0.1,0.7), (¢, 0.4, 0.5, 0.6), (r,0.7,0.8,0.9), (5, 0.2, 0.9, 0.1),
(z,0.6,0.8,0.4)} be a neutrosophic set on X. The lower and upper approximations
of A; are given as:

RA; = {(p,0.2,0.1,0.7), (g, 0.3,0.5,0.6), (r, 0.4, 0.1,0.9), (s, 0.2, 0.5, 0.6), (£, 0.2, 0.5, 0.6)},
RAL = ((p,0.4,0.2,0.8), (¢,0.6,0.9, 0.4), (r, 0.7, 0.8, 0.6), (s, 0.2, 0.9, 0.1), (¢, 0.6, 0.8, 0.1)}.

Let E = {pr,gs,rt,sp,tq} € X x X and S bea neutrosophic tolerance relation
which is given as:

S pr qs rt sp tq

pr 1,1,0) 02,02,0.7) (0.1,09,0.6) (0.1,0.5,04) (0.2,0.1,0.8)
qs 0.2,0.2,0.7) 1,1,0) 0.2,0.3,0.5) (0.1,0.5,0.6) (0.1, 0.5, 0.6)
rt (0.1,0.9,0.6) (0.2,0.3,0.5) 1,1,0) (0.2,0.1,0.8) (0.1, 0.5, 0.6)
sp (0.1,0.5,04) (0.1,0.5,0.6) (0.2,0.1,0.8) 1,1,0) (0.2,0.2,0.3)
tq (0.2,0.1,0.8) (0.1,0.5,0.6) (0.1,0.5,0.6) (0.2,0.2,0.3) (1,1,0)

Let B; ={(pr,02,0.1,0.5), (¢gs,0.1,0.3,0.3), (rt,0.2, 0.1, 0.4), (sp, 0.1, 0.1,
0.2), (g, 0.1, 0.4, 0.3)} be a neutrosophic set on E. The lower and upper approxi-
mations of B are given as:

S§By = {(pr,0.2,0.1,0.5), (g5, 0.1,0.3,0.3), (r£,0.2, 0.1, 0.4), (sp, 0.1,0.1,0.2), (¢¢, 0.1, 0.4, 0.3)},
EB] ={(pr,0.2,0.2,0.4), (gs,0.2,0.4,0.3), (r,0.2,0.4,0.4), (sp, 0.2,0.3,0.2), (g, 0.2,0.4,0.3)}.

Thus, G = (EAI, ﬁBl) and G = (I§A1, S’Bl) are neutrosophic digraphs as shown
in Fig. 6.20.

Example 6.10 Let X = {u, v, w, x, y, z} be a crisp set and Ra neutrosophic toler-
ance relation on X given by

u v w X y z

(1, 1,0 (0.2,03,05) (0.5,0.6,09) (03,08,03) (0.3,02,01) (0.1,0.1,05)
(0.2,0.3,0.5) (1,1,0) (0.9,05,0.6) (0.1,05,0.7) (0.8,0.9,0.1) (0.8,0.9,0.1)
(0.5,0.6,0.9) (0.9, 0.5, 0.6) (1,1,0) (0.3,0.6,0.8) (0.2,03,0.6) (0.7, 0.6, 0.6)
(03,08,03) (0.1,05,0.7) (0.3,0.6,0.8) (1,1,0) 0.5,0.1,0.9) (0.8,0.7,0.2)
(03,02,0.1) (0.8,0.9,0.1) (0.2,0.3,0.6) (0.5,0.1,0.9) (1,1,0) (0.6,0.5, 0.9)
(0.1,0.1,0.5)  (0.8,0.9,0.1) (0.7,0.6,0.6) (0.8,0.7,02) (0.6,0.5,0.9) (1,1,0)

N w8 2 2l

Let A={,0.9,0.3,0.1), (v,0.5,0.6,0.2), (w, 0.8,0.5,0.3), (x,0.7,0.6,0.9),
(y,0.5,0.2,0.1), (z,0.9, 0.7, 0.3)} be a neutrosophic set on X. Then the lower and
upper approximations of A are given as follows:
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p(0.2,0.1,0.7) p(0.4,0.8,0.2)

(0.1,0.4,0.3)

B
% @ Y N

G, = (RA, $B)) G = (RA1,8B)

Fig. 6.20 Neutrosophic rough digraph G1 = (G, G1)

RA ={(1,05,0.3,0.3), (v,0.5,0.2,0.3), (w, 0.6, 0.4, 0.3), (x,0.7,0.3,0.9), (y,0.5,0.2,0.5),
(z,0.5,0.5,0.8)},
RA = {(,0.9,0.6,0.1), (v,0.8,0.7,0.1), (w, 0.8, 0.6, 0.3), (x,0.8,0.7,0.3), (y,0.6,0.6,0.1),
(z,0.9,0.7,0.2)}.

Let E = {uv, vw, wx, xy, yz, zu, zw, vy} € X x X and S be a neutrosophic toler-
ance relation on E given as

N uv vw wx xy yz zu zw vy

uv (1,1,0) (0.2,0.3,0.6) (0.1,0.5,0.9) (0.3,0.8,0.3) (0.3,0.2,0.1) (0.1,0.1,0.5) (0.1,0.1,0.6) (0.2,0.3,0.5)
vw| (0.2,0.3,0.6) (1,1,0) (0.3,0.5,0.8) (0.1,0.3,0.7) (0.7,0.6,0.6) (0.5,0.6,0.9) (0.8,0.9,0.1) (0.2,0.3,0.6)
wx| (0.1,0.5,0.9) (0.3,0.5,0.8) (1,1,0) (0.3,0.1,0.9) (0.2,0.3,0.6) (0.3,0.6,0.6) (0.3,0.6,0.8) (0.5,0.1,0.9)
xy| (0.3,0.8,0.3) (0.1,0.3,0.7) (0.3,0.1,0.9) (1,1,0) (0.5,0.1,0.9) (0.3,0.2,0.2) (0.2,0.3,0.6) (0.1,0.5,0.7)
yz| (0.3,0.2,0.1) (0.7,0.6,0.6) (0.2,0.3,0.6) (0.5,0.1,0.9) (1,1,0) (0.1,0.1,0.9) (0.6,0.5,0.9) (0.6,0.5,0.9)
zu | (0.1,0.1,0.5) (0.5,0.6,0.9) (0.3,0.6,0.6) (0.3,0.2,0.2) (0.1,0.1,0.9) (1,1,0) (0.5,0.6,0.9) (0.3,0.3,0.1)
zw| (0.1,0.1,0.6) (0.8,0.9,0.1) (0.3,0.6,0.8) (0.2,0.3,0.6) (0.6,0.5,0.9) (0.5,0.6,0.9) (1,1,0) (0.2,0.3,0.6)
vy | (0.2,0.3,0.5) (0.2,0.3,0.6) (0.5,0.1,0.9) (0.1,0.5,0.7) (0.6,0.5,0.9) (0.3,0.2,0.1) (0.2,0.3,0.6) (1,1,0)

Let B be a neutrosophic set on E defined as

B = {(uv,0.5,0.2,0.1), (vw, 0.5,0.2,0.3), (wx, 0.5, 0.3, 0.3), (xy,0.5,0.2,0.3),
(yz,0.5,0.2,0.2),

(zu, 0.5,0.3,0.2), (zw, 0.5,0.4,0.3), (vy,0.5,0.2,0.1)}.

Then the lower and upper approximations of B are given as

8$B = {(uv,0.5,0.2,0.3), (w, 0.5,0.2,0.3), (wx,0.5,0.3,0.3), (xy, 0.5,0.2,0.3), (yz.0.5,0.2,0.3),
(zu,0.5,0.3,0.3), (zw, 0.5,0.2,0.3), (vy,0.5,0.2,0.3)},
$B = {(uv,0.5,0.3,0.1), (vw, 0.5,0.4,0.3), (wx, 0.5,0.4,0.3), (xy,0.5,0.3,0.3), (yz,0.5,0.4,0.1),
(zu,0.5,0.4,0.1), (zw, 0.5,0.4,0.3), (vy, 0.5,0.3,0.1)}.
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4(0.5,0.3,0.3) 4(0.9,0.6,0.1)
2.0
) 3,052 W o
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G = (RA,SB) G = (RA,SB)

Fig. 6.21 Neutrosophic rough digraph G = (G, G)

Thus, G = (EA, SB) and G = (EA, EB) are the neutrosophic digraphs as shown
in Fig. 6.21.

We now discuss regular neutrosophic rough digraphs.

Definition 6.13 Let G = (G, G) be a neutrosophic rough digraph on a nonempty set
X. The indegree of a vertex x € G is the sum of membership degree, indeterminacy
and falsity of all edges towards x from other vertices in G and G, respectively,
represented by idg (x) and defined by

idg(x) = idg(x) + idg(x),

where

idc(x>=( Y Te(yx), Y, Iebx), Y Fc(yx)),

x,yeﬁb’ x,yESB x,yESB
idG<x)=( o Tex). Y Igx), Y FG<yx>).
x,yeEB x,yeEB x,yEEB

The outdegree of a vertex x € G is the sum of membership degree, indeterminacy
and falsity of all edges outwards from x to other vertices in G and G, respectively,
represented by odg (x) and defined by

odg(x) = odg(x) + odg(x),

where
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OdG(x)=( D Tey), Y Ioxy), Y Fc(xy>>,

x,yeﬁB x,yeﬁB x,yeﬁB
odG(x)=( D Teky), Y Iy, Y FG<xy)).
x,yeEB x,yeEB x,yeEB

dg(x) = idg(x) + odg(x) is called degree of vertex x.

Definition 6.14 A neutrosophic rough digraph is called a regular neutrosophic
rough digraph of degree (m, m,, ms) if

dg(x) = (my, my, m3),Vx € X.

Example 6.11 LetX = {p, q, r, s} beanonempty set and Ra neutrosophic tolerance
relation on X which is given as:

14 q r N
1, 1,0 (0.1,0.9,08) (0.7,0.5,08) (0.1,0.9,0.8)
(0.9,0.8, 0.1) (1,1,0) (0.1,0.9,0.8)  (0.4,0.3,0.9)
(0.7,0.5,0.8)  (0.1,0.9, 0.8) (1,1,0) (0.1,0.9, 0.8)
(0.1,0.9,0.8)  (0.4,0.3,0.9) (0.1,0.9, 0.8) (1,1,0)

L YR 9|

Let A; = {(p,0.1,0.4,0.8), (¢,0.2,0.3,0.9), (, 0.1, 0.6, 0.8), (s, 0.9, 0.6, 0.3)}
be a neutrosophic set on X. Then the lower and upper approximations of A; are
given as:

RA; ={(p,0.1,0.3,0.8), (¢.0.2,0.3,0.9), (r,0.1,0.3,0.8), (s, 0.8, 0.4, 0.4)},
EAI = {(p,0.1,0.6,0.8), (¢,0.4, 0.6, 0.8), (r, 0.1, 0.6,0.8), (5, 0.9, 0.6, 0.3)}.
Let E = {pq,qr,rs,sp} € X x X and Sbea neutrosophic tolerance relation on E
which is given as:

S Pq qr rs sp

Pq (1, 1,0) (0.1,09,0.8) (0.4,0.3,09) (0.1,0.9,0.8)
qr (0.1, 0.9, 0.8) (1,1,0) (0.1,09,0.8) (0.4,0.3,0.9)
rs 0.4,03,09) (0.1,0.9,0.8) (1,1,0) (0.1,0.9,0.8)
sp (0.1,09,0.8) (0.4,0.3,0.9) (0.1,0.9,0.8) (1,1,0)

Let B; ={(pg,0.1,0.3,0.8), (¢r, 0.1,0.3,0.3), (rs, 0.1, 0.3, 0.8), (sp, 0.1, 0.3,
0.8)} be a neutrosophic set on E. Then the lower and upper approximations of B
are given as:
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p(0.1,0.3,0.8)

5(0.8,0.4,0.4)
(6°0°¢°0 ‘¢0)b

7(0.1,0.3,0.8)

= (RA1,8B))

Fig. 6.22 Regular neutrosophic rough digraph G| =

p(0.1,0.6,0.8)

= 2
S o
&S jk
=) o
s o
S P

7(0.1,0.6,0.8)

C1 = (RA1,8B1)

(Qp 61)

SB = {(pq.0.1,0.3,0.8), (gr,0.1,0.3,0.3), (rs,0.1,0.3,0.8), (sp, 0.1,0.3,0.8)},

$By = {(pg,0.1,03,0.8), (g7, 0.1,0.3,0.3), (75, 0.1,0.3,0.8), (sp, 0.1, 0.3, 0.8)}.

Thus, G| = (G, G)) is a regular neutrosophic rough digraph as shown in Fig. 6.22.

Definition 6.15 Let G, = (G,, G;) and G, =

(G,, G») be two neutrosophic rough

digraphs. Then the direct sum of G and G, is a neutrosophic rough digraph G =
G1®G,=(G, 86, G1 &) Gz) where G DG, = = (RA, ® RA,, SB, & §B,)

and G, ® G, = (RA 1 D RAZ, S B, & S B,) are neutrosophic digraphs such that

(D
TEAI (x)»

TEA,GBEAg (x) = TEAZ ),

IEAI(X)’

Liaeia,(¥) = 1a, (%),

FEA] ()C),

FEAl@EAz(x) = FEAZ(X)’

ifx € EA] _EAZ
if x € RA; — RA,

max(Tj,, (x), Ty, (¥)), if x € RA; N RA,

ifx € EAI _EA2
ifx e EAz _EAI

max(Iz,, (x), Iz, (X)), if x € RA| N RA,

ifx € EAI _EAZ
ifx € EA2 _EAI

min(Fg,, (x), Fga, (x)), if x € RA; N RA,



6.4 Neutrosophic Rough Digraphs 271

Tsp (x, ), if (x, y) € SB,

TA § ’ = . A
3058, (X: ) Tip, (x.y). if (x.y) € $B,

Igp (x,y), if (x,y) € SB,
Isp @5, (. ¥) = P l(x (e, yy € $B
38, X V), ,Y) € 9b)

FﬁBl(x’ y), if (x,y) € 531

Fiposn (. ¥) = _ 5
SB1®SB; FSBZ(X, y), if (x, y) c §BZ

2
Tz, (), ifx € RA| — RA
T noin,® =1 Tay, @), ifx € RAy — RA,
max(Tg, (x), T, (), if x € RA; N RA;
I, (), ifx e EAI —EAZ
IEA]GBEAQ(X) = IEAZ()C), ifx € §A2 —fAl
max(IEA](x), I;Az(x)), ifx € RA{ N RA;
Fa, (), ifx € RA| — RA
FEA]EBEAz(x) = FEAZ()C), ifx € EAQ —fAl
min(Fg, (), Fg, (1), if x € RA; N RA,
T- (x,y), if (x, y) € SB
Ty o5, V) = S50 ) Y .
1we52 Tz, (x,y),if(x,y) € SB,
$B,
. (x,y), if (x,y) € $B,
_ _ )38
ISB,@SBZ(X’ y) = 1

Iz, (), if (v, y) € §B)

Fg, (x,y).if (x,y) € $B)

Fip a5s, (%) = >
SBi®SB, FEB (x, y), if (x, y) c SB2

Example 6.12 LetX = {p,q,r,s,t}beaset. Let G;=(G,, G|) and G = G,, G,)
be two neutrosophic rough digraphs on X as shown in Figs.6.20 and 6.23. The
direct sum of Gy and G, is G = (G, ® G,, G1 ® G2), where G, @ G, = (RA| ®
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(p,0.2,0.1,0.3) (p,0.4,0.6,0.3)

(¢,0.4,0.2,0.9)
(607°020‘D)
(,0.9,0.6,0.1)
(7'0°90°6°0 ‘D)

(s,0.5,0.1,0.3) (r,0.2,0.4,0.6) (s,0.5,0.6,0.1) (r,0.5,0.6,0.4)
G, = (RA»,8B>) Ga = (RAs, $Bs)
Fig. 6.23 Neutrosophic rough digraph G, = (G,, G2)

p(0.2,0.1,0.3) p(0.4,0.8,0.2)

(0.1,0.4,0.3) (0.2,0.4,0.3)

G, ®G, = (RA; ® RA2,5B) @ 5B») G ®Ts = (RA, ® RA2, 5B, © $Bs)

Fig. 6.24 Neutrosophic rough digraph G = (G, ® G,, G| ® G2)

EAZ, SBl @ﬁBz) and G, ® G, = (EAl @EAZ, EBl EBEBZ) are neutrosophic
digraphs as shown in Fig. 6.24.

Remark 6.1 The direct sum of two regular neutrosophic digraphs may not be a
regular neutrosophic digraph as it can be seen in the following example.

Example 6.13 Consider the two regular neutrosophic digraphs G| = (G,, G1) and
G, =(G,, 62) as shown in Figs.6.22 and 6.25, respectively; then the direct sum
G = (G, EBQZ,E1 ® G,) of G, and G, as shown in Fig. 6.26 is not a regular
neutrosophic rough digraph.

Definition 6.16 Let G| = (G, G)and G, = (G,, G,) be two neutrosophic rough
digraphs on crisp sets X; and X,, respectively. The residue pr%iuct _of G, and
G, is a neutrosophic rough digraph G = G * G, = (G, * G,, G| * G,), where
G, %G, = (RA, *RAy, SB, * SB,) and G| * G, = (RA; * RA,, SB % SBy) are
neutrosophic digraphs, respectively, such that
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u(0,0.2,0.7) u(0,0.5,0.7)

2(0.7,0.3,0.3)

(8'0‘z0‘T°0)

x(0.8,0.5,0.2)
(L0‘co‘eo)a

w(0,0.2,0.7) w(0,0.5,0.7)
QQ = (EAQaSBZ) 62 = (EA2,§BQ)
Fig. 6.25 Regular neutrosophic rough digraph G, = (G,, G2)

p(0.1,0.3,0.8) p(0.1,0.6,0.8)

5(0.8,0.4,0.4)
(60‘c'0°z"0)b
5(0.9,0.6,0.3)
(8°:0°9°0 ‘%°0)P

7(0.1,0.3,0.8) r(0.1,0.6,0.8)

Ql @Qz = (EAI @BAZ:SBl @SBQ) §1 @62 = (EAl @EAQ,EBl @532)

Fig. 6.26 Neutrosophic rough digraph G = (G ® G,, G| ® G2)

(1)
TEAI*EAZ('XI’ X)) = maX{TﬁAl (x1), TEAZ (Xz)},
IEAl*EAz(xl’ X)) = max{]ﬁAl (x1), IEAz(XZ)}’

Fi i, (61, X2) = min{Fg, (x1), Fg, (x2)}, ¥(x1,x2) € RA; x RA,
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(p,0.2,0.7,0.8) (0.1,0.3,0.1) (¢,0.2,0.4,0.6)
= (RA1,8B1)
(»,0.5,0.9,0.2) (0.1,0.3,0.1) (¢,0.5,0.4,0.1)

G1 = (RA1,SB1)

Fig. 6.27 Neutrosophic rough digraph G1 = (G, G1)

Tsp,458, (X1, X2) (V1. y2) = Tgp (x1, y1),

Isp wsm, (X1, X2) (V15 ¥2) = Igp (x1, y1),

Fip 55, 1. 22) (31, 2) = Fyp (x1. 1), V(x1.y1) € SBi.x1 # »»
2

(1, %0) = max{Tz, (x1), Tz, (x2)},

(x1,x2) = maX{IEAI(Xl), IEAZ(XZ)}’

RA%RA,

RA%RA,
Fz oy i, (1 X2) = min{Fe | (x1), Fz | (x2)}, V(x1,x2) € RA; X RAy
TEBI*EBZ(xl,xz)(}’I, ») = TgBl (X1, y0)»

Isy 55,1 22 01 y2) = Igy (1, 1),

FgBl*ng(xuxz)(yl, ») = sy (x1, 1), Y(x1, y1) € SBy, x1 # y2

Example 6.14 Let G| = (G, 51) and G, = (G,, 62) be two neutrosophic rough
digraphs on the two crisp sets X| = {p, g} and X, = {u, v, w, x} as shown in
Figs.6.27 and 6.28. Then the residue product of G and G is a neutrosophic rough
digraph G = G| % G, = (G1 * Gz, G1 * Gz) where G, * G, = (_A1 * RA2, SBl *
§Bz) and G, * G, = (RA1 * RA2, SBISBZ) and the respective figure is shown in
Fig.6.29.

Theorem 6.2 If G| = (Ql,al) and G, = (G,, 62) are two neutrosophic rough

digraphs such that | X,| > 1, then their residue product is regular if and only if G,
is regular.

Proof Let G| % G, be a regular neutrosophic rough digraph.
Then, for any two vertices (x, x2) and (y;, y2) in X x X,

dG,«G,(x1, X2) = dg,+6,(y1, y2)
= dg, (x1) = dg,(y1)
This is true for all vertices in X ;. Hence G| is a regular neutrosophic rough digraph.
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(u,0.3,0.2,0.8) (u,0.7,0.7,0.2)

(60‘c'0‘1°0‘T)
(6:0°20°€’0‘@)
(0°L0L°0)
(To‘90‘90‘a)

(w,0.3,0.2,0.7) (w,0.5,0.7,0.1)
QQ = (BA27$B2) 52 = (§A27§BQ)
Fig. 6.28 Neutrosophic rough digraph G, = (G,, G2)

((p,u),0.3,0.7,0.8) ((g,u),0.3,0.4,0.6) ((p,4),0.7,0.9,0.2)  ((q,u),0.7,0.7,0.1)
9
4

(1°0°¢°0°1°0)
(10‘e0°'T°0)

0.1,0.3,0.1) (0.1,0.3,0.1)

(8°0°2°0'¢0(a d))
((g,),0.7,0.7,0.5)
(1°0'6'09°0 ‘(2 d))

(g, 2),0.2,0.4,0.6)

(0.1,0.3,0.1) (0.1,0.3,0.1)

((p,),0.2,0.7,0.8)
(1°0°€°0°T°0))
(9°07°0°¢°0*(a b))
((p,2),0.7,0.9,0.2)
(1°0°€°0°1°0)

(1°0°9°0°9°0(a ‘b))

9
((q,w),0.3,0.4,0.6)  ((p,w),0.3,0.7,0.7) ((¢,w),0.5,0.7,0.1) ((p,w),0.5,0.9,0.1)

G, * Gy = (RA1 » RA3, SB1 + $B) G+ Gy = (RAy » RAs, 8B, * $Bs)

Fig. 6.29 Neutrosophic rough digraph G = (G, * G,, G| * G2)

Conversely suppose that G; = (G, 5]) is a (m, my, m3)-regular neutrosophic
rough digraph and G, = (G,, G») is any neutrosophic rough digraph with |X;| >
1. If |X2| > 1, then dg,«q, (x1, X2) = dg, (x1) = (m, my, m3). This is a constant
ordered triplet for all vertices in X; x X,. Hence G| * G, ia regular neutrosophic
rough digraph.

6.5 Applications of Neutrosophic Rough Digraphs

In this section, we present some real-life applications of neutrosophic rough digraphs
in decision-making. In decision-making, the selection is facilitated by evaluating each
choice on the set of criteria. The criteria must be measurable, and their outcomes
must be measured for every decision alternatives.
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Table 6.1 Companies and their ratings

X Good reviews (%) Neutral (%) Bad reviews (%)
PEL 45 29 37
Dawlance 52 25 49
Haier 51 43 45
Waves 47 41 38
Orient 51 35 48

6.5.1 Online Reviews and Ratings

Customer reviews are increasingly available online for a wide range of products and
services. As customers search online for product information and to evaluate product
alternatives, they often have access to dozens or hundreds of product review from
other customers. These reviews are very helpful in product selection. But only con-
sidering the good reviews about a product is not very helpful in decision-making. The
customer should keep in mind bad and neutral reviews as well. We use percentages
of good reviews, bad reviews and neutral reviews of a product as truth-membership,
false-membership and indeterminacy, respectively.

Mrs. Sadia wants to purchase a refrigerator. For this purpose she visits websites
of different refrigerator companies. The refrigerator companies and their ratings by
other customers are shown in Table. 6.1

Here X = {Pel(P), Dawlance(D), Haier(H), Waves(W), Orient(O)} and the neu-
trosophic set on X according to the reviews will be

A = {(P,0.45,0.29,0.37), (D, 0.52,0.25,0.49), (H, 0.51, 0.43, 0.45), (W, 0.47, 0.41, 0.38) (0, 0.51, 0.35, 0.48)}.

The neutrosophic tolerance relation on X is given below

3 D H W 0
1,1,0) 05,0.6,09) (02,03,0.6) (0.1,0.2,03) (0.4,0.6,0.8)
(0.5,0.6,0.9) (1,1,0) (0.1,0.6,0.9) (04,0.5,09) (0.9,0.8,0.2)
0.2,0.3,0.6)  (0.1,0.6,0.9) (1,1,0) 0.2,0.9,0.6)  (0.1,0.9, 0.7)
0.1,02,03) (0.4,05,09) (0.2,0.9,0.6) (1,1,0) (0.2,0.5,0.9)
(04,0.6,0.8) (0.9,0.8,02) (0.1,0.9,0.7) (0.2,0.5,0.9) 1,1,0)

O T U

The lower and upper approximations of A are as follows:

RA = {(P,0.45,0.29,0.49), (D, 0.51,0.25, 0.49), (H, 0.51, 0.35, 0.45),
(W, 0.45,0.41,0.40), (0, 0.51,, 0.25, 0.49)},

RA = {(P,0.50,0.35,0.37), (D, 0.52, 0.43, 0.48), (H, 0.51, 0.43, 0.45),
(W, 0.47,0.43,0.37), (0, 0.52, 0.43, 0.48)}.
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Let E={(P, D), (P, H), (D, H), D, W), (H, W), H, 0), W, P), (W, 0), (O, P),
(O, D)} be the subset of X x X, and the neutrosophic tolerance relation S on E is
given as follows:

N (P.D) (P.H) (D,H) (D,W) (H,W)
(PD) (1,1,0) (0.1,0.6,09) (0.1,0.6,09) (04,05,09) (0.2,0.3,0.9)
(PH)| (0.1,0.6,0.9) (1,1,0) (0.5,0.6,0.9) (0.2,0.6,0.9) (0.2,0.3,0.6)
(DH)| (01,0609 (0.5,0.6,0.9) (1,1,0) 0.2,0.9,0.6)  (0.1,0.6, 0.9)
D,W)|  (04,05,09) (0.2,0.6,09) (0.2,0.6,0.9) (1,1,0) (0.1, 0.6, 0.9)
(HW)|  (02,03,09 (0.2,03,0.6) (0.1,0.6,09) (0.1,0.6,0.9) (1,1,0)
(H0)| (02,03,06) (0.1,03,0.7) (0.1,0.6,0.9) (0.1,0.5,0.9) (0.2,0.5,0.9)
(W,P)|  (0.1,02,09) (0.1,02,0.6) (0.2,03,0.9) (0.1,02,0.9) (0.1,0.2, 0.6)
(W,0)| (0.1,0.2,03) (0.1,02,0.7) (0.1,0.5,0.9) (0.2,0.5,0.9) (0.2,0.5,0.9)
(OP)| (04,06,09) (02,03,08) (0.2,03,0.6) (0.1,02,03) (0.1,0.2,0.7)
(OD)| (04,06,08) (0.1,0.6,09) (0.1,0.6,0.9) (0.4,05,09) (0.1,0.5,0.9)

S (H,0) (W,P) (W,0) (O,P) (0,D)
(PD)| (02,03,06) (0.1,02,09) (0.1,02,03) (04,06,09) (0.4,0.6,0.8)
(PH)| (0.1,03,07) (0.1,02,0.6) (0.1,02,0.7) (0.2,03,0.8) (0.1,0.6,0.9)
(DH)| (02,03,09 (0.1,0509) (0.2,03,06) (0.1,0.6,09 (0.1,0.6,0.9)
(D,W)|  (0.1,02,09) (0.2,05,09) (0.1,02,03) (04,05,09 (0.1,0.5,0.9)
(HW)| (0.1,02,06) (0.2,05,09) (0.1,02,0.7) (0.1,0.5,09) (0.2,0.5,0.9)
(H,0) (1,1,0) (0.2,0.6,0.8) (0.2,09,0.6) (0.1,0.6,0.8) (0.1,0.8,0.7)
(W,P)| (02,0.6,0.8) (1,1,0) (0.4,0.6,0.8) (0.2,0.5,0.9) (0.2,0.5,0.9)
(W,0)| (02,09,0.6) (0.4,0.6,0.8) (1,1,0) 0.2,0.5,09)  (0.2,0.5,0.9)
(OP)| (0.1,0.6,0.8) (0.2,0.5,09) (0.2,0.5,0.9) (1,1,0) (0.5, 0.6, 0.9)
(OD)| (0.1,08,07) (0.2,05,09) (0.2,05,09) (0.5,0.6,0.9) (1,1,0)

Thus, the lower and upper approximations of B are calculated as follows:

SB = {((P, D), 0.42,0.23,0.47), (P, H), 0.45,0.28, 0.45), (D, H), 0.50, 0.21, 0.45),
((D, W), 0.43,0.22,0.45), ((H, W), 0.41, 0.30, 0.44), ((H, 0), 0.51, 0.22, 0.46),

(W, P),0.42,0.26,0.40), (W, 0), 0.42,0.23, 0.44), ((0, P), 0.43,0.25, 0.48),

(0, D), 0.50,0.22, 0.48)},

SB = (((P, D), 0.42,0.30, 0.44), (P, H), 0.50, 0.30, 0.41), (D, H), 0.50, 0.30, 0.45),
((D, W), 0.43,0.30, 0.45), ((H, W), 0.41, 0.30, 0.44), ((H, 0), 0.51, 0.30, 0.46),

((W, P),0.42,0.26,0.37), (W, 0), 0.45,0.30, 0.44), ((0, P), 0.50, 0.28, 0.45),

((0, D),0.50,0.30, 0.47)}.

Thus, G = (EA, ﬁ B)and G = (EA, §B ) are the neutrosophic digraphs as shown
in Fig. 6.30. To find the best company, we use the following formula:

Sy =)

v;ieX

(T (00) X T, (v)) + (Lgy (W) X I, () = (Figa (v) X Fg, (1)
1 —{T(viv;) + I (vjvj) — F(v;v;)} ’
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P(0.45,0.29, 0.49) P(0.50,0.35,0.37)

Fig. 6.30 G = (G, G)

where
T(w;v;) =max T, (v;v;) X max T=_ (v;v;
(l j) e S'B(’ j) v SB(l j)v
I(vv;) = maxIAB v;v;) X max I=_(v;v;
( ! j) v;eX s (l ]) v;eX SB(l ])’

F(v;v;) = min F:,(v;v;) x min Fz_(v;v;).
(z j) vyeX QB(t j) v eX SB(’ j)

By direct calculations we have
S(P)=0.167, S(D) = 0.156, S(H) = 0.268, S(W) = 0.272, S(O) = 0.155.

From the above calculations it is clear that Waves is the best company for refrigerator.

6.5.2 Context of Recruitment

Choosing the right candidate for the position available is not something that should
be left to chance or guesswork.

How to Choose the Right Candidate

In any recruitment process the ability of the candidate is weighed up against the
suitability of the candidate. Pakistan Telecommunication Company Limited (PTCL)
wants to recruit a person for the post of administrator. To keep the procedure sim-
ple the company wants to appoint their employee on the basis of education(Edu)
and experience (Exp). Let X = {(C1, Edu), (C1, Exp), (C2, Edu), (C2, Exp),
(C3, Edu), (C3, Exp)} be the set of candidates who applied to the post and their
corresponding attributes. Let Rbea neutrosophic tolerance relation on X given as
follows:
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R (C1,Edu) (C1.Exp) (C2,Edu) (C2,Exp) (C3,Edu) (C3,Exp)
(CL,Edu) (1, 1,0 (03,06,0.1) (06,0.7,02) (0.6,05,08) (0.3,02,0.1) (09,0.1,0.1)
(CLExp)| (0.3,0.6,0.1) (1,1,0) (09,0.9,03) (0.8,0.7,0.6) (04,0509 (0.3,0.1,0.1)
(C2.Edu)|  (0.6,0.7,02) (0.9,0.9,0.3) (1, 1,0 (0.6,0.5,0.1) (0.3,02,0.1) (0.4,0.8,0.7)
(C2.Exp)| (0.6,0.5,0.8) (0.8,0.7,0.6) (0.6,0.5,0.1) (1,1,0) (0.1,0.1,02)  (0.5,0.6,0.7)
(C3,Edu)|  (0.3,0.2,0.1) (04,05,09) (0.3,02,0.1) (0.1,0.1,0.2) (1,1,0) (0.2,0.1,0.2)
(C3Exp)|  (0.9,0.1,0.1) (0.3,0.1,0.1) (0.4,08,0.7) (0.5,0.6,0.7) (0.2,0.1,0.2) (1,1,0)

Let A ={((C1, Edu),0.9,0.1,0.5), ((C1, Exp),0.2,0.6,0.5), ((C2, Edu), 0.7,
0.2,0.3), ((C2, Exp), 0.1,0.3,0.9), ((C3, Edu),0.4,0.6,0.8), ((C3, Exp), 0.8,
0.1, 0.2)} be a neutrosophic set defined on X. Then the lower and upper approx-
imations of A are given as:

RA = {((C1, Edu),0.2,0.1,0.6), (C1, Exp),0.2,0.2,0.8), (C2, Edu), 0.1,0.2,0.6),
((C2, Exp),0.1,0.3,0.9), ((C3, Edu),0.2,0.6,0.8), (C3, Exp),0.2,0.1,0.5)},

RA = {((C1, Edu), 0.9,0.6,0.2), (C1, Exp),0.7,0.6,0.2), (C2, Edu),0.7, 0.6, 0.3),
((C2, Exp),0.6,0.6,0.3), ((C3, Edu),0.4,0.6,0.2), ((C3, Exp,0.9,0.3,0.2)}.

LetE = {(C1, Edu)(C1, Exp), (C1, Exp)(C2, Edu), (C1, Edu)(C3, Exp), (C3,
Exp)(C1, Exp), (C1, Exp)(C2, Exp), (C2, Exp)(C2, Edu), (C3, Exp)(C3,

Edu), (C3, Edu)(C2, Exp), (C3, Exp)(C2, Exp)} C X x X and S be a neutro-

sophic tolerance relation on E given as follows:

N (C1,Edu)(C1,Exp) (C1,Exp)(C2,Edu) (C1,Edu)(C3,Exp) (C3,Exp)(C1,Exp) (C1,Exp)(C2,Exp)
(C1,Edu)(C1,Exp) (1, 1,0) (0.3,0.6,0.3) (0.3,0.1,0.1) 0.9,0.1,0.1) (0.3, 0.6, 0.6)
(C1,Exp)(C2,Edu)| (0.3, 0.6,0.3) 1,1,0) (0.3,0.6,0.7) (0.3,0.1,0.3) (0.6,0.5,0.1)
(C1,Edu)(C3.Exp)| (0.3,0.1,0.1) (0.3,0.6,0.7) 1,1,0) (0.3,0.1,0.1) (0.3,0.6,0.7)
(C3,Exp)(CLExp)| (0.9,0.1,0.1) (0.3,0.1,0.3) (0.3,0.1,0.1) 1,1,0 (0.3,0.1, 0.6)
(C1,Exp)(C2.Exp)| (0.3, 0.6, 0.6) 0.6,0.5,0.1) (0.3,0.6,0.7) (0.3,0.1, 0.6) 1,1,0)

(C2.Exp)(C2.Edu)| (0.6,05,0.8)  (0.8,0.7,0.6)  (0.4,0.5,0.8) (0.5, 0.6, 0.7) (0.6, 0.5, 0.6)
(C3.Exp)(C2Exp)| (0.8,0.1,0.6)  (0.3,0.1,0.1)  (0.5,0.1,0.7) (0.8,0.7,0.6) (0.3,0.1,0.1)
(C3.Exp)(C3.Edu)| (04,0.1,09)  (0.3,0.1,0.1)  (0.2,0.1,0.2) (0.4,0.5,0.9) (0.1,0.1,0.2)
(C3,Bdu)(C2.Exp)| (0.3,02,0.6) (04,0509  (0.3,02,0.7) (0.2, 0.1, 0.6) (0.4, 0.5, 0.9)

S (C2.Exp)(C2.Edu) (C3,Exp)(C2.Exp) (C3.Exp)(C3.Edu) (C3,Edu)(C2.Exp)
(CLEdu)(CLExp)| (0.6,05,08)  (0.8,0.1,0.6)  (04,0.1,09)  (0.3,0.2,0.6)
(CLExp)(C2,Edu)| (0.8,0.7,0.6)  (0.3,0.1,0.1)  (0.3,0.1,0.1)  (0.4,0.5,0.9)
(C1,Edu)(C3.Exp)| (0.4,0.5,08)  (0.5,0.1,0.7)  (02,0.1,02)  (0.3,0.2,0.7)
(C3.Exp)(C1,Exp)| (0.5,0.6,0.7)  (0.8,0.7,0.6)  (0.4,05,09)  (0.2,0.1,0.6)
(CLExp)(C2.Exp)| (0.6,0.5,0.6)  (0.3,0.1,0.1)  (0.1,0.1,02)  (0.4,0.5,0.9)

(C2,Exp)(C2,Edu) (1,1,0) 05,05,07)  (0.3,02,0.7)  (0.1,0.1,0.2)
(C3.Exp)(C2.Exp)| (0.5,0.5,0.7) (1, 1,0) 0.1,0.1,02)  (0.2,0.1,0.2)
(C3.Exp)(C3,Edu)| (0.3,02,07)  (0.1,0.1,0.2) (1,1,0) (0.1,0.1,0.2)

(C3,Edu)(C2,Exp)| (0.1,0.1,0.2) (0.2,0.1,0.2) (0.1,0.1,0.2) (1,1,0)
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((C3, Edu),0.2,0.6,0.8)

Fig. 6.31 Neutrosophic digraph G = (RA, 8$B)

Let B={((C1, Edu)(C1, Exp),0.2,0.1,0.1), ((C1, Exp)(C2, Edu), 0.1, 0.1, 0.3),
((C1, Edu)(C3, Exp),0.2,0.1,0.2), ((C3, Exp)(C1, Exp),0.2,0.1,0.2), ((C1,
Exp)(C2, Exp),0.1,0.2,0.3), ((C2, Exp)(C2, Edu),0.1,0.2,0.3)), ((C3, Exp)
(C2, Exp),0.1,0.1,0.3), ((C3, Exp)(C3, Edu),0.2,0.1,0.2), ((C3, Edu)(C2,
Exp),0.1,0.3,0.3)} be neutrosophic rough set on E. Then the lower and upper
approximations of B are given as follows:

SB = {((C1, Edu)(C1, Exp), 0.2,0.1,0.3), ((C1, Exp)(C2, Edu), 0.1,0.1,0.3),
((C1, Edu)(C3, Exp),0.2,0.1,0.3), (C3, Exp)(C1, Exp),0.2,0.1,0.3),

((C1, Exp)(C2, Exp),0.1,0.2,0.3), (C2, Exp)(C2, Edu,0.1,0.2,0.3)),

((C3, Exp)(C2, Exp),0.1,0.1,0.3), (C3, Exp)(C3, Edu),0.1,0.1,0.3),

((C3, Edu)(C2, Exp),0.1,0.3,0.3)},

$B = (((C1, Edu)(C1, Exp),0.2,0.2,0.1), (C1, Exp)(C2, Edu), 0.2,0.3,0.2),
((C1, Edu)(C3, Exp),0.2,0.2,0.1), (C3, Exp)(C1, Exp),0.2,0.2,0.1),

((C1, Exp)(C2, Exp),0.2,0.2,0.1), (C2, Exp)(C2, Edu,0.2,0.2,0.3)),

((C3, Exp)(C2, Exp),0.2,0.2,0.2), (C3, Exp)(C3, Edu),0.2,0.2,0.2),

((C3, Edu)(C2, Exp),0.2,0.3,0.2)}.

Thus, G = (EA, ﬁB) and G = (RA, SB) are the neutrosophic digraphs as shown
in Figs.6.31 and 6.32.
To find the best employee using the following calculations, we have

Iz (C1, Edu) + I (C1, Exp) _ 09407 _
2 2

0.8

I, (Cl) =
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((C3, Edu),0.4,0.6,0.2)

Fig. 6.32 Neutrosophic digraph G = (RA, §B)

132 (€2 Edu) + I (C2, Exp) _ 0.740.6

I ,(C3, Edu) + I (C3, Exp) ~ 0.4+0.9
I (C3) =24 > kA =220 o6s

max {5, (C1), I5, (C2), I3, (C3)} = max{0.8, 0.65, 0.65} = 0.8.

Thus, C1 is best employee for the post under consideration. So PTCL can hire C1
for the post of administrator.

6.6 Comparative Analysis of Hybrid Models

Rough neutrosophic digraphs and neutrosophic rough digraphs are two different
notions on the basis of their construction and approach. In rough neutrosophic
digraphs, the relation defined on the universe of discourse is crisp equivalence relation
that only classifies the elements which are related. On the other hand, in neutrosophic
rough digraphs the relation defined on the set is neutrosophic tolerance relation. The
neutrosophic tolerance relation not just classifies the elements of the set which are
related but also expresses their relation in terms of three components, namely truth-
membership (T), indeterminacy (I) and falsity (F). This approach leaves a room for
indeterminacy and incompleteness.

Below we apply the method of rough neutrosophic digraphs to the above-presented
application (online reviews and ratings).

Here X = {Pel(P), Dawlance(D), Haier (H), Waves(W), Orient(0)} and
the neutrosophic set on X according to the reviews will be
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A={(P,0.45,0.29,0.37), (D, 0.52,0.25,0.49), (H, 0.51, 0.43, 0.45)}(W, 0.47,
0.41, 0.38), (0, 0.51, 0.35, 0.48)}. The equivalence relation on X is given below

O T U™
—_ 0 — o =
coco~—olU
—_ o — o —| T
o—~ocoo =
—_—o = o =0

The lower and upper approximations of A are as follows:

RA = {(P,0.45,0.29,0.48), (D, 0.52, 0.25, 0.49), (H, 0.45, 0.29, 0.48),
(W, 0.47,0.41,0.38), (0, 0.45, ,0.29, 0.48)},

RA = {(P,0.51,0.43,0.37), (D, 0.52,0.25, 0.49), (H, 0.51, 0.43, 0.37),
(W, 0.47,0.41,0.38), (0, 0.51, 0.43, 0.37)}.

Let E={P, D), (P, H), (D, H),(D,W),(H, W), (H, O0), (W, P), (W, 0),(0, P),
(O, D)} be the subset of X x X, and the equivalence relation S on E is given as
follows:

S (D) (H) ®OH) OW) HW) HO WP WO (OP) (OD)
(P.D) 1 0 0 0 0 0 0 0 0 0
(PH) 0 1 0 0 0 1 0 0 1 1
(D,H) 0 0 1 0 0 0 0 0 0 0
D,W) 0 0 0 1 0 0 0 0 0 0
(H,W) 0 0 0 0 1 0 0 0 0 0
(H,0) 0 1 0 0 0 1 0 0 1 1
(W,P) 0 0 0 0 0 0 1 1 0 0
(W,0) 0 0 0 0 0 0 1 1 0 0
(O,P) 0 1 0 0 0 1 0 0 1 1
(O,D) 0 1 0 0 0 1 0 0 1 1

Thus, the lower and upper approximations of B are calculated as follows:

SB = {((P, D), 0.45,0.25,0.48), (P, H), 0.42,0.24,0.37), (D, H), 0.45, 0.25, 0.47),
(D, W), 0.45,0.24, 0.48), (H, W), 0.45,0.29, 0.38), ((H, 0), 0.42, 0.24, 0.37),

(W, P),0.42,0.22,0.37), (W, 0), 0.42,0.22,0.37), ((O, P), 0.42,0.24,0.37),

(0, D), 0.42,0.24,0.37)},

$B = {(P, D), 0.45,0.25,0.48), (P, H), 0.45,0.29,0.37), (D, H), 0.45, 0.25, 0.47),
(D, W), 0.45,0.24,0.48), ((H, W), 0.45,0.29, 0.38), ((H, 0), 0.45,0.29, 0.37),

(W, P),0.45,0.29,0.35), (W, 0), 0.45,0.29, 0.35), ((O, P), 0.45,0.29, 0.37),

((0, D), 0.45,0.29,0.37)}.
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To find the best company, we use the following formula:

Sw) =

v;ieX

(T (00) X T, () + (g, (0) X Iz (v) = (Fpa (i) X Fz, (v1))
1 —{T (jv;) + I (vjv;) — F(vv;)}

s

where
T(v;v;) =max T, (v;v;) Xx max T _(v;v;
(l j) vjeX *SB(Z j) veX SB(l J)’
I(v;v;) =max I:,(v;v;) Xx max Iz _(v;v;
(l J) v;eX SB(’ J) vieX SB(I J)’

F(v;v;) = min Fs,(v;v;) x min F%_(v;v;).
(vi)) = min Fy (uyv;) x min Fg, (v0))

By direct calculations, we have
S(P) =0.20, S(D) =0.0971, S(H) = 0.2077, S(W) = 0.2790, S(O) = 0.2011.

From the above calculations, we have Waves as the best choice and Dawlance as
the least choice for refrigerator; this is because the relation applied in this method
is crisp equivalence relation which does not consider the uncertainty between the
companies of same equivalence class, whereas in our proposed method least choice
for refrigerator is different. So, the results may vary when we apply the method of
rough neutrosophic digraphs and neutrosophic rough digraphs to the same applica-
tion. It means that rough neutrosophic digraphs and neutrosophic rough digraphs
have a different approach.



Chapter 7 ®)
Graphs Under Neutrosophic Soft ez
Environment

In this chapter, we present concepts of neutrosophic soft graphs and intuitionistic
neutrosophic soft graphs. We describe methods of their construction. We consider
applications of neutrosophic soft graphs and intuitionistic neutrosophic soft graphs.
This chapter is due to [22, 23].

7.1 Introduction

In 1999, Molodtsov [116] initiated soft set theory as a new approach for modelling
uncertainties. Later on, Maji et al. [112] expanded this theory to fuzzy soft set the-
ory. Based on the idea of parametrization, a soft set gives a series of approximate
descriptions of a complicate object from various different aspects. Each approximate
description has two parts, namely predicate and approximate value set. A soft set
can be determined by a set-valued mapping assigning to each parameter exactly one
crisp subset of the universe. More specifically, we can define the notion of soft set
in the following way: let X be the universe of discourse and P be the universe of
all possible parameters related to the objects in X. Each parameter is a word or a
sentence. In most cases, parameters are considered to be attributes, characteristics
or properties of objects in X. The pair (X, P) is also known as a soft universe. The
power set of X is denoted by P(X).

Definition 7.1 A pair Fy;, = (F, M) is called soft set over X, where M C P, and
F is a set-valued function F : M — P(X). In other words, a soft set over X is a
parameterized family of subsets of X. For any e € M, F(e) may be considered as
set of e-approximate elements of soft set (¥, M). A soft set F; over the universe X
can be represented by the set of ordered pairs

Fy ={(e, Fu(e)) | e € M, Fy(e) € P(X)}.

© Springer Nature Singapore Pte Ltd. 2018 285
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Table 7.1 Tabular arrangement of the soft set

Parameters 1 2 3 4 5 6 7 8 9 10
e 0 1 0 1 0 1 0 1 0 1
2 0 0 1 0 0 1 0 0 1 0
e3 0 0 0 1 0 0 0 1 0 0
ey4 0 0 0 0 1 0 0 0 0 1

By means of parametrization, a soft set produces a series of approximate descriptions
of a complicated object being perceived from various points of view. It is apparent
that a soft set (¥, M) over a universe X can be viewed as a parameterized family of
subsets of X. For any parameter e € M, the subset F'(¢) € X may be interpreted as
the set of e-approximate elements.

Example 7.1 Let X ={1,2,3,...,10} be a set of first ten positive integers and
P = {ey, e, €3, eq, es} be the set of parameters, where

e stands for the parameter “divisibility by 2”

e; stands for the parameter “divisibility by 3”

e3 stands for the parameter “divisibility by 4”

e4 stands for the parameter “divisibility by 5”

es stands for the parameter “divisibility by prime numbers”.

If M = {ey, 2, e3, e}, then the soft set (F, M) is given by

S ={F(e1), F(e2), F(e3), F(es)},

where

F(e;) =1{2,4,6,8,10}, F(e2) = {3,6,9}, F(e3) = {4, 8}, F(es) = {5, 10}.

Thus the soft set (F, M) is a parameterized family of subsets of X. The tabular
arrangement of the soft set (F, M) is shown in Table7.1.

Example 7.2 Suppose a soft set (F, M) describes attractiveness of the shirts which
the authors are going to wear. Here

X = the set of all shirts under consideration = {x;, x», x3, X4, X5},
M = {colorful, bright, cheap, warm} = {ey, e, e3, e4},

F(e1) = {x1, x5}, F(e2) = {x2, x4}, F(e3) = {x2, x5}, F(eq) = {x1, x2, x5}

So, the soft set (F, M) is a subfamily {F (e,), F (e2), F (e3), F(e4)} of P(X), which
represents the attractiveness of shirts w. r. t the parameters given.

In 2013, Maji [111] introduced the concept of neutrosophic soft sets and Deli and
Broumi [66] introduced the notion of neutrosophic soft relations.

Definition 7.2 Let X be an initial universe. Let P be a set of parameters and M C P.
Let P(X) denote the set of all neutrosophic sets of X. The collection (F, M) is
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termed to be the neutrosophic soft set over X, where F is a mapping given by
F: M — PX).

Definition 7.3 Let (F, M) and (G, N) be two neutrosophic soft sets over the com-
mon universe X. (F, M) is said to be neutrosophic soft subset of (G, N)ift M C N,
and

Tre)(x) < T (x),
Ir@e)(x) < Ige)(x),
Frey(x) = Fgey(x) forall e e M, x € X.

Definition 7.4 Let (H, M) and (G, N) be two neutrosophic soft sets over the com-
mon universe X. The union of two neutrosophic soft sets (H, M) and (G, N)
is neutrosophic soft set (K, C) = (H, M) U (G, N), where C = M U N and the
truth-membership, indeterminacy-membership and falsity-membership of (K, C)
are defined by

THe)(x), ifee M — N,
Txe)(x) = { T (%), ifee N—M,
max(TH(e)(x), TG(e)(x)) ifee MNN.

TH ) (x), ifee M — N,
Ige)(x) = 1 I (x), ifee N—M,
max(Ip () (x), Ige(x)) ifee MNN.

Frey(x), ifee M — N,
Fr@)(x) = 1 Fge)(x), ifee N—M,
min(FH(e)(x), Fg(e)(x)) ifee MNN.

Definition 7.5 Let (H, M) and (G, N) be two neutrosophic soft sets over the com-
mon universe X. The intersection of two neutrosophic soft sets (H, M) and (G, N)
is neutrosophic soft set (K, C) = (H, M) N (G, N), where C = M N N and the
truth-membership, indeterminacy-membership and falsity-membership of (K, C)
are defined by

The)(x), ifee M — N,
Tk (x) = § Toe(x), ifee N—M,
min(TH(e)(x), TG(e)(x)) ifee MNN.

IH(E)()C), ifeeM—N,
Ix o) (x) = § I (%), ifee N— M,
min(IH(e)(x), IG(e)(X)) ifee MNN.
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Fre(x), ifee M — N,
Fr@y(x) = 1 Fge(x), ifee N— M,
max(FH(e)(x), Fg(e)(x)) ifee MNN.

Definition 7.6 Let (H, M) and (G, N) be two neutrosophic soft sets over the same
universe X. The Cartesian product of (H, M) and (G, N) is denoted by (H, M) x
(G, N) = (K, M x N), and the truth-membership, indeterminacy-membership and
falsity-membership functions of (K, M x N) are defined by

Tk (a,p)(x) = min{T ) (x), Tow) (x)},
I (a.p)(x) = min{Ig ) (x), Iy (x)},
Fyap)(x) = max{Fy @) (x), Fee)(x)}.

Definition 7.7 Let (H, M) and (G, N) be two neutrosophic soft sets over the same
universe X. A neutrosophic soft relation from (H, M) to (G, N) is of the form
(R, C),where C C M x N and R(x,y) C (H, M) x (G, N) for all (e, e;) € C.

7.2 Neutrosophic Soft Graphs

Definition 7.8 A single-valued neutrosophic soft graph on a nonempty set X is an
three-ordered tuple G = (F, K, M) if it satisfies the following conditions:

(i) M is a nonempty set of parameters.

(i) (F, M) is a single-valued neutrosophic soft set over X.

(iil) (K, M) is a single-valued neutrosophic soft set over £ C X x X.

@iv) (F(e), K (e)) is a single-valued neutrosophic graph, that is,

Tk (o) (xy) < min{Tr)(x), Tre) (¥)},
I (o) (xy) < min{lpe)(x), Ire (3},
Fre)(xy) < max{Fr()(x), Fre)(y)}

such that

0 < Tx@y(xy) + Ix@(xy) + Fx@e(xy) <3 Vee M, x,y € X.
The neutrosophic graph (F(e), K (e)) is denoted by H (e) for convenience. A single-
valued neutrosophic soft graph is a parameterized family of single-valued neutro-
sophic graphs. The class of all single-valued neutrosophic soft graphs is denoted by

NS(G*). Note that

TK(K)(xy) = Ik(e)(xy) =0, Fk(e)(xy) = 1, V)Cy e X x X — E, e ¢ M.



7.2 Neutrosophic Soft Graphs 289

y1(0.5,0.4,0.6)  12(0.2,0.6,0.7)
(0.1,0.3,0.5)

41(0.2,0.3,0.5) ¥2(0.4,0.7,0.3)

(0.2,0.3,0.3)
4)

(0.1,0.2,0.4)
1,0.3,0

(0.1, 0.

v4(0.1,0.4,0.3) y3(0.6,0.7,0.4) (0.2,0.3,0.5) y4(0.2,0.4,0.5)

H(e1) H(e2)

y5(0.2,0.4,0.5)

Fig. 7.1 Neutrosophic soft graph G = {H (e1), H(e2)}

Definition 7.9 Let G, = (Fy, K|, M) and G, = (F», K,, N) be two neutrosophic
soft graphs of G*. Then G| is neutrosophic soft subgraph of G, if

(i) MCN,
(i) H,(e) is a partial subgraph of H,(e) foralle € M.

Example 7.3 Consider a simple graph G* such that X = {yy, y2, y3, y4} and E =
{y1y2, y1¥3, Y1 V4, Y2 V4, y3va}. Let M = {e}, e} be a set of parameters, and let
(F, M) be a neutrosophic soft set over X with neutrosophic approximation func-
tion

F : M — P(X) defined by

F(e1) = {(y1,0.5,0.4,0.6), (2,0.2,0.6,0.7), (vy3,0.2,0.4, 0.5), (y4, 0.1, 0.4, 0.3)},
F(ez) = {(»1.0.2,0.3,0.5, (32,0.4,0.7,0.3), (3, 0.6,0.7,0.4), (4, 0.2, 0.4, 0.5)}.

Let (K, M) be a neutrosophic soft set over E with neutrosophic approximation
function
K : M — 'P(E) defined by

K(el) = {(ylyz, O.l, 03, 05), (y1y3, 02, 03, 03), (y1y4, O.l, 02, 04)},
K(e2) = {(»1y3,0.1,0.2,0.4), (y2y4,0.1,0.3,0.4), (y3y4,0.2,0.3,0.5)}.

Clearly, H(e;) = (F(e1), K(e1)) and H(ez) = (F(ez2), K(ey)) are neutrosophic
graphs corresponding to the parameters e; and e;, respectively, as shown in Fig.7.1.
Hence G = {H (e;), H(e;)} is a neutrosophic soft graph of G*.
Tabular representation of a neutrosophic soft graph is given in Table 7.2.

Definition 7.10 The neutrosophic soft graph G| = (G*, Fy, K, N) is called span-
ning neutrosophic soft subgraph of G = (G*, F, K, M) if
i NS M,
(i) Tr ) (y) = Tre)(y),
Ir @ (y) = Ire)(),
Fre)(y) = Fre)(y), forallee M, y € X.
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Table 7.2 Tabular representation of neutrosophic soft graph

F Vi 2 3 v

e (0.5,0.4,0.6) 0.2,0.6,0.7) 0.2,0.4,0.5) (0.1,0.4,0.3)
e (0.2,0.3,0.5) 0.4,0.7,0.3) 0.6,0.7,0.4) (0.2,0.4,0.5)
K | yiy y2y3 y1y3 Yiya y2y4 Y3y4

el (0.1,0.3,0.5) | (0.0,0.0,1.0) | (0.2,0.3,0.3) | (0.1,0.2,0.4) | (0.0,0.0,1.0) | (0.0,0.0,1.0)
ex | (0.0,0.0,1.0) | (0.0,0.0,1.0) | (0.1,0.2,0.4) | (0.0,0.0,1.0) | (0.1,0.3,0.4) | (0.2,0.3,0.5)

Definition 7.11 Let G| = (F, K|, M) and G, = (F», K, N) be two neutrosophic
soft graphs of G} = (X1, E1) and G5 = (X3, E»), respectively. The Cartesian prod-
uct of G| and G, is a neutrosophic soft graph G = G| x G, = (F, K, M x N),
where
(F = F| x F,, M x N) is a neutrosophic soft set over

X = X[ X Xz,

(K = K| x K, M x N) is a neutrosophic soft set over

E={((x,y1), (x,y2)) 1 x € X1, (y1, y2) € E2} U{((x1, ), (x2,¥)) : y € X2, (x1,x2) € E1}

and (F, K, M x N) are neutrosophic soft graphs such that

@)
Tran®,y) = Trw®) A Trep(y),
Ir@pn(x,y) = Irw&) A Ige (),
Frapn@x,y) = Frao®) vV Frp (), Y&,y)eX, (a,b) e M x N,
(i)
Tk @,y (. y1). . 32)) = Tr@)@®) A Ty (01. ¥2)
Ik @by (. 3D, (6, 2) = Ip@®) A Ig,m) 1. y2),
Fi(ap) (@, y1), (5, 72)) = Fpa®) vV Fr,pO1.2). VxeXi, (y1,y) € Ea,
(iii)
Tk @) (X1, ). 02, )) = Trpy () A Tk (X1, x2),
Ik (1. 9). 62, ) = Ipp) () A Ik @) (x1.x2),
Fr@pn (@13, (2.9) = Fpep() V Fr@&1.x2). Vye X, (x1,x2) € Ej.

H(a,b) = H\(a) x Hy(b) forall (a,b) € M x N are neutrosophic graphs of G.
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Example 7.4 Let M = {e;, e;}and N = {e3, e4} be a set of parameters. Consider two
neutrosophic soft graphs G| = (H;, M) = {H,(ey), Hi(e3)} and G, = (Hp, N) =
{H»(e3), Hy(e4)} such that

Hien) = ({(x1,0.2,0.4,0.6), (x2,0.4,0.5,0.7), (x3, 0.4, 0.5,0.7)},
{(x1x2,0.2,0.3,0.4), (x2x3,0.2,0.3,0.4), (x1x3,0.1,0.2,0.5)}),

Hi(e2) = ({(x1,0.3,0.5,0.7), (x2,0.4,0.5, 0.6), (x3,0.5,0.4,0.3)},

(x1x2,0.2,0.4,0.5), (x1x3, 0.2, 0.3,0.4)}),

(1, 0.40.5,0.3), (2, 0.3,0.4, 0.1), (y3,0.3,0.5,0.8), (v4, 0.5, 0.3, 0.4)},

(12,0.2,0.3,0.3), (13, 0.2,0.3,0.5), (3334, 0.2,0.2,0.5)}),

Ha(es) = ({(y1,0.4,0.5,0.8), (12, 0.6,0.3,0.7), (v3, 0.4,0.4,0.5), (v4, 0.7,0.2,0.6)},

(12,0.3,0.4,0.6), (y1y3,0.2,0.3,0.5), (y1ys,0.3,0.2,0.5)})

{
{
Ha(e3) = ({
{
{
{

The Cartesian product of G| and G, is G| x G, = G = (H, M x N), where

M x N = {(e1, e3), (e1, e4), (€2, €3), (e2, e4)},
H(ey, e3) = Hi(e1) x Ha(e3),
H(ey, es) = Hi(e1) x Ha(es),
H(ez, e3) = Hi(e2) x Ha(e3),
H(es, e4) = Hi(ez) x Ha(es),

are neutrosophic graphs of G = G| x G».
H(ey, e3) = Hi(e;) x Hy(e3) is shown in Fig.7.2.
In the similar way, Cartesian product of

H(ey, es) = Hi(e1) X Hy(es),
H(ey, e3) = Hi(ex) x Ha(e3),
H(ez, e4) = Hi(e2) x Ha(eq)

can be drawn. Hence G = G| x G, = {H (e}, e3), H(ey, es), H(ey, e3), H(ep, e4)}
is a neutrosophic soft graph.

Theorem 7.1 The Cartesian product of two neutrosophic soft graphs is a neutro-
sophic soft graph.

Proof LetG| = (Fy, K1, M)and G, = (F,, K, N) be two neutrosophic soft graphs
of G} =(Xy,E)) and Gj; = (X, Ey), respectively. Let G =G, x Gy =
(F,K,M x N) be the Cartesian product of G|, and G,. We claim that G =
(F, K, M x N) is a neutrosophic soft graph and

(H,M x N) ={F| x F»(a;,b;), K1 x Kz(a;,b;)}, Ya, e M, b; € N

fori =1,2,...,m, j=1,2,...,n are neutrosophic graphs of G.
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Fig. 7.2 Cartesian product:
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Consider,

Tk (e, y1), (x, y2)) =min{Tr, a) (%), Tiy o) (1 ¥2)}

<min{TF, ;) (%), min{Tr, ;) (Y1), Trrb) (¥2)}}

=min{min{TF, ;) (x), Tr,»;) 1)}, min{TF, ;) (x), Tryp;) (2D}
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TK(I,,.,,,j)((L ¥, (6, y2)) <min{(Tr @) X Try0,) (%2 YD (TR @) X Tryp,) (s y2)}

fori=1,2,....,m, j=1,2,...,n,

Izq,,i,bj)((x, y1), (6, ¥2)) =min{I gy o) (0), Ty ;) 015 ¥2)}
<min{/p, @) (), min{Ip, ;) 1), IR e, (72)})
= min{min{/r, ;) (x), Ir ;) Y1}, min{lp, ;) (%), Iy ;) (v2)}}
IK(a,..,,J.)((x, y1), (x, ¥2)) <min{(F, ) ¥ Ipw) &, y1), R @) X TR e)) (X, y2)},
fori=1,2,....m, j=1,2,...,n

F/q,,i,,,j)((x, ¥, (x, ¥2)) =max{FF, ) (X), Fyp,) (1, y2)}
fori=12,....m, j=1,2,...,n
<max{FF, (q)(x), max{Fr, ;) (1), Frp;) ()}
= max{max{Fr, @) (x), Fr;) (Y1} max{Fr, ;) (x), Frp;) ()1
FK“,,..,,_/.)((X, ¥, (x, ¥2)) <max{(Fr, @) % Frw))(x, 1), (FF(@) X Fre))(x, y2)},

fori=1,2,....m, j=1,2,...,n.

Similarly,

Tk gy ;) (15 ¥)s (02, 9)) = min{(TF, @) X Tro6) (X1, ¥)s (TFi@) X Try;) (¥2, V)},
fori=1,2,...,m, j=1,2,...,n,

Ky 0y (1, 3), (02, ¥)) =min{(py @) X 1) (515 Y) TRy @) X TR ) (%2, Y},
fori=1,2,....m, j=1,2,...,n,

FR i (01, 9), (02, 9)) =max{(FFy @) X FRe;) 15 ), (FFi@) X FRe)) (2, )}
fori=1,2,....,m, j=1,2,...,n.

Hence G = (F, K, M x N) is a neutrosophic soft graph.

Definition 7.12 The cross product of G, and G, is a neutrosophic soft graph
G=G,©G,=(F,K,M x N),where (F, M x N)isaneutrosophic soft set over
X = X; x X,,(K, M x N)isaneutrosophic softsetover E = {((xy, y1), (x2, ¥2)) :
(x1,x2) € Eq, (31, y2) € Ez},and (F, K, M x N) are neutrosophic soft graphs such
that

(1)

Trapnx,y) = Trw®) AN Tre(y),
Tr@p(x, y) Ir@(xX) AN Tre) (),
Franx,y) = Frw®) V Fre(y), Y(x,y) € X, (a,b)e M x N
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(ii)

Tk @p) ((x1, y1), (02, 2)) = Tk &1, %2) A Ty (1, ¥2),
Ik@p (1, y1), (02, 32)) = Ig@&1,%2) A Ik (n, ¥2),
Fra.p (1, yD), (02, 32)) = Fry@(1.x2) vV FroayO1, ¥2), ¥ (x1,x2) € E1, (31, y2) € Ea.

H(a,b) = Hi(a) © Hy(b) for all (a,b) € M x N are neutrosophic graphs of G.

Theorem 7.2 The cross product of two neutrosophic soft graphs is a neutrosophic
soft graph.

Proof LetG| = (Fy, K|, M)and G, = (F;, K,, N) betwo neutrosophic soft graphs
of G} = (Xi, E1) and G; = (X», E»), respectively. Let G = G| © G, = (F, K,
M x N) be the cross product of G and G,. We claim that G = (F, K, M x N) is
a neutrosophic soft graph and

(H,M x N) ={F, @ F»(a;, b;), K1 © Ky(a;,b;)}Ya; e M, bj e N

fori =1,2,...,m, j=1,2,...,n are neutrosophic graphs of G.
Consider,

TK(ai,hj)((xl’ y1), (x2, ¥2)) =min{Tk, (@) (x1, x2), Ty, (1, y2)},
fori=12,....m, j=1,2,...,n
<min{min{TFr, ;) (x1), TF, a;) ¥2)}, min{Tr, ;) (31> Ty o) (Y23}
=min{min{Tr, ;) (x1), Tr ;) YD)}, min{TF, ;) (x2), Tryp,)(y2)}}
Tk (a;.6;) (1, y1), (x2, ¥2)) <min{T, ) © Tryb;) ¥1, 1) TFy (@) © Tryn;) (X2, y2)}s

fori=1,2,....m, j=1,2,...,n,

Ik (a.op (10 y1)s (k2. y2)) =min{T g, @) (1, ¥2), Try 0,y (V15 ¥2)}s
fori=1,2,...,.m, j=1,2,...,n
< min{min{/p, (a;) (x1), IF, (a;) (x2)}, min{Ip, ;) (Y1), Lryb;) 02D}
=min{min{/, ;) (x1), I, ;) (YD} min{IF, @) (x2), Ir0;) (2}
Ik @y (1, y1), (2, ¥2)) <min{I g @) © Ty, (X1, YD TR @) © TRp)) (62, y2)),
fori=1,2,...,m, j=1,2,...,n,

Fiaby) (1, y1), (x2, y2)) =max{Fi, ) (X1, ¥2), Fy5) (1, ¥2)}»
fori=1,2,....m, j=12,...,n
< max{max{Fr, ) (x1), Fr ) x2)}, max{Fr,p,) (Y1), Fre,)(2)}}
=max{max{Fr, ;) (*1), Fr»,)) (Db max{Fr ;) (*2), Frp,) ()}
Fi by (1, y), (¥2,¥2)) max{Fr ) @ Fryp;) &1, Y0 Fri@) © Frye;) (62, y2)}
fori=1,2,....m, j=1,2,...,n.

Hence G = (F, K, M x N) is a neutrosophic soft graph.
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Definition 7.13 The lexicographic product of G and G is a neutrosophic soft graph
G=G,0G, = (F,K,M x N), where (F, M x N) is a neutrosophic soft set over
X =X, x X5, (K, M x N) is a neutrosophic soft set over E = {((x, y1), (x, y2)) :
u € X1, (1, y2) € E2} U{((x1, y1), (x2, y2)) : (x1, x2) € Ey, (31, y2) € E2},  and
(F, K, M x N) are neutrosophic soft graphs such that

(6]

Trapn(x,y) = Tr&) AN Trep (),

Iran(x,y) = Ina&) A Ige (),

Fran(x,y) = Frao®) V Frep (), Y&x,y) €X, (a,b) e M x N,
(ii)

Tk @) (. 1), 6, 32)) = Tr@) @) A Ty (1. ¥2),
Ig @) (@ y1). 6. 32) = I @@ A Igypm)y (1. y2),
Fra.p) (. y1), (x, 2)) Fria)y(x) vV Fry,ip)(31,¥2), Yx € Xy, (y1,y) € Ea,

(iii)

Tk @) (x1,x2) A Tk, (01, ¥2),
Ig @) x1,%2) A gy ) (V15 ¥2)s
Fii(a)(x1,x2) V Fry)(y1,y2), ¥ (x1,x2) € E1, (1, 2) € En.

Tk (a,b) (1. 1), (x2. 2))
Ik (a.b) ((c1, 1), (%2, ¥2))
Fr .y (1, 1), (22, ¥2))

H(a, b) = Hi(a) © Hy(b) for all (a,b) € M x N are neutrosophic graphs of G.

Theorem 7.3 The lexicographic product of two neutrosophic soft graphs is a neu-
trosophic soft graph.

Definition 7.14 The strong product of G| and G is a neutrosophic soft graph G =
G ®G,=(F,K,M x N), where (F, M x N) is aneutrosophic soft set over X =
X, x X5, (K, M x N) is a neutrosophic soft set over E = {((x, y1), (x, y2)) 1 u €
X1, 1, y2) € E2} U{((x1, ), (x2,¥) 1 y € Xa, (x1,x2) € E1} U {((x1, y1),

(%2, y2)) : (x1,x2) € Ey, (y1, y2) € Eb}, and (F, K, M x N) are neutrosophic soft
graphs such that

()]

Tran(x,y) = Tr@w&) AN Tre(y),

Iran(x,y) = In&) A Ige (),

Frupn®x,y) = Fra®) V Frep(y), Yx,y) € X, (a,b) e M x N,
(ii)

Tk (a,p) (6, y1), (5, 2)) = Tr @) A Tgyp) (1, y2),
Ik @by (. yD), (6, 32) = Ip @@ A g, O1s ).
Fr@ap) (& D), (x,2)) = Fp@)(x) vV Fr,pyO1.y2), Yx € X1, (y1,y2) € Ea,
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(i)
Tk (a.0)((x1, ), %2, 9)) = Tp,) ) A Tk, (@) (X1, X2),

Ik@p) (1. 9), (2. 9) = Ipep () A Ik @) (1. x2),
Fi (a.b)((x1, ), (x2, ) Fe,py(¥) vV Fgia)(x1,x2), Yy € Xa, (x1,x2) € EY,

(iv)

Tk () (x1,X2) N Tk (V15 ¥2)s
Ik, () (X1, X2) A Iy (V15 ¥2)s
Fgia)(x1,x2) V' Fgy) (31, ¥2, ¥ (x1,x2) € E1, (31, y2) € Ea.

Tk @) (X1, Y1), (X2, 2))
I @b ((x1, y1), (x2, ¥2))
Fra.b (1, v, (x2, 2))

H(a, b) = Hi(a) @ H,(b) for all (a,b) € M x N are neutrosophic graphs of G.

Theorem 7.4 The strong product of two neutrosophic soft graphs is a neutrosophic
soft graph.

Definition 7.15 The composition of G| and G, is a neutrosophic soft graph G =
G1[Gy] = (F,K, M x N), where
(F, M x N) is a neutrosophic soft set over

X = Xl X X2,
(K, M x N) is a neutrosophic soft set over

E ={((x,yD), (x,y)) :u € X1, (y1,y2) € E2}U
{((x1, ¥), (x2,¥)) 1 v € X, (x1,x2) € E} U
{(Cer, 1), (2, ¥2)) = (X1, x2) € Ey, y1 # ya)

and (F, K, M x N) are neutrosophic soft graphs such that

()
Trapn(x,y) = Trw®) ATrw) (),
Irapn(x,y) = Ifo&) Alpe(y),
Frap(x,y) = Fraw(Xx) V Frep (), V(x,y) € X, (a,b) e M x N,
(ii)
Tk (a,p)((x, y1), (%, ¥2)) = TR @) (xX) AN Tgypy (V15 ¥2)s
Iga,p)((x, 1), (X, 32)) = Ip @) AN g, (01. ¥2),
Fg@n((x,y1), (x,2)) = Fp@a®) vV Fg,pyO1,y2), ¥Yx € Xy, (y1,y) € Ea,
(iii)
Tk @) (X1, ). 2. 9)) = Tp,i) () A Tk, (@) (X1.X2),
Ig @) (1. 9). 2. 9) = Ipep) ) A Ik @ (&1, x2),

<

Fra.p)((x1. ). (52, ) = Fp) () vV Fi a)(x1,x2), Yy € X2, (x1,x2) € Ey,
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(iv)

Tk @) (x1,X2) AN Trepy (1) AN Trp)(y2),
Ig @ (x1,%2) A Ipey (1) A Ipe (y2),
Fki@)(x1,%2) VvV Frepy(1) vV Frep(y2), Y (x1,x2) € B,

Tk (a0 (1, ¥1), (32, 32))
Ik @) ((e1, YD, (x2, y2))
Fran ((e1, 1), (x2, 2))
where y| # y2.

H(a,b) = H (a)[H,(b)] for all (a,b) € M x N are neutrosophic graphs of G.

Example 7.5 Let M = {e;} and N = {ey, e3} be the parameter sets. Let G| and G,
be the two neutrosophic soft graphs defined as follows:

G, ={Hi(e1)} = {({(x1,0.3,0.4,0.6), (x2,0.4,0.5,0.7)}, {(x1x2, 0.3, 0.4,0.6)})},

Ga = {Hz(e2), Ha(e3)} = {((y1,0.4,0.5,0.3), (32,0.7,0.2,0.4), (v3,0.5, 0.6, 0.3},
{(y1y3,0.4,0.5,0.2), (y2¥3,0.5,0.2,0.4)}),
({(>1,0.3,0.4,0.4), (32,0.2,0.4,0.8), (y3,0.6,0.5,0.7)},
{(31¥2,0.2,0.3,0.7), (y1¥3,0.1,0.3,0.6) ) }.

The composition of G| and G, is G = G[G2] = (H, M x N), where

M x N = {(e1, e2), (e1, e3)},
H(e1, e2) = Hi(e1)[Ha(e2)],
H ey, e3) = Hi(e1)[Ha(e3)]

are neutrosophic graphs of G{[G;]. Hi(e;)[H2(e;)] is shown in Fig.7.3.
Similarly, composition of neutrosophic graphs H;(e;) and H;(e3) of G and G5,

respectively, can be drawn.
Hence G = G[G2] = {H\(e1)[Hz(e2)], Hi(e1)[Hz(e3)]} is a neutrosophic soft
graph.

Theorem 7.5 If G| and G, are neutrosophic soft graphs, then G[G,] is a neutro-
sophic soft graph.

Proof G| = (Fy, K|, M)and G, = (F,, K», N) are two neutrosophic soft graphs of
G} = (X1, Ey) and G} = (X», Ey), respectively. Let G1[G2] =G = (F, K, M x
N) be the composition of G| and G,. We claim that G;[G,] = G = (F, K, M x N)
is a neutrosophic soft graph and

(H,M x N) = {Fi(ap)[F2(b)], Ki(a;))[K2(bj)]}, Ya; € M,b; € N,

fori =1,2,...,m, j=1,2,...,n are neutrosophic graphs of G.
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Fig. 7.3 Composition: H;(ej)[Hz(e2)]
Letu € X and (y, y2) € E», and we have

Tk (a;,bj) (2 Y1), (6, y2)) =min{Tpy a) (). Ty o) 1. ¥} fori=1.2,...om, j=1.2,....n

TK(a[v,bj)((x, ¥, (x, y2)) <min{Tp, ;) (x), min{7r, ;) V1), Try ;) 21}

{
min{min{7r; ;) (0, Th, b ;) YD} M Ty (a) (%)s Ty ) (v2) 1
{

min{(Tr, @) X Tr ;)% 1) (TFya) X TRy b)) (s ¥2)}
T (a0 (G Y1) (6, ¥2)) = min{Trq p;) (X 31 TR b, (5 ¥2)),
IK(al.,bj)((x,yl), (x, y2)) =min{lg, (g;) ), Iy Oryp))fori=1.2,....m, j=1.2,....n
Ik (a5 (4 yD). (6, y2)) <min{Ipy gy (0, min{TEy ;) (V1) TFy ) (V2)})
=min{min{/r; (a;) (%), 1y b ;) YD} min{lpy (@) (), TRy ) (v2)1)
=min{(IF @) X Iry0)) (> Y1)s UFy () X 1y b)) (X5 ¥2)}

Tk (ag.bj) (¥, (. 32)) =min{lp g, by (6 YD TR, b;) (X 2)}

Fi a5 (G, 31). (0, ¥2)) =max{Fp, ) (%), Fiy ;) 1. 32)}, fori =1.2....om, j=1.2,....n

FK(ai,bj)((xa YD (%, ¥2)) <max{Fg, (4,)(x), max{Fr, ;) 1) Fryp;) 21
=max{max{Fr, ;) (¥), FFy ;) YD} max{FF, @) (), Fry ;) (v2)}}
=max{(FFy ;) X FRy0)) ¥ Y15 (FFy (@) X FRyb;)) (¥, ¥2))

Fi a5 (0. 1), (6, y2)) <max{Fpa;,b;) (. Y1) FF(a;,b,) (. ¥2)}

Similarly, for any y € X, and (x;, x») € E;, we have
T (a.b) ((x1, ¥), (2, ¥)) <min{Tra, 5, (X1, ¥): Tra,.p;) (X2, Y},

Ik .b) (X1, ¥), (52, y)) <min{lp, 5, (X1, ¥), Tra.b;) (X2, Y},
Fraop (1, ¥), (002, ) <max{Fr@p,)x1, ¥), Frea.,) (X2, )}
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Let (x1, y1)(x2, y2) € E, (x1, x2) € Ey, and y; # y». Then, we have

Tk (a;.b)) ((e1, y1), (x2, ¥2)) =min{ Tk, ;) (X1, X2), Tryv;) 01)s Thy ;) (v2)}
<min{min{7r, a;) (*1), TF, @) %2)}, TR 6)) (315 TR 6 (¥2)}
= min{min{7F, @) (x1), Try ;) YD}, min{TF, @) (x2), TR0, (v2)}}
Tk (@b (01, ¥1)s (02, ¥2)) < min{Tra; b;) (515 Y1), TF@ ) (2, ¥2))s

Tk (a; b)) (Ot y1), (X2, 2)) =min{ Ik, @) (X1, ¥2), TEy ) (V1) TRy b)) (v2))
< min{min{Ir, (@) (x1), IF, @) ®2)} 1R0)) VD), Iy (02)}
=min{min{/r, ;) (x1), Ir, ;) (Y1)}, min{Ir, a,) (x2), IF ;) (y2) 1}
Tk @by (1, ¥1), (62, ¥2)) <min{Ir; b;) (%15 Y15 TFar.0,) (42, ¥2)},

Fr by (1, y1), (¥2, ¥2)) =max{F, @) (x1, ¥2), Fr0) (V1) FR@,)(v2)}
<max{max{FFr, ;) (x1), Fr @)X}, Fr) O, FRe)(2)}
=max{max{Fr, @) (x1), Fre;) ()}, max{Fr @) (x2), Fryp;)(2)}}

FK(a,-,hj)((xls y1), (x2, ¥2)) <max{Fr b)) X1, Y1) Fra;,p;)(x2, y2)}-

Hence G = (F, K, M x N) is a neutrosophic soft graph.

Definition 7.16 The complement of a neutrosophic soft graph G = (F, K, M)
denoted by G¢ = (F¢, K¢, M°) is defined as follows:

() M =M,
(i)  Fe) = Fl(e),
(i)  Tgee)(x,¥) = TrEe)(x) AN Tre)y(¥) — Tk(e)(x,y)
Ige@ey(x,y) = Ipe)(xX) AN Ipeyy) — Ik(e)(x,y)
FKr(e)(x,y) = Fp(e)(x) \ FF(e)(y) — FK(e)(x,y)’ for allx,y €eX,eeM.

Example 7.6 Consider an undirected graph G*, where X = {x|, x», x3, x4} and
E = {x1x2, x2x4, x3x4}. Let M = {ey, €5} and let (F, M) be a neutrosophic soft set
over X with its approximate function F' : M — P(X) given by

F(e1) ={(x1,0.5,0.6,0.7), (x2,0.4,0.5,0.3), (x3,0.7,0.5, 0.8), (x4,0.4,0.9,0.5)},
F(e2) = {(x1,0.4,0.5,0.2), (x2,0.3,0.6,0.8), (x3,0.3,0.4,0.5), (x4,0.7,0.8,0.5)}.

Let (K, M) be a neutrosophic soft set over E with its approximate function
K : M — P(E) given by

K(e1) = {(x1x2,0.3,0.4,0.5), (x2x4,0.3,0.4,0.4), (x1x3,0.4,0.3,0.6)},
K(ez) = {(x1x2,0.2,0.3,0.5), (x2x3,0.1,0.3,0.4), (x3x4,0.2,0.2,0.4)}.

By routine calculations, it is easy to see that H(e;) and H(e;) are neutrosophic
graphs corresponding to the parameters e; and e;, respectively, as shown in Fig. 7.4.
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21(0.5,0.6,0.7) 2(0.4,0.5,0.3) 21(0.4,0.5,0.2) x2(0.3,0.6,0.8)
(0.3,0.4,0.5)

£5(0.7,0.5,0.8) £4(0.4,0.9,0.5) x3(0.3,0.4,0.5) £4(0.7,0.8,0.5)
H(es) H(e2)

Fig.74 G = {H(e1) = (F(e1), K(e1)), H(e2) = (F(e2), K(e2))}

21(0.5,0.6,0.7) 22(0.4,0.5,0.3)  x1(0.4,0.5,0.2) £2(0.3,0.6,0.8)
(0.1,0.1,0.2) (0.1,0.2,0.3)

(0.1,0.2,0.2)
(0.3,0.4,0.5)

23(0.7,0.5,0.8)  24(0.4,0.9,0.5) 235(0.3,0.4,0.5) 24(0.7,0.8,0.5)
Hc(el) Hc(ez)

Fig. 7.5 G ={H(e1) = (F (e1), K(e1)), H (e2) = (F(e2), K (e2))}

By the complement of neutrosophic soft graph G is the complement of neutro-
sophic graphs H (e;) and H (e;) which are shown in Fig.7.5.

Definition 7.17 A neutrosophic soft graph G is self-complementary if G ~ G°.

Definition 7.18 A neutrosophic soft graph G is a complete neutrosophic soft graph
if H (e) is a complete neutrosophic graph of G foralle € M, i.e.,

Tk (o) (xy) =min {Tr)(x), Tre) (1)},
Ig (o) (xy) =min {Ir)(x), Ire) ()},
Fk(e)(xy) =maX{Fp(e)(x), FF(e)(y)}v Vx, y € X, ee M.

Example 7.7 Consider the simple graph G* = (X, E) where X = {x1, x2, x3, x4}
and E = {x1x, XoX3, X3X4, X1X3, X1 X4, X2X4}. Let M = {ey, e, e3}. Let (F, M) be a
neutrosophic soft set over X with its approximation function F : M — P(X) defined
by

F(e;) = {(x1,0.5,0.7,0.7), (x2,0.3,0.4, 0.6), (x3,0.5,0.4,0.6)},
F(e2) ={(x1,0.8,0.5,0.4), (x2,0.4,0.6, 0.8), (x3,0.4,0.5,0.6), (x4,0.7,0.8, 0.3)},
F(e3) ={(x1,0.6,0.7,0.4), (x2,0.7,0.4,0.9), (x3,0.8,0.5,0.9), (x4,0.5,0.7,0.7)}.

Let (K, M) be a neutrosophic soft set over E with its approximation function
K : M — 'P(E) defined by
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:1;1(0.5,047,0.7)x2(0.3,0.4,0.6)1‘1(048,0.5,0.4)12(0_470_670'8) 21(0.6,0.7,0.4)22(0.7, 0.4, 0.9)
(0.3,0.4,0.7) K_ (0.4,0.5,0.8) (0.6.04.0.9)
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£>(0.4,0.5,0.6 = AN =

$-10.5,0.5,0.9)
23(0.5,0.4,0.6) 23(0.4,0.5,0.6) 24(0.7,0.8,0.3) (02,0.5,0.9) 2a(05.0.40.7)
x3(0.8,0.5,0. x4(0.5,0.7,0.
H(e1) H(es)

H{es)

Fig. 7.6 Complete neutrosophic soft graph G = {H (e1), H (e2), H(e3)}

K(e1) = {(x1x2,0.3,0.4,0.7), (x1x3, 0.5, 0.4, 0.7), (x2x3, 0.3, 0.4, 0.6)},

K (e2) = {(x1x2, 0.4, 0.5,0.8), (x2x3, 0.4, 0.5, 0.8), (x3x4, 0.4, 0.5, 0.6),
(x1x3, 0.4, 0.5, 0.6), (x1x4, 0.7, 0.5, 0.4), (x2x4, 0.4, 0.6, 0.8)},

K (e3) = {(x1x2, 0.6, 0.4, 0.9), (x2x3, 0.7, 0.4, 0.9), (x3x4, 0.5, 0.5,0.9),
(x1x3, 0.6, 0.5, 0.9), (x1x4, 0.5, 0.7, 0.7), (x2x4, 0.5, 0.4, 0.9)}.

It is easy to see that H(e;), H(e;) and H (e3) are complete neutrosophic graphs of
G corresponding to the parameters e, e, and e3, respectively, as shown in Fig.7.6.

Definition 7.19 A neutrosophic soft graph G is a strong neutrosophic soft graph if
H (e) is a strong neutrosophic graph for alle € M.

Example 7.8 Consider the simple graph G* where X = {x;, x», x3, x4} and E =
{x1Xx2, X2X3, X3X4, X1X3, X1X4, X2X4}. Let M = {ey, e>, e3}. Let (F, M) be a neutro-
sophic soft set over X with its approximation function F : M — P(X) defined by

F(e)) = {(x1,0.5,0.7,0.7), (x2, 0.3, 0.4, 0.6), (x3, 0.5, 0.4, 0.6)},
F(ez) = {(x1,0.8,0.5,0.4), (x2,0.4, 0.6, 0.8), (x3, 0.4, 0.5, 0.6), (x4, 0.7, 0.8, 0.3)},
F(e3) = {(x1,0.6,0.7,0.4), (x2,0.7, 0.4,0.9), (x3, 0.8, 0.5,0.9), (x4, 0.5,0.7, 0.7)}.

Let (K, M) be a neutrosophic soft set over E with its approximation function
K : M — 'P(E) defined by

K(e1) = {(x1x2,0.3,0.4,0.7), (x1x3, 0.5, 0.4, 0.7), (x2x3, 0.3, 0.4, 0.6)},
K(e2) = {(x2x3,0.4,0.5,0.8), (x1x4, 0.7, 0.5, 0.4},

K(e3) = {(x1x2,0.6,0.4,0.9), (x1x3, 0.6, 0.5, 0.9), (x2x4, 0.5, 0.4, 0.9)}.
H{(e)) = (F(e1), K(e1)), H(ez) = (F(e2), K(e2)), H(e3) = (F(e3), K(e3))

are strong neutrosophic graphs of G corresponding to the parameters ey, e, and e3,
respectively, as shown in Fig.7.7.
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21(0.5,0.7,0.7) £2(0.3,0.4,0.6)  21(0.8,0.5,0.4) 2(0.4,0.6,0.8) «1(0.6,0.7,0.4) 2(0.7,0.4,0.9)
(0.6,0.4,0.9)

(0.3,0.4,0.7)

(0.6,0.5,0.9)

23(0.5,0.4,0.6) 23(0.4,0.5,0.6)  ©a(0.7.0.80.3) 408 05,0.0) 2400507, 0.7)
H(el) H(EQ) H(€3)

Fig. 7.7 Strong neutrosophic soft graph G = {H (e1), H (e2), H(e3)}

Proposition 7.1 If G| and G, are strong neutrosophic soft graphs, then G| x G,
G1[G»] and G1+G» are strong neutrosophic soft graphs.

Definition 7.20 The complement of a strong neutrosophic soft graph
G = (F, K, M) is a neutrosophic soft graph G = (F¢, K¢, M) defined by

() M¢=M,

(i) Fe(e)(x) = F(e)(x), foralle € M and x € X,

0 if TK(e)(x,y) > O,
T c(e N - . .

() e %) =\ (T (1), Trio ), if T (rs y) = 0,

0 if Ixey(x,y) >0,

Tk y) = {min{lme)(x)’ Irey (N}, if I (x, y) =0,

FKc (.X y) — O if FK(e)(x, y) > 0,
@ max{Fr)(x), Frey(0)}, if Fxe(x,y) =0,

We state the following propositions without their proofs.

Proposition 7.2 If G is a strong neutrosophic soft graph over G*, then G€ is also a
strong neutrosophic soft graph.

Proposition 7.3 If G and G¢ are strong neutrosophic soft graphs of G*, then G U G¢
is a complete neutrosophic soft graph.

7.3 Application of Neutrosophic Soft Graphs

In this section, we apply the concept of neutrosophic soft graphs to a decision-making
problem and then we describe an algorithm for the selection of optimal object based
on given set of information. Suppose that X = {hy, h», h3, hy, hs, he} is the set of
six houses under consideration which Mr. Aslam is going to buy a house on the
basis of wishing parameters or attributes set M = {e; = large, e, = beautiful, e; =
green surrounding}. So (F, M) is the neutrosophic soft set on X which describes the
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value of the houses based on the given parameters e; = large, e, = beautiful, e; =
green surrounding, respectively.

F(er) = {(h1,0.3,0.5,0.8), (h2,0.2, 0.8, 0.5), (h3,0.4,0.5,0.2),
(h4,0.5,0.2,0.7), (hs, 0.4,0.7,0.6), (he, 0.2, 0.5, 0.8)},

F(e2) = {(h1,0.6,0.7,0.4), (h,0.6,0.2,0.9), (h3, 0.2, 0.6, 0.3),
(h4,0.7,0.4,0.2), (hs, 0.0, 0.0, 0.0), (1, 0.6, 0.2, 0.6)},

F(e3) = {(h1,0.6,0.3,0.5), (h2,0.5,0.2,0.8), (h3, 0.4, 0.4, 0.8),
(h4,0.5,0.6,0.4), (hs, 0.6, 0.4, 0.2), (he, 0.4,0.7, 0.8)}.

(K, M) is the neutrosophic soft set on
E={hihy, hih3, hihs, hihs, hoha, hohe, hohs, hohs, h3ha, h3hs, hahs,hahe, hshe)

which describes the value of two houses corresponding to the given parameters
e; = large, e, = beautiful, e3 = green surrounding, respectively.

K(e1) = {(h1h2,0.1,0.3,0.6), (hihs, 0.2,0.1,0.4), (hah3, 0.2,0.4,0.3),
(haha, 0.1,0.1,0.6), (hahs, 0.2,0.2,0.4), (h3hs, 0.3,0.4, 0.5),
(h3he, 0.1,0.3,0.6), (hahs, 0.3,0.1,0.2), (hshg, 0.2, 0.4, 0.7)},

K (e2) = {(h1h2,0.5,0.1,0.6), (h1h3,0.1,0.5,0.3), (hiha, 0.4,0.3,0.3),
(hahy, 0.5,0.1,0.7), (hahg, 0.4,0.1,0.7), (hshs, 0.1,0.3,0.3),
(h3hs, 0.2,0.1,0.4)},

K(e3) = {(hih2,0.4,0.1,0.7), (h1hs, 0.4,0.2,0.3), (h2h3, 0.3,0.1, 0.6),
(hahs, 0.3,0.1,0.5), (hshs, 0.3,0.2,0.7), (hshs, 0.3, 0.2, 0.6),
(hahs, 0.4,0.3,0.1), (hshg, 0.2,0.3,0.5), (hahs, 0.3,0.1,0.2),
(hshe, 0.2,0.4,0.7)}.

The neutrosophic graphs H(e;) (i = 1,2, 3) of neutrosophic soft graph G = (F,
K, M) corresponding to the parameters e; for i = 1, 2, 3 are shown in Fig.7.8.

The neutrosophic graphs H(e;), H(e;) and H (e3) corresponding to the param-
eters “large”, “beautiful” and “green surrounding”, respectively, are represented by
the following incidence matrices

0,0,0) (0.1,0.3,0.6) (0,0,0) (0.2,0.1,0.4) (0,0,0) (0,0,0)
(0.1,0.3,0.6) (0,0,0) (0.2,0.4,0.3) (0.1,0.1,0.6) (0.2,0.2,0.4) (0,0,0)
0,0,0) (0.2,0.4,03) (0,0,0) 0,0,0) (0.3,0.4,0.5) (0.1,0.3,0.6)
(0.2,0.1,0.4) (0.1,0.1,0.6)  (0,0,0) 0,0,0) (0.3,0.1,0.2) (0,0,0)
(0,0,0) 0,0,0) (0.1,0.3,0.6) (0,0,0) (0.2,0.4,0.7) (0,0,0)
(0,0,0) 0,0,0) (0.1,0.3,0.6) (0,0,0) (0.2,0.4,0.7) (0,0,0)

H(ep) =
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h1(0.3,0.5,0.8) h2(0.2,0.8,0.5) h3(0.4,0.5,0.2) h1(0.6,0.7,0.4) h3(0.2,0.6,0.3)

(0.1,0.3,0.6) (0.2,0.4,0.3) (0.1,0.5,0.3) ] (0'30
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h4(0.5,0.2,0.7) h5(0.4,0.7,0.6) he(0.2,0.5,0.8) h2(0.6,0.2,0.9) ha(0.7,0.4,0.2)
He1) H(e2)
h1(0.6,0.3,0.5) h2(0.5,0.2,0.8) h3(0.4,0.4,0.8)
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15(0.6,0.4,0.2) he(0.4,0.7,0.8)
H((i:;)

[
1h4(0.5,0.6,0.4)

Fig. 7.8 Neutrosophic soft graph G = {H (e}), H(e2), H(e3)}

0,0,0) (0.5,0.1,0.6) (0.1,0.5,0.3) (0.4,0.3,0.3) (0,0,0) (0,0,0)
(0.5,0.1,0.6) (0,0,0) 0,0,0) (0.5,0.1,0.7) (0,0,0) (0.4,0.1,0.7)

H(ey) = (0.1,0.5,0.3)  (0,0,0) 0,0,0) (0.1,0.3,0.3) (0,0,0) (0.2,0.1,0.4)
)= (0.4,0.3,0.3) (0.5,0.1,0.7) (0.1,0.3,0.3) (0,0,0) (0,0,0) (0,0,0) ’
0,0,0) (0,0,0) 0,0,0) 0,0,00 (0,0,0) (0,0,0)

(0,0,0) (0.4,0.1,0.7) (0.2,0.1,0.4) (0,0,0) (0,0,0) (0,0,0)

and
0,0,0) (0.4,0.1,0.7)  (0,0,0) 0,0,00 (0.4,0.2,0.3) (0,0, 0)
0.4,0.1,0.7) 0,0,0) (0.3,0.1,0.6) (0.3,0.1,0.5) 0,0,0) (0,0,0)
Hiey) = 0,0,0)  (0.3,0.1,0.6) (0,0,0) 0,0,0)  (0.3,0.2,0.7) (0.3,0.2,0.6)
; 0,0,0) (0.3,0.1,0.5  (0,0,0) 0,0,0) (0.4,0.3,0.1) (0,0, 0)
0.4,0.2,0.3) (0,0,0) (0.3,0.2,0.7) (0.4,0.3,0.1) 0,0,0) (0.2,0.3,0.5)
(0,0, 0) 0,0,00 (0.3,02,0.6) (0,0,0) (0.2,0.3,0.5) (0,0,0)

After performing some operations (AND or OR), we obtain the resultant neu-
trosophic graph H(e), where e = e; A ey A e3. The incidence matrix of resultant

neutrosophic graph is

0,0,0)  (0.1,0.1,0.7) (0,0,03)  (0,0,04) (0,0,0.3) (0,0,0)
0.1,0.1,0.7)  (0,0,0) (0,0,0.6) (0.1,0.1,0.7) (0,0,0.4) (0,0,0.7)
0,0,03)  (0,0,0.6) (0,0, 0) (0,0,0.3) (0,0,0.7) (0.1,0.1,0.6)
(0,0,04) (0.1,0.1,0.7) (0,0,0.3) 0,0,0) (0,0,0.2) (0,0,0)
0,0,03)  (0,0,04) (0,0,0.7)  (0,0,0.2) (0,0,0) (0,0,0.7)
(0,0,0) 0,0,0.7) (0.1,02,0.6) (0,0,0) (0,0,0.7) (0,0,0)

H(e) =

Tabular representation of score values of incidence matrix of resultant neutro-
sophic graph H (e) with average score function S; = W and choice value
for each house hy for k =1, 2, 3,4, 5, 6 are given in Table 7.3.
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Table 7.3 Tabular representation of score values with choice values

hi hy h3 hy hs he ]’;k
hy 0.334 0.167 0.234 0.2 0.234 0.334 1.503
ha 0.167 0.334 0.133 0.334 0.2 0.334 1.502
h3 0.234 0.133 0.334 0.234 0.1 0.2 1.235
ha 0.2 0.167 0.234 0.334 0.267 0.334 1.536
hs 0.234 0.2 0.1 0.267 0.334 0.1 1.235
he 0.334 0.1 0.234 0.334 0.1 0.334 1.436

Clearly, the maximum score value is 1.536, scored by the /4. Mr. Aslam will buy
the house /4.
We present our method as Algorithm 7.3.1 that is used in our application.

Algorithm 7.3.1

Input the set P of choice parameters of Mr. Aslam, M is a subset of P.
Input the neutrosophic soft sets (¥, M) and (K, M).

Construct the neutrosophic soft graph G = (F, K, M).

Compute the resultant neutrosophic graph

H(e) = ﬂH(ek) fore = /\ek Vk.

Sl .

Consider the neutrosophic graph H (e) and its incidence matrix form.
Compute the score Sy of A V k.

The decision is Ay if ﬁk = max; h,

If k has more than one value, then any one of /; may be chosen.

Sade AN

7.4 Intuitionistic Neutrosophic Soft Graphs

Bhowmik and Pal [55] introduced intuitionistic neutrosophic set and discussed some
of its properties. Broumi and Smarandache [60] proposed intuitionistic neutrosophic
soft sets.

Definition 7.21 Let X be an initial universe, and let P be the set of all parameters.
N(X) denotes the set of all intuitionistic single-valued neutrosophic soft sets of
X. Let N be a subset of P. A pair (F, N) is called an intuitionistic single-valued
neutrosophic soft set over X.

Let V/(X) denote the set of all intuitionistic single-valued neutrosophic soft sets of
X and NV (E) denote the set of all intuitionistic single-valued neutrosophic soft sets
of E.

Definition 7.22 An intuitionistic single-valued neutrosophic soft graph on a
nonempty X is an three-ordered tuple G = (F, K, N) such that

1. N is a nonempty set of parameters.



306 7 Graphs Under Neutrosophic Soft Environment

2. (F, N) is an intuitionistic single-valued neutrosophic soft set over X.

3. (K, N) is an intuitionistic single-valued neutrosophic soft relation on X, i.e.,
K : N — N(X x X), where N'(X x X) is an intuitionistic neutrosophic power
set.

4. (F(e), K(e)) is an intuitionistic single-valued neutrosophic graph for alle € N.

That is,
Tx (o) (xy) < min{Tr)(x), Trey (1)},

Ig o) (xy) < min{lpe)(x), Ire (¥},

Fie)(xy) < max{Fp)(x), Fre)(»)},
such that 0 < TK(e)(Xy) + IK(e)(Xy) + FK(g)(xy) <2VeeN, x,yeX.

The intuitionistic single-valued neutrosophic graph (F'(e), K (e)) is denoted by
H (e).Notethat Tk ) (xy) = Ig)(xy) = 0and Fk(,)(xy) = 1forallxy € X x X —
E,e ¢ N. (F, N) is called an intuitionistic single-valued neutrosophic soft vertex
and (K, N) is called an intuitionistic single-valued neutrosophic soft edge. Thus,
((F, N), (K, N)) is called an intuitionistic single-valued neutrosophic soft graph if

Tk () (xy) < min{Tr)(x), Tre) (3)},
Ik () (xy) < min{lpe)(x), Ire (V)]
Fge)(xy) < max{Fre)(x), Fre)(y)},

such that 0 < Tg () (xy) + Tk () (xy) + Fx@(xy) <2Vee N, x,y € X. In other
words, an intuitionistic single-valued neutrosophic soft graph is a parameterized fam-
ily of intuitionistic single-valued neutrosophic graphs. The class of all intuitionistic
single-valued neutrosophic soft graphs is denoted by ZN'S(G*). The order of an
intuitionistic single-valued neutrosophic soft graph is

0G) =Y (Z TF@,.)(w)) > (Z Im,)(u») > (Z FF(eJ(w))

e;eN \weX e;eN \weX e,;eN \weX

The size of an intuitionistic single-valued neutrosophic soft graph is

S(G) = (Z (Z TK(B,.>(wv)>, > (Z 1K<e,.><wv>>, YO FK(E,.)ouv))) :
e;eN \wveE e;eN \wveE e;eN wveE

Example 7.9 Consider a simple graph G* such that X = {w;, w,, w3, ws, ws} and

E = {wiwy, wows, wiws, wiws}. Let N = {ey, ez, e3} be a set of parameters, and

let (F, N) be an intuitionistic neutrosophic soft set over X with intuitionistic neu-

trosophic approximation function F : N — N (X) defined by
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w1 (0.4,0.5,0.3)

w1(0.6,0.2,0.3)

(0.3,0.3,0.6)

w2(0.5,0.5,0.3) w1(0.8,0.5,0.4) w3(0.6,0.5,0.4)
. . .
(0.4,0.5,0.4) (0.6,0.5,0.3)

(0.5,0.4,0.6)
w2(0.5,0.4,0.6)  w3(0.6,0.5,0.4)

ws(0.6,0.5,0.3) w5(0.7,0.5,0.4)

H (ey) corresponding H(ez) corresponding H (e3) corresponding

to parameter ey to parameter ez to parameter e3

Fig. 7.9 Intuitionistic neutrosophic soft graph G = {H (e1), H(e2), H(e3)}

F(ey) = {(w1,0.4,0.5,0.3), (w2, 0.5,0.4, 0.6), (w3, 0.6, 0.5, 0.4)},

F(ez) = {(w1,0.6,0.2,0.3), (w3, 0.6,0.5,0.3), (ws, 0.7, 0.5, 0.4)},

F(e3) = {(w1,0.8,0.5,0.4), (w2, 0.5,0.5,0.3), (w3, 0.6, 0.5, 0.4)}.

Let (K, N) be an intuitionistic neutrosophic soft set over E with intuitionistic neu-
trosophic approximation function K : N — AN (E) defined by

K (e1) = {(wjw,, 0.3,0.3, 0.6), (wws3, 0.5, 0.4, 0.6)},

K (e;) = {(wyws, 0.6,0.2,0.2), (wyws, 0.6,0.1,0.4)},

K (e3) = {(wjwy, 0.4,0.5,0.4), (w w3, 0.6,0.5,0.3)}.

Clearly, H(ei) = (F(e1), K(e1)), H(ez) = (F(e2), K(e2)) and H(e3) = (F(e3),
K (e3)) are intuitionistic neutrosophic graphs corresponding to the parameters e,
e; and es, respectively, as shown in Fig.7.9.

Hence G = {H(ey), H(ez), H(e3)} is an intuitionistic neutrosophic soft graph of
G*. Tabular representation of an intuitionistic neutrosophic soft graph is given in
Table7.4.

Table 7.4 Tabular representation of an intuitionistic neutrosophic soft graph

F wi wy w3 w4 ws

el (0.4,0.5,0.3) | (0.5,0.4,0.6) | (0.6,0.5,0.4) |(0.0,0.0,0.0) |(0.0,0.0,0.0)
e (0.6,0.2,0.3) | (0.0,0.0,0.0) | (0.6,0.5,0.3) |(0.0,0.0,0.0) |(0.7,0.5,0.4)
e3 (0.8,0.5,0.4) |(0.5,0.5,0.3) |(0.6,0.5,0.4) |(0.0,0.0,0.0) |(0.0,0.0,0.0)
K wiwy wrw3 wiw3 wiws

el (0.3,0.3,0.6) (0.5,0.4,0.6) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)

e (0.0,0.0,0.0) (0.0, 0.0, 0.0) 0.6,0.2,0.2) (0.6,0.1,0.4)

e3 (0.4,0.5,0.4) (0.0, 0.0, 0.0) (0.6,0.5,0.3) (0.0, 0.0, 0.0)

The order of intuitionistic neutrosophic soft graph G is O(G) = ((0.4 +0.5+
0.6) + (0.6 + 0.6 + 0.7) + (0.8 + 0.54-0.6), (0.5 + 0.4 + 0.5)4+(0.2 + 0.5 4+ 0.5)
+ (0.54+0.54+0.9), (0.3+0.6 + 0.4) + (0.3+0.3+0.4) + (0.4 +0.3 + 0.4)) =
(5.3, 4.1, 3.4). The size of intuitionistic neutrosophic soft graph G is S(G) = ((0.3 +
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0.5) + (0.6 +0.6) 4+ (0.4 + 0.6), (0.3 4+ 0.4) + (0.240.1) + (0.540.5), (0.6 +
0.6)+(0.2+0.4) 4+ (0.4 + 0.3)) = (3.0,2.0,2.5).

Definition 7.23 Let G, = (F}, Ky, N1) and G, = (F», K,, N,) be two intuitionistic
neutrosophic soft graphs of G} and G, respectively. The Cartesian product of G and
G, is an intuitionistic neutrosophic soft graph G = G| x G, = (F, K, N| X N;),
where (F = F| x F,, N; x N,) is an intuitionistic neutrosophic soft set over X =
X1 x X,, (K = K| x Ky, N x N,) is an intuitionistic neutrosophic soft set over
E = {((w, v1), (w,v2)) : w € Xy, (v1,v2) € E2} U{((wy, v), (w2,v)) : v € Xo,
(w1, wy) € E;} defined as

() Trey.er)(W, V) = Tre) (W) A Tryeyy (v),
Ir (o)) (W, V) = I () (W) A Ipy(ey) (V),
Fre e (W, v) = Fr (W) V Frye,)y () V (w,v) € X,
(e1,€2) € Ny x Ny,

(i) Tk (er.en (W, v1), (W, 12)) = Try(e)) (W) A Tye) (V1, V2),
Ik (ey.en (W, v1), (W, V2)) = IFy ) (W) A Iiy(er) (V1, v2),
Fi(ey,en) (0, v1), (W, 12)) = Fre))(W) V Fi,(ey) (v1, 12) Y w € X1,
(v1, v2) € En,

(i) T (ey,en) (w1, V), (W2, V) = Tye) (V) A Ty ey (Wi, wo),
Ik (eyen (w1, v), (W2, V) = Ipy(e0) (V) A g oy (W1, w2),
Fi(ey.e0) (w1, 0), (W2, V) = Fryey) (V) V Fg, () (w1, w2) Vv € X,
(wy, wo) € Ey.

H ey, e2) = Hi(ey) x Hy(ep) for all (er, e;) € N; x N, are intuitionistic neutro-
sophic graphs.

Definition 7.24 The cross product of G| and G, is an intuitionistic neutrosophic
soft graph G = G| ©® G, = (F, K, N x N,), where (F, N; x N,) is an intuition-
istic neutrosophic soft set over X = X; x X, (K, N; X N;) is an intuitionistic
neutrosophic soft setover E = {((wy, v1), (w3, v12)) : (wy, wy) € Ey, (v, v2) € Er}
defined as

(D) Treeen (W, V) = Tk ey (W) A Try(e,) (V),
Ir(ere) (W, V) = IF () (W) A Ipy(ey) (V),
Fre, en(w, V) = Fre))(W) V Fre,)(v) ¥V (w,v) € X, (e1,e2) € Ny X N»
(i) Tk (eren (Wi, v1), (W2, v2)) = Tk, ey (Wi, w2) A Tye) (V1, 2),
Ik (ey.en) (W1, V1), (W2, 12)) = Ig, (e (W1, W2) A Tiyer) (V1 V2),
Fier.en (w1, v1), (2, 12)) = Fryepy(wi, w2) V Fryen (v, v2) ¥ (wy, wa)
S E], (v], Uz) S Ez.

H(ey, e2) = Hi(e1) © Hy(ey) for all (eq, e2) € N; x N, are intuitionistic neutro-

sophic graphs.

Definition 7.25 The lexicographic product of G| and G, is an intuitionistic neu-
trosophic soft graph G = G|OG, = (F, K, N x N,), where (F, N} x N;) is an
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intuitionistic neutrosophic soft set over X = X; x X, (K, N; x Np) is an intu-
itionistic neutrosophic soft set over E = {((w, v1), (w, v2)) : w € X1, (v1, 12) €
E>} U {((wi, v1), (w2, v12)) : (wy, wa) € Ey, (v, v2) € Ey} defined as

(D) Treeen)(W, V) = Tr ey (W) A Try(e,) (V),
Ir(ere) (W, V) = IF () (W) A Ipy(ey) (V),
Fre e (W, ) = Fr (W) V Fre,) (V) ¥V (w,v) € X, (e1,e) € N X Na,
(1) Tk (er.en ((w, v1), (W, 12)) = Tp, (e (W) A Tky(e) (1, V2),
IK(e,,ez)((U), v1), (w, Uz)) = IF (e))(W) A Igy(ey) (V1, V2),
Fier.en (W, v1), (W, 12)) = Frye))(W) V Fry(e) (v1, v2) Y w € X1, (v, 12) €
Es,
(iii) TK(el,ez)((wla v1), (wo, U2)) = Tk, (e)) (W1, w2) A Tk, (er) (V1, ¥2),
Ik (er,en (w1, v1), (W2, 12)) = Ig, ey (Wi, W2) A Ty(er) (V1 12),
FK(el,ez)((wlv v1), (w2, Uz)) = Fi en(wi, w2) V Fiyey)(V1,02) ¥V (wq, wa)
€ El, (Ul, U2) € Ez.
H(ey, e2) = Hi(e1) © Hy(ey) for all (eq, e2) € Ni X N, are intuitionistic neutro-
sophic graphs.

Definition 7.26 The strong product of G; and G, is an intuitionistic neutro-
sophic soft graph G = GG, = (F, K, N; x N,), where (F, N} x N>) is an intu-
itionistic neutrosophic soft set over X = X x X5, (K, A x N,) is an intuition-
istic neutrosophic soft set over £ = {((w, v1), (w, v2)) : w € Xy, (v, v2) € Ep} U
{((wr, V), (w2, v)) : v € Xo, (w1, w2) € E1} U {((wy, v1), (w2, v2)) : (wy, w2) € Ey,
(vy, v2) € E3} such that

D) Tree,en(W, V) = Tk ) (W) A Thy(ey) (V),
Ir(ere)(W, V) = IF () (W) A IRy ey (V),
Friepen)(W, V) = Fr e))(W) V Frye,)(v) ¥V (w, v) € X, (e1,e2) € Ni X Ny,
(1) Tk (er.en ((w, v1), (W, 12)) = Tp, () (W) A Ty (e (V1, V2),
Ik (er.en (W, v1), (W, 12)) = IFy ) (W) A Tiy(er) (V1, v2),
Fi(er,e) (0, v1), (W, 12)) = Fre))(W) V Fry(e) (v1, 12) Y w € Xy, (v1, 1) €
Es,
(i) Tk (e.e0) (W1, V), (W2, V) = Thy(en (V) A Tk ey (Wi, w2),
Ik (ey.en (W1, V), (W2, V) = Ipy(e) (V) A I,y (Wi, w2),
Fi(ey.e0) (1, 0), (W2, V) = Frye,) (V) V Fg () (w1, wa) ¥ v € Xo, (wy, w2)
€ Ey,
(V) Tk (er.en (w1, v1), (W2, v2)) = Tk, ey (W1, w2) A Tiyen) (V1, V2),
Ik (ey,en (W1, V1), (W2, 12)) = Ik, ey (W1, W2) A Iiy(er) (V15 02),
Fi(ey.e0) (w1, v1), (W2, 12)) = F ey (W1, w2) V Fryen) (V1, 02) ¥V (wy, wy) €
Ey, (v1, v2) € Es.
H(ey, ex) = Hi(e1) ® Hy(ey) for all (eq, e2) € Ni x N, are intuitionistic neutro-
sophic graphs.
Definition 7.27 The composition of G| and G, is an intuitionistic neutrosophic
soft graph G = G1[G,] = (F, K, N; X N,), where (F, N; x N;) is an intuition-
istic neutrosophic soft set over X = X; x X», (K, N; x N) is an intuitionis-
tic neutrosophic soft set over E = {((w, v1), (w, v2)) : w € Xy, (v, v2) € Er} U
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{((w1, v), (w2, V) v € X, (wy, w2) € E}U{((wy, v1), (w2, v2)) : (W, wy) €
E\, v # vy} defined as

(1) Trey.er)(W, V) = Tr ey (W) A Thy(e,) (v),

Ir(e),e) (W, V) = I () (W) A Ipy(ey) (V),
Fre,,en(W, V) = Fpe)(W) V Fre,)(v) ¥V (w,v) € X, (e1, e2) € N; X Ny,

(i) Tkey.er) ((w, v1), (W, V2)) = Tr(e)) (W) A Tiy(er) (V1, V2),
I (1,6 (W, V1), (W, 12)) = I, (e)) (W) A Tiy(e) (V1,5 V2),
F ey o) (W, v1), (W, 12)) = Fr(e)) (W) V Frpe)(V1, 12) VYV w € X1, (v1, 12) €
E,

(iii) T (ey,en) (w1, V), (W2, V) = Tye) (V) A Ty ey (w1, wo),
Ik (er.en (w1, v), (W2, V) = Ipy(e0) (V) A g o)y (W1, w2),
Fi(ey.en) (w1, 0), (W2, V) = Fry(e (V) V Fi (e (w1, w2) ¥ v € Xo, (wy, wy)
e Eq,

(V) Tk(eren (w1, v1), (W2, 12)) = Tp, ey (W1, W2) A Thyer) (V1) A Thyer) (v2),
Ik (ey,en) (W1, 1), (W2, 12)) = T ey (W1, W2) A TFy(e) (V1) A Ty (er) (V2),
Fier.en (w1, v1), (W2, v2))=Fp, ey (W1, w2) V Fpy(e) 0DV Fpyey) (v2) V(wy,
wz) S El, where V1 ;ﬁ V2, V1, Up € Xz.

H(ey, e2) = Hi(e1)[H>(ey)] for all (ey,e;) € Ni x N, are intuitionistic neutro-
sophic graphs.

Proposition 7.4 The Cartesian product, cross product, lexicographic product, strong
product and composition of two intuitionistic neutrosophic soft graphs are an intu-
itionistic neutrosophic soft graph.

Definition 7.28 Let G|, = (Fi, K, N1) and G, = (F,, K,, N») be two intuitionis-
tic neutrosophic soft graphs. The intersection of G| and G, is an intuitionistic neu-
trosophic soft graph denoted by G = G} N G, = (F, K, N U N;), where (F, N} U
N») is an intuitionistic neutrosophic soft set over X = X; N X5, (K, N; UN,) is
an intuitionistic neutrosophic soft set over E = E| N E3, and the truth-membership,
indeterminacy-membership and falsity-membership functions of G for all w, v € X
are defined by,

Tpl(e)(v) ife e N1 — Nz;
D) Trey(v) = § Trye(v) ife e Ny — Ny;
Tpl(e)(v) A sz(e)(v), ifee NN N,.
Ipl(e)(v) ife€N1 — N»;
Ip@ey(v) = § Ip) (V) ifee N» — Ny;
IFl(e)(U) AN IFz(e)(U)v ife e N1 n Nz.
FFl(e)(U) ifeENl—Nz;
Frey(v) = Frye)(v) ife e N, — Ny;

Fpl(e)(v) Vv sz(e)(l)), ife e Nl n Nz.
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Tk, (¢)(wv) ife € N| — Ny;
(i) Tk (ey(wv) = § Tkye) (W) ife e N, — Ni;
Tk, (wv) A T,y (wv), if e € Ny N Ny
I, (e)(wv) ife € Ny — Ny;
Ig ey (wv) = § Tk, (e) (W) ife e Ny — Ny;:
Ik, (wv) A Ik, ) (wv), ife € Ny N Ns.
Fi,(e)(wv) ife e Ny — Ny;
Fgey(wv) = 1 Fk, ) (W) ife e N, — Ny;

FKI(E)(wv) Vv FKz(e)(wv), ife € N] n N2.

Definition 7.29 Let G| = (F, Ky, N;) and G, = (F,, K,, N») be two intuition-
istic neutrosophic soft graphs. The union of G| and G, may or may not be intu-
itionistic neutrosophic soft graph denoted by G = G; U G, = (F, K, N; U Ny),
where (F, Ny U N) is an intuitionistic neutrosophic soft set over X = X; U X»,
(K, N1 U N,) is an intuitionistic neutrosophic soft set over E = E| U E;, and the

truth-membership, indeterminacy-membership and falsity-membership functions of
G for all w, v € X are defined by,

Ty, (e (v) ife € Ny — Ny;
@) Trey(v) =1 Trye(v) ife e Ny — Ny;
Tp](g)(v) Vv TFZ(E)(U), ife € N1 N Nz.
IF, ) (V) ife e Ni — No;
IF(L))(U) = Ipz(e)(v) ife € N2 — Nl;
Ipl(e)(v) A Ipz(e)(v), ife e N] n Nz.
FF (e (v) ife € Nj — Ny;
Frey(v) = Fre(v) ife e Ny — Ny;
Fre)(V) A Fry(v), if e € Ny N Ns.
Tk, () (Wv) ife € Ny — Ny;
(i) T (ey(wv) = § Ty (W) ife e Ny — Ny;
Tk, (0 (wv) V Tk, (wv), if e € Ny N Ny.
Ik, () (Wv) ife € N| — No;
Ig oy (wv) = 1 Ig, ) (W) ife e Ny — Ny;
I, @) (W) A I, (wv), if e € Ny N N,.
Fk, () (wv) ife € N| — Ny;
Fgoy(wv) = § Fg,)(wv) ife e Ny — Ny;

FKl(e)(wv) AN FKz(e)(wv), ifee NN N,.

Remark 7.1 Let G| and G, be two intuitionistic neutrosophic soft graphs over G*
then G; U G, may or may not be intuitionistic neutrosophic soft graph.

Definition 7.30 Let G; and G, be two intuitionistic neutrosophic soft graphs. The
Jjoin of G| and G, may or may not be intuitionistic neutrosophic soft graph denoted



312 7 Graphs Under Neutrosophic Soft Environment

by G| + G, = (F1 + F», K| + K», Ny U N,), where (F; + F», Ny U N,) is an intu-
itionistic neutrosophic soft set over X; U X5, (K| + K>, N1 U N;) is an intuitionistic
neutrosophic soft set over £} U E; U E defined by

(1) (Fi+ F2, Ny U Ny) = (Fi, Ny) U (F2, Ny),

(11) (Kl + Kz, Nl U Nz) = (Kl, Nl) U (KQ, Nz) if wv € El U Ez,
where e € Ny N N,, wv € E and E is the set of all edges joining the vertices of
X, and X5, and the truth-membership, indeterminacy-membership and falsity-
membership functions are defined by

Tk, 4Ky (e) (V) = min{TF, ) (W), Tr, ) (v)},
I, 4K, (e)(WV) = min{/p, o) (W), 15, ) (V)},

Fx,+ k() (wV) = max{Fr, ) (w), Fry(v)} Ywv € E.

Proposition 7.5 If G| and G, are two intuitionistic neutrosophic soft graphs, then
their join G| + G, may or may not be intuitionistic neutrosophic soft graph.

Definition 7.31 The complement of an intuitionistic neutrosophic soft graph G =
(F, K, N) denoted by G = (F¢, K¢, N°) is defined as follows:

(i) N°=N,
(ii) F(e) = F(e),
(iii) Txeey(w, v) = Trey(w) A Trey(v) — Tk (w, v),
(iv) Igeey(w, v) = Ip@e) (W) A Ipe(v) — Ik (w, v) and
V) Freey(w, v) = Frey(w) V Fre)(v) — Frey(w, v), forallw, v € X, e € N.

Example 7.10 Let G* be a crisp graph with X = {vy, v, v3, v4} and E={v v, v vy,

v1V3, V23, U3Vs). Let N = {e], e;} be a set of parameters, and let (', N) be an intu-

itionistic neutrosophic soft set over X with intuitionistic neutrosophic approximation

function F : N — N(X) defined by

F(e;)={(v1,0.4,0.6,0.1), (v2,0.5,0.4,0.7), (v3,0.5,0.3,0.4), (v4, 0.5, 0.6, 0.2)},

F(e2)={(v1, 0.4,0.2,0.2), (v2,0.5,0.3,0.4), (v3, 0.6, 0.3,0.5), (v4, 0.5, 0.4, 0.2)}.

Let (K, N) be an intuitionistic neutrosophic soft set over E with intuitionistic neu-

trosophic approximation function K : N — AN (E) defined by

K (e1) = {(v1v2,0.3,0.3,0.5), (v1v4,0.2,0.5,0.2), (v1v3,0.4,0.3,0.4), (v2v3,0.5,0.3,0.5)},

K(ep) = {(v1v3,0.3,0.2,0.5), (vivg,0.4,0.1,0.1), (v3v4,0.5,0.3,0.4), (v3v2, (0.5,0.3,

0.5)}.

Clearly, G = {H(e1) = (F(e1), K(e1)), H(e2) = (F(e2), K(ez))} is intuitionistic

neutrosophic soft graph, and H (e;) and H (e;) are intuitionistic neutrosophic graphs

corresponding to the parameters e; and e;, respectively, as shown in Fig.7.10.
Now, the complement of intuitionistic neutrosophic soft graph G = {H (e;),

H (e;)} is the complement of intuitionistic neutrosophic graphs H(e;) and H (e,)

which are shown in Fig.7.11.



7.4 Intuitionistic Neutrosophic Soft Graphs 313

v1(0.4,0.6,0.1)  ©2(0.5,0.4,0.7) v1(0.4,0.2,0.2) v3(0.6, 0.3, 0.5)
(0.3,0.3,0.5) (0.3,0.2,0.5)
[a\} —~~ —~
S o = 0
0 /0»7 ) =4 =1
) % " — Q.B) o
; 3 S S s S
o 0 > > Q >
=) ¥, © <t Q?‘)“ Yol
) L )
04(0.5,0.6,0.2)  vs(0.5,0.3,0.4) v4(0.5,0.4,0.2) ©v2(0.5,0.3,0.4)

Hie1) H(e2)

Fig. 7.10 Intuitionistic neutrosophic soft graph G = {H (e1), H (e2)}

01(0.4,0.6,0.1)  ©2(0.5,0.4,0.7)  v1(0.4,0.2,0.2) 3(0.6,0.3,0.5)
(0.1,0.1,0.2) (0.1,0.0,0.0)
8 ~| @3
<) — >0
- = <
1 i Oq
2 S o>
Nl 8 Q.Qw
) ©° (0.5,0.3,0.4)
©4(0.5,0.6,0.2) v3(0.5,0.3,0.4) v4(0.5,0.4,0.2) v2(0.5,0.3,0.4)
He(ey) H¢(e2)

Fig. 7.11 Complement of intuitionistic neutrosophic soft graph G¢ = {H(e1), H (e2)}

Definition 7.32 An intuitionistic neutrosophic soft graph G is a complete intuition-
istic neutrosophic soft graph if H (e) is a complete intuitionistic neutrosophic graph
foralle € N, ie.,

Tk (o) (wv) = min(Tpe)(w), Tre)(v)),
Ig (o) (wv) = min({pe)(w), Ir @) (v)),
Fx ey (wv) = max(Fr)(w), Fre)(v))

VYVw,ve X,ee N.

Definition 7.33 An intuitionistic neutrosophic soft graph G is a strong intuitionistic
neutrosophic soft graph if H (e) is a strong intuitionistic neutrosophic graph for all
eeN.

Example 7.11 Consider the simple graph G* where X = {vy, v2, v3, v4, Vs, Ug} and
E = {viva, vyvs, V305, V1 V3, V1 V4, V3Vg, UsVe}. Let N = {eq, e2}. Let (F, N) be an
intuitionistic neutrosophic soft set over X with its approximation function F : N —
N (X) defined by

F(e1) = {(v1,0.4,0.5,0.7), (v2, 0.6, 0.5, 0.5), (v3,0.6,0.3,0.5), (v4,0.7,0.5,0.4), (vs,0.7,0.4, 0.5),
(v6,0.3,0.5,0.7)},
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v1(0.6,0.4,0.3) v3(0.5,0.6,0.3)
(0.5,0.4,0.3)

(0.5,0.3,0.8)
v2(0.5,0.3,0.8) v5(0.6,0.3,0.2)

v6(0.3,0.5,0.7)

Hey)

H(e2)

Fig. 7.12 Strong intuitionistic neutrosophic soft graph G = {H (e1), H (e2)}

F(ez) = {(v1, 0.6, 0.4,0.3), (v2,0.5,0.3,0.8), (v3,0.5,0.6,0.3), (v4, 0.8, 0.5, 0.4), (vs, 0.6,
0.3,0.2)}.
Let (K, N) be an intuitionistic neutrosophic soft set over E with its approximation

function K : N — N(E) defined by

K(e1) = {(v1v2,0.4,0.5,0.7), (vjv3, 0.4,0.3,0.7), (vj v4, 0.4, 0.5,0.7), (v2vs, 0.6, 0.4, 0.5),
(v3v5,0.6,0.3,0.5), (v3v6,0.3,0.3,0.7), (v5vg, 0.3,0.5,0.7)},

K(e2) = {(v1v3,0.5,0.4,0.3), (vjv4, 0.6,0.4,0.4), (vjv2,0.5,0.3,0.8), (vav3, 0.5,0.3, 0.8),
(v2v4,0.5,0.3,0.8), (vavs, 0.5,0.3, 0.8)}.

H(e)) = (F(ey), K(e1)) and H(ey) = (F(ez), K (ey)) are strong intuitionistic neu-

trosophic graphs corresponding to the parameters e; and e;, respectively, as shown

in Fig.7.12. Hence G = {H (e;), H(e»)} is a strong intuitionistic neutrosophic soft

graph of G*.

Proposition 7.6 If G| and G, are strong intuitionistic neutrosophic soft graphs,
then G| x G, and G[G;] are strong intuitionistic neutrosophic soft graphs.

Remark 7.2 The union of two strong intuitionistic neutrosophic soft graphs is not
necessarily strong intuitionistic neutrosophic soft graph.

Example 7.12 Let Ny = {e;} and N, = {ej, e,} be the parameter sets. Let G| and

G, be the two strong intuitionistic neutrosophic soft graphs defined as follows:

G| ={H\(e1), Hi(e2)} = {({(w1,0.5,0.6,0.4), (wz,0.7,0.4,0.5), (w3, 0.5,0.8,0.4)},
{(wjwy,0.5,0.4,0.5), (waws, 0.5,0.4,0.5)}), ({(wy, 0.4,0.6,0.5), (w3, 0.5,0.7,0.4)},

{(wiws, 0.4,0.6,0.5)h},

G> = {Hy(e1)} = {(w1,0.4,0.9,0.3), (w2, 0.5, 0.6, 0.4), (wiw>, 0.4, 0.6, 0.4)}.

The union of G and G, is G = G; U G, = (H, N; U N,), where Ny UN, =
{e1, ex}, H(e;) = Hi(e;) U Hy(ey) and H (e;) = Hj(ey) are as shown in Fig.7.13.
Clearly, G = {H (e1), H(ey)} is not a strong intuitionistic neutrosophic soft graph as
shown in Fig.7.14.

Proposition 7.7 If G| x G, is strong intuitionistic neutrosophic soft graph, then at
least G| or G, must be strong intuitionistic neutrosophic soft graph.
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w1(0.5,0.6,0.4) w2(0.7,0.4, 0.5) w1(0.4,0.6,0.5) w1(04,09,0.3)

¢ (0.5,0.4,0.5)

(0.4,0.6,0.5)
(0.4,0.6,0.4)

Hi(er)
H1(€2)

[ ) H2(61)
w3(0.5,0.7,0.4) 11:2(0.5,0.6,0.4)
Gi1 = {Hl(el)le(@)} Gy = {H2(6’1)}

w3(0.5,0.8,0.4)

Fig. 7.13 Strong intuitionistic neutrosophic soft graphs G| and G,

Fig. 7.14 Union of two w1(0.5,0.6,0.3) w2(0.7,0.4,0.4) w1(0.4,0.6,0.5)
strong intuitionistic ® 050404 ¢
neutrosophic soft graphs (0.5,0.4,0.4)

(0.4,0.6,0.5)

w3(0.5,0.8,0.4)

'
H{(e1) w3(0.5,0.7,0.4)

H(ez)
G = {H(e1), H(e2)}

Proposition 7.8 If G|[G,] is strong intuitionistic neutrosophic soft graph, then at
least G| or G, must be strong intuitionistic neutrosophic soft graph.

Definition 7.34 The complement of a strong intuitionistic neutrosophic soft graph
G = (F, K, N) is an intuitionistic neutrosophic soft graph G = (F¢, K¢, N°)
defined by

i) N°=N,

(i) F(e)(w) = F(e)(w) foralle € N and w € X,

0 if Tg(e)(w, v) > 0,
T c(e N = . .
W) Tke (W, v) min{7Tr)(w), Tre)(v)}, if Tk (w, v) =0,

_fo if Ix o) (w, v) > 0,
Tgeo (w, v) = {min{IF(e)(w), Ip@e) ()}, if Tx ) (w, v) =0,

_ 0 if FK(e)(lU, U) > 0,
Freo(w,v) = {max{FF(e><w), Fro @)}, if Fyw, v) =0,
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Proposition 7.9 If G is a strong intuitionistic neutrosophic soft graph over G*, then
G¢ is also a strong intuitionistic neutrosophic soft graph.

Theorem 7.6 If G and G° are strong intuitionistic neutrosophic soft graphs of G*,
then G U G° is a complete intuitionistic neutrosophic soft graph.

7.5 Isomorphism of Intuitionistic Neutrosophic Soft
Graphs

Definition 7.35 Let G; = (F;, K;, N) and G, = (F,, K,, N) be two intuitionis-
tic neutrosophic soft graphs of G = (X, E;) and G} = (X», E,), respectively. A
homomorphism fy : G| — G, is amapping fy : X; — X, which satisfies the fol-
lowing conditions:

) Tre() < Tre)(fe()), IR < Ine(fe()),  Fre) = Fre
(fe(v1)),

(i) Tk, () (v1v2) < Ty (o) (fo(01) fo(v2)), Ik () (V1V2) < Iky(e) (fe(V1) fe(v2), Fk (e)(viv2) >
Frye)(fe(v1) fe(v2)), foralle € N,v; € X|,viv, € E|.

A bijective homomorphism is called a weak isomorphism if
Tr,e)(v1) = Trye) (fe(v1)), IF () (V1) = IRye) (fe(V1))s Fre)(V1) = Frye)(fe(v1)),
Ve € N,v € X.
A bijective homomorphism fy : G| — G such that
Tk 0)(V1v2) = Ti, (o) (fe (V1) fe(V2)), Tk (0) (V1V2) = Tiy (o) (fe (V1) fe(v2)), Fi\ (o)
(V1v2) = Fi, o) (fe(v1) fe(v2)), forall e € N, vivy € E; is called a coweak isomor-
phism.

An endomorphism of intuitionistic neutrosophic soft graph G with X as the under-
lying set is a homomorphism of G into itself.

Definition 7.36 Let G|, = (Fy, K;, N) and G, = (F>, K, N) be two intuitionistic
neutrosophic soft graphs of G| = (X, E;) and G} = (X», E,), respectively. An iso-
morphism fy : G| — G, is amapping fy : X; — X, which satisfies the following
conditions:

() Tre() = Tre)(fe(W), Ire@) = Ine(fe()), Fre@) = Fre
(fe(v1)),

(i) Tk, (V1v2) = Tkye)(fe (V1) fe(v2), Ik () (V1V2) = Ik, 0) (fe (V1) fe(V2)), Fik (o)
(V1v2) = Frye)(fe(v1) fe(v2)), foralle € N, vy € X, vjv; € Ej.

Example 7.13 Let N = {e}, e;} be a parameter set. G; = (F, K;, N) and G, =
(F1, K,, N) are two intuitionistic neutrosophic soft graphs defined as follows:

G1 = {Hl (61), H1 (62)} = {({(U[, 03, 0.4, 07), (Uz, 0.7, 0.4, 03)},
{(v1v2,0.2,0.3,0.6)}),

({(v1,0.3,0.4, 0.8), (v2,0.2,0.1,0.6), (v3, 0.4,0.5,0.3)}, {(viv2, 0.1, 0.1, 0.7),
(v1v3,0.1,0.3,0.7) 1)},
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v1(0.3,0.4,0.7) v2(0.2,0.1,0.6) w1(0.4,0.5,0.3) w2(0.3,0.4,0.8)
(0.1,0.3,0.7)

w1 (0.7,0.4,0.3)  w2(0.3,0.4,0.7)

~ = ,5, o
g i ° (0.2,0.4,0.6)
w s P
= g B\ Ha(e1)
< = H(e2)
(0.1,0.3,0.7) w3(0.2,0.1,0.6)
v2(0.7,0.4,0.3) v1(0.3,0.4,0.8)  v3(0.4,0.5,0.3) Go
Hi(e1) Hi(e2)

G1

Fig. 715 G| = {Hi(e1), Hi(e2)} and G, = {Hz(e1), Ha(e2)}

G, = {Hy(ey), Ha(e2)} = {({(wy,0.7,0.4,0.3), (w3, 0.3,0.4,0.7)},
{(wywy,0.2,0.4,0.6)}),
({(wy,0.4,0.5,0.3), (wy, 0.3, 0.4, 0.8), (w3, 0.2,0.1, 0.6)}, {(w w», 0.1, 0.3, 0.7),
(wows, 0.1,0.1,0.5)H}.
A mapping fy:X; — X is defined by f,, (vi) =ws, fo,(v2) =w; and
fe,(V) = w2, fo,(v2) = w3, and f,,(v3) = wy, then Tp ) (V1) = Trye,)(w2),
I7 ey (V1) = Ip ey (W2), Frie)(V1) = Fryey(w2), and Tr, ) (v2) = T (w1),
TF (e (W2)=1Fy(e)) (W), FF(e)) (V2)=FF,e,) (w1), but T, () (V1v2) = Tk, ey (W2w1),
Ik (e (V1v2) # I, (e (Waw1), Fi o) (V12) = Fi,()(wowy). Clearly, Hi(e;) is
weak isomorphic to H,(e;). By routine computation, we can see that H (e;) is weak
isomorphic to H;(e).

Hence G is weak isomorphic to G, but not isomorphic as shown in Fig.7.15.

Example 7.14 Let N = {e|, e;} be a parameter set. G| = (F}, K|, N) and G, =
(F1, K3, N) are two intuitionistic neutrosophic soft graphs as shown in Fig.7.16.
A mapping fn : X1 — X, isdefined by f,, (w1) = v2, fe,(W2) = vi, fe, (w3) = v4,
fe,(wg) = v3 and fo,(w1) = vy, fo,(w2) = v2 and f,,(w3) = v3. By routine com-
putations, we can see that G is coweak isomorphic to G, but not isomorphic
as Tr ey (W2) = Trye)) (V1) IF () (W2) # Ipy(e) (V1) Frye)(W2) # Frye)(v1) and
TF (e;)(W3) 7 Try(e2) (V3)s 1Fy(e2) (W3) 7 IFy(e0) (V3)s FFy(e)(W3) 7 Fry(er) (V3).

Theorem 7.7 For any two isomorphic intuitionistic neutrosophic soft graphs their
orders and sizes are same.

Definition 7.37 Let G be an intuitionistic neutrosophic soft graph with X as the
underlying set. A one-to-one onto map fy : X — X is an automorphism of G if

(D) Tre() =Tre)(fe(1), Ire) =Ine(fe()), Fre@) = Fre
(fe(v1)),

(i) Tk, () (v1v2) = Tky(e) (feW1) fe(v2)), Ik, ) 01v2) = Iky(e) (fe (V1) fe(v2)), Fi (o) (viv2) =
FKz(e)(fe(vl)fg(vz)), foralle € N, Vi, U € X.
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G1 = {Hi(e1), Hi(e2)} G2 = {Hz(e1), Ha(e2)}

Fig.7.16 G| = {Hi(e1), Hi(e2)} and G2 = {Hz(e1), Ha(e2)}

Definition 7.38 An intuitionistic neutrosophic soft graph G = (F, K, N) of G*isan
ordered intuitionistic neutrosophic soft graph if it satisfies the following conditions:
Tr@)y(v1) < Trey(v2), Ire) (V1) < Ir@e)(v2), Fre)(v1) = Fre)(v2),

Trey(w1) < Trey(w2), Ip@ey(wi) < Irey(W2), Fre)(wi) > Fre)(ws),

for vy, vo, wy, wy € X, v] # wy, vy # wy, forall e € N, imply

Tk ey (viw1) < Tge)(V2w2), Ix@e)(Viw1)<Ig @) (Vaw2), Fg@)(Viw)>Fg e (vaw2).

Proposition 7.10 Let G|, G, and G5 be intuitionistic neutrosophic soft graphs.
Then the isomorphism between these intuitionistic neutrosophic soft graphs is an
equivalence relation.

Proof Let G| = (Fy, K1, N), G, = (F, K, N) and G3 = (F3, K3, N) be three
intuitionistic neutrosophic soft graphs with the underlying sets X;, X, and X3,
respectively.

(1) Reflexive: Consider identity mapping fy : X; = X, f.(v) =v for all v €
X,satisfying
Tr, (o) (V) = Trye) (fe(0), IF () (V) = Irye) (fe(V)), FFi(e)(V) = Frye)(fe(V)),
Tk, () (V) = Tg, ) (feW) fe(v)), I (o) (uv) = I, o) (fe(u) fo(V), Fi (o) (uv) =
Fi, o) (fe(u) fe (),
forall u, v € X;,e € N. Hence fy is an isomorphism of intuitionistic neutro-
sophic soft graph to itself.

(2) Symmetric: Let fy : X; — X» be an isomorphism of G onto G,, f,(v) = v’
for all v € X, such that
Tr ) (V) = Try ) (fe (V) I 0)(V) = Ip, ) (fe(V), Fre)(V) = Frye)(fe(V)),
Tk, () (V) = Tiye) (fe (W) fe(V)), Ik () (uV) = Iy 0) (fe(U) fe (V) Fi,(e)(uv) =
Fiy o) (fe(u) fe (),
forallu,v e X;,e e N.
As fy is a bijective mapping, f~!(v') = v for all v’ € X», then
Try) (V) = Tro(f 7 W), Ire (V) = Ik (fT @), FreW) = Fpe
(f~',
Tiye) (') = T, (f T @) FH)), Tk @'V) = I, o (f 7 @) 1)),
Fryo)(u'v) = Fgyo)(f 1@ 71 (V) forallu’,v' € Xp,e € N.



7.5

3)

Isomorphism of Intuitionistic Neutrosophic Soft Graphs 319

Hence f‘1 : X, — X is an isomorphism from G, to Gi; that is, G| = G,
implies G, = G.

Transitive: Let fy : X; — X, and gy : X, — X3 be isomorphisms of the intu-
itionistic neutrosophic soft graphs G| onto G, and G, onto G3, respectively.
For transitive relation we consider a bijective mapping gy o fy : X; — X3 such
that (gn o fv)(u) = ge(fe(u)) forallu € X;.

As fy : X1 — X, is anisomorphism from G onto G, such that f,(v) = v’ for
allv € X, then

Tr ) (V) = Trye)(fe (V) = Thy ) (V') IF () (V) = Iy (fe (V) = IEy ) (V),
Fr o) (V) = Fryo)(fe(v) = Frye)(v'), and

Tk, (o)) = Ti, o) (fe) fe(V)) = Tiye) '), I, (o) @v) = I, o) (fe(u)
fe) = Iy W'V'),

FKl(e)(uv) = F[(z(e)(fe(u)fe(l))) = FKZ(e)(M,U,), forallu,v € X|,e € N.

As gy : X, — X3 is an isomorphism from G, onto G3 such that g, (v') = v” for
all v € X5, then

Trye) (V) = Try0) (9. (V) = Trye) (V") Iry0) (V) = Iy (9 (V) = IFy 0 (V"),
Frye)(V) = Frye)(9e (V') = Fpy)(v"), and

Tk, e)W'V") = Tiy(e) (ge @) ge (V') = Tiy (o) "0"), Tgye)('v") = Iy (0)(ge(u')
9e(V) = I,y W"V"),

Fi,e)(u'V") = Frye)(ge (') ge (V') = Fgye@"v"), forallu’, v’ € X,e € N.

For transitive relation we consider a bijective mapping gy o fn : X1 — X3;then

Tr ) (V) = Trye)(fe(V) = Try ) (V') = Trye)(ge (fe(0))),

IFl(e) (U) = IFz(e)(fe(U)) = IFz(e)(U/) = IFg(e)(ge(fe(U)))’

Fre)(V) = Frye)(fe()) = Fryo) (V') = Frye)(ge(fe(v))), and

Tk, (e)(uv) = Ti, (o) (fe () fo (V) = Tk, (o) @'V') = Tiye) (ge (fe(U))ge (fe(V))),
Ik () (uv) = Ikye)(feW) fe (V) = Ik, ) U'V") = Iy (e (fe () ge (fe(V))),
Fi (o) V) = Fiyo)(fe() fe (V) = Fiyo)('V") = Fiy(0)(ge(fe(U)) ge (fe (V)
forallu,v e X;,e € N.

Therefore gy o fy is an isomorphism between G| and G3.

Hence isomorphism between intuitionistic neutrosophic soft graphs by (1), (2) and
(3) is an equivalence relation.

Proposition 7.11 Let G|, G, and G3 be intuitionistic neutrosophic soft graphs.
Then the weak isomorphism between these intuitionistic neutrosophic soft graphs is
a partial order relation

Proof Let G| = (Fy, K1, N), G, = (F, K>, N) and G3 = (F3, K3, N) be three
intuitionistic neutrosophic soft graphs with the underlying sets X;, X, and X3,
respectively.

(D

Reflexive: Consider identity mapping fn : X — Xy, f.(v) = vforallv € Xy,
satisfying
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Tr ) (V) = Trye) (fe(V)), IF ) (V) = Iy o) (fe(V), FE () (V) = Frye)(fe(V)),
Tk (o)) = Ty o) (fe W) fe(V), Ik ) (V) = I, o) (fe (W) fe (V). Fg, o) (uv) =
Foo (fo () fo(0)),

forallu, v € X1, e € N. Hence fy is a weak isomorphism of intuitionistic neu-
trosophic soft graph to itself. Thus G| is a weak isomorphic to itself.
Antisymmetric: Let fy : X; — X5 be an isomorphism of G onto G,, f.(v) =
v/ for all v € X1, such that

Tr e) (V) = Trye) (fe(V)), IF,0)(V) = Ipye)(fe (V) FFy(e)(V) = Frye) (fe (),
Tk, ) (uv) < Tiy o) (fe(u) fe (V) Tk, 0 () < Igye)(fe(W) fo(v)), Fie)(uv) >
Fi, o) (fe(u) fe(v)),

forallu,v e X;,e € N.

Letgy : X, — X be anisomorphism of G, onto G, g.(v') = vforallv’ € X,
such that

Trye)(V)=TF () (9e (V') Tye)(V)=1F,(0)(9e (V) Fryie)(V') = Frye)(9e(V)),
Tiyo)'V") < Tk (0)(9e ') ge (V') Tiyie)('V") < I (0)(9e ') ge (V). Fiyie)
W'v") = Fg,(e)(ge(u)g.(v)),

forallu’,v € X,,e € N.

Both weak isomorphisms fy from G; onto G, and gy from G, onto G5 are holds
when G and G, have same number of edges, and the corresponding edges have
same truth-membership degree, indeterminacy-membership degree and falsity-
membership degree corresponding to the parameter to the set of parameters.
Hence G, and G, are identical.

Transitive: Let fy : X1 — X, and gy : X, — X3 be weak isomorphisms of the
intuitionistic neutrosophic soft graphs G onto G, and G, onto G3, respectively.
For transitive relation we consider a bijective mapping gy o fy : X; — X3 such
that (gy o fy)(u) = g.(fe(u)) forallu € X;.

As fy : X1 — X,isaweakisomorphism from G onto G, such that f,(v) = v’
for all v € X, then

TF (e) () = Trye) (fe () = Thy () (V) 1F () (V) = Iy () (fe () = Ipy(e) (V).
FE,(e)(v) = Fy () (fe(v)) = Fpye)(v'), and

T, () V) < Ty (o) (fe(w) fo () = Ty 'V), Ik, () (@) < Iy (e)(fe) fe(v))
= Ik, (e) ('),

FKl(e)(uv) > FKz(e)(fe(u)fg(U)) = FKz(e)(u/v/), forallu,v € X1,e € N.

As gy : X, — X3 is an isomorphism from G, onto G3 such that g, (v') = v” for
all v/ € X,, then

Trye) (V) = Trye)(9e (V) = Trye) (V") Igy0) (V) = Iry(0) (9 (V) = Ipy 0 (V"),
Frye)(V) = Frye)(9e (V') = Fpy)(v"), and

Tiye)(U'V") < Tiy(0)(ge (') ge (V) = Tiye)(u"0"), Tiyie)(u'v") < Iiye) (ge ()
9e(V) = I, "V"),

Fiye)'v") = F ) (ge () ge (V) = Fiyey(u”v"”), forall u’, v’ € X5,e € N.

For transitive relation we consider a bijective mapping gy o fy : X1 — X3;then
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Tre)(V) = Trye)(fe (V) = Thy o) (V') = Trye)(ge (fe(V))),

I ) (V) = 15 0)(fe(V) = Ipy0) (V) = Iy (ge(fe(v))),

Fre)(V) = FEyo)(fe(V) = Frye) (V") = Frye)(ge(fe(v))), and

TKl(e)(uv) =< TKz(e)(fe(u)fe(U)) = TKz(E)(u/U/) < TKs(E)(ge(fe(u))ge(fe(v)))a
Ik, () (uv) < Ig, o) (fe(u) fo(V)) = Iy @'V') < Igye)(ge (fe(U))ge(fe(v))),
FKl(e)(“v) = FKz(e)(fe(u)fe(v)) = FKz(e)(u,U/) = FKg(e)(ge(fe(u))ge(fe(v)))
forallu,v € X;,e € N.

Therefore gy o fx is a weak isomorphism between G| and G3, i.e., weak iso-
morphism satisfying transitivity.

Hence isomorphism between intuitionistic neutrosophic soft graphs by (1), (2) and
(3) is a partial order relation.

Definition 7.39 An intuitionistic neutrosophic soft graph G is self-complementary
if G = G°.

Proposition 7.12 Let G and G, be intuitionistic neutrosophic soft graphs. Then
G| = G if and only if G| = GS.

Proof Let G| and G, be the two intuitionistic neutrosophic soft graphs. Suppose
that G; = G, then there exist a bijective mapping fy : X; — X, such that f,(v) =
v’ for all v € X1, Tr ) (v) = Trye)(fe(V)), IR ) (V) = IFye) (fe(V)), FFe)(v) =
Frye)(fe(v)) and Tk, () (uv) = Tk, (o) (fe () fe(v)),

Ik, (o) (V) = Iy o) (fe(u) fe(V)), Fk (o) (uv) = Fi,o)(fe(u) fe(v)), forallu, v € X1,
e € N. By the definition of complement of intuitionistic neutrosophic soft graphs

Tk, (o)) = Tr, ) () A Try ) (0) — T, o) ),
= Trye) (fe(u)) A Trye)(fe(0) = Ty (e) (fe (W) fe (V)
= Tx, () (fe) fe(v)),

Ik, (o) = I o)) A IR ) (V) — Ik, ) (uv),
= Irye) (fe(u)) A Trye) (fe (V) — Tkye) (fe(u) fe ()
= Iy, (fe(u) fe(V)),

Flc(l(e)(uv) = Frey(u) V Fr (V) — Fg, (o) (uv),
= Fro)(fe) N Fre)(fe(V) = Frye)(fe(u) fe (V)
= Fi, o) (fe() fe (V)

Hence G{ = G5.
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Conversely, assume that G| = G9, then there existanisomorphism gy : X; — X,
such that g, (v) = v’,
Tr () (V) = Try)(9e (V)5 IF 0y (V) = IRy 0)(9e (V) FF () (V) = Fpye)(fe(v)), forall
veE Xj,e€ N,TIC(](E)(MU) = T]?Z(e)(geut)ge(v))’
Ilc(](e) (uv) = Ilc(z(g) (ge(U)ge(v)), Flc(l(e)(uv) = Flc(z(e) (ge(u)ge(v)), forallu, v € X1,
ecN.
By using the definition of complement of intuitionistic neutrosophic soft graph

Tk, o) = Tg )W) A T, (V) — Tk, () (uv),

Tk () (e @) Ge (V) = Ty () (Ge(W)) A Tg,(4)(Ge (V) — Tky(e)(ge () ge (V)),
I, @) =I5 () A g ) (V) = Ik, @) (W),

I 0 G090 (0)) = T 0 (9 (1)) A Ty 0 (G0 (0)) — Tk (9 0) g (v)),
Fi o) = Fr W) V Fp, ,,(v) — Fg ) (uv),

Fi,0)(9e()ge(v)) = Fr, () (9:(w) V Fr, () (9e(v)) — Fiye)(ge () ge (V).

As T]{él(g)(uv) = T[sz(e)(ge(u)ge(v))v I[C(l(e)(uv) = Iéz(e)(ge(u)ge(v))s F]C(I(E)(Mv) =
ng(g)(ge(u)ge(v)), for all u,ve X|,ee N, gy: X — X, is an isomorphism
between G| and G,, thatis G| = G,.

Proposition 7.13 If G, is coweak isomorphic to G,, then there can be a homomor-
phism between G{ and G5,

Proposition 7.14 If G, is weak isomorphic to G, then G and G5 are weak iso-
morphic intuitionistic neutrosophic soft graphs.

7.6 Applications of Intuitionistic Neutrosophic Soft Graphs

Intuitionistic neutrosophic soft graph has several applications in decision-making
problems and used to deal with uncertainties from our different daily life problems. In
this section, we apply the concept of intuitionistic neutrosophic soft sets in decision-
making problems. Many practical problems can be represented by graphs. We present
an application of intuitionistic neutrosophic soft graph to a multiple criteria decision-
making problem. We present an algorithm for most appropriate selection of an object
in a multiple criteria decision-making problem.

Algorithm 7.6.1

1. Input the set of parameters ey, ey, .. ., €.
2. Input the intuitionistic neutrosophic soft sets (F, N) and (K, N).
3. Input the intuitionistic neutrosophic graphs H (ey), H(e2), ..., H(ey).
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4. Calculate the score values of intuitionistic neutrosophic graphs H(e;), H(ey),
..., H(ey) using formula

S, = \/(T,)2 + U2+ (1 — Fy)? (7.1)

Tabular representation of score values of intuitionistic neutrosophic graphs
H(ey), Vk.
5. Compute the choice values of C, = ZSI‘]‘ for all i =1,2,...,n and p =
J

1,2,... k.
k
6. The decision is S; if S; = m'é]x{mirll C,).
i= p=
7. If i has more than one value, then any one of S; may be chosen.

An algorithm for the selection of optimal object based on given set of information.

7.6.1 An Appropriate Selection of a Machine

An appropriate selection of a machine for a specific task is an important decision-
making problem for a machine manufacturing corporation. The performance of a
manufacturing corporation is badly affected by the wrong selection. The main pur-
pose in machine selection is that machine will achieve the require tasks within pos-
sible short time and minimum cost. The main purpose is to select the machine that
will complete the required task within the time available for the lowest possible cost.
Rate of productivity, automatic system and price are important aspects considered
in selection of a machine. The rate of productivity, value of product and charge of
manufacturing depend upon the performance of machine. Mr. X should be an expert
or at least familiar with the machine properties, to select the best machine among
the parameters (alternatives), i.e., “price”, “rate of productivity” and “automatic sys-
tem”. Let X = {m, m,, m3, my, ms, mg} be set of six machines to be considered as
the universal set and N = {ey, e, e3} be the set of parameters that characterize the
machine, and the parameters e, e, and e; stands for “price”, “rate of productivity”
and “automatic system”, respectively. Consider the intuitionistic neutrosophic soft set
(F, N) over X which define the “efficiency of machines” corresponding to the given
parameters that Mr. X want to select. (K, N) is an intuitionistic neutrosophic soft set
overE:{mlmz, moms, Mehly, MM3, MMy, M1Ms, MoN4, NoNMs5, MyMeg, M3NM4, M3
ms, msme, MaMs, Mame, msme} and defines degree of truth-membership, degree of
indeterminacy and degree of falsity-membership of the connection between two
machines corresponding to the selected attributes e;, e, and e3. The intuitionis-
tic neutrosophic graphs H (ey), H(e) and H (e3) of intuitionistic neutrosophic soft
graph G = {H((e), H(ey), H(e3)} corresponding to the parameters “price”, “rate of
productivity” and “automatic system”, respectively, are shown in Fig.7.17.
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Fig. 7.17 Intuitionistic neutrosophic soft graph G = {H (e1), H(e2), H(e3)}

Table 7.5 Tabular representation of score values and choice values of H (ej)

mi mo ms N ms me in
mi 0 0.62 0.62 0.80 0.67 0.71 3.42
my 0.62 0 0 0.66 091 0.97 3.16
m3 0.62 0 0 0.70 0.94 0.99 3.25
my 0.80 0.66 0.70 0 0 0.75 2.91
ms 0.67 0.91 0.94 0 0 1.0 3.52
me 0.71 0.97 0.94 0.75 1.0 0 4.37

Tabular representation Tables7.3, 7.6 and 7.7 of score values of intuitionistic
neutrosophic graphs H (e;), H(e>) and H (e3) with normalized score function S;; =
V(TH?+ (I))* + (1 — F;)? and choice value for each machine m; fori = 1,2, 3, 4,
5, 6 are given in Table7.5.

3
The decision is S; if S; = m%lx{mirllmp} = m6alx{3.42, 2.48,3.25,2.91, 3.52,
1= p: 1=

2.73} = 3.52. Clearly, the maximum score value is 3.52, scored by the ms. Mr.
X will buy the machine ms.
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Table 7.6 Tabular representation of score values and choice values of H (e3)

mi my ms maq ms me T
mi 0 0.79 0.94 1.0 0.88 0.78 4.39
my 0.79 0 0.75 0 0.94 0 2.48
ms3 0.94 0.75 0 0.95 0.93 0 3.57
my 1.0 0 0.95 0 1.0 0.95 3.9
ms 0.88 0.94 0.93 1.0 0 1.0 4.75
me 0.78 0 0 0.95 1.0 0 2.73

Table 7.7 Tabular representation of score values and choice values of H (e3)

mi mo ms mg ms me in
mi 0 0.94 0.94 0.95 0.99 0.81 4.63
my 0.94 0 0.94 0.94 1.0 0.67 4.49
m3 0.94 0.94 0 0.94 0.86 0 3.68
my 0.95 0.94 0.94 0 0 0.79 3.62
ms 0.99 1.0 0.86 0 0 0.70 3.55
me 0.81 0.67 0 0.79 0.70 0 2.97

7.6.2 Selection of Brand in Product Marketing

We present a multicriteria decision-making problem for product marketing if there
are multiple brands of a product; product marketing has intuitionistic neutrosophic
behaviour. Consider Mr. X who is a retail owner wants to maximize his profit by
selling some electronic items which meets all the requirements which is set by a
retail outlet owner. Let X = {S, S,, S3, S4, S5} be a set of five brands of an item
to be sold in an international market, and let N = {e; = “price”, e, = “quality”}
be a set of parametric factors in product marketing. Let (¥, N) be the intuition-
istic neutrosophic soft set over X, which describes the effectiveness of the brands,
Tre)(Si)s Tre(Si) and Tr(e,)(S;),fori = 1,2, ...,5, k = 1, 2represent the degree
of membership (goodness), degree of indeterminacy and degree of nonmember-
ship (poorness) of the brands corresponding to the parameters e; = “price” and
e = “quality”, respectively, and (K, N) be the intuitionistic neutrosophic soft set
on £ = {5152, S]S4, S] S3, 5253, S3S4, Sst, S3Sj, 5155, S4Ss} which describes the
relationship between brands corresponding to the parameters e; = “price” and e,
= “quality”. The intuitionistic neutrosophic soft graph is shown in Fig.7.18. The
method for selection of brand in product marketing is presented in Algorithm 7.6.2.

Algorithm 7.6.2

1. Input the set of parameters ey, ez, . . ., €.
2. Input the intuitionistic neutrosophic soft sets (¥, N) and (K, N).
3. Construct intuitionistic neutrosophic graph H(e;) N H(ep) N ... N H(ey).
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Fig. 7.18 Intuitionistic neutrosophic soft graph

Fig. 7.19 H(e;) N H(ez) 51(0.4,0.3,0.6)  (0.2,0.3,0.7)  S2(0.6,0.3,0.8)

4
S5(0.5,0.3,0.2) 54(0.1,0.3, 0.6)

H(e)

Table 7.8 Tabular representation of score values with choice values

S S S5 Sy Ss Ci
s 0 0.27 0 0.23 0 0.5
S 0.27 0 0.27 04 0 0.54
S 0 0.27 0 0.30 0.30 0.87
Si 0.23 0 0.30 0 0 0.53
Ss 0 0 0.30 0 0 0.30

4. Calculate the average score values of intuitionistic neutrosophic graphs H (e)

using formula
Tipy+1jp,+1—F;
G = JF(e) JF(eS) IFe) (12)

Tabular representation of score values of intuitionistic neutrosophic graphs H (e).
5. Compute the choice values of C; = ) (;; foralli =1,2,...,n.
J

6. The decision is S; if S; = m’él)c C;.
=
7. If i has more than one value, then any one of S; may be chosen.
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The intuitionistic neutrosophic graph H(e;) N H(ey) is shown in Fig.7.19, and
tabular representation of average score values of intuitionistic neutrosophic graph is
shown in Table 7.8.

Clearly, the maximum score value is 0.87, scored by the S3. Mr. X will choose
the brand S5.



Chapter 8 ®)
Neutrosophic Soft Rough Graphs oo

Neutrosophic soft rough set model is a hybrid model by combining neutrosophic soft
sets with rough sets. We apply neutrosophic soft rough sets to graphs. We present the
concept of neutrosophic soft rough graphs and describe different methods of their
construction. We develop an efficient algorithm of our method to solve decision-
making problems. This chapter is due to [17].

8.1 Introduction

Pawlak [142] introduced the concept of rough set. He was a Polish mathematician
(citizen of Poland) and computer scientist. Rough means approximate or inexact.
Rough set theory expresses vagueness in terms of a boundary region of a set not
in terms of membership function as in fuzzy set. The idea of rough set theory is
a generalization of classical set theory to study the intelligence systems containing
inexact, uncertain or incomplete information. It is an effective drive for bestowal
with uncertain or incomplete information. Rough set theory is a novel mathematical
approach to imprecise knowledge. Rough set theory expresses vagueness by means
of a boundary region of a set. The emptiness of boundary region of a set shows that
this is a crisp set, and nonemptiness shows that this is a rough set. Nonemptiness
of boundary region also describes the deficiency of our knowledge about a set. A
subset of a universe in rough set theory is expressed by two approximations which
are known as lower and upper approximations. Equivalence classes are the basic
building blocks in rough set theory, for upper and lower approximations. Dubois
and Prade [74] investigated rough sets and fuzzy sets and concluded that these two
theories are different approaches to handle vagueness. They reported that these are
not opposite theories and to obtain beneficial results, both theories can be combined.
Following this idea, Broumi et al. [61] introduced the concept of rough neutrosophic
sets. Yang et al. [177] proposed single-valued neutrosophic rough sets by combining
single-valued neutrosophic sets and rough sets, and established an algorithm for
decision-making problem based on single-valued neutrosophic rough sets on two
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Table 8.1 List of notations

Symbols | Stand for

X Universal set

P Parameter set

M Subset of parameter set

R Neutrosophic soft relation on X

(F, A) Neutrosophic soft set

A Neutrosophic set on M

RA Neutrosophic soft rough set on X

R(A) Lower neutrosophic soft rough approximation on X

R(A) Upper neutrosophic soft rough approximation on X

X X xX

E Subset of X

M M x M

L Subset of M

S Neutrosophic soft relation on £

B Neutrosophic set on L

SB Neutrosophic soft rough relation on X

S(B) Lower neutrosophic soft rough approximation on £

S(B) Upper neutrosophic soft rough approximation on £

«a The sum of upper neutrosophic soft rough set and lower neutrosophic soft rough set

15 The sum of upper neutrosophic soft rough relation and lower neutrosophic soft rough
relation

v The score function

universes. Zhang et al. [203] presented the notion of intuitionistic fuzzy rough sets.
The notions of soft rough neutrosophic sets and neutrosophic soft rough sets as hybrid
models are described in [26]. We give a list of notations in Table 8.1.

Definition 8.1 Let X be an initial universal set, P a universal set of parameters and
M C P. For an arbitrary neutrosophic soft relation R over X x M, (X, M, R) is
called neutrosophic soft approximation space.

For any neutrosophic set A € A'(M), we define the upper neutrosophic soft rough
approximation and the lower neutrosophic soft rough approximation operators of A
with respect to (X, M, R) denoted by E(A) and R(A), respectively, as follows:

E(A) ={(x, TR(A)()C), IR(A)(X)’ FR(A)(X)) |x € X},
R(A) ={(x, Tra) (%), Ira)(x), Fra)(x)) | x € X},

where
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Table 8.2 Neutrosophic soft relation R
R x1 X2 X3 X4
mi (0.3,0.4,0.5) 0.4,0.2,0.3) (0.1,0.5,0.4) (0.2,0.3,0.4)
ny (0.1,0.5,0.4) (0.3,0.4,0.6) 0.4,0.4,0.3) (0.5,0.3,0.8)
m3 (0.3,0.4,04) (0.4,0.6,0.7) (0.3,0.5,0.4) (0.5,0.4,0.6)
Ta @ = \/ (Traay (e, m) ATa(m)),  Ig ) = /\ (Ira(x,m) v Ia(m)),
meM meM
Feoy@ =\ (FrayG,m) v Fam);  Teeay) =\ (Frea(x,m) v Ta(m)),
meM meM
ey @) = \/ ((1 = Ineay (e, m) A Ta(m)), Frey @) = \/ (Tra)(x,m) A Fa(m)).
meM meM

The pair (R(A), R(A))is called neutrosophic soft rough setof Aw.rt. (X, M, R), and
R and R are referred to as the lower neutrosophic soft rough approximation and the
upper neutrosophic soft rough approximation operators, respectively.

Example 8.1 Suppose that X = {x;, x2, x3, x4} is the set of careers under consid-
eration, Mr. X wants to select best suitable career. M = {m, m,, m3} be a set of
decision parameters. Mr. X describe the “most suitable career” by defining a neutro-
sophic soft set R = (F, M) on X which is a neutrosophic relation from X to M as
shown in Table 8.2.

Now, Mr. X gives the most favourable decision object A which is a neutrosophic set
on M defined as follows: A={(m,,0.5,0.2,0.4),(m,,0.2,0.3,0.1),(m3,0.2,0.4,0.6)}.
By Definition 8.1, we have

Tﬁ(A)(xl) = 03,

IE(A)(xl) = 04, FR(A)(xl) = 04,

Similarly,

Tﬁ(A) (XZ) = 0.4,
TE(A)()@) = 0.2,

Tﬁ(A)()M) = 02,

TR(A)(XI) = 04,
TR(A)(-XZ) = 05,
TR(A)(Xg,) = 04,

TR(A)()M) = 0.5,

IK(A)(XZ) = 0.2,
IR(A)(XT’) = 0.4,

IR(A)(X“) = 03,

IR(A)(XI) = 04,
IR(A)(XZ) = 04,
IR(A)(Xg,) = 04,

IR(A) ()C4) = 0.4,

Fﬁ(A)(XZ) = 0.4,
FR(A)()CT’) = 0.3,

FR(A) ()C4) =0.4.

FR(A)(XI) = 03,
FR(A)(XZ) = 04,
FR(A)(Xg,) = 03,

FR(A)()M) =0.5.
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Thus, we obtain

R(A) ={(x1,0.3,0.4,0.4), (x2,0.4,0.2,0.4), (x3,0.2,0.4,0.3), (x4,0.2,0.3,0.4)},
R(A) ={(x1,0.4,0.4,0.3), (x2,0.5,0.4,0.4), (x3,0.4,0.4, 0.3), (x4,0.5,0.4,0.5)}.

Hence (R(A), E(A)) is a neutrosophic soft rough set of A.

The conventional neutrosophic soft set is a mapping from a parameter to the
neutrosophic subset of universe, and let R=(F, M) be neutrosophic soft set. Now,
we present the constructive definition of neutrosophic soft rough relation by using
a neutrosophic soft relation S from M xM =M to N (XxX :X'), where X be a
universal set and M be a set of parameter.

Definition 8.2 A neutrosophl;c soft rou/gh relation (S(B), S(B)) on X is a neutro-
sophic softrough set,andS : M — N (X) is aneutrosophic softrelation on X defined
by S(mimj) = {xixj | dx; € R(mi), X; € R(mj)}, XiXj € X, such that

Ts(xixj, mim;) <min{Tr(x;, m;), Tr(x;, m;)}

Is(xix;, mim;) <max{Ir(x;, m;), Ir(x;,m;)}

Fs(xixj, miym;) <max{Fgr(x;, m;), Fr(xj, m;)}.
For any BEN(M), B:{(m,-mj,TB(mimj),IB(mimj),FB(mimj)) miijM},

Tp(m;m;) <min{Ta(m;), Ta(m;)},
Ip(m;m;) <max{l4(m;), [a(m})},

Fg(mim;) <max{Fa(m;), Fa(m;)}.

The upper neutrosophic soft approximation and the lower neutrosophic soft approx-
imation of B w.r.t. (X, M, S) are defined as follows:

S(B) = {(xix;, T gy (xix ), Igpy (xix;), Fgpy(xix;)) | xix; € X},
S(B) = {(xixj, Tspy(xix;), Isp)(xix ), Fs)y(Xix;)) | xix; € X},
where

T p)(xix;) = \/ (Ts(xixj, mim;) A Tg(mim;)),
m;mjell;l

Is gy (xix;) = /\ (Is(xixj, mim;) Vv Ig(mim))),
m[m/eM

F5p)(xix;) = /\ (FS(xixp mim;) vV FB(mimj))v

m,‘WIjEM
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Tswy(ixp) =\ (FsGixj, mimj) v Tg(mim))),

mﬂnﬂ;M

Ispy(xix;) = \/ ((1 — Is(xixj,mim;)) A IB(mimj)),
m,-m‘,vell;l

Fgpy(xix;) = \/ (Ts(xixj, mim;) A Fg(mim))).
mim/eM

The Pair (S(B), g(B)) is called neutrosophic soft rough relation, and S, SN (M ) —
N (X) are called the lower neutrosophic soft rough approximation and the upper
neutrosophic soft rough approximation operators, respectively.

Remark 8.1 Consider a neutrosophic set B on M and a neutrosophic set A on M;
according to the definition of neutrosophic soft rough relation, we get

Ty (xix ) = min{Tg ) (i), Treay (X))},
Isp) (xixj) < max{lgq) (%0, Ig(ay (6},

Fg(B) (xixj) = maX{FE(A) (.x,‘), FR(A) (x])}
Similarly, for lower neutrosophic soft rough approximation operator S(B),

Tsp)(xix;) <min{Trea) (x;), Trea)(x;)},
Isp)(xix ;) <max{Iga)(xi), Irca)(x;)},
Fspy(xix;) <max{Fgra)(x;), Frea(x;)}.

Example 8.2 Let X = {x1, x2, x3} be auniversal set and M = {m, m,, m3} a set of
parameters. A neutrosophic soft set R = (F, M) on X can be defined in Table 8.3 as
follows.

Let E = {x1x2, X2X3, X2X2, X3x2} C Xand L = {myms, mymy, mymy} C M.
Then a soft relation S on E (from L to E) can be defined in Table 8.4 as follows.
Let A ={(m,0.2,0.4,0.6), (m;,0.4,0.5,0.2), (m3,0.1,0.2,0.4)} be a neutro-
sophic set on M, then
R(A) = {(x1,0.4,0.2,0.4), (x2,0.3,0.4,0.3), (x3,0.4,0.2,0.3)}

R(A) = {(x1,0.3,0.5,0.4), (x2,0.2,0.5,0.6), (x3,0.4,0.5,0.6)}.
Let B = {(mm3,0.1,0.3,0.5), (mym,0.2,0.4,0.3), (m3m,,0.1,0.2,0.3)} be a
neutrosophic set on L, then

Table 8.3 Neutrosophic soft set R = (F, M)

R X1 X2 X3

mi (0.4,0.5,0.6) (0.7,0.3,0.2) (0.6,0.3,0.4)
my (0.5,0.3,0.6) (0.3,0.4,0.3) (0.7,0.2,0.3)
m3 (0.7,0.2,0.3) (0.6,0.5,0.4) (0.7,0.2,0.4)
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Table 8.4 Neutrosophic soft relation S
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S X1X2 X2X3 X2X) X3X2

myms (0.4,0.4,0.5) (0.6,0.3,0.4) 0.5,0.4,0.2) (0.5,0.4,0.3)
momi (0.3,0.3,0.4) (0.3,0.2,0.3) 0.2,0.3,0.3) (0.7,0.2,0.2)
msmy (0.3,0.3,0.2) (0.5,0.3,0.2) 0.2,0.4,0.4) (0.3,0.4,0.4)

S(B) = {(x1x2,0.2,0.3,0.3), (x2x3, 0.2, 0.3, 0.3), (x2x2, 0.2, 0.4, 0.3),
(x3x2,0.2,0.4,0.3)}

S(B) = {(x1x2,0.2,0.4,0.4), (x2x3,0.2,0.4,0.5), (x2x3,0.3,0.4,0.5),
(X3)C2, 0.2, 0.4, 05)}

Hence SB = (S(B), S(B)) is neutrosophic soft rough relation.

8.2 Neutrosophic Soft Rough Information

Definition 8.3 A neutrosophic soft rough graph on a nonempty X is a four-ordered
tuple (X, M, RA, SB) such that

(i) M is a set of parameters.
(i) R is an arbitrary neutrosophic soft relation over X x M.
(iii) S is an arbitrary neutrosophic soft relation over XxM.
(vi) RA = (R(A),R(A))isa neutrosophic soft rough set of X.
(v)  SB = (S(B), S(B)) is a neutrosophic soft rough relation on XCXxX.

G = (RA, SB) is a neutrosophic soft rough graph, where G = (R(A), S(B)) and
G = (R(A), S(B)) are lower neutrosophic approximate graph and upper neutro-
sophic approximate graph, respectively, of neutrosophic soft rough graph G =
(RA, SB).

Example 8.3 Let X = {x1, x2, X3, X4, X5, X¢} be a vertex setand M = {m, m,, m3}
a set of parameters. A neutrosophic soft relation over X x M can be defined in
Table 8.5 as follows.

Let A ={(m,,0.5,0.4,0.6), (my,0.7,0.4,0.5), (m3,0.6,0.2,0.5)} be a neutro-
sophic set on M, then

Table 8.5 Neutrosophic soft relation R

R X1 X2 X3 X4 X5 X6

m (0.4,0.5,0.6) | (0.7,0.3,0.5) | (0.6,0.2,0.3) | (0.4,0.4,0.2) | (0.5,0.5,0.6) | (0.4,0.5,0.6)
ms 0.5,0.4,0.2) | (0.6,0.4,0.5) | (0.7,0.3,0.4) | (0.5,0.3,0.2) | (0.4,0.5,0.4) | (0.6, 0.5, 0.4)
m3 (0.5,0.4,0.1) | (0.6,0.3,0.2) | (0.5,0.4,0.3) | (0.6,0.2,0.3) | (0.5,0.4,0.4) | (0.7,0.3,0.5)
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R(A) ={(x1,0.5,0.4,0.5), (x2,0.6, 0.3, 0.5), (x3,0.7,0.4,0.5), (x4, 0.6,0.2,0.5), (x5, 0.5,
0.4,0.5), (x6,0.6,0.3,0.5)},

R(A) ={(x1,0.6,0.4,0.5), (x2,0.5,0.4,0.6), (x3,0.5,0.4,0.6), (x4,0.5,0.4,0.5), (x5, 0.6,
0.4,0.5), (x6,0.6,0.4,0.5)}.

Let E = {X]X] , X1X2, X2X1, X2X3, X4X5, X3X4, X5X2, x5x6} - )/( and L = {I’I’l]n’l3,
moymy, msmy} C M. Then a neutrosophic soft relation S on E (from L to E) can
be defined in Tables 8.6 and 8.7 as follows.

Let B = {(mm,,0.4,0.4,0.5), (myms,0.5,0.4,0.5), (myms,0.5,0.2,0.5)} be a
neutrosophic set on L, then

S(B) ={(x1x1,0.5,0.4,0.5), (x;x2, 0.4,0.2,0.5), (x2x1, 0.4, 0.2, 0.5), (x2x3, 0.5,0.3,0.5),
(x3x4,0.5,0.2,0.5), (x4x5,0.4,0.3,0.5), (x5x2,0.5,0.3,0.5), (x5%6,0.5,0.3,0.5)},

S(B) ={(x1x1,0.4,0.4,0.5)(x1x2,0.5,0.4,0.4), (x2x1,0.5,0.4,0.4), (x2x3,0.4,0.4,0.5),
(x3x4,0.4,0.4,0.5), (x4x5,0.4,0.4,0.4), (x5x2,0.4,0.4,0.5), (x5x6, 0.4,0.4,0.5)}.

Hence SB = (S(B), S(B)) is neutrosophic soft rough relation on X. Thus, G =

(R(A), S(B)) and G = (E(A), g(B)) are lower neutrosophic approximate graph

and upper neutrosophic approximate graph, respectively, as shown in Fig. 8.1. Hence,
= (G, G) is neutrosophic soft rough graph.

Definition 8.4 Let G| = @1,51) and G, = (QZ,EZ) be two neutrosophic soft
rough graphs on X. The union of G| and G, is a neutrosophic soft rough graph G =
Gi1UG, = (G, UG,, G1 U G,), where G, UG, = (R(A1) UR(A2),S(B)) US
(By)) and G; UG, = (R(A;) UR(A»), S(Bl) U S(B;)) are neutrosophic graphs,
such that

(i) Vx e RA|butx ¢ RA,.

Table 8.6 Neutrosophic soft relation S

S X1X1 X1X2 X2X1 X2X3
mimy 0.4,0.4,0.2) (0.4,0.4,0.5) 0.4,0.4,0.5) (0.6,0.3,0.4)
mom3 (0.5,0.4,0.1) (0.4,0.3,0.2) 0.4,0.3,0.2) (0.5,0.3,0.2)
mim3 0.4,0.4,0.1) 0.4,0.2,0.2) 0.4,0.2,0.2) (0.5,0.3,0.3)
Table 8.7 Neutrosophic soft relation S
S X3X4 X4X5 X5X2 X5X6
mimy 0.4,0.2,0.2) (0.4,0.4,0.2) 0.4,0.3,0.4) (0.3,0.2,0.3)
mom3 (0.6,0.2,0.4) (0.3,0.2,0.1) 0.4,0.3,0.2) 0.4,0.3,0.4)
mims (0.4,0.2,0.3) (0.4,0.3,0.1) (0.5,0.3,0.2) (0.5,0.3,0.5)
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(21,0.5,0.4,0.5)  (x2,0.6,0.3,0.5) (21,0.6,0.4,0.5) (@"270-5,0-4,0-2){0
(0.4,0.2,0.5) S (0.5,0.4,0.4) g
S ,0.2,0.

o

(24,0.6,0.2,0.5)

IS
e
o

(0.5,0.3,0.5)

0.
( 4, 0.4, 0_5)
(x3,0.5,0.4,0.6)

(509090 5%)

24,0.5,0.4,0.5
3‘97"\ (w4 )

(w6,0.6,0.3,0.5) (23,0.7,0.4,0.5) (z6,0.6,0.4,0.5)

G = (R(4),5(B)) G = (R(4),8(B))

Fig. 8.1 Neutrosophic soft rough graph G = (G, G)

Troa) Ry ) =Tgea,) (), TR(apUR(A) (X) = Trea)) (%),
TgoayuRan ) =Igea,) (X), Trea)URMA) () = TR(4)) (X),

Friapuian ) =Fgea,) (), Freauray) (X) = Frea,) (x).

(i) Vx ¢ RA; butx € RA,.

TR(a)URA» ®) =TR(a,) (%), Tra Uk, (X) = Ty (),
IE(AI)L@(AZ)(X) ZIE(AZ)(JC)’ Ir(A)UR(Ay) (X) = Tr(ay) (X),

FR(AI)U@(AZ)(X) :F@(Az)(x), Fra)uray) (X) = Frea,) ().

(111) Vx € RA] N RAQ

TRa,)uR(Ay X) =max{T 4, (x), Tgea,) (X))},
Tr(a)UR(Ay) () = max{TRr(a,) (X), Trea,) ()},
I@(Al)uﬁ(h)(x) :min{I@(Al)(x), IE(AZ)(X)},
IR(A)UR(4,) (¥) = min{lgea,)(x), Ir(a, (X))},
FR(AI)UR(AZ)(X) :min{Fﬁ(Al)(x), FR(AQ)(X)}’
FraUR(ay () =min{Fr(a,) (x), Fr, (0)}-

(iv) Vxy € SB; butxy ¢ SB;.
Ts(p,yUsBy (X)) =Tgp,)(x¥), Ts(myuss) () = Tsa,) (xy),

Is g,y Us(8y XY) =I5(5,)(XY), IsB)uss,) (Xy) = Ig,)(xY),
Fsgusay ) =Fgp,) (X)), Fspusay (xy) = Fses,) (xy).

(v) Vxy ¢ SBybutxy € SB;
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Table 8.8 Neutrosophic soft relation R

R x1 X2 X3 X4

mi (0.5,0.4,0.3) (0.7, 0.6, 0.5) (0.7, 0.6, 0.4) (0.5,0.7,0.4)

my (0.3,0.5,0.6) (0.4,0.5,0.1) (0.3,0.6,0.5) (0.4,0.8,0.2)

m3 (0.7,0.5,0.8) (0.2,0.3,0.8) (0.7,0.3,0.5) (0.6,0.4,0.3)

T5g,yus 8y *Y) =T, (x¥), Ts(syussy) (xY) = T8, (xY),
I,y Us 8y (XY) =58,y (XY), IsB)us,) (XY) = Is,) (xY),
Fspussy XY) =Fg,)(xy), Fsyuss,) (xy) = Fs,)(xy).

(vi) Vxy € SB; NS(By)

Ts(p,yu5(8,) (xy) =max{Tgp ) (xy), Tgp,) (xy)},
Ts(Byyus(sy) (xy) = max{Tss,)(xy), Tss,) (xy)},
I5)yusp,y) (Xy) =min{lg g\ (xy), I, (X))},
Is())us(B,) (xy) =min{Isp,) (xy), Iss,) (x¥)},
Fsg,yus(s,y (Xy) =min{Fgg , (xy), Fgeg,) (xy)},
Fs(By)us(By) (xy) =min{Fgp,)(xy), Fs(s,) (xy)}.

Example 8.4 Let X = {x1, X2, x3, x4} be a set of universe and M = {m, m,, m3} a
set of parameters. Then a neutrosophic soft relation over X x M can be written as
in Table 8.8.

Let Ay = {(m;,0.5,0.7,0.8), (m3,0.7,0.5,0.3), (m3, 0.4, 0.5, 0.3)}, and
Ay ={(m,0.6,0.3,0.5), (m,0.5,0.8,0.2), (m3,0.5,0.7,0.2)} be two
neutrosophic sets on M, Then RA; = (R(A;), R(4))) and RA; = (R(A,), R(A,))
are neutrosophic soft rough sets, where

R(A}) ={(x1,0.5,0.6,0.5), (x2, 0.5, 0.5, 0.7)(x3, 0.5, 0.5, 0.7), (x40.4, 0.5, 0.5)},
R(A}) ={(x1,0.5,0.5,0.6), (x2, 0.5,0.5,0.3), (x3, 0.5, 0.5, 0.5), (x40.5, 0.5, 0.3)};

R(Az) ={(x1,0.6,0.5,0.5), (x2,0.5,0.7,0.5), (x3,0.5,0.7,0.5), (x4, 0.5, 0.6, 0.5)},
R(Az) ={(x1,0.5,0.4,0.5), (x2, 0.6, 0.6, 0.2), (x3, 0.6, 0.6, 0.5), (x4, 0.5, 0.7, 0.2)}.

Let E = {x1x2, X1X4, X2X2, X2X3, X3X3, X3X4} € X x X, and L = {m;m,, myms,
moms} C M. Then a neutrosophic soft relation on E can be written as in Table 8.9

Let By = {(mm,,0.5,0.4,0.5), (mym3,0.3,0.4,0.5), (myms, 0.4,0.4,0.3)},
and B, = {(m;m,,0.5,0.3,0.2), (myms3,0.4,0.3,0.3), (mym3,0.4,0.6,0.2)} be
two neutrosophic sets on L. Then SB; = (S(By), S(B))) and SB; = (S(B>), S(B))
are neutrosophic soft rough relations, where
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Table 8.9 Neutrosophic soft relation S

S X1Xx2 X1X4 X2X2 X2X3 X3X3 X3X4

mymy (0.3,04,0.1) | (0.4,0.4,0.2) | (0.4,0.5,0.1) | (0.3,0.5,0.4) | (0.3,0.4,0.4) | (0.4,0.5,0.2)
mym3 (0.2,0.3,0.3) | (0.4,0.3,0.2) | (0.2,0.3,0.5) | (0.4,0.3,0.3) | (0.5,0.3,0.3) | (0.5,0.4,0.3)
moms3 (0.2,0.3,0.5) | (0.3,0.3,0.3) | (0.2,0.3,0.1) | (0.4,0.3,0.1) | (0.3,0.3,0.5) | (0.3,0.4,0.3)

(0.4,0.4,0.4) (21,0.5,0.5,0.6)
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o
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[\ S (0.3,0.4,0.5)

(=]

o ————— | P
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‘grg tea)

(0.3,0.4,0.5)
{23,0.5,0.5,0.7)

0°¢0
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Q
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=

(A1),8(B1))

Fig. 8.2 Neutrosophic soft rough graph G| = (G, G1)

S(B1) ={(x1x2,0.3,0.4,0.3), (x1x4, 0.3,0.4, 0.4), (x2x2, 0.4, 0.4, 0.4), (x2x3, 0.3, 0.4, 0.4),
(¥3x3,0.3,0.4,0.5), (x3x4,0.3,0.4, 0.5)},

S(B1) =((x1x2.0.3,0.4,0.5), (x1x4,0.4,0.4,0.3), (x2x2,0.4,0.4,0.3), (x2x3, 0.4, 0.4,0.3),
(x3x3,0.3,0.4,0.5), (x3x4, 0.4, 0.4, 0.3)};

S(Ba) =((x1x2,0.4,0.6,0.2), (x1x4.0.4,0.6,0.3), (x2x2, 0.4, 0.6, 0.2), (x2x3, 0.4, 0.6, 0.3),
(x3x3,0.4,0.6,0.3), (x3x4, 0.4, 0.6, 0.3)},

S(B) =((x1x2,0.3,0.3,0.2), (x1x4, 0.4, 0.3,0.2), (x2x2, 0.4, 0.3,0.2), (x2x3,0.4,0.3,0.2),
(x3x3,0.4,0.3,0.3), (x3x4, 0.4, 0.4, 0.2)}.

Thus G| = (G,, G1) and G, = (G,, G,) are neutrosophic soft rough graphs, where
G, = (R(A1),S(B))), Gi = (R(A}), S(B))) as shown in Fig. 8.2

G, = (R(A2),S(By)), G2 = (R(A3), S(By)) as shown in Fig. 8.3.

The unionof G; = (G,, 51) and G, = (G,, 52) is neutrosophic soft rough graph
G=G UG, = (G, UG,, G, U G,) as shown in Fig.8.4.

Definition 8.5 Let G, = (G, G,) and G, = (Qz,@) be two neutrosophic soft
rough graphs on X. The intersection of G| and G, is a neutrosophic soft rough graph
G =G NGy = (G, NG, GiNGy), where G, NG, = (R(A1) NR(A2), S(B)N
S(B,)) and G; N G, = (R(A;) NR(A3), S(B;) NS(B,)) are neutrosophic graphs,
respectively, such that

(i) Vx e RA;butx ¢ RA,.
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(0.4,0.3,0.2)
(x2,0.6,0.6,0.2)

(0.4,0.6,0.3)
(x1,0.6,0.5,0.5)

(x3,0.5,0.7,0.5)
(24,0.5,0.7,0.2)

(0.4,0.6,0.2)
(0.4,0.6,0.3)

0.4,0.3,0.3)
.. L]

(22,0.5,0.7,0.5) ) 05,0.6,0.5)

(0.4,0.6,0.2) (23,0.6,0.6,0.5)

Gz = (B(42),5(52)) Ga = (R(42),5(B2))
Fig. 8.3 Neutrosophic soft rough graph G, = (G,, G2)

(0.4,0.3,0.3)
(21,0.5,0.4,0.5)

(22,0.5,0.5,0.5)
(z1,0.6,0.5,0.5) e
(0.4,0.4,0.2) ) _ 5
N o
(0.4,0.4,0.2) S 1=
= = 8| &
@ S = °le
e < o R
< S S S|~
S < ~ <

< S . S| ~
S =l e g
» P o
° o o
> = B
(0.4,0.4,0.3) o o (22,0.6,0.5,0.2) Ng 2

w w -
(24,0.5,0.5,0.5)  (23,0.5,0.5,0.5) ~ ° 2
» ~

G, UG, = (R(A1) UR(A2),S(B1) US(B2)) Gi1UGy = (R(Al) UR(AQ),g(Bl) Ug(B2))

Fig. 8.4 Neutrosophic soft rough graph G U G2 = (G, U G,, G| U G2)

TRaprras) ) =Tgray (), Treapnry) () = Tra)) (1),
Icapnias) ) =Iga) (0, Trapnray) (X) = Ira,) (),

FRapnR(ar) ) =FR(a,) (0, FreapnR4,) (X) = Frea)) (X).
(i) Vx ¢ RA| butx € RA;.
Tﬁ(Al)nﬁ(Az)(x) :T@(AZ)(x), Tr(a)nr(4y) (X) = TR(ay) (X)),

IE(AI)nﬁ(AZ)(x) =I@(A2)(x), IrapnR(Ay) (X) = Tr(4,) (X),

FriapnRan ) =Fga,) (), Fra)nra,) (X) = Freay ().
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(i) Vx € RA; NRA,
TE(AI)ME(AZ)(X) :min{T@(A])(x), TR(AZ)(X)}’
TR(A)NR(Ay) (X) =min{TR(a,)(X), TR(4,) (*)},
Iga)nR(ay ) =max{lg, ) (X), g4, (X))},
IR(A)NR(Ay) (V) =max{Ir,)(xX), Ir(4,)(x)},
FRapnRay X)) =max{Fg, ,(x), Fg,, ()}
Freaprr(Ay) (V) = max{Fr,)(x), Frea,) (X)}-

(iv) Vxy € SBy butxy ¢ SB;.

Tg(Bl)mé(Bz)(xy) :Tg(31>(xy), Ts(B)ns(By) (xy) = Ts(p,)(xy),
1§(B.)m§(32)(xy) :IS(B,)(X)’)’ IsB)ns(By) (XY) = Ig(B,)(xy),
Fsgrsa) (XY) =Fgp) (X), Fsrsy (xy) = Fs,) (xy).

(v) Vxy ¢ SBybutxy € SB;

Tssyns(8y) XY) =Ts(8,)(x¥)s Tasns(s,) (xY) = Tssy) (X)),
I )58y (XY) =I508,)(XY), IsB)nss,) (XY) = Is8,) (xY),
Fsp)ras,) XY) =Fg,) (xY), Fs@nsay) (xy) = Fgs,) (xy).

(vi) Vxy € SB;y NS(B,)

T5(p,)ns(8,) XY) =min{Tg g\ (xy), Tgp,, (xy)},
Ts(B,)ns(y) (Xy) =min{Tgp,) (xy), Tg(s,) (xy)},
I5 8,58, (XY) = max{lgp, (xy), I5(p,) (x¥)},
Is(B))ns(sy) (xy) = max{Igs,)(xy), Iss,) (xy)},
F5 ) ns(,) (XY) =max{Fg g, (xy), F5p, (xy)},
Fs()ns(sy) (xy) =max{Fgs,)(xy), Fgs,) (xy)}.

Definition 8.6 Let G, = (G|, G,) and G, = (QZ,EZ) be two neutrosophic soft
rough graphs on X. The join of G| and G, is a neutrosophic soft rough graph G =
G+ Gy = (G, +G,,Gi +G2),_where_G, + G, = (R(A)) +R(A2), S(B)) +
S(B»)) and G| + G» = (R(A}) + R(A»), S(B)) + S(B»)) are neutrosophic graphs,
respectively, such that

(i) Vx € RA, butx ¢ RA,.

TR(ap+R(A2) ) =TR(4,) ), Tra+RA5) (X) = Treay) (X)),

IRan+Rean ) =Igea) (0), IrRA)+RMA,) (X) = Tr(a)) (X)),
Friap+Ran @) =Fgea,) (), Frea)+R(A) (X) = FRrea,) (X).
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(i) Vx ¢ RA| butx € RA,.

(iii)

(iv)

)

(vi)

Tria)+RAy X)) =TRay) 0y TR(AD+R(A2) () = TR(ay) (X)),
Igan+Rean ) =Ig(ay) (0), IR(A)+R@A,) (X) = Tr(ay) (X)),

Fria1®ay) @) =Fgay) (), Frea)+R(A) (X) = FRrea,) (X).

Vx e RA; NRA,

TReap+Eay ) =max{Ti 4, (x), Tigay (0},
Tr(a)+R(4,) (X) =max{Tre,)(x), Trea, ()},
TR a4+ R(ay) () = min{Tg y (%), Tg(a,) (O},
Ir(a)+R(A,) (X) = min{lra,) (x), Ir,) (X))},
FRoa 1Ry () =min{Fg 4 (%), Fga,) (0},

FR(a))+R(Ay) (X) =min{Fga,)(x), Frea,) (x)}.
Vxy € SBy but xy ¢ SB;.

Tsp,)+58,) XY) =T55,)(x¥)s Tsm))+5(8,) (¥y) = Ts(s,)(xY),
I,y 458, XY) =I5y (x), Isssa) (xy) = I, (x),
Fspy 458y (XY) =F5(5,)(xY), Fss)+s(8,) (xy) = Fs,)(xy).

Vxy ¢ SBy but xy € SB;

T5(p,)+5(8y (0Y) =T5(,)(X¥), Ts(B))+58,) (xY) = T,y (xY),
I55, 458, (XY) =I5,y (X)), Is(B)+5(8,) (XY) = I5(8,) (X)),
Fgp,)+88,) (XY) =F5(5,)(x¥), Fs(B))+8(8,) (xY) = Fg(,) (xy).

Vxy € SBy N S(B,)

Ts g,y 458y (XY) =max{T5 ) (xy), Tgp,) (X))},
Ts(B))+8(8y) (xy) = max{Tgp,)(xy), Ts(s,) (xy)},
I5(,) 158, (XY) =min{lg g, (xy), I5p, (xy)},
Is(B))+s(8,) (xy) =min{lgs,) (xy), Iss,) (xy)},
F5(p,) 158, (XY) =min{Fgp ) (xy), Fgp, (X))},
Fs(B,)+s(8,) (xy) = min{Fgp,)(xy), Fs(s,) (xy)}.

(vii) Vxy e E, where E is the set of edges joining vertices of RA| and RA,.



342

8 Neutrosophic Soft Rough Graphs

T5 (8,158, (*y) =min{Tg 4, (x), T4,y (M},
Ts(B,)+8(By) (xy) = min{Tr(a,)(x), Tr(a,) (M)},
Is,)+58,) (XY) =max{lg 4, (x), Iga,, (N}
Is(B)+5(8y) (Xy) =max{lr(a,)(x), Ir, (¥},
Fsg)15(8,) (Xy) =max{Fg 4, (x), Fga, (M)},
Fs(B))+s(8,) (xy) =max{Fra,)(x), Fra,) (¥}

Definition 8.7 The Cartesian product of Gy and G, is a G = G| X G, = (G, X

gz,al X G;), where G, x G, =

(R(A)) x R(A,),S(By) x S(B>)) and G x

Gy, = (@(Al) X @(Az), g(Bl) X S(Bz)) are neutrosophic graphs, such that

i) V(x,y) e RA; x RA;.

TR(AI)KR(AZ)(L y) =min{TR(Al)(x), T@(Az)(x)}v
Tr(A)xR(4y) (X, ¥) =min{Trea,) (x), Tr(a,y) (X))},
g xRay (X0 ¥) =max{lg s, (x), Iga, ()}
IR(A ) xR(Ay) (X, ) =max{lg(a,)(x), Ir(a,) (X))},
Fﬁ(Al)[x@(Ag)(x’ y) :max{F@(Al)(x), FR(AZ)(X)}a
FR(A)xR(4y) (X, y) =max{Fra,)(x), Frea, (x1)}.

(11) Vy1y2 € SBz, X € RAl

T§(Bl)x§(32)((X, y)(x, y2)
Ts(sywsy (X, YD) (x, y2)
5,058y (6 YD (X, y2)
Is(syyxssy (6, Y1) (x, y2)
Fg(B,)xg(Bz)((L y(x, y2)
Fssyxsay) (6, y) (x, y2)

(111) Vxix; € SBl, y € RA,.

=min{Tg,,, (%), Tgp,) (V1y2)}
=min{Trca,)(x), Tss,) (y1¥2)}
max{lg4,,(x), Igg, (V1y2)},
max{/ra,(x), Iy, (Y1y2)},
max{Fg,,,(x), Fgp, (V1y2)},
=max{Fr,)(x), Fs,) (y1y2)}-

~— N — N ~— ~—
Il

Tsayxsan ((x1, ) (x2, ¥)) =min{Ts(p,) (x1x2), Tray (M)},

Ts s,y wsiay (X1, ¥) (X2

IsBxs(B) (X1, ¥) (X2, )

)

. Y)

Is g,y 05y (X1, Y) (x2, 1)
)

)

)

min{T§(31>(X1x2), T@(Az)(y)},
max{lg g, (x1%2), Ig(a,) (M)},

max{/sg,) (x1X2), Ira,) ()},

it
F§(B|)[><§(Bz)((xla y)(x2, y) =maX{F§(3,)(X1x2), F@(Az)(.Y)}y

Fsyxsa,) (X1, y) (x2

. y)) =max{Fgp)(x1x2), Fra,) (3}
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Definition 8.8 The cross product of G and G is a neutrosophic soft rough graph
G=G10G,=(G,0G06,, Gl © Gy), where G, © G, = (R(A1) © R(A2), S(B1)
©®S(B)) and G; ® G, = (R(A;) ® R(A,),S(B)) ® S(B,)) are neutrosophic
graphs, respectively, such that

(i) V(x,y) € RA| x RA,.

TRa)eR4, > ¥) =min{Tg 4 ) (x), Tga, (X))},
Tr(a)eR(Ay) (X, ) =min{TRr(a,)(x), Tr(ay) (X)},
IRa) R4y (X, ¥) =max{lg ) (%), g4, ()},
Ir(an©R(Ay) (1, ¥) =max{lg,) (), Ik, ()},
Fﬁ(A])@ﬁ(Az)(Xs y) :maX{FR(AI)(x)v FR(AZ)(X)}v
Friapery) (¥, ¥) =max{Fra,) (X), Friay ()}

(11) Vxlxz € SB], Yiy2 € SBQ

580508y (X1, YD) (2, ¥2)) =min{ Ty 5, (x1%2), T, (172)}
Ts)es8,) (X1, Y1) (X2, y2)) =min{Tg(s,) (x12), T(s,) (y132)}:
Iss,y0508) (X1, YD) (2, ¥2)) =max{lg g, (x1X2), 55, (y172)},
Is)os,) (X1, Y1) (X2, y2)) =max{Isg,) (x1x2), Iss,) (y1y2)},

Fspy 0580 (X1, Y1) (52, y2)) = max{Fgp ) (x1X2), Fg5,) (172},
Fygosy (X1, y1) (X2, y2)) =max{Fg(s,)(x1x2), Fs(8,)(y1y2)}.
Deﬁnition 8.9 The rejection of G and G is a neutrosophic soft rough graph G =

GGy = (G, |G2,G1|G2) where G,|G, = (SA1[SA,, S(B1)|S(B,)) and GG, =
(SA{|SA,, S(Bl)|S(Bz)) are neutrosophlc graphs such that

(i) V(x,y) € RA| x RA,.

TRa) Ry &> ¥) =min{TR 4 (X)), T4,y (M},
TRApIR(Ay) (X, ¥) =min{TRea,) (%), Tr(ay) (P},
IRapRAy (X0 ¥) =max{lg s, (x), Iy, (M},
IrapR(4y) (X, ¥) =max{lra,)(x), Ira,) (¥},
FRianmay X y) =max{Fg ) (x), Fga,, (D},
Frapiray) (¥, y) =max{Fg,)(x), Fray ()}

(ll) Vy1y2 ¢ SBz, X € RA]

Ts (g5 (6 YD (0, 32)) =min{Tg ) (0, T,y 01, Tia,) 02)}
Tsayray) (6, y) (x, ¥2)) =min{Tra,) (x), Triar) (1), Trian) (72},



344 8 Neutrosophic Soft Rough Graphs

(58 508y (62 YD (2 y2)) =max{Ig 4, (), Iga, 1) Tgay) (02},

sy s (6, y1) (x, ¥2)) = max{Ira,) (x), Ircay (1), Ircan (32)},
(e yn)(x, y2)) =max{Fg 4,,(x), Frea,, ) Fria, (02},

(Fsa)isy (6, y1) (x, y2)) =max{Fra,)(x), Frea,) 1), Fra,) (2)}-

(F§(Bl)\§(37

(111) V.X1X2 ¢ SBl, y € RAz,

Tsssy) (31, ¥) (52, y)) =min{Tra,) (x1), Trcay, (x2), Tra,) (D)},
I sy (51, ) (52, y)) = max{Igea,) (x1), Trca), (¥2), Tran (N}
Fs(8,)s(8,) (X1, ) (x2, ¥)) =max{Fra,)(x1), Fra), (x2), Firia,) (0},
T,y a8y (41, ) (2, ¥)) =min{Tx s, (01, Ty, (02), Treay D),
( )
( )

I§(31)|§(32) (x1, Y)(x2,y) :max{lﬁ(A])(xl)a Iﬁ(/,)l(xﬁ, I@(Az)(y)}’
FS(B,)|S(BZ) (x1, y)(x2,y) ZmaX{FE(AI)(xl)’ FK(A)I (x2), F@(Az)(y)}‘

(iv) Vxixy ¢ SBy, y1y2 ¢ SBy, x1 # X2, y1 # ¥2.

)) =min{Tr4,)(x1), TR(a), (*¥2), TR(A,) (V1) TR(45) (¥2)}
)) =max{lra,)(x1), Ir(a); (x2), IR(42) (Y1), IR(42) (V2)},

(x1, y1)(x2, 2))
)
)) =max{Frea,) (1), Fray, (¥2), FrR(42) 1), Fr(ay (02)},
)
)
)=

Ts(B)Is(B2)
IsBy)s(By) ((x1, y1) (x2

) :min{Tﬁ(Al)(xl)s TE(A)I (x2), T@(Az)()’l), Tﬁ(;\z)(yz)},
)
)

T§(Bl)\§(32) (x1, y1)(x2

:max{lﬁ(A])(xl), IK(AM (x2), Iﬁ(Az)(yl)s Iﬁ(/h)(yz)}

( » N2
( » Y2
Fsapisay ((e1, y1) (32, y2
( > )2
Is (g, sy (1, YD (2, 12

( )

Fg(Bl)‘g(Bz) (1, yn) (x2 max{F; (Al)(xl) R(A)l(XZ) (Az)(yl) (AZ)()’z)}

Example 8.5 Let G| = (G,, G;) and G, = (G,, G2) be two neutrosophic soft
rough graphs on X, where G, = (R(A4), S(B;)) and G, = (R(Al),g(Bl)) are
neutrosophic graphs as shown in Fig.8.2 and G, = (R(A,), S(B,)) and G, =
(K(Az), g(Bz)) are neutrosophic graphs as shown in Fig.8.3. The Cartesian prod-
uct of G| = (G,, Gl) and G, = (G,, Gz) is neutrosophic soft rough graph G =
G x Gy = (G, x G,, G, x G,) as shown in Fig.8.5.

Definition 8.10 The symmetric difference of G, and G is a neutrosophic soft

rough graph G =G, ® G, = (G, @ G2, G1 &) Gz) where G, @ G2 R(A) &
R(A2), S(B)) @ S(By)) and G| @ G, = (R(A)) ® R(Ay), S(B1) @ S(By)) are neu-
trosophic graphs, respectively, such that

() V(x,y) € RA| x RA,.

Tﬁ(Al)EBﬁ(Az)(X, y) = min{T@(Al)(x), TE(A;)(y)}’
Tr(apor(ay) (X, y) =min{Tra,) (x), Tra, (1)},
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Fig. 8.5 Cartesian product of two neutrosophic soft rough graphs G| x G»
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Iﬁ(Al)@K(AZ)(x’ y) ZmaX{Iﬁ(A])(x), Iﬁ(AZ)(y)},
Ir(apaRr(Ay) (X, ) =max{lra,)(x), Ir(a,) ()},
FR(AI)@E(AZ)(X7 y) :maX{F@(A,)(X)’ FR(AZ)()’)},
FrapeRAy) (X, ) =max{Frea,)(x), Frea, (¥}

(11) VylyZ € SBQ, X € RA]

T5 () @58, (X, Y1) (X, y2)) =min{Tg, , (x), Tgp,) (y1y2)}
Tsspess) (X, Yy (x, y2)
Is gy (X, Y1) (X, 2)

( )
( ) =min{Tr,)(x), Tsz) (172)},
( )
Isspesay ((x, y) (X, y2))
( )
( )

maX{I@(AI)(x), Ig(Bz)()’lyZ)},

max{lga,)(x), Is,) (y12)}
max{Fg 4, (%), Fgp,) (V1y2)},
=max{Fr,)(x), FgB,) (y1y2)}.

F§(B,)Q;§(Bz) (x, y1)(x, y2)
Fsmpess,) ((x, y1)(x, y2)

(111) V.X[Xz € SB], y e RAQ

Tspyesan (01, Y) (x2, »)) = min{T5 ) (x1x2), Tg(a,y ()}
Tsesay) (1, ) (x2, ¥)) =min{Ty,) (x1x2), Treay) ()},
I5(5,)a58,) (1, Y) (52, ) =max{I5 g, (X1%2), g4, ()}
Isesay (51, ¥) (x2, ¥)) = max{Iss,) (x1x2), Tr(ar) (3},
( )
( )=

Fs8)a5(8,) (x1, y)(x2, ) maX{FS(B )(x1X2) FR(A,)()’)}
Faesey (01, ¥) (02, y)) =max{Fgg,) (x1262), Freay ()}

(iV) Vxixy € SB], yYiy2 ¢ SBQ.

T5 (@58, (X1, Y1) (x2, ¥2)) = min{Tg 5 ) (x1x2), Tga,) V1), TR(a, (¥2) 1}
Tspyese) (X1, Y1) (x2, y2)) =min{Tgp,)(x1x2), Tr(A,) (V1)> TR(A,) (2)},

maX{Ig(Bl)(xlxz), Iﬁ(Az)(yl)a Iﬁ(Az)(yZ)},

( )
( )
Is ey ((¥1, Y1) (02, ¥2))
Isesay (51, y1) (x2, ¥2))
( )
( )

max{Is)(x1%2), Ir(a) (V1) Ir(ay) (72)},
F5pp@sa,) (X1, 1) (X2, y2)) = max{Fgg, (x1x2), Fga, V1), Fra, (v2)}

Fsnesm) (X1, Y1) (X2, y2)) =max{Fg)(x1x2), Fra,) (1), Frea,) (32)}.

(V) VX1.X2 §é SB], Yiy2 € SBQ.

Ts(8,)a58,) (1, Y1) (02, y2)) =min{Tg 4, (x1), T, (%2), T,y (V132)}
Tsayess) (X1, y1) (2, ¥2)) =min{Trea,) (x1), Trea,) (x2), Tses) (172)},
Ig(gl)@g(gz)((xl, y)(x2, yz)) ZmaX{I@(A])(xl)7 Iﬁ(,ql)(xz), Ig(BZ)(yl)Q)},
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(0.3,0.4,0.3) (0.1,0.4,0.2)

—o

(b,0.3,0.2,,0.3) (¢,0.5,0.4, o?a) (6,0.4,0.5,0.3) (¢,0.6,0.2,0.1)
Gy = (R(A1),8(B1)) G = (R(A1),5(B1))

Fig. 8.6 Neutrosophic soft rough graph G| = (G, G1)

(0.1,0.3,0.2) (0.5,0.3,0.1)

- -
(a,0.5,0.3,0.0) (¢,0.1,0.3,0.2) (a,1.0,0.2,0.9) (¢,0.6,0.3,0.3)

Gy = (R(A2),8(Bz2)) G2 = (R(A2),5(Bz2))

Fig. 8.7 Neutrosophic soft rough graph G, = (G,, G2)

Isayess) ((x1, y1) (x2, ¥2)) = max{Ira,) (x1), Ira,) (X2), Iss,) (1y2)}
Fg(gl)@g(gz)((xl s Y1) (x2, )’2)) ZmaX{Fﬁ(Al)(xl)v FE(AI)(XZ), Fg(Bz)(yl)b)},
Fssp@s) (X1, y1)(x2, ¥2)) =max{Fra,) (x1), Friay)(x2), Fsay) (y172)}.

Example 8.6 Let G| = (Ql,El) and G, = (QZ,EQ) be two neutrosophic soft
rough graphs on X, where G, = (R(A;), S(B;)) and G, = (K(Al),g(Bl)) are
neutrosophic graphs as shown in Fig.8.6 and G, = (R(A,), S(B,)) and G, =
(R(A,), S(B,)) are neutrosophic graphs as shown in Fig. 8.7

The symmetric difference of G| and G, is G =G ® G, = (G, ® G,, G ®
Gy, where G, &G, = (R(A) ®R(42),S(B) ®@S(B,) and G &G, =
(R(A}) ® R(A), S(B1) @ S(B,)) are neutrosophic graphs as shown in Fig. 8.8.

Definition 8.11 The lexicographic product of G| and G, is aneutrosophic soft rough
graph G = G| © G2=(G, © Gay, G} © G%), where G, © G2, =(RA; ©RA,,
SB; ©SB,) and G* © G5 = (RA; ©® RA,, SB; © SB,) are neutrosophic graphs,
respectively, such that

() ¥ (x,y) € RA; x RA,.

Tx(aoR(ay) (X, ¥) =min{Tg 4, (X), Tra,) (0},
Tr(a)oR(Ay) (X, ¥) =min{Tr,)(x), TRy (M)},
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(ac,0.1,0.3,0.2) (aa, 0.4,0.3,0.1)  (ab,0.4,0.3,0.3) (ac,0.1,0.3,0.2) (aa,0.4,0.6,0.9) (ab,0.4,0.6,0.3)
(0.1,0.3,0.2) (0.4,0.3,0.3) (0.4,0.6,0.3) (0.4,0.6,0.9)

2 B

o P

o °

» >

— [=] —~ (=]
C) |l = Wl =~
=) =2 o | <
o3 ) <
S @ 3 -4,0. 2
94 S < 5.0.3 <
! 5 2 (0.4/4.5,0.3) (0.4 5
3 = s T l= S
HE gz 22 Jm EE

< ) ° "R -

B I » >

E"’: g ; 0.6*0"5\ g

Z @v\, Z

(0.1,0.4,0.3) \ (0.4,0.4,0.3) ™) (0.5,0.3,0.1) (0.4,0.3,0.2)
(c¢,0.1,0.9,0.3)  (ca,0.5,0.4,0.3) (cb,0.4,0.4,0.3) cc,0.6,0.3,0.3)  (ca,0.6,0.2,0.9) (cb,0.4,0.6,0.3)
Gy @Gy = (R(A1) ®R(A2),8(B1) ® S(B2)) G1 G2 = (R(A1) ® R(A2),5(B1) @ 8(B2))

Fig. 8.8 Neutrosophic soft rough graph G| @ G2 = (G| ® G2, G180 G)

IRapoRAy (Xs ¥) =max{lg s, (x), Iy, (M)},
Ir(aneRr(Ay) (X, ¥) =max{Ir,)(x), Ira,) (M)},
FRiapor@,) (s ¥) =max{Fg,,(x), Fg, (M},
Fr(a)or(ay (0, ¥) =max{Fra,) (x), Fr,) (1)}

(11) Vy1y2 € SBQ, X € RA]

Ts (8,058, (€, Y1) (x, y2)) =min{Tg , , (xX), Tgg,) (y1y2)},
Tsayoss) (6, y1) (x, y2)) =min{Trea,) (x), Tss,) (12},
58,058, (. Yy (6, y2)) =max{Ig, ,(X), I5, (V1y2)}
Iss)es8,) ((x, y1) (x, y2)) =max{Iga,)(X), Iss,) (y1y2)}
( )
( )

F5 3058, (X 1 (X, y2)) =max{Fg 4, (x), F5p, (V1y2)},
Fshosm) ((x, y1) (x, y2)) =max{Frea,(x), Fss,) (y1y2)}.

(111) Vx]x2 € SB], yiy2 € SBz.

T5 (8,058, (1, Y1) (%2, y2)) =min{Tg 5 ) (x1x2), Tg 5, (y1y2)},
Tsaoss) (X1, y1) (x2, ¥2)) =min{Ts,) (x1x2), Ts) (1y2)}
g 0508y (01, Y1) (X2, ¥2)) =max{Ig ) (X1%2), I5,) (y172)},
Is(8)088,) ((x1, y1) (%2, y2)) =max{Isg,) (x1x2), Iss) (V1y2)},
( )
( )

Fg(gl)og(gz) (x1, y1)(x2, y2) ZmaX{Fg(B,)(xlxz), Fg(gz)()’lyz)},
Fsposa) (X1, Y1) (x2, ¥2)) =max{Fg,)(x1x2), Fsz,) (Y132)}-
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Definition 8.12 The strong product of G, and G, is a neutrosophic soft rough graph
G=G1®G,=(G1,® G, G} ®G3), where G, ® G = (RA; QRA,,
SB| ® SBy) and G} ® G5 = (EAI ® RA,, SB; ® ng) are neutrosophic graphs,
respectively, such that

(i) V(x,y) € RA; x RA,.

TRApeRAy (X ¥) =min{Tg, (X)), T4, (M)}
Tr(ap@R(A) (X, ¥) =min{TR(a,) (x), TR, (M)},
Iz apeRay) X ¥) =max{lg 4 (%), g, M}
Ir(a)eR(A) (X, ¥) =max{lr,)(x), Ira,) (M},
FR(AI)(XR(Az)(x’ y) Zmax{Fﬁ(A])(x), FR(AZ)()’)},
FrapeRr@ay (X, y) =max{Fgr,)(x), Fria,) )}

(i) Vyiy2 €SB, x € RA;.

=min{Tg 4, (%), Ty, (y1¥2)},
=min{Tgca,) (x), Tss,) (y1y2)}
max{lg s, (x), Iy, (y1y2)},
max{Iga,)(x), Iss,) (y1y2)},
max{Fg4,,(x), Fgp, (y1y2)},
=max{Fr,) (x), Fs,) (y1y2)}-

T§(B|)®§(Bz) ((-xv )’1)()67 y2)
Tss)@ss) ((x, y1) (X, y2)
I5(5,)g58,) (. YD (x, y2)

Isa)esa) ((x, yD)(x, y2)
F5 )58, (X, Y1) (x, ¥2)
Fss)es) ((x, y1)(x, 2)

~— N — ~— ~— ~—
Il

(iii)) Vxix, € SB;, y € RA;.

min{Tg g, (x1x2), Tg(a,) (M},
=min{Tsp,) (x1x2), Tr(a,) (M)}
max{/g g (x1x2), Ig4,) (M},
max{Ig,)(x1x2), Ir(ay) (M)},
max{Fg g, (x1x2), F4,) (M},
=max{Fgp,) (x1x2), Fray ()}

T§(B|)®§(Bz)((xlv y)(x2,y)
Tsesasy ((x1, ) (x2, )
Is (g a5(8,) (X1, V) (32, )
Is(ses8,) (X1, ) (x2, )
Fs (8,058, (1, ) (%2, )
Fsshesay (X1, ¥)(x2, ¥)

~— N — N~ ~— ~—
I

(iv) Vxixy € SBy, y1y2 € SB».

T5(8,)g58,) (1, Y1) (%2, y2)) =min{Tg 5 ) (x1x2), Tg(5,)(y12)},
Tss)esay (X1, y1) (52, y2)) =min{Tsg,) (x1x2), Tsz,) (12)},
I5(5,g5(8,) (1, Y1) (%2, y2)) =max{I5 ., (x12), Igp, (V12)},
Isayess) (X1, y1) (x2, ¥2)) = max{Iss,) (x1x2), Iss,) (y12)},
Fsp @58 (01, YD) (x1, ¥2)) = max{Fs g, (x12), Fs(5,,(V12)},
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Fssyessy (X1, X)) (x1, x2)) =max{Fss,) (x1x2), Fss,) (y132)}.

Definition 8.13 The composition of G| and G, is a neutrosophic soft rough graph
G = G1[G2]

= (G14[Ga.], GTIG3D), where G1.[G2.] = (RA[RAz], SBi[SB,])]

and Gi[G3] = (@Al [RA,], SB, [§Bg]) are neutrosophic graphs, respectively, such

(i) V(x,y) € RA; x RA,.

TRa,)xRay Xs ¥) =min{Tg 4, (%), T4, (M},
Tr(a)xR(Ay) (X, ¥) =min{Trea,) (x), Tr, (M)},
TR Ay xRiay (X5 ¥) =max{lIg 4, (xX), g, (M},
Ira)xR(Ay) (X, ¥) = max{Ira,)(x), Ira,) (V)},
FRa) xRay (s ¥) =max{Fg 4, (x), Fg, (M)},
Fra)xr(ay) (x, y) =max{Fgr,)(x), Fria,) ()}

(ll) Vylyz € SBz, X € RA].

=min{Tg 4, x), T5p, (M1y2)}
=min{Trca,) (%), Tss,) (y1y2)}
max{lg,,,(x), Is, (V1y2)},
max{/lra,)(x), Iss,) (y1)2)},
max{Fg 4, (x), Fgip,) (y1y2)},
max{Frea,)(x), Fss,) (y1y2)}-

Tg(Bl)xg(Bz)((x (X, y2))
Ts(syyxssn (6, y1) (X, 1))
Ig(B])xg(Bz)((x yi)(x, )’2))
)
)
)

Is) sy (%, y1) (x, y2)
F§(B,)x§(32)((x y(x, y2)
Fsg)xseay (X, y)(x, 2)

(lll) Vx1x2 € SBl, y € RAZ

min{Tg(Bl)(xlxz), Tﬁ(Az)(Y)}y
=min{Tgp,)(x1x2), Tr(a,) (M)},
maX{Ig(BI)(X1X2), IR(AZ)()’)}’

T§(Bl)x§(32)((x1, Y)(x2,y))
Tsaxsy) (X1, ) (x2, 1))
Ig(Bl)xg(Bz)((xl» ¥) (x2, )7))
( )

( )

)

max{lg,)(x1x2), Ir(a,)(¥)},
maX{Fg(Bl)(Xlxz), Fﬁ(Az)()’)},

Is)) sy (X1, ¥) (X2, y)
F5 ) xspy (1, ¥) (X2, y)
Fsyxs(ay (X1, y) (x2, y)) =max{Fss,) (x1%2), Frea, ()}

(iv) Vxixp € SBi, y1 # y2 € RA,.

Tg(gl)xg(gz) ((xl , v (x2, YZ))
Tsayxs(sy) (X1, y1) (X2, ¥2))
I§(Bl)><§(32)((x1s y)(x2, y2))

:min{Tg(B])(-xlxl)v TE(AZ)(yl)v TE(AZ)(YZ)},
=min{Tgp,) (x1x1), Tr(a) 1), Tr(4,) (72)},
=maX{1§(31)(x1x1), I@(Az)(n), IR(AQ)()Q)}’
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(2,0.5,0.3,0.1) (¢,0.4,0.1,0.2) (2,0.2,0.3,0.5) (z,0.5,0.3,0.1)
(0.2,0.3,0.1) " (0.1,0.3,0.5)
oM )
Q.‘bﬂ Q.(b“
2 A
© ©

3,0.1,0.1
(z,0.2,0.3,0.3) (w,0.3,0.1,0.1) %) 5,0.3,0.2) (w,0.3,0.0,0.1)

G = (R(A),S(B)) G = (R(4),5(B))

Fig. 8.9 Neutrosophic soft rough graph G = (G, G)

Iy xs(sy (X1, y1) (X2, ¥2)) =max{Iss,) (x1x1), Irar) 1), Triar) (72},
Fg(Bl)xg(Bz)((xl, yi)(x2, yZ)) =maX{F§(3,)(X1X1), F@Mz)(m), FE(Az)(YZ)}a
F§(Bl)x§(32)((xl, 1) (x2, Y2)) =max{Fgp,)(x1x1), Fria,) (1), Frea,)(32)}-

Definition 8.14 Let G = (G, G) be a neutrosophic soft rough graph. The com-
plement of G, denoted by Q = (Q , G), is a neutrosophic soft rough graph, where
G = (R(A), S(B)) and G = (R(A), S(B)) are neutrosophic graphs such that

(i) Vx e RA.

Tray ) =Tgaywy» TR = Rayw FEa®) = Fraym)
Tray () =Tr(a) 0> TR () = IR(A) @), FRA)(X) = FR(A)(0)-

(i) Yov,u € RA.

T (xy) =min{Tg 4 (x), Ty )} — T (X9),
I ) (xy) = max{Ig ) (X), Fgoa) )} — Ty (X9),
Fg ) (xy) = max{Fg 4, (x), Fg1, (1)} — Fsp) (),
Ty (xy) = min{Tg(a)(x), Tra (M)} — Ts) (x),
Is(p) (xy) = max{Ig(a) (X), Ipay (")} — I (X9),
Fapy (xy) =max{Fr(a)(x), Fria)(y)} — Fss) (xy).

Example 8.7 Consider a neutrosophic soft rough graphs G as shown in Fig. 8.9. The
complement of G is G = @, G) obtained by using Definition 8.14, where Q =
(R(A), S(B)) and G = (R(A), S(B)) are neutrosophic graphs as shown in Fig. 8.10.
Definition 8.15 A graph G is called self-complement if G = G, ie.

(i) Vx € RA.
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(0.2,0.0,0.1)

(©
| 5,0.1) (2,0.4, 0> ',VO =
B (0.4,0.3,0.2) Y o
2 bt
- (0.3,0.1,0.1)
(2,0.2,0.3,0.3) (w,0.3,07T;0.1) (2,0.3,0.3,0.2) (w,0.3,070,0.1)
G = (R(A),S(B)) G = (R(4),5(B))

Fig. 8.10 Neutrosophic soft rough graph G = 6,6

Table 8.10 Neutrosophic

X R(A) R(A)

soft rough set on X
u (0.8,0.5,0.2) (0.7,0.5,0.2)
v 0.9,0.5,0.1) (0.7,0.5,0.2)
w (0.7,0.5,0.1) (0.7,0.5,0.2)

Ty ) =Ty 7)) = IRy Fra () = FRaw:
Tray (%) =Tr()(x)> ITrR(A)(X) = IR(A) (1) FRA)(X) = FR(A) M)

(i) Vx,yeRA.

Ty (xy) =T (xy), Igp)(xy) = Igp)(xy), Fgpy(xy) = Fgp)(xy),
TSEB) (xy) =Tgp)(xy), 1@{3)(’@) = Igpy(xy), F§’(B)(Xy) = Fyi)(xy).

Definition 8.16 A neutrosophic soft rough graph G is called strong neutrosophic
soft rough graph if Vxy € SB,

T§(B) (xy) = min{Tﬁ(A)(x), TR(A)()’)},
Iy (xy) = max{Ig 4 (x), Ig(4) (DD,
Fgp) (xy) =max{Fgy) (X), Fgea) (0}
Ts(p)(xy) = min{Tr(a)(x), Trea) (M)},
Is(py (xy) =max{lr)(x), Ira)(»)},
Fsp)(xy) =max{Fr)(x), Fra ()}

Example 8.8 Consider a graph G such that X = {u, v, w} and E = {uv, vw, wu}.
Let RA be a neutrosophic soft rough set of X, and let SB be a neutrosophic soft
rough set of E defined in Tables 8.10 and 8.11, respectively.

Hence, G = (RA, SB) is a strong neutrosophic soft rough graph as shown in
Fig.8.11.

Definition 8.17 A neutrosophic soft rough graph G is called complete neutrosophic
soft rough graphifV x,y € X,
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Table 8.11 Neutrosophic soft rough set on E

E S(B) S(B)
uv (0.8,0.5,0.2) (0.7,0.5,0.2)
vw (0.7,0.5,0.1) (0.7,0.5,0.2)
wit 0.7,05,0.2) 0.7,05,0.2)
V(OQ,OS,OI) u(08,05,02) V(O7,05,02) U(07,05,02)
[ ] [ ] [ [ ]
a (0.8,0.5,0.2) = (07,0502)
S
==}
=
S
L] []
w(0.7,0.5,0.2) w(0.7,0.5,0.2)

G = (R(A4),5(B)) G = (R(A),8(B))

Fig. 8.11 Strong neutrosophic soft rough graph G = (RA, SB)

Ty (xy) =min{Tg 4 (x), T4y (M)}
Isg) (xy) =max{lg 4, (x), Ig 4, (M)},
Fgp)(xy) =max{Fg 4 (x), Fg4) (M)},
Tsp) (xy) =min{Tr4)(x), Tra) (M)},
Isp) (xy) = max{Iga)(x), Ira) ()},
Fg(p)(xy) = max{Fg()(x), Fra)(y)}-

Remark 8.2 Every complete neutrosophic soft rough graph is a strong neutrosophic
soft rough graph. But the converse is not true.

Definition 8.18 A neutrosophic soft rough graph G is isolated if Vx, y € X.

Ty (xy) =0, Ig(py(xy) =0, Fgp)(xy) =0, T g (xy) =0, Ig g (xy) =0, Fgpy(xy) =0,

Theorem 8.1 The rejection of two neutrosophic soft rough graphs is a neutrosophic
soft rough graph.

Proof Let G| = (gl,a) and G, = (Qz,éz) be two neutrosophic soft rough
graphs. Let G = GG, = (G,1G,, G, |52) be the rejection of G and G,, where
GG, = (R(ADIR(A2),S(B1)IS(B2)) and  G1|G2 = (R(A1)|R(A2), S(By)|
S(B,)). We claimthat G = G |G, is an neutrosophic soft rough graph. It is enough to
show that S(B))|S(B) and S(B))|S(B5) are neutrosophic relations on R(A)|R(A»)
and @(AQ@(AZ), respectively. First, we show that S(B)|S(B;) is a neutrosophic
relation on R(A)|R(Aj3).

If x € R(A1), y1y2 ¢ S(B»), then
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Ts(B))s(By) (X, yD(x, ¥2)) =(TR(A;) () A (TR(45) (2) A TR(Ay) (72)))
=(Tr(A) () A TR(A,) (72) A (TR(A ) () A TR(4,)(32))
=TR(A)IR(A2) X Y1) A TR(A D [R(Ay) (X5 ¥2)

Ts(By)I5(By) (%5 YD (%, 32)) =TR(A1)[R(A42) ¥ Y1) A TR(A 1) [R(Ap) (*5 ¥2)

Similarly, Is(p,)|5(B,) (6, Y1) (X, ¥2)) =IR(A1)|R(A7) X2 YD) V IR(A ) [R(49) (X ¥2)

Fs(B))1s(By) (s YD (X, 32)) =FR(ADR(A2) (X YD V FR(ADIR(47) (X5 ¥2)

If x1x, ¢ S(By), y € R(A»), then

Ts(By)IS(By) (X1, Y)(x2, ¥)) =((TR(A ) (1) A TR(A;) (2)) A TR(4,)(¥)
=((Tra)) 1) A TR(A) ) A (TR(A ) (02) A TR(45)(¥))
=TR(ADIR(A2) 15 ) A TR(A))[R(Ap) (¥25 V)
Ts(B)|5(B2) (X1, M) (¥2, ¥)) =TR(A|R(A) ¥15 Y) A TR(A ) [R(A2) (K25 ¥)
Similarly, I5(p,)|s(By) ((¥1, ) (¥2, ¥)) =IR(A1)R(A7) ¥1: Y) V IR(A)IR(A7) (%25 V)
Fs(B))18(By) (1. ) (2, ) =FR(A)R(A2) (K15 Y) V FR(A])R(A) (X2, )

If x1x2 ¢ S(B1), y1, y2 ¢ S(B,), then

Ts(By)Is(By) (X1, yD (32, ¥2)) =((TR(A ) (x1) A Tr(A) (2)) A (TR(A,) (V1) A TR(Ay) (V2)))
=(TR(A) (D) A TR(4,) 1) A (TR(A;) (32) A TR(Ay) (02))
=TR(ADIR(A2) *15 Y1) A TR(AIR(A) (*25 ¥2)

Tsy)is(By) (51, Y1) (X2, ¥2)) =TR(A)R(A2) (X1: Y1) A TR(AR(Ay) (25 ¥2)

Similarly, Is(p,)s(8,) (X1, Y1) (X2, ¥2)) =IR(A1)|R(A2) (X1, Y1) V IR(A})IR(Ay) (= Y1, ¥2)

Fs(B))s(By) ((x1, yD (X2, ¥2)) =FR(A})IR(Ay) (1, Y1) V FR(A})[R(A7) (K2, ¥2)

Thus, S(B1)|S(By) is a neutrosophic relation on R(A;)[R(Az). Similarly, we can
show that S(Bl)lS(Bz) is a neutrosophic relation on R(Al)lR(Az) Hence, G is a
neutrosophic soft rough graph.

Theorem 8.2 The Cartesian product of two neutrosophic soft rough graphs is a
neutrosophic soft rough graph.

Proof Let G| = (Ql,él) and G, = (G2, Gz) be two neutrosophic soft rough
graphs. Let G = G| X G, = (G, X G,, G| X G,) be the Cartesian product of
G, and Gy, where G| x G, = (R(A)) x R(A2), S(B1) X S(B,)) and G| x G, =
(R(A}) x R(A3), S(B1) X S(B,)). We claim that G = G| X G, is a neutrosophic
soft rough graph. It is enough to show that S(B;) x S(B,) and S(B;) x S(B,) are
neutrosophic relations on R(A;) x R(A;) and @(Al) X K(Az), respectively. We
have to show that S(B;) x S(B;) is a neutrosophic relation on R(A;) x R(A»).
If x € R(A1), y1y2 € S(B2), then
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Ts(B))xS(By) (¥, yD (X, ¥2)) =TR(A)) () A Ts(By) (¥12)
<TR(A) () A (TR(A) VD A TR(Ay) (02))
=(Tr(A ) () A TR(4,) Y1) A (Tr(a ;) (X) A TR(Ay) (72))
=TR(AXR(A2) (%5 YD) A TR(A]) xR(A2) (¥, ¥2)
T5(B1)xS(By) (X YD (¥, ¥2)) <TR(A)xR(A2) > Y1) A TR(A ) R(4p) (X5 ¥2)
Similarly, I(B,)xS(B,) (¥, YD (X, ¥2)) <IR(A;)xR(Ay) Xs YD V TR(A]) xR(4,) (X, ¥2)

FS(B1)xS(By) (X, Y1) (X, ¥2)) SFR(A;)xR(A) X: Y1) V FR(A])xR(A,) (*: ¥2)

If x1x2 € S(B1), z € R(A»), then

TsByxsB) (X1, 2) (X2, 2)) =T5(B,)) (x1X2) A TR(4,)(2)
=(Trea) AR (92)) A Treay) (2)
=TRr(A)xR(A») (X1, 2) A TR(A)xR(Ay) (X2, 2)
Ts(Byxs(By) (X1, 2) (X2, 2)) <TR(A)XR(A2) (X152 A TR(A) xR (Ay) (X2, 2)
Similarly, Iss,)ws(8,) (X1, 2) (X2, 2)) <IrR(A)xRA) X1, 2) V TR(A ) KR(A) (X2, 2)
FsBywsB) (X1, 2) (X2, 2)) <FrA)XR(A) (X1, 2) V FRA)xR(4,) (X2, 2)

Ihereforg S(B;) x S(By) is a neutrosophic r_elation on R(A}) X R(A3). Similarly,
S(B;) x S(B,) is a neutrosophic relation on R(A;) X R(A,). Hence, G is a neutro-
sophic rough graph.

Theorem 8.3 The cross product of two neutrosophic soft rough graphs is a neutro-
sophic soft rough graph.

Proof Let G = (G, 61) and G, = (GZ, Gz) be two neutrosophic soft rough
graphs. Let G =G, © G, =(G,©G,,G1 ® G>) be the cross product of Gy and
Gy, where G, © G, = (R(A1) © R(A2), S(B1) © S(B,)) and G10G,=R(A)®
R(A»), S(B)) ® S(B)). We claim that G = G| ® G, is a neutrosophic soft rough
graph. It is enough to show that S(B1) © S(B;) and S(B;) ® S(B,) are neutrosophic
relations on R(A;) ® R(A,) and R(A;) ® R(A»), respectively. First, we show that
S(B;) ® S(B,) is a neutrosophic relation on R(A;) ® R(A3).

If x1x2 € S(B1), y1y2 € S(By), then

Ts(B))®S(By) ((x1, Y1) (x2, ¥2)) =Tg(B))) (x1x2) A Tg(B,) (¥1¥2)
=(Tr(A)) 1) A TrAp)) (02) A (TR(Ay) V1) A TR(4,) (72))
=(Tr(A ) (¢ 1) A TR(45) (x2)) A (TR(A ;) (V1) A TR(Ay) (2))
=TR(A])@R(Ay) X1, X2) A TR(A))@R(47) V1 ¥2)
Ts(B))®S(By) ((*1, Xx2)(¥1, ¥2)) <TR(A)ER(47) X1: Y1) A TR(ADOR(Ay) (2, ¥2)
Similarly, Is(g)@s(8,) (K1, YD (2, ¥2)) ZIR(ADER(A2) X1, Y1) V IR(A) @R (A7) (K25 ¥2)

Fs(B)@s(By) (51, Y1) (x2, ¥2)) SFR(ADOR(A) (K1, Y1) V FR(A)@R(47) (25 ¥2)
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Thus, S(B;) @_S(Bz) is_ a neutrosophic relation on R(A;) © K(Az)._Similarly, we
can show that S(B;) @ S(B,) is a neutrosophic relation on R(A;) ® R(A,). Hence,
G is a neutrosophic soft rough graph.

8.3 Application of Neutrosophic Soft Rough Graphs

In this section, we apply the concept of neutrosophic soft rough sets to a decision-
making problem. In recent times, the object recognition problem has gained consid-
erable importance. The object recognition problem can be considered as a decision-
making problem, in which final identification of object is founded on given set of
information. A detailed description of the algorithm for the selection of most suitable
object based on available set of alternatives is given, and purposed decision-making
method can be used to calculate lower and upper approximation operators to progress
deep concerns of the problem. The presented algorithms can be applied to avoid
lengthy calculations when dealing with a large number of objects. This method can
be applied in various domains for multicriteria selection of objects.

Selection of Most Suitable Generic Version of Brand Name Medicine

In pharmaceutical industry, different pharmaceutical companies develop, produce
and discover pharmaceutical medicines (drugs) for use as medication. These phar-
maceutical companies deals with “brand name medicine” and “generic medicine”.
Brand name medicine and generic medicine are bioequivalent, generic medicine rate
and element of absorption. Brand name medicine and generic medicine have the
same active ingredients, and the inactive ingredients may differ. The most impor-
tant difference is cost. Generic medicine is less expensive as compared to brand
name comparators. Usually generic drug manufacturers have competition to pro-
duce cost less products. The product may possibly be slightly dissimilar in colour,
shape or markings. The major difference is cost. We consider a brand name drug
“u = Loratadine” used for seasonal allergies medication. Consider

X = {x; = Triamcinolone, x, = Cetirizine/Pseudoephedrine,
x3 = Pseudoephedrine, x4 = loratadine/pseudoephedrine,

x5 = Fluticasone}

is a set of generic versions of “Loratadine”. We want to select the most suitable
generic version of Loratadine on the basis of parameters e; = highly soluble, e, =
highly permeable, e; = rapidly dissolving. M = {ey, €3, e3} be a set of paraments.
Let R be a neutrosophic soft relation from X to parameter set M, describes truth-
membership, indeterminacy-membership and false-membership degrees of generic
version medicines corresponding to the parameters as shown in Table 8.12.
Suppose A = {(e;,0.2,0.4,0.5), (e2,0.5,0.6,0.4), (e3,0.7,0.5,0.4)} is most
favourable object which is a neutrosophic set on the parameter set M under con-
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Table 8.12 Neutrosophic soft set R = (F, M)

R X1 X2 X3 X4 X5

el (0.4,0.5,0.6) |(0.5,0.3,0.6) |(0.7,0.2,0.3) |(0.5,0.7,0.5) |(0.6,0.5,0.4)
e (0.7,0.3,0.2) |(0.3,0.4,0.3) |(0.6,0.5,0.4) |(0.8,0.4,0.6) |(0.7,0.8,0.5)
e3 (0.6,0.3,0.4) |(0.7,0.2,0.3) |(0.7,0.2,0.4) |(0.8,0.7,0.6) |(0.7,0.3,0.5)
Table 8.13 Neutrosophic soft relation S

S X1X2 X1X3 X4X] XX3 X5X3 x2X4 X2X5

ejer | (0.3,04,0.2) | (0.4,04,0.5) (0.4,0.4,0.5)| (0.6,0.3,0.4)| (0.4,0.2,0.2)| (0.4,0.4,0.2)] (0.4,0.3,0.4)
ere3 | (05,04,0.1) | (0.4,03,0.2)| (0.4,0.3,0.2)| (0.3,0.3,0.2)| (0.6,0.2,0.4)| (0.3,0.2,0.1)| (0.3,0.3,0.2)
e1e3 (0.4,04,0.1) (0.4,0.2,0.2)| (0.4,0.2,0.2)| (0.5,0.3,0.3)| (0.4,0.2,0.3)| (0.4,0.3,0.1)| (0.5,0.3,0.2)

sideration. Then (R(A), R(A)) is a neutrosophic soft rough set in neutrosophic soft
approximation space (X, M, R), where

R(A) = {(x1,0.6,0.5,0.4), (x2,0.7,0.4,0.4), (x3, 0.7, 0.4, 0.4), (x4, 0.7, 0.6, 0.5), (x5, 0.7, 0.5, 0.5)},
R(A) = {(x1, 0.5, 0.6,0.4), (x2,0.5,0.6,0.5), (x3,0.3,0.3, 0.5), (x4, 0.5, 0.6, 0.5), (x5, 0.4, 0.5, 0.5).

Let E = {xixp, X1X3, X4X1, X2X3, X5X3, X2X4, X2xs} © X and L = {eje3, eze1, €3
e} S M.

Then a neutrosophic soft relation S on E (from L to E) can be defined in Table 8.13
as follows:

Let B = {(e1e3,0.2,0.4,0.5), (eze3,0.5,0.4,0.4), (ere3,0.5,0.2, 0.5)} be aneu-
trosophic set on L which describes some relationship between the parameters under
consideration, then SB = (S(B), S(B)) is a neutrosophic soft rough relation, where

S(B) = {(x1x2,0.5, 0.4, 0.4), (x1x3, 0.4, 0.2, 0.4), (xax], 0.4, 0.2, 0.4), (x2x3, 0.5, 0.3, 0.4),
(xs5x3, 0.5, 0.2, 0.4), (xax4, 0.4, 0.3, 0.4), (xpx3, 0.5, 0.3, 0.4)},

S(B) = {(x1x2,0.2, 0.4, 0.4)(x1 x3, 0.5, 0.4, 0.4), (xax], 0.5, 0.4, 0.4), (x2x3, 0.4, 0.4, 0.5),
(xs5x3, 0.2, 0.4, 0.4), (xpx4, 0.2, 0.4, 0.4), (x2x5, 0.4, 0.4, 0.5)}.

Thus, G = (G, G) is a neutrosophic soft rough graph as shown in Fig. 8.12.
The sum of two neutrosophic numbers is defined as follows.

Definition 8.19 Let C and D be two single-valued neutrosophic numbers, and the
sum of two single-valued neutrosophic numbers is defined as follows:
Ce®D=<Tc+Tp—Tc xTp,Ic xIp, Fc X Fp > . 8.1)

The sum of upper neutrosophic soft rough set RA and the lower neutrosophic soft
rough set RA and sum of lower neutrosophic soft rough relation SB and the upper
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(21,0.5, 0.6, 0.4) (0.4,0.2,0.4)

(¢1,0.6,0.5,0.4) (3,0.7,0.4,0.4)

0.5,0.4,0.4)

(‘9°09°0°2°0)
(0.4.0.2.0.4)
(0.5,0.2,0.4)

(“4°0‘7"0°2°0)

o

14,0

[

.5) (z5, ,05) Exa, 0.7,0.6, 0-5)] (25,0.7,0.5,0.5)

G = (R(4),5(B)) G = (R(4),5(B))

Fig. 8.12 Neutrosophic soft rough graph G = (G, G)

neutrosophic soft rough relation SB are neutrosophic sets RA @& RA and SB & SB,
respectively, defined by

a=RA®RA = {(x1,0.8,0.3,0.16), (x2,0.85,0.24,0.2), (x3,0.79, 0.2, 0.2), (x4, 0.85, 0.36, 0.25),
(x5,0.82,0.25,0.25)},
B = SB ®SB = {(x1x2,0.6,0.16,0.16), (x1x3,0.7,0.8, 0.16), (x4x1,0.7,0.8,0.16), (x2x3, 0.7,
0.12,0.2), (x5x3, 0.6, 0.08, 0.16), (x2x4, 0.52,0.12, 0.16), (x2x5,0.7,0.12,0.2), }.

The score function y(x;) defines for each generic version medicine x; € X,

v = Y To(x)) + Ia(x)) — Fa(x)) 8.2)

3 — (Tg(xix;) + Ig(xix;) — Fg(xix;))

xix;€E

and x; with the larger score value x; = max y(x;) is the most suitable generic version
1

medicine. By calculations, we have

v(x1) = 0.88, v(x2) = 0.69, v(x3) = 0.26 v(x4) = 0.57, and ~y(xs5) = 0.33.
(8.3)

Here, x; is the optimal decision, and the most suitable generic version of “Loratadine”
is “Triamcinolone”. We have used software MATLAB for calculating the required
results in the application. The algorithm is given in Algorithm 8.3.1.

Algorithm 8.3.1 Algorithm for selection of most suitable objects

1. Input the number of elements in vertex set X = {xy, X2, ..., X, }.
2. Input the number of elements in parameter set M = {ey, ea, ..., €y }.

3. Input a neutrosophic soft relation R from X to M.
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4.

10.
11.

12.

13.

14.
15.

Input a neutrosophic set A on M.

Compute neutrosophic soft rough vertex set RA = (R(A), R(A)).

Input the number of elements in edge set E = {x;x, x| X2, ..., XgX1}.
Input the number of elements in parameter set M = {eieq, eren, ..., ee1}.
Input a neutrosophic soft relation S from X to M.

Input a neutrosophic set B on M.

Compute neutrosophic soft rough edge set SB = (S(B), S(B)).
Compute neutrosophic set o = (T, (x;), 1,(x;), Fo(x;)), where

To(xi) = TRa) (xi) + Tray (i) — Tga) (i) X Treay(x:),
I,(x;) = Tay(xi) X Treay(xi),
Fo(xi) = FRoa)(xi) X Frea) (x:);

Compute neutrosophic set 8 = (T3(x;x;), I3(x;ix;), Fg(x;x;)), where

Ts(xixj) = Ty (xixj) + Tspy (xix;) — Tgpy (xix;) X Tsem(xix;),
Ig(xix;) = T5 gy (xixj) x Tgp)(xix;),
Fs(xix;) = F5p)(xix;) X Fg(p)(xix;);

Calculate the score values of each object x;, and score function is defined as
follows:

N To(xj) + 1o (x)) — Fo(x)) .
Vi) = Z 3 — (Tp(xix;) + Is(xix;) — Fa(xix;))’

xix;€E

The decision is x; if 7; = max ;.
i=1

If i has more than one value, then any one of x; may be chosen.
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