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Foreword

The Königsberg bridge problem originated in the city of Königsberg, located on the
river Pregel. The city had seven bridges, which connected two islands with the
mainland. People staying there always wondered whether there was any way to
walk over all the bridges once and only once and return to the same place where
they started the walk. In 1736, Euler came out with the solution in terms of graph
theory. He proved that it was not possible to walk through the seven bridges exactly
one time. In coming to this conclusion, Euler formulated the problem in terms of
graph theory. Each landmark was represented as a point (node) and every bridge as
an edge. This led to the formation of graph theory. Graph theory is a beautiful part
of mathematics. Not only computer science is heavily based on graph theory, but
there are a lot of applications of graph theory in operational research, combinatorial
optimization and bioinformatics.

Neutrosophy was introduced by Smarandache in 1995, as a new branch of
philosophy, which is a generalization of dialectics. Neutrosophy is the base of
neutrosophic set, neutrosophic logic, neutrosophic probability and statistics, and
neutrosophic calculus that have many real applications. A single-valued neutro-
sophic set is a special neutrosophic set and can be used expediently to deal with the
real-world problems, especially in decision support.

This book presents readers with fundamental concepts, including single-valued
neutrosophic, neutrosophic graph structures, bipolar neutrosophic graphs, domi-
nation in bipolar neutrosophic graphs, bipolar neutrosophic planar graphs,
interval-valued neutrosophic graphs, interval-valued neutrosophic graph structures,
rough neutrosophic digraphs, neutrosophic rough digraphs, neutrosophic soft
graphs and intuitionistic neutrosophic soft graphs. This book also presents practical
applications of the concepts in real world. Therefore, the book presents a valuable
contribution for students and researchers in neutrosophic graphs and their
applications.
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The author, Muhammad Akram, is a well-known international researcher in the
field of neutrosophic graphs and he manifests a great enthusiasm and strong
potential in developingthe neutrosophic environment and applying it to practical
problems.

Gallup, USA Florentin Smarandache
University of New Mexico
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Preface

The concept of fuzzy sets was introduced by Zadeh in 1965. Since then, fuzzy sets
and fuzzy logic have been applied in many real applications to handle uncertainty.
The traditional fuzzy set uses one real value from the unit interval [0, 1] to represent
the grade of membership of fuzzy set defined on the universe. In some applications,
including an expert system, belief system and information fusion, we should con-
sider not only the truth-membership supported by the evident but also the
falsity-membership against by the evident. That is beyond the scope of fuzzy sets. In
1983, Atanassov introduced the intuitionistic fuzzy sets which are a generalization of
fuzzy sets. The intuitionistic fuzzy sets consider both truth-membership (TAðxÞ) and
falsity-membership (FAðxÞ) with TAðxÞ, FAðxÞ 2 ½0; 1� and TAðxÞþFAðxÞ� 1:
Intuitionistic fuzzy sets can only handle incomplete information and not the inde-
terminate information and inconsistent information which exist commonly in the
belief system. In intuitionistic fuzzy sets, hesitancy is 1� TAðxÞ � FAðxÞ by default.
In a neutrosophic set [163], indeterminacy is quantified explicitly and truth-
membership, indeterminacy-membership and falsity-membership are independent.
This assumption is very important in a lot of situations such as information fusion
when we try to combine the data from different sensors. Neutrosophy was introduced
by Smarandache in 1995. “It is a branch of philosophy which studies the origin,
nature and scope of neutralities, as well as their interactions with different ideational
spectra”. Neutrosophy is the base of neutrosophic set, neutrosophic logic, neutro-
sophic probability and statistics, and neutrosophic calculus. A single-valued neu-
trosophic set is a special neutrosophic set and can be used expediently to deal with
the real-world problems, especially in decision support. Thus, a single-valued
neutrosophic set is a powerful general formal framework which generalizes the
concept of fuzzy set and intuitionistic fuzzy set. The work presented here intends to
overcome the lack of a mathematical approach towards indeterminate information
and inconsistent information. This monograph deals with single-valued neutrosophic
graphs and their applications. It is based on a number of papers by the author, which
have been published in various scientific journals. This book may be useful for
researchers in mathematics, computer scientists and social scientists alike.
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In Chap. 1, a concise review of the single-valued neutrosophic sets is presented.
Certain types of single-valued neutrosophic (neutrosophic, for short) graphs are
discussed. Applications of neutrosophic graphs are described. Moreover, the energy
of neutrosophic graphs with applications is presented.

In Chap. 2, certain concepts of neutrosophic graph structures and some of their
properties are presented. Moreover, some interesting applications of neutrosophic
graph structures are discussed.

In Chap. 3, certain bipolar neutrosophic graphs are studied. Domination in
bipolar neutrosophic graphs is presented. Bipolar neutrosophic planar graphs and
bipolar neutrosophic line graphs are discussed. Further, some applications of
bipolar neutrosophic graphs are described.

In Chap. 4, the concept of interval-valued neutrosophic graphs is presented.
Certain types including k-competition interval-valued neutrosophic graphs, p-
competition interval-valued neutrosophic graphs and m-step interval-valued neu-
trosophic competition graphs are discussed.

In Chap. 5, certain notions of interval-valued neutrosophic graph structures are
presented. The concepts of interval-valued neutrosophic graph structures with
examples are elaborated. Moreover, the concept of ’-complement of an
interval-valued neutrosophic graph structure is discussed. Finally, some related
properties, including ’-complement, totally self-complementary and totally strong
self-complementary, of interval-valued neutrosophic graph structures are described.

In Chap. 6, the concepts of rough neutrosophic digraphs and neutrosophic rough
digraphs are presented. Further, applications of rough neutrosophic digraphs and
neutrosophic rough digraphs in decision-making problems are described. Moreover,
comparative analysis of rough neutrosophic digraphs and neutrosophic rough
digraphs is given.

In Chap. 7, the notions of neutrosophic soft graphs and intuitionistic neutro-
sophic soft graphs are presented. Further, applications of neutrosophic soft graphs
and intuitionistic neutrosophic soft graphs are discussed. Moreover, the notion of
neutrosophic soft rough graphs is described. Finally, in Chap. 8, applications of
neutrosophic soft rough graphs are considered.
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Fig. 6.31 Neutrosophic digraph G ¼ ðR̂ A; ŜBÞ . . . . . . . . . . . . . . . . . . . . . . 280
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Chapter 1
Graphs Under Neutrosophic
Environment

In this chapter, we first present a concise review of neutrosophic sets. Thenwe present
certain types of single-valued neutrosophic graphs (neutrosophic graphs, for short),
including regular neutrosophic graphs, totally regular neutrosophic graphs, edge
regular neutrosophic graphs, irregular neutrosophic graphs, highly totally irregular
neutrosophic graphs, strongly totally irregular neutrosophic graphs, neighbourly edge
irregular neutrosophic graphs and strongly edge irregular neutrosophic graphs. We
describe applications of neutrosophic graphs.We also present energy of neutrosophic
graphs with applications. This chapter is due to [27, 124, 167, 176].

1.1 Introduction

By a graph, we mean an ordered pair G∗ = (X, E) such that X is the collection of
components taken as nodes or vertices and E is a relation on X , called edges. It is
often convenient to depict the relationships between pairs of elements of a system
by means of a graph or a digraph. The vertices of the graph represent the system
elements, and its edges or arcs represent the relationships between the elements. This
approach is especially useful for transportation, scheduling, sequencing, allocation,
assignment and other problems which can be modelled as networks. Such a graph-
theoretical model is often useful as an aid in communicating.

Zadeh [194] introduced the degree of membership/truth (T) in 1965 and defined
the fuzzy set. Atanassov [47] introduced the degree of nonmembership/falsehood (F)
in 1983 and defined the intuitionistic fuzzy set. Smarandache [163] introduced the
degree of indeterminacy/neutrality (I) as independent component in 1995 and defined
the neutrosophic set on three components (T, I, F)= (Truth, Indeterminacy, Falsity).
Fuzzy set theory and intuitionistic fuzzy set theory are useful models for dealing with
uncertainty and incomplete information. But they may not be sufficient in modelling
of indeterminate and inconsistent information encountered in real world. In order
to cope with this issue, neutrosophic (The words “neutrosophy” and “neutrosophic”
were invented by Smarandache in 1995. Neutrosophy is a new branch of philosophy
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2 1 Graphs Under Neutrosophic Environment

that studies the origin, nature and scope of neutralities, as well as their interactions
with different ideational spectra. It is the base of neutrosophic logic, a multiple-
value logic that generalizes the fuzzy logic and deals with paradoxes, contradictions,
antitheses, antinomies) set theory was proposed by Smarandache. However, since
neutrosophic sets are identified by three functions called truth-membership (T ),
indeterminacy-membership (I ) and falsity-membership (F) whose values are real
standard or non-standard subset of unit interval ]−0, 1+[, where −0 = 0 − ε, 1+ =
1 + ε, ε is an infinitesimal number. To apply neutrosophic set in real-life problems
more conveniently, Smarandache [165] and Wang et al. [172] defined single-valued
neutrosophic set which takes the value from the subset of [0, 1]. Thus, a single-valued
neutrosophic set is an instance of neutrosophic set and can be used expediently to
deal with real-world problems, especially in decision support.

A Geometric Interpretation of the Neutrosophic Set

We describe a geometric interpretation of the neutrosophic set using the neutro-
sophic cube A′B ′C ′D′E ′F ′G ′H ′ as shown in Fig. 1.1. In technical applications only
the classical interval [0, 1] is used as range for the neutrosophic parameters T, I and
F ; we call the cube ABCDEFGH the technical neutrosophic cube and its exten-
sion A′B ′C ′D′E ′F ′G ′H ′ the neutrosophic cube, used in the field where we need to
differentiate between absolute and relative notions. Consider a 3D Cartesian system
of coordinates, where T is the truth axis with value range in ]−0, 1+[, F is the false

A (−0,− 0,− 0)B (1+,− 0,− 0)

C

D(0, 1, 0)

E (−0,− 0,1+)F

G H

A(0, 0, 0)B(1, 0,0)

C

D (−0, 1+,− 0)

E(0,0, 1))F

G H

I

T

F

Fig. 1.1 A geometric interpretation of the neutrosophic set
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axis with value range in ]−0, 1+[, and I is the indeterminate axis with value range
in ]−0, 1+[.

We now divide the technical neutrosophic cube ABCDEFGH into three disjoint
regions:

1. The equilateral triangle BDE , whose sides are equal to
√
2, which represents the

geometrical locus of the points whose sum of the coordinates is 1. If a point Q is
situated on the sides of the triangle BDE or inside of it, then TQ + IQ + FQ = 1.

2. The pyramid E ABD situated in the right side of the ΔEBD, including its faces
ΔABD(base),ΔEBA andΔEDA(lateral faces), but excluding its facesΔBDE
is the locus of the points whose sum of their coordinates is less than 1. If P ∈
E ABD, then TP + IP + FP < 1.

3. In the left side ofΔBDE in the cube, there is the solid EFGCDEBD (excluding
ΔBDE) which is the locus of points whose sum of their coordinates is greater
than 1. If a point R ∈ EFGCDEBD, then TR + IR + FR > 1.

It is possible to get the sum of coordinates strictly less than 1 or strictly greater than
1. For example:
(1) We have a source which is capable to find only the degree of membership of an
element, but it is unable to find the degree of nonmembership.
(2) Another source which is capable to find only the degree of nonmembership of an
element.
(3) Or a source which only computes the indeterminacy.
Thus, when we put the results together of these sources, it is possible that their sum
is not 1, but smaller or greater.

On the other hand, in information fusion, when dealing with indeterminate mod-
els (i.e. elements of the fusion space which are indeterminate/unknown, such as
intersections we do not know if they are empty or not since we do not have enough
information, similarly for complements of indeterminate elements): if we compute
the believe in that element (truth), the disbelieve in that element (falsehood) and the
indeterminacy part of that element, then the sum of these three components is strictly
less than 1 (the difference to 1 is the missing information).

Definition 1.1 Let X be a space of points (objects). A single-valued neutrosophic
set A on a nonempty set X is characterized by a truth-membership function
TA : X → [0, 1], indeterminacy-membership function IA : X → [0, 1] and a falsity-
membership function FA : X → [0, 1]. Thus, A = {< x, TA(x), IA(x), FA(x) >

|x ∈ X}. There is no restriction on the sum of TA(x), IA(x) and FA(x) for all x ∈ X .
When X is continuous, a single-valued neutrosophic set A can be written as

A =
∫
X
〈(T (x), I (x), F(x))/x, x ∈ X〉.

When X is discrete, a single-valued neutrosophic set A can be written as
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A =
n∑

i=1

〈(T (xi ), I (xi ), F(xi ))/xi , xi ∈ X〉.

Example 1.1 Assume that the universe of discourse X = {x1, x2, x3}, where x1
describes the capability, x2 describes the trustworthiness, and x3 describes the prices
of the objects. It may be further assumed that the values of x1, x2 and x3 are in [0, 1]
and they are obtained from some questionnaires of some experts. The experts may
impose their opinion in three components, namely the degree of goodness, the degree
of indeterminacy and that of poorness to explain the characteristics of the objects.
Suppose A is a single-valued neutrosophic set of X such that

A = {< x1, 0.3, 0.5, 0.6 >,< x2, 0.3, 0.2, 0.3 >,< x3, 0.3, 0.5, 0.6 >},

where < x1, 0.3, 0.5, 0.6 > represents that the degree of goodness of capability is
0.3, degree of indeterminacy of capability is 0.5 and degree of falsity of capability
is 0.6.

Remark 1.1 When we consider that there are three different experts that are inde-
pendent (i.e. they do not communicate with each other), so each one focuses on one
attribute only (because each one is the best specialist in evaluating a single attribute).
Therefore, each expert can assign 1 to his attribute value [for (1, 1, 1)], or each expert
can assign 0 to his attribute value [for (0, 0, 0)], respectively.

When we consider a single expert for evaluating all three attributes, then he eval-
uates each attribute from a different point of view (using a different parameter)and
arrives to (1, 1, 1) or (0, 0, 0), respectively.

For example,we examine a student “Muhammad”; for his research in neutrosophic
graphs, he deserves 1; for his research in analytical mathematics, he also deserves 1;
and for his research in physics, he deserves 1.

Definition 1.2 Let A = {< x, TA(x), IA(x), FA(x) > |x ∈ X} and B = {< x,
TB(x), IB(x), FB(x) > |x ∈ X} be two single-valued neutrosophic sets, then opera-
tions are defined as follows:

• A ⊆ B if and only if TA(x) ≤ TB(x), IA(x) ≥ IB(x), FA(x) ≥ FB(x),
• A = B if and only if TA(x) = TB(x), IA(x) = IB(x) and FA(x) = FB(x),
• A ∩ B = {< x,min(TA(x), TB(x)),max(IA(x), IB(x)),max(FA(x), FA(x)) >

|x ∈ X},
• A ∪ B = {< x,max(TA(x), TB(x)),min(IA(x), IB(x)),min(FA(x), FA(x)) >

|x ∈ X},
• Ac = {< x, FA(x), 1 − IA(x), TA(x) > |x ∈ X},
• 0 = (0, 1, 1) and 1 = (1, 0, 0).

Yang et al. [176] introduced the concept of single-valued neutrosophic relations.

Definition 1.3 A single-valued neutrosophic relation on a nonempty set X is a
single-valued neutrosophic subset of X × X of the form
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B = {(yz, TB(yz), IB(yz), FB(yz)) : yz ∈ X × X},

where TB : X × X → [0, 1], IB : X × X → [0, 1], FB : X × X → [0, 1] denote
the truth-membership function, indeterminacy-membership function and falsity-
membership function of B, respectively.

Definition 1.4 Let B be a single-valued neutrosophic relation in X , the complement
and inverse of B are defined as follows, respectively

Bc = {〈(x, y), TRc (x, y), IRc (x, y), FRc (x, y)〉|(x, y) ∈ X × X}, ∀(x, y) ∈ X × X,

where

TRc(x, y) = FR(x, y),

IRc(x, y) = 1 − IR(x, y),

FRc(x, y) = TR(x, y).

B−1 = {〈(x, y), TR−1(x, y), IR−1(x, y), FR−1(x, y)〉|(x, y) ∈ X × X}, ∀(x, y) ∈ X × X,

where

TR−1(x, y) = TR(y, x),

IR−1(x, y) = IR(y, x),

FR−1(x, y) = FR(y, x).

Example 1.2 Let X = {x1, x2, x3, x4, x5}. A single-valued neutrosophic relation B
in X is given in Table1.1. By Definition1.4, we can compute Bc and B−1 which are
given in Tables1.2 and 1.3, respectively.

Definition 1.5 Let R, S be two single-valued neutrosophic relations in X .

1. The union R ∪ S of R and S is defined by

R ∪ S = {〈(x, y);max{TR(x, y), TS(x, y)};min{IR(x, y), IS(x, y)};
min{FR(x, y), FS(x, y)}〉|(x, y) ∈ X × X}.

2. The intersection R ∩ S of R and S is defined by

R ∩ S = {〈(x, y);min{TR(x, y), TS(x, y)};max{IR(x, y), IS(x, y)};
max{FR(x, y), FS(x, y)}〉|(x, y) ∈ X × X}.

Definition 1.6 Let R be a single-valued neutrosophic relation in X .

1. If∀ x ∈ X , TR(x, x) = 1 and IR(x, x) = FR(x, x) = 0, then R is called a reflexive
single-valued neutrosophic relation.
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Table 1.1 Single-valued neutrosophic relation B

B x1 x2 x3 x4 x5

x1 (0.2, 0.6, 0.4) (0, 0.3, 0.7) (0.9, 0.2, 0.4) (0.3, 0.9, 1) (1, 0.2, 0)

x2 (0.4, 0.5, 0.1) (0.1, 0.7, 0) (1, 1, 1) (1, 0.3, 0) (0.5, 0.6, 1)

x3 (0, 1, 1) (1, 0.5, 0) (0, 0, 0) (0.2, 0.8, 0.1) (1, 0.8, 1)

x4 (1, 0, 0) (0, 0, 1) (0.5, 0.7, 0.1) (0.1, 0.4, 1) (1, 0.8, 0.8)

x5 (0, 1, 0) (0.9, 0, 0) (0, 0.1, 0.7) (0.8, 0.9, 1) (0.6, 1, 0)

Table 1.2 Complement Bc of B

B x1 x2 x3 x4 x5

x1 (0.4, 0.4, 0.2) (0.7, 0.7, 0) (0.4, 0.8, 0.9) (0.1, 0.1, 3) (0, 0.8, 1)

x2 (0.1, 0.5, 0.4) (0, 0.3, 0.1) (1, 0, 1) (0, 0.7, 1) (1, 0.4, 0.5)

x3 (1, 0, 0) (0, 0.5, 1) (0, 1, 0) (0.1, 0.2, 0.2) (1, 0.2, 1)

x4 (0, 1, 1) (1, 1, 0) (0.1, 0.3, 0.5) (1, 0.6, 0.4) (0.8, 0.2, 1)

x5 (0, 0, 0) (0, 1, 0.9) (0.7, 0.9, 0) (1, 0.1, 0.8) (0, 0, 0.6)

Table 1.3 Inverse B− of B

B x1 x2 x3 x4 x5

x1 (0.2, 0.6, 0.4) (0.4, 0.5, 0.1) (0, 1, 1) (1, 0, 0) (0, 1, 0)

x2 (0, 0.3, 0.7) (0.1, 0.7, 0) (1, 0.5, 0) (0, 0, 1) (0.9, 0, 0)

x3 (0.9, 0.2, 0.4) (1, 1, 1) (0, 0, 0) (0.5, 0.7, 0.1) (0, 0.1, 0.7)

x4 (0.3, 0.9, 1) (1, 0.3, 0) (0.2, 0.8, 0.1) (0.1, 0.4, 1) (0.8, 0.9, 1)

x5 (1, 0.2, 0) (0.5, 0.6, 1) (1, 0.8, 1) (1, 0.8, 0.8) (0.6, 1, 0)

2. If ∀ x, y ∈ X , TR(x, y)=TR(y, x), IR(x, y) = IR(y, x) and FR(y, x)=FR(x, y),
then R is called a symmetric single-valued neutrosophic relation.

3. If∀ x ∈ X , TR(x, x) = 0 and IR(x, x) = FR(x, x) = 1, then R is called an antire-
flexive single-valued neutrosophic relation.

4. If ∀ x, y, z ∈ X ,

max
v∈X min{TR(x, y), TR(y, z)} ≤ TR(x, z),

min
v∈X max{IR(x, y), IR(y, z)} ≥ IR(x, z),

min
v∈X max{FR(x, y), FR(y, z)} ≥ FR(x, z),

then R is called a transitive single-valued neutrosophic relation.
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1.2 Certain Types of Neutrosophic Graphs

Definition 1.7 A single-valued neutrosophic graph on a nonempty X is a pair
G = (A, B), where A is single-valued neutrosophic set in X and B single-valued
neutrosophic relation on X such that

TB(xy) ≤ min{TA(x), TA(y)},
IB(xy) ≤ min{IA(x), IA(y)},
FB(xy) ≤ max{FA(x), FA(y)}

for all x, y ∈ X . A is called single-valued neutrosophic vertex set of G and B is
called single-valued neutrosophic edge set of G, respectively.

Remark 1.2 1. B is called symmetric single-valued neutrosophic relation on A.
2. If B is not symmetric single-valued neutrosophic relation on A, thenG = (A, B)

is called a single-valued neutrosophic directed graph (digraph).
3. X and E are underlying vertex set and underlying edge set of G, respectively.

Throughout this chapter, we will use neutrosophic set, neutrosophic relation and
neutrosophic graph, for short.

Example 1.3 Consider a crisp graph G∗ = (X, E) such that X = {a, b, c, d, e, f },
E = {ab, ac, bd, cd, be, c f, e f, bc}. Let A and B be the neutrosophic sets of X and
E , respectively, as shown in Table1.4. By simple calculations, it is easy to see that
G = (A, B) is a neutrosophic graph as shown in Fig. 1.2.

Definition 1.8 Aneutrosophic graphG = (A, B) is called complete if the following
conditions are satisfied:

TB(xy) = min{TA(x), TA(y)},
IB(xy) = min{IA(x), IA(y)},

Table 1.4 Neutrosophic sets

A a b c d e f

TA 0.2 0.3 0.4 0.3 0.5 0.4

IA 0.5 0.4 0.5 0.6 0.5 0.6

FA 0.7 0.6 0.4 0.8 0.6 0.6

B ab ac bd cd be cf ef bc

TB 0.2 0.1 0.2 0.3 0.2 0.1 0.4 0.2

IB 0.4 0.4 0.2 0.2 0.3 0.4 0.4 0.3

FB 0.7 0.5 0.6 0.7 0.5 0.5 0.5 0.6
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Fig. 1.2 Neutrosophic graph
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Fig. 1.3 Complete
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(0.
1, 0

.4,
0.7

)

FB(xy) = max{FA(x), FA(y)},

for all x, y ∈ X .

Example 1.4 Consider a neutrosophic G=(A, B) on the nonempty set X = {a, b,
c, d} as shown in Fig. 1.3. By direct calculations, it is easy to see thatG is a complete.

Definition 1.9 Let A = {< x, TA(x), IA(x), FA(x) >, x ∈ X} be a neutrosophic set
of the set X . For α ∈ [0, 1], the α-cut of A is the crisp set Aα defined by

Aα = {x ∈ X : either (TA(x), IA(x) ≥ α) or FA(x) ≤ 1 − α}.

Let B = {< xy, TB(xy), IB(xy), FB(xy) >} be a neutrosophic set on E ⊆ X × X .
For α ∈ [0, 1], the α-cut is the crisp set Bα defined by

Bα = {xy ∈ E : either (TB(xy), IB(xy) ≥ α) or FB(xy) ≤ 1 − α}.
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Fig. 1.4 Neutrosophic graph and 0.4-level graph G0.4

Gα = (Aα, Bα) is a subgraph of crisp graph G∗.

Example 1.5 Consider a neutrosophic graph G on nonempty set X = {a, b, c, d, e}
as shown in Fig. 1.4.

For α = 0.4, we have

A0.4 = {b, c, d},
B0.4 = {bc, cd, bd}.

Clearly, the 0.4-level graph G0.4 = (A0.4, B0.4) is a subgraph of crisp graph G∗.

Definition 1.10 The order and the size of a neutrosophic graph G are denoted by
O(G) and S(G), respectively, and are defined as

O(G) =
(∑

s∈X
TA(s),

∑
s∈X

IA(s),
∑
s∈X

FA(s)

)
,

S(G) =
(∑
st∈E

TB(st),
∑
st∈E

IB(st),
∑
st∈E

FB(st)

)
.

Definition 1.11 The degree and the total degree of a vertex s of a neutrosophic graph
G are denoted by dG(s) = (dT (s), dI (s), dF (s)) and TdG(s) = (TdT (s), TdI (s),
TdF (s)), respectively, and are defined as
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s1(0.4, 0.6, 0.5)

s3(0.6, 0.7, 0.4) s2(0.5, 0.4, 0.7)

(0.3, 0.2, 0.6)

(0.4, 0.3, 0.6)

(0
.2
, 0
.4
, 0
.5
)

Fig. 1.5 Neutrosophic graph

dG(s) =
⎛
⎝∑

s �=t

TB(st),
∑
s �=t

IB(st),
∑
s �=t

FB(st)

⎞
⎠ ,

TdG(s) =
⎛
⎝∑

s �=t

TB(st) + TA(s),
∑
s �=t

IB(st) + IA(s),
∑
s �=t

FB(st) + FA(s)

⎞
⎠ ,

for st ∈ E , where s ∈ X .

Example 1.6 Consider a neutrosophic graph G on the nonempty set X = {s1, s2, s3}
as shown in Fig. 1.5.

By direct calculations, we have O(G) = (1.5, 1.7, 1.6), S(G) = (0.9, 0.9, 1.7),

dG(s1) = (0.5, 0.6, 1.1), dG(s2) = (0.7, 0.5, 1.2), dG(s3) = (0.6, 0.7, 1.1),

TdG(s1) = (0.9, 1.2, 1.6), TdG(s2) = (1.2, 0.9, 1.9), TdG(s3) = (1.2, 1.4, 1.5).

Definition 1.12 A neutrosophic graph G is called a regular if each vertex has same
degree, that is,

dG(s) = (m1,m2,m3), for all s ∈ X.

Example 1.7 Consider a neutrosophic graph G on X = {s1, s2, s3, s4} as shown in
Fig. 1.6.

By direct calculations, we have

dG(s1) = (0.2, 1.2, 0.8) = dG(s2) = dG(s3) = dG(s4).

Hence G is a regular neutrosophic graph.

Definition 1.13 A neutrosophic graph G is called a totally regular of degree
(n1, n2, n3) if

TdG(s) = (n1, n2, n3), for all s ∈ X.
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s1(0.3, 0.8, 0.4)

s4(0.1, 0.9, 0.5)

s3(0.3, 0.6, 0.4)

s2(0.1, 0.8, 0.9)

(0.1, 0.6, 0.4)

(0
.1
, 0
.6
, 0
.4
)

(0.1, 0.6, 0.4)

(0.1,0.6,0.4)

Fig. 1.6 Regular neutrosophic graph

s6(0.3, 0.4, 0.6)

s5(0.3, 0.4, 0.6)

s4(0.3, 0.4, 0.6) s3(0.3, 0.4, 0.6)

s2(0.3, 0.4, 0.6)

s1(0.3, 0.4, 0.6)(0.1, 0.2, 0.5)

(0
.1
,0
.2
,0
.5
) (0.1,0.2,0.5)

(0.2, 0.3, 0.6)(0
.2
, 0
.3
, 0
.6
)

(0.2, 0.3, 0.6)

Fig. 1.7 Totally regular neutrosophic graph

Example 1.8 Consider a neutrosophic graph G on X = {s1, s2, s3, s4, s5, s6} as
shown in Fig. 1.7.

By direct calculations, we have

dG(s1) = (0.3, 0.5, 1.1) = dG(s2) = dG(s3) = dG(s4) = dG(s5) = dG(s6),

TdG(s1) = (0.6, 0.9, 1.7) = TdG(s2) = TdG(s3) = TdG(s4) = TdG(s5) = TdG(s6).

Hence G is a totally regular neutrosophic graph.

Remark 1.3 The above two concepts are independent; that is, it is not necessary that
totally regular neutrosophic graph is regular neutrosophic graph and vice versa.

Example 1.9 Consider a neutrosophic graph G on X = {s1, s2, s3, s4} as shown in
Fig. 1.8.
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s4(0.8, 0.5, 0.6)

s3(1.0, 0.7, 0.8)

s2(0.9, 0.6, 0.8)s1(0.7, 0.4, 0.6) (0.2, 0.3, 0.4)

(0.
3, 0

.4,
0.3

)

(0.1, 0.2, 0.4)

(0.1,0.2,0.1)

Fig. 1.8 Totally regular but not regular neutrosophic graph

s3(0.2, 0.1, 0.7)

s2(0.5, 0.4, 0.7)

s1(0.7, 0.5, 0.8)

(0.3, 0.1
, 0.6)

(0.2, 0.1, 0.7)

Fig. 1.9 Neutrosophic graph

By direct calculations, we have

dG(s1) = (0.5, 0.7, 0.7), dG(s2) = (0.3, 0.5, 0.5),

dG(s3) = (0.2, 0.4, 0.5), dG(s4) = (0.4, 0.6, 0.7),

TdG(s1) = (1.2, 1.1, 1.3) = TdG(s2) = TdG(s3) = TdG(s4).

Therefore, G is a totally regular neutrosophic graph but not a regular neutrosophic
graph.

Definition 1.14 The degree and the total degree of an edge st of a neutrosophic
graphG are denoted by dG(st) = (dT (st), dI (st), dF (st)) and TdG(st) = (TdT (st),
TdI (st), TdF (st)), respectively, and are defined as

dG(st) = dG(s) + dG(t) − 2(TB(st), IB(st), FB(st)),

TdG(st) = dG(st) + (TB(st), IB(st), FB(st)).

Example 1.10 Consider a neutrosophic graph G on X = {s1, s2, s3} as shown in
Fig. 1.9.
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By direct calculations, we have

dG(s1) = (0.5, 0.2, 1.3), dG(s2) = (0.3, 0.1, 0.6), dG(s3) = (0.2, 0.1, 0.7).

• The degree of each edge is given as:

dG(s1s2) = dG(s1) + dG(s2) − 2(TB(s1s2), IB(s1s2), FB(s1s2)),

= (0.7, 0.5, 0.8) + (0.5, 0.4, 0.7) − 2(0.3, 0.1, 0.6),

= (0.2, 0.1, 0.7).

dG(s1s3) = dG(s1) + dG(s3) − 2(TB(s1s3), IB(s1s3), FB(s1s3)),

= (0.7, 0.5, 0.8) + (0.4, 0.2, 0.6) − 2(0.2, 0.1, 0.7),

= (0.3, 0.1, 0.6).

• The total degree of each edge is given as:

TdG(s1s2) = dG(s1s2) + (TB(s1s2), IB(s1s2), FB(s1s2)),

= (0.2, 0.1, 0.7) + (0.3, 0.1, 0.6),

= (0.5, 0.2, 1.3).

TdG(s1s3) = dG(s1s3) + (TB(s1s3), IB(s1s3), FB(s1s3)),

= (0.3, 0.1, 0.6) + (0.2, 0.1, 0.7),

= (0.5, 0.2, 1.3).

Definition 1.15 The maximum degree of a neutrosophic graph G is defined as
Δ(G) = (ΔT (G),ΔI (G),ΔF (G)), where

ΔT (G) = max{dT (s) : s ∈ X},
ΔI (G) = max{dI (s) : s ∈ X},
ΔF (G) = max{dF (s) : s ∈ X}.

Definition 1.16 The minimum degree of a neutrosophic graph G is defined as
δ(G) = (δT (G), δI (G), δF (G)), where

δT (G) = min{dT (s) : s ∈ X},
δI (G) = min{dI (s) : s ∈ X},
δF (G) = min{dF (s) : s ∈ X}.

Example 1.11 Consider the neutrosophic graph G as shown in Fig. 1.9. By direct
calculations, we have

Δ(G) = (0.5, 0.2, 1.3) and δ(G) = (0.2, 0.1, 0.6).
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s1(0.1, 0.4, 0.9)

s2(0.3, 0.4, 0.6)

s3(0.3, 0.2, 0.8)

(0.1
, 0.2

, 0.6
)

(0
.1
,0
.2
,0
.6
)

(0
.1
, 0
.2
, 0
.6
)

Fig. 1.10 Edge regular neutrosophic graph

Definition 1.17 A neutrosophic graph G on X is called an edge regular if every
edge in G has the same degree (q1, q2, q3).

Example 1.12 Consider a neutrosophic graph G on X = {s1, s2, s3} as shown in
Fig. 1.10.

By direct calculations, we have

dG(s1) = (0.2, 0.4, 1.2), dG(s2) = (0.2, 0.4, 1.2), dG(s3) = (0.2, 0.4, 1.2).

The degree of each edge is given below:

dG(s1s2) = dG(s1) + dG(s2) − 2(TB(s1s2), IB(s1s2), FB(s1s2)),

= (0.2, 0.4, 1.2) + (0.2, 0.4, 1.2) − 2(0.1, 0.2, 0.6),

= (0.2, 0.4, 1.2).

dG(s1s3) = dG(s1) + dG(s3) − 2(TB(s1s3), IB(s1s3), FB(s1s3)),

= (0.2, 0.4, 1.2) + (0.2, 0.4, 1.2) − 2(0.1, 0.2, 0.6),

= (0.2, 0.4, 1.2).

dG(s2s3) = dG(s2) + dG(s3) − 2(TB(s2s3), IB(s2s3), FB(s2s3)),

= (0.2, 0.4, 1.2) + (0.2, 0.4, 1.2) − 2(0.1, 0.2, 0.6),

= (0.2, 0.4, 1.2).
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Fig. 1.11 Totally edge
regular neutrosophic graph

s1(0.4, 0.4, 0.5)

s2(0.5, 0.5, 0.6)s3(0.8, 0.7, 0.3)

(0
.4
, 0
.4
, 0
.5
)

(0.5, 0.4, 0.2)

(0
.4
,0
.4
,0
.2
)

It is easy to see that each edge of neutrosophic graph G has the same degree. Hence
G is an edge regular neutrosophic graph.

Definition 1.18 A neutrosophic graph G on X is called a totally edge regular if
every edge in G has the same total degree (p1, p2, p3).

Example 1.13 Consider a neutrosophic graph G on X = {s1, s2, s3} as shown in
Fig. 1.11.

By direct calculations, we have

dG(s1) = (0.8, 0.8, 0.7), dG(s2) = (0.9, 0.8, 0.7), dG(s3) = (0.9, 0.8, 0.4).

• The degree of each edge is given below:

dG(s1s2) = dG(s1) + dG(s2) − 2(TB(s1s2), IB(s1s2), FB(s1s2)),

= (0.8, 0.8, 0.7) + (0.9, 0.8, 0.7) − 2(0.4, 0.4, 0.5),

= (0.9, 0.8, 0.4).

dG(s1s3) = dG(s1) + dG(s3) − 2(TB(s1s3), IB(s1s3), FB(s1s3)),

= (0.8, 0.8, 0.7) + (0.9, 0.8, 0.4) − 2(0.4, 0.4, 0.2),

= (0.9, 0.8, 0.7).

dG(s2s3) = dG(s2) + dG(s3) − 2(TB(s2s3), IB(s2s3), FB(s2s3)),

= (0.9, 0.8, 0.7) + (0.9, 0.8, 0.4) − 2(0.5, 0.4, 0.2),

= (0.8, 0.8, 0.7).

It is easy to see that dG(s1s2) �= dG(s1s3) �= dG(s2s3). So G is not an edge regular
neutrosophic graph.
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s1(0.7, 0.5, 0.6)

s4(0.7, 0.5, 0.4)

s2(0.2, 0.8, 0.3)
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Fig. 1.12 Edge irregular and totally edge irregular neutrosophic graph

• The total degree of each edge is calculated as:

TdG(s1s2) = dG(s1s2) + (TB(s1s2), IB(s1s2), FB(s1s2)),

= (1.3, 1.2, 0.9).

TdG(s1s3) = dG(s1s3) + (TB(s1s3), IB(s1s3), FB(s1s3)),

= (1.3, 1.2, 0.9).

TdG(s2s3) = dG(s2s3) + (TB(s2s3), IB(s2s3), FB(s2s3)),

= (1.3, 1.2, 0.9).

It is easy to see that each edge of neutrosophic graph G has the same total degree.
So G is a totally edge regular neutrosophic graph.

Remark 1.4 A neutrosophic graph G is an edge regular neutrosophic graph if and
only if Δd(G) = δd(G) = (q1, q2, q3).

Example 1.14 Consider a neutrosophic graph G on X = {s1, s2, s3, s4} as shown in
Fig. 1.12.

By direct calculations, we have

dG(s1) = (0.1, 0.4, 0.2), dG(s2) = (0.3, 0.9, 0.3),

dG(s3) = (0.3, 0.9, 0.3), dG(s4) = (0.1, 0.4, 0.2).

• The degree of each edge is given below:

dG(s1s2) = dG(s1) + dG(s2) − 2(TB(s1s2), IB(s1s2), FB(s1s2)),

= (0.1, 0.4, 0.2) + (0.3, 0.9, 0.3) − 2(0.1, 0.4, 0.2),

= (0.2, 0.5, 0.1).
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Fig. 1.13 Complete neutrosophic graph

dG(s2s3) = dG(s2) + dG(s3) − 2(TB(s2s3), IB(s2s3), FB(s2s3)),

= (0.3, 0.9, 0.3) + (0.3, 0.9, 0.3) − 2(0.2, 0.5, 0.1),

= (0.2, 0.8, 0.4).

dG(s3s4) = dG(s3) + dG(s4) − 2(TB(s3s4), IB(s3s4), FB(s3s4)),

= (0.3, 0.9, 0.3) + (0.1, 0.4, 0.2) − 2(0.1, 0.4, 0.2),

= (0.2, 0.5, 0.1).

It is easy to see that dG(s1s2) �= dG(s2s3). So G is not an edge regular neutrosophic
graph.

• The total degree of each edge is calculated as:

TdG(s1s2) = dG(s1s2) + (TB(s1s2), IB(s1s2), FB(s1s2)),

= (0.3, 0.9, 0.3).

TdG(s2s3) = dG(s2s3) + (TB(s2s3), IB(s2s3), FB(s2s3)),

= (0.4, 1.3, 0.5).

TdG(s3s4) = dG(s3s4) + (TB(s3s4), IB(s3s4), FB(s3s4)),

= (0.3, 0.9, 0.3).

It is easy to see that TdG(s1s2) �= TdG(s2s3). So G is not a totally edge regular
neutrosophic graph.

Remark 1.5 A complete neutrosophic graph G may not be an edge regular neutro-
sophic graph.

Example 1.15 Consider a neutrosophic graph G on X = {s1, s2, s3, s4} as shown in
Fig. 1.13.

By direct calculations, we have
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dG(s1) = (1.1, 1.2, 1.9), dG(s2) = (0.9, 1.2, 1.9),

dG(s3) = (1.4, 1.2, 2.4), dG(s4) = (1.4, 1.4, 2.0).

The degree of each edge is given below:

dG(s1s2) = dG(s1) + dG(s2) − 2(TB(s1s2), IB(s1s2), FB(s1s2)),

= (1.1, 1.2, 1.9) + (0.9, 1.2, 1.9) − 2(0.3, 0.3, 0.5),

= (1.4, 2.0, 2.8).

dG(s1s3) = dG(s1) + dG(s3) − 2(TB(s1s3), IB(s1s3), FB(s1s3)),

= (1.1, 1.2, 1.9) + (1.4, 1.2, 2.4) − 2(0.4, 0.4, 0.8),

= (1.7, 1.6, 2.7).

dG(s1s4) = dG(s1) + dG(s4) − 2(TB(s1s4), IB(s1s4), FB(s1s4)),

= (1.1, 1.2, 1.9) + (1.4, 1.4, 2.0) − 2(0.4, 0.5, 0.6),

= (1.7, 1.6, 2.7).

dG(s2s3) = dG(s2) + dG(s3) − 2(TB(s2s3), IB(s2s3), FB(s2s3)),

= (0.9, 1.2, 1.9) + (1.4, 1.2, 2.4) − 2(0.3, 0.4, 0.8),

= (1.7, 1.6, 2.7).

dG(s2s4) = dG(s2) + dG(s4) − 2(TB(s2s4), IB(s2s4), FB(s2s4)),

= (0.9, 1.2, 1.9) + (1.4, 1.4, 2.0) − 2(0.3, 0.5, 0.6),

= (1.7, 1.6, 2.7).

dG(s3s4) = dG(s3) + dG(s4) − 2(TB(s3s4), IB(s3s4), FB(s3s4)),

= (1.4, 1.2, 2.4) + (1.4, 1.4, 2.0) − 2(0.7, 0.4, 0.8),

= (1.4, 1.8, 2.8).

It is easy to see that each edge of neutrosophic graph G has not the same degree.
Therefore, G is a complete neutrosophic graph but not an edge regular neutrosophic
graph.

Theorem 1.1 Let G be a neutrosophic graph. Then

∑
st∈E

dG(st) =
∑
st∈E

dG∗(st)(TB(st), IB(st), FB(st)),

where dG∗(st) = dG∗(s) + dG∗(t) − 2, for all s, t ∈ X.

Theorem 1.2 Let G be a neutrosophic graph. Then

∑
st∈E

T dG(st) =
∑
st∈E

dG∗(st)(TB(st), IB(st), FB(st)) + S(G),
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where dG∗(st) = dG∗(s) + dG∗(t) − 2, for all s, t ∈ X.

Proof Since the total degree of each edge in a neutrosophic graph G is TdG(st) =
dG(st) + (TB(st), IB(st), FB(st)). Therefore,

∑
st∈E

T dG(st) =
∑
st∈E

(dG(st) + (TB(st), IB(st), FB(st))),

∑
st∈E

T dG(st) =
∑
st∈E

dG(st) +
∑
st∈E

(TB(st), IB(st), FB(st)),

∑
st∈E

T dG(st) =
∑
st∈E

dG∗(st)(TB(st), IB(st), FB(st)) + S(G).

This completes the proof.

Theorem 1.3 Let G∗ = (X, E) be an edge regular crisp graph of degree q and G
be an edge regular neutrosophic graph of degree (q1, q2, q3) of G∗. Then the size of
G is (

mq1
q ,

mq2
q ,

mq3
q ), where |E | = m.

Proof Let G be an edge regular neutrosophic graph. Then,

dG(st) = (q1, q2, q3) and dG∗(st) = q, for each edge st ∈ E .

Since,

∑
st∈E

dG(st) =
∑
st∈E

dG∗(st)(TB(st), IB(st), FB(st)),

∑
st∈E

(q1, q2, q3) = q
∑
st∈E

(TB(st), IB(st), FB(st)),

m(q1, q2, q3) = qS(G),

(mq1,mq2,mq3) = qS(G),

S(G) =
(
mq1
q

,
mq2
q

,
mq3
q

)
.

This completes the proof.

Theorem 1.4 Let G∗ = (X, E) be an edge regular crisp graph of degree q and G
be a totally edge regular neutrosophic graph of degree (p1, p2, p3) of G∗. Then the
size of G is (

mp1
q+1 ,

mp2
q+1 ,

mp3
q+1 ), where |E | = m.

Proof Let G be a totally edge regular neutrosophic graph of an edge regular crisp
graph G∗ = (X, E). Therefore,

dG(st) = (p1, p2, p3) and dG∗(st) = q, for each edge st ∈ E .

Since,
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∑
st∈E

T dG(st) =
∑
st∈E

dG∗(st)(TB(st), IB(st), FB(st)) + S(G),

∑
st∈E

(p1, p2, p3) = q
∑
st∈E

(TB(st), IB(st), FB(st)) + S(G),

m(p1, p2, p3) = qS(G) + S(G),

(mp1,mp2,mp3) = (q + 1)S(G),

S(G) =
(

mp1
q + 1

,
mp2
q + 1

,
mp3
q + 1

)
.

This completes the proof.

Theorem 1.5 Suppose that G is an edge regular neutrosophic graph of degree
(q1, q2, q3) and a totally edge regular neutrosophic graph of degree (p1, p2, p3)
of G∗. Then, the size of G is m(p1 − q1, p2 − q2, p3 − q3), where |E | = m.

Proof Let G be an edge regular neutrosophic graph and a totally edge regular neu-
trosophic graph of a crisp graph G∗ = (X, E). Therefore,

dG(st) = (q1, q2, q3) and TdG(st) = (p1, p2, p3), for each edge st ∈ E .

TdG(st) = dG(st) + (TB(st), IB(st), FB(st)),∑
st∈E

T dG(st) =
∑
st∈E

dG(st) +
∑
st∈E

(TB(st), IB(st), FB(st)),

m(p1, p2, p3) = m(q1, q2, q3) + S(G),

S(G) = m(p1 − q1, p2 − q2, p3 − q3).

This completes the proof.

Theorem 1.6 Let G∗ = (X, E) be a crisp graph, which is a cycle onm vertices. Sup-
pose that G be a neutrosophic graph of G∗. Then

∑
sk∈X dG(sk) =∑sk sl∈E dG(sksl).

Proof LetG be a neutrosophic graph ofG∗. Suppose thatG∗ be a cycle s1, s2, s3, . . . ,
sm, s1 on m vertices. Then

∑
sk sl∈E

dG(sksl ) = dG(s1s2) + dG(s2s3) + · · · + dG(sms1),

= [dG(s1) + dG(s2) − 2(TB(s1s2), IB(s1s2), FB(s1s2))][dG(s2)

+dG(s3) − 2(TB(s2s3), IB(s2s3), FB(s2s3))] + · · · + [dG(sm)

+dG(s1) − 2(TB(sms1), IB(sms1), FB(sms1))],
= 2dG(s1) + 2dG(s2) + · · · + 2dG(sm) − 2(TB(s1s2), IB(s1s2), FB(s1s2)),

−2(TB(s2s3), IB(s2s3), FB(s2s3)) − · · · − 2(TB(sms1), IB(sms1), FB(sms1)),

= 2
∑
sk∈X

dG(sk) − 2
∑

sk sl∈E
(TB(sksl ), IB(sksl ), FB(sksl )),

=
∑
sk∈X

dG(sk) +
∑
sk∈X

dG(sk) − 2
∑

sk sl∈E
(TB(sksl ), IB(sksl ), FB(sksl)),
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=
∑
sk∈X

dG(sk) + 2
∑

sk sl∈E
(TB(sksl ), IB(sksl ), FB(sksl ))

−2
∑

sk sl∈E
(TB(sksl ), IB(sksl ), FB(sksl )),

=
∑
sk∈X

dG(sk).

This completes the proof.

Theorem 1.7 Let G be a neutrosophic graph. Then B is a constant function if and
only if the following statements are equivalent:

(a) G is an edge regular neutrosophic graph.
(b) G is a totally edge regular neutrosophic graph.

Proof Let G be a neutrosophic graph. Suppose that B is a constant function, then

TB(st) = l1, IB(st) = l2, FB(st) = l3, for all st ∈ E .

(a) ⇒ (b): Assume that G is an edge regular neutrosophic graph, i.e.

dG(st) = (q1, q2, q3), for each edge st ∈ E .

This implies that

TdG(st) = (l1 + q1, l2 + q2, l3 + q3) for each edge st ∈ E .

This shows that G is an edge regular neutrosophic graph of degree

(l1 + q1, l2 + q2, l3 + q3).

(b) ⇒ (a): Suppose that G is a totally edge regular neutrosophic graph, i.e.

TdG(st) = (p1, p2, p3) for all st ∈ E .

This implies that

dG(st) + (TB(st), IB(st), FB(st)) = (p1, p2, p3).

This implies that

dG(st) = (p1, p2, p3) − 4(TB(st), IB(st), FB(st)).

This implies that

dG(st) = (p1 − l1, p2 − l2, p3 − l3) for each edge st ∈ E .



22 1 Graphs Under Neutrosophic Environment

Thus G is an edge regular neutrosophic graph of degree

(p1 − l1, p2 − l2, p3 − l3).

Hence the statements (a) and (b) are equivalent.
Conversely, suppose that (a) and (b) are equivalent. Assume that B is not a constant

function. This implies that

(TB(st), IB(st), FB(st)) �= (TB(uv), IB(uv), FB(uv)),

for at least one pair of edges st, uv ∈ E .
Assume that G is an edge regular neutrosophic graph. This implies that

dG(st) = dG(uv) = (q1, q2, q3).

This implies that

TdG(st) = dG(st) + (TB(st), IB(st), FB(st)) = (q1, q2, q3) + (TB(st), IB(st), FB(st)),

TdG(uv) = dG(uv) + (TB(uv), IB(uv), FB(uv)) = (q1, q2, q3) + (TB(uv), IB(uv), FB(uv)).

Since
(TB(st), IB(st), FB(st)) �= (TB(uv), IB(uv), FB(uv)).

This implies that TdG(st) �= TdG(uv). This shows thatG is not a totally edge regular
neutrosophic graph, which contradicts our supposition.

Now, suppose that G is a totally edge regular neutrosophic graph, i.e.

TdG(st) = TdG(uv) = (p1, p2, p3).

This implies that

TdG(st) = dG(st) + (TB(st), IB(st), FB(st)) = dG(uv) + (TB(uv), IB(uv), FB(uv)).

This implies that

dG(st) − dG(uv) = (TB(st), IB(st), FB(st)) − (TB(uv), IB(uv), FB(uv)).

Since
(TB(st), IB(st), FB(st)) �= (TB(uv), IB(uv), FB(uv)).

This implies that dG(st) − dG(uv) �= 0. This implies that dG(st) �= dG(uv).
This shows that G is not an edge regular neutrosophic graph, which contradicts our
supposition. Hence B is a constant function.
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Fig. 1.14 Neutrosophic graph

Theorem 1.8 Let G be a neutrosophic graph. Assume that G is both edge regular
neutrosophic of degree (q1, q2, q3) and totally edge regular neutrosophic graph of
degree (p1, p2, p3). Then B is a constant function.

Proof The proof is obvious.

Remark 1.6 The converse of Theorem1.8 may not be true in general; that is, a
neutrosophic graph G, where B is a constant function, may or may not be edge
regular and totally edge regular neutrosophic graph.

Example 1.16 Consider a neutrosophic graph G on X = {s1, s2, s3, s4} as shown in
Fig. 1.14.

By direct calculations, we have

dG(s1) = (0.1, 0.2, 0.4), dG(s2) = (0.2, 0.4, 0.8),

dG(s3) = (0.2, 0.4, 0.8), dG(s4) = (0.1, 0.2, 0.4).

The degree of each edge is

dG(s1s2) = (0.1, 0.2, 0.4), dG(s2s3) = (0.2, 0.4, 0.8), dG(s3s4) = (0.1, 0.2, 0.4).

The total degree of each edge is

TdG(s1s2) = (0.2, 0.4, 0.8), TdG(s2s3) = (0.3, 0.6, 1.2).

It is clear from above calculations that G is neither an edge regular nor a totally edge
regular neutrosophic graph.
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Theorem 1.9 Let G be a neutrosophic graph of G∗ = (X, E), where B is a constant
function. If G is a regular neutrosophic graph, then G is an edge regular neutrosophic
graph.

Proof Assume that B is a constant function, that is,

TB(st) = l1, IB(st) = l2, FB(st) = l3 for all st ∈ E .

Suppose that G is a regular neutrosophic graph, that is,

dG(s) = (m1,m2,m3) for all s ∈ X.

Now

dG(st) = dG(s) + dG(t) − 2(TB(st), IB(st), FB(st)),

= (m1,m2,m3) + (m1,m2,m3) − 2(l1, l2, l3),

= 2(m1 − l1,m2 − l2,m3 − l3),

for all st ∈ E . Hence G is an edge regular neutrosophic graph.

Theorem 1.10 Let G = (A, B) be a neutrosophic graph of G∗ = (X, E), where B
is a constant function. If G is a regular neutrosophic graph, then G is a totally edge
regular neutrosophic graph.

Proof Let B be a constant function, that is,

TB(st) = l1, IB(st) = l2, FB(st) = l3 for all st ∈ E .

Assume that G is a regular neutrosophic graph, that is,

dG(s) = (m1,m2,m3), for all s ∈ X.

Then G is an edge regular neutrosophic graph, that is,

dG(st) = (q1, q2, q3).

Now

TdG(st) = dG(st) + (TB(st), IB(st), FB(st)),

= (q1, q2, q3) + (l1, l2, l3),

= 2(q1 + l1, q2 + l2, q3 + l3),

for all st ∈ E . Hence G is a totally edge regular neutrosophic graph.

Theorem 1.11 Suppose that G is a neutrosophic graph. Then G is both regular and
totally edge regular neutrosophic graph if and only if B is a constant function.
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Proof Let G∗ = (X, E) be a regular crisp graph. Suppose that G is a neutrosophic
graph of G∗. Suppose that G is both regular and totally edge regular neutrosophic
graph, that is,

dG(s) = (m1,m2,m3), for all s ∈ X,

TdG(st) = (p1, p2, p3), for all st ∈ E .

Now

TdG(st) = dG(s) + dG(t) − (TB(st), IB(st), FB(st)), ∀ st ∈ E,

(p1, p2, p3) = (m1,m2,m3)+(m1,m2,m3)−(TB(st), IB(st), FB(st)),

(TB(st), IB(st), FB(st)) = (2m1 − p1, 2m2 − p2, 2m3 − p3),

for all st ∈ E . Hence B is a constant function.
Conversely, let B be a constant function, that is,

TB(st) = l1, IB(st) = l2, FB(st) = l3, for all st ∈ E .

So

dG(s) =
∑
st∈E

(TB(st), IB(st), FB(st)), ∀ s ∈ X,

=
∑
st∈E

(m1,m2,m3),

= (m1,m2,m3)dG∗(s),

= (m1,m2,m3)m.

This implies that

dG(s) = (mm1,mm2,mm3), for all s ∈ E .

Thus G is a regular neutrosophic graph. Now

TdG(st) =
∑

sa∈E,s �=a

(TB(sa), IB(sa), FB(sa)) +
∑

at∈E,a �=t

(TB(at), IB(at), FB(at)),

+(TB(st), IB(st), FB(st)) ∀st ∈ E,

=
∑

sa∈E,s �=a

(l1, l2, l3) +
∑

at∈E,a �=t

(l1, l2, l3) + (l1, l2, l3),

= (l1, l2, l3)(dG∗(s) − 1) + (l1, l2, l3)(dG∗(t) − 1) + (l1, l2, l3),

= (l1, l2, l3)(s − 1) + (l1, l2, l3)(t − 1) + (l1, l2, l3),

= (2l1, 2l2, 2l3)(s − 1) + (l1, l2, l3),
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for all st ∈ E . Hence G is a totally edge regular neutrosophic graph.

Theorem 1.12 Let G∗ = (X, E) be a crisp graph. Suppose that G = (A, B) is a
neutrosophic graph of G∗. Then B is a constant function if and only if G is an edge
regular neutrosophic graph.

Proof Let G be a regular neutrosophic graph, that is,

dG(s) = (m1,m2,m3), for all s ∈ X.

Suppose that B is a constant function, that is,

TB(st) = l1, IB(st) = l2, FB(st) = l3, for all st ∈ E .

Now

dG(st) = dG(s) + dG(t) − 2(TB(st), IB(st), FB(st)), ∀ st ∈ E .

= (m1,m2,m3) + (m1,m2,m3) − 2(l1, l2, l3),

this implies that

dG(st) = 2(m1,m2,m3) − 2(l1, l2, l3), for all st ∈ E .

Hence G is an edge regular neutrosophic graph.
Conversely, assume that G is an edge regular neutrosophic graph, that is,

dG(st) = (q1, q2, q3), for each edge st ∈ E .

Now

dG(st) = dG(s) + dG(t) − 2(TB(st), IB(st), FB(st)), ∀ st ∈ E,

(q1, q2, q3) = (m1,m2,m3) + (m1,m2,m3) − 2(TB(st), IB(st), FB(st)),

this implies that

(TB(st), IB(st), FB(st)) = (q1, q2, q3) − (2m1, 2m2, 2m3)

2
, for all st ∈ E .

Thus B is a constant function.

Definition 1.19 Let G∗ be an edge regular crisp graph. Then a neutrosophic graph
G of G∗ is called a partially edge regular.

Example 1.17 It can be seen in Example1.15 that G∗ is an edge regular crisp graph.
Therefore, G is a partially edge regular neutrosophic graph.
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Fig. 1.15 Full edge regular neutrosophic graph

Definition 1.20 A neutrosophic graph G is called a full edge regular if it is both
edge regular and partially edge regular.

Example 1.18 Consider a neutrosophic graph G on X = {s1, s2, s3, s4} as shown in
Fig. 1.15.

By direct calculations, we have

dG(s1) = (0.4, 0.8, 0.8), dG(s2) = (0.4, 0.8, 0.8),

dG(s3) = (0.4, 0.8, 0.8), dG(s4) = (0.4, 0.8, 0.8).

The degree of each edge is

dG(s1s2) = (0.4, 0.8, 0.8), dG(s2s3) = (0.4, 0.8, 0.8)

dG(s3s4) = (0.4, 0.8, 0.8), dG(s1s4) = (0.4, 0.8, 0.8).

It is clear from calculations that G is full edge regular neutrosophic graph.

Theorem 1.13 Let G be a neutrosophic graph, where B is a constant function. Then
G is full edge regular neutrosophic graph if it is full regular neutrosophic graph.

Proof Let G be a neutrosophic graph of a crisp graph G∗ = (X, E). Suppose that B
is a constant function, that is,

(TB(st), IB(st), FB(st)) = (l1, l2, l3), for each edge st ∈ E .

Assume thatG is full regular neutrosophic graph. ThenG is both regular and partially
regular. Therefore,

dG(s) = (m1,m2,m3) and dG∗(s) = m, for all s ∈ X.
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Fig. 1.16 Irregular neutrosophic graph

Since
dG∗(st) = dG∗(s) + dG∗(t) − 2, for all st ∈ E .

This shows that dG∗(st) = 2m − 2. Therefore, G∗ is an edge regular neutrosophic
graph. Now

dG(st) = dG(s) + dG(t) − 2(TB(st), IB(st), FB(st)), ∀ st ∈ E .

= (m1,m2,m3) + (m1,m2,m3) − 2(l1, l2, l3),

this implies that
dG(st) = 2(m1 − l1,m2 − l2,m3 − l3).

This shows that G is an edge regular neutrosophic graph. Hence G is a full edge
regular neutrosophic graph.

Definition 1.21 Aneutrosophic graphG is called an irregular if there exists a vertex
which is adjacent to vertices with distinct degrees.

Example 1.19 Consider a neutrosophic graph G on X = {s1, s2, s3, s4} as shown in
Fig. 1.16.

By direct calculations, we have

dG(s1) = (0.6, 1.0, 0.4), dG(s2) = (0.8, 0.9, 0.8),

dG(s3) = (0.8, 0.9, 0.8), dG(s4) = (0.6, 1.0, 0.4).

It is easy to see that s1 is adjacent to vertices of distinct degrees. Therefore, G is an
irregular neutrosophic graph.

Definition 1.22 A neutrosophic graph G is called a totally irregular if there exists
a vertex which is adjacent to vertices with distinct total degrees.
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Fig. 1.17 Totally irregular neutrosophic graph
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Fig. 1.18 Strongly irregular neutrosophic graph

Example 1.20 Consider a neutrosophic graph G on X = {s1, s2, s3, s4} as shown in
Fig. 1.17.

By direct calculations, we have

TdG(s1) = (1.1, 0.5, 1.2), TdG(s2) = (1.4, 0.8, 1.4),

TdG(s3) = (1.1, 0.5, 1.2), TdG(s4) = (1.2, 0.6, 1.1).

It is easy to see that s1 is adjacent to vertices of distinct total degrees. Therefore, G
is a totally irregular neutrosophic graph.

Definition 1.23 A neutrosophic graph G is called strongly irregular if each vertex
has distinct degree.

Example 1.21 Consider a neutrosophic graph G on X = {s1, s2, s3} as shown in
Fig. 1.18.

By direct calculations, we have

dG(s1) = (0.3, 0.3, 1.1), dG(s2) = (0.5, 0.2, 0.9), dG(s3) = (0.4, 0.3, 0.8).

From Fig. 1.18, it is clear that each vertex has distinct degree. Therefore, G is a
strongly irregular neutrosophic graph.
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Definition 1.24 A neutrosophic graph G is called strongly totally irregular neutro-
sophic graph if each vertex has distinct total degree.

Example 1.22 Consider the neutrosophic graph G as shown in Fig. 1.18. By direct
calculations, we have

Td(s1) = (0.6, 0.7, 1.8), Td(s2) = (1.0, 0.4, 1.3), Td(s3) = (1.0, 0.6, 1.3).

Since each vertex has distinct total degree, G is a strongly totally irregular neutro-
sophic graph.

Definition 1.25 A neutrosophic graph G is called highly irregular if each vertex in
G is adjacent to vertices having distinct degrees.

Example 1.23 Consider the neutrosophic graph G as shown in Fig. 1.16. It is easy
to see that each vertex is adjacent to vertices of distinct degree; therefore, G is highly
irregular neutrosophic graph.

Definition 1.26 A neutrosophic graph G is called highly totally irregular if each
vertex in G is adjacent to vertices having distinct total degrees.

Example 1.24 Consider a neutrosophic graph G on X = {s1, s2, s3, s4} as shown in
Fig. 1.19.

By direct calculations, we have

TdG(s1) = (0.8, 0.8, 0.7), TdG(s2) = (0.3, 0.4, 0.7),

TdG(s3) = (0.7, 1.0, 1.1), TdG(s4) = (1.1, 1.1, 0.7).

s1(0.5, 0.4, 0.3)

s4(0.7, 0.5, 0.3)

s3(0.4, 0.6, 0.7)

s2(0.1, 0.2, 0.3)
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, 0.2
)

(0.2, 0.3, 0.2)

(0.
2, 0

.3,
0.2

)

(0.1, 0.1, 0.2)

Fig. 1.19 Highly totally irregular neutrosophic graph
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From Fig. 1.19, it is clear that each vertex is adjacent to vertices of distinct degrees.
Therefore, G is highly totally irregular neutrosophic graph.

Definition 1.27 Aconnected neutrosophic graphG is called neighbourly edge irreg-
ular if every two adjacent edges in G have distinct degrees.

Example 1.25 Consider the neutrosophic graph G as shown in Fig. 1.18. It is easy
to see that every two adjacent edges in G have distinct degrees; therefore, G is
neighbourly edge irregular neutrosophic graph.

Definition 1.28 A connected neutrosophic graph G is called neighbourly edge
totally irregular neutrosophic graph if every two adjacent edges in G have distinct
total degrees.

Example 1.26 Consider the neutrosophic graph G as shown in Fig. 1.18. It is easy
to see that every two adjacent edges in G have distinct total degrees; therefore, G is
neighbourly edge totally irregular neutrosophic graph.

Definition 1.29 Let G∗ be a crisp graph. A neutrosophic graph G of G∗ is called
a strongly edge irregular neutrosophic graph if each edge in G has distinct degree;
that is, no two edges in G have the same degree.

Example 1.27 Consider a neutrosophic graph G on X = {s1, s2, s3} as shown in
Fig. 1.20.

By direct calculations, we have

dG(s1) = (0.8, 0.8, 0.4), dG(s2) = (0.6, 0.3, 0.4), dG(s3) = (0.8, 0.7, 0.2).

• The degree of each edge is given as:

dG(s1s2) = dG(s1) + dG(s2) − 2(TB(s1s2), IB(s1s2), FB(s1s2)),

= (0.8, 0.8, 0.4) + (0.6, 0.3, 0.4) − 2(0.3, 0.2, 0.3),

= (0.8, 0.7, 0.2).

s3(0.8, 0.6, 0.1)

s2(0.4, 0.2, 0.5)

s1(0.6, 0.9, 0.3)
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,0

.1
,0

.
)1

Fig. 1.20 Strongly edge irregular neutrosophic graph
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Fig. 1.21 Strongly edge totally irregular neutrosophic graph

dG(s1s3) = dG(s1) + dG(s3) − 2(TB(s1s3), IB(s1s3), FB(s1s3)),

= (0.8, 0.8, 0.4) + (0.8, 0.7, 0.2) − 2(0.5, 0.6, 0.1),

= (0.6, 0.3, 0.4).

dG(s2s3) = dG(s2) + dG(s3) − 2(TB(s2s3), IB(s2s3), FB(s2s3)),

= (0.6, 0.3, 0.4) + (0.8, 0.7, 0.2) − 2(0.3, 0.1, 0.1),

= (0.8, 0.8, 0.4).

Since no two edges in G have the same degree, G is a strongly edge irregular neu-
trosophic graph.

Definition 1.30 A neutrosophic graph G is called a strongly edge totally irregular
neutrosophic graph if each edge in G has distinct total degree; that is, no two edges
in G have the same total degree.

Example 1.28 Consider a neutrosophic graph G on X = {s1, s2, s3, s4} as shown in
Fig. 1.21.

By direct calculations, we have

dG(s1) = (0.8, 0.2, 0.2), dG(s2) = (0.5, 0.2, 0.4),

dG(s3) = (0.7, 0.3, 0.6), dG(s4) = (1.0, 0.3, 0.4).

• The degree of each edge is given as:

dG(s1s2) = dG(s1) + dG(s2) − 2(TB(s1s2), IB(s1s2), FB(s1s2)),

= (0.8, 0.2, 0.2) + (0.5, 0.2, 0.4) − 2(0.3, 0.1, 0.1),

= (0.7, 0.2, 0.4).
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dG(s1s4) = dG(s1) + dG(s4) − 2(TB(s1s4), IB(s1s4), FB(s1s4)),

= (0.8, 0.2, 0.2) + (1.0, 0.3, 0.4) − 2(0.5, 0.1, 0.1),

= (0.8, 0.3, 0.4).

dG(s2s3) = dG(s2) + dG(s3) − 2(TB(s2s3), IB(s2s3), FB(s2s3)),

= (0.5, 0.2, 0.4) + (0.7, 0.3, 0.6) − 2(0.2, 0.1, 0.3),

= (0.8, 0.3, 0.4).

dG(s3s4) = dG(s3) + dG(s4) − 2(TB(s3s4), IB(s3s4), FB(s3s4)),

= (0.7, 0.3, 0.6) + (1.0, 0.3, 0.4) − 2(0.5, 0.2, 0.3),

= (0.7, 0.2, 0.4).

• The total degree of each edge is given as:

TdG(s1s2) = dG(s1s2) + (TB(s1s2), IB(s1s2), FB(s1s2)),

= (0.7, 0.2, 0.4) + (0.3, 0.1, 0.1),

= (1.0, 0.3, 0.5).

TdG(s1s4) = dG(s1s4) + (TB(s1s4), IB(s1s4), FB(s1s4)),

= (0.8, 0.3, 0.4) + (0.5, 0.1, 0.1),

= (1.3, 0.4, 0.5).

TdG(s2s3) = dG(s2s3) + (TB(s2s3), IB(s2s3), FB(s2s3)),

= (0.8, 0.3, 0.4) + (0.2, 0.1, 0.3),

= (1.0, 0.4, 0.7).

TdG(s3s4) = dG(s3s4) + (TB(s3s4), IB(s3s4), FB(s3s4)),

= (0.7, 0.2, 0.4) + (0.5, 0.2, 0.3),

= (1.2, 0.4, 0.7).

Since no two edges in G have the same total degree, G is a strongly edge totally
irregular neutrosophic graph.

Remark 1.7 A strongly edge irregular neutrosophic graph G may not be strongly
edge totally irregular neutrosophic graph.

Example 1.29 Consider a neutrosophic graph G on X = {s1, s2, s3} as shown in
Fig. 1.22.

By direct calculations, we have

dG(s1) = (1.1, 0.5, 0.7), dG(s2) = (0.7, 0.4, 0.9), dG(s3) = (1.0, 0.3, 0.6).
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Fig. 1.22 Strongly edge irregular neutrosophic graph

s1(0.6, 0.3, 0.5)

s3(0.4, 0.7, 0.3)s4(0.7, 0.9, 0.2)

s2(0.2, 0.5, 0.7)

(0.1, 0.3, 0.5)

0(
.5
,0

.2
,0

.
)3

0(
.2
,0

.5
,0

.
)6

(0.3, 0.2, 0.3)

Fig. 1.23 Strongly edge totally irregular neutrosophic graph

The degree of each edge is

dG(s1s2) = (1.0, 0.3, 0.6), dG(s2s3) = (1.1, 0.5, 0.7), dG(s1s3) = (0.7, 0.4, 0.9).

Since all the edges have distinct degrees, G is a strongly edge irregular neutrosophic
graph. The total degree of each edge is

TdG(s1s2) = (1.4, 0.6, 1.1) = TdG(s2s3) = TdG(s1s3).

Since each edge of G has the same total degree therefore G is not a strongly edge
totally irregular neutrosophic graph.

Remark 1.8 A strongly edge totally irregular neutrosophic graph G may not be
strongly edge irregular neutrosophic graph.

Example 1.30 Consider a neutrosophic graph G on X = {s1, s2, s3, s4} as shown in
Fig. 1.23.
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By direct calculations, we have

dG(s1) = (0.6, 0.5, 0.8), dG(s2) = (0.3, 0.8, 1.1),

dG(s3) = (0.5, 0.7, 0.9), dG(s4) = (0.8, 0.4, 0.6).

The degree of each edge is

dG(s1s2) = (0.7, 0.7, 0.9), dG(s2s3) = (0.4, 0.5, 0.8),

dG(s3s4) = (0.7, 0.7, 0.9), dG(s1s4) = (0.4, 0.5, 0.8).

It is easy to see that dG(s1s2) = dG(s3s4) and dG(s2s3) = dG(s1s4).
Therefore, G is not a strongly edge irregular neutrosophic graph.
The total degree of each edge is

TdG(s1s2) = (0.8, 1.0, 1.4), TdG(s2s3) = (0.6, 1.0, 1.4),

TdG(s3s4) = (1.0, 0.9, 1.2), TdG(s1s4) = (0.9, 0.7, 1.1).

Since all the edges have distinct total degrees, G is a strongly edge totally irregular
neutrosophic graph.

Theorem 1.14 If G is a strongly edge irregular connected neutrosophic graph,
where B is a constant function, then G is a strongly edge totally irregular neutro-
sophic graph.

Proof Let G be a strongly edge irregular connected neutrosophic graph. Assume
that B is a constant function. Then

TB(xy) = l1, IB(xy) = l2, FB(xy) = l3, for all xy ∈ E,

where l1, l2 and l3 are constants. Consider a pair of edges xy and uv in E .
Since G is a strongly edge irregular neutrosophic graph,

dG(xy) �= dG(uv),

where xy and uv are a pair of edges in E . This shows that

dG(xy) + (l1, l2, l3) �= dG(uv) + (l1, l2, l3).

This implies that

dG(xy) + (TB(xy), IB(xy), FB(xy)) �= dG(uv) + (TB(uv), IB(uv), FB(uv)).
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Thus
TdG(xy) �= TdG(uv),

where xy and uv are a pair of edges in E . Since the pair of edges xy and uv were
taken to be arbitrary, this shows that every pair of edges in G have distinct total
degrees.

Hence G is a strongly edge totally irregular neutrosophic graph.

Theorem 1.15 If G is a strongly edge totally irregular connected neutrosophic
graph, where B is a constant function, then G is a strongly edge irregular neu-
trosophic graph.

Proof Let G be a strongly edge totally irregular connected neutrosophic graph.
Assume that B is a constant function. Then

TB(xy) = l1, IB(xy) = l2 and FB(xy) = l3, for all xy ∈ E,

where l1, l2 and l3 are constants. Consider a pair of edges xy and uv in L .
Since G is a strongly edge totally irregular neutrosophic graph,

TdG(xy) �= TdG(uv),

where xy and uv are a pair of edges in E . This shows that

dG(xy) + (TB(xy), IB(xy), FB(xy)) �= dG(uv) + (TB(uv), IB(uv), FB(uv)).

This implies that

dG(xy) + (l1, l2, l3) �= dG(uv) + (l1, l2, l3).

Thus
dG(xy) �= dG(uv),

where xy and uv are a pair of edges in E . Since the pair of edges xy and uv were
taken to be arbitrary, this shows that every pair of edges in G have distinct degrees.

Hence G is a strongly edge irregular neutrosophic graph.

Remark 1.9 If G is both strongly edge irregular neutrosophic graph and strongly
edge totally irregular neutrosophic graph, then it is not necessary that B is a constant
function.

Example 1.31 Consider a neutrosophic graph G on X = {s1, s2, s3, s4, s4} as shown
in Fig. 1.24.

By direct calculations, we have

dG(s1) = (0.6, 0.4, 0.4), dG(s2) = (0.3, 0.7, 0.6), dG(s3) = (0.3, 0.8, 0.6),
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Fig. 1.24 Neutrosophic graph

dG(s4) = (0.4, 0.7, 0.7), dG(s5) = (0.6, 0.4, 0.7).

The degree of each edge is

dG(s1s2) = (0.5, 0.5, 0.6), dG(s2s3) = (0.4, 0.7, 0.4), dG(s3s4) = (0.3, 0.7, 0.9),

dG(s4s5) = (0.6, 0.5, 0.4), dG(s5s1) = (0.4, 0.6, 0.7).

It is easy to see that all the edges have distinct degrees. Therefore, G is a strongly
edge irregular neutrosophic graph.

The total degree of each edge is

TdG(s1s2) = (0.7, 0.8, 0.8), TdG(s2s3) = (0.5, 1.1, 0.8), TdG(s3s4) = (0.5, 1.1, 1.1),

TdG(s4s5) = (0.8, 0.8, 0.9), TdG(s5s1) = (0.8, 0.7, 0.9).

Since all the edges have distinct total degrees, G is a strongly edge totally irregular
neutrosophic graph. This shows that G is both strongly edge irregular neutrosophic
graph and strongly edge totally irregular neutrosophic graph, but B is not a constant
function.

Theorem 1.16 Let G be a strongly edge irregular neutrosophic graph. Then G is a
neighbourly edge irregular neutrosophic graph.

Proof Suppose that G is a strongly edge irregular neutrosophic graph. Then each
edge in G has distinct degree. This shows that every pair of edges in G have distinct
degrees. Therefore, G is a neighbourly edge irregular neutrosophic graph.
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Fig. 1.25 Neutrosophic graph

Theorem 1.17 Let G be a strongly edge totally irregular neutrosophic graph. Then
G is a neighbourly edge totally irregular neutrosophic graph.

Proof Suppose that G is a strongly edge totally irregular neutrosophic graph. Then
each edge in G has distinct total degree. This shows that every pair of edges in
G have distinct total degrees. Therefore, G is a neighbourly edge totally irregular
neutrosophic graph.

Remark 1.10 If G is a neighbourly edge irregular neutrosophic graph, then it is not
necessary that G is a strongly edge irregular neutrosophic graph.

Example 1.32 Consider a neutrosophic graph G on X = {s1, s2, s3, s4} as shown in
Fig. 1.25.

By direct calculations, we have

dG(s1) = (0.6, 0.5, 0.1), dG(s2) = (1.2, 1.0, 0.2),

dG(s3) = (1.2, 1.0, 0.2), dG(s4) = (0.6, 0.5, 0.1).

The degree of each edge is

dG(s1s2) = (0.6, 0.5, 0.1), dG(s2s3) = (1.2, 1.0, 0.2), dG(s3s4) = (0.6, 0.5, 0.1).

G is neighbourly edge irregular neutrosophic graph since every two adjacent edges
in G have distinct total degrees, that is,

dG(s1s2) �= dG(s2s3) and dG(s2s3) �= dG(s3s4).

It is easy to see that dG(s1s2) = dG(s3s4). Therefore,G is not a strongly edge irregular
neutrosophic graph.
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Remark 1.11 If G is a neighbourly edge totally irregular neutrosophic graph, then
it is not necessary that G is a strongly edge totally irregular neutrosophic graph.

Example 1.33 Consider the neutrosophic graph G as shown in Fig. 1.25. The total
degree of each edge is

TdG(s1s2) = (1.2, 1.0, 0.2), TdG(s2s3) = (1.8, 1.5, 0.3), TdG(s1s2) = (1.2, 1.0, 0.2).

It is easy to see that every two adjacent edges in G have distinct total degrees, that
is,

TdG(s1s2) �= TdG(s2s3), and TdG(s2s3) �= TdG(s3s4).

Therefore, G is neighbourly edge totally irregular neutrosophic graph. It is easy to
see that TdG(s1s2) = TdG(s3s4). Hence G is not a strongly edge totally irregular
neutrosophic graph.

Theorem 1.18 Let G be a strongly edge irregular connected neutrosophic graph,
with B as constant function. Then G is an irregular neutrosophic graph.

Proof Let G be a strongly edge irregular connected neutrosophic graph, with B as
constant function. Then

TB(xy) = l1, IB(xy) = l2, FB(xy) = l3, for each edge xy ∈ E,

where l1, l2 and l3 are constants. Also, every edge in G has distinct degrees, since G
is strongly edge irregular neutrosophic graph.

Let xy and yu be any two adjacent edges in G such that

dG(xy) �= dG(yu).

This implies that

dG(x) + dG(y) − 2(TB(xy), IB(xy), FB(xy)) �= dG(y) + dG(u) − 2(TB(yu), IB(yu), FB(yu)).

This implies that

dG(x) + dG(y) − 2(l1, l2, l3) �= dG(y) + dG(u) − 2(l1, l2, l3).

This shows that
dG(x) �= dG(u).

Thus there exists a vertex y in G which is adjacent to the vertices with distinct
degrees. This shows that G is an irregular neutrosophic graph.

Theorem 1.19 Let G be a strongly edge totally irregular connected neutrosophic
graph, with B as constant function. Then G is an irregular neutrosophic graph.
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Proof Let G be a strongly edge totally irregular connected neutrosophic graph, with
B as constant function. Then

TB(xy) = l1, IB(xy) = l2, FB(xy) = l3, for each edge xy ∈ E,

where l1, l2 and l3 are constants. Also, every edge in G has distinct total degrees,
since G is strongly edge totally irregular neutrosophic graph.

Let xy and yu be any two adjacent edges in G such that

TdG(xy) �= TdG(yu).

This implies that

dG(xy) + (TB(xy), IB(xy), FB(xy)) �= dG(yu) + (TB(yu), IB(yu), FB(yu)).

This implies that

dG(x) + dG(y) − (TB(xy), IB(xy), FB(xy)) �= dG(y) + dG(u) − (TB(yu), IB(yu), FB(yu)).

This implies that

dG(x) + dG(y) − 2(l1, l2, l3) �= dG(y) + dG(u) − 2(l1, l2, l3).

This shows that
dG(x) �= dG(u).

Thus there exists a vertex y in G which is adjacent to the vertices with distinct
degrees. This shows that G is an irregular neutrosophic graph.

Remark 1.12 If G is an irregular neutrosophic graph, with B as a constant function.
Then it is not necessary that G is a strongly edge irregular neutrosophic graph.

Example 1.34 Consider a neutrosophic graph G on X = {s1, s2, s3, s4} as shown in
Fig. 1.26.

By direct calculations, we have

dG(s1) = (0.8, 0.2, 0.6), dG(s2) = (1.2, 0.3, 0.9),

dG(s3) = (0.8, 0.2, 0.6), dG(s4) = (1.2, 0.3, 0.9).

The degree of each edge is

dG(s1s2) = (1.2, 0.3, 0.9), dG(s2s3) = (1.2, 0.3, 0.9), dG(s2s4) = (1.6, 0.4, 1.2),

dG(s3s4) = (1.2, 0.3, 0.9), dG(s1s4) = (1.2, 0.3, 0.9).
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Fig. 1.26 Irregular neutrosophic graph

It is easy to see that all the edges have the same degree except the edge s2s4. Therefore,
G is not a strongly edge irregular neutrosophic graph.

Remark 1.13 If G is an irregular neutrosophic graph, with B as a constant function.
Then it is not necessary thatG is a strongly edge totally irregular neutrosophic graph.

Example 1.35 Consider the neutrosophic graph G as shown in Fig. 1.26. The total
degree of each edge is

TdG(s1s2) = (1.6, 0.4, 1.2), TdG(s2s3) = (1.6, 0.4, 1.2), TdG(s2s4) = (2.0, 0.5, 1.5),

TdG(s3s4) = (1.6, 0.4, 1.2), TdG(s1s4) = (1.6, 0.4, 1.2).

It is easy to see that all the edges have the same total degree except the edge s2s4.
Therefore, G is not a strongly edge totally irregular neutrosophic graph.

Theorem 1.20 Let G be a strongly edge irregular connected neutrosophic graph,
with B as a constant function. Then G is highly irregular neutrosophic graph.

Proof Let G be a strongly edge irregular connected neutrosophic graph, with B as
a constant function. Then

TB(xy) = l1, IB(xy) = l2, FB(xy) = l3, for each edge xy ∈ E,

where l1, l2 and l3 are constants. Also every pair of adjacent edges in G have distinct
degrees.

Let y be any vertex in G which is adjacent to vertices y and u. Since G is strongly
edge irregular neutrosophic graph,

dG(xy) �= dG(yu).
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This implies that

dG(x) + dG(y) − 2(TB(xy), IB(xy), FB(xy)) �= dG(y) + dG(u) − 2(TB(yu), IB(yu), FB(yu)).

This implies that

dG(x) + dG(y) − 2(l1, l2, l3) �= dG(y) + dG(u) − 2(l1, l2, l3).

This shows that
dG(x) �= dG(u).

Thus there exists a vertex y inGwhich is adjacent to the verticeswith distinct degrees.
Since y was taken to be an arbitrary vertex in G, all the vertices in G are adjacent to
vertices having distinct degrees. Hence G is a highly irregular neutrosophic graph.

Theorem 1.21 Let G be a strongly edge totally irregular connected neutrosophic
graph, with B as a constant function. Then G is highly irregular neutrosophic graph.

Proof Let G be a strongly edge totally irregular connected neutrosophic graph, with
B as a constant function. Then

TB(xy) = l1, IB(xy) = l2, FB(xy) = l3, for each edge xy ∈ E,

where l1, l2 and l3 are constants. Also every pair of adjacent edges in G have distinct
total degrees.

Let y be any vertex in G which is adjacent to vertices x and u. Since G is strongly
edge totally irregular neutrosophic graph therefore,

TdG(xy) �= TdG(yu).

This implies that
dG(xy) �= dG(yu).

This implies that

dG(x) + dG(y) − 2(TB(xy), IB(xy), FB(xy)) �= dG(y) + dG(u) − 2(TB(yu), IB(yu), FB(yu)).

This implies that

dG(x) + dG(y) − 2(l1, l2, l3) �= dG(y) + dG(u) − 2(l1, l2, l3).

This shows that
dG(x) �= dG(u).

Thus there exists a vertex y in G which is adjacent to the vertices with distinct
degrees. Since y was taken to be an arbitrary vertex in G, therefore all the vertices
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Fig. 1.27 Highly irregular neutrosophic graph

in G are adjacent to vertices having distinct degrees. Hence G is a highly irregular
neutrosophic graph.

Remark 1.14 If G is a highly irregular neutrosophic graph, with B as a constant
function. Then it is not necessary that G is strongly edge irregular neutrosophic
graph.

Example 1.36 Consider a neutrosophic graph G on X = {s1, s2, s3, s4} as shown in
Fig. 1.27.

By direct calculations, we have

dG(s1) = (0.8, 0.2, 0.2), dG(s2) = (0.4, 0.1, 0.1),

dG(s3) = (0.8, 0.2, 0.2), dG(s4) = (0.4, 0.1, 0.1).

The degree of each edge is

dG(s1s3) = (0.8, 0.2, 0.2), dG(s1s4) = (0.4, 0.1, 0.1), dG(s2s3) = (0.4, 0.1, 0.1).

Since every vertex is adjacent to vertices with distinct degrees,G is a highly irregular
neutrosophic graph. Since the edges s1s4 and s2s3 in G have the same degree, i.e.
dG(s1s4) = dG(s2s3), G is not strongly edge irregular neutrosophic graph.

Remark 1.15 If G is a highly irregular neutrosophic graph, with B as a constant
function. Then it is not necessary thatG is strongly edge totally irregular neutrosophic
graph.

Example 1.37 Consider the neutrosophic graph G as shown in Fig. 1.27. The total
degree of each edge is

TdG(s1s3) = (1.2, 0.3, 0.3), TdG(s1s4) = (0.8, 0.2, 0.2), TdG(s2s3) = (0.8, 0.2, 0.2).

Since the edges s1s4 and s2s3 in G have the same total degree, G is not a strongly
edge totally irregular neutrosophic graph.
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Fig. 1.28 Neutrosophic graph
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Fig. 1.29 Neutrosophic path P

Definition 1.31 Aneutrosophic path is a sequenceof distinct vertices x = x1, x2, x3,
. . . , xn = y such that, for all k, TB(xkxk+1) > 0, IB(xkxk+1) > 0 and FB(xkxk+1) >

0. A neutrosophic path is called a neutrosophic cycle if x = y.

Example 1.38 Consider a neutrosophic graph G on X = {s1, s2, s3, s4, s5} as shown
in Fig. 1.28.

The path from s2 to s1 is shown with thick lines, and the cycle C from s2 to s2 is
shown with dashed lines in Fig. 1.28.

Theorem 1.22 Let G∗ = (X, E) be a path as shown in Fig.1.29 on 2m(m > 1)
vertices and G be a neutrosophic graph. Let E1, E2, E3, . . . , E2m−1 be the edges
in G having c1, c2, c3, . . . , c2m−1 as their membership values, respectively. Assume
that c1 < c2 < c3 < · · · < c2m−1, where ck = (Tk, Ik, Fk), k = 1, 2, 3, . . . , 2m − 1.
Then G is both strongly edge irregular and strongly edge totally irregular neutro-
sophic graph.

Proof Let G be a neutrosophic graph of a crisp graph G∗ = (X, E). Assume that
G is a neutrosophic path on 2m(m > 1) vertices. Suppose that ck = (Tk, Ik, Fk) be
the membership values of the edges Lk in G, where k = 1, 2, 3, . . . , 2m − 1. We
assume that c1 < c2 < c3 < · · · < c2m−1.

The degree of each vertex in G is calculated as:

dG(s1) = c1 = (T1, I1, F1), f or k = 1.

dG(sk) = ck−1 + ck = (Tk−1, Ik−1, Fk−1) + (Tk, Ik, Fk),

= (Tk−1 + Tk, Ik−1 + Ik, Fk−1 + Fk), f or k = 2, 3, . . . , 2m − 1.

dG(s2m) = c2m−1 = (T2m−1, I2m−1, F2m−1), f or k = 2m.
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The degree of each edge in G is calculated as:

dG(E1) = c2 = (T2, I2, F2), f or k = 1.

dG(Lk) = ck−1 + ck+1 = (Tk−1, Ik−1, Fk−1) + (tk+1, ik+1, fk+1),

= (Tk−1 + Tk+1, Ik−1 + Ik+1, Fk−1 + Fk+1), f or k = 2, 3, . . . , 2m − 2.

dG(L2m−1) = c2m−2 = (T2m−2, I2m−2, F2m−2), f or k = 2m − 1.

Since each edge in G has distinct degree, G is strongly edge irregular neutrosophic
graph. We now calculate the total degree of each edge in G as:

TdG(E1) = c1 + c2 = (T1 + T2, I1 + I2, F1 + F2), f or k = 1.

TdG(Lk) = ck−1 + ck + ck+1 = (Tk−1, Ik−1, Fk−1) + (Tk , Ik , Fk) + (Tk+1, Ik+1, Fk+1),

= (Tk−1 + Tk + Tk+1, Ik−1 + Ik + Ik+1, Fk−1 + Fk + Fk+1),

f or k = 2, 3, . . . , 2m − 2.

TdG(L2m−1) = c2m−2 + c2m−1 = (T2m−2, I2m−2, F2m−2) + (T2m−1, I2m−1, F2m−1),

= (T2m−2 + T2m−1, I2m−2 + I2m−1, F2m−2 + F2m−1), f or k = 2m − 1.

Since each edge in G has distinct total degree, G is strongly edge totally irregular
neutrosophic graph. HenceG is both strongly edge irregular and strongly edge totally
irregular neutrosophic graph.

Definition 1.32 A complete bipartite graph is a graph whose vertex set can be parti-
tioned into two subsets X1 and X2 such that no edge has both endpoints in the same
subset, and every possible edge that could connect vertices in different subsets is the
part of the graph. A complete bipartite graph with partition of size |X1| = m and
|X2| = n is denoted by K(m,n). A complete bipartite graph K(1,n) or K(m,1) that is a
tree with one internal vertex and n or m leaves is called a star Sn or Sm .

Theorem 1.23 Let G∗ = (X, E) be a star K(m,1) as shown in Fig.1.30 and G be a
neutrosophic graph of G∗. If each edge in G has distinct membership values, then G
is strongly edge irregular neutrosophic graph but not strongly edge totally irregular
neutrosophic graph.

Proof Let G be a neutrosophic graph of a crisp graph G∗ = (X, E). We assume that
G is a star K(m,1). Let s, s1, s2, . . . , sm be the vertices of the star K(m,1), where s is
the centre vertex and s1, s2, . . . , sm are the vertices adjacent to vertex s as shown in
Fig. 1.30. Suppose that ck = (Tk, Ik, Fk) be the membership values of the edges Ek

in G, where k = 1, 2, . . . ,m. We assume that c1 �= c2 �= c3 �= · · · �= cm . The degree
of each edge in G is calculated as:

dG(Lk) = dG(x) + dG(sk) − 2(TB(ssk), IB(ssk), FB(ssk)),

= (c1, c2, . . . , cm) + (Tk , Ik , Fk) − 2(Tk , Ik , Fk),

= (T1, I1, F1), (T2, I2, F2), . . . , (Tm , Im , Fm) + (Tk , Ik , Fk) − 2(Tk , Ik , Fk),

= (T1 + T2 + · · · + Tm , I1 + I2 + · · · + Im , F1 + F2 + · · · + Fm) − (Tk , Tk , Tk).
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Fig. 1.30 Neutrosophic graph

It is easy to see that each edge in G has distinct degree; therefore, G is strongly edge
irregular neutrosophic graph. We now calculate the total degree of each edge in G
as:

TdG(Lk) = TdG(x) + TdG(sk) − (TB(ssk), IB(ssk), FB(ssk)),

= (c1, c2, . . . , cm) + (Tk, Ik, Fk)(Tk, Ik, Fk),

= (T1, I1, F1), (T2, I2, F2), . . . , (Tm, Im, Fm),

= (T1 + T2 + · · · + Tm, I1 + I2 + · · · + Im, F1 + F2 + · · · + Fm).

Since all the edges in G have the same total degree, G is not a strongly edge totally
irregular neutrosophic graph

Definition 1.33 The m-barbell graph B(m,m) is the simple graph obtained by con-
necting two copies of a complete graph Km by a bridge.

Theorem 1.24 Let G be a neutrosophic graph of G∗ = (X, E), the m-barbell graph
B(m,m) as shown in Fig.1.31. If each edge in G has distinct membership values, then
G is a strongly edge irregular neutrosophic graph but not a strongly edge totally
irregular neutrosophic graph.

Proof LetG be a neutrosophic graph of a crisp graphG∗ = (X, E). Suppose thatG∗
is am-barbell graph, then there exists a bridge, say xy, connectingm new vertices to
each of its end vertices x and y. Let b = (T, I, F) be the membership values of the
bridge xy. Suppose that x1, x2, . . . , xm and y1, y2, . . . , ym are the vertices adjacent
to vertices x and y, respectively. Let ck = (Tk, Ik, Fk) be the membership values
of the edges Ek with vertex x , where k = 1, 2, . . . ,m and a1 < a2 < · · · < am . Let
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Fig. 1.31 Neutrosophic graph

c
′
k = (T

′
k , I

′
k, F

′
k) be the membership values of the edges Ek with vertex y, where

k = 1, 2, . . . ,m and c1 < c2 < · · · < cm . Assume that c1 < c2 < · · · < cm < c
′
1 <

c
′
2 < · · · < c

′
m < b. The degree of each edge in G is calculated as:

dG(xy) = dG(x) + dG(y) − 2b,

= c1 + c2 + · · · + cm + b + c
′
1 + c

′
2 + · · · + c

′
m + b − 2b,

= (T1, I1, F1) + (T2, I2, F2) + · · · + (Tm , Im , Fm) + (T
′
1, I

′
1, F

′
1) + (T

′
2, I

′
2, F

′
2)

+ · · · + (T
′
m , I

′
m , F

′
m),

= (T1 + T2 + · · · + Tm , I1 + I2 + · · · + Im , F1 + F2 + · · · + Fm)

+(T
′
1 + T

′
2 + · · · + T

′
m , I

′
1 + I

′
2 + · · · + I

′
m , F

′
1 + F

′
2 + · · · + F

′
m).

dG(Lk) = dG(x) + dG(xk) − 2ck , where k = 1, 2, . . . ,m.

= c1 + c2 + · · · + cm + b + ck − 2ck ,

= (T1, I1, F1) + (T2, I2, F2) + · · · + (Tm , Im , Fm) + (T, I, F) − bk ,

= (T1 + T2 + · · · + Tm + T, I1 + I2 + · · · + Im + I, F1 + F2 + · · · + Fm + F)

−(Tk , Ik , Fk).

dG(Ek) = dG(y) + dG(yk) − 2c
′
k , where k = 1, 2, . . . ,m.

= c
′
1 + c

′
2 + · · · + c

′
m + b + c

′
k − 2c

′
k ,

= (T
′
1, I

′
1, F

′
1) + (T

′
2, I

′
2, F

′
2) + · · · + (T

′
m , I

′
m , F

′
m) + (T, I, F) − c

′
k ,

= (T
′
1 + T

′
2 + · · · + T

′
m + t, I

′
1 + I

′
2 + · · · + I

′
m + i, F

′
1 + F

′
2 + · · · + F

′
m + f )

−(T
′
k , I

′
k , F

′
k).
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It is easy to see that all the edges in G have distinct degrees; therefore, G is strongly
edge irregular neutrosophic graph. The total degree of each edge in G is calculated
as:

TdG(xy) = dG(xy) + b,

= c1 + c2 + · · · + cm + c
′
1 + c

′
2 + · · · + c

′
m + b,

= (T1, I1, F1) + (T2, I2, F2) + · · · + (Tm , Im , Fm)

+(T
′
1, I

′
1, F

′
1) + (T

′
2, I

′
2, F

′
2) + · · · + (T

′
m , I

′
m , F

′
m) + (T, I, F),

= (T1 + T2 + · · · + Tm , I1 + I2 + · · · + Im , F1 + F2 + · · · + Fm)

+(T
′
1 + T

′
2 + · · · + T

′
m , I

′
1 + I

′
2 + · · · + I

′
m , F

′
1 + F

′
2 + · · · + F

′
m) + (T, I, F).

TdG(Lk) = dG(Lk) + ck , where k = 1, 2, . . . ,m.

= c1 + c2 + · · · + cm + b + ck − 2ck + ck ,

= (T1, I1, F1) + (T2, I2, F2) + · · · + (Tm , Im , Fm) + (T, I, F),

= (T1 + T2 + · · · + Tm + T, I1 + I2 + · · · + Im + I, F1 + F2 + · · · + Fm + F).

TdG(Ek) = dG(Ek) + c
′
k , where k = 1, 2, . . . ,m.

= c
′
1 + c

′
2 + · · · + c

′
m + b + c

′
k − 2c

′
k + c

′
k ,

= (T
′
1, I

′
1, F

′
1) + (T

′
2, I

′
2, F

′
2) + · · · + (T

′
m , I

′
m , F

′
m) + (T, I, F),

= (T
′
1 + T

′
2 + · · · + T

′
m + T, I

′
1 + I

′
2 + · · · + I

′
m + I, F

′
1 + F

′
2 + · · · + F

′
m + F).

Since each edge Lk and Ek in G has the same total degree, where k = 1, 2, . . . ,m,
G is not a strongly edge totally irregular neutrosophic graph.

1.3 Applications of Neutrosophic Graphs

1.3.1 Social Network Model

Graphical models have many applications in our daily life. Human being is the most
adjustable and adapting creature. When human beings interact with each other, more
or less they leave an impact(good or bad) on each other. Naturally a human being
has influence on others. We can use neutrosophic digraph to examine the influence
of the people on each other’s thinking in a group. We can investigate a person’s
good influence and bad influence on the thinking of others. We can examine the
percentage of uncertain influence of that person. The neutrosophic digraph will tell
us about dominating person and about highly influenced person.

Consider I = {Malik, Haider, Imran, Razi, Ali, Hamza, Aziz} set of seven per-
sons in a social group onwhatsapp. Let A={(Malik, 0.6, 0.4, 0.5), (Haider, 0.5, 0.6,
0.3), (Imran, 0.4, 0.3, 0.2), (Razi, 0.7, 0.6, 0.4), (Ali, 0.4, 0.1, 0.2), (Hamza, 0.6,
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Table 1.5 Neutrosophic set
B of edges

Edge T I F

(Hamza, Malik) 0.6 0.4 0.4

(Hamza, Haider) 0.5 0.3 0.3

(Hamza, Razi) 0.3 0.3 0.4

(Hamza, Aziz) 0.3 0.3 0.4

(Malik, Haider) 0.5 0.4 0.5

(Imran, Haider) 0.4 0.3 0.3

(Aziz, Malik) 0.5 0.2 0.5

(Razi, Imran) 0.3 0.3 0.4

(Razi, Ali) 0.4 0.1 0.4

(Ali, Aziz) 0.3 0.1 0.5

0.4, 0.1), (Aziz, 0.7, 0.3, 0.5)} be the neutrosophic set on the set I where truth value
of each person represents his good influence on others, falsity value represents his bad
influence on others, and indeterminacy value represents uncertainty in his influence.
Let J = {(Hamza, Malik), (Hamza, Haider), (Hamza, Razi), (Hamza, Aziz), (Malik,
Haider), (Imran, Haider), (Aziz, Malik), (Razi, Imran), (Razi, Ali), (Ali, Aziz)} be
the set of relations on I . Let B be the neutrosophic set on the set J as shown in
Table1.5.

The truth, indeterminacy and falsity values of each edge are calculated using
TB(xy) ≤ TA(x) ∧ TA(y), IB(xy) ≤ IA(x) ∧ IA(y), FB(xy) ≤ FA(x) ∨ FA(y). The
neutrosophic digraph G = (A, B) is shown in Fig. 1.32. This neutrosophic digraph
shows that Hamza has influence on Malik, Haider, Razi and Aziz. We can see that
Hamza’s good influence on Haider is 50%, on Malik is 60%, on Razi is 30% and
on Aziz is 30%. His bad influence on Haider, Malik, Razi and Aziz is 30, 40, 40
and 40%, respectively. Similarly his uncertain influence on Haider, Malik, Razi and
Aziz is 30, 40, 30 and 30%, respectively. We can investigate that out-degree of vertex

Malik(0.6,0.4,0.5) Haider(0.5,0.6,0.3) Imran(0.4,0.3,0.2)
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Fig. 1.32 Neutrosophic digraph
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Hamza is highest, that is, four. This shows that Hamza is dominating person in this
social group. On the other hand, Haider has highest in-degree, that is, three. It tells
us that Haider is highly influenced by others in this social group.

We now explain general procedure of this applications through following
Algorithm1.3.1.

Algorithm 1.3.1

Step 1. Input the set of vertices I = {I1, I2, . . . , In} and a neutrosophic set Awhich
is defined on set I .

Step 2. Input the set of relations J = {J1, J2, . . . , Jn}.
Step 3. Compute the truth-membership degree, indeterminacy degree and falsity-

membership degree of each edge using Definition1.7.
Step 4. Compute the neutrosophic set B of edges.
Step 5. Obtain a neutrosophic digraph G = (A, B).

1.3.2 Detection of a Safe Root for an Airline Journey

We consider a neutrosophic set of five countries: Germany, China, USA, Brazil
and Mexico. Suppose we want to travel between these countries through an airline
journey. The airline companies aim to facilitate their passengers with high quality
of services. Air traffic controllers have to make sure that company planes must
arrive and depart at right time. This task is possible by planning efficient routes for
the planes. A neutrosophic graph of airline network among these five countries is
shown in Fig. 1.33 in which vertices and edges represent the countries and flights,
respectively.
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Fig. 1.33 Neutrosophic graph of an airline network
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The truth-membership degree of each vertex indicates the strength of that coun-
try’s airline system. The indeterminacy-membership degree of each vertex demon-
strates how much the system is uncertain. The falsity-membership degree of each
vertex tells the flaws of that system. The truth-membership degree of each edge
interprets that how much the flight is save. The indeterminacy-membership degree
of each edge shows the uncertain situations during a flight such asweather conditions,
mechanical error and sabotage. The falsity-membership degree of each edge indicates
the flaws of that flight. For example, the edge between Germany and China indicates
that the flight chosen for this travel is 80% safe, 10% depending on uncertain sys-
tems and 20% unsafe. The truth-membership degree, the indeterminacy-membership
degree and the falsity-membership degree of each edge are calculated by using the
following relations.

TB(xy) ≤ min{TA(x), TA(y)},
IB(xy) ≤ min{IA(x), IA(y)},
FB(xy) ≤ max{FA(x), FA(y)}, x, y ∈ X.

Sometimes due to weather conditions, technical issues or personal problems, a pas-
senger missed his direct flight between two particular countries. So, if he has to go
somewhere urgently, then he has to choose indirect route as there are indirect routes
between these countries. For example, if a passenger missed his flight fromGermany
to USA, then there are four indirect routes given as follows.

P1: Germany to China then China to USA.
P2: Germany to China, China to Mexico then Mexico to USA.
P3: Germany to China, China to Brazil, then Brazil to USA.
P4: Germany to China, China to Brazil, Brazil to Mexico then Mexico to USA.

Wewill find themost suitable route by calculating the lengths of all these routes. That
route is themost suitablewhose truth-membership value ismaximum, indeterminacy-
membership value is minimum, and falsity-membership value is minimum. After
calculating the lengths of all the routes, we get L(P1) = (1.5, 0.3, 0.3), L(P2) =
(1.3, 0.5, 0.7), L(P3) = (1.3, 0.3, 0.6) and L(P4) = (1.4, 0.5, 1.0).

From Fig. 1.33, it looks like travelling through Germany to USA is the most
protected route, but after calculating the lengths, we find that the protected route
is P1 because of uncertain conditions. Similarly, one can find the protected route
between other countries.

We now present the general procedure of our method which is used in our appli-
cation from Algorithm1.3.2.

Algorithm 1.3.2

Step 1. Input the degrees of truth-membership, indeterminacy-membership and
falsity-membership of all m vertices(countries).

Step 2. Calculate the degrees of truth-membership, indeterminacy-membership
and falsity-membership of all edges using the following relations.
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TB(xy) ≤ min{TA(x), TA(y)},
IB(xy) ≤ min{IA(x), IA(y)},
FB(xy) ≤ max{FA(x), FA(y)}, x, y ∈ X.

Step 3. Calculate all the possible routes Pk between the countries.
Step 4. Calculate the lengths of all the routs Pk using the following formula,

L(Pk) =
(
m−1∑
i=1

TB(xi xi+1),

m−1∑
i=1

IB(xi xi+1),

m−1∑
i=1

FB(xi xi+1)

)
, k = 1, 2, . . . , n.

Step 5. Find the protected route with maximum truth-membership degree,
minimum indeterminacy-membership degree and minimum falsity-
membership degree.

1.3.3 Selection of Military Weapon

Since in decision-making problems, there is a number of uncertainties, and in some
situations, there exist some relations among attributes in amultiple-attribute decision-
making problem. So, it is an interesting area of applications in neutrosophic graph
theory. A multiple-attribute decision-making problem is solved under the general
framework of neutrosophic graphs.

A military unit is planning to purchase new artillery weapons, and there are six
feasible artillery weapons (alternatives) xi (i = 1, 2, . . . , 6) to be selected. When
making a decision, the attributes considered are as follows:
(1) a1− assault fire capability indices.
(2) a2− reaction capability indices.
(3) a3− mobility indices.
(4) a4− survival ability indices.
Among these four attributes, a1, a2, a4 are of benefit type (beneficial), and a3 is of
cost type (nonbeneficial); the evaluation values are contained in the decision matrix
A = (ai j )6×4, listed in Table1.6.

Normalized values of an attribute assigned to the alternatives are calculated by
using the following formula and shown in Table1.7:

ri j = 〈Ti j , Ii j , Fi j 〉 =
{
ai j for beneficial attribute,
āi j for nonbeneficial attribute.

i = 1, 2, . . . , 6; j = 1, 2, 3, 4, where āi j is the complement of ai j , such that āi j =
〈Fi j , 1 − Ii j , Ti j 〉.

Relative importance of attributes is also assigned (see table 2 in [136]). Let the
decision-maker select the following assignments:
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Table 1.6 Neutrosophic decision matrix A = (ai j )6×4

Weapons a1 a2 a3 a4

x1 〈0.5, 0.3, 0.6〉 〈0.6, 0.3, 0.2〉 〈0.4, 0.5, 0.1〉 〈0.1, 0.7, 0.5〉
x2 〈0.6, 0.1, 0.2〉 〈0.2, 0.1, 0.4〉 〈0.2, 0.3, 0.4〉 〈0.3, 0.4, 0.1〉
x3 〈0.1, 0.5, 0.3〉 〈0.3, 0.2, 0.5〉 〈0.7, 0.2, 0.1〉 〈0.5, 0.1, 0.2〉
x4 〈0.3, 0.4, 0.2〉 〈0.4, 0.5, 0.1〉 〈0.3, 0.1, 0.4〉 〈0.5, 0.3, 0.4〉
x5 〈0.1, 0.2, 0.4〉 〈0.2, 0.7, 0.3〉 〈0.1, 0.3, 0.5〉 〈0.2, 0.1, 0.5〉
x6 〈0.5, 0.1, 0.7〉 〈0.5, 0.1, 0.4〉 〈0.3, 0.2, 0.6〉 〈0.4, 0.2, 0.6〉

Table 1.7 Neutrosophic decision matrix R = (ri j )6×4 of normalized data

Weapons a1 a2 a3 a4

x1 〈0.5, 0.3, 0.6〉 〈0.6, 0.3, 0.2〉 〈0.1, 0.5, 0.4〉 〈0.1, 0.7, 0.5〉
x2 〈0.6, 0.1, 0.2〉 〈0.2, 0.1, 0.4〉 〈0.4, 0.7, 0.2〉 〈0.3, 0.4, 0.1〉
x3 〈0.1, 0.5, 0.3〉 〈0.3, 0.2, 0.5〉 〈0.1, 0.8, 0.7〉 〈0.5, 0.1, 0.2〉
x4 〈0.3, 0.4, 0.2〉 〈0.4, 0.5, 0.1〉 〈0.4, 0.9, 0.3〉 〈0.5, 0.3, 0.4〉
x5 〈0.1, 0.2, 0.4〉 〈0.2, 0.7, 0.3〉 〈0.5, 0.7, 0.1〉 〈0.2, 0.1, 0.5〉
x6 〈0.5, 0.1, 0.7〉 〈0.5, 0.1, 0.4〉 〈0.6, 0.8, 0.3〉 〈0.4, 0.2, 0.6〉

a1 a2 a3 a4

R=
a1
a2
a3
a4

⎡
⎢⎢⎢⎢⎣

− − − 〈0.045, 0.410, 0.865〉 〈0.665, 0.045, 0.335〉 〈0.045, 0.590, 0.745〉
〈0.865, 0.590, 0.045〉 − − − 〈0.135, 0.665, 0.335〉 〈0.590, 0.410, 0.255〉
〈0.335, 0.955, 0.665〉 〈0.335, 0.335, 0.135〉 − − − 〈0.410, 0.255, 0.135〉
〈0.745, 0.410, 0.045〉 〈0.255, 0.590, 0.590〉 〈0.135, 0.745, 0.410〉 − − −

⎤
⎥⎥⎥⎥⎦ .

Theweapon selection attribute neutrosophic digraph given in Fig. 1.34, represents
the presence as well as relative importance of four attributes a1, a2, a3 and a4 which
are the vertices of the digraph. The weapon selection index is calculated using the
values of Ai and ri j for each alternative weapon, where Ai is the value of i th attribute
represented by the weapon xi and ri j is the relative importance of the i th attribute
over j th attribute.

For first weapon x1, substituting values of A1, A2, A3 and A4 in above matrixR,
we get

a1 a2 a3 a4

R1=
a1
a2
a3
a4

⎡
⎢⎢⎢⎢⎣

〈0.5, 0.3, 0.6〉 〈0.045, 0.410, 0.865〉 〈0.665, 0.045, 0.335〉 〈0.045, 0.590, 0.745〉
〈0.865, 0.590, 0.045〉 〈0.6, 0.3, 0.2〉 〈0.135, 0.665, 0.335〉 〈0.590, 0.410, 0.255〉
〈0.335, 0.955, 0.665〉 〈0.335, 0.335, 0.135〉 〈0.1, 0.5, 0.4〉 〈0.410, 0.255, 0.135〉
〈0.745, 0.410, 0.045〉 〈0.255, 0.590, 0.590〉 〈0.135, 0.745, 0.410〉 〈0.1, 0.7, 0.5〉

⎤
⎥⎥⎥⎥⎦ .

Now we calculate the permanent function value of above matrix using computer
program, that is, per (R1) = 〈0.4117, 1.3482, 0.4884〉. The permanent function is
nothing but the determinant of a matrix but considering all the determinant terms as
positive terms [87]. So, the weapon selection index values of different weapons are:
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Fig. 1.34 Weapon selection
attribute neutrosophic
digraph a1 a2
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x1 = 〈0.4117, 1.3482, 0.4884〉,
x2 = 〈0.4224, 1.0522, 0.3415〉,
x3 = 〈0.4098, 1.1991, 0.4782〉,
x4 = 〈0.5173, 1.5801, 0.3468〉,
x5 = 〈0.3272, 1.3426, 0.4429〉,
x6 = 〈0.6113, 0.9950, 0.6179〉.

Calculate the score function s(xi ) = Ti + 1 − Ii + 1 − Fi of the weapons
xi (i = 1, 2, . . . , 6), respectively: s(x1) = 0.5751, s(x2) = 1.0287, s(x3) = 0.7325,
s(x4) = 0.5904, s(x5) = 0.5417, s(x6) = 0.9984. Thus, we can rank the weapons:

x2 � x6 � x3 � x4 � x1 � x5.

Therefore, the best choice is the second weapon (x2).

1.4 Energy of Neutrosophic Graphs

If we change min by max in indeterminacy-membership of Definition1.7, then we
have the following definition of neutrosophic graph.

Definition 1.34 A neutrosophic graph on a nonempty set X is a pair G = (A, B),
where A is a neutrosophic set in X and B is a neutrosophic relation on X such that
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TB(xy) ≤ min{TA(x), TA(y)},
IB(xy) ≤ max{IA(x), IA(y)},
FB(xy) ≤ max{FA(x), FA(y)}, for all x, y ∈ X.

If B is not symmetric on A, then D = (A,
−→
B ) is called neutrosophic digraph.

Example 1.39 Consider a graph G∗ = (X, E) where X = {x1, x2, x3, x4, x5, x6,
x7} and E = {x1x2, x2x3, x3x4, x4x1, x1x5, x1x6, x1x7, x3x5, x3x6, x3x7, x2x5, x5x6,
x6x7, x4x7}. Let G = (A, B) be a neutrosophic graph on V as shown in Fig. 1.35
defined by

A x1 x2 x3 x4 x5 x6 x7
TA 0.6 0.4 0.5 0.6 0.3 0.2 0.2
IA 0.5 0.1 0.3 0.4 0.4 0.5 0.4
FA 0.7 0.3 0.2 0.9 0.5 0.6 0.8

B x1x2 x2x3 x3x4 x4x1 x1x5 x1x6 x1x7 x3x5 x3x6 x3x7 x2x5 x5x6 x6x7 x4x7
TB 0.2 0.3 0.3 0.5 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.2 0.1 0.2
IB 0.1 0.1 0.2 0.3 0.4 0.3 0.3 0.3 0.3 0.2 0.1 0.1 0.4 0.3
FB 0.4 0.3 0.7 0.6 0.6 0.6 0.7 0.4 0.4 0.5 0.4 0.6 0.7 0.7

We now define and investigate the energy of a graph within the framework of neu-
trosophic set theory.

Definition 1.35 The adjacency matrix A(G) of a neutrosophic graph G = (A, B)

is defined as a square matrixA(G) = [a jk], a jk = 〈TB(x j xk), IB(x j xk), FB(x j xk)〉,
where TB(x j xk), IB(x j xk) and FB(x j xk) represent the strength of relationship,
strength of undecided relationship and strength of nonrelationship between x j and
xk , respectively.

The adjacency matrix of a neutrosophic graph can be expressed as three matri-
ces: first matrix contains the entries as truth-membership values, second con-
tains the entries as indeterminacy-membership values, and the third contains the
entries as falsity-membership values, i.e., A(G) = 〈A(TB(x j xk)), A(IB(x j xk)),
A(FB(x j xk))〉.
Definition 1.36 The spectrum of adjacency matrix of a neutrosophic graphA(G) is
defined as 〈M, N , O〉, whereM , N and O are the sets of eigenvalues ofA(TB(x j xk)),
A(IB(x j xk)) and A(FB(x j xk)), respectively.

Example 1.40 The adjacencymatrixA(G) of a neutrosophic graph given in Fig. 1.35
is
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Fig. 1.35 Single-valued neutrosophic graph

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈0, 0, 0〉 〈0.2, 0.1, 0.4〉 〈0, 0, 0〉 〈0.5, 0.3, 0.6〉 〈0.2, 0.4, 0.6〉 〈0.1, 0.3, 0.6〉 〈0.2, 0.3, 0.7〉
〈0.2, 0.1, 0.4〉 〈0, 0, 0〉 〈0.3, 0.1, 0.3〉 〈0, 0, 0〉 〈0.2, 0.1, 0.4〉 〈0, 0, 0〉 〈0, 0, 0〉

〈0, 0, 0〉 〈0.3, 0.1, 0.3〉 〈0, 0, 0〉 〈0.3, 0.2, 0.7〉 〈0.2, 0.3, 0.4〉 〈0.1, 0.3, 0.4〉 〈0.2, 0.2, 0.5〉
〈0.5, 0.3, 0.6〉 〈0, 0, 0〉 〈0.3, 0.2, 0.7〉 〈0, 0, 0〉 〈0, 0, 0〉 〈0, 0, 0〉 〈0.2, 0.3, 0.7〉
〈0.2, 0.4, 0.6〉 〈0.2, 0.1, 0.4〉 〈0.2, 0.3, 0.4〉 〈0, 0, 0〉 〈0, 0, 0〉 〈0.2, 0.1, 0.6〉 〈0, 0, 0〉
〈0.1, 0.3, 0.6〉 〈0, 0, 0〉 〈0.1, 0.3, 0.4〉 〈0, 0, 0〉 〈0.2, 0.1, 0.6〉 〈0, 0, 0〉 〈0.1, 0.4, 0.7〉
〈0.2, 0.3, 0.7〉 〈0, 0, 0〉 〈0.2, 0.2, 0.5〉 〈0.2, 0.3, 0.7〉 〈0, 0, 0〉 〈0.1, 0.4, 0.7〉 〈0, 0, 0〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The spectrum of a neutrosophic graph G given in Fig. 1.35 is as follows:

Spec(TB(x j xk)) = {−0.7137,−0.2966,−0.2273, 0.0000, 0.0577, 0.2646, 0.9152},
Spec(IB(x j xk)) = {−0.7150,−0.4930,−0.0874,−0.0308, 0.0507, 0.2012, 1.0743},
Spec(FB(x j xk)) = {−1.2963,−1.1060,−0.5118,−0.0815, 0.1507, 0.5510, 2.2938}.

Therefore,

Spec(G) = {〈−0.7137,−0.7150,−1.2963〉, 〈−0.2966,−0.4930,−1.1060〉,
〈−0.2273,−0.0874,−0.5118〉, 〈0.0000,−0.0308,−0.0815〉,
〈0.0577, 0.0507, 0.1507〉, 〈0.2646, 0.2012, 0.5510〉,
〈0.9152, 1.0743, 2.2938〉}.
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Definition 1.37 The energy of a neutrosophic graph G = (A, B) is defined as,

E(G) = 〈E(TB(x j xk)), E(IB(x j xk)), E(FB(x j xk))
〉

=
〈

n∑
j=1

λ j∈M

|λ j |,
n∑
j=1

ζ j∈N

|ζ j |,
n∑
j=1

η j∈O

|η j |
〉

.

Definition 1.38 Two neutrosophic graphs with the same number of vertices and the
same energy are called equienergetic.

Theorem 1.25 Let G = (A, B) be a neutrosophic graph andA(G) be its adjacency
matrix. If λ1 ≥ λ2 ≥ · · · ≥ λn, ζ1 ≥ ζ2 ≥ · · · ≥ ζn and η1 ≥ η2 ≥ · · · ≥ ηn are the
eigenvalues of A(TB(x j xk)), A(IB(x j xk)) and A(FB(x j xk)), then

1.
n∑
j=1

λ j∈M
λ j = 0,

n∑
j=1

ζ j∈N
ζ j = 0,

n∑
j=1

η j∈O
η j = 0

2.
n∑
j=1

λ j∈M
λ2
j = 2

( ∑
1≤ j<k≤n

(TB(x j xk))2
)
,

n∑
j=1

ζ j∈N
ζ2j = 2

( ∑
1≤ j<k≤n

(IB(x j xk))2
)

,

n∑
j=1

η j∈O
η2
j = 2

( ∑
1≤ j<k≤n

(FB(x j xk))2
)
.

Proof 1. SinceA(G) is a symmetric matrix whose trace is zero, its eigenvalues are
real with zero sum.

2. By matrix trace properties, we have

tr((A(TB(x j xk)))
2) =

n∑
j=1

λ j∈M

λ2
j

tr((A(TB(x j xk)))
2) = (0 + T 2

B (x1x2) + · · · + T 2
B (x1xn)) + (T 2

B(x2x1) + 0 + · · ·
+ T 2

B (x2xn)) + · · · + (T 2
B(xnx1) + T 2

B(xnx2) + · · · + 0)

= 2

⎛
⎝ ∑

1≤ j<k≤n

(TB(x j xk))
2

⎞
⎠ .
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Hence
n∑
j=1

λ j∈M
λ2
j = 2

( ∑
1≤ j<k≤n

(TB(x j xk))2
)
.Analogously,wecan show that

n∑
j=1

ζ j∈N
ζ2j =

2

( ∑
1≤ j<k≤n

(IB(x j xk))2
)
and

n∑
j=1

η j∈O
η2
j = 2

( ∑
1≤ j<k≤n

(FB(x j xk))2
)
.

Wenowgive upper and lower bounds on energy of a neutrosophic graphG, in terms of
the number of vertices and the sum of squares of truth-membership, indeterminacy-
membership and falsity-membership values of edges.

Theorem 1.26 Let G = (A, B) be a neutrosophic graph on n vertices with adja-
cency matrix A(G) = 〈A(TB(x j xk)),A(IB(x j xk)),A(FB(x j xk))〉, then

1.
√
2
∑

1≤ j<k≤n

(TB(x j xk))2 + n(n − 1)|T | 2
n ≤ E(TB(x j xk))

≤
√
2n

∑
1≤ j<k≤n

(TB(x j xk))2

2.
√
2
∑

1≤ j<k≤n

(IB(x j xk))2 + n(n − 1)|I | 2
n ≤ E(IB(x j xk))

≤
√
2n

∑
1≤ j<k≤n

(IB(x j xk))2

3.
√
2
∑

1≤ j<k≤n

(FB(x j xk))2 + n(n − 1)|F | 2
n ≤ E(FB(x j xk))

≤
√
2n

∑
1≤ j<k≤n

(FB(x j xk))2.

where |T |, |I | and |F | are the determinant of A(TB(x j xk)),A(IB(x j xk)) and
A(FB(x j xk)), respectively.

Proof 1.Upper bound:ApplyCauchy–Schwarz inequality to then numbers 1, 1, . . . ,
1 and |λ1|, |λ2|, . . . , |λn|, then

n∑
j=1

|λ j | ≤ √
n

√√√√ n∑
j=1

|λ j |2 (1.1)

⎛
⎝ n∑

j=1

λ j

⎞
⎠

2

=
n∑
j=1

|λ j |2 + 2

⎛
⎝ ∑

1≤ j<k≤n

λ jλk

⎞
⎠ . (1.2)
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By comparing the coefficients ofλn−2 in the characteristic polynomial
n∏
j=1

(λ − λ j ) =
|A(G) − λI |, we have

∑
1≤ j<k≤n

λ jλk = −
∑

1≤ j<k≤n

(TB(x j xk))
2. (1.3)

Substituting (1.3) in (1.2), we obtain

n∑
j=1

|λ j |2 = 2
∑

1≤ j<k≤n

(TB(x j xk))
2. (1.4)

Substituting (1.4) in (1.1), we obtain

n∑
j=1

|λ j | ≤ √
n
√
2
∑

1≤ j<k≤n

(TB(x j xk))2 =
√
2n

∑
1≤ j<k≤n

(TB(x j xk))2.

Therefore,

E(TB(x j xk)) ≤
√
2n

∑
1≤ j<k≤n

(TB(x j xk))2.

Lower bound:

(E(TB(x j xk)))
2 =

⎛
⎝ n∑

j=1

|λ j |
⎞
⎠

2

=
n∑
j=1

|λ j |2 + 2

⎛
⎝ ∑

1≤ j<k≤n

|λ jλk |
⎞
⎠

= 2

⎛
⎝ ∑

1≤ j<k≤n

(TB(x j xk))
2

⎞
⎠+ 2n(n − 1)

2
AM{|λ jλk |}.

Since AM{|λ jλk |} ≥ GM{|λ jλk |}, 1 ≤ j < k ≤ n,

E(TB(x j xk)) ≥

√√√√√2

⎛
⎝ ∑

1≤ j<k≤n

(TB(x j xk))2 + n(n − 1)GM{|λ jλk |}
⎞
⎠.

It can also be seen that

GM{|λ jλk |} =
⎛
⎝ ∏

1≤ j<k≤n

|λ jλk |
⎞
⎠

2
n(n−1)

=
⎛
⎝ n∏

j=1

|λ j |n−1

⎞
⎠

2
n(n−1)

=
⎛
⎝ n∏

j=1

|λ j |
⎞
⎠

2
n

= |T | 2n .
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Therefore,

E(TB(x j xk)) ≥
√
2
∑

1≤ j<k≤n

(TB(x j xk))2 + n(n − 1)|T | 2
n .

Thus, analogously, we can show that
√√√√√2

⎛
⎝ ∑

1≤ j<k≤n

(IB(x j xk))2 + n(n − 1)|I | 2
n

⎞
⎠ ≤ E(IB(x j xk))

≤

√√√√√2n

⎛
⎝ ∑

1≤ j<k≤n

(IB(x j xk))2

⎞
⎠

√√√√√2

⎛
⎝ ∑

1≤ j<k≤n

(FB(x j xk))2 + n(n − 1)|F | 2
n

⎞
⎠ ≤ E(FB(x j xk))

≤

√√√√√2n

⎛
⎝ ∑

1≤ j<k≤n

(FB(x j xk))2

⎞
⎠.

We now define and investigate the Laplacian energy of a graph under neutrosophic
environment and investigate its properties.

Definition 1.39 Let G = (A, B) be a neutrosophic graph on n vertices. The degree
matrix, D(G) = 〈D(TB(x j xk)), D(IB(x j xk)), D(FB(x j xk))〉 = [d jk], of G is a n ×
n diagonal matrix defined as,

d jk =
{
dG(x j ) if j = k,
0 otherwise

Definition 1.40 The Laplacian matrix of a neutrosophic graph G = (A, B) is
defined as L(G) = 〈L(TB(x j xk)), L(IB(x j xk)), L(FB(x j xk))〉 = D(G) − A(G),
where A(G) is an adjacency matrix and D(G) is a degree matrix of a neutrosophic
graph G.

Definition 1.41 The spectrum of Laplacian matrix of a neutrosophic graph L(G) is
defined as 〈ML , NL , OL〉, whereML , NL andOL are the sets ofLaplacian eigenvalues
of L(TB(x j xk)), L(IB(x j xk)) and L(FB(x j xk)), respectively.

Theorem 1.27 Let G = (A, B) be a neutrosophic graph, and let L(G) =
〈L(TB(x j xk)), L(IB(x j xk)), L(FB(x j xk))〉 be the Laplacian matrix of G. If ϑ1 ≥
ϑ2 ≥ · · · ≥ ϑn, ϕ1 ≥ ϕ2 ≥ · · · ≥ ϕn and ψ1 ≥ ψ2 ≥ · · · ≥ ψn are the eigenvalues
of L(TB(x j xk)), L(IB(x j xk)) and L(FB(x j xk)), respectively, then
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1.
n∑
j=1

ϑ j∈ML

ϑ j = 2

( ∑
1≤ j<k≤n

TB(x j xk)

)
,

n∑
j=1

ϕ j∈NL

ϕ j = 2

( ∑
1≤ j<k≤n

IB(x j xk)

)

n∑
j=1

ψ j∈OL

ψ j = 2

( ∑
1≤ j<k≤n

FB(x j xk)

)

2.
n∑
j=1

ϑ j∈ML

ϑ2
j = 2

( ∑
1≤ j<k≤n

(TB(x j xk))2
)

+
n∑
j=1

d2
TB (x j xk )

(x j ),

n∑
j=1

ϕ j∈NL

ϕ2
j = 2

( ∑
1≤ j<k≤n

(IB(x j xk))2
)

+
n∑
j=1

d2
IB (x j xk )

(x j ),

n∑
j=1

ψ j∈OL

ψ2
j = 2

( ∑
1≤ j<k≤n

(FB(x j xk))2
)

+
n∑
j=1

d2
FB (x j xk )

(x j ).

Proof 1. Since L(G) is a symmetricmatrixwith nonnegativeLaplacian eigenvalues,

n∑
j=1

ϑ j∈ML

ϑ j = tr(L(G)) =
n∑
j=1

dTB (x j xk )(x j ) = 2

⎛
⎝ ∑

1≤ j<k≤n

TB(x j xk)

⎞
⎠ .

Similarly, it is easy to show that

n∑
j=1

ϕ j∈NL

ϕ j = 2

⎛
⎝ ∑

1≤ j<k≤n

IB(x j xk)

⎞
⎠

n∑
j=1

ψ j∈OL

ψ j = 2

⎛
⎝ ∑

1≤ j<k≤n

FB(x j xk)

⎞
⎠ .

2. By definition of Laplacian matrix, we have

L(TB(x j xk)) =

⎛
⎜⎜⎜⎝

dTB (x j xk )(x1) −TB(x1x2) . . . −TB(x1xn)
−TB(x2x1) dTB (x j xk )(x2) . . . −TB(x2xn)

...
...

. . .
...

−TB(xnx1) −TB(xnx2) . . . dTB (x j xk )(xn)

⎞
⎟⎟⎟⎠ .

By trace properties of a matrix, we have tr((L(TB(x j xk)))2) =
n∑
j=1

ϑ j∈ML

ϑ2
j where
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tr((L(TB(x j xk)))
2) = (d2

TB (x j xk )(x1) + T 2
B (x1x2) + · · · + T 2

B (x1xn))

+(T 2
B (x2x1) + d2

TB (x j xk )(x2) + · · · + T 2
B (x2xn))

+ · · · + (T 2
B (xnx1) + T 2

B (xnx2) + · · · + d2
TB (x j xk )(xn))

= 2

⎛
⎝ ∑

1≤ j<k≤n

(TB(x j xk))
2

⎞
⎠+

n∑
j=1

d2
TB (x j xk )(x j ).

Therefore,
n∑
j=1

ϑ j∈ML

ϑ2
j = 2

( ∑
1≤ j<k≤n

(TB(x j xk))2
)

+
n∑
j=1

d2
TB (x j xk )

(x j ). Analogously,

we can show that

n∑
j=1

ϕ j∈NL

ϕ2
j = 2

⎛
⎝ ∑

1≤ j<k≤n

(IB(x j xk))
2

⎞
⎠+

n∑
j=1

d2
IB (x j xk )(x j )

n∑
j=1

ψ j∈OL

ψ2
j = 2

⎛
⎝ ∑

1≤ j<k≤n

(FB(x j xk))
2

⎞
⎠+

n∑
j=1

d2
FB (x j xk )(x j ).

Definition 1.42 The Laplacian energy of a neutrosophic graph G = (A, B) is

defined as LE(G) = 〈LE(TB(x j xk)), LE(IB(x j xk)), LE(FB(x j xk))
〉 = 〈 n∑

j=1
|� j |,

n∑
j=1

|ξ j |,
n∑
j=1

|τ j |
〉
where

� j = ϑ j −
2

( ∑
1≤ j<k≤n

TB(x j xk)

)

n
,

ξ j = ϕ j −
2

( ∑
1≤ j<k≤n

IB(x j xk)

)

n
,

τ j = ψ j −
2

( ∑
1≤ j<k≤n

FB(x j xk)

)

n
.

Theorem 1.28 Let G = (A, B) be a neutrosophic graph on n vertices and let
L(G) = 〈L(TB(x j xk)), L(IB(x j xk)), L(FB(x j xk))〉 be the Laplacian matrix of G,
then

1. LE(TB(x j xk))
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≤

√√√√√√2n
∑

1≤ j<k≤n

(TB(x j xk))2 + n
n∑
j=1

⎛
⎜⎝dTB (x j xk )(x j ) −

2
∑

1≤ j<k≤n
TB(x j xk)

n

⎞
⎟⎠

2

,

2. LE(IB(x j xk))

≤

√√√√√√2n
∑

1≤ j<k≤n

(IB(x j xk))2 + n
n∑
j=1

⎛
⎜⎝dIB (x j xk )(x j ) −

2
∑

1≤ j<k≤n
IB(x j xk)

n

⎞
⎟⎠

2

,

3. LE(FB(x j xk))

≤

√√√√√√2n
∑

1≤ j<k≤n

(FB(x j xk))2 + n
n∑
j=1

⎛
⎜⎝dFB (x j xk )(x j ) −

2
∑

1≤ j<k≤n
FB(x j xk)

n

⎞
⎟⎠

2

.

Proof Apply Cauchy–Schwarz inequality to the n numbers 1, 1, . . . , 1 and |�1|, |�2|,
. . . , |�n|, andwehave

n∑
j=1

|� j | ≤ √
n
√∑n

j=1 |� j |2 and LE(TB(x j xk)) ≤ √
n
√
2MT =

√
2nMT . We know that

MT = ∑
1≤ j<k≤n

(TB(x j xk))2 + 1
2

n∑
j=1

(
dTB (x j xk )(x j ) −

2
∑

1≤ j<k≤n
TB (x j xk )

n

)2

,

Therefore, it can be proved that

LE(TB(x j xk))

≤

√√√√√√2n
∑

1≤ j<k≤n

(TB(x j xk))2 + n
n∑
j=1

⎛
⎜⎝dTB (x j xk )(x j ) −

2
∑

1≤ j<k≤n
TB(x j xk)

n

⎞
⎟⎠

2

,

LE(IB(x j xk))

≤

√√√√√√2n
∑

1≤ j<k≤n

(IB(x j xk))2 + n
n∑
j=1

⎛
⎜⎝dIB (x j xk )(x j ) −

2
∑

1≤ j<k≤n
IB(x j xk)

n

⎞
⎟⎠

2

,

LE(FB(x j xk))

≤

√√√√√√2n
∑

1≤ j<k≤n

(FB(x j xk))2 + n
n∑
j=1

⎛
⎜⎝dFB (x j xk )(x j ) −

2
∑

1≤ j<k≤n
FB(x j xk)

n

⎞
⎟⎠

2

.

Theorem 1.29 Let G = (A, B) be a neutrosophic graph on n vertices and let
L(G) = 〈L(TB(x j xk)), L(IB(x j xk)), L(FB(x j xk))〉 be the Laplacian matrix of G,
then
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LE(TB(x j xk))

≥ 2

√√√√√√ ∑
1≤ j<k≤n

(TB(x j xk))2 + 1

2

n∑
j=1

⎛
⎜⎝dTB (x j xk )(x j ) −

2
∑

1≤ j<k≤n
TB(x j xk)

n

⎞
⎟⎠

2

,

LE(IB(x j xk))

≥ 2

√√√√√√ ∑
1≤ j<k≤n

(IB(x j xk))2 + 1

2

n∑
j=1

⎛
⎜⎝dIB (x j xk )(x j ) −

2
∑

1≤ j<k≤n
IB(x j xk)

n

⎞
⎟⎠

2

,

LE(FB(x j xk))

≥ 2

√√√√√√ ∑
1≤ j<k≤n

(FB(x j xk))2 + 1

2

n∑
j=1

⎛
⎜⎝dFB (x j xk )(x j ) −

2
∑

1≤ j<k≤n
FB(x j xk)

n

⎞
⎟⎠

2

.

Proof Here

(
n∑
j=1

|� j |
)2

=
n∑
j=1

|� j |2 + 2
∑

1≤ j<k≤n
|� j�k |≥4MT andLE(TB(x j xk))≥2

√MT . SinceMT = ∑
1≤ j<k≤n

(TB(x j xk))2 + 1
2

n∑
j=1

(
dTB (x j xk )(x j ) −

2
∑

1≤ j<k≤n
TB (x j xk )

n

)2

,

LE(TB(x j xk))

≥ 2

√√√√√√ ∑
1≤ j<k≤n

(TB(x j xk))2 + 1

2

n∑
j=1

⎛
⎜⎝dTB (x j xk )(x j ) −

2
∑

1≤ j<k≤n
TB(x j xk)

n

⎞
⎟⎠

2

,

LE(IB(x j xk))

≥ 2

√√√√√√ ∑
1≤ j<k≤n

(IB(x j xk))2 + 1

2

n∑
j=1

⎛
⎜⎝dIB (x j xk )(x j ) −

2
∑

1≤ j<k≤n
IB(x j xk)

n

⎞
⎟⎠

2

LE(FB(x j xk))

≥ 2

√√√√√√ ∑
1≤ j<k≤n

(FB(x j xk))2 + 1

2

n∑
j=1

⎛
⎜⎝dFB (x j xk )(x j ) −

2
∑

1≤ j<k≤n
FB(x j xk)

n

⎞
⎟⎠

2

.

Definition 1.43 The signless Laplacian matrix of a neutrosophic graphG = (A, B)

is defined as L+(G) = 〈L+(TB(x j xk)), L+(IB(x j xk)), L+(FB(x j xk))〉 = D(G) +
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A(G), where D(G) and A(G) are the degree matrix and the adjacency matrix,
respectively, of a neutrosophic graph G. The spectrum of signless Laplacian matrix
of a neutrosophic graph L+(G) is defined as 〈ML+ , NL+ , OL+〉, whereML+ , NL+ and
OL+ are the sets of signless Laplacian eigenvalues of L+(TB(x j xk)), L+(IB(x j xk))
and L+(FB(x j xk)), respectively.

1.5 Application to Group Decision-Making

Group decision-making is a commonly used tool in human activities, which deter-
mines the optimal alternative from a given finite set of alternatives using the eval-
uation information given by a group of decision-makers or experts. With the rapid
development of society, group decision-making plays an increasingly important role
when dealing with the decision-making problems. Recently, many scholars have
investigated the approaches for group decision-making based on different kinds of
decision information. However, in order to reflect the relationships among the alter-
natives, we need to make pairwise comparisons for all the alternatives in the process
of decision-making. Preference relation is a powerful quantitative decision technique
that supports experts in expressing their preferences over the given alternatives. For a
set of alternatives X = {x1, x2, . . . , xn}, the experts compare each pair of alternatives
and construct preference relations, respectively. If every element in the preference
relations is a neutrosophic number, then the concept of the neutrosophic preference
relation (NPR) can be put forth as follows:

Definition 1.44 A NPR on the set X = {x1, x2, . . . , xn} is represented by a matrix
R = (r jk)n×n , where r jk=〈x j xk, T (x j xk), I (x j xk), F(x j xk)〉 for all j, k=1, 2, . . . ,
n. For convenience, let r jk = 〈Tjk, I jk, Fjk〉 where Tjk indicates the degree to which
the object x j is preferred to the object xk , Fjk denotes the degree to which the
object x j is not preferred to the object xk , and I jk is interpreted as an indeterminacy-
membership degree, with the conditions: Tjk, I jk, Fjk ∈ [0, 1], Tjk = Fkj , Fjk =
Tkj , I jk + Ik j = 1, Tj j = I j j = Fj j = 0.5, for all j, k = 1, 2, . . . , n.

A group decision-making problem concerning the ‘Alliance partner selection of a
software company’ is solved to illustrate the applicability of the proposed concepts
of energy of neutrosophic graphs in realistic scenario.

1.5.1 Alliance Partner Selection of a Software Company

Eastsoft is one of the top five software companies in China [77]. It offers a rich
portfolio of businesses, including product engineering solutions, industry solutions,
and related software products and platform and services. It is dedicated to becoming
a globally leading IT solution and service provider through continuous improvement
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Table 1.8 NPR of the expert from the engineering management department

R1 a1 a2 a3 a4 a5

a1 〈0.5, 0.5, 0.5〉 〈0.4, 0.6, 0.3〉 〈0.2, 0.4, 0.6〉 〈0.7, 0.6, 0.3〉 〈0.3, 0.1, 0.6〉
a2 〈0.3, 0.4, 0.4〉 〈0.5, 0.5, 0.5〉 〈0.7, 0.3, 0.8〉 〈0.4, 0.1, 0.4〉 〈0.1, 0.3, 0.5〉
a3 〈0.6, 0.6, 0.2〉 〈0.8, 0.7, 0.7〉 〈0.5, 0.5, 0.5〉 〈0.3, 0.6, 0.4〉 〈0.2, 0.3, 0.4〉
a4 〈0.3, 0.4, 0.7〉 〈0.4, 0.9, 0.4〉 〈0.4, 0.4, 0.3〉 〈0.5, 0.5, 0.5〉 〈0.3, 0.1, 0.3〉
a5 〈0.6, 0.9, 0.3〉 〈0.5, 0.7, 0.1〉 〈0.4, 0.7, 0.2〉 〈0.3, 0.9, 0.3〉 〈0.5, 0.5, 0.5〉

Table 1.9 NPR of the expert from the human resource department

R2 a1 a2 a3 a4 a5

a1 〈0.5, 0.5, 0.5〉 〈0.5, 0.3, 0.1〉 〈0.1, 0.7, 0.5〉 〈0.3, 0.9, 0.5〉 〈0.2, 0.7, 0.8〉
a2 〈0.1, 0.7, 0.5〉 〈0.5, 0.5, 0.5〉 〈0.5, 0.1, 0.6〉 〈0.6, 0.7, 0.1〉 〈0.4, 0.6, 0.8〉
a3 〈0.5, 0.3, 0.1〉 〈0.6, 0.9, 0.5〉 〈0.5, 0.5, 0.5〉 〈0.9, 0.2, 0.3〉 〈0.1, 0.4, 0.1〉
a4 〈0.5, 0.1, 0.3〉 〈0.1, 0.3, 0.6〉 〈0.3, 0.8, 0.9〉 〈0.5, 0.5, 0.5〉 〈0.8, 0.4, 0.2〉
a5 〈0.8, 0.3, 0.2〉 〈0.8, 0.4, 0.4〉 〈0.1, 0.6, 0.1〉 〈0.2, 0.6, 0.8〉 〈0.5, 0.5, 0.5〉

Table 1.10 NPR of the expert from the finance department

R3 a1 a2 a3 a4 a5

a1 〈0.5, 0.5, 0.5〉 〈0.9, 0.8, 0.7〉 〈0.1, 0.7, 0.2〉 〈0.4, 0.3, 0.1〉 〈0.6, 0.3, 0.6〉
a2 〈0.7, 0.2, 0.9〉 〈0.5, 0.5, 0.5〉 〈0.4, 0.3, 0.6〉 〈0.6, 0.3, 0.4〉 〈0.7, 0.2, 0.9〉
a3 〈0.2, 0.3, 0.1〉 〈0.6, 0.7, 0.4〉 〈0.5, 0.5, 0.5〉 〈0.1, 0.2, 0.4〉 〈0.6, 0.2, 0.8〉
a4 〈0.1, 0.7, 0.4〉 〈0.4, 0.7, 0.6〉 〈0.4, 0.8, 0.1〉 〈0.5, 0.5, 0.5〉 〈0.6, 0.7, 0.3〉
a5 〈0.6, 0.7, 0.6〉 〈0.9, 0.8, 0.7〉 〈0.8, 0.8, 0.6〉 〈0.3, 0.3, 0.6〉 〈0.5, 0.5, 0.5〉

of organization and process, competence development of leadership and employees,
and alliance and open innovation. To improve the operation and competitiveness
capability in the global market, Eastsoft plans to establish a strategic alliance with
a transnational corporation. After numerous consultations, five transnational corpo-
rations would like to establish a strategic alliance with Eastsoft; they are HP a1,
PHILIPS a2, EMC a3, SAP a4 and LK a5. To select the desirable strategic alliance
partner, three experts ei (i = 1, 2, 3) are invited to participate in the decision anal-
ysis, who come from the engineering management department, the human resource
department and the finance department of Eastsoft, respectively. Based on their expe-
riences, the experts compare each pair of alternatives and give individual judgments
using the following NPRs Ri = (r (i)

jk )5×5 (i = 1, 2, 3):
The neutrosophic digraphs Di corresponding to NPRs Ri (i = 1, 2, 3) given in

Tables1.8, 1.9 and 1.10 are shown in Figs. 1.36, 1.37 and 1.38.
The energy of a neutrosophic digraph is the sum of absolute values of the real part

of eigenvalues of D. The energy of each neutrosophic digraph Di (i = 1, 2, 3) is cal-
culated as E(D1) = 〈3.2419, 3.5861, 3.2419〉, E(D2) = 〈3.2790, 3.9089, 3.2790〉,
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Fig. 1.36 Neutrosophic digraph

E(D3) = 〈4.1587, 3.5618, 4.1587〉. Then the weight of each expert can be deter-
mined as,

wi =

⎛
⎜⎜⎝ E((DT )i )

m∑
l=1

E((DT )l)

,
E((DI )i )

m∑
l=1

E((DI )l)

,
E((DF )i )

m∑
l=1

E((DF )l)

⎞
⎟⎟⎠ , 1 ≤ i ≤ m.

The weights are calculated as w1 = 〈0.3219, 0.3561, 0.3219〉, w2 = 〈0.3133,
0.3735, 0.3133〉, w3 = 〈0.3501, 0.2998, 0.3501〉. Utilize the aggregation operator
to fuse all the individual NPRs Ri = (r (i)

jk )5×5 (i = 1, 2, 3) into the collective NPR
R = (r jk)5×5 as shown in Table1.11. Here we apply the neutrosophic weighted
averaging (NWA) operator [59] to fuse the individual NPR.

NWA(r (1)
jk , r (2)

jk , . . . , r (s)
jk ) =

〈
1 −

s∏
i=1

(
1 − T (i)

jk

)wi

,

s∏
i=1

(
I (i)
jk

)wi

,

s∏
i=1

(
F (i)
jk

)wi
〉
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Fig. 1.37 Neutrosophic digraph

Draw a directed network corresponding to a collective NPR above, as shown
in Fig. 1.39. Then under the condition Tjk ≥ 0.5 ( j, k = 1, 2, 3, 4, 5), a partial
diagram is drawn, as shown in Fig. 1.40.

Calculate the out-degrees out-d(a j ) ( j=1, 2, 3, 4, 5) of all criteria in a partial
directed network as follows: out-d(a1) = 〈0.6951, 0.4973, 0.2912〉, out-d(a2) =
〈1.0813, 0.4608, 0.9258〉, out-d(a3) = 〈1.2580, 1.0430, 0.8911〉, out-d(a4) =
〈0.6093, 0.2811, 0.2689〉, out-d(a5) = 〈1.9907, 1.8177, 0.9005〉. According to
membership degrees of out-d(a j ) ( j = 1, 2, 3, 4, 5), we get the ranking of
the factors a j ( j = 1, 2, 3, 4, 5) as a5 � a3 � a2 � a1 � a4. Thus, the best choice
is LK a5. Now elements of the Laplacian matrices of the neutrosophic digraphs
L(Di ) = RL

i (i = 1, 2, 3) shown in Figs. 1.36, 1.37, 1.38 are provided in Tables1.12,
1.13 and 1.14.

The Laplacian energy of each neutrosophic digraph is calculated as
LE(D1) = 〈3.2800, 4.0000, 3.8893〉,
LE(D2) = 〈3.3600, 4.0000, 3.8798〉,
LE(D3) = 〈4.6806, 4.5858, 4.9687〉. Then the weight of each expert can be deter-
mined as
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Fig. 1.38 Neutrosophic digraph

wi =

⎛
⎜⎜⎝ LE((DT )i )

m∑
l=1

LE((DT )l)

,
LE((DI )i )

m∑
l=1

LE((DI )l)

,
LE((DF )i )

m∑
l=1

LE((DF )l)

⎞
⎟⎟⎠ , i = 1, 2, . . . ,m.

w1 = 〈0.2937, 0.3581, 0.3482〉, w2 = 〈0.2989, 0.3559, 0.3452〉, w3 = 〈0.3288,
0.3221, 0.3490〉 based on which, using the NWA operator, the fused NPR is deter-
mined, as shown in Table1.15. In the directed network corresponding to a collec-
tive NPR above, we select those neutrosophic numbers whose membership degrees
Tjk ≥ 0.5 ( j, k = 1, 2, 3, 4, 5), and resulting partial diagram is shown in Fig. 1.41.

Calculate the out-degrees out-d(a j ) ( j = 1, 2, 3, 4, 5) of all criteria in a par-
tial directed network as follows out-d(a1) = 〈0.6719, 0.5050, 0.2622〉, out-d(a2) =
〈1.0333, 0.4563, 0.8874〉, out-d(a3) = 〈1.2122, 1.0354, 0.8534〉, out-d(a4) =
〈0.5881, 0.2821, 0.2478〉, out-d(a5)=〈1.9228, 1.8333, 0.8201〉.According to mem-
bership degrees of out-d(a j ) ( j = 1, 2, 3, 4, 5), we get the ranking of the
factors a j , j = 1, 2, 3, 4, 5 as a5 � a3 � a2 � a1 � a4. Thus, the best choice is
LK a5. Now, the elements of the signless Laplacian matrices of the neutrosophic
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Fig. 1.39 Directed network of the fused NPR

digraphs L+(Di ) = RL+
i (i = 1, 2, 3) shown in Figs. 1.36, 1.37 and 1.38 are given

in Tables1.16, 1.17 and 1.18. The signless Laplacian energy of each neutro-
sophic digraph is calculated as LE+(D1) = 〈3.3244, 4.7474, 3.5570〉, LE+(D2) =
〈3.3826, 4.0000, 3.4427〉, LE+(D3) = 〈4.5859, 4.4103, 4.7228〉. Then the weight
of each expert is

wi =

⎛
⎜⎜⎝ LE+((DT )i )

m∑
l=1

LE+((DT )l)

,
LE+((DI )i )

m∑
l=1

LE+((DI )l)

,
LE+((DF )i )

m∑
l=1

LE+((DF )l)

⎞
⎟⎟⎠ , i = 1, 2, . . . ,m,

w1 = 〈0.2859, 0.4082, 0.3059〉, w2 = 〈0.3125, 0.3695, 0.3180〉, w3 = 〈0.3343,
0.3215, 0.3443〉, based on which fuse all the individual NPRs Ri = (r (i)

jk )5×5 (i =
1, 2, 3) into the collective NPR R = (r jk)5×5, by using the NWA operator, as shown
in Table1.19. In the directed network corresponding to a collective NPR above, we
select those neutrosophic numbers whose membership degrees Tjk ≥ 0.5 ( j, k =
1, 2, 3, 4, 5), and resulting partial diagram is shown in Fig. 1.42.

Calculate the out-degrees out-d(a j ) ( j = 1, 2, 3, 4, 5) of all criteria in a par-
tial directed network as follows out-d(a1) = 〈0.6777, 0.4843, 0.2943〉, out-d(a2) =
〈1.0412, 0.4099, 0.9309〉, out-d(a3) = 〈1.2265, 1.0084, 0.9005〉, out-d(a4) =
〈0.5980, 0.2483, 0.2740〉, out-d(a5) = 〈1.9395, 1.7873, 0.9212〉. According
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Fig. 1.40 Partial directed network of the fused NPR

to membership degrees of out-d(a j ) ( j = 1, 2, 3, 4, 5), we get the ranking of
the factors a j ( j = 1, 2, 3, 4, 5) as a5 � a3 � a2 � a1 � a4. Thus, the best choice is
LK a5.

1.5.2 Real-Time Example

The proposed concepts of energy, Laplacian energy and signless Laplacian energy
of a neutrosophic graph are explained here through a real-time example. We have
taken the website http://www.pantechsolutions.net modelled as a neutrosophic graph
by considering the navigation of the customer. We have taken the four links: 1.
microcontroller boards, 2. log-in html, 3. and 4. project kits for our calculation. A
neutrosophic graph of this site for four different time periods is considered. The
energy, Laplacian energy and signless Laplacian energy of a neutrosophic graph
are calculated for each of these periods. The energy, Laplacian energy and signless
Laplacian energy are represented in terms of bar graphs. In the website http://www.
pantechsolutions.net (accessed on 8May 2012). The above four links are considered
for the period 16 January 2018 to 15 February 2018, and for this graph, as shown in
Fig. 1.43, we have

http://www.pantechsolutions.net
http://www.pantechsolutions.net
http://www.pantechsolutions.net
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Table 1.12 Elements of the Laplacian matrix of the neutrosophic digraph D1

RL
1 a1 a2 a3 a4 a5

a1 〈1.6, 1.7, 1.8〉 〈−0.4, −0.6, −0.3〉 〈−0.2, −0.4,−0.6〉 〈−0.7, −0.6, −0.3〉 〈−0.3, −0.1, −0.6〉
a2 〈−0.3, −0.4,−0.4〉 〈1.5, 1.1, 2.1〉 〈−0.7, −0.3, −0.8〉 〈−0.4, −0.1, −0.4〉 〈−0.1, −0.3, −0.5〉
a3 〈−0.6, −0.6, −0.2〉 〈−0.8, −0.7, −0.7〉 〈1.9, 2.2, 1.7〉 〈−0.3, −0.6, −0.4〉 〈−0.2, −0.3, −0.4〉
a4 〈−0.3, −0.4,−0.7〉 〈−0.4, −0.9, −0.4〉 〈−0.4,−0.4, −0.3〉 〈1.4, 1.8, 1.7〉 〈−0.3, −0.1, −0.3〉
a5 〈−0.6, −0.9, −0.3〉 〈−0.5, −0.7, −0.1〉 〈−0.4,−0.7, −0.2〉 〈−0.3, −0.9, −0.3〉 〈1.8, 3.2, −0.9〉

Table 1.13 Elements of the Laplacian matrix of the neutrosophic digraph D2

RL
2 a1 a2 a3 a4 a5

a1 〈1.1, 2.6, 1.9〉 〈−0.5, −0.3, −0.1〉 〈−0.1, −0.7, −0.5〉 〈−0.3, −0.9, −0.5〉 〈−0.2, −0.7, −0.8〉
a2 〈−0.1, −0.7, −0.5〉 〈1.6, 2.1, 2.0〉 〈−0.5, −0.1, −0.6〉 〈−0.6, −0.7, −0.1〉 〈−0.4, −0.6, −0.8〉
a3 〈−0.5, −0.3, −0.1〉 〈−0.6, −0.9, −0.5〉 〈2.1, 1.8, 1.0〉 〈−0.9, −0.2, −0.3〉 〈−0.1, −0.4,−0.1〉
a4 〈−0.5, −0.1, −0.3〉 〈−0.1, −0.3, −0.6〉 〈−0.3, −0.8, −0.9〉 〈1.7, 1.6, 2.0〉 〈−0.8, −0.4,−0.2〉
a5 〈−0.8, −0.3, −0.2〉 〈−0.8, −0.4, −0.4〉 〈−0.1, −0.6, −0.1〉 〈−0.2, −0.6, −0.8〉 〈1.9, 1.9, 1.5〉

Table 1.14 Elements of the Laplacian matrix of the neutrosophic digraph D3

RL
3 a1 a2 a3 a4 a5

a1 〈2.0, 2.1, 1.6〉 〈−0.9, −0.8, −0.7〉 〈−0.1, −0.7, −0.2〉 〈−0.4, −0.3, −0.1〉 〈−0.6, −0.3, −0.6〉
a2 〈−0.7, −0.2, −0.9〉 〈2.4, 1.0, 2.8〉 〈−0.4,−0.3, −0.6〉 〈−0.6, −0.3, −0.4〉 〈−0.7, −0.2,−0.9〉
a3 〈−0.2, −0.3, −0.1〉 〈−0.6, −0.7, −0.4〉 〈1.5, 1.4, 1.7〉 〈−0.1, −0.2, −0.4〉 〈−0.6, −0.2,−0.8〉
a4 〈−0.1, −0.7, −0.4〉 〈−0.4, −0.7, −0.6〉 〈−0.4,−0.8, −0.1〉 〈1.5, 2.9, 1.4〉 〈−0.6, −0.7, −0.3〉
a5 〈−0.6, −0.7, −0.6〉 〈−0.9, −0.8, −0.7〉 〈−0.8, −0.8, −0.6〉 〈−0.3, −0.3, −0.6〉 〈2.6, 2.6, 2.5〉

Spec(TY (x j xk)) = {−0.3442,−0.1000, 0.0066, 0.4376},
Spec(IY (x j xk)) = {−0.6630,−0.2742, 0.0774, 0.8598},
Spec(FY (x j xk)) = {−0.6703,−0.3296, 0.0299, 0.9701},
E(TY (x j xk)) = 0.8884, E(IY (x j xk)) = 1.8744, E(FY (x j xk)) = 1.9999.
Therefore, E(G1) = 〈0.8884, 1.8744, 1.9999〉.
Laplacian Spec(TY (x j xk)) = {0, 0.2492, 0.5244, 0.8264},
Laplacian Spec(IY (x j xk)) = {0, 0.6975, 1.1757, 1.5269},
Laplacian Spec(FY (x j xk)) = {0, 0.7605, 1.4139, 1.6256},
LE(TY (x j xk)) = 1.1016, LE(IY (x j xk)) = 2.0051, LE(FY (x j xk)) = 2.2790.
Therefore, LE(G1) = 〈1.1016, 2.0051, 2.2790〉.

Signless Laplacian Spec(TY (x j xk)) = {−0.3183,−0.1339,−0.0555, 0.5076},
Signless Laplacian Spec(IY (x j xk)) = {−0.6764,−0.2500, 0.0385, 0.8879},
Signless Laplacian Spec(FY (x j xk)) = {−0.7056,−0.2572,−0.0582, 1.0211},
LE+(TY (x j xk)) = 1.0153, LE+(IY (x j xk)) = 1.8529, LE+(FY (x j xk)) = 2.0421.
Therefore, LE+(G1) = 〈1.0153, 1.8529, 2.0421〉.
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Fig. 1.41 Partial directed network of the fused NPR

Table 1.16 Elements of the signless Laplacian matrix of the neutrosophic digraph D1

RL+
1 a1 a2 a3 a4 a5

a1 〈1.6, 1.7, 1.8〉 〈0.4, 0.6, 0.3〉 〈0.2, 0.4, 0.6〉 〈0.7, 0.6, 0.3〉 〈0.3, 0.1, 0.6〉
a2 〈0.3, 0.4, 0.4〉 〈1.5, 1.1, 2.1〉 〈0.7, 0.3, 0.8〉 〈0.4, 0.1, 0.4〉 〈0.1, 0.3, 0.5〉
a3 〈0.6, 0.6, 0.2〉 〈0.8, 0.7, 0.7〉 〈1.9, 2.2, 1.7〉 〈0.3, 0.6, 0.4〉 〈0.2, 0.3, 0.4〉
a4 〈0.3, 0.4, 0.7〉 〈0.4, 0.9, 0.4〉 〈0.4, 0.4, 0.3〉 〈1.4, 1.8, 1.7〉 〈0.3, 0.1, 0.3〉
a5 〈0.6, 0.9, 0.3〉 〈0.5, 0.7, 0.1〉 〈0.4, 0.7, 0.2〉 〈0.3, 0.9, 0.3〉 〈1.8, 3.2, 0.9〉

Table 1.17 Elements of the signless Laplacian matrix of the neutrosophic digraph D2

RL+
2 a1 a2 a3 a4 a5

a1 〈1.1, 2.6, 1.9〉 〈0.5, 0.3, 0.1〉 〈0.1, 0.7, 0.5〉 〈0.3, 0.9, 0.5〉 〈0.2, 0.7, 0.8〉
a2 〈0.1, 0.7, 0.5〉 〈1.6, 2.1, 2.0〉 〈0.5, 0.1, 0.6〉 〈0.6, 0.7, 0.1〉 〈0.4, 0.6, 0.8〉
a3 〈0.5, 0.3, 0.1〉 〈0.6, 0.9, 0.5〉 〈2.1, 1.8, 1.0〉 〈0.9, 0.2, 0.3〉 〈0.1, 0.4, 0.1〉
a4 〈0.5, 0.1, 0.3〉 〈0.1, 0.3, 0.6〉 〈0.3, 0.8, 0.9〉 〈1.7, 1.6, 2.0〉 〈0.8, 0.4, 0.2〉
a5 〈0.8, 0.3, 0.2〉 〈0.8, 0.4, 0.4〉 〈0.1, 0.6, 0.1〉 〈0.2, 0.6, 0.8〉 〈1.9, 1.9, 1.5〉
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Table 1.18 Elements of the signless Laplacian matrix of the neutrosophic digraph D3

RL+
3 a1 a2 a3 a4 a5

a1 〈2.0, 2.1, 1.6〉 〈0.9, 0.8, 0.7〉 〈0.1, 0.7, 0.2〉 〈0.4, 0.3, 0.1〉 〈0.6, 0.3, 0.6〉
a2 〈0.7, 0.2, 0.9〉 〈2.4, 1.0, 2.8〉 〈0.4, 0.3, 0.6〉 〈0.6, 0.3, 0.4〉 〈0.7, 0.2, 0.9〉
a3 〈0.2, 0.3, 0.1〉 〈0.6, 0.7, 0.4〉 〈1.5, 1.4, 1.7〉 〈0.1, 0.2, 0.4〉 〈0.6, 0.2, 0.8〉
a4 〈0.1, 0.7, 0.4〉 〈0.4, 0.7, 0.6〉 〈0.4, 0.8, 0.1〉 〈1.5, 2.9, 1.4〉 〈0.6, 0.7, 0.3〉
a5 〈0.6, 0.7, 0.6〉 〈0.9, 0.8, 0.7〉 〈0.8, 0.8, 0.6〉 〈0.3, 0.3, 0.6〉 〈2.6, 2.6, 2.5〉

For the period 16 February 2018 to 15 March 2018 (see Fig. 1.44), we have

Spec(TY (x j xk)) = {−0.4245,−0.1714, 0.0215, 0.5744},
Spec(IY (x j xk)) = {−0.7909,−0.5799, 0.0536, 1.3173},
Spec(FY (x j xk)) = {−0.5037,−0.3400, 0.0007, 0.8430},
E(TY (x j xk)) = 1.1919, E(IY (x j xk)) = 2.7418, E(FY (x j xk)) = 1.6874.
Therefore, E(G2) = 〈1.1919, 2.7418, 1.6874〉.

Laplacian Spec(TY (x j xk)) = {0, 0.4200, 0.6908, 1.0892},
Laplacian Spec(IY (x j xk)) = {0, 0.8716, 1.7656, 2.3629},
Laplacian Spec(FY (x j xk)) = {0, 0.5672, 1.1546, 1.4783},
LE(TY (x j xk)) = 1.36, LE(IY (x j xk)) = 3.2569, LE(FY (x j xk)) = 2.0657.
Therefore, LE(G2) = 〈1.36, 3.2569, 2.0657〉.

Signless Laplacian Spec(TY (x j xk)) = {−0.4023,−0.1931,−0.0585, 0.6538},
Signless Laplacian Spec(IY (x j xk)) = {−0.7962,−0.5500,−0.1538, 1.5000},
Signless Laplacian Spec(FY (x j xk)) = {−0.5321,−0.2209,−0.2000, 0.9530},
LE+(TY (x j xk)) = 1.3076, LE+(IY (x j xk)) = 2.9999, LE+(FY (x j xk)) = 1.9059.
Therefore, LE+(G2) = 〈1.3076, 2.9999, 1.9059〉.

For the period 16 March 2018 to 15 April 2018 (see Fig. 1.45), we have

Spec(TY (x j xk)) = {−0.6287,−0.3884, 0.0004, 1.0168},
Spec(IY (x j xk)) = {−1.0779,−0.5696, 0.0698, 1.5776},
Spec(FY (x j xk)) = {−0.8184,−0.4650, 0.0051, 1.2783},
E(TY (x j xk)) = 2.0343, E(IY (x j xk)) = 3.2949, E(FY (x j xk)) = 2.5668.
Therefore, E(G3) = 〈2.0343, 3.2949, 2.5668〉.

Laplacian Spec(TY (x j xk)) = {0, 0.2604, 1.4221, 1.7175},
Laplacian Spec(IY (x j xk)) = {0, 1.2472, 2.3360, 2.6168},
Laplacian Spec(FY (x j xk)) = {0, 0.8182, 1.6721, 2.3097},
LE(TY (x j xk)) = 2.8792, LE(IY (x j xk)) = 3.7056,LE(FY (x j xk)) = 3.1636.
Therefore, LE(G3) = 〈2.8792, 3.7056, 3.1636〉.
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Fig. 1.42 Partial directed network of the fused NPR

Fig. 1.43 Neutrosophic
graph G1
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Signless Laplacian Spec(TY (x j xk)) = {−0.6816,−0.3513,−0.2007, 1.2336},
Signless Laplacian Spec(IY (x j xk)) = {−1.1436,−0.4542,−0.0553, 1.6531},
Signless Laplacian Spec(FY (x j xk)) = {−0.8066,−0.4000,−0.2632, 1.4698},
LE+(TY (x j xk)) = 2.4671, LE+(IY (x j xk)) = 3.3062, LE+(FY (x j xk)) = 2.9395.
Therefore, LE+(G3) = 〈2.4671, 3.3062, 2.9395〉.
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Fig. 1.47 Energy of neutrosophic graphs

Finally, for the period 16 April 2018 to 15 May 2018 (see Fig. 1.46), we have

Spec(TY (x j xk)) = {−0.5716,−0.0973, 0.0027, 0.6662},
Spec(IY (x j xk)) = {−1.0878,−0.5755, 0.0435, 1.6198},
Spec(FY (x j xk)) = {−0.7686,−0.3985, 0.0990, 1.0680},
E(TY (x j xk)) = 1.3378,E(IY (x j xk)) = 3.3265,E(FY (x j xk)) = 2.3342.
Therefore, E(G4) = 〈1.3378, 3.3265, 2.3342〉.

Laplacian Spec(TY (x j xk)) = {0, 0.5637, 0.7641, 1.2721},
Laplacian Spec(IY (x j xk)) = {0, 1.1660, 2.0643, 2.9697},
Laplacian Spec(FY (x j xk)) = {0, 0.8207, 1.5544, 1.8249},
LE(TY (x j xk)) = 1.4725, LE(IY (x j xk)) = 3.868, LE(FY (x j xk)) = 2.5586.
Therefore, LE(G4) = 〈1.4725, 3.8680, 2.5586〉.

Signless Laplacian Spec(TY (x j xk)) = {−0.5588,−0.1017,−0.0500, 0.7105},
Signless Laplacian Spec(IY (x j xk)) = {−1.0582,−0.5617,−0.2105, 1.8304},
Signless Laplacian Spec(FY (x j xk)) = {−0.7996,−0.3562, 0.0413, 1.1145},
LE+(TY (x j xk)) = 1.4211, LE+(IY (x j xk)) = 3.6608, LE+(FY (x j xk)) = 2.3116.
Therefore, LE+(G4) = 〈1.4211, 3.6608, 2.3116〉.

The bar graphs, shown in Figs. 1.47, 1.48 and 1.49, represent the energy,
Laplacian energy and signless Laplacian energy of four links for the above four peri-
ods corresponding to the truth-membership, indeterminacy-membership and falsity-
membership values. From the above bar graphs, the energy, Laplacian energy and
signless Laplacian energy of truth-membership for the periodMarch toApril are high
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Fig. 1.48 Laplacian energy of neutrosophic graphs
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Fig. 1.49 Signless Laplacian energy of neutrosophic graphs

as compared to other periods; the energy, Laplacian energy and signless Laplacian
energy of indeterminacy-membership for the period April to May are high; and the
energy, Laplacian energy and signless Laplacian energy of falsity-membership for
the period March to April are high.



Chapter 2
Graph Structures Under Neutrosophic
Environment

A single-valued neutrosophic graph structure (neutrosophic graph structure, for
short) is a generalization of neutrosophic graph. In this chapter, we present the notion
of neutrosophic graph structures and explore some properties of neutrosophic graph
structures.Moreover, we discuss the concept ofφ-complement of neutrosophic graph
structure and present certain operations of neutrosophic graph structures elaborated
with examples. Further, we discuss some applications of neutrosophic graph struc-
tures in decision-making. This chapter is due to [33, 34, 151].

2.1 Introduction

Sampathkumar [151] introduced the graph structure which is a generalization of
undirected graph and is quite useful in studying some structures like graphs, signed
graphs, labelled graphs and edge-coloured graphs.

Definition 2.1 A graph structure G∗ = (X, E1, . . . , En) consists of a nonempty
set X together with relations E1, E2, . . . , En on X which are mutually disjoint such
that each Ei , 1 ≤ i ≤ n, is symmetric and irreflexive.

One can represent a graph structure G∗ = (X, E1, . . . , En) in the plane just like a
graph where each edge is labelled as Ei , 1 ≤ i ≤ n.

Example 2.1 Let X = {r1, r2, r3, r4, r5} and E1 = {(r1, r2), (r3, r4), (r1, r4)},
E2 = {(r1, r3), (r1, r5)}, E3 = {(r2, r3), (r4, r5)} be mutually disjoint, symmetric and
irreflexive relations on set X . Thus G = (X, E1, E2, E3) is a graph structure and is
represented in plane as a graph where each edge is labelled as E1, E2 or E3 (Fig. 2.1).

Definition 2.2 Let φ be a permutation on {E1, E2, . . . , En}. Then φ-complement
of a graph structure G∗ denoted by G∗φc is obtained by replacing Ei by φ(Ei ),
1 ≤ i ≤ n.

© Springer Nature Singapore Pte Ltd. 2018
M. Akram, Single-Valued Neutrosophic Graphs, Infosys Science
Foundation Series, https://doi.org/10.1007/978-981-13-3522-8_2
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Fig. 2.1 Graph structure G∗ = (X, E1, E2, E3)

G∗ is self-complementary if it is isomorphic to G∗φc, where φ is not an identity
permutation. G∗ is totally strong self-complementary if it is identical to G∗φc for all
permutations φ on {E1, E2, . . . , En}.
Definition 2.3 If graph structure G∗ is connected and contains no cycle, in other
words, its underlying graph is a tree, then it is called a tree. G∗ is an Ei -tree if
subgraph structure induced by Ei -edges is a tree. Similarly, G∗ is an E1E2 . . . En−
tree if G∗ is an Ei−tree for each i ∈ {1, 2, . . . , n}. G∗ is an Ei -forest, if subgraph
structure induced by Ei -edges is a forest.

Definition 2.4 Let G∗
1 = (X, E1, E2, . . . , En) and G∗

2 = (X ′, E ′
1, E

′
2, . . . , E

′
n) be

two graph structures, Cartesian product of G∗
1 and G∗

2 is defined as: G∗
1 × G∗

2 =
(X × X ′, E1 × E ′

1, E2 × E ′
2, . . . , En × E ′

n), where Ei × E ′
i = {(b1d, b2d) | d ∈ X ′,

b1b2 ∈ Ei } ∪ {(bd1, bd2) | b ∈ X, d1d2 ∈ E ′
i }, i = (1, 2, . . . , n).

Definition 2.5 Let G∗
1 = (X, E1, E2, . . . , En) and G∗

2 = (X ′, E ′
1, E

′
2, . . . , E

′
n) be

two graph structures, cross product of G∗
1 and G∗

2 is defined as: G∗
1 ∗ G∗

2 = (X ∗
X ′, E1 ∗ E ′

1, E2 ∗ E ′
2, . . . , En ∗ E ′

n), where Ei ∗ E ′
i = {(b1d1, b2d2) | b1b2 ∈ Ei ,

d1d2 ∈ E ′
i }, i = (1, 2, . . . , n).

Definition 2.6 Let G∗
1 = (X, E1, E2, . . . , En) and G∗

2 = (X ′, E ′
1, E

′
2, . . . , E

′
n) be

two graph structures, lexicographic product of G∗
1 and G∗

2 is defined as: G∗
1 • G∗

2
= (X • X ′, E1 • E ′

1, E2 • E ′
2, . . . , En • E ′

n), where Ei • E ′
i = {(bd1, bd2) | b ∈ X,

d1d2 ∈ E ′
i } ∪ {(b1d1, b2d2) | b1b2 ∈ Ei , d1d2 ∈ E ′

i }, i = (1, 2, . . . , n).

Definition 2.7 Let G∗
1 = (X, E1, E2, . . . , En) and G∗

2 = (X ′, E ′
1, E

′
2, . . . , E

′
n) be

two graph structures, strong product of G∗
1 and G∗

2 is defined as: G∗
1 � G∗

2 =
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(X � X ′, E1 � E ′
1, E2 � E ′

2, . . . , En � E ′
n), where Ei � E ′

i = {(b1d, b2d) | d ∈ X ′,
b1b2 ∈ Ei } ∪ {(bd1, bd2) | b ∈ X, d1d2 ∈ E ′

i } ∪ {(b1d1, b2d2) | b1b2 ∈ Ei , d1d2 ∈
E ′
i }, i = (1, 2, . . . , n).

Definition 2.8 Let G∗
1 = (X, E1, E2, . . . , En) and G∗

2 = (X ′, E ′
1, E

′
2, . . . , E

′
n) be

two graph structures, composition of G∗
1 and G∗

2 is defined as: G∗
1 ◦ G∗

2 = (X ◦
X ′, E1 ◦ E ′

1, E2 ◦ E ′
2, . . . , En ◦ E ′

n), where Ei ◦ E ′
i = {(b1d, b2d) | d ∈ X ′, b1b2 ∈

Ei } ∪ {(bd1, bd2) | b ∈ X, d1d2 ∈ E ′
i } ∪ {(b1d1, b2d2) | b1b2 ∈ Ei , d1, d2 ∈ X ′ such

that d1 �= d2}, i = (1, 2, . . . , n).

Definition 2.9 Let G∗
1 = (X, E1, E2, . . . , En) and G∗

2 = (X ′, E ′
1, E

′
2, . . . , E

′
n) be

two graph structures, union of G∗
1 and G∗

2 is defined as: G∗
1 ∪ G∗

2 = (X ∪ X ′, E1 ∪
E ′
1, E2 ∪ E ′

2, . . . , En ∪ E ′
n).

Definition 2.10 Let G∗
1 = (X, E1, E2, . . . , En) and G∗

2 = (X ′, E ′
1, E

′
2, . . . , E

′
n) be

two graph structures, join of G∗
1 and G∗

2 is defined as: G∗
1 + G∗

2 = (X + X ′, E1 +
E ′
1, E2 + E ′

2, . . . , En + E ′
n), where X + X ′ = X ∪ X ′, Ei + E ′

i = Ei ∪ E ′
i ∪ E ′′

i for
i = (1, 2, . . . , n). E ′′

i contains all those edges, joining the vertices of E and E ′.

2.2 Neutrosophic Graph Structures

Definition 2.11 Let X be a nonempty set and E1, E2, . . . , En relations on X . G =
(A, B1, B2, . . . , Bn) is called a single-valued neutrosophic graph structure if

A = {< n, Ti (n), Ii (n), Fi (n) >: n ∈ X}

is a single-valued neutrosophic set on X and

Bi = {< (m, n), T (m, n), I (m, n), F(m, n) >: (m, n) ∈ Ei }

is a single-valued neutrosophic set on Ei such that

Ti (m, n) ≤ min{T (m), T (n)}, Ii (m, n) ≤ min{I (m), I (n)},
Fi (m, n) ≤ max{F(m), F(n)},∀m, n ∈ X.

Note that Ti (m, n) = 0 = Ii (m, n) = Fi (m, n) for all (m, n) ∈ X × X − Ei and

0 ≤ Ti (m, n) + Ii (m, n) + Fi (m, n) ≤ 3 for all (m, n) ∈ Ei ,

where X and Ei (i = 1, 2, . . . , n) are underlying vertex and underlying i-edge sets
of G, respectively.

Throughout this chapter, we will use neutrosophic set, neutrosophic relation and
neutrosophic graph structure, for short.
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Fig. 2.2 Single-valued neutrosophic graph structure

Definition 2.12 Let G = (A, B1, B2, . . . , Bn) be a neutrosophic graph structure of
G∗. If H = (A′, B ′

1, B
′
2, . . . , B

′
n) is a neutrosophic graph structure of G∗ such that

T ′(n) ≤ T (n), I ′(n) ≤ I (n), F ′(n) ≥ F(n),∀n ∈ X,

T ′
i (m, n) ≤ Ti (m, n), I ′

i (m, n) ≤ Ii (m, n) and F ′
i (m, n) ≥ Fi (m, n),∀m, n ∈ Ei ,

where i = 1, 2, . . . , n. Then H is called a neutrosophic subgraph structure of neu-
trosophic graph structure G.

Example 2.2 Let G∗ = (X, E1, E2) be a graph structure, where X = {q1, q2, q3,
q4, q5, q6}, E1 = {q1q6, q2q3, q3q4, q4q5}, E2 = {q1q2, q5q6, q4q6, q1q3}. Now we
define neutrosophic sets A, B1, B2 on X , E1, E2, respectively.

Let A = {(q1, 0.3, 0.6, 0.4), (q2, 0.4, 0.7, 0.5), (q3, 0.5, 0.7, 0.6), (q4, 0.6, 0.9,
0.7), (q5, 0.4, 0.5, 0.5), (q6, 0.3, 0.4, 0.4)}, B1 = {(q1q6, 0.3, 0.2, 0.3), (q2q3, 0.3,
0.5, 0.4), (q3q4, 0.5, 0.7, 0.6), (q4q5, 0.3, 0.3, 0.4)}, B2 = {(q1q2, 0.2, 0.6, 0.3),
(q5q6, 0.1, 0.4, 0.2),(q4q6, 0.1, 0.4, 0.2), (q1q3, 0.2, 0.4, 0.3)}. By direct calcula-
tions, it is easy to show that G = (A, B1, B2) is a neutrosophic graph structure
of G∗ as shown in Fig. 2.2.

Definition 2.13 A neutrosophic graph structure H = (A′, B ′
1, B

′
2, . . . , B

′
n) is called

an induced subgraph structure of G by a subset R of X if

T ′(n) = T (n), I ′(n) = I (n), F ′(n) = F(n),∀n ∈ E,

T ′
i (m, n) = Ti (m, n), I ′

i (m, n) = Ii (m, n) and F ′
i (m, n) = Fi (m, n),∀m, n ∈ E,

where i = 1, 2, . . . , n.

Definition 2.14 A neutrosophic graph structure H = (A′, B ′
1, B

′
2, . . . , B

′
n) is called

a spanning subgraph structure of G if A′ = A and
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Fig. 2.3 Neutrosophic graph
structure G
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Fig. 2.4 Neutrosophic
subgraph structure
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T ′
i (m, n) ≤ Ti (m, n), I ′

i (m, n) ≤ Ii (m, n) and F ′
i (m, n) ≥ Fi (m, n), i = 1, 2, ..., n.

Example 2.3 Consider a graph structure G∗ = (X, E1, E2) and let A, B1, B2 be
neutrosophic subsets of X, E1, E2, respectively, such that

A = {(n1, 0.5, 0.2, 0.3), (n2, 0.7, 0.3, 0.4), (n3, 0.4, 0.3, 0.5), (n4, 0.7, 0.3, 0.6)},

B1 = {(n1n2, 0.5, 0.2, 0.4), (n2n4, 0.7, 0.3, 0.6)},

B2 = {(n3n4, 0.4, 0.3, 0.6), (n1n4, 0.5, 0.2, 0.6)}.

Direct calculations show that G = (A, B1, B2) is a neutrosophic graph structure of
G∗ as shown in Fig. 2.3.

Example 2.4 A neutrosophic graph structure K = (A′, B11, B12) shown in Fig. 2.4
is a neutrosophic subgraph structure of G = (A, B1, B2) shown in Fig. 2.3.

Definition 2.15 Let G = (A, B1, B2, . . . , Bn) be a neutrosophic graph structure of
G∗. Thenmn ∈ Ei is called Bi -edge or simply Bi -edge if Ti (m, n) > 0 or Ii (m, n) >
0 or Fi (m, n) > 0 or all three conditions hold. Consequently, support of Bi is defined
as:
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Fig. 2.5 Strong neutrosophic graph structure G = (A, B1, B2)

supp(Bi ) = {mn ∈ Bi : Ti (m, n) > 0} ∪ {mn ∈ Bi : Ii (m, n) > 0}
∪{mn ∈ Bi : Fi (m, n) > 0}, i = 1, 2, ..., n.

Definition 2.16 Bi -path in a neutrosophic graph structureG = (A, B1, B2, . . . , Bn)

is a sequence of distinct vertices n1, n2, . . . , nm (except choice that nm = n1) in X ,
such that n j−1n j is a neutrosophic Bi -edge for all j = 2, . . . ,m.

Definition 2.17 A neutrosophic graph structure G = (A, B1, B2, . . . , Bn) is called
Bi -strong for some i ∈ {1, 2, . . . , n} if

Ti (m, n) = min{T (m), T (n)}, Ii (m, n) = min{I (m), I (n)}

and
Fi (m, n) = max{F(m), F(n)},∀mn ∈ supp(Bi ).

Furthermore, neutrosophic graph structure G is called strong if it is Bi -strong for all
i ∈ {1, 2, . . . , n}.
Example 2.5 Consider a neutrosophic graph structure G = (A, B1, B2) as shown in
Fig. 2.5. Then G is a strong neutrosophic graph structure since it is both B1- and
B2-strong.

Definition 2.18 A neutrosophic graph structure G = (A, B1, B2, . . . , Bn) is called
complete if G is a strong neutrosophic graph structure, supp(Bi ) �= φ for all i =
1, 2, . . . , n and for every pair of vertices m, n ∈ X , mn is a Bi -edge for some i .
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Fig. 2.6 Complete
neutrosophic graph structure
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B2(0.4, 0.7, 0.8)
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2
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.4
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Example 2.6 Let G = (A, B1, B2) be a neutrosophic graph structure of graph
structure G∗ = (X, E1, E2) such that X = {n1, n2, n3}, E1 = {n1n2} and E2 =
{n2n3, n1n3} as shown in Fig. 2.6. By simple calculations, it can be seen that G
is a strong neutrosophic graph structure. Moreover, supp(B1) �= φ, supp(B2) �= φ,
and each pair of vertices in X is either a B1-edge or an B2-edge. So G is a complete,
i.e. B1B2-complete neutrosophic graph structure.

Definition 2.19 Let G = (A, B1, B2, . . . , Bn) be a neutrosophic graph structure.
Then truth strength, indeterminacy strength and falsity strength of a Bi -path PBi =
n1, n2, . . . , nm are denoted by T .PBi , I.PBi and F.PBi , respectively, and defined as

T .PBi =
m∧

j=2

[T P
Bi
(n j−1n j )] , I.PBi =

m∧

j=2

[I PBi
(n j−1n j )] , F.PBi =

m∨

j=2

[FP
Bi
(n j−1n j )] .

Example 2.7 Consider a neutrosophic graph structure G = (A, B1, B2) as shown in
Fig. 2.6. We found that PB2 = n2, n3, n1 is a B2-path. So T .PB2 = 0.4, I.PB2 = 0.4
and F.PB2 = 0.8.

Definition 2.20 Let G = (A, B1, B2, . . . , Bn) be a neutrosophic graph structure.
Then

(i) Bi -truth strength of connectedness between m and n is defined as:
T∞
Bi
(mn) = ∨

j≥1
{T j

Bi
(mn)} such that T j

Bi
(mn) = (T j−1

Bi
◦ T 1

Bi
)(mn) for j ≥ 2

and
T 2
Bi
(mn) = (T 1

Bi
◦ T 1

Bi
)(mn) =

∨

z

(T 1
Bi
(mz) ∧ T 1

Bi
(zn)).

(ii) Bi -indeterminacy strength of connectedness between m and n is defined as:
I∞
Bi
(mn) = ∨

j≥1
{I j

Bi
(mn)} such that I j

Bi
(mn) = (I j−1

Bi
◦ I 1Bi

)(mn) for j ≥ 2 and

I 2Bi
(mn) = (I 1Bi

◦ I 1Bi
)(mn) =

∨

z

(I 1Bi
(mz) ∧ I 1Bi

(zn)).
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(iii) Bi -falsity strength of connectedness between m and n is defined as:
F∞
Bi
(mn) = ∧

j≥1
{F j

Bi
(mn)} such that F j

Bi
(mn) = (F j−1

Bi
◦ F1

Bi
)(mn) for j ≥ 2

and
F2
Bi
(mn) = (F1

Bi
◦ F1

Bi
)(mn) =

∧

z

(F1
Bi
(mz) ∨ F1

Bi
(zn)).

Definition 2.21 A neutrosophic graph structure G = (A, B1, B2, . . . , Bn) is a Bi -
cycle if

(supp(A), supp(B1), supp(B2), . . . , supp(Bn)) is a Bi -cycle.

Definition 2.22 A neutrosophic graph structure G = (A, B1, B2, . . . , Bn) is a Bi -
cycle (for some i) if G is a Bi -cycle, no unique Bi -edge mn is in G such that

TBi (mn) = min{TBi (rs) : rs ∈ Ei = supp(Bi )},

or
IBi (mn) = min{IBi (rs) : rs ∈ Ei = supp(Bi )},

or
FBi (mn) = max{FBi (rs) : rs ∈ Ei = supp(Bi )}.

Example 2.8 Consider a neutrosophic graph structure G = (A, B1, B2) as shown in
Fig. 2.5. Then G is a B1-cycle and neutrosophic B1 − cycle, since (supp(A), supp
(B1), supp(B2)) is a B1-cycle and there is no unique B1-edge satisfying above con-
dition.

Definition 2.23 LetG = (A, B1, B2, . . . , Bn) be a neutrosophic graph structure and
p be a vertex in G. Let (A′, B ′

1, B
′
2, . . . , B

′
n) be a neutrosophic graph structure

induced by X \ {p} such that, for all v �= p, w �= p,

TA′(p)=0=IA′(p)=FA′(p), TB ′
i
(pv) = 0 = IB ′

i
(pv) = FB ′

i
(pv),∀edges pv ∈ G,

TA′(v) = TA(v), IA′(v) = IA(v), FA′(v) = FA(v),

TB ′
i
(vw) = TBi (vw), IB ′

i
(vw) = IBi (vw) and FB ′

i
(vw) = FBi (vw).

Then p is neutrosophic Bi -cut vertex for any i if

T∞
Bi
(vw) > T∞

B ′
i
(vw), I∞

Bi
(vw) > I∞

B ′
i
(vw) and F∞

Bi
(vw) > F∞

B ′
i
(vw),

for some v,w ∈ X \ {p}. Note that p is a

• Bi − T neutrosophic cut vertex if T∞
Bi
(vw) > T∞

B ′
i
(vw),

• Bi − I neutrosophic cut vertex if I∞
Bi
(vw) > I∞

B ′
i
(vw),
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• Bi − F neutrosophic cut vertex if F∞
Bi
(vw) > F∞

B ′
i
(vw).

Example 2.9 Consider a neutrosophic graph structure G = (A, B1, B2) as shown
in Fig. 2.7 and let G ′ = (A′, B ′

1, B
′
2) be a neutrosophic subgraph structure of neu-

trosophic graph structure G found by deleting vertex n2. Deleted vertex n2 is a
neutrosophic B1-I cut vertex since

I∞
B1
(n2n5) = 0.4 > 0.3 = I∞

B ′
1
(n2n5), I

∞
B1
(n3n4) = 0.7 = I∞

B ′
1
(n3n4),

and
I∞
B1
(n3n5) = 0.4 > 0.3 = I∞

B ′
1
(n3n5).

Definition 2.24 Suppose G = (A, B1, B2, . . . , Bn) be a neutrosophic graph struc-
ture and mn be Bi -edge. Let (A′, B ′

1, B
′
2, . . . , B

′
n) be a neutrosophic spanning sub-

graph structure of G, such that ∀ edges mn �= rs,

TB ′
i
(mn) = 0 = IB ′

i
(mn) = FB ′

i
(mn), TB ′

i
(rs) = TBi (rs),

IB ′
i
(rs) = IBi (rs) and FB ′

i
(rs) = FBi (rs).

Then mn is a neutrosophic Bi -bridge if

T∞
Bi
(vw) > T∞

B ′
i
(vw), I∞

Bi
(vw) > I∞

B ′
i
(vw) and F∞

Bi
(vw) > F∞

B ′
i
(vw),

for some v,w ∈ X . Note that mn is a

• Bi − T neutrosophic bridge if T∞
Bi
(vw) > T∞

B ′
i
(vw),

• Bi − I neutrosophic bridge if I∞
Bi
(vw) > I∞

B ′
i
(vw),

• Bi − F neutrosophic bridge if F∞
Bi
(vw) > F∞

B ′
i
(vw).
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Fig. 2.7 Neutrosophic graph structure G = (A, B1, B2)
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Example 2.10 Consider the neutrosophic graph structureG = (A, B1, B2) as shown
in Fig. 2.7 and G ′ = (A′, B ′

1, B
′
2) be a neutrosophic spanning subgraph structure of

neutrosophic graph structure G which is found by deleting B1-edge (n2n5). Edge
(n2n5) is a neutrosophic B1-bridge. Since

T∞
B1
(n2n5) = 0.4 > 0.3 = T∞

B ′
1
(n2n5),

I∞
B1
(n2n5) = 0.4 > 0.3 = I∞

B ′
1
(n2n5)

and
F∞
B1
(n2n5) = 0.5 > 0 = F∞

B ′
1
(n2n5).

Definition 2.25 A neutrosophic graph structure G = (A, B1, B2, . . . , Bn) is a Bi -
tree if

(supp(A), supp(B1), supp(B2), . . . , supp(Bn))

is a Bi -tree. In other words, G is a Bi -tree if a subgraph of G induced by supp(Bi )

generates a tree.

Definition 2.26 Aneutrosophic graph structureG = (A, B1, B2, . . . , Bn) is Bi -tree
ifG has a neutrosophic spanning subgraph structure H = (A′, B ′

1, B
′
2, . . . , B

′
n) such

that for all Bi -edges mn not in H , H is a B ′
i -tree,

TBi (mn) < T∞
B ′
i
(mn), IBi (mn) < I∞

B ′
i
(mn) and FBi (mn) > F∞

B ′
i
(mn).

In particular, G is a:

• neutrosophic Bi -T tree if TBi (mn) < T∞
B ′
i
(mn),

• neutrosophic Bi -I tree if IBi (mn) < I∞
B ′
i
(mn),

• neutrosophic Bi -F tree if FBi (mn) > F∞
B ′
i
(mn).

Example 2.11 Consider the neutrosophic graph structureG = (A, B1, B2) as shown
in Fig. 2.8, which is a B2-tree. It is not a B1-tree but a neutrosophic B1-tree since it
has a neutrosophic spanning subgraph (A′, B ′

1, B
′
2) as a B ′

1-tree, which is obtained
by deleting B1-edge n2n5 from G.

Moreover,

TB1(n2n5) = 0.2 < 0.3 = T∞
B ′
1
(n2n5), IB1(n2n5) = 0.1 < 0.3 = I∞

B1
′(n2n5)

and
FB1(n2n5) = 0.6 > 0.5 = F∞

B1
′(n2n5).

Definition 2.27 A neutrosophic graph structure G1 = (A1, B11, B12, . . . , B1n) of
the graph structure G∗

1 = (X1, E11, E12, . . . , E1n) is isomorphic to neutrosophic
graph structure G = (A2, B21, B22, . . . , B2n) of the graph structure G∗

2 = (X2, E21,
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Fig. 2.8 Neutrosophic B1-tree

B22, . . . , E2n) if we have ( f,φ) where f : X1 → X2 is a bijection and φ is a permu-
tation on set {1, 2, . . . , n} and following relations are satisfied

TA1(m) = TA2( f (m)), IA1(m) = IA2( f (m)), FA1(m) = FA2( f (m)),

for all m ∈ X1 and

TB1i (mn) = TB2φ(i) ( f (m) f (n)), IB1i (mn) = IB2φ(i) ( f (m) f (n),

FB1i (mn) = FB2φ(i) ( f (m) f (n)),

for all mn ∈ E1i , i = 1, 2, . . . , n.

Example 2.12 Let G1 = (A, B1, B2) and G2 = (A′, B ′
1, B

′
2) be two neutrosophic

graph structures as shown in Fig. 2.9. G1 is isomorphic G2 under ( f,φ) where f :
X → X ′ is a bijection and φ is a permutation on set {1, 2} defined as φ(1) = 2,
φ(2) = 1 and following relations are satisfied

TA(ni ) = TA′( f (ni )), IA(ni ) = IA′( f (ni )), FA(ni ) = FA′( f (ni )),

for all ni ∈ X , and

TBi (nin j ) = TB ′
φ(i)
( f (ni ) f (n j )), IBi (nin j ) = IB ′

φ(i)
( f (ni ) f (n j )),

FBi (nin j ) = FB ′
φ(i)
( f (ni ) f (n j )),

∀nin j ∈ Ei and i = 1, 2.

Definition 2.28 A neutrosophic graph structure G1 = (A1, B11, B12, . . . , B1n) of
the graph structure G∗

1 = (X1, E11, E12, . . . , E1n) is identical to neutrosophic graph
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Fig. 2.9 Isomorphic neutrosophic graph structures

structureG2 = (A2, B21, B22, . . . , B2n) of graph structureG∗
2 = (X2, E21, B22, . . . ,

E2n) if f : X1 → X2 is a bijection and following relations are satisfied:

TA1(m) = TA2( f (m)), IA1(m) = IA2( f (m)), FA1(m) = FA2( f (m)),

for all m ∈ X1 and

TB1i (mn) = TB2i ( f (m) f (n)), IB1i (mn) = IB2i ( f (m) f (n)),

FB1i (mn) = FB2i ( f (m) f (n)),

for all mn ∈ E1i and i = 1, 2, . . . , n.

Example 2.13 Let G1 = (A, B1, B2) and G2 = (A′, B ′
1, B

′
2) be two neutrosophic

graph structures of graph structures G∗
1 = (X, E1, E2) and G∗

2 = (X ′, E ′
1, E

′
2),

respectively, as shown in Figs. 2.10 and 2.11. Neutrosophic graph structure G1 is
identical to G2 under f : X → X ′ defined as

f (n1) = m2, f (n2) = m1, f (n3) = m4, f (n4) = m3, f (n5) = m5, f (n6) = m8,

f (n7) = m7, f (n8) = m6, TA(ni ) = TA′( f (ni )),

IA(ni ) = IA′( f (ni )), FA(ni ) = FA′( f (ni )),

for all ni ∈ X and

TBi (ni n j ) = TB′
i
( f (ni ) f (n j )), IBi (ni n j ) = IB′

i
( f (ni ) f (n j )), FBi (ni n j ) = FB′

i
( f (ni ) f (n j )),



2.2 Neutrosophic Graph Structures 95

n7(0.5, 0.3, 0.6)

n
6
(0
.4
, 0

.5
, 0

.2
)

n5(0.7, 0.6, 0.5)

n
4
(0
.6
, 0

.5
, 0

.4
)

n3(0
.5, 0

.4, 0
.3)

n2(0.3, 0
.4, 0.5)

n1(0.2, 0.3, 0.4)

n8(0
.4,

0.6
, 0.

3)

B1(0.3, 0.2, 0.5) B2(0.4,
0.3, 0.6

)

B1(
0.4

, 0
.5,

0.4
)

B2(0.6, 0.5, 0.5)

B1(0
.4,

0.4
, 0.

3)

B2(0.5,
0.4, 0.5)

B2(0.1,
0.3, 0.5)

B1(0.3, 0.4, 0.2)

B1(0.2, 0.2, 0.4)
B2(0.1

, 0.2, 0
.3)

B1(0.2,
0.3, 0.4

)

Fig. 2.10 Neutrosophic graph structure G1
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Fig. 2.11 Neutrosophic graph structure G2

for all nin j ∈ Ei and i = 1, 2.

Definition 2.29 LetG = (A, B1, B2, . . . , Bn) be a neutrosophic graph structure and
φ be a permutation on {B1, B2, . . . , Bn} and on {1, 2, . . . , n} defined by φ(Bi ) = Bj

if and only if φ(i) = j for all i . If mn ∈ Bi for any i and

T
Bφ
i
(mn) = TA(m) ∧ TA(n) −

∨

j �=i

Tφ(Bj )(mn), I
Bφ
i
(mn) = IA(m) ∧ IA(n) −

∨

j �=i

Iφ(Bj )(mn),

FBφ
i
(mn) = FA(m) ∨ FA(n) −

∧

j �=i

Tφ(Bj )(mn), i = 1, 2, . . . , n,

then mn ∈ Bφ
k , where k is selected such that
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Fig. 2.12 Neutrosophic graph structures G, Gφc

TBφ
k
(mn) ≥ TBφ

i
(mn), IBφ

k
(mn) ≥ IBφ

i
(mn) and FBφ

k
(mn) ≥ FBφ

i
(mn) for all i,

then neutrosophic graph structure (A, Bφ
1 , B

φ
2 , . . . , B

φ
n ) is called φ-complement of

G and denoted by Gφc.

Example 2.14 Let G = (A, B1, B2, B3) be a neutrosophic graph structure shown in
Fig. 2.12 and φ be a permutation on {1, 2, 3} defined as:

φ(1) = 2, φ(2) = 3, φ(3) = 1. By direct calculations, we found that
n1n3 ∈ Bφ

3 , n2n3 ∈ Bφ
1 , n1n2 ∈ Bφ

2 . So, G
φc = (A, Bφ

1 , B
φ
2 , B

φ
3 ) is φ-complement of

neutrosophic graph structure G as shown in Fig. 2.12.

Proposition 2.1 φ-complement of a neutrosophic graph structure G = (A, B1,

B2, . . . , Bn) is always a strong neutrosophic graph structure. Moreover, if φ(i) =
k, where i, k ∈ {1, 2, . . . , n}, then all Bk-edges in neutrosophic graph structure
(A, B1, B2, . . . , Bn) become Bφ

i -edges in

(A, Bφ
1 , B

φ
2 , . . . , B

φ
n ).

Proof According to the definition of φ-complement,

TBφ
i
(mn) = TA(m) ∧ TA(n) −

∨

j �=i

Tφ(Bj )(mn),

IBφ
i
(mn) = IA(m) ∧ IA(n) −

∨

j �=i

Iφ(Bj )(mn),

FBφ
i
(mn) = FA(m) ∨ FA(n) −

∧

j �=i

Fφ(Bj )(mn),

for i ∈ {1, 2, . . . , n}. For expression of truthness in φ-complement:
Since

TA(m) ∧ TA(n) ≥ 0,
∨

j �=i

Tφ(Bj )(mn) ≥ 0 and TBi (mn) ≤ TA(m) ∧ TA(n), ∀Bi ,

we see that ∨

j �=i

Tφ(Bj )(mn) ≤ TA(m) ∧ TA(n),
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which implies that
TA(m) ∧ TA(n) −

∨

j �=i

Tφ(Bj )(mn) ≥ 0.

Therefore, TBφ
i
(mn) ≥ 0 ∀i . Moreover, TBφ

i
(mn) achieves its maximum value when∨

j �=i
Tφ(Bj )(mn) is zero. It is obvious that when φ(Bi ) = Bk and mn is a Bk-edge then

∨
j �=i

Tφ(Bj )(mn) gets zero value. So

TBφ
i
(mn) = TA(m) ∧ TA(n), f or (mn) ∈ Bk, φ(Bi ) = Bk .

Similarly, we have

IBφ
i
(mn) = IA(m) ∧ IA(n), f or (mn) ∈ Bk, φ(Bi ) = Bk .

In the similar way for expression of falsity in φ-complement:

Since

FA(m) ∨ FA(n) ≥ 0,
∧

j �=i

Fφ(Bj )(mn) ≥ 0 and FBi (mn) ≤ FA(m) ∨ FA(n)∀Bi ,

we see that ∧

j �=i

Fφ(Bj )(mn) ≤ FA(m) ∨ FA(n),

which implies that

FA(m) ∨ FA(n) −
∧

j �=i

Fφ(Bj )(mn) ≥ 0.

Therefore, FBφ
i
(mn) is nonnegative for all i .Moreover, FBφ

i
(mn) attains itsmaximum

value when
∧
j �=i

Fφ(Bj )(mn) becomes zero. It is clear that when φ(Bi ) = Bk and mn

is a Bk-edge then
∧
j �=i

Fφ(Bj )(mn) gets zero value. So

FBφ
i
(mn) = FA(m) ∨ FA(n) for (mn) ∈ Bk, φ(Bi ) = Bk .

This completes the proof.

Definition 2.30 LetG = (A, B1, B2, . . . , Bn) be a neutrosophic graph structure and
φ be a permutation on {1, 2, . . . , n}. Then
(i) If G is isomorphic to Gφc, then G is said to be self-complementary.
(ii) If G is identical to Gφc, then G is said to be strong self-complementary.
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Fig. 2.13 Totally strong self-complementary neutrosophic graph structure

Definition 2.31 Suppose G = (A, B1, B2, . . . , Bn) be a neutrosophic graph struc-
ture. Then

(i) If G is isomorphic to Gφc, for all permutations φ on {1, 2, . . . , n}, then G is
totally self-complementary.

(ii) If G is identical to Gφc, for all permutations φ on {1, 2, . . . , n}, then G is
totally strong self-complementary.

Remark 2.1 All strong neutrosophic graph structures are self-complementary or
totally self-complementary neutrosophic graph structures.

Example 2.15 A neutrosophic graph structure G = (A, B1, B2, B3) in Fig. 2.13 is a
totally strong self-complementary neutrosophic graph structure.

Theorem 2.1 A neutrosophic graph structure is totally self-complementary if and
only if it is strong neutrosophic graph structure.

Proof Consider a strong neutrosophic graph structure G and a permutation φ on
{1, 2, . . . , n}. By Proposition 2.1, φ-complement of a neutrosophic graph structure
G = (A, B1, B2, . . . , Bn) is always a strong neutrosophic graph structure. More-
over, if φ(i) = k, where i, k ∈ {1, 2, . . . , n}, then all Bk-edges in neutrosophic graph
structure (A, B1, B2, . . . , Bn) become Bφ

i -edges in (A, B
φ
1 , B

φ
2 , . . . , B

φ
n ). This leads

TBk (mn) = TA(m) ∧ TA(n) = TBφ
i
(mn), IBk (mn) = IA(m) ∧ IA(n) = IBφ

i
(mn)

and
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FBk (mn) = FA(m) ∨ FA(n) = FBφ
i
(mn).

Hence, under the mapping (identity mapping) f : X → X ,G andGφ are isomorphic
such that

TA(m) = TA( f (m)), IA(m) = IA( f (m)), FA(m) = FA( f (m)),

TBk (mn) = TBφ
i
( f (m) f (n)) = TBφ

i
(mn), IBk (mn) = IBφ

i
( f (m) f (n)) = IBφ

i
(mn),

FBk (mn) = FBφ
i
( f (m) f (n)) = FBφ

i
(mn),

for allmn ∈ Ek , φ−1(k) = i and k = 1, 2, . . . , n. This is satisfied for every permuta-
tion φ on {1, 2, . . . , n}. Hence, G is totally self-complementary neutrosophic graph
structure. Conversely, let for every permutation φ on {1, 2, . . . , n}, G and Gφ are
isomorphic. Then according to the definition of isomorphism of neutrosophic graph
structures and φ-complement of neutrosophic graph structure,

TBk (mn) = TBφ
i
( f (m) f (n)) = TA( f (m)) ∧ TA( f (n)) = TA(m) ∧ TA(n),

IBk (mn) = IBφ
i
( f (m) f (n)) = IA( f (m)) ∧ IA( f (n)) = TA(m) ∧ IA(n),

FBk (mn) = FBφ
i
( f (m) f (n)) = FA( f (m)) ∨ TA( f (n)) = FA(m) ∧ TA(n),

for allmn ∈ Ek and k = 1, 2, . . . , n. Hence,G is strong neutrosophic graph structure.

Remark 2.2 Every self-complementary neutrosophic graph structure is totally self-
complementary.

Theorem 2.2 If G∗ = (X, E1, E2, . . . , En) is a totally strong self-complementary
graph structure and A = (TA, IA, FA) is a neutrosophic subset of X where TA, IA, FA

are constant valued functions, then a strong neutrosophic graph structure of G∗ with
neutrosophic vertex set A is always a totally strong self-complementary neutrosophic
graph structure.

Proof Consider three constants p, q, r ∈ [0, 1], such that TA(m) = p, IA(m) =
q, FA(m) = r ∀m ∈ X . Since G∗ is totally self-complementary strong graph struc-
ture, so there is a bijection f : X → X for any permutation φ−1 on {1, 2, . . . , n},
such that for any Ek-edge (mn), ( f (m) f (n)) [an Ei -edge in G∗ ] is an Ek-edge in
G∗φ−1c. Hence, for every Bk-edge (mn), ( f (m) f (n)) [a Bi -edge in G ] is a Bφ

k -edge
in Gφ−1c. Moreover, G is strong neutrosophic graph structure. Thus,

TA(m) = p = TA( f (m)), IA(m) = q = IA( f (m)), FA(m) = r = FA( f (m)), ∀m ∈ X,

TBk (mn) = TA(m) ∧ TA(n) = TA( f (m)) ∧ TA( f (n)) = TBφ
i
( f (m) f (n)),
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IBk (mn) = IA(m) ∧ IA(n) = IA( f (m)) ∧ IA( f (n)) = IBφ
i
( f (m) f (n)),

FBk (mn) = FA(m) ∨ IA(n) = FA( f (m)) ∨ FA( f (n)) = FBφ
i
( f (m) f (n)),

for allmn ∈ Ei and i = 1, 2, . . . , n. This shows thatG is self-complementary strong
neutrosophic graph structure. Every permutation φ and φ−1 on {1, 2, . . . , n} satisfy
above expressions; thus G is totally strong self-complementary neutrosophic graph
structure.

Remark 2.3 Converse of Theorem 2.2 may not be true, for example a neutrosophic
graph structure shown in Fig. 2.13 is a totally strong self-complementary, it is strong
and its underlying graph structure is a totally strong self-complementary but TA, IA,
FA are not constant functions.

2.3 Operations on Neutrosophic Graph Structures

In this section, we present the operations on neutrosophic graph structures.

Definition 2.32 LetG1 = (A1, B11, B12, . . . , B1n) andG2 = (A2, B21, B22, . . . , B2n)

beneutrosophic graph structures of thegraph structuresG∗
1 = (X1, E11, E12, . . . , E1n)

and G∗
2 = (X2, E21, E22, . . . , E2n), respectively. The Cartesian product of G1 and

G2, denoted by

G1 × G2 = (A1 × A2, B11 × B21, B12 × B22, . . . , B1n × B2n),

is defined by the following:

(i)

⎧
⎨

⎩

T(A1×A2)(qr) = (TA1 × TA2)(qr) = TA1(q) ∧ TA2(r)
I(A1×A2)(qr) = (IA1 × IA2)(qr) = IA1(q) ∧ IA2(r)
F(A1×A2)(qr) = (FA1 × FA2)(qr) = FA1(q) ∨ FA2(r)

for all qr ∈ E1 × E2,

(ii)

⎧
⎨

⎩

T(B1i×B2i )(qr1)(qr2) = (TB1i × TB2i )(qr1)(qr2) = TA1(q) ∧ TB2i (r1r2)
I(B1i×B2i )(qr1)(qr2) = (IB1i × IB2i )(qr1)(qr2) = IA1(q) ∧ IB2i (r1r2)
F(B1i×B2i )(qr1)(qr2) = (FB1i × FB2i )(qr1)(qr2) = FA1(q) ∨ FB2i (r1r2)

for all q ∈ X1, r1r2 ∈ E2i ,

(iii)

⎧
⎨

⎩

T(B1i×B2i )(q1r)(q2r) = (TB1i × TB2i )(q1r)(q2r) = TA2(r) ∧ TB1i (q1q2)
I(B1i×B2i )(q1r)(q2r) = (IB1i × IB2i )(q1r)(q2r) = IA2(r) ∧ IB1i (q1q2)
F(B1i×B2i )(q1r)(q2r) = (FB1i × FB2i )(q1r)(q2r) = FA2(r) ∨ FB1i (q1q2)

for all r ∈ X2, q1q2 ∈ E1i .

Example 2.16 Consider G1 = (A1, B11, B12) and G2 = (A2, B21, B22) are neu-
trosophic graph structures of graph structures G∗

1 = (X1, E11, E12) and G∗
2 =

(X2, E21, E22), respectively, as shown in Fig. 2.14, where E11 = {q1q2}, E12 =
{q3q4}, E21 = {r1r2}, E22 = {r2r3}.
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Fig. 2.14 Neutrosophic graph structures
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Fig. 2.15 Cartesian product of two neutrosophic graph structures

Cartesianproduct ofG1 andG2 defined asG1 × G2 = {A1 × A2, B11 × B21, B12 ×
B22} is shown in the Fig. 2.15.

Theorem 2.3 The Cartesian product G1 × G2 = (A1 × A2, B11 × B21, B12 ×
B22, . . . , B1n × B2n) of two neutrosophic graph structures G1 and G2 of the graph
structures G∗

1 and G∗
2 is a neutrosophic graph structure of G∗

1 × G∗
2.

Proof According to the definition of Cartesian product, there are two cases:

Case 1. When q ∈ X1, r1r2 ∈ E2i
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T(B1i×B2i )((qr1)(qr2)) = TA1(q) ∧ TB2i (r1r2)

≤ TA1(q) ∧ [TA2(r1) ∧ TA2(r2)]
= [TA1(q) ∧ TA2(r1)] ∧ [TA1(q) ∧ TA2(r2)]
= T(A1×A2)(qr1) ∧ T(A1×A2)(qr2),

I(B1i×B2i )((qr1)(qr2)) = IA1(q) ∧ IB2i (r1r2)

≤ IA1(q) ∧ [IA2(r1) ∧ IA2(r2)]
= [IA1(q) ∧ IA2(r1)] ∧ [IA1(q) ∧ IA2(r2)]
= I(A1×A2)(qr1) ∧ I(A1×A2)(qr2),

F(B1i×B2i )((qr1)(qr2)) = FA1(q) ∨ FB2i (r1r2)

≤ FA1(q) ∨ [FA2(r1) ∨ FA2(r2)]
= [FA1(q) ∨ FA2(r1)] ∨ [FA1(q) ∨ FA2(r2)]
= F(A1×A2)(qr1) ∨ F(A1×A2)(qr2),

for qr1, qr2 ∈ X1 × X2.

Case 2. When q ∈ X2, r1r2 ∈ E1i

T(B1i×B2i )((r1q)(r2q)) = TA2(q) ∧ TB1i (r1r2)

≤ TA2(q) ∧ [TA1(r1) ∧ TA1(r2)]
= [TA2(q) ∧ TA1(r1)] ∧ [TA2(q) ∧ TA1(r2)]
= T(A1×A2)(r1q) ∧ T(A1×A2)(r2q),

I(B1i×B2i )((r1q)(r2q)) = IA2(q) ∧ IB1i (r1r2)

≤ IA2(q) ∧ [IA1(r1) ∧ IA1(r2)]
= [IA2(q) ∧ IA1(r1)] ∧ [IA2(q) ∧ IA1(r2)]
= I(A1×A2)(r1q) ∧ I(A1×A2)(r2q),

F(B1i×B2i )((r1q)(r2q)) = FA2(q) ∨ FB1i (r1r2)

≤ FA2(q) ∨ [FA1(r1) ∨ FA1(r2)]
= [FA2(q) ∨ FA1(r1)] ∨ [FA2(q) ∨ FA1(r2)]
= F(A1×A2)(r1q) ∨ F(A1×A2)(r2q),

for r1q, r2q ∈ X1 × X2.

Both cases are satisfied ∀i ∈ {1, 2, . . . , n}.
Definition 2.33 LetG1 = (A1, B11, B12, . . . , B1n) andG2 = (A2, B21, B22, . . . , B2n)

be neutrosophic graph structures. The cross product of G1 and G2, denoted by

G1 ∗ G2 = (A1 ∗ A2, B11 ∗ B21, B12 ∗ B22, . . . , B1n ∗ B2n),
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Fig. 2.16 Cross product of two neutrosophic graph structures

is defined by the following:

(i)

⎧
⎨

⎩

T(A1∗A2)(qr) = (TA1 ∗ TA2)(qr) = TA1(q) ∧ TA2(r)
I(A1∗A2)(qr) = (IA1 ∗ IA2)(qr) = IA1(q) ∧ IA2(r)
F(A1∗A2)(qr) = (FA1 ∗ FA2)(qr) = FA1(q) ∨ FA2(r)

for all qr ∈ X1 × X2,

(ii)

⎧
⎨

⎩

T(B1i∗B2i )(q1r1)(q2r2) = (TB1i ∗ TB2i )(q1r1)(q2r2) = TB1i (q1q2) ∧ TB2i (r1r2)
I(B1i∗B2i )(q1r1)(q2r2) = (IB1i ∗ IB2i )(q1r1)(q2r2) = IB1i (q1q2) ∧ IB2i (r1r2)
F(B1i∗B2i )(q1r1)(q2r2) = (FB1i ∗ FB2i )(q1r1)(q2r2) = FB1i (q1q2) ∨ FB2i (r1r2)

for all q1q2 ∈ E1i , r1r2 ∈ E2i .

Example 2.17 Cross product of two neutrosophic graph structuresG1 andG2 shown
in Fig. 2.14 is defined as G1 ∗ G2 = {A1 ∗ A2, B11 ∗ B21, B12 ∗ B22} and is shown in
the Fig. 2.16.

Theorem 2.4 The cross product G1 ∗ G2 = (A1 ∗ A2, B11 ∗ B21, B12 ∗ B22, . . . ,

B1n ∗ B2n) of two neutrosophic graph structures of the graph structures G∗1 and G∗
2

is a neutrosophic graph structure of G∗
1 ∗ G∗

2.
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Proof For all q1r1, q2r2 ∈ X1 ∗ X2

T(B1i∗B2i )((q1r1)(q2r2)) = TB1i (q1q2) ∧ TB2i (r1r2)

≤ [TA1(q1) ∧ TA1(q2)] ∧ [TA2(r1) ∧ TA2(r2)]
= [TA1(q1) ∧ TA2(r1)] ∧ [TA1(q2) ∧ TA2(r2)]
= T(A1∗A2)(q1r1) ∧ T(A1∗A2)(q2r2),

I(B1i∗B2i )((q1r1)(q2r2)) = IB1i (q1q2) ∧ IB2i (r1r2)

≤ [IA1(q1) ∧ IA1(q2)] ∧ [IA2(r1) ∧ IA2(r2)]
= [IA1(q1) ∧ IA2(r1)] ∧ [IA1(q2) ∧ IA2(r2)]
= I(A1∗A2)(q1r1) ∧ I(A1∗A2)(q2r2),

F(B1i∗B2i )((q1r1)(q2r2)) = FB1i (q1q2) ∨ FB2i (r1r2)

≤ [FA1(q1) ∨ FA1(q2)] ∨ [FA2(r1) ∨ FA2(r2)]
= [FA1(q1) ∨ FA2(r1)] ∨ [FA1(q2) ∨ FA2(r2)]
= F(A1∗A2)(q1r1) ∨ F(A1∗A2)(q2r2),

for i ∈ {1, 2, . . . , n}.
Definition 2.34 LetG1 = (A1, B11, B12, . . . , B1n) andG2 = (A2, B21, B22, . . . , B2n)

be neutrosophic graph structures. The lexicographic product of G1 and G2, denoted
by

G1 • G2 = (A1 • A2, B11 • B21, B12 • B22, . . . , B1n • B2n),

is defined by the following:

(i)

⎧
⎨

⎩

T(A1•A2)(qr) = (TA1 • TA2)(qr) = TA1(q) ∧ TA2(r)
I(A1•A2)(qr) = (IA1 • IA2)(qr) = IA1(q) ∧ IA2(r)
F(A1•A2)(qr) = (FA1 • FA2)(qr) = FA1(q) ∨ FA2(r)

for all qr ∈ X1 × X2,

(ii)

⎧
⎨

⎩

T(B1i•B2i )(qr1)(qr2) = (TB1i • TB2i )(qr1)(qr2) = TA1(q) ∧ TB2i (r1r2)
I(B1i•B2i )(qr1)(qr2) = (IB1i • IB2i )(qr1)(qr2) = IA1(q) ∧ IB2i (r1r2)
F(B1i•B2i )(qr1)(qr2) = (FB1i • FB2i )(qr1)(qr2) = FA1(q) ∨ FB2i (r1r2)

for all q ∈ X1, r1r2 ∈ E2i ,

(iii)

⎧
⎨

⎩

T(B1i•B2i )(q1r1)(q2r2) = (TB1i • TB2i )(q1r1)(q2r2) = TB1i (q1q2) ∧ TB2i (r1r2)
I(B1i•B2i )(q1r1)(q2r2) = (IB1i • IB2i )(q1r1)(q2r2) = IB1i (q1q2) ∧ IB2i (r1r2)
F(B1i•B2i )(q1r1)(q2r2) = (FB1i • FB2i )(q1r1)(q2r2) = FB1i (q1q2) ∨ FB2i (r1r2)

for all q1q2 ∈ E1i , r1r2 ∈ E2i .

Example 2.18 Lexicographic product of two neutrosophic graph structures G1 and
G2 shown in Fig. 2.14 is defined as

G1 • G2 = {A1 • A2, B11 • B21, B12 • B22} and is shown in the Fig. 2.17.
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Fig. 2.17 Lexicographic product of two neutrosophic graph structures

Theorem 2.5 The lexicographic product G1 • G2 = (A1 • A2, B11 • B21, B12

• B22, . . . , B1n • B2n) of two neutrosophic graph structures of the graph structures
G∗

1 and G∗
2 is a neutrosophic graph structure of G∗

1 • G∗
2.

Proof According to the definition of lexicographic product, there are two cases:

Case 1. When q ∈ X1, r1r2 ∈ E2i

T(B1i•B2i )((qr1)(qr2)) = TA1(q) ∧ TB2i (r1r2)

≤ TA1(q) ∧ [TA2(r1) ∧ TA2(r2)]
= [TA1(q) ∧ TA2(r1)] ∧ [TA1(q) ∧ TA2(r2)]
= T(A1•A2)(qr1) ∧ T(A1•A2)(qr2),

I(B1i•B2i )((qr1)(qr2)) = IA1(q) ∧ IB2i (r1r2)

≤ IA1(q) ∧ [IA2(r1) ∧ IA2(r2)]
= [IA1(q) ∧ IA2(r1)] ∧ [IA1(q) ∧ IA2(r2)]
= I(A1•A2)(qr1) ∧ I(A1•A2)(qr2),
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F(B1i•B2i )((qr1)(qr2)) = FA1(q) ∨ FB2i (r1r2)

≤ FA1(q) ∨ [FA2(r1) ∨ FA2(r2)]
= [FA1(q) ∨ FA2(r1)] ∨ [FA1(q) ∨ FA2(r2)]
= F(A1•A2)(qr1) ∨ F(A1•A2)(qr2),

for qr1, qr2 ∈ X1 • X2.

Case 2. When q1q2 ∈ E1i , r1r2 ∈ E2i

T(B1i•B2i )((q1r1)(q2r2)) = TB1i (q1q2) ∧ TB2i (r1r2)

≤ [TA1(q1) ∧ TA1(q2)] ∧ [TA2(r1) ∧ TA2(r2)]
= [TA1(q1) ∧ TA2(r1)] ∧ [TA1(q2) ∧ TA2(r2)]
= T(A1•A2)(q1r1) ∧ T(A1•A2)(q2r2),

I(B1i•B2i )((q1r1)(q2r2)) = IB1i (q1q2) ∧ IB2i (r1r2)

≤ [IA1(q1) ∧ IA1(q2)] ∧ [IA2(r1) ∧ IA2(r2)]
= [IA1(q1) ∧ IA2(r1)] ∧ [IA1(q2) ∧ IA2(r2)]
= I(A1•A2)(q1r1) ∧ I(A1•A2)(q2r2),

F(B1i•B2i )((q1r1)(q2r2)) = FB1i (q1q2) ∨ FB2i (r1r2)

≤ [FA1(q1) ∨ FA1(q2)] ∨ [FA2(r1) ∨ FA2(r2)]
= [FA1(q1) ∨ FA2(r1)] ∨ [FA1(q2) ∨ FA2(r2)]
= F(A1•A2)(q1r1) ∨ F(A1•A2)(q2r2),

for q1r1, q2r2 ∈ X1 • X2.
Both cases are satisfied for i ∈ {1, 2, . . . , n}.

Definition 2.35 LetG1 = (A1, B11, B12, . . . , B1n) andG2 = (A2, B21, B22, . . . , B2n)

be neutrosophic graph structures. The strong product of G1 and G2, denoted by

G1 � G2 = (A1 � A2, B11 � B21, B12 � B22, . . . , B1n � B2n),

is defined by the following:

(i)

⎧
⎨

⎩

T(A1�A2)(qr) = (TA1 � TA2)(qr) = TA1(q) ∧ TA2(r)
I(A1�A2)(qr) = (IA1 � IA2)(qr) = IA1(q) ∧ IA2(r)
F(A1�A2)(qr) = (FA1 � FA2)(qr) = FA1(q) ∨ FA2(r)

for all qr ∈ X1 × X2,

(ii)

⎧
⎨

⎩

T(B1i�B2i )(qr1)(qr2) = (TB1i � TB2i )(qr1)(qr2) = TA1(q) ∧ TB2i (r1r2)
I(B1i�B2i )(qr1)(qr2) = (IB1i � IB2i )(qr1)(qr2) = IA1(q) ∧ IB2i (r1r2)
F(B1i�B2i )(qr1)(qr2) = (FB1i � FB2i )(qr1)(qr2) = FA1(q) ∨ FB2i (r1r2)

for all q ∈ X1, r1r2 ∈ E2i ,
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Fig. 2.18 Strong product of two neutrosophic graph structures

(iii)

⎧
⎨

⎩

T(B1i�B2i )(q1r)(q2r) = (TB1i � TB2i )(q1r)(q2r) = TA2(r) ∧ TB1i (q1q2)
I(B1i�B2i )(q1r)(q2r) = (IB1i � IB2i )(q1r)(q2r) = IA2(r) ∧ IB1i (q1q2)
F(B1i�B2i )(q1r)(q2r) = (FB1i � FB2i )(q1r)(q2r) = FA2(r) ∨ FB1i (q1q2)

for all r ∈ X2, q1q2 ∈ E1i ,

(iv)

⎧
⎨

⎩

T(B1i�B2i )(q1r1)(q2r2)=(TB1i � TB2i )(q1r1)(q2r2)=TB1i (q1q2) ∧ TB2i (r1r2)
I(B1i�B2i )(q1r1)(q2r2) = (IB1i � IB2i )(q1r1)(q2r2) = IB1i (q1q2) ∧ IB2i (r1r2)
F(B1i�B2i )(q1r1)(q2r2)=(FB1i � FB2i )(q1r1)(q2r2)=FB1i (q1q2) ∨ FB2i (r1r2)

for all q1q2 ∈ E1i , r1r2 ∈ E2i .

Example 2.19 Strong product of two neutrosophic graph structures G1 and G2

shown in Fig. 2.14 is defined as G1 � G2 = {A1 � A2, B11 � B21, B12 � B22} and
is shown in the Fig. 2.18.

Theorem 2.6 The strong product G1 � G2 = (A1 � A2, B11 � B21, B12 � B22, . . . ,

B1n � B2n) of two neutrosophic graph structures of the graph structures G∗
1 and G

∗
2

is a neutrosophic graph structure of G∗
1 � G∗

2.

Proof According to the definition of strong product, there are three cases:

Case 1. When q ∈ X1, r1r2 ∈ E2i



108 2 Graph Structures Under Neutrosophic Environment

T(B1i�B2i )((qr1)(qr2)) = TA1(q) ∧ TB2i (r1r2)

≤ TA1(q) ∧ [TA2(r1) ∧ TA2(r2)]
= [TA1(q) ∧ TA2(r1)] ∧ [TA1(q) ∧ TA2(r2)]
= T(A1�A2)(qr1) ∧ T(A1�A2)(qr2),

I(B1i�B2i )((qr1)(qr2)) = IA1(q) ∧ IB2i (r1r2)

≤ IA1(q) ∧ [IA2(r1) ∧ IA2(r2)]
= [IA1(q) ∧ IA2(r1)] ∧ [IA1(q) ∧ IA2(r2)]
= I(A1�A2)(qr1) ∧ I(A1�A2)(qr2),

F(B1i�B2i )((qr1)(qr2)) = FA1(q) ∨ FB2i (r1r2)

≤ FA1(q) ∨ [FA2(r1) ∨ FA2(r2)]
= [FA1(q) ∨ FA2(r1)] ∨ [FA1(q) ∨ FA2(r2)]
= F(A1�A2)(qr1) ∨ F(A1�A2)(qr2),

for qr1, qr2 ∈ X1 � X2.

Case 2. When q ∈ X2, r1r2 ∈ E1i

T(B1i�B2i )((r1q)(r2q)) = TA2(q) ∧ TB1i (r1r2)

≤ TA2(q) ∧ [TA1(r1) ∧ TA1(r2)]
= [TA2(q) ∧ TA1(r1)] ∧ [TA2(q) ∧ TA1(r2)]
= T(A1�A2)(r1q) ∧ T(A1�A2)(r2q),

I(B1i�B2i )((r1q)(r2q)) = IA2(q) ∧ IB1i (r1r2)

≤ IA2(q) ∧ [IA1(r1) ∧ IA1(r2)]
= [IA2(q) ∧ IA1(r1)] ∧ [IA2(q) ∧ IA1(r2)]
= I(A1�A2)(r1q) ∧ I(A1�A2)(r2q),

F(B1i�B2i )((r1q)(r2q)) = FA2(q) ∨ FB1i (r1r2)

≤ FA2(q) ∨ [FA1(r1) ∨ FA1(r2)]
= [FA2(q) ∨ FA1(r1)] ∨ [FA2(q) ∨ FA1(r2)]
= F(A1�A2)(r1q) ∨ F(A1�A2)(r2q),

for r1q, r2q ∈ X1 � X2.

Case 3. For all q1q2 ∈ E1i , r1r2 ∈ E2i

T(B1i�B2i )((q1r1)(q2r2)) = TB1i (q1q2) ∧ TB2i (r1r2)

≤ [TA1(q1) ∧ TA1(q2)] ∧ [TA2(r1) ∧ TA2(r2)]
= [TA1(q1) ∧ TA2(r1)] ∧ [TA1(q2) ∧ TA2(r2)]
= T(A1�A2)(q1r1) ∧ T(A1�A2)(q2r2),
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I(B1i�B2i )((q1r1)(q2r2)) = IB1i (q1q2) ∧ IB2i (r1r2)

≤ [IA1(q1) ∧ IA1(q2)] ∧ [IA2(r1) ∧ IA2(r2)]
= [IA1(q1) ∧ IA2(r1)] ∧ [IA1(q2) ∧ IA2(r2)]
= I(A1�A2)(q1r1) ∧ I(A1�A2)(q2r2),

F(B1i�B2i )((q1r1)(q2r2)) = FB1i (q1q2) ∨ FB2i (r1r2)

≤ [FA1(q1) ∨ FA1(q2)] ∨ [FA2(r1) ∨ FA2(r2)]
= [FA1(q1) ∨ FA2(r1)] ∨ [FA1(q2) ∨ FA2(r2)]
= F(A1�A2)(q1r1) ∨ F(A1�A2)(q2r2),

for q1r1, q2r2 ∈ X1 � X2.

All cases are satisfied for i = 1, 2, . . . , n.

Definition 2.36 LetG1 = (A1, B11, B12, . . . , B1n) andG2 = (A2, B21, B22, . . . , B2n)

be neutrosophic graph structures. The composition of G1 and G2, denoted by

G1 ◦ G2 = (A1 ◦ A2, B11 ◦ B21, B12 ◦ B22, . . . , B1n ◦ B2n),

is defined by the following:

(i)

⎧
⎨

⎩

T(A1◦A2)(qr) = (TA1 ◦ TA2)(qr) = TA1(q) ∧ TA2(r)
I(A1◦A2)(qr) = (IA1 ◦ IA2)(qr) = IA1(q) ∧ IA2(r)
F(A1◦A2)(qr) = (FA1 ◦ FA2)(qr) = FA1(q) ∨ FA2(r)

for all qr ∈ X1 × X2,

(ii)

⎧
⎨

⎩

T(B1i◦B2i )(qr1)(qr2) = (TB1i ◦ TB2i )(qr1)(qr2) = TA1(q) ∧ TB2i (r1r2)
I(B1i◦B2i )(qr1)(qr2) = (IB1i ◦ IB2i )(qr1)(qr2) = IA1(q) ∧ IB2i (r1r2)
F(B1i◦B2i )(qr1)(qr2) = (FB1i ◦ FB2i )(qr1)(qr2) = FA1(q) ∨ FB2i (r1r2)

for all q ∈ X1, r1r2 ∈ E2i ,

(iii)

⎧
⎨

⎩

T(B1i◦B2i )(q1r)(q2r) = (TB1i ◦ TB2i )(q1r)(q2r) = TA2(r) ∧ TB1i (q1q2)
I(B1i◦B2i )(q1r)(q2r) = (IB1i ◦ IB2i )(q1r)(q2r) = IA2(r) ∧ IB1i (q1q2)
F(B1i◦B2i )(q1r)(q2r) = (FB1i ◦ FB2i )(q1r)(q2r) = FA2(r) ∨ FB1i (q1q2)

for all r ∈ X2, q1q2 ∈ E1i ,

(iv)

⎧
⎨

⎩

T(B1i ◦B2i )(q1r1)(q2r2) = (TB1i ◦ TB2i )(q1r1)(q2r2) = TB1i (q1q2) ∧ TA2 (r1) ∧ TA2 (r2)
I(B1i ◦B2i )(q1r1)(q2r2) = (IB1i ◦ IB2i )(q1r1)(q2r2) = IB1i (q1q2) ∧ IA2 (r1) ∧ IA2 (r2)
F(B1i ◦B2i )(q1r1)(q2r2) = (FB1i ◦ FB2i )(q1r1)(q2r2) = FB1i (q1q2) ∨ FA2 (r1) ∨ FA2 (r2)

for all q1q2 ∈ E1i , r1r2 ∈ E2i such that r1 �= r2.

Example 2.20 Composition of two neutrosophic graph structures G1 and G2 shown
in Fig. 2.14 is defined as G1 ◦ G2 = {A1 ◦ A2, B11 ◦ B21, B12 ◦ B22} and is shown in
the Fig. 2.19.

Theorem 2.7 The composition G1 ◦ G2 = (A1 ◦ A2, B11 ◦ B21, B12 ◦ B22, . . . ,

B1n ◦ B2n) of two neutrosophic graph structures of the graph structures G∗
1 and

G∗
2 is a neutrosophic graph structure of G∗

1 ◦ G∗
2.
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Fig. 2.19 Composition of two neutrosophic graph structures

Proof According to the definition of composition, there are three cases:

Case 1. When q ∈ X1, r1r2 ∈ E2i

T(B1i◦B2i )((qr1)(qr2)) = TA1(q) ∧ TB2i (r1r2)

≤ TA1(q) ∧ [TA2(r1) ∧ TA2(r2)]
= [TA1(q) ∧ TA2(r1)] ∧ [TA1(q) ∧ TA2(r2)]
= T(A1◦A2)(qr1) ∧ T(A1◦A2)(qr2),



2.3 Operations on Neutrosophic Graph Structures 111

I(B1i◦B2i )((qr1)(qr2)) = IA1(q) ∧ IB2i (r1r2)

≤ IA1(q) ∧ [IA2(r1) ∧ IA2(r2)]
= [IA1(q) ∧ IA2(r1)] ∧ [IA1(q) ∧ IA2(r2)]
= I(A1◦A2)(qr1) ∧ I(A1◦A2)(qr2),

F(B1i◦B2i )((qr1)(qr2)) = FA1(q) ∨ FB2i (r1r2)

≤ FA1(q) ∨ [FA2(r1) ∨ FA2(r2)]
= [FA1(q) ∨ FA2(r1)] ∨ [FA1(q) ∨ FA2(r2)]
= F(A1◦A2)(qr1) ∨ F(A1◦A2)(qr2),

for qr1, qr2 ∈ X1 ◦ X2.

Case 2. When q ∈ X2, r1r2 ∈ E1i

T(B1i◦B2i )((r1q)(r2q)) = TA2(q) ∧ TB1i (r1r2)

≤ TA2(q) ∧ [TA1(r1) ∧ TA1(r2)]
= [TA2(q) ∧ TA1(r1)] ∧ [TA2(q) ∧ TA1(r2)]
= T(A1◦A2)(r1q) ∧ T(A1◦A2)(r2q),

I(B1i◦B2i )((r1q)(r2q)) = IA2(q) ∧ IB1i (r1r2)

≤ IA2(q) ∧ [IA1(r1) ∧ IA1(r2)]
= [IA2(q) ∧ IA1(r1)] ∧ [IA2(q) ∧ IA1(r2)]
= I(A1◦A2)(r1q) ∧ I(A1◦A2)(r2q),

F(B1i◦B2i )((r1q)(r2q)) = FA2(q) ∨ FB1i (r1r2)

≤ FA2(q) ∨ [FA1(r1) ∨ FA1(r2)]
= [FA2(q) ∨ FA1(r1)] ∨ [FA2(q) ∨ FA1(r2)]
= F(A1◦A2)(r1q) ∨ F(A1◦A2)(r2q),

for r1q, r2q ∈ X1 ◦ X2.

Case 3. For all q1q2 ∈ E1i , r1, r2 ∈ X2 such that r1 �= r2

T(B1i◦B2i )((q1r1)(q2r2)) = TB1i (q1q2) ∧ TA2(r1) ∧ TA2(r2)

≤ [TA1(q1) ∧ TA1(q2)] ∧ TA2(r1) ∧ TA2(r2)

= [TA1(q1) ∧ TA2(r1)] ∧ [TA1(q2) ∧ TA2(r2)]
= T(A1◦A2)(q1r1) ∧ T(A1◦A2)(q2r2),

I(B1i◦B2i )((q1r1)(q2r2)) = IB1i (q1q2) ∧ IA2(r1) ∧ IA2(r2)

≤ [IA1(q1) ∧ IA1(q2)] ∧ [IA2(r1) ∧ IA2(r2)]
= [IA1(q1) ∧ IA2(r1)] ∧ [IA1(q2) ∧ IA2(r2)]
= I(A1◦A2)(q1r1) ∧ I(A1◦A2)(q2r2),
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Fig. 2.20 Union of two neutrosophic graph structures

F(B1i◦B2i )((q1r1)(q2r2)) = FB1i (q1q2) ∨ FA2(r1) ∨ FA2(r2)

≤ [FA1(q1) ∨ FA1(q2)] ∨ [FA2(r1) ∨ FA2(r2)]
= [FA1(q1) ∨ FA2(r1)] ∨ [FA1(q2) ∨ FA2(r2)]
= F(A1◦A2)(q1r1) ∨ F(A1◦A2)(q2r2),

for q1r1, q2r2 ∈ X1 ◦ X2.

All cases are satisfied for i = 1, 2, . . . , n.

Definition 2.37 LetG1 = (A1, B11, B12, . . . , B1n) andG2 = (A2, B21, B22, . . . , B2n)

be neutrosophic graph structures. The union of G1 and G2, denoted by

G1 ∪ G2 = (A1 ∪ A2, B11 ∪ B21, B12 ∪ B22, . . . , B1n ∪ B2n),

is defined by following:

(i)

⎧
⎨

⎩

T(A1∪A2)(q) = (TA1 ∪ TA2)(q) = TA1(q) ∨ TA2(q)
I(A1∪A2)(q) = (IA1 ∪ IA2)(q) = IA1(q) ∨ IA2(q)
F(A1∪A2)(q) = (FA1 ∪ FA2)(q) = FA1(q) ∧ FA2(q)

for all q ∈ X1 ∪ X2,

(ii)

⎧
⎨

⎩

T(B1i∪B2i )(qr) = (TB1i ∪ TB2i )(qr) = TB1i (qr) ∨ TB2i (qr)
I(B1i∪B2i )(qr) = (IB1i ∪ IB2i )(qr) = IB1i (qr) ∨ IB2i (qr)
F(B1i∪B2i )(qr) = (FB1i ∪ FB2i )(qr) = FB1i (qr) ∧ FB2i (qr)

for all qr ∈ E1i ∪ E2i .

Example 2.21 Union of two neutrosophic graph structures G1 and G2 shown in
Fig. 2.14 is defined as G1 ∪ G2 = {A1 ∪ A2, B11 ∪ B21, B12 ∪ B22} and is shown in
the Fig. 2.20.

Theorem 2.8 The union G1 ∪ G2 = (A1 ∪ A2, B11 ∪ B21, B12 ∪ B22, . . . , B1n ∪
B2n) of two neutrosophic graph structures of the graph structures G∗

1 and G∗
2 is

a neutrosophic graph structure of G∗
1 ∪ G∗

2.
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Proof Let q1q2 ∈ E1i ∪ E2i . Here we consider two cases:

Case 1. Whenq1, q2 ∈ X1, then according toDefinition2.37,TA2(q1) = TA2(q2) =
TB2i (q1q2) = 0, IA2(q1) = IA2(q2) = IB2i (q1q2) = 0, FA2(q1) = FA2(q2) = FB2i

(q1q2) = 0, so

T(B1i∪B2i )(q1q2) = TB1i (q1q2) ∨ TB2i (q1q2)

= TB1i (q1q2) ∨ 0

≤ [TA1(q1) ∧ TA1(q2)] ∨ 0

= [TA1(q1) ∨ 0] ∧ [TA1(q2) ∨ 0]
= [TA1(q1) ∨ TA2(q1)] ∧ [TA1(q2) ∨ TA2(q2)]
= T(A1∪A2)(q1) ∧ T(A1∪A2)(q2),

I(B1i∪B2i )(q1q2) = IB1i (q1q2) ∨ IB2i (q1q2)

= IB1i (q1q2) ∨ 0

≤ [IA1(q1) ∧ IA1(q2)] ∨ 0

= [IA1(q1) ∨ 0] ∧ [IA1(q2) ∨ 0]
= [IA1(q1) ∨ IA2(q1)] ∧ [IA1(q2) ∨ IA2(q2)]
= I(A1∪A2)(q1) ∧ I(A1∪A2)(q2),

F(B1i∪B2i )(q1q2) = FB1i (q1q2) ∧ FB2i (q1q2)

= FB1i (q1q2) ∧ 0

≤ [FA1(q1) ∨ FA1(q2)] ∧ 0

= [FA1(q1) ∧ 0] ∨ [FA1(q2) ∧ 0]
= [FA1(q1) ∧ FA2(q1)] ∨ [FA1(q2) ∧ FA2(q2)]
= F(A1∪A2)(q1) ∨ F(A1∪A2)(q2),

for q1, q2 ∈ X1 ∪ X2.
Case 2. Whenq1, q2 ∈ X2, then according toDefinition2.37,TA1(q1) = TA1(q2) =

TB1i (q1q2) = 0, IA1(q1) = IA1(q2) = IB1i (q1q2) = 0, FA1(q1) = FA1(q2) = FB1i

(q1q2) = 0, so

T(B1i∪B2i )(q1q2) = TB1i (q1q2) ∨ TB2i (q1q2)

= TB2i (q1q2) ∨ 0

≤ [TA2(q1) ∧ TA2(q2)] ∨ 0

= [TA2(q1) ∨ 0] ∧ [TA2(q2) ∨ 0]
= [TA1(q1) ∨ TA2(q1)] ∧ [TA1(q2) ∨ TA2(q2)]
= T(A1∪A2)(q1) ∧ T(A1∪A2)(q2),
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I(B1i∪B2i )(q1q2) = IB1i (q1q2) ∨ IB2i (q1q2)

= IB2i (q1q2) ∨ 0

≤ [IA2(q1) ∧ IA2(q2)] ∨ 0

= [IA2(q1) ∨ 0] ∧ [IA2(q2) ∨ 0]
= [IA1(q1) ∨ IA2(q1)] ∧ [IA1(q2) ∨ IA2(q2)]
= I(A1∪A2)(q1) ∧ I(A1∪A2)(q2),

F(B1i∪B2i )(q1q2) = FB1i (q1q2) ∧ FB2i (q1q2)

= FB2i (q1q2) ∧ 0

≤ [FA2(q1) ∨ FA2(q2)] ∧ 0

= [FA2(q1) ∧ 0] ∨ [FA2(q2) ∧ 0]
= [FA1(q1) ∧ FA2(q1)] ∨ [FA1(q2) ∧ FA2(q2)]
= F(A1∪A2)(q1) ∨ F(A1∪A2)(q2),

for q1, q2 ∈ X1 ∪ X2.

Both cases are satisfied ∀i ∈ {1, 2, . . . , n}. This completes the proof.

Theorem 2.9 Let G∗ = (X1 ∪ X2, E11 ∪ E21, E12 ∪ E22, . . . , E1n ∪ E2n) be the
union of two graph structures G∗

1 = (X1, E11, E12, . . . , E1n) andG∗
2 = (X2, E21, E22,

. . . , E2n). Then every neutrosophic graph structure G = (A, B1, B2, . . . , Bn) of G∗
is union of two neutrosophic graph structures G1 = (A1, B11, B12, . . . , B1n) and G2

= (A2, B21, B22, . . . , B2n) of graph structures G∗
1 and G∗

2, respectively.

Proof First we define A1, A2, B1i and B2i for i ∈ {1, 2, . . . , n} as:
TA1(q) = TA(q), IA1(q) = IA(q), FA1(q) = FA(q), if q ∈ X1

TA2(q) = TA(q), IA2(q) = IA(q), FA2(q) = FA(q), if q ∈ X2

TB1i (q1q2) = TBi (q1q2), IB1i (q1q2) = IBi (q1q2), FB1i (q1q2) = FBi (q1q2), if q1q2 ∈
E1i ,TB2i (q1q2) = TBi (q1q2), IB2i (q1q2) = IBi (q1q2), FB2i (q1q2) = FBi (q1q2), ifq1q2 ∈
E2i . Then A = A1 ∪ A2 and Bi = B1i ∪ B2i , i ∈ {1, 2, . . . , n}.

Now for q1q2 ∈ Eki , k = 1, 2, i = 1, 2, . . . , n
TBki (q1q2) = TBi (q1q2) ≤ TA(q1) ∧ TA(q2) = TAk (q1) ∧ TAk (q2),
IBki (q1q2) = IBi (q1q2) ≤ IA(q1) ∧ IA(q2) = IAk (q1) ∧ IAk (q2),
FBki (q1q2) = FBi (q1q2) ≤ FA(q1) ∨ FA(q2) = FAk (q1) ∨ FAk (q2),
i.e.
Gk = (Ak, Bk1, Bk2, . . . , Bkn) is a neutrosophic graph structure of G∗

k , k = 1, 2.
Thus G = (A, B1, B2, . . . , Bn), a neutrosophic graph structure of G∗ = G∗

1 ∪ G∗
2, is

union of two neutrosophic graph structures G1 and G2.

Definition 2.38 LetG1 = (A1, B11, B12, . . . , B1n) andG2 = (A2, B21, B22, . . . , B2n)

be neutrosophic graph structures and let X1 ∩ X2 = ∅. The join ofG1 andG2, denoted
by
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Fig. 2.21 Join of two neutrosophic graph structures

G1 + G2 = (A1 + A2, B11 + B21, B12 + B22, . . . , B1n + B2n),

is defined by the following:

(i)

⎧
⎨

⎩

T(A1+A2)(q) = T(A1∪A2)(q)
I(A1+A2)(q) = I(A1∪A2)(q)
F(A1+A2)(q) = F(A1∪A2)(q)

for all q ∈ X1 ∪ X2,

(ii)

⎧
⎨

⎩

T(B1i+B2i )(qr) = T(B1i∪B2i )(qr)
I(B1i+B2i )(qr) = I(B1i∪B2i )(qr)
F(B1i+B2i )(qr) = F(B1i∪B2i )(qr)

for all qr ∈ E1i ∪ E2i ,

(iii)

⎧
⎨

⎩

T(B1i+B2i )(qr) = (TB1i + TB2i )(qr) = TA1(q) ∧ TA2(r)
I(B1i+B2i )(qr) = (IB1i + IB2i )(qr) = IA1(q) ∧ IA2(r)
F(B1i+B2i )(qr) = (FB1i + FB2i )(qr) = FA1(q) ∨ FA2(r)

for all q ∈ X1, r ∈ X2.

Example 2.22 Join of two neutrosophic graph structures G1 and G2 shown in
Fig. 2.14 is defined as G1 + G2 = {A1 + A2, B11 + B21, B12 + B22} and is shown
in the Fig. 2.21.

Theorem 2.10 The join G1 + G2 = (A1 + A2, B11 + B21, B12 + B22, . . . , B1n +
B2n) of two neutrosophic graph structures of the graph structures G∗

1 and G∗
2 is a

neutrosophic graph structure of G∗
1 + G∗

2.

Proof Let q1q2 ∈ E1i + E2i . Here we consider three cases:

Case 1. Whenq1, q2 ∈ X1, then according toDefinition2.38,TA2(q1) = TA2(q2) =
TB2i (q1q2) = 0, IA2(q1) = IA2(q2) = IB2i (q1q2) = 0, FA2(q1) = FA2(q2) =
FB2i (q1q2) = 0, so,

T(B1i+B2i )(q1q2) = TB1i (q1q2) ∨ TB2i (q1q2)
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= TB1i (q1q2) ∨ 0

≤ [TA1(q1) ∧ TA1(q2)] ∨ 0

= [TA1(q1) ∨ 0] ∧ [TA1(q2) ∨ 0]
= [TA1(q1) ∨ TA2(q1)] ∧ [TA1(q2) ∨ TA2(q2)]
= T(A1+A2)(q1) ∧ T(A1+A2)(q2),

I(B1i+B2i )(q1q2) = IB1i (q1q2) ∨ IB2i (q1q2)

= IB1i (q1q2) ∨ 0

≤ [IA1(q1) ∧ IA1(q2)] ∨ 0

= [IA1(q1) ∨ 0] ∧ [IA1(q2) ∨ 0]
= [IA1(q1) ∨ IA2(q1)] ∧ [IA1(q2) ∨ IA2(q2)]
= I(A1+A2)(q1) ∧ I(A1+A2)(q2),

F(B1i+B2i )(q1q2) = FB1i (q1q2) ∧ FB2i (q1q2)

= FB1i (q1q2) ∧ 0

≤ [FA1(q1) ∨ FA1(q2)] ∧ 0

= [FA1(q1) ∧ 0] ∨ [FA1(q2) ∧ 0]
= [FA1(q1) ∧ FA2(q1)] ∨ [FA1(q2) ∧ FA2(q2)]
= F(A1+A2)(q1) ∨ F(A1+A2)(q2),

for q1, q2 ∈ X1 + X2.
Case 2. Whenq1, q2 ∈ X2, then according toDefinition2.38,TA1(q1) = TA1(q2) =

TB1i (q1q2) = 0, IA1(q1) = IA1(q2) = IB1i (q1q2) = 0, FA1(q1) = FA1(q2) =
FB1i (q1q2) = 0, so

T(B1i+B2i )(q1q2) = TB1i (q1q2) ∨ TB2i (q1q2)

= TB2i (q1q2) ∨ 0

≤ [TA2(q1) ∧ TA2(q2)] ∨ 0

= [TA2(q1) ∨ 0] ∧ [TA2(q2) ∨ 0]
= [TA1(q1) ∨ TA2(q1)] ∧ [TA1(q2) ∨ TA2(q2)]
= T(A1+A2)(q1) ∧ T(A1+A2)(q2),

I(B1i+B2i )(q1q2) = IB1i (q1q2) ∨ IB2i (q1q2)

= IB2i (q1q2) ∨ 0

≤ [IA2(q1) ∧ IA2(q2)] ∨ 0

= [IA2(q1) ∨ 0] ∧ [IA2(q2) ∨ 0]
= [IA1(q1) ∨ IA2(q1)] ∧ [IA1(q2) ∨ IA2(q2)]
= I(A1+A2)(q1) ∧ I(A1+A2)(q2),
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F(B1i+B2i )(q1q2) = FB1i (q1q2) ∧ FB2i (q1q2)

= FB2i (q1q2) ∧ 0

≤ [FA2(q1) ∨ FA2(q2)] ∧ 0

= [FA2(q1) ∧ 0] ∨ [FA2(q2) ∧ 0]
= [FA1(q1) ∧ FA2(q1)] ∨ [FA1(q2) ∧ FA2(q2)]
= F(A1+A2)(q1) ∨ F(A1+A2)(q2),

for q1, q2 ∈ X1 + X2.
Case 3. When q1 ∈ X1, q2 ∈ X2, then according to Definition2.38,

TA1(q2) = TA2(q1) = 0, IA1(q2) = IA2(q1) = 0, FA1(q2) = FA2(q1) = 0, so

T(B1i+B2i )(q1q2) = TA1(q1) ∧ TA2(q2)

= [TA1(q1) ∨ 0] ∧ [TA2(q2) ∨ 0]
= [TA1(q1) ∨ TA2(q1)] ∧ [TA2(q2) ∨ TA1(q2)]
= T(A1+A2)(q1) ∧ T(A1+A2)(q2),

I(B1i+B2i )(q1q2) = IA1(q1) ∧ IA2(q2)

= [IA1(q1) ∨ 0] ∧ [IA2(q2) ∨ 0]
= [IA1(q1) ∨ IA2(q1)] ∧ [IA2(q2) ∨ IA1(q2)]
= I(A1+A2)(q1) ∧ I(A1+A2)(q2),

F(B1i+B2i )(q1q2) = FA1(q1) ∨ FA2(q2)

= [FA1(q1) ∧ 0] ∨ [FA2(q2) ∧ 0]
= [FA1(q1) ∧ FA2(q1)] ∨ [FA2(q2) ∧ FA1(q2)]
= F(A1+A2)(q1) ∨ F(A1+A2)(q2),

for q1, q2 ∈ X1 + X2.

All cases are satisfied ∀i ∈ {1, 2, . . . , n}.
Theorem 2.11 If G∗ = (X1 + X2, E11 + E21, E12 + E22, . . . , E1n + E2n) is join of
two graph structures G∗

1 = (X1, E11, E12, . . . , E1n) and G∗
2 = (X2, E21, E22, . . . ,

E2n). Then every strong neutrosophic graph structure G = (A, B1, B2, . . . , Bn) of
G is join of two strong neutrosophic graph structures G1 = (A1, B11, B12, . . . , B1n)

and G2 = (A2, B21, B22, . . . , B2n) of graph structures G∗
1 and G∗

2, respectively.

Proof First we define Ak and Bki for k = 1, 2 and i = 1, 2, . . . , n as:
TAk (q) = TA(q), IAk (q) = IA(q), FAk (q) = FA(q), if q ∈ Xk

TBki (q1q2) = TBi (q1q2), IBki (q1q2) = IBi (q1q2), FBki (q1q2) = FBi (q1q2), if q1q2 ∈
Eki
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Now for q1q2 ∈ Eki , k = 1, 2, i = 1, 2, . . . , n
TBki (q1q2) = TBi (q1q2) = TA(q1) ∧ TA(q2) = TAk (q1) ∧ TAk (q2),
IBki (q1q2) = IBi (q1q2) = IA(q1) ∧ IA(q2) = IAk (q1) ∧ IAk (q2),
FBki (q1q2) = FBi (q1q2) = FA(q1) ∨ TA(q2) = TAk (q1) ∨ TAk (q2),
i.e.
Gk = (Ak, Bk1, Bk2, . . . , Bkn) is a strong neutrosophic graph structure of G∗

k , k = 1,2.
Moreover, G is join of G1 and G2 as shown:
UsingDefinitions2.37 and 2.38, A = A1 ∪ A2 = A1 + A2 and Bi = B1i ∪ B2i =

B1i + B2i , ∀q1q2 ∈ E1i ∪ E2i .
When q1q2 ∈ E1i + E2i (E1i ∪ E2i ), i.e. q1 ∈ X1 and q2 ∈ X2

TBi (q1q2) = TA(q1) ∧ TA(q2) = TAk (q1) ∧ TAk (q2) = T(B1i+B2i )(q1q2),
IBi (q1q2) = IA(q1) ∧ IA(q2) = IAk (q1) ∧ IAk (q2) = I(B1i+B2i )(q1q2),
FBi (q1q2) = FA(q1) ∨ FA(q2) = FAk (q1) ∨ FAk (q2) = F(B1i+B2i )(q1q2),
Calculations are similar when q1 ∈ X2, q2 ∈ X1. It is true when i = 1, 2, . . . , n. This
completes the proof.

2.4 Applications of Neutrosophic Graph Structures

Graph structures are amazing source of graph-theoretical notions to represent the
most prominent relations between objects. But these graph structures do not repre-
sent all real-world relations. Therefore, fuzzy graph structures are important to repre-
sent the relations between objects of uncertain systems existing in nature. However,
graph structures and fuzzy graph structures are failed to depict the most prominent
relations between objects in many real-world phenomenons due to natural existence
of indeterminacyor neutrality. It increases the utility of neutrosophic graph structures.

2.4.1 Detection of Crucial Crimes During Maritime Trade

Waters are very important for trade in whole world but crimes through waters are
increasing day by day. Crimes held during maritime trade are in abundance but
some are very crucial including human trafficking, illegal carrying of weapons, black
money transfer, smuggling of precious metals, drug trafficking and smuggling of rare
plants and animals. Using neutrosophic graph structure, we can easily investigate the
fact that between any two countries which maritime crime is chronic and increasing
rapidly with time. Moreover, we can decide which country is most sensitive for
particular type of maritime crimes. We consider a set X consisting of eight countries.

X={Bangladesh, Malaysia, Singapore, United Arab Emirates, Pakistan, India,
Kenya, Italy}. Let A be the neutrosophic set on X , defined in Table2.1.

In Table2.1, T depicts the importance of that particular country in the world due
to its geographic position, F indicates the degree of its nonimportance in the world,



2.4 Applications of Neutrosophic Graph Structures 119

Table 2.1 Neutrosophic set A of eight countries

Country T I F

Bangladesh 0.8 0.7 0.6

Malaysia 0.7 0.7 0.8

Singapore 0.9 0.5 0.5

United Arab Emirates 1.0 0.5 0.6

Pakistan 0.9 0.5 0.5

India 0.8 0.7 0.7

Kenya 0.7 0.6 0.7

Italy 0.9 0.6 0.5

Table 2.2 Neutrosophic set of crimes between Pakistan and other countries during maritime trade

Type of crime (P, UAE) (P, B) (P, M) (P, S)

Human
trafficking

(0.7, 0.4, 0.5) (0.8, 0.3, 0.4) (0.7, 0.4, 0.2) (0.6, 0.4, 0.2)

Illegal carrying of
weapons

(0.6, 0.3, 0.6) (0.7, 0.3, 0.4) (0.4, 0.5, 0.5) (0.4, 0.3, 0.5)

Black money
transfer

(0.6, 0.3, 0.2) (0.7, 0.5, 0.4) (0.2, 0.4, 0.3) (0.9, 0.2, 0.2)

Smuggling of
precious metals

(0.8, 0.3, 0.2) (0.6, 0.3, 0.3) (0.2, 0.4, 0.3) (0.8, 0.5, 0.5)

Drug trafficking (0.7, 0.3, 0.3) (0.5, 0.4, 0.3) (0.6, 0.5, 0.6) (0.8, 0.4, 0.3)

Smuggling of
rare plants and
animals

(0.3, 0.5, 0.5) (0.4, 0.3, 0.4) (0.4, 0.4, 0.5) (0.2, 0.3, 0.3)

and I expresses, to which extent it is undecided/indeterminate to be beneficial for
the world, geographically.

Let Bangladesh = B,Malaysia =M, Singapore = S, United Arab Emirates = UAE,
Pakistan = P, India = I, Kenya = K, Italy = IT.

In Tables2.2, 2.3, 2.4, 2.5, 2.6, 2.7 and 2.8, we have shown the values of T , I and
F of different crimes for each pair of countries.

Many relations on set X can be defined, let we define six relations on X as:
E1 =Human trafficking, E2 = Illegal carrying ofweapons, E3 =Blackmoney transfer,
E4 = Smuggling of precious metals, E5 = Drug trafficking, E6 = Smuggling of rare
plants and animals, such that (X, E1, E2, E3, E4, E5, E6) is a graph structure. An
element in a relation detects that kind of crime during maritime trade between those
two countries.

As (X, E1, E2, E3, E4, E5, E6) is a graph structure, an element will not be in
more than one relations, so it can appear just once. Therefore, we will consider it an
element of that relation for which its percentage of truth is high, and percentage of
both falsity and indeterminacy is low as compared to other relations.
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Table 2.3 Neutrosophic set of crimes between UAE and other countries during maritime trade

Type of crime (UAE, B) (UAE, M) (UAE, S) (UAE, I)

Human
trafficking

(0.7, 0.3, 0.4) (0.6, 0.2, 0.5) (0.3, 0.2, 0.5) (0.6, 0.4, 0.2)

Illegal carrying of
weapons

(0.5, 0.2, 0.2) (0.5, 0.3, 0.2) (0.4, 0.3, 0.5) (0.4, 0.3, 0.5)

Black money
transfer

(0.6, 0.3, 0.3) (0.6, 0.2, 0.3) (0.6, 0.2, 0.3) (0.6, 0.4, 0.5)

Smuggling of
precious metals

(0.6, 0.2, 0.2) (0.6, 0.3, 0.3) (0.6, 0.3, 0.3) (0.8, 0.3, 0.2)

Drug trafficking (0.6, 0.2, 0.2) (0.5, 0.4, 0.3) (0.7, 0.3, 0.2) (0.7, 0.4, 0.3)

Smuggling of
rare plants and
animals

(0.3, 0.4, 0.4) (0.4, 0.3, 0.4) (0.4, 0.2, 0.5) (0.3, 0.3, 0.3)

Table 2.4 Neutrosophic set of crimes between Bangladesh and other countries during maritime
trade

Type of crime (B, M) (B, S) (B, I) (B, K)

Human
trafficking

(0.6, 0.3, 0.4) (0.8, 0.3, 0.2) (0.5, 0.2, 0.5) (0.6, 0.4, 0.5)

Illegal carrying of
weapons

(0.5, 0.2, 0.5) (0.5, 0.3, 0.2) (0.7, 0.3, 0.5) (0.4, 0.3, 0.5)

Black money
transfer

(0.4, 0.2, 0.2) (0.7, 0.4, 0.3) (0.1, 0.1, 0.2) (0.1, 0.3, 0.4)

Smuggling of
precious metals

(0.4, 0.2, 0.2) (0.6, 0.3, 0.3) (0.2, 0.3, 0.3) (0.2, 0.2, 0.4)

Drug trafficking (0.6, 0.2, 0.2) (0.5, 0.4, 0.3) (0.6, 0.3, 0.5) (0.5, 0.4, 0.4)

Smuggling of
rare plants and
animals

(0.2, 0.3, 0.3) (0.3, 0.2, 0.3) (0.2, 0.1, 0.4) (0.5, 0.2, 0.2)

According to given data, we write the elements in relation to their truth, falsity
and indeterminacy values, resulting sets are neutrosophic sets on E1, E2, E3, E4,
E5, E6, respectively. We can name these sets as B1, B2, B3, B4, B5, B6, respectively.
Let
E1 = {(Bangladesh, Pakistan), (Malaysia, Pakistan), (Bangladesh,
Singapore)},
E2 = {(Pakistan, I ndia)},
E3 = {(Singapore, Pakistan)},
E4 = {(I ndia, Singapore), (United ArabEmirates, I ndia)},
E5 = {(I taly, Pakistan), (I ndia, I taly)},
E6 = {(Kenya, Singapore)}.
And corresponding neutrosophic sets are:
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Table 2.5 Neutrosophic set of crimes between Malaysia and other countries during maritime trade

Type of crime (M, S) (M, I) (M, K) (M, IT)

Human
trafficking

(0.5, 0.3, 0.4) (0.6, 0.2, 0.3) (0.3, 0.2, 0.5) (0.6, 0.4, 0.5)

Illegal carrying of
weapons

(0.6, 0.2, 0.2) (0.5, 0.3, 0.2) (0.4, 0.3, 0.5) (0.4, 0.3, 0.5)

Black money
transfer

(0.6, 0.3, 0.3) (0.2, 0.2, 0.3) (0.2, 0.2, 0.3) (0.2, 0.4, 0.5)

Smuggling of
precious metals

(0.6, 0.2, 0.2) (0.6, 0.3, 0.3) (0.2, 0.3, 0.3) (0.2, 0.2, 0.6)

Drug trafficking (0.5, 0.2, 0.2) (0.5, 0.4, 0.3) (0.4, 0.3, 0.6) (0.7, 0.4, 0.2)

Smuggling of
rare plants and
animals

(0.3, 0.4, 0.4) (0.4, 0.3, 0.4) (0.6, 0.2, 0.2) (0.5, 0.3, 0.3)

Table 2.6 Neutrosophic set of crimes between Singapore and other countries duringmaritime trade

Type of crime (S, I) (S, K) (S, IT) (P, I)

Human
trafficking

(0.5, 0.3, 0.4) (0.3, 0.2, 0.5) (0.3, 0.2, 0.5) (0.6, 0.4, 0.6)

Illegal carrying of
weapons

(0.7, 0.4, 0.5) (0.5, 0.3, 0.2) (0.4, 0.3, 0.5) (0.8, 0.2, 0.4)

Black money
transfer

(0.5, 0.3, 0.4) (0.6, 0.2, 0.3) (0.6, 0.2, 0.3) (0.7, 0.4, 0.5)

Smuggling of
precious metals

(0.8, 0.3, 0.7) (0.6, 0.3, 0.3) (0.6, 0.3, 0.3) (0.6, 0.2, 0.4)

Drug trafficking (0.7, 0.3, 0.4) (0.5, 0.4, 0.3) (0.6, 0.3, 0.2) (0.8, 0.4, 0.4)

Smuggling of
rare plants and
animals

(0.7, 0.5, 0.6) (0.4, 0.3, 0.4) (0.6, 0.2, 0.5) (0.7, 0.3, 0.3)

B1 = {((B, P), 0.8, 0.2, 0.2),((M, P), 0.7, 0.4, 0.2),((B, S), 0.8, 0.3, 0.2)},
B2 = {((P, I ), 0.8, 0.2, 0.4)},
B3 = {((S, P), 0.9, 0.2, 0.2), },
B4 = {((I, S), 0.8, 0.3, 0.4),((U AE, I ), 0.8, 0.3, 0.2)},
B5 = {((I T, P), 0.9, 0.3, 0.3),((I, I T ), 0.8, 0.3, 0.3)},
B6 = {((K , S), 0.7, 0.2, 0.4)}.

Clearly, (A, B1, B2, B3, B4, B5, B6) is a neutrosophic graph structure as shown
in Fig. 2.22.

In neutrosophic graph structure shown in Fig. 2.22, every edge detects most fre-
quent crime between adjacent countries during maritime trade. For instance, most
frequent maritime crime between Pakistan and Singapore is black money transfer, its
strength is 90%, weakness is 20% and indeterminacy is 20%. We can also note that
for relation human trafficking, vertex Pakistan has highest vertex degree, it means
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Table 2.7 Neutrosophic set of crimes between Italy and other countries during maritime trade

Type of crime (IT, P) (IT, UAE) (IT, B) (IT, I)

Human
trafficking

(0.5, 0.3, 0.4) (0.3, 0.2, 0.5) (0.3, 0.2, 0.5) (0.6, 0.4, 0.6)

Illegal carrying of
weapons

(0.8, 0.3, 0.3) (0.6, 0.3, 0.2) (0.4, 0.3, 0.5) (0.7, 0.3, 0.5)

Black money
transfer

(0.6, 0.3, 0.3) (0.5, 0.2, 0.3) (0.2, 0.2, 0.3) (0.5, 0.4, 0.5)

Smuggling of
precious metals

(0.7, 0.3, 0.3) (0.6, 0.3, 0.3) (0.2, 0.3, 0.3) (0.7, 0.3, 0.6)

Drug trafficking (0.9, 0.3, 0.3) (0.6, 0.4, 0.3) (0.7, 0.3, 0.5) (0.8, 0.3, 0.3)

Smuggling of
rare plants and
animals

(0.3, 0.4, 0.4) (0.4, 0.3, 0.4) (0.6, 0.2, 0.5) (0.7, 0.3, 0.3)

Table 2.8 Neutrosophic set of crimes between Kenya and other countries during maritime trade

Type of crime (K, P) (K, UAE) (K, I) (K, IT)

Human
trafficking

(0.5, 0.3, 0.4) (0.6, 0.2, 0.5) (0.5, 0.2, 0.5) (0.6, 0.4, 0.5)

Illegal carrying of
weapons

(0.6, 0.2, 0.5) (0.5, 0.3, 0.4) (0.5, 0.3, 0.5) (0.4, 0.3, 0.5)

Black money
transfer

(0.5, 0.3, 0.3) (0.5, 0.2, 0.3) (0.5, 0.2, 0.3) (0.5, 0.4, 0.5)

Smuggling of
precious metals

(0.4, 0.2, 0.2) (0.6, 0.3, 0.3) (0.6, 0.3, 0.3) (0.4, 0.2, 0.4)

Drug trafficking (0.7, 0.2, 0.2) (0.5, 0.4, 0.3) (0.5, 0.3, 0.5) (0.8, 0.4, 0.2)

Smuggling of
rare plants and
animals

(0.3, 0.4, 0.4) (0.7, 0.3, 0.4) (0.6, 0.2, 0.4) (0.7, 0.3, 0.3)

Pakistan is most sensitive country for human trafficking. Moreover, according to our
neutrosophic graph structure, most frequent crime is human trafficking. It means
that navy and maritime forces of these eight countries should take action to control
human trafficking.

2.4.2 Decision-Making of Prominent Relationships

Among the countries of this world, various types of relationships exist, for example
friendship, rival or enemy, religious affection, trade, political and military. Between
any two countries, all relationships are not of same strength. Some relationships are
comparatively stronger than other relationships. In general, it is difficult and time
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Fig. 2.22 Neutrosophic graph structure showing most crucial maritime crime between any two
countries

consuming to judge all relationships among the countries and to decide the most
prominent one. But through neutrosophic graph structure, we can represent all these
in easiest way and can be judged even in a single glance on graph. Moreover, we
can be aware of the status of relationship, that is, what is percentage of its strength,
weakness and in how much percentage it is indeterminate. We can also examine
which pair of countries are in same kind of relationship. We consider a set X of eight
countries.

X = {America, Russia,China, Japan, Pakistan, I ndia, I ran, Saudi
Arabia}. Let A be the neutrosophic set on X , defined in Table2.9.

In Table2.9, T indicates positive impact (strength) of a particular country for
whole world, F indicates negative impact (weakness), and I expresses that in what
percentage or magnitude that country’s position is undecided or indeterminate for
global world. Let we denote the countries with alphabets: A = America, R = Russia,
CH = China, J = Japan, P = Pakistan, I = India, IR = Iran, S = Saudi Arabia.

In Tables2.10, 2.11, 2.12, 2.13, 2.14 and 2.15, we have shown the T , I and F
values of different relationships for each pair of countries.
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Table 2.9 Neutrosophic set A of a few countries on globe

Country T I F

America 0.9 0.3 0.2

Russia 0.7 0.4 0.3

China 0.8 0.4 0.4

Japan 0.8 0.5 0.4

Pakistan 0.7 0.6 0.7

India 0.7 0.8 0.6

Iran 0.7 0.7 0.6

Saudi Arabia 0.6 0.9 0.7

Table 2.10 Neutrosophic set of relationships between America and other countries

Type of
relation

(A, R) (A, CH) (A, P) (A, I) (A, IR)

Friendship (0.0, 0.2, 0.3) (0.2, 0.3, 0.4) (0.2, 0.1, 0.4) (0.5, 0.3, 0.5) (0.1, 0.3, 0.5)

Rival or
enemy

(0.7, 0.1, 0.1) (0.8, 0.2, 0.1) (0.3, 0.2, 0.4) (0.3, 0.2, 0.4) (0.5, 0.2, 0.4)

Religious
affection

(0.4, 0.2, 0.2) (0.1, 0.3, 0.2) (0.1, 0.1, 0.2) (0.1, 0.3, 0.4) (0.1, 0.1, 0.2)

Trade (0.3, 0.1, 0.1) (0.5, 0.2, 0.2) (0.1, 0.2, 0.2) (0.1, 0.1, 0.5) (0.6, 0.1, 0.3)

Politics (0.6, 0.1, 0.1) (0.4, 0.3, 0.2) (0.6, 0.1, 0.1) (0.7, 0.3, 0.2) (0.7, 0.3, 0.1)

Military (0.2, 0.3, 0.3) (0.3, 0.2, 0.3) (0.5, 0.1, 0.4) (0.6, 0.2, 0.2) (0.2, 0.3, 0.2)

Table 2.11 Neutrosophic set of relationships between Russia and other countries

Type of
relation

(R, CH) (R, J) (R, P) (R, I) (R, IR)

Friendship (0.5, 0.2, 0.3) (0.5, 0.2, 0.3) (0.3, 0.3, 0.4) (0.4, 0.3, 0.3) (0.1, 0.1, 0.5)

Rival or
enemy

(0.6, 0.2, 0.2) (0.6, 0.2, 0.2) (0.3, 0.3, 0.3) (0.2, 0.2, 0.4) (0.4, 0.1, 0.3)

Religious
affection

(0.1, 0.1, 0.4) (0.2, 0.1, 0.3) (0.1, 0.1, 0.4) (0.4, 0.4, 0.3) (0.2, 0.1, 0.5)

Trade (0.4, 0.1, 0.3) (0.4, 0.2, 0.3) (0.4, 0.1, 0.4) (0.5, 0.2, 0.3) (0.4, 0.1, 0.3)

Politics (0.7, 0.3, 0.4) (0.7, 0.1, 0.3) (0.4, 0.1, 0.3) (0.5, 0.2, 0.3) (0.7, 0.4, 0.5)

Military (0.2, 0.1, 0.4) (0.4, 0.1, 0.3) (0.7, 0.1, 0.3) (0.7, 0.2, 0.4) (0.2, 0.1, 0.3)

We can define many relations on set X , let we define six relations on X as:
E1 = Friendship, E2 = Rival or Enemy, E3 = Religious affection, E4 = Trade, E5 =
Politics, E6 =Military, such that (X, E1, E2, E3, E4, E5, E6) is a graph structure. An
element in a relation indicates that these two countries have a particular relationship.
As (X, E1, E2, E3, E4, E5, E6) is a graph structure, so an element will not be in
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Table 2.12 Neutrosophic set of relationships between China and other countries

Type of
relation

(CH, J) (CH, P) (CH, I) (CH, IR) (CH, S)

Friendship (0.5, 0.2, 0.3) (0.7, 0.1, 0.1) (0.2, 0.3, 0.6) (0.1, 0.4, 0.6) (0.2, 0.4, 0.6)

Rival or
enemy

(0.6, 0.2, 0.2) (0.1, 0.1, 0.7) (0.7, 0.2, 0.2) (0.3, 0.3, 0.6) (0.2, 0.3, 0.5)

Religious
affection

(0.1, 0.1, 0.4) (0.3, 0.3, 0.6) (0.4, 0.4, 0.3) (0.2, 0.2, 0.5) (0.1, 0.4, 0.6)

Trade (0.1, 0.1, 0.3) (0.6, 0.1, 0.1) (0.4, 0.2, 0.4) (0.7, 0.1, 0.3) (0.5, 0.4, 0.2)

Politics (0.8, 0.4, 0.4) (0.2, 0.4, 0.3) (0.6, 0.2, 0.2) (0.7, 0.2, 0.2) (0.6, 0.4, 0.3)

Military (0.4, 0.2, 0.3) (0.6, 0.2, 0.3) (0.1, 0.4, 0.2) (0.2, 0.4, 0.6) (0.1, 0.4, 0.6)

Table 2.13 Neutrosophic set of relationships between Japan and other countries

Type of
relation

(J, A) (J, P) (J, I) (J, IR) (J, S)

Friendship (0.5, 0.3, 0.4) (0.2, 0.3, 0.6) (0.3, 0.4, 0.3) (0.2, 0.5, 0.6) (0.1, 0.4, 0.6)

Rival or
enemy

(0.7, 0.3, 0.3) (0.3, 0.4, 0.6) (0.2, 0.3, 0.5) (0.2, 0.4, 0.4) (0.3, 0.4, 0.4)

Religious
affection

(0.1, 0.3, 0.3) (0.1, 0.4, 0.5) (0.4, 0.4, 0.5) ( 0.1, 0.5, 0.6) ( 0.1, 0.4, 0.6)

Trade (0.1, 0.3, 0.4) (0.7, 0.3, 0.2) (0.7, 0.2, 0.1) (0.6, 0.4, 0.6) (0.6, 0.5, 0.7)

Politics (0.8, 0.3, 0.3) (0.6, 0.4, 0.2) (0.6, 0.5, 0.2) ( 0.6, 0.3, 0.1) (0.4, 0.3, 0.4)

Military (0.2, 0.3, 0.3) (0.4, 0.4, 0.4) (0.5, 0.4, 0.3) (0.2, 0.4, 0.6) (0.1, 0.4, 0.6)

Table 2.14 Neutrosophic set of relationships between Saudi Arabia and other countries

Type of
relation

(I, IR) (S, I) (S, IR) (S, A) (S, R)

Friendship (0.2, 0.4, 0.4) (0.1, 0.7, 0.6) (0.2, 0.4, 0.6) (0.4, 0.3, 0.6) (0.2, 0.2, 0.6)

Rival or
enemy

(0.6, 0.3, 0.6) (0.5, 0.4, 0.5) (0.5, 0.4, 0.4) (0.4, 0.2, 0.5) (0.4, 0.2, 0.4)

Religious
affection

(0.1, 0.4, 0.6) (0.3, 0.4, 0.6) (0.6, 0.4, 0.2) (0.1, 0.1, 0.7) (0.2, 0.1, 0.6)

Trade (0.4, 0.4, 0.5) (0.1, 0.4, 0.6) (0.3, 0.4, 0.6) (0.2, 0.1, 0.6) (0.1, 0.1, 0.3)

Politics (0.7, 0.4, 0.2) (0.3, 0.4, 0.6) (0.6, 0.4, 0.6) (0.6, 0.2, 0.3) (0.6, 0.4, 0.6)

Military (0.2, 0.5, 0.6) (0.1, 0.4, 0.6) (0.2, 0.3, 0.7) (0.1, 0.1, 0.7) (0.2, 0.1, 0.5)

more than one relation. So, we will put it in that relation for which percentage of
truth is high, percentage of both falsity and indeterminacy is low as compared to
other relationships, using above-mentioned data.

Wewrite the elements in relationswith their truth, falsity and indeterminacy values
according to given data, resulting sets are neutrosophic sets on E1, E2, E3, E4, E5,
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Table 2.15 Neutrosophic set of relationships between Pakistan and other countries

Type of relation (P, I) (P, IR) (P, S)

Friendship (0.1, 0.4, 0.6) (0.5, 0.4, 0.5) (0.5, 0.1, 0.1)

Rival or enemy (0.7, 0.1, 0.1) (0.4, 0.4, 0.5) (0.3, 0.6, 0.6)

Religious affection (0.4, 0.4, 0.6) (0.7, 0.4, 0.5) (0.6, 0.1, 0.1)

Trade (0.3, 0.3, 0.6) (0.4, 0.4, 0.5) (0.3, 0.2, 0.6)

Politics (0.6, 0.2, 0.2) (0.5, 0.4, 0.5) (0.2, 0.4, 0.5)

Military (0.1, 0.2, 0.6) (0.2, 0.4, 0.6) (0.1, 0.4, 0.6)

E6, respectively. We can name these sets as B1, B2, B3, B4, B5, B6, respectively. Let
B1 = {((P,CH), 0.7, 0.1, 0.1)},
B2 = {((P, I ), 0.7, 0.1, 0.1), ((A, R), 0.7, 0.1, 0.1), ((A,CH), 0.8, 0.2, 0.1),
((I,CH), 0.7, 0.2, 0.2)},
B3 = {((P, S), 0.6, 0.1, 0.1), ((P, I R), 0.7, 0.4, 0.5)},
B4 = {((P, J ), 0.7, 0.3, 0.2), ((I, J ), 0.7, 0.2, 0.1)},
B5 = {((P, A), 0.6, 0.1, 0.1), ((A, I ), 0.7, 0.3, 0.2), ((A, S), 0.6, 0.2, 0.3),
((A, I R), 0.7, 0.3, 0.1), ((A, J ), 0.8, 0.3, 0.3)},
B6 = {((P, R), 0.7, 0.1, 0.3), ((R, I ), 0.7, 0.2, 0.4)}.

Clearly, (A, B1, B2, B3, B4, B5, B6) is a neutrosophic graph structure as shown in
Fig. 2.23.

In neutrosophic graph structure shown in Fig. 2.23, every edge indicates the most
prominent relationship of adjacent vertices(countries), for example most prominent
relationship between Pakistan and China is friendship, it is 70% strong, 10% weak
and 10% indeterminate. It can be noted that for the relation politics, vertex America
has highest degree, it shows that America is the most prominent country for having
political relationship with other countries in A. Further, we can tell that China and
India, America and Russia, Pakistan and India have common relationship, that is,
they are rival or enemy of each other. Moreover, according to our neutrosophic graph
structure most frequent relation is politics, it means that among these eight countries
politics is dominating relationship.

This neutrosophic graph structure depicts most prominent relationships among
some elements (countries) of A. By taking large neutrosophic graph structure, most
dominating relationships among all the countries of A can be detected. On the similar
basis, we can make a neutrosophic graph structure for all countries across the world,
in order to find the status and strength of prominent relationships among them. From
neutrosophic graph structure, we can also determine that which pair of countries
have common relationships. Further, we can find which country is most prominent
for having a particular kind of relationship with other countries. Most frequent rela-
tionship in the neutrosophic graph structure will indicate that this relationship is
prevailing in the world. So, using neutrosophic graph structure, it is quite easy to
judge, in which direction this world is moving? whether it is moving towards peace
or war/Cold War.



2.4 Applications of Neutrosophic Graph Structures 127

P

CH

I
S

A

IR

J

R

Friendship

Rival or Enemy

Religious affection

Trade

Military

Rival or Enemy

Rival or Enemy

Rival or Enemy

Religious affection

P
ol
it
ic
s

Politics

P
ol
it
ic
s

Politics

(0.7, 0.1, 0.1)

(0.7, 0.1, 0.1)
(0.7, 0.4, 0.5)

(0.7, 0.3, 0.1)

(0.6, 0.1, 0.1)

(0
.8
, 0
.3
, 0
.3
)

(0.6, 0.1, 0.1)
(0
.6
, 0
.2
, 0
.3
)

(0.7, 0.3, 0.2)

(0.8, 0.2, 0.1)

(0.7, 0.2, 0.2)

(0.7, 0.2, 0.4)

(0.7, 0.1, 0.1)

(0.7, 0.3, 0.2
)

Politics
Trade

(0.7, 0.2, 0.1)

Military
(0.7, 0.1, 0.3)

Fig. 2.23 Neutrosophic graph structure showing most prominent relationship between any two
vertices(countries)

2.4.3 Detection of Most Frequent Smuggling

Smuggling on the seaports are increasing rapidly with time. There are 4,764 seaports
on Atlantic ocean, Arctic ocean, Indian ocean, Pacific ocean, etc. These seaports
are very useful and advantageous for import and export of different types of goods
through out the world. Besides, there are also many disadvantages of these seaports.
Crimes held on seaports are in abundance, but Smuggling of different kinds like
human smuggling, weapons smuggling, black money smuggling, gold and diamond
smuggling, smuggling of ivory and drug smuggling are most alarming. A lot of time
and labour is required to collect and manipulate the data from all seaports to judge
that which type of smuggling is frequent. But using neutrosophic graph structure, we
can easily investigate the fact that between any two seaports which type of smuggling
is chronic and increasing violently. Moreover, we can decide which seaport is most
sensitive for smuggling, globally and need to be focused by security teams. We
consider a set X consisting of eight seaports.

X= {Chalna, Penang, Singapore, Dubai, Karachi, Mumbai, Mombasa, Gioia
Tauro}. Let A be the neutrosophic set on X , defined in Table 2.16.

In Table 2.16, T depicts the importance of that particular seaport in the world due
to its geographic position, F indicates the degree of its nonimportance in the world,
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Table 2.16 Neutrosophic set A of eight seaports

Country T I F

Chalna 0.7 0.6 0.5

Penang 0.6 0.6 0.7

Singapore 0.8 0.4 0.4

Dubai 0.9 0.4 0.5

Karachi 0.8 0.4 0.4

Mumbai 0.7 0.6 0.6

Mombasa 0.6 0.5 0.6

Gioia Tauro 0.8 0.5 0.4

Table 2.17 Neutrosophic set of smuggling between Karachi and other seaports

Type of
smuggling

(K, DU) (K, C) (K, P) (K, S)

Human
smuggling

(0.6, 0.3, 0.4) (0.7, 0.2, 0.3) (0.6, 0.3, 0.1) (0.5, 0.3, 0.1)

Weapons
smuggling

(0.5, 0.2, 0.5) (0.6, 0.2, 0.3) (0.3, 0.4, 0.4) (0.3, 0.2, 0.4)

Black money
smuggling

(0.5, 0.2, 0.1) (0.6, 0.4, 0.3) (0.1, 0.3, 0.2) (0.8, 0.1, 0.1)

Gold and
diamond
smuggling

(0.7, 0.2, 0.1) (0.5, 0.2, 0.2) (0.1, 0.3, 0.2) (0.7, 0.4, 0.4)

Drug smuggling (0.6, 0.2, 0.2) (0.4, 0.3, 0.2) (0.5, 0.4, 0.5) (0.7, 0.3, 0.2)

Smuggling of
ivory

(0.2, 0.4, 0.4) (0.3, 0.2, 0.3) (0.3, 0.3, 0.4) (0.1, 0.2, 0.2)

and I expresses, to which extent it is undecided/indeterminate to be beneficial for
the world, geographically.

Let Chalna = C, Pengang = P, Singapore = S, Dubai = DU, Karachi = K, Mumbai
= MU, Mombasa = MO, Gioia Tauro = GT.

In Tables2.17, 2.18, 2.19, 2.20, 2.21, 2.22 and 2.23, we have shown the values of
T , I and F of different smuggling for each pair of seaports.

Many relations on set X can be defined, let we define six relations on X as:
E1 = Human smuggling, E2 = Weapons smuggling, E3 = Black money smuggling,
E4 = Gold and diamond smuggling, E5 = Drug smuggling, E6 = Smuggling of ivory,
such that (X, E1, E2, E3, E4, E5, E6) is a graph structure. An element in a relation
detects that kind of smuggling between those two seaports.

As (X, E1, E2, E3, E4, E5, E6) is a graph structure, an element will not be in
more than one relations, so it can appear just once. Therefore, we will consider it an
element of that relation for which its percentage of truth is high, and percentage of
both falsity and indeterminacy is low as compared to other relations.



2.4 Applications of Neutrosophic Graph Structures 129

Table 2.18 Neutrosophic set of smuggling between Dubai and other seaports

Type of
smuggling

(DU, C) (DU, P) (DU, S) (DU, MU)

Human
smuggling

(0,6, 0.2, 0.3) (0.5, 0.1, 0.4) (0.2, 0.1, 0.4) (0.5, 0.3, 0.1)

Weapons
smuggling

(0.4, 0.1, 0.1) (0.4, 0.2, 0.1) (0.3, 0.2, 0.4) (0.3, 0.2, 0.4)

Black money
smuggling

(0.5, 0.2, 0.2) (0.5, 0.1, 0.2) (0.5, 0.1, 0.2) (0.5, 0.3, 0.4)

Gold and
diamond
smuggling

(0.5, 0.1, 0.1) (0.5, 0.2, 0.2) (0.5, 0.2, 0.2) (0.7, 0.2, 0.1)

Drug smuggling (0.5, 0.1, 0.1) (0.4, 0.3, 0.2) (0.6, 0.2, 0.1) (0.6, 0.3, 0.2)

Smuggling of
ivory

(0.2, 0.3, 0.3) (0.3, 0.2, 0.3) (0.3, 0.1, 0.4) (0.2, 0.2, 0.2)

Table 2.19 Neutrosophic set of smuggling between Chalna and other seaports

Type of
smuggling

(C, P) (C, S) (C, MU) (C, MO)

Human
smuggling

(0.5, 0.2, 0.3) (0.7, 0.2, 0.1) (0.4, 0.1, 0.4) (0.5, 0.3, 0.4)

Weapons
smuggling

(0.4, 0.1, 0.4) (0.4, 0.2, 0.1) (0.6, 0.2, 0.4) (0.3, 0.2, 0.4)

Black money
smuggling

(0.4, 0.2, 0.2) (0.7, 0.4, 0.3) (0.1, 0.1, 0.2) (0.1, 0.3, 0.4)

Gold and
diamond
smuggling

(0.3, 0.1, 0.1) (0.5, 0.2, 0.2) (0.1, 0.2, 0.2) (0.1, 0.1, 0.3)

Drug smuggling (0.5, 0.1, 0.1) (0.4, 0.3, 0.2) (0.5, 0.2, 0.4) (0.4, 0.3, 0.3)

Smuggling of
ivory

(0.2, 0.3, 0.3) (0.3, 0.2, 0.3) (0.2, 0.1, 0.4) (0.5, 0.2, 0.2)

According to given data, we write the elements in relations with their truth, falsity
and indeterminacy values, so the resulting sets are neutrosophic sets on E1, E2,
E3, E4, E5, E6, respectively. We can name these sets as B1, B2, B3, B4, B5, B6,
respectively. Let
E1 = {(Chalna, Karachi), (Penang, Karachi), (Chalna, Singapore)},
E2 = {(Karachi,Mumbai)},
E3 = {(Singapore, Karachi)},
E4 = {(Mumbai, Singapore), (Dubai,Mumbai)},
E5 = {(GioiaT auro, Karachi), (Mumbai,Gioia Tauro)},
E6 = {(Mombasa, Singapore)}.
And corresponding neutrosophic sets are:
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Table 2.20 Neutrosophic set of smuggling between Penang and other seaports

Type of
smuggling

(P, S) (P, MU) (P, MO) (P, GT)

Human
smuggling

(0.4, 0.2, 0.3) (0.5, 0.1, 0.2) (0.2, 0.1, 0.4) (0.5, 0.3, 0.4)

Weapons
smuggling

(0.5, 0.1, 0.1) (0.4, 0.2, 0.1) (0.3, 0.2, 0.4) (0.3, 0.2, 0.4)

Black money
smuggling

(0.5, 0.2, 0.2) (0.1, 0.1, 0.2) (0.1, 0.1, 0.2) (0.1, 0.3, 0.4)

Gold and
diamond
smuggling

(0.5, 0.1, 0.1) (0.5, 0.2, 0.2) (0.1, 0.2, 0.2) (0.1, 0.1, 0.5)

Drug smuggling (0.4, 0.1, 0.1) (0.4, 0.3, 0.2) (0.3, 0.2, 0.5) (0.6, 0.3, 0.1)

Smuggling of
ivory

(0.2, 0.3, 0.3) (0.3, 0.2, 0.3) (0.5, 0.1, 0.1) (0.4, 0.2, 0.2)

Table 2.21 Neutrosophic set of smuggling between Singapore and other seaports

Type of
smuggling

(S, MU) (S, MO) (S, GT) (K, MU)

Human
smuggling

(0.4, 0.2, 0.3) (0.2, 0.1, 0.4) (0.2, 0.1, 0.4) (0.5, 0.3, 0.5)

Weapons
smuggling

(0.6, 0.3, 0.4) (0.4, 0.2, 0.3) (0.3, 0.2, 0.4) (0.7, 0.1, 0.3)

Black money
smuggling

(0.4, 0.2, 0.3) (0.5, 0.1, 0.3) (0.5, 0.1, 0.2) (0.6, 0.3, 0.4)

Gold and
diamond
smuggling

(0.7, 0.2, 0.6) (0.5, 0.2, 0.4) (0.5, 0.2, 0.2) (0.5, 0.1, 0.3)

Drug smuggling (0.6, 0.2, 0.3) (0.4, 0.3, 0.4) (0.5, 0.2, 0.1) (0.7, 0.3, 0.3)

Smuggling of
ivory

(0.6, 0.4, 0.5) (0.6, 0.1, 0.3) (0.5, 0.1, 0.4) (0.6, 0.2, 0.2)

B1 = {((C, K ), 0.7, 0.2, 0.3),((P, K ), 0.6, 0.3, 0.1),((C, S), 0.7, 0.2, 0.1)},
B2 = {((K ,MU ), 0.7, 0.1, 0.3)},
B3 = {((S, K ), 0.8, 0.1, 0.1), },
B4 = {((MU, S), 0.7, 0.2, 0.3), ((DU,MU ), 0.7, 0.2, 0.1)},
B5 = {((GT, K ), 0.8, 0.2, 0.2), ((MU,GT ), 0.7, 0.2, 0.2)},
B6 = {((MO, S), 0.6, 0.1, 0.3)}.

Clearly, (A, B1, B2, B3, B4, B5, B6) is a neutrosophic graph structure as shown
in Fig. 2.24.

In neutrosophic graph structure shown in Fig. 2.24, every edge detects most fre-
quent smuggling between adjacent seaports. For instance, most frequent smuggling
betweenKarachi and Singapore is blackmoney smuggling, its strength is 80%,weak-
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Table 2.22 Neutrosophic set of smuggling between Gioia Tauro and other seaports

Type of
smuggling

(GT, K) (GT, DU) (GT, C) (GT, MU)

Human
smuggling

(0.4, 0.2, 0.3) (0.2, 0.1, 0.4) (0.2, 0.1, 0.4) (0.5, 0.3, 0.5)

Weapons
smuggling

(0.7, 0.2, 0.2) (0.5, 0.2, 0.1) (0.3, 0.2, 0.4) (0.6, 0.2, 0.4)

Black money
smuggling

(0.5, 0.2, 0.2) (0.4, 0.1, 0.2) (0.1, 0.1, 0.2) (0.4, 0.3, 0.4)

Gold and
diamond
smuggling

(0.6, 0.2, 0.2) (0.5, 0.2, 0.2) (0.1, 0.2, 0.2) (0.6, 0.2, 0.5)

Drug smuggling (0.8, 0.2, 0.2) (0.5, 0.3, 0.2) (0.6, 0.2, 0.4) (0.7, 0.2, 0.2)

Smuggling of
ivory

(0.2, 0.3, 0.3) (0.3, 0.2, 0.3) (0.5, 0.1, 0.4) (0.6, 0.2, 0.2)

Table 2.23 Neutrosophic set of smuggling between Mombasa and other seaports

Type of
smuggling

(MO, K) (MO, DU) (MO, MU) (MO, GT)

Human
smuggling

(0.4, 0.2, 0.3) (0.5, 0.1, 0.4) (0.4, 0.1, 0.4) (0.5, 0.3, 0.4)

Weapons
smuggling

(0.5, 0.1, 0.4) (0.4, 0.2, 0.3) (0.4, 0.2, 0.4) (0.3, 0.2, 0.4)

Black money
smuggling

(0.4, 0.2, 0.2) (0.4, 0.1, 0.2) (0.4, 0.1, 0.2) (0.4, 0.3, 0.4)

Gold and
diamond
smuggling

(0.3, 0.1, 0.1) (0.5, 0.2, 0.2) (0.5, 0.2, 0.2) (0.3, 0.1, 0.3)

Drug smuggling (0.6, 0.1, 0.1) (0.4, 0.3, 0.2) (0.4, 0.2, 0.4) (0.6, 0.3, 0.1)

Smuggling of
ivory

(0.2, 0.3, 0.3) (0.6, 0.2, 0.3) (0.5, 0.1, 0.3) (0.6, 0.2, 0.2)

ness is 10% and indeterminacy is 10%. We can also note that for relation human
smuggling, vertex Karachi has highest vertex degree, it means Karachi is most sen-
sitive seaport for human smuggling. Moreover, according to our neutrosophic graph
structure most frequent smuggling is human smuggling. It means that at these eight
seaports, security forces should take action to control human smuggling.

This neutrosophic graph structure detects most frequent smuggling between some
seaports of set A. By making a neutrosophic graph structure of all seaports, we can
examine between any two seaports, which kind of smuggling ismost frequent, we can
also tell that which seaport is most sensitive for particular kind of smuggling. Further,
we may get information about violently increasing smuggling through seaports in
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Fig. 2.24 Neutrosophic graph structure showing most frequent smuggling between any two sea-
ports

the whole world. That is why neutrosophic graph structures can be very helpful for
security forces to overcome the smuggling at seaports.

We now elaborate general procedure of our applications in the following Algo-
rithm.

Algorithm 2.4.1

Step 1. Input the set X = {A1, A2, . . . , An} of vertices and the neutrosophic vertex
set A defined on X .
Step 2. Input neutrosophic set of relationships or smuggling of a vertex with other
vertices and compute T , I and F of each pair of vertices using:
T (Ai A j ) ≤ min(T (Ai ), T (A j )), I (Ai A j ) ≤ min(I (Ai ), I (A j )),
F(Ai A j ) ≤ max(F(Ai ), F(A j )).
Step 3. Repeat Step 2 for all vertices in X .
Step 4. Define relations E1, E2, . . . , En on set X such that (X, E1, E2, . . . , En) is
a graph structure.
Step 5. Put an element in that relation for which value of T is high, and values of
I and F are low as compared to other relations.
Step 6. Write all elements of relations with their T , I and F values, resulting rela-
tions B1, B2, . . . , Bn are neutrosophic sets on E1, E2, E3, . . . , En , respectively,
and (A, B1, B2, . . . , Bn) is a neutrosophic graph structure.



Chapter 3
Certain Bipolar Neutrosophic Graphs

In this chapter, we present a concise review of bipolar neutrosophic sets. We
present operations on bipolar single-valued neutrosophic graphs (bipolar neutro-
sophic graphs, for short). We discuss certain bipolar neutrosophic graphs, including
totally regular bipolar neutrosophic graphs, totally irregular bipolar single-valued
neutrosophic graphs and edge regular bipolar neutrosophic graphs. We study domi-
nation in bipolar neutrosophic graphs.We present bipolar neutrosophic planar graphs
and bipolar neutrosophic line graphs. We also describe some applications of bipolar
neutrosophic graphs. This chapter is due to [19, 25].

3.1 Introduction

In 1994, Zhang [201] introduced the notion of bipolar fuzzy sets (YinYang bipolar
fuzzy sets, Yin represents the negative side while yang represents the positive side in
a system) and relations. Bipolar fuzzy sets are extension of fuzzy sets whose mem-
bership degree ranges [−1, 1]. In a bipolar fuzzy set, if the degree of membership is
zero, thenwe say the element is unrelated to the corresponding property;membership
degree (0, 1] indicates that the object satisfies a certain property,whereas themember-
ship degree [−1, 0) indicates that the element satisfies the implicit counter property.
Positive information represents what is considered to be possible, and negative infor-
mation represents what is granted to be impossible. Actually, a variety of decision-
making problems are based on two-sided bipolar judgements on a positive side and a
negative side. Smarandache [163] incorporated indeterminacy-membership function
as independent component and defined neutrosophic set on three components truth,
indeterminacy and falsehood. However, from practical point of view, Wang et al.
[172] defined single-valued neutrosophic sets where degree of truth-membership,
indeterminacy-membership and falsity-membership belong to [0, 1]. Deli et al. [74]
extended the ideas of bipolar fuzzy sets and neutrosophic sets to bipolar neutro-
sophic sets (bipolar single-valued neutrosophic sets) and studied its operations and
applications in decision-making problems.

© Springer Nature Singapore Pte Ltd. 2018
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Definition 3.1 A bipolar fuzzy set on a nonempty set X has the form C={(y, μ+(y),
μ−(y)) : y ∈ X} where μ+ : X → [0, 1] and μ− : X → [−1, 0] are mappings. The
positive membership value μ+(y) represents the strength of truth or satisfaction of
an element y to a certain property corresponding to bipolar fuzzy set C , and μ−(y)
denotes the strength of satisfaction of an element y to some counter property of
bipolar fuzzy set C . If μ+(y) �= 0 and μ−(y) = 0, it is the situation when y has only
truth satisfaction degree for property C . If μ−(y) �= 0 and μ+(y) = 0, it is the case
that y is not satisfying the property of C but satisfying the counter property to C . It
is possible for y that μ+(y) �= 0 and μ−(y) �= 0 when y satisfies the property of C
as well as its counter property in some part of X .

Definition 3.2 A bipolar single-valued neutrosophic set on a nonempty set X is an
object of the form

C = {(y, T+
C (y), I+

C (y), F+
C (y), T−

C (y), I−
C (y), F−

C (y)) : y ∈ X}

where T+
C , I+

C , F+
C : X → [0, 1] and T−

C , I−
C , F−

C : X → [−1, 0] are mappings. The
positive values T+

C (y), I+
C (y), F+

C (y) denote respectively the truth-, indeterminacy-
and falsity-membership degrees of an element y ∈ X , whereas T−

C (y), I−
C (y),

F−
C (y) denote the implicit counter property of the truth-, indeterminacy- and falsity-

membership degrees of the element y ∈ X corresponding to the bipolar neutrosophic
set C .

Definition 3.3 A bipolar single-valued neutrosophic relation on a nonempty set X
is a bipolar neutrosophic subset of X × X of the form

D = {(yz, T+
D (yz), I+

D (yz), F
+
D (yz), T

−
D (yz), I−

D (yz), F
−
D (yz)) : yz ∈ X × X}

where T+
D , I+

D , F
+
D , T

−
D , I−

D , F
−
D are defined by the mappings T+

D , I+
D , F+

D : X ×
X → [0, 1] and T−

D , I−
D , F−

D : X × X → [−1, 0].

3.2 Bipolar Neutrosophic Graphs

Definition 3.4 A bipolar single-valued neutrosophic graph on a nonempty set X is
a pair G = (C, D), where C is a bipolar single-valued neutrosophic set on X and D
is a bipolar single-valued neutrosophic relation in X such that

T+
D (yz) ≤ T+

C (y) ∧ T+
C (z), I+

D (yz) ≤ I+
C (y) ∧ I+

C (z),

F+
D (yz) ≤ F+

C (y) ∨ F+
C (z), T−

D (yz) ≥ T−
C (y) ∨ T−

C (z),

I−
D (yz) ≥ I−

C (y) ∨ I−
C (z), F−

D (yz) ≥ F−
C (y) ∧ F−

C (z)

for all y, z ∈ X . Note that D(yz) = (0, 0, 1, 0, 0,−1) for all yz ∈ X × X \ E .
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Table 3.1 Bipolar
neutrosophic set C

C x y z

T+
C 0.3 0.5 0.4

I+
C 0.4 0.4 0.3

F+
C 0.5 0.2 0.2

T−
C −0.6 −0.1 −0.5

I−
C −0.5 −0.8 −0.5

F−
C −0.2 −0.2 −0.5

Table 3.2 Bipolar
neutrosophic relation D

D xy yz xz

T+
D 0.3 0.3 0.3

I+
D 0.4 0.4 0.4

F+
D 0.5 0.2 0.5

T−
D −0.1 −0.1 −0.5

I−
D −0.8 −0.8 −0.5

F−
D −0.2 −0.5 −0.5

Fig. 3.1 Bipolar
neutrosophic graph G
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Throughout this chapter, we will use bipolar neutrosophic set, bipolar neutro-
sophic relation and bipolar neutrosophic graph, for short.

Example 3.1 Consider a bipolar neutrosophic graph on set X = {x, y, z}. Let C
be a bipolar neutrosophic set on X given in Table3.1 and D be a bipolar single-
valued neutrosophic relation in X given in Table3.2. Routine calculations show that
G = (C, D) is a bipolar neutrosophic graph. The bipolar neutrosophic graph G is
shown in Fig. 3.1.
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Definition 3.5 A bipolar neutrosophic graph G = (C, D) is called strong bipolar
neutrosophic graph if
T+
D (yz) = T+

C (y) ∧ T+
C (z), I+

D (yz) = I+
C (y) ∧ I+

C (z), F+
D (yz) = F+

C (y) ∨ F+
C (z),

T−
D (yz) = T−

C (y) ∨ T−
C (z), I−

D (yz) = I−
C (y) ∨ I−

C (z), F−
D (yz) = F−

C (y) ∧ F−
C (z),

for all yz ∈ E , E is the set of edges.

Definition 3.6 Abipolar neutrosophic graphG = (C, D) is called complete bipolar
neutrosophic graph if
T+
D (yz) = T+

C (y) ∧ T+
C (z), I+

D (yz) = I+
C (y) ∧ I+

C (z), F+
D (yz) = F+

C (y) ∨ F+
C (z),

T−
D (yz) = T−

C (y) ∨ T−
C (z), I−

D (yz) = I−
C (y) ∨ I−

C (z), F−
D (yz) = F−

C (y) ∧ F−
C (z),

for all y, z ∈ X.

Definition 3.7 The Cartesian product of two bipolar neutrosophic graphs G1 and
G2 is denoted by the pair G1 × G2 = (C1 × C2, D1 × D2) and defined as,

T+
C1×C2

(y) = T+
C1
(y) ∧ T+

D2
(y), I+

C1×C2
(y) = I+

C1
(y) ∧ I+

C2
(y),

F+
C1×C2

(y) = F+
C1
(y) ∨ F+

C2
(y), T−

C1×D2
(y) = T−

C1
(y) ∨ T−

C2
(y),

I−
C1×C2

(y) = I−
C1
(y) ∨ I−

C2
(y), F−

C1×C2
(y) = F−

C1
(y) ∧ F−

C2
(y).

for all y ∈ X1 × X2. The membership values of the edges in G1 × G2 can be cal-
culated as,

1. T+
D1×D2

((y1, y2)(y1, z2)) = T+
C1
(y1) ∧ T+

D2
(y2z2), T−

D1×D2
((y1, y2)(y1, z2)) =

T−
C1
(y1) ∨ T−

D2
(y2z2), for all y1 ∈ X1, y2z2 ∈ E2,

2. T+
D1×D2

((y1, y2)(z1, y2)) = T+
D1
(y1z1) ∧ T+

C2
(y2), T−

D1×D2
((y1, y2)(z1, y2)) =

T−
D1
(y1z1) ∨ T−

C2
(y2), for all y1z1 ∈ E1, y2 ∈ X2,

3. I+
D1×D2

((y1, y2)(y1, z2)) = I+
C1
(y1) ∧ I+

D2
(y2z2), I−

D1×D2
((y1, y2)(y1, z2)) =

I−
C1
(y1) ∨ I−

D2
(y2z2), for all y1 ∈ X1, y2z2 ∈ E2,

4. I+
D1×D2

((y1, y2)(z1, y2)) = I+
D1
(y1z1) ∧ I+

C2
(y2), I−

D1×D2
((y1, y2)(z1, y2)) =

I−
D1
(y1z1) ∨ I−

C2
(y2), for all y1z1 ∈ E1, y2 ∈ X2,

5. F+
D1×D2

((y1, y2)(y1, z2)) = F+
C1
(y1) ∨ F+

D2
(y2z2), F−

D1×D2
((y1, y2)(y1, z2)) =

F−
C1
(y1) ∧ F−

D2
(y2z2), for all y1 ∈ X1, y2z2 ∈ E2,

6. F+
D1×D2

((y1, y2)(z1, y2)) = F+
D1
(y1z1) ∨ F+

C2
(y2), F−

D1×D2
((y1, y2)(z1, y2)) =

F−
D1
(y1z1) ∧ F−

C2
(y2), for all y1z1 ∈ E1, y2 ∈ X2.

Example 3.2 Let G1 = (C1, D1) and G2 = (C2, D2) be two bipolar neutrosophic
graphs as shown in Fig. 3.2.

The Cartesian product of G1 and G2 is shown in Fig. 3.3.

Proposition 3.1 The Cartesian product of bipolar neutrosophic graphs is a bipolar
neutrosophic graph.

Definition 3.8 Let G1 = (C1, D1) and G2 = (C2, D2) be two bipolar neutrosophic
graphs of G∗

1 = (X1, E1) and G∗
2 = (X2, E2), respectively, where C1 and C2 are
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G1 = (C1, D1) G2 = (C2,D2)

Fig. 3.2 Two bipolar neutrosophic graphs
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Fig. 3.3 Cartesian product of two bipolar neutrosophic graphs

bipolar neutrosophic sets on X1 and X2, and D1 and D2 are bipolar neutrosophic
relations in X1 and X2, respectively. The union of G1 and G2 is a pair G1 ∪ G2 =
(C1 ∪ C2, D1 ∪ D2) such that for all x, y ∈ X ,

1. If x ∈ X1, x /∈ X2, then (C1 ∪ C2)(x) = C1(x).

2. If x ∈ X2, x /∈ X1, then (C1 ∪ C2)(x) = C2(x).

3. If x ∈ X1 ∩ X2, then

(C1 ∪ C2)(x) = (
T+
C1
(x) ∨ T+

C2
(x),

I+
C1
(x) + I+

C2
(x)

2
, F+

C1
(x) ∧ F+

C2
(x),

T−
C1
(x) ∧ T−

C2
(x),

I−
C1
(x) + I−

C2
(x)

2
, F−

C1
(x) ∨ F−

C2
(x)

)
.

If E1 and E2 are the sets of edges in G1 and G2, then D1 ∪ D2 can be defined as:
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Fig. 3.4 G1 ∪ G2

1. If xy ∈ E1, xy /∈ E2, then (D1 ∪ D2)(xy) = D1(xy).

2. If xy ∈ E2, xy /∈ E1, then (D1 ∪ D2)(xy) = D2(xy).

3. If xy ∈ E1 ∩ E2, then

(D1 ∪ D2)(xy) = (
T+
D1
(xy) ∨ T+

D2
(xy),

I+
D1
(xy) + I+

D2
(xy)

2
, F+

D1
(xy) ∧ F+

D2
(xy),

T−
D1
(xy) ∧ T−

D2
(xy),

I−
D1
(xy) + I−

D2
(xy)

2
, F−

D1
(xy) ∨ F−

D2
(xy)

)
.

Example 3.3 The union of two bipolar neutrosophic graphs G1 and G2 shown in
Fig. 3.2 is defined as G1 ∪ G2 = {C1 ∪ C2, D1 ∪ D2} and is represented in Fig. 3.4.

Proposition 3.2 The union of bipolar neutrosophic graphs is a bipolar neutrosophic
graph.

Definition 3.9 The intersection of two bipolar neutrosophic graphs G1 = (C1, D1)

and G2 = (C2, D2) is a pair G1 ∩ G2 = (C1 ∩ C2, D1 ∩ D2) where C1, C2, D1 and
D2 are given in Definition3.8. The membership values of vertices and edges in
G1 ∩ G2 is defined such that for all y ∈ X1 ∩ X2,

(C1 ∩ C2)(y) = (
T+
C1
(y) ∧ T+

C2
(y),

I+
C1
(y) + I+

C2
(y)

2
, F+

C1
(y) ∨ F+

C2
(y),

T−
C1
(y) ∨ T−

C2
(y),

I−
C1
(y) + I−

C2
(y)

2
, F−

C1
(y) ∧ F−

C2
(y)

)
.



3.2 Bipolar Neutrosophic Graphs 139

y
1
0(
.3
,0

.3
,0

.4
,−

0
.3
,−

0
.3
,−

0
.
) 4y

3
0(
.6
, 0

.5
, 0

.6
,−

0.
6,

−0
.5
,−

0.
6)

y2(0.4, 0.4, 0.5,−0.4,−0.4,−0.5)

x3(0.5, 0.4, 0.5, 0.5, 0.4, 0.5)x2(0.8, 0.4, 0.9, 0.8, 0.4, 0.9)

x
4 (0.8, 0.4, 0.7,−0.8,−0.4,−0.7)x1(

0.6
, 0.

3, 0
.7,

−0.
6,−

0.3
,−0

.7)

(0.3, 0.3, 0.5,−0.3,−0.3,−0.5)(0.
4, 0

.4,
0.6

,−0
.4,

−0.
4,−

0.6
)

0(
.5
, 0

.4
, 0

.7
,−

0.
5,

−0
.4
,−

0.
)7

0(
.6
, 0

.3
, 0

.9
,−

0.
6,

−0
.3
,−

0.
)9

(0.3, 0.3, 0.7,−0.3,−0.3,−0.7)

(0.6, 0.
4, 0.7,−0.6,−0.4,−0.7)

(0.3,
0.3, 0

.9,−0.3,−0.3,−0.9)
(0.5, 0.4, 0.6,−0.5,−0.4,−0.6)

(0.
6, 0

.3,
0.7

,−0
.6,

−0.
3,−

0.7
)

(0.6, 0.4, 0.9,−0.6,−0.4,−0.9)

(0.4
, 0.

3, 0
.7,-

0.4
, -0

.3,
-0.7

)

(0
.4
, 0
.4
, 0
.9
,−

0.
4,
−0

.4
,−

0.
9)

(0.4, 0.4, 0.7,-0.4, -0.4, -0.7)

(0.4, 0.4, 0.5,-0.4, -0.4, -0.5
)

(0.3, 0.3, 0.7,−0.3,−0.3,−0.7)

(0.
3, 0

.3,
0.5

,−0
.3,

−0.
3,−

0.5
)

Fig. 3.5 G1 + G2

(D1 ∩ D2)(yz) = (
T+
D1
(yz) ∧ T+

D2
(yz),

I+
D1
(yz) + I+

D2
(yz)

2
, F+

D1
(yz) ∨ F+

D2
(yz),

T−
D1
(yz) ∨ T−

D2
(yz),

I−
D1
(yz) + I−

D2
(yz)

2
, F−

D1
(yz) ∧ F−

D2
(yz)

)
,

for all yz ∈ E1 ∩ E2.

Definition 3.10 The join of two bipolar neutrosophic graphs G1 = (C1, D1) and
G2 = (C2, D2) is defined by the pair G1 + G2 = (C1 + C2, D1 + D2) such that
C1 + C2 = C1 ∪ C2, for all x ∈ X1 ∪ X2, and the membership values of the edges
in G1 + G2 are defined as,

1. D1 + D2 = D1 ∪ D2, for all xy ∈ E1 ∪ E2.
2. Let E

′
be the set of all edges joining the vertices of G1 and G2; then for all

xy ∈ E
′
, where x ∈ X1 and y ∈ X2,

(D1 + D2)(xy) =(
T+
D1

(xy) ∧ T+
D2

(xy), I+D1
(xy) ∧ I+D2

(xy), F+
D1

(xy) ∨ F+
D2

(xy),

T−
D1

(xy) ∨ T−
D2

(xy), I−D1
(xy) ∨ I−D2

(xy), F−
D1

(xy) ∧ F−
D2

(xy)
)
.

Example 3.4 Join of two bipolar neutrosophic graphs G1 and G2 shown in Fig. 3.2
is defined as G1 + G2 = {C1 + C2, D1 + D2} and is represented in Fig. 3.5.

Proposition 3.3 The join of bipolar neutrosophic graphs is a bipolar neutrosophic
graph.

Definition 3.11 The cross product of two bipolar neutrosophic graphs
G1 = (C1, D1) andG2 = (C2, D2) is denoted by the pairG1 ∗ G2 = (C1 ∗ C2, D1 ∗
D2) such that
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Fig. 3.6 Cross product of two bipolar neutrosophic graphs

T+
C1∗C2

(y) = T+
C1
(y) ∧ T+

D2
(y), I+

C1∗C2
(y) = I+

C1
(y) ∧ I+

C2
(y),

F+
C1∗C2

(y) = F+
C1
(y) ∨ F+

C2
(y), T−

C1∗C2
(y) = T−

C1
(y) ∨ T−

C2
(y),

I−
C1∗C2

(y) = I−
C1
(y) ∨ I−

C2
(y), F−

C1∗C2
(y) = F−

C1
(y) ∧ F−

C2
(y),

for all y ∈ X1 × X2.

1. T+
D1∗D2

((y1, y2)(z1, z2)) = T+
D1
(y1z1) ∧ T+

D2
(y2z2), T−

D1∗D2
((y1, y2)(z1, z2)) =

T−
D1
(y1z1) ∨ T−

D2
(y2z2), for all y1z1 ∈ E1, y2z2 ∈ E2,

2. I+
D1∗D2

((y1, y2)(z1, z2)) = I+
D1
(y1z1) ∧ I+

D2
(y2z2), I−

D1∗D2
((y1, y2)(z1, z2)) =

I−
D1
(y1z1) ∨ I−

D2
(y2z2), for all y1z1 ∈ E1, y2z2 ∈ E2,

3. F+
D1∗D2

((y1, y2)(z1, z2)) = F+
D1
(y1z1) ∨ F+

D2
(y2z2), F−

D1∗D2
((y1, y2)(z1, z2)) =

F−
D1
(y1z1) ∧ F−

D2
(y2z2), for all y1z1 ∈ E1, y2z2 ∈ E2.

Proposition 3.4 The cross product of bipolar neutrosophic graphs is a bipolar neu-
trosophic graph.

Example 3.5 The cross product of twobipolar neutrosophic graphsG1 andG2 shown
in Fig. 3.2 is defined as G1 ∗ G2 = {C1 ∗ C2, D1 ∗ D2} and is shown in Fig. 3.6.

Definition 3.12 The lexicographic productof twobipolar neutrosophic graphsG1 =
(C1, D1) and G2 = (C2, D2) is denoted by G1 • G2 and defined as a pair (C1 •
C2, D1 • D2) such that

T+
C1•C2

(y) = T+
C1
(y) ∧ T+

D2
(y), I+

C1•C2
(y) = I+

C1
(y) ∧ I+

C2
(y),

F+
C1•C2

(y) = F+
C1
(y) ∨ F+

C2
(y), T−

C1•C2
(y) = T−

C1
(y) ∨ T−

C2
(y),

I−
C1•C2

(y) = I−
C1
(y) ∨ I−

C2
(y), F−

C1•C2
(y) = F−

C1
(y) ∧ F−

C2
(y),

for all y ∈ X1 × X2.

1. T+
D1•D2

((y, y2)(y, z2)) = T+
C1
(y) ∧ T+

D2
(y2z2), T−

D1•D2
((y, y2)(y, z2)) =

T−
C1
(y) ∨ T−

D2
(y2z2), for all y ∈ X1, y2z2 ∈ E2,

2. I+
D1•D2

((y, y2)(y, z2)) = I+
C1
(y) ∧ I+

D2
(y2z2), I−

D1•D2
((y, y2)(y, z2)) =

I−
C1
(y) ∨ I−

D2
(y2z2), for all y ∈ X1, y2z2 ∈ E2,



3.2 Bipolar Neutrosophic Graphs 141

x1y3(0.6, 0.3, 0.7,−0.6,−0.3,−0.7)x2y1(0.3, 0.3, 0.9,−0.3,−0.3,−0.9) x2y2(0.4, 0.4, 0.9,−0.4,−0.4,−0.9)

(0.3, 0.3, 0.9,−0.3,−0.3,−0.9)

(0.3, 0.3, 0.7,−0.3,−0.3,−0.7)

(0.4, 0.3, 0.7,−0.4,−0.3,−0.7)

(0.3, 0.3, 0.9,−0.3,−0.3,−0.9) (0.
4, 0

.4,
0.9

,−0
.4,

−0.
4,−

0.9
)

(0.
3, 0

.3,
0.9

,−0
.3,

−0.3
,−0

.9)

(0.4, 0.3, 0.9,−0.4,−0.3,−0.9)

(0.4, 0.3, 0.9,−0.4,−0.3,−0.9))

x4y3(0.6, 0.4, 0.7,−0.6,−0.4,−0.7)x3y1(0.3, 0.3, 0.5,−0.3,−0.3,−0.5) x4y2(0.4, 0.4, 0.7,−0.4,−0.4,−0.7)

(0.4, 0.4, 0.6,−0.4,−0.4,−0.6)

(0.3
, 0.3

, 0.5
,−0.

3,−0
.3,−

0.5
)

(0.4, 0.4, 0.7,−0.4,−0.4,−0.7)

(0.
4, 0

.4,
0.7

,−0
.4,

−0.
4,−

.3, 0.3, 0.7,−0.3,−0.3,−0.7) (0.4, 0.4, 0.7,−0.4,−0.4,−0.7)

(0.3, 0.3, 0.7,−0.3,−0.3,−0.7)

(0.3, 0.3, 0.7,−0.3,−0.3,−0.7)

Fig. 3.7 Lexicographic product of two bipolar neutrosophic graphs

3. F+
D1•D2

((y, y2)(y, z2)) = F+
C1
(y) ∨ F+

D2
(y2z2), F−

D1•D2
((y, y2)(y, z2)) =

F−
C1
(y) ∧ F−

D2
(y2z2), for all y ∈ X1, y2z2 ∈ E2.

4. T+
D1•D2

((y1, y2)(z1, z2)) = T+
D1
(y1z1) ∧ T+

D2
(y2z2), T−

D1•D2
((y1, y2)(z1, z2)) =

T−
D1
(y1z1) ∨ T−

D2
(y2z2), for all y1z1 ∈ E1, y2z2 ∈ E2,

5. I+
D1•D2

((y1, y2)(z1, z2)) = I+
D1
(y1z1) ∧ I+

D2
(y2z2), I−

D1•D2
((y1, y2)(z1, z2)) =

I−
D1
(y1z1) ∨ I−

D2
(y2z2), for all y1z1 ∈ E1, y2z2 ∈ E2,

6. F+
D1•D2

((y1, y2)(z1, z2)) = F+
D1
(y1z1) ∨ F+

D2
(y2z2), F−

D1•D2
((y1, y2)(z1, z2)) =

F−
D1
(y1z1) ∧ F−

D2
(y2z2), for all y1z1 ∈ E1, y2z2 ∈ E2.

Proposition 3.5 The lexicographic product of bipolar neutrosophic graphs is a bipo-
lar neutrosophic graph.

Example 3.6 The lexicographic product of two bipolar neutrosophic graphs G1 and
G2, shown in Fig. 3.2, is given in Fig. 3.7.

Definition 3.13 The strong product of two bipolar neutrosophic graphs G1 =
(C1, D1) and G2 = (C2, D2) is denoted by G1 � G2 and defined as a pair (C1 �
C2, D1 � D2) such that
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T+
C1�C2

(y) = T+
C1
(y) ∧ T+

D2
(y), I+

C1�C2
(y) = I+

C1
(y) ∧ I+

C2
(y),

F+
C1�C2

(y) = F+
C1
(y) ∨ F+

C2
(y), T−

C1�C2
(y) = T−

C1
(y) ∨ T−

C2
(y),

I−
C1�C2

(y) = I−
C1
(y) ∨ I−

C2
(y), F−

C1�C2
(y) = F−

C1
(y) ∧ F−

C2
(y),

for all y ∈ X1 × X2.

1. T+
D1�D2

((y, y2)(y, z2)) = T+
C1
(y) ∧ T+

D2
(y2z2), T−

D1�D2
((y, y2)(y, z2)) =

T−
C1
(y) ∨ T−

D2
(y2z2), for all y ∈ X1, y2z2 ∈ E2,

2. I+
D1�D2

((y, y2)(y, z2)) = I+
C1
(y) ∧ I+

D2
(y2z2), I−

D1�D2
((y, y2)(y, z2)) =

I−
C1
(y) ∨ I−

D2
(y2z2), for all y ∈ X1, y2z2 ∈ E2,

3. F+
D1�D2

((y, y2)(y, z2)) = F+
C1
(y) ∨ F+

D2
(y2z2), F−

D1�D2
((y, y2)(y, z2)) =

F−
C1
(y) ∧ F−

D2
(y2z2), for all y ∈ X1, y2z2 ∈ E2,

4. T+
D1�D2

((y1, z)(z1, z)) = T+
D1
(y1z1) ∧ T+

C2
(z), T−

D1�D2
((y1, z)(z1, z)) =

T−
D1
(y1z1) ∨ T−

C2
(z), for all y1z1 ∈ E1, z ∈ X2,

5. I+
D1�D2

((y1, z)(z1, z)) = I+
D1
(y1z1) ∧ I+

C2
(z), I−

D1�D2
((y1, z)(z1, z)) =

I−
D1
(y1z1) ∨ I−

C2
(z), for all y1z1 ∈ E1, z ∈ X2,

6. F+
D1�D2

((y1, z)(z1, z)) = F+
D1
(y1z1) ∨ F+

C2
(z), F−

D1�D2
((y1, z)(z1, z)) =

F−
D1
(y1z1) ∧ F−

C2
(z), for all y1z1 ∈ E1, z ∈ X2,

7. T+
D1�D2

((y1, y2)(z1, z2)) = T+
D1
(y1z1) ∧ T+

D2
(y2z2), T−

D1�D2
((y1, y2)(z1, z2)) =

T−
D1
(y1z1) ∨ T−

D2
(y2z2), for all y1z1 ∈ E1, y2z2 ∈ E2,

8. I+
D1�D2

((y1, y2)(z1, z2)) = I+
D1
(y1z1) ∧ I+

D2
(y2z2), I−

D1�D2
((y1, y2)(z1, z2)) =

I−
D1
(y1z1) ∨ I−

D2
(y2z2), for all y1z1 ∈ E1, y2z2 ∈ E2,

9. F+
D1�D2

((y1, y2)(z1, z2)) = F+
D1
(y1z1) ∨ F+

D2
(y2z2), F−

D1�D2
((y1, y2)

(z1, z2)) = F−
D1
(y1z1) ∧ F−

D2
(y2z2), for all y1z1 ∈ E1, y2z2 ∈ E2.

Example 3.7 The strong product G1 � G2 of two bipolar neutrosophic graphs G1

and G2, shown in Fig. 3.2, is given in Fig. 3.8.

Proposition 3.6 The strong product of bipolar neutrosophic graphs is a bipolar
neutrosophic graph.

Definition 3.14 The complement of a bipolar neutrosophic graph G = (C, D) is
defined as a pair Gc = (Cc, Dc) such that for all y ∈ X and yz ∈ Ỹ 2,

T+
Cc(y) = T+

C (y), I+
Cc (y) = I+

C (y), F+
Cc(y) = F+

C (y),

T−
Cc(y) = T−

C (y), I−
Cc (y) = I−

C (y), F+
Cc(y) = F+

C (y).

T+
Dc(yz) = T+

C (y) ∧ T+
C (z) − T+

D (yz), T−
Dc(yz) = T−

C (y) ∨ T−
C (z) − T−

D (yz),

I+
Dc(yz) = I+

C (y) ∧ I+
C (z) − I+

D (yz), I−
Dc(yz) = I−

C (y) ∨ I−
C (z) − I−

D (yz),

F+
Dc(yz) = F+

C (y) ∨ F+
C (z) − F+

D (yz), F−
Dc(yz) = F−

C (y) ∧ F−
C (z) − F−

D (yz).
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Fig. 3.8 Strong product of two bipolar neutrosophic graphs

Remark 3.1 A bipolar neutrosophic graph G is said to be self-complementary if
G ≈ Gc.

Theorem 3.1 Let G be a self-complementary bipolar neutrosophic graph, then

∑

y �=z

T+
D (yz) = 1

2

∑

y �=z

T+
C (y) ∧ T+

C (z),
∑

y �=z

I+
D (yz) = 1

2

∑

y �=z

I+
C (y) ∧ I+

C (z),

∑

y �=z

F+
D (yz) = 1

2

∑

y �=z

F+
C (y) ∨ F+

C (z),
∑

y �=z

T−
D (yz) = 1

2

∑

y �=z

T−
C (y) ∨ T−

C (z),

∑

y �=z

I−
D (yz) = 1

2

∑

y �=z

I−
C (y) ∨ I−

C (z),
∑

y �=z

F−
D (yz) = 1

2

∑

y �=z

F−
C (y) ∧ F−

C (z).

Theorem 3.2 Let G = (C, D) be a bipolar neutrosophic graph such that for all
y, z ∈ X,
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T+
Dc(yz) = 1

2
T+
C (y) ∧ T+

C (z), T−
Dc(yz) = 1

2
T−
C (y) ∨ T−

C (z),

I+
Dc(yz) = 1

2
I+
C (y) ∧ I+

C (z), I−
Dc(yz) = 1

2
I−
C (y) ∨ I−

C (z),

F+
Dc(yz) = 1

2
F+
C (y) ∨ F+

C (z), F−
Dc(yz) = 1

2
F−
C (y) ∧ F−

C (z).

Then G is self-complementary bipolar neutrosophic graph.

Proof Let Gc = (Cc, Dc) be the complement of bipolar neutrosophic graph
G = (C, D), then by Definition3.14,

T+
Dc(yz) = T+

C (y) ∧ T+
C (z) − T+

D (yz)

T+
Dc(yz) = T+

C (y) ∧ T+
C (z) − 1

2
T+
C (y) ∧ T+

C (z)

T+
Dc(yz) = 1

2
T+
C (y) ∧ T+

C (z)

T+
Dc(yz) = T+

D (yz)

T−
Dc(yz) = T−

C (y) ∨ T−
C (z) − T−

D (yz)

T−
Dc(yz) = T−

C (y) ∨ T−
C (z) − 1

2
T−
C (y) ∨ T−

C (z)

T−
Dc(yz) = 1

2
T−
C (y) ∨ T−

C (z)

T−
Dc(yz) = T−

D (yz)

Similarly, it can be shown that

I+
Dc(yz) = I+

D (yz), I−
Dc(yz) = I−

D (yz),

F+
Dc(yz) = F+

D (yz), F−
Dc(yz) = F−

D (yz).

Hence, G is self-complementary.

Definition 3.15 The degree of a vertex y in a bipolar neutrosophic graph
G = (C, D) is denoted by deg(y) and defined by the 6−tuple as,
deg(y) = (deg+

T (y), deg+
I (y), deg+

F (y), deg−
T (y), deg−

I (y), deg−
F (y)),=

(
∑

yz∈E
T+
D (yz),

∑

yz∈E
I+
D (yz),

∑

yz∈E
F+
D (yz),

∑

yz∈E
T−
D (yz),

∑

yz∈E
I−
D (yz),

∑

yz∈E
F−
D (yz)).

The term degree is also referred as neighbourhood degree.

Definition 3.16 The closed neighbourhood degree of a vertex y in a bipolar neutro-
sophic graph is denoted by deg[y] and defined as,

deg[y] = (deg+
T [y], deg+

I [y], deg+
F [y], deg−

T [y], deg−
I [y], deg−

F [y],
= (deg+

T (y) + T+
C (y), deg+

I (y) + I+
C (y), deg+

F (y) + F+
C (y),

deg−
T (y) + T−

C (y), deg−
I (y) + T−

C (y), deg−
F (y) + F+

C (y)).
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Definition 3.17 A bipolar neutrosophic graph G is known as a regular bipolar neu-
trosophic graph if all vertices of G have same degree. A bipolar neutrosophic graph
G is known as a totally regular bipolar neutrosophic graph if all vertices of G have
same closed neighbourhood degree.

Theorem 3.3 A complete bipolar neutrosophic graph is totally regular.

Theorem 3.4 Let G = (C, D) be a bipolar neutrosophic graph, then C = (T+, I+,
F+, T−, I−, F−) is a constant function if and only if the following statements are
equivalent:
1. G is a regular bipolar neutrosophic graph,
2. G is totally regular bipolar neutrosophic graph.

Proof Assume that C is a constant function and for all y ∈ X ,

T+
C (y) = kT , I+

C (y) = kI , F+
C (y) = kF ,

T−
C (y) = k

′
T , I−

C (y) = k
′
I , F−

C (y) = k
′
F

where kT , kI , kF , k
′
T , k

′
I , k

′
F are constants.

(1) ⇒ (2) Suppose that G is a regular bipolar neutrosophic graph and

deg(y) = (pT , pI , pF , nT , nI , nF ), for all y ∈ X.

Now consider,

deg[y] = (deg+
T (y) + T+

C (y), deg+
I (y) + I+

C (y), deg+
F (y) + F+

C (y),

deg−
T (y) + T−

C (y), deg−
I (y) + T−

C (y), deg−
F (y) + F+

C (y))

= (pT + kT , pI + kI , pF + kF , nT + k
′
T , nI + k

′
I , nF + k

′
F )

for all y ∈ X . It is proved that G is totally regular bipolar neutrosophic graph.
(2) ⇒ (1) Suppose that G is totally regular bipolar neutrosophic graph and for all
y ∈ X

deg[y] = (p
′
T , p

′
I , p

′
F , n

′
T , n

′
I , n

′
F )

= (deg+
T (y) + kT , deg

+
I (y) + kI , deg

+
F (y) + kF , deg

−
T (y) + k

′
T ,

deg−
I (y) + k

′
I , deg

−
F (y) + k

′
F )

⇒ deg(y) = (p
′
T − kT , p

′
I − kI , p

′
F − kF , n

′
T − k

′
t , n

′
I − k

′
I , n

′
F − k

′
F ).

for all y ∈ X . Thus, G is a regular bipolar neutrosophic graph. Conversely, assume
that the conditions are equivalent. Let

deg(y) = (cT , cI , cF , dT , dI , dF ), deg[y] = (c
′
T , c

′
I , c

′
F , d

′
T , d

′
I , d

′
F ).
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By Definition3.16 for all y ∈ X ,

deg[y] = deg(y) + (T+
C (y), I+

C (y), F+
C (y), T−

C (y), I−
C (y), F+

C (y)),

deg[y] − deg(y) = (T+
C (y), I+

C (y), F+
C (y), T−

C (y), I−
C (y), F+

C (y))

= (T+
C (y), I+

C (y), F+
C (y), T−

C (y), I−
C (y), F+

C (y))

= (c
′
T − cT , c

′
I − cI , c

′
F − cF , d

′
T − dT , d

′
I − dI , d

′
F − dF ).

Hence, C = (c
′
T − cT , c

′
I − cI , c

′
F − cF , d

′
T − dT , d

′
I − dI , d

′
F − dF ) is a constant

function which completes the proof.

Definition 3.18 Abipolar neutrosophic graphG is said to be irregular if at least two
vertices have distinct degrees. If all vertices do not have same closed neighbourhood
degrees, then G is known as totally irregular bipolar neutrosophic graph.

Theorem 3.5 Let G = (C, D) be a bipolar neutrosophic graph and C=(T+
C , I+

C ,
F+
C , T−

C , I−
C , F−

C ) be a constant function, then G is an irregular bipolar neutrosophic
graph if and only if G is a totally irregular bipolar neutrosophic graph.

Proof Assume that G is an irregular bipolar neutrosophic graph, then at least two
vertices of G have distinct degrees. Let y and z be two vertices such that deg(y) =
r1, r2, r3, s1, s2, s3), deg(z) = (r

′
1, r

′
2, r

′
3, s

′
1, s

′
2, s

′
3) where ri �= r

′
i , for some

i = 1, 2, 3. Since C is a constant function, assume that C = (k1, k2, k3, l1, l2, l3).
Thus,

deg[y] = deg(y) + (k1, k2, k3, l1, l2, l3)

deg[y] = (r1 + k1, r2 + k2, r3 + k3, s1 + l1, s2 + l2, s3 + l3)

and deg[z] = (r
′
1 + k1, r

′
2 + k2, r

′
3 + k3, s

′
1 + l1, s

′
2 + l2, s

′
3 + l3).

Clearly ri + ki �= r
′
i + ki , for some i = 1, 2, 3; therefore, y and z have distinct closed

neighbourhood degrees. Hence, G is a totally irregular bipolar neutrosophic graph.
The converse part is similar.

Definition 3.19 If G = (C, D) be a bipolar neutrosophic graph and y, z are two
vertices in G, then we say that y dominates z if

T+
D (yz) = T+

C (y) ∧ T+
C (z), T−

D (yz) = T−
C (y) ∨ T−

C (z),

I+
D (yz) = I+

C (y) ∧ I+
C (z), I−

D (yz) = I−
C (y) ∨ I−

C (z),

F+
D (yz) = F+

C (y) ∨ F+
C (z), F−

D (yz) = F−
C (y) ∧ F−

C (z).

A subset D
′ ⊆ Y is a dominating set if for each z ∈ X \ D

′
, there exists y ∈ D

′
such

that y dominates z. A dominating set D
′
is minimal if for every y ∈ D

′
, D

′ \ {y}
is not a dominating set. The domination number of G is the minimum cardinality
among all minimal dominating sets of G, denoted by λ(G).
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x(0.5, 0.2, 0.3,−0, 2,−0.2,−0.7) y(0.6, 0.1, 0.2,−0, 2,−0.3,−0.7)

z(0.5, 0.2, 0.3, 0, 3, 0.2, 0.5) w(0.5, 0.2, 0.2, 0, 2, 0.3, 0.5)
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Fig. 3.9 Bipolar neutrosophic graph G

Example 3.8 Consider a bipolar neutrosophic graph as shown in Fig. 3.9. The set
{x, w} is a minimal dominating set, and λ(G) = 2

Theorem 3.6 If G1 and G2 are two bipolar neutrosophic graphs with D
′
1 and D

′
2

as dominating sets, then

λ(G1 ∪ G2) = λ(G1) + λ(G2) − |D ′
1 ∩ D

′
2|

Proof Since D
′
1 and D

′
2 are dominating sets of G1 and G2, D

′
1 ∪ D

′
2 is a dominating

set of G1 ∪ G2. Therefore, λ(G1 ∪ G2) ≤ |D ′
1 ∪ D

′
2|. It only remains to show that

D
′
1 ∪ D

′
2 is the minimal dominating set. On contrary, assume that D

′ = D
′
1 ∪ D

′
2 \

{y} is a minimal dominating set of G1 ∪ G2. There are two cases.
Case 1. If y ∈ D

′
1 and y /∈ D

′
2, then D

′
1 \ {y} is not a dominating set of G1 which

implies that D
′
1 ∪ D

′
2 \ {y} = D

′
is not a dominating set ofG1 ∪ G2. A contradiction,

hence, D
′
1 ∪ D

′
2 is a minimal dominating set and

λ(G1 ∪ G2) = |D ′
1 ∪ D

′
2|,

⇒ λ(G1 ∪ G2) = λ(G1) + λ(G2) − |D ′
1 ∩ D

′
2|.

Case 2. If y ∈ D
′
2 and y /∈ D

′
1, same contradiction can be obtained.

Theorem 3.7 If G1 and G2 are two bipolar neutrosophic graphs with X1 ∩ X2 �= ∅,
then

λ(G1 + G2) = min{λ(G1),λ(G2), 2}.

Proof Let y1 ∈ X1 and y2 ∈ X2, since G1 + G2 is a bipolar neutrosophic graph, we
have
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T+
D1+D2

(y1y2) = T+
C1+C2

(y1) ∧ T+
C1+C2

(y2)),

T−
D1+D2

(y1y2) = T−
C1+C2

(y1) ∨ T−
C1+C2

(y2)),

I+
D1+D2

(y1y2) = I+
C1+C2

(y1) ∧ I+
C1+C2

(y2)),

I−
D1+D2

(y1y2) = I−
C1+C2

(y1) ∨ I−
C1+C2

(y2)),

F+
D1+D2

(y1y2) = F+
C1+C2

(y1) ∨ F+
C1+C2

(y2)),

F−
D1+D2

(y1y2) = F−
C1+C2

(y1) ∧ F−
C1+C2

(y2)).

Hence, any vertex of G1 dominates all vertices of G2, and similarly, any vertex of
G2 dominates all vertices of G1. So, {y1, y2} is a dominating set of G1 + G2. If D is
a minimum dominating set of G1 + G2, then D is one of the following forms,

1. D = D1 where, λ(G1) = |D1|,
2. D = D2 where, λ(G2) = |D2|,
3. D = {y1, y2} where y1 ∈ X1 and y2 ∈ X2. {y1} and {y2} are not dominating sets

of G1 or G2, respectively.

Hence, λ(G1 + G2) = min{λ(G1),λ(G2), 2}.
Theorem 3.8 Let G1 = (C1, D1) and G2 = (C2, D2) be two bipolar neutrosophic
graphs. If for y1 ∈ X1, T

+
C1
(y1) > 0 and y2 dominates z2 in G2, then (y1, y2) domi-

nates (y1, z2) in G1 × G2.

Proof Since y2 dominates z2,

T+
D2
(y2z2) = T+

C2
(y2) ∧ T+

C2
(z2), T−

D2
(y2z2) = T−

C2
(y2) ∨ T−

C2
(z2),

I+
D2
(y2z2) = I+

C2
(y2) ∧ I+

C2
(z2), I−

D2
(y2z2) = I−

C2
(y2) ∨ I−

C2
(z2),

F+
D2
(y2z2) = F+

C2
(y2) ∨ F+

C2
(z2), F−

D2
(y2z2) = F−

C2
(y2) ∧ F−

C2
(z2).

For y1 ∈ X1, take (y1, z2) ∈ X1 × X2. By Definition3.7,

T+
D1×D2

((y1, y2)(y1, z2)) = T+
C1
(y1) ∧ T+

D2
(y2z2),

= T+
C1
(y1) ∧ (T+

C2
(y2) ∧ T+

C2
(z2)),

= (T+
C1
(y1) ∧ T+

C2
(y2)) ∧ (T+

C1
(y1) ∧ T+

C2
(z2)),

= T+
C1×C2

(y1, y2) ∧ T+
C1×C2

(y1, z2).

T−
D1×D2

((y1, y2)(y1, z2)) = T−
C1
(y1) ∨ T−

D2
(y2z2),

= T−
C1
(y1) ∨ (T−

C2
(y2) ∨ T−

C2
(z2))),

= (T−
C1
(y1) ∨ T−

C2
(y2)) ∨ (T−

C1
(y1) ∨ T−

C2
(z2)),

= T−
C1×C2

(y1, y2) ∨ T−
C1×C2

(y1, z2).
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Similarly, it can be proved that

I+
D1×D2

((y1, y2)(y1, z2)) = I+
C1×C2

(y1, y2) ∧ I+
C1×C2

(y1, z2),

I−
D1×D2

((y1, y2)(y1, z2)) = I−
C1×C2

(y1, y2) ∨ I−
C1×C2

(y1, z2),

F+
D1×D2

((y1, y2)(y1, z2)) = F+
C1×C2

(y1, y2) ∨ F+
C1×C2

(y1, z2),

F−
D1×D2

((y1, y2)(y1, z2)) = F−
C1×C2

(y1y2) ∧ F−
C1×C2

(y1, z2).

Hence, (y1, y2) dominates (y1, z2) and the proof is complete.

Proposition 3.7 If G1 and G2 are bipolar neutrosophic graphs and for z2 ∈ X2,

T+
C2
(z2) > 0 and y1 dominate z1 in G1, then (y1, z2) dominates (z1, z2) in G1 × G2.

Theorem 3.9 If D
′
1 and D

′
2 are minimal dominating sets of G1 = (C1, D1) and

G2 = (C2, D2), respectively. Then D
′
1 × X2 and X1 × D

′
2 are dominating sets of

G1 × G2 and
λ(G1 × G2) ≤ min(|D ′

1 × X2|, |X1 × D
′
2|). (3.1)

Proof To prove inequality Eq.3.1, we need to show that D
′
1 × X2 and X1 × D

′
2 are

dominating sets of G1 × G2. Let (z1, z2) /∈ D
′
1 × X2, then z1 /∈ D

′
1. Since D

′
1 is a

dominating set of G1, there exists y1 ∈ D
′
1 that dominates z1. By Proposition3.7,

(y1, z2) dominates (z1, z2) in G1 × G2. Since (z1, z2) was taken to be arbitrary,
D

′
1 × X2 is a dominating set of G1 × G2. Similarly, X1 × D

′
2 is a dominating set if

G1 × G2. Hence, the proof.

Theorem 3.10 Let D
′
1 and D

′
2 be the dominating sets of G1 = (C1, D1) and G2 =

(C2, D2), respectively. Then D
′
1 × D

′
2 is a dominating set of the cross product G1 ∗

G2 and
λ(G1 × G2) = |D ′

1 × D
′
2|. (3.2)

Proof Let (z1, z2) ∈ X1 × X2 \ D
′
1 × D

′
2, then z1 ∈ X1 \ D

′
1 and z2 ∈ X2 \ D

′
2.

Since D
′
1 and D

′
2 are dominating sets, there exist y1 ∈ D

′
1 and y2 ∈ D

′
2 such that

y1 dominates z1 and y2 dominates z2. Consider,

T+
D1∗D2

((y1, y2)(z1, z2)) = T+
D1
(y1z1) ∧ T+

D2
(y2z2),

= (T+
C1
(y1) ∧ T+

C1
(z1)) ∧ (T+

C2
(y2) ∧ T+

C2
(z2)),

= (T+
C1
(y1) ∧ T+

C2
(y2)) ∧ (T+

C1
(z1) ∧ T+

C2
(z2)),

= T+
C1∗C2

(y1, y2) ∧ T+
C1∗C2

(z1, z2).

It shows that (y1, y2) dominates (z1, z2). Since (y1, y2) was taken to be arbitrary,
every element of X1 × X2 \ D

′
1 × D

′
2 is dominated by some element of D

′
1 × D

′
2. It

only remains to show that D
′
1 × D

′
2 is a minimal dominating set.

On contrary, assume that D
′
is a minimal dominating set of G1 ∗ G2 such that

|D ′ | < |D ′
1 × D

′
2|.
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Let (t1, t2) ∈ D
′
1 × D

′
2 such that (t1, t2) /∈ D

′
, i.e. t1 ∈ D

′
1 and t2 ∈ D

′
2, then there

exist t
′
1 ∈ X1 \ D

′
1 and t

′
2 ∈ X2 \ D

′
2 which are only dominated by t1 and t2, respec-

tively. Hence, no element other than (t1, t2) dominates (t
′
1, t

′
2); so (t1, t2) ∈ D

′
. A

contradiction, thus λ(G1 ∗ G2) = |D ′
1 × D

′
2|.

Corollary 3.1 If G1 and G2 are two bipolar neutrosophic graphs, y1 dominates z1
in G1 and y2 dominates z2 in G2, then (y1, z1) dominates (y2, z2) in G1 ∗ G2.

Definition 3.20 In a bipolar neutrosophic graph two vertices y and z are
independent if

T+
D (yz) < T+

C (y) ∧ T+
C (z), T−

D (yz) > T−
C (y) ∨ T−

C (z),

I+
D (yz) < I+

C (y) ∧ I+
C (z), I−

D (yz) > I−
C (y) ∨ I−

C (z), (3.3)

F+
D (yz) < F+

C (y) ∨ F+
C (z), F−

D (yz) > F−
C (y) ∧ F−

C (z).

An independent set N of a bipolar neutrosophic graph is a subset N of A such
that for all y, z ∈ N Eq.3.3 are satisfied. An independent set is maximal if for every
t ∈ X \ N , N ∪ {t} is not an independent set. An independent number is themaximal
cardinality among all maximal independent sets of a bipolar neutrosophic graph. It
is denoted by α(G).

Theorem 3.11 If G1 and G2 are bipolar neutrosophic graphs on X1 and X2, respec-
tively, such that X1 ∩ X2 = ∅, then α(G1 ∪ G2) = α(G1) + α(G2).

Proof Let N1 and N2 bemaximal independent sets ofG1 andG2. Since N1 ∩ N2 = ∅,
N1 ∪ N2 is a maximal independent set of G1 ∪ G2. Hence, α(G1 ∪ G2) = α(G1) +
α(G2).

Theorem 3.12 Let G1 and G2 be two bipolar neutrosophic graphs, then α(G1 +
G2) = α(G1) ∨ α(G2).

Proof Let N1 and N2 be maximal independent sets. Since every vertex of G1 domi-
nates every vertex of G2 in G1 + G1. Hence, maximal independent set of G1 + G2

is either N1 or N2. Thus, α(G1 + G2) = α(G1) ∨ α(G2).

Theorem 3.13 If N1 and N2 are maximal independent sets of G1 and G2, respec-
tively, and X1 ∩ X2 = ∅. Then α(G1 × G2) = |N1 × N2| + |N | where
N = {(yi , zi ) : yi ∈ X1 \ N1, zi ∈ X2 \ N2, yi yi+1 ∈ E1, zi zi+1 ∈ E2, i = 1, 2, 3, . . .}.

Proof N1 and N2 are maximal independent sets of G1 and G2, respectively. Clearly,
N1 × N2 is an independent set of G1 × G2 as no vertex of N1 × N2 dominates any
other vertex of N1 × N2. Consider the set of vertices

N = {(yi , zi ) : yi ∈ X1 \ N1, zi ∈ X2 \ N2, yi yi+1 ∈ E1, zi zi+1 ∈ E2}.

It can be seen that no vertex (yi , zi ) ∈ N , for each i = 1, 2, 3, . . ., dominates
(yi+1, zi+1) ∈ N . Hence, N

′ = (N1 × N2) ∪ N is an independent set of G1 × G2.
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Assume that S = N
′ ∪ {(yi , z j )}, for some i �= j , yi ∈ X1 \ N1 and z j ∈ X2 \ N2, is

a maximal independent set. Without loss of generality, assume that j = i + 1, then
(yi , z j ) is dominated by (yi , zi ). A contradiction, hence N

′
is a maximal independent

set and α(G1 × G2) = |N ′ | = |N1 × N2| + |N |.
Theorem 3.14 If D

′
1 and D

′
2 are minimal dominating sets of G1 and G2, then X1 ×

X2 \ D
′
1 × D

′
2 is a maximal independent set of G1 ∗ G2 and α(G1 ∗ G2) = n1n2 −

λ(G1 ∗ G2) where n1 and n2 are the number of vertices in G1 and G2, respectively.

The proof is obvious.

Theorem 3.15 An independent set of a bipolar neutrosophic graph G = (C, D) is
maximal if and only if it is independent and dominating.

Proof If N is a maximal independent set of G, then for every y ∈ X \ N , N ∪ {y}
is not an independent set. For every vertex y ∈ X \ N , there exists some z ∈ N such
that

T+
D (yz) = T+

C (y) ∧ T+
C (z), T−

D (yz) = T−
C (y) ∨ T−

C (z),

I+
D (yz) = I+

C (y) ∧ I+
C (z), I−

D (yz) = I−
C (y) ∨ I−

C (z),

F+
D (yz) = F+

C (y) ∨ F+
C (z), F−

D (yz) = F−
C (y) ∧ F−

C (z).

Thus, y dominates x , and hence, N is both independent and dominating set.
Conversely, assume that D is both independent and dominating set but not max-

imal independent set. So there exists a vertex y ∈ X \ N such that N ∪ {y} is an
independent set, i.e. no vertex in N dominates y, a contradiction to the fact that N is
a dominating set. Hence, N is maximal.

Theorem 3.16 Any maximal independent set of a bipolar neutrosophic graph is a
minimal dominating set.

Proof If N is a maximal independent set of a bipolar neutrosophic graph, then by
Theorem3.15, N is a dominating set. Assume that N is not a minimal dominating
set, then there always exist at least one z ∈ N for which N \ {z} is a dominating set.
On the other hand if N \ {z} dominates Y \ {N \ {z}}, at least one vertex in N \ {z}
dominates z. A contradiction to the fact that N is an independent set of bipolar
neutrosophic graph G. Hence, N is a minimal dominating set.

3.3 Applications to Multiple Criteria Decision-Making

Multiple criteria decision-making refers to making decisions in the presence of mul-
tiple, usually conflicting, criteria. Multiple criteria decision-making problems are
common in everyday life. We present multiple criteria decision-making method for
the identification of risk in decision support systems. The method is explained by
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an example for prevention of accidental hazards in chemical industry. The pro-
posed methodology can be implemented in various fields in different ways, for
instance, multicriteria decision-making problems with bipolar neutrosophic infor-
mation. However, our main focus is the identification of risk assessments in industry
which is described in the following steps. The bipolar neutrosophic information con-
sists of a group of risks/alternatives R = {r1, r2, . . . , rn} evaluated on the basis of
criteria C = {c1, c2, . . . , cm}. Here ri , i = 1, 2, . . . , n is the possibility for the cri-
teria ck, k = 1, 2, . . . ,m and rik are in the form of bipolar neutrosophic values. This
method is suitable if we have a small set of data and experts are able to evaluate
the data in the form of bipolar neutrosophic information. Take the values of rik as
rik = (T+

ik , I
+
ik , F

+
ik , T

−
ik , I

−
ik , F

−
ik ).

Step 1. Construct the table of the given data.
Step 2. Determine the average values using the following bipolar neutrosophic aver-

age operator, Ai = 1
n (

m∑

j=1
T+
i j −

m∏

j=1
T+
i j ,

m∏

j=1
I+
i j ,

m∏

j=1
F+
i j ,

m∏

j=1
T−
i j ,

m∑

j=1
I−
i j −

m∏

j=1
I−
i j ,

m∑

j=1
F−
i j −

m∏

j=1
F−
i j ), for each i = 1, 2, . . . , n.

Step 3. Construct the weighted average matrix.
Choose the weight vector w = (w1, w2, . . . , wn). According to the weights for each
alternative, the weighted average table can be calculated bymultiplying each average
value with the corresponding weight as:

βi = Aiwi , i = 1, 2, . . . , n.

Step 4. Calculate the normalized value for each alternative/risk βi using the formula,

αi =
√
(T+

i )2 + (I+
i )2 + (F+

i )2 + (1 − T−
i )2 + (−1 + I−

i )2 + (−1 + F−
i )2,

(3.4)
for each i = 1, 2, . . . , n. The resulting table indicates the preference ordering of the
alternatives/risks. The alternative/risk with maximum αi value is most dangerous or
more preferable.

Example 3.9 Chemical industry is a very important part of human society. These
industries contain large amount of organic and inorganic chemicals and materials.
Many chemical products have a high risk of fire due to flammable materials, large
explosions, oxygen deficiency, etc. These accidents can cause the death of employs,
damages to building, destruction of machines and transports, economical losses, etc.
Therefore, it is very important to prevent these accidental losses by identifying the
major risks of fire, explosions and oxygen deficiency.

A manager of a chemical industry Y wants to prevent such types of accidents
that caused the major loss to company in the past. He collected data from witness
reports, investigation teams and nearby chemical industries and found that the major
causes could be the chemical reactions, oxidizing materials, formation of toxic sub-
stances, electric hazards, oil spill, hydrocarbon gas leakage and energy systems. The
witness reports, investigation teams and industries have different opinions. There is
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Table 3.3 Bipolar neutrosophic data

Fire Oxygen deficiency Large explosion

Chemical exposures (0.5, 0.7, 0.2, −0.6,
−0.3, −0.7)

(0.1, 0.5, 0.7, −0.5,
−0.2, −0.8)

(0.6, 0.2, 0.3, −0.4,
0.0, −0.1)

Oxidizing materials (0.9, 0.7, 0.2, −0.8,
−0.6, −0.1)

(0.3, 0.5, 0.2, −0.5,
−0.5, −0.2)

(0.9, 0.5, 0.5, −0.6,
−0.5, −0.2)

Toxic vapour cloud (0.7, 0.3, 0.1, −0.4,
−0.1, −0.3)

(0.6, 0.3, 0.2, −0.5,
−0.3, −0.3)

(0.5, 0.1, 0.2, −0.6,
−0.2, −0.2)

Electric hazard (0.3, 0.4, 0.2, −0.6,
−0.3, −0.7)

(0.9, 0.4, 0.6, −0.1,
−0.7, −0.5)

(0.7, 0.6, 0.8, −0.7,
−0.5, −0.1)

Oil spill (0.7, 0.5, 0.3, −0.4,
−0.2, −0.2)

(0.2, 0.2, 0.2, −0.7,
−0.4, −0.4)

(0.9, 0.2, 0.7, −0.1,
−0.6, −0.8)

Hydrocarbon gas
leakage

(0.5, 0.3, 0.2, −0.5,
−0.2, −0.2)

(0.3, 0.2, 0.3,−0.7,
−0.4, −0.3)

(0.8, 0.2, 0.1, −0.1,
−0.9, −0.2)

Ammonium nitrate (0.3, 0.2, 0.3, −0.5,
−0.6, −0.5)

(0.9, 0.2, 0.1, 0.0,
−0.6, −0.5)

(0.6, 0.2, 0.1, −0.2,
−0.3, −0.5)

bipolarity in people’s thinking and judgement. The data can be considered as bipolar
neutrosophic information. The bipolar neutrosophic information about company Y
old accidents is given in Table3.3.

By applying bipolar neutrosophic average operator on Table3.3, the average val-
ues are given in Table3.4.

With regard to the weight vector (0.35, 0.80, 0.30, 0.275, 0.65, 0.75, 0.50) asso-
ciated to each cause of accident, the weighted average values are obtained by multi-
plying each average value with corresponding weight and are given in Table3.5.

Using Eq.3.4, the resulting normalized values are shown in Table3.6.
The accident possibilities can be placed in the following order: toxic vapour

cloud � electric hazard � hydrocarbon gas leakage � chemical exposures � ammo-
nium nitrate � oxidizing materials � oil spill where the symbol � represents partial
ordering of objects. It can be easily seen that the formation of toxic vapour clouds,
electrical and energy systems and hydrocarbon gas leakage are the major dangers to
the chemical industry. There is a very little danger due to oil spill. Chemical expo-
sures, oxidizing materials and ammonium nitrate have an average accidental danger.
Therefore, industry needs special precautions to prevent the major hazards that could
happen due the formation of toxic vapour clouds.

Graph theory is considered an important part ofMathematics for solving countless
real-world problems in information technology, psychology, engineering, combina-
torics and medical sciences. Everything in this world is connected, for instance,
cities and countries are connected by roads, railways are linked by railway lines,
flight networks are connected by air, electrical devices are connected by wires, pages
on internet by hyperlinks, components of electric circuits by various paths. Scien-
tists, analysts and engineers are trying to optimize these networks to find a way to
save millions of lives by reducing traffic accidents, plane crashes, circuit shots and
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Table 3.4 Bipolar neutrosophic average values

Average value

Chemical exposures (0.39, 0.023, 0.014, −0.04, −0.167, −0.515)

Oxidizing materials (0.619, 0.032, 0.001, −0.08, −0.483, −0.165)

Toxic vapour cloud (0.53, 0.003, 0.001, −0.04, −0.198, −0.261)

Electric hazard (0.570, 0.032, 0.032, −0.014, −0.465, −0.422)

Oil spill (0.558, 0.007, 0.014, −0.009, −0.384, −0.445)

Hydrocarbon gas leakage (0.493, 0.004, 0.002, −0.011, −0.543, −0.229)

Ammonium nitrate (0.546, 0.003, 0.001, 0.0, −0.464, −0.417)

Table 3.5 Bipolar neutrosophic weighted average table

Average value

Chemical exposures (0.1365, 0.0081, 0.0049, −0.0140, −0.0585, −0.1803)

Oxidizing materials (0.4952, 0.0256, 0.0008, −0.0640, −0.3864, −0.1320)

Toxic vapour cloud (0.1590, 0.0009, 0.0003, −0.012, −0.0594, −0.0783)

Electric zard (0.2850, 0.0160, 0.0160, −0.0070, −0.2325, −0.2110)

Oil spill (0.1535, 0.0019, 0.0039, −0.0025, −0.1056, −0.1224)

Hydrocarbon gas leakage (0.3205, 0.0026, 0.0013, −0.0072, −0.3530, −0.1489)

Ammonium nitrate (0.4095, 0.0023, 0.0008, 0.0, −0.3480, −0.2110)

Table 3.6 Normalized values Normalized value

Chemical exposures 1.5966

Oxidizing materials 1.5006

Toxic vapour cloud 1.6540

Electric hazard 1.6090

Oil spill 1.4938

Hydrocarbon gas leakage 1.6036

Ammonium nitrate 1.5089

pollution. Graphs are used to find such graphical representations of networks. But
there is always an uncertainty and degree of indeterminacy in data which can be dealt
using bipolar neutrosophic graphs.

3.3.1 Bipolar Neutrosophic Graphs for the Reduction
of Pollution

Major living organisms on the Earth are human beings, plants and animals. Their
survival is strongly dependent on air, water and land. The interaction between living
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Table 3.7 Bipolar neutrosophic set C of living organisms and life elements

Elements T+
C I+

C F−
C T−

C I−
C FN

C

Human beings 0.7 0.3 0.8 −0.9 −0.1 −0.9

Animals 0.8 0.4 0.7 −0.8 −0.3 −0.8

Plants 0.9 0.3 0.6 −0.8 −0.2 −0.8

Air 0.9 0.3 0.6 −0.7 −0.3 −0.8

Water 0.8 0.2 0.6 −0.7 −0.4 −0.8

Land 0.8 0.3 0.7 −0.8 −0.4 −0.9

Table 3.8 Bipolar neutrosophic set D of pairs of living organisms and life elements

Elements T+
D I+

D F−
D T−

D I−
D FN

D

(Human beings, animals) 0.7 0.3 0.6 −0.8 −0.1 −0.7

(Human beings, plants) 0.7 0.3 0.6 −0.8 −0.1 −0.5

(Human beings, air) 0.7 0.3 0.8 −0.7 −0.1 −0.9

(Human beings, water) 0.6 0.2 0.7 −0.6 −0.1 −0.8

(Human beings, land) 0.7 0.2 0.7 −0.8 −0.1 −0.7

(Animals, air) 0.6 0.3 0.6 −0.7 −0.2 −0.7

(Animals, water) 0.8 0.2 0.6 −0.7 −0.3 −0.8

(Animals, land) 0.8 0.3 0.7 −0.7 −0.3 −0.6

(Plants, air) 0.9 0.2 0.5 −0.7 −0.2 −0.6

(Plants, water) 0.8 0.2 0.6 −0.7 −0.2 −0.7

(Plants, land) 0.8 0.1 0.7 −0.8 −0.2 −0.6

(Water, land) 0.8 0.2 0.6 −0.7 −0.3 −0.8

organisms and life elements has good, bad or indeterminable effects. We can show
this effecting processes using a bipolar neutrosophic graph. We consider a set A of
living organisms and life elements in the realm of nature as: A = {human beings,
animals, plants, air, water, land}. Further we consider a bipolar neutrosophic set C
on set A, as shown in Table3.7.

In Table3.7, T+
C , F−

C of a living organism or life element shows its positive and
negative impacts on nature and I+

C show indeterminacy/ambiguity of its impact.
Whereas T−

C , FN
C denote nature’s negative impact on living organism or life element

and I−
C is the percentage of negative ambiguous impact. We now consider a set

E ⊆ X × X = {(human beings, animals), (human beings,plants), (human beings,
air), (human beings, water), (human beings, land), (animals, air), (animals, water),
(animals, land), (plants, air), (plants, water), (plants, land), (water, land)}. Moreover,
we define a bipolar neutrosophic set D on set A as shown in Table3.8.

In Table3.8, T+
D , T−

D of a pair denote the percentage of positive and negative
impacts on each other. Similarly F−

D , F
N
D and I+

D , I
−
D represent the percentage of

positive and negative false and intermediate effects. A bipolar neutrosophic graph
G = (C, D) is shown in Fig. 3.10.
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Fig. 3.10 Bipolar neutrosophic graph identifying highly responsible factors for pollution

In this bipolar neutrosophic graph, vertex human being has highest F−
D value, that

is, 0.8 and lowest FN
D value, that is −0.9 for air which shows that human beings

are highly responsible for air pollution and also highly effected by it as compared
to other pollution types. Animals and plants have highest F−

D values for land, 0,7,
0.7, respectively; it shows that they have major contribution in land pollution as
compared to other types of pollution. Moreover, animals and plants have lowest FN

D
values for water −0.8, −0.7, respectively; it indicates they are strongly effected by
water pollution. This bipolar neutrosophic graph can be a guideline for ENGOs and
other pollution control and health organizations that they should prevail awareness
and try to take steps to increase positive interaction of human beings with air and
take preventive measures to save animals and plants from water pollution. Further,
it emphasizes to minimize land pollution by animals and plants. The method for the
construction of a structure among living things is given in Algorithm3.3.1.

Algorithm 3.3.1 Structure among living things

1. Input the n number of objects L1, L2, . . . , Ln .
2. Input the bipolar neutrosophic set C of objects.
3. do i from 1 → n
4. do j from 1 → n
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5. read*, ξi j
6. if(i < j, ξi j �= (0, 0, 1, 0, 0,−1))then
7. Draw an edge between Li and L j .
8. D(Li L j ) = ξi j
9. end if
10. end do
11. end do

3.3.2 Domination in Bipolar Neutrosophic Graphs

Domination has a wide variety of applications in communication networks, coding
theory, fixing surveillance cameras, detecting biological proteins and social networks,
etc. Consider the example of a TV channel that wants to set up transmission stations
in a number of cities such that every city in the country gets access to the channel
signals from at least one of the stations. To reduce the cost for building large stations
it is required to set up minimum number of stations. This problem can be represented
by a bipolar neutrosophic graph in which vertices represent the cities and there is an
edge between two cities if they can communicate directly with each other. Consider
the network of ten cities {C1,C2, . . . ,C10}. In the bipolar neutrosophic graph, the
degree of each vertex represents the level of signals it can transmit to other cities and
the bipolar neutrosophic value of each edge represents the degree of communication
between the cities. The graph is shown in Fig. 3.11. D = {C8,C10} is the minimum
dominating set. It is concluded that by building only two large transmitting stations
in C8 and C10, a high economical benefit can be achieved. The method of calculating
the minimum number of stations is described in the following Algorithm3.3.2.

Algorithm 3.3.2 Finding minimum number of stations

1. Enter the total number of possible locations n.
2. Input the adjacency matrix [Ci j ]n×n of transmission stations C1,C2, . . . ,Cn .
3. k = 0, D = ∅
4. do i from 1 → n
5. do j from i + 1 → n
6. if (T+, I+, F+, T−, I−, F−)(CiC j ) =
7. (T+, I+, F+, T−, I−, F−)(Ci ) ∩ (T+, I+, F+, T−, I−, F−)(C j ) then
8. Ci ∈ D, k = k + 1, xk = Ci

9. end if
10. end do
11. end do
12. Arrange X \ D = {xk+1, xk+2, . . . , xn} = J , p = 0, q = 1
13. do i from 1 → k
14. D

′ = D \ xk−i+1, xk−i+1 = xn+1

15. do j from k → n + 1
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16. do m from 1 → k − 1
17. if (T+, I+, F+, T−, I−, F−)(xmx j ) =
18. (T+, I+, F+, T−, I−, F−)(xm) ∩ (T+, I+, F+, T−, I−, F−)

(x j ) then
19. D = D

′
, p = p + 1, k = k − 1, dq = xi ,

q = q + 1 stop the loop
20. else if (m = k − 1) then
21. D = D, D

′ = ∅
22. end if
23. end do
24. end do
25. end do
26. if (D ∪ (∪q

i=1di ) ∪ J = X) then
27. D is a minimal dominating set.
28. else
29. There is no dominating set.
30. end if
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C9(0.7, 0.6, 0.8,−0.7,−0.5,−0.1) C10(0.9, 0.4, 0.6,−0.1,−0.7,−0.5)

(0.5, 0.4, 0.2,−0.7,−0.3,−0.6) (0.4, 0.4, 0.5,−0.7,−0.7,−0.4)

(0.4, 0.4, 0.5,−0.7,−0.7,−0.4)(0.5, 0.4, 0.2,−0.7,−0.3,−0.6)

(0.7, 0.6, 0.8,−0.2,−0.5,−0.1) (0.7, 0.4, 0.8,−0.1,−0.5,−0.5) (0.9, 0.4, 0.6,−0.1,−0.6,−0.5)

C5C10(0.7, 0.4, 0.6, 0.8, 0.7, 0.5)C6C9(0.3, 0.4, 0.7, 0.6, 0.5, 0.4)

C3C10(0.7, 0.4, 0.6,−0.8,−0.7,−0.5)

C2C10(0.4, 0.4, 0.6,−0.1,−0.7,−0.5)

C6C10(0.4, 0.4, 0.6,−0.1,−0.7,−0.5)

(0
.5,
0.7
, 0
.2,
−0
.2,
−0
.3,
−0
.6)

(0.5, 0.7, 0.2,−0.2,−0.3,−0.6)

C2C9(0.3, 0.4, 0.5,−0.6,−0.5,−0.3)

(0
.5,
0.7
, 0
.5,
−0
.2,
−0
.6,
−0
.7)

(0.5, 0.7, 0.5,−0.2,−0.6,−0.7)

C1C9(0.4, 0.6, 0.8,−0.7,−0.3,−0.6)

C7C9(0.4, 0.6, 0.8,−0.7,−0.3,−0.6)

C9 C10

Fig. 3.11 Domination in bipolar neutrosophic graph
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3.4 Bipolar Neutrosophic Planar Graphs

Definition 3.21 Let A be a nonempty set with generic elements in A denoted by x . A
bipolar neutrosophic multiset C drawn from A is characterized by the three positive
functions: count truth-membership of CT+

C , count indeterminacy-membership of
C I+

C and count falsity-membership of CF+
C such that

CT+
C (x) : X → R+,

C I+
C (x) : X → R+,

CF+
C (x) : X → R+,

for x ∈ X , where R+ is the set of all real number multisets in the real unit inter-
val [0, 1]. The three negative functions: count truth-membership of CT−

C , count
indeterminacy-membership of C I−

C and count falsity-membership of CF−
C such that

CT−
C (x) : X → R−,

C I−
C (x) : X → R−,

CF−
C (x) : X → R−,

for x ∈ X , where R− is the set of all real number multisets in the real unit interval
[−1, 0]. Then, a bipolar single-valued neutrosophic multiset A is defined as follows.

A = {〈x,((T 1)+C (x), (T
2)+C (x), . . . , (T

q)+C (x)),

((I 1)+C (x), (I
2)+C (x), . . . , (I q)+C (x)),

((F1)+C (x), (F
2)+C (x), . . . , (F

q)+C (x)),

(T 1)−C (x), (T
2)−C (x), . . . , (T q)−C (x)),

((I 1)−C (x), (I
2)−C (x), . . . , (I q)−C (x)),

((F1)−C (x), (F
2)−C (x), . . . , (F

q)−C (x))〉|x ∈ X},

where the positive truth-, indeterminacy- and falsity-membership sequences are
given as,

((T 1)+C (x), (T
2)+C (x), . . . , (T

q)+C (x)),

((I 1)+C (x), (I
2)+C (x), . . . , (I q)+C (x)),

((F1)+C (x), (F
2)+C (x), . . . , (F

q)+C (x)).

These sequences may be in decreasing or increasing order. The sum of (T i
C)

+(x),
(I i )+C (x), (Fi )+C (x) ∈ [0, 1] satisfies the following condition: 0 ≤ sup(T i )+C (x) +
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sup(I i )+C (x) + sup(Fi )+C (x) ≤ 3, for x ∈ X , 1 ≤ i ≤ q. The negative truth-,
indeterminacy- and falsity-membership sequences,

((T 1)+C (x), (T
2)+C (x), . . . , (T

q)+C (x)),

((I 1)−C (x), (I
2)−C (x), . . . , (I q)−C (x)),

((F1)−C (x), (F
2)−C (x), . . . , (F

q)−C (x)),

maybe in decreasing or increasing order. The sumof (T i
C )

−(x), (I i )−C (x), (Fi )−C (x) ∈
[−1, 0] satisfies the condition:−3 ≤ inf(T i )−C (x) + inf(I i )−C (x) + inf(Fi )−C (x) ≤ 0
for x ∈ X and 1 ≤ i ≤ q. For convenience, a bipolar neutrosophic multiset C can be
denoted by the simplified form: C = {〈x, (T )+C (x)i , (I )+C (x)i , (F)+C (x)i , (T )−C (x)i ,
(I )−C (x)i , (F)

−
C (x)i 〉|x ∈ X, 1 ≤ i ≤ q}.

Definition 3.22 Let C = (T+
C , I+

C , F+
C , T−

C , I−
C , F−

C ) be a bipolar neutrosophic set
on A and D = {(xy, T+

D (xy)i , I
+
D (xy)i , F

+
D (xy)i , T

−
D (xy)i , I−

D (xy)i , F−
D (xy)i ),

1 ≤ i ≤ m|xy ∈ X × X} be a bipolar neutrosophic multiset of X × X such that

1. T+
D (xy)i ≤ T+

C (x) ∧ T+
C (y),

2. T−
D (xy)i ≥ T−

C (x) ∨ T−
C (y),

3. I+
D (xy)i ≤ I+

C (x) ∧ I+
C (y),

4. I−
D (xy)i ≥ I−

C (x) ∨ I−
C (y),

5. F+
D (xy)i ≤ F+

C (x) ∨ F+
C (y),

6. F−
D (xy)i ≥ F−

C (x) ∧ F−
C (y),

for all 1 ≤ i ≤ m. Then, G = (C, D) is called a bipolar neutrosophic multigraph.

There may be more than one edge between the vertices x and y. The positive values
T+
D (xy)i , I

+
D (xy)i , F

+
D (xy)i represent truth, indeterminacy and falsity of the edge xy

in G, whereas the negative values T−
D (xy)i , I

−
D (xy)i , F

−
D (xy)i represent the implicit

counter property of the truth-, indeterminacy- and falsity-membership degrees of
the edge xy in G. m denotes the number of edges between the vertices. In bipolar
neutrosophic multigraph G, D is said to be bipolar neutrosophic multiedge set.

Example 3.10 Let C = (T+
C , I+

C , F+
C , T−

C , I−
C , F−

C ) be a bipolar neutrosophic set
on X = {a, b, c, d}, given in Table3.9, and D = (T+

D , I+
D , F

+
D , T

−
D , I−

D , F
−
D ) be a

bipolar neutrosophic multiedge set on {ab, ab, ab, bc, bd} = E ⊆ X × X defined
in Table3.10.

By direct calculations, it can be seen fromFig. 3.12 that it is a bipolar neutrosophic
multigraph.

Definition 3.23 Let D = {(xy, T+
D (xy)i , I

+
D (xy)i , F

+
D (xy)i , T

−
D (xy)i , I−

D (xy)i ,
F−
D (xy)i ), 1 ≤ i ≤ m|xy ∈ X × X} be a bipolar neutrosophic multiedge set in

bipolar neutrosophic multigraph G. The degree of a vertex x ∈ X , denoted by

deg(x), is definedbydeg(x) = (
m∑

i=1
T+
D (xy)i ,

m∑

i=1
I+
D (xy)i ,

m∑

i=1
F+
D (xy)i ,

m∑

i=1
T−
D (xy)i ,

m∑

i=1
I−
D (xy)i ,

m∑

i=1
F−
D (xy)i ).
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Table 3.9 Bipolar neutrosophic set C

C a b c d

T+
C 0.5 0.4 0.5 0.4

I+
C 0.3 0.2 0.4 0.3

F+
C 0.3 0.4 0.3 0.4

T−
C −0.5 −0.4 −0.5 −0.4

I−
C −0.3 −0.2 −0.4 −0.3

F−
C −0.3 −0.4 −0.3 −0.4

Table 3.10 Bipolar neutrosophic multiedge set D

D ab ab ab bc bd

T+
D 0.2 0.1 0.2 0.3 0.1

I+
D 0.2 0.1 0.2 0.1 0.2

F+
D 0.2 0 0.2 0.3 0.2

T−
D −0.2 −0.1 −0.2 −0.3 −0.1

I−
D −0.2 −0.1 −0.2 −0.1 −0.2

F−
D −0.2 −0 −0.2 −0.3 −0.2

a(0.5, 0.3, 0.3,−0.5,−0.3,−0.3)
c(0.5, 0.4, 0.3,−0.5,−0.4,−0.3)

(0.2, 0.2, 0.2,−0.2,−0.2,−0.2)

(0.2, 0.2, 0.2,−0.2,−0.2,−0.2)

d(0.4, 0.3, 0.4,−0.4,−0.3,−0.4)

b(0
.4,

0.2
, 0.

4,−
0.4

,−0
.2,

−0.4
)

(0.1, 0.2, 0.2,−0.1,−0.2,−0.2)

(0.1, 0.1, 0,−0.1,−0.1, 0)

(0.3, 0.1, 0.3,−0.3,−0.1,−0.3)

Fig. 3.12 Bipolar neutrosophic multigraph

Example 3.11 In Example3.10, the degree of vertices a, b, c, d are calculated as,

deg(a) = (0.5, 0.5, 0.4,−0.5,−0.5,−0.4),

deg(b) = (0.9, 0.8, 0.9,−0.9,−0.8,−0.9),

deg(c) = (0.3, 0.1, 0.3,−0.3,−0.1,−0.3),
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a(0.4, 0.3, 0.2,−0.4,−0.3,−0.2)

c(0
.4,

0.4
, 0.3

,−0.
4,−0

.4,−
0.3

)

(0.4, 0.3, 0.3,−0.4,−0.3,−0.3)

(0.4, 0.2, 0.3,−0.4,−0.2,−0.3)

b(0
.5, 0

.4, 0
.3,−

0.5
,−0.

4,−0
.3)

(0.4, 0.3, 0.3,−0.4,−0.3,−0.3) (0.4, 0.4, 0.3,−0.4,−0.4,−0.3)

Fig. 3.13 Bipolar neutrosophic complete multigraph

deg(d) = (0.1, 0.2, 0.2,−0.1,−0.2,−0.2).

Definition 3.24 Let D = {(xy, T+
D (xy)i , I

+
D (xy)i , F

+
D (xy)i , T

−
D (xy)i , I−

D (xy)i ,
F−
D (xy)i ), 1 ≤ i ≤ m|xy ∈ X × X} be a bipolar neutrosophic multiedge set in bipo-

lar neutrosophic multigraph G. A multiedge xy of G is strong if the following
conditions are satisfied,

1. 1
2T

+
C (x) ∧ T+

C (y)} ≤ T+
D (xy)i ,

2. 1
2T

−
C (x) ∨ T−

C (y)} ≥ T−
D (xy)i ,

3. 1
2 I

+
C (x) ∧ I+

C (y)} ≤ I+
D (xy)i ,

4. 1
2 I

−
C (x) ∨ I−

C (y)} ≥ I−
D (xy)i ,

5. 1
2 F

+
C (x) ∨ F+

C (y)} ≥ F+
D (xy)i ,

6. 1
2 F

−
C (x) ∧ F−

C (y)} ≤ F−
D (xy)i , for all 1 ≤ i ≤ m.

Definition 3.25 Let D = {(xy, T+
D (xy)i , I

+
D (xy)i , F

+
D (xy)i , T−

D (xy)i , I−
D (xy)i ,

F−
D (xy)i ), 1 ≤ i ≤ m|xy ∈ X × X} be a bipolar neutrosophic multiedge set in bipo-

lar neutrosophic multigraph G. A bipolar neutrosophic multigraph G is complete if
the following conditions are satisfied.

1. T+
C (x) ∧ T+

C (y)} = T+
D (xy)i ,

2. T−
C (x) ∨ T−

C (y)} = T−
D (xy)i ,

3. I+
C (x) ∧ I+

C (y)} = I+
D (xy)i ,

4. I−
C (x) ∨ I−

C (y)} = I−
D (xy)i ,

5. F+
C (x) ∨ F+

C (y)} = F+
D (xy)i ,

6. F−
C (x) ∧ F−

C (y)} = F−
D (xy)i , for all x, y ∈ X , 1 ≤ i ≤ m.

Example 3.12 Consider a bipolar neutrosophic multigraph G as shown in Fig. 3.13.
By routine calculations, it is easy to see that Fig. 3.13 is a bipolar neutrosophic
complete multigraph.

Suppose that geometric insight for bipolar neutrosophic graphs has only one crossing
between single bipolar valued neutrosophic edges,
(ab, T+

D (ab)i , I
+
D (ab)i , F

+
D (ab)i , T

−
D (ab)i , I

−
D (ab)i , F

−
D (ab)i ) and

(cd, T+
D (cd)i , I

+
D (cd)i , F

+
D (cd)i , T

−
D (cd)i , I

−
D (cd)i , F

−
D (cd)i ). We note that:
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If (ab, T+
D (ab)i , I

+
D (ab)i , F

+
D (ab)i , T

−
D (ab)i , I

−
D (ab)i , F

−
D (ab)i )

= (1, 1, 1,−1,−1,−1),

(cd, T+
D (cd)i , I

+
D (cd)i , F

+
D (cd)i , T

−
D (cd)i , I

−
D (cd)i , F

−
D (cd)i )

= (0, 0, 0, 0, 0, 0),

or (ab, T+
D (ab)i , I

+
D (ab)i , F

+
D (ab)i , T

−
D (ab)i , I

−
D (ab)i , F

−
D (ab)i )

= (0, 0, 0, 0, 0, 0),

(cd, T+
D (cd)i , I

+
D (cd)i , F

+
D (cd)i , T

−
D (cd)i , I

−
D (cd)i , F

−
D (cd)i )

= (1, 1, 1,−1,−1,−1),

then bipolar neutrosophic graph has no crossing,

If (ab, T+
D (ab)i , I

+
D (ab)i , F

+
D (ab)i , T

−
D (ab)i , I

−
D (ab)i , F

−
D (ab)i )

= (1, 1, 1,−1,−1,−1),

(cd, T+
D (cd)i , I

+
D (cd)i , F

+
D (cd)i , T

−
D (cd)i , I

−
D (cd)i , F

−
D (cd)i )

= (1, 1, 1,−1,−1,−1),

then there exists a crossing for the representation of the graph.

Definition 3.26 The strength of the bipolar neutrosophic edge ab can be measured
by the following value,

Sab = ((ST+)ab, (SI+)ab, (SF+)ab, (ST−)ab, (SI−)ab, (SF−)ab)

=
(

T+
D (ab)i

T+
C (a) ∧ T+

C (b)
,

I+
D (ab)i

I+
C (a) ∧ I+

C (b)
,

F+
D (ab)i

F+
C (a) ∨ F+

C (b)
,

T−
D (ab)i

T−
C (a) ∨ T−

C (b)
,

I−
D (ab)i

I−
C (a) ∨ I−

C (b)
,

F−
D (ab)i

F−
C (a) ∧ F−

C (b)

)
.

Definition 3.27 Let G be a bipolar neutrosophic multigraph. An edge ab is said to
be a strong if

(ST+)ab ≥ 0.5, (SI+)ab ≥ 0.5, (SF+)ab ≥ 0.5,

(ST−)ab ≤ −0.5, (SI−)ab ≤ −0.5, (SF−)ab ≤ −0.5.

Otherwise, it is called a weak edge.

Definition 3.28 Let G = (C, D) be a bipolar neutrosophic multigraph such that D
contains two edges as,

(ab, T+
D (ab)i , I

+
D (ab)i , F

+
D (ab)i , T

−
D (ab)i , I

−
D (ab)i , F

−
D (ab)i )

and
(cd, T+

D (cd) j , I
+
D (cd) j , F

+
D (cd) j , T

−
D (cd) j , I

−
D (cd) j , F

−
D (cd) j ),
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intersected at a point P , where i and j are fixed integers. We define the intersecting
value at the point Q as,

SQ = ((ST +)Q, (SI+)Q, (SF+)Q, (ST −)Q, (SI−)Q, (SF−)Q)

=
(
(ST+)ab + (ST+)cd

2
,
(SI+)ab + (SI+)cd

2
,
(SF+)ab + (SF+)cd

2
,

(ST−)ab + (ST−)cd

2
,
(SI−)ab + (SI−)cd

2
,
(SF−)ab + (SF−)cd

2

)
.

If the number of point of intersections in a bipolar neutrosophicmultigraph increases,
planarity decreases. Thus for bipolar neutrosophic multigraph, SQ is inversely pro-
portional to the planarity. We now introduce the concept of a bipolar neutrosophic
planar graph.

Definition 3.29 LetG be a bipolar neutrosophic multigraph and Q1, Q2, . . . , Qz be
the points of intersection between the edges for a certain geometrical representation,
G is said to be a bipolar neutrosophic planar graphwith bipolar neutrosophic planarity
value f = ( fT+ , f I+ , fF+ , fT− , f I− , fF−) where

f = ( fT+ , f I+ , fF+ , fT− , f I− , fF−),

= (
1

1 + {(ST+)Q1 + (ST+)Q2 + · · · + (ST+)Qz }
,

1

1 + {(SI+)Q1 + (SI+)Q2 + · · · + (SI+)Qz }
1

1 + {(SF+)Q1 + (SF+)Q2 + · · · + (SF+)Qz }
,

1

−1 − {(ST−)Q1 + (ST−)Q2 + · · · + (ST−)Qz }
,

1

−1 − {(SI−)Q1 + (SI−)Q2 + · · · + (SI−)Qz }
,

1

−1 − {(SF−)Q1 + (SF−)Q2 + · · · + (SF−)Qz }
).

Clearly, f = ( fT+ , f I+ , fF+ , fT− , f I− , fF−) is bounded and

0 < fT+ ≤ 1, 0 < f I+ ≤ 1, 0 < fF+ ≤ 1,

−1 < fT− ≤ 0, − 1 < f I− ≤ 0, − 1 < fF− ≤ 0.

If there is no point of intersection for a certain geometrical representation of a
bipolar neutrosophic planar graph, then its bipolar neutrosophic planarity value is
(1, 1, 1,−1,−1,−1).We conclude that every bipolar neutrosophic graph is a bipolar
neutrosophic planar graph with certain bipolar neutrosophic planarity value.
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Example 3.13 Let X = {a, b, c, d, e} and E = {ab, ac, ad, ad, bc, bd, cd, ce, ae,
de, be}. Let C = (T+

C , I+
C , F+

C , T−
C , I−

C , F−
C ) be a bipolar neutrosophic set on A and

D = (T+
D , I+

D , F
+
D , T

−
D , I−

D , F
−
D ) be a bipolar neutrosophic multiedge set on X × X

defined in Tables3.11 and 3.12.
The bipolar neutrosophic multigraph as shown in Fig. 3.14 has two point of inter-

sections P1 and P2. P1 is a point between the edges

(ad, 0.2, 0.2, 0.1,−0.2,−0.2,−0.1),

(bc, 0.2, 0.2, 0.1,−0.2,−0.2,−0.1),

and P2 is between
(ad, 0.3, 0.3, 0.1,−0.3,−0.3,−0.1),

(bc, 0.2, 0.2, 0.1,−0.2,−0.2,−0.1).

For the edge (ad, 0.2, 0.2, 0.1, −0.2, −0.2, −0.1),

Sad = (0.4, 0.4, 0.5,−0.4,−0.4,−0.5).

For the edge (ad, 0.3, 0.3, 0.1, −0.3, −0.3, −0.1),

Sad = (0.6, 0.6, 0.5,−0.6,−0.6,−0.5),

Table 3.11 Bipolar neutrosophic set C

A a b c d e

T+
C 0.5 0.4 0.3 0.6 0.6

I+
C 0.5 0.4 0.3 0.6 0.6

F+
C 0.2 0.1 0.1 0.2 0.1

T−
C −0.5 −0.4 −0.3 −0.6 −0.6

I−
C −0.5 −0.4 −0.3 −0.6 −0.6

F−
C −0.2 −0.1 −0.1 −0.2 −0.1

Table 3.12 Bipolar neutrosophic multiedge set D

B ab ac ad ad bc bd cd ae ce de be

T+
D 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2

I+
D 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2

F+
D 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

T−
D −0.2 −0.2 −0.2 −0.3 −0.2 −0.2 −0.2 −0.2 −0.2 −0.2 −0.2

I−
D −0.2 −0.2 −0.2 −0.3 −0.2 −0.2 −0.2 −0.2 −0.2 −0.2 −0.2

F−
D −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1
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a(0.5, 0.5, 0.2,−0.5,−0.5,−0.2) b(0.4, 0.4, 0.1,−0.4,−0.4,−0.1)

d(0.6, 0.6, 0.2,−0.6,−0.6,−0.2)c(0.3, 0.3, 0.1,−0.3,−0.3,−0.1)

(0.2, 0.2, 0.1,−0.2,−0.2,−0.1)

0(
.2
, 0

.2
,0

.1
, −

0
.2
,−

0
.2
,−

0
.
)1

(0.2, 0.2, 0.1,−0.2,−0.2,−0.1)

0(
.2
,0

. 2
,0

.1
, −

0
.2
,−

0
.2
,−

0
.
)1

(0.
2,
0.2

, 0
.1,

−0.
2,
−0.

2,
−0.

1)

(0.2, 0.2, 0.1,−0.2,−0.2,−0.1)

P1

(0.3, 0.3, 0.1,−
0.3,−

0.3,−
0.1)
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Fig. 3.14 Neutrosophic planar graph

and for the edge (bc, 0.2, 0.2, 0.1, −0.2, −0.2, −0.1),

Sbc = (0.6667, 0.6667, 1,−0.6667,−0.6667,−1).

For the first point of intersection P1, intersecting value SP1 is (0.5334, 0.5334, 0.75,
−0.5334, −0.5334, −0.75). For the second point of intersection P2,SP2 , the inter-
secting value is (0.63335, 0.63335, 0.75,−0.63335,−0.63335,−0.75). Therefore,
the bipolar neutrosophic planarity value for the bipolar neutrosophic multigraph
shown in Fig. 3.14 is (0.461, 0.461, 0.4, −0.461, −0.461,−0.4).

Theorem 3.17 Let G be a bipolar neutrosophic complete multigraph. The planarity
value, f = ( fT+ , f I+ , fF+ , fT− , f I− , fF−), of G is given by

fT+ = 1

1 + nQ
, f I+ = 1

1 + nQ
, fF+ = 1

1 + nQ
, 0 ≤ fT+ + f I+ + fF+ ≤ 3,

fT− = 1

−1 − nQ
, f I− = 1

−1 − nQ
, fF− = 1

−1 − nQ
,−3 ≤ fT− + f I− + fF− ≤ 0,

where nQ is the number of point of intersections between the edges in G.

Definition 3.30 A bipolar neutrosophic planar graph G is called strong bipolar
neutrosophic planar graph if the bipolar neutrosophic planarity value f =( fT+ , f I+ ,
fF+ , fT− , f I− , fF−) of G satisfies the following conditions,
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fT+ ≥ 0.5, f I+ ≥ 0.5, fF+ ≤ 0.5,

fT− ≤ −0.5, f I− ≤ −0.5, fF+ ≥ −0.5.

Theorem 3.18 Let G be a strong bipolar neutrosophic planar graph. The number
of points of intersections between strong edges in G is at most one.

Proof Let G be a strong bipolar neutrosophic planar graph. Assume that G has at
least two point of intersections P1 and P2 between two strong bipolar neutrosophic
edges in G. For any strong edge
(ab, T+

D (ab)i , I
+
D (ab)i , F

+
D (ab)i , T

−
D (ab)i , I

−
D (ab)i , F

−
D (ab)i ),

T+
D (ab)i ≥ 1

2
T+
C (a) ∧ T+

C (b), T−
D (ab)i ≤ 1

2
T−
C (a) ∨ T−

C (b),

I+
D (ab)i ≥ 1

2
I+
C (a) ∧ I+

C (b), I−
D (ab)i ≤ 1

2
I−
C (a) ∨ I−

C (b),

F+
D (ab)i ≤ 1

2
F+
C (a) ∨ F+

C (b), F−
D (ab)i ≥ 1

2
F−
C (a) ∧ F−

C (b).

It shows that

(ST+)ab ≥ 0.5, (SI+)ab ≥ 0.5, (SF+)ab ≤ 0.5,
(ST−)ab ≤ −0.5, (SI−)ab ≤ −0.5, (SF−)ab ≥ −0.5.

Thus for two intersecting strong bipolar neutrosophic edges, we have

(ab, T+
D (ab)i , I

+
D (ab)i , F

+
D (ab)i , T

−
D (ab)i , I

−
D (ab)i , F

−
D (ab)i ),

(cd, T+
D (cd) j , I

+
D (cd) j , F

+
D (cd) j , T

−
D (cd) j , I

−
D (cd) j , F

−
D (cd) j ).

(ST+)ab + (ST+)cd

2
≥ 0.5,

(SI+)ab + (SI+)cd

2
≥ 0.5,

(SF+)ab + (SF+)cd

2
≤ 0.5,

(ST−)ab + (ST−)cd

2
≤ −0.5,

(SI−)ab + (SI−)cd

2
≤ −0.5,

(SF−)ab + (SF−)cd

2
≥ −0.5.

That is,

(ST+)Q1 ≥ 0.5, (SI+)Q1 ≥ 0.5, (SF+)Q1 ≤ 0.5,
(ST−)Q1 ≤ −0.5, (SI−)Q1 ≤ −0.5, (SF−)Q1 ≥ −0.5.

Similarly, we can prove that
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(ST+)Q2 ≥ 0.5, (SI+)Q2 ≥ 0.5, (SF+)Q2 ≤ 0.5,
(ST−)Q2 ≤ −0.5, (SI−)Q2 ≤ −0.5, (SF−)Q2 ≥ −0.5.

⇒ 1 + (ST+)Q1 + (ST+)Q2 ≥ 2, − 1 + (ST−)Q1 + (ST−)Q2 ≤ −2,

1 + (SI+)Q1 + (SI+)Q2 ≥ 2, − 1 + (SI−)Q1 + (SI−)Q2 ≤ −2,

1 + (SF+)Q1 + (SF+)Q2 ≤ 2, − 1 + (SF−)Q1 + (SF−)Q2 ≥ −2.

Therefore,

fT+ = 1

1 + (ST+ )Q1 + (ST+ )Q2

≤ 0.5, fT− = 1

−1 + (ST− )Q1 + (ST− )Q2

≥ −0.5,

f I+ = 1

1 + (SI+ )Q1 + (SI+ )Q2

≤ 0.5, f I− = 1

−1 + (SI− )Q1 + (SI− )Q2

≥ −0.5,

fF+ = 1

1 + (SF+ )Q1 + (SF+ )Q2

≥ 0.5, fF− = 1

−1 + (SF− )Q1 + (SF− )Q2

≤ −0.5.

It contradicts the fact that the bipolar neutrosophic graph is a strong bipolar neu-
trosophic planar graph. Thus, number of point of intersections between strong edges
cannot be two. Obviously, if the number of point of intersections of strong bipolar
neutrosophic edges increases, the bipolar neutrosophic planarity value decreases.
Similarly, if the number of point of intersection of strong edges is one, then the
bipolar neutrosophic planarity value

fT+ > 0.5, f I+ > 0.5, f I+ > 0.5,

fT− < −0.5, f I− < −0.5, f I− < −0.5.

Anybipolar neutrosophic planar graphwithout any crossing between edges is a strong
bipolar neutrosophic planar graph. Thus, we conclude that the maximum number of
point of intersections between the strong edges in G is one.

Face of a bipolar neutrosophic planar graph is an important parameter. Face of
a bipolar neutrosophic graph is a region bounded by bipolar neutrosophic edges.
Every bipolar neutrosophic face is characterized by bipolar neutrosophic edges in its
boundary. If all the edges in the boundary of a bipolar neutrosophic face have T+, I+,
F+, T−, I− and F− values (1, 1, 1,−1,−1,−1) and (0, 0, 0, 0, 0, 0), respectively,
it becomes crisp face. If one of such edges is removed or has T+, I+, F+, T−, I−
and F− values (0, 0, 0, 0, 0, 0) and (1, 1, 1,−1,−1,−1), respectively, the bipolar
neutrosophic face does not exist. So the existence of a bipolar neutrosophic face
depends on the minimum value of strength of bipolar neutrosophic edges in its
boundary. A bipolar neutrosophic face and its T+, I+, F+, T−, I−, and F− values
of a bipolar neutrosophic graph are defined below.

Definition 3.31 Let G be a bipolar neutrosophic planar graph and
D = {(xy, T+

D (xy)i , I+
D (xy)i , F

+
D (xy)i , T

−
D (xy)i , I−

D (xy)i , F−
D (xy)i ), i = 1, 2,
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. . . ,m|xy ∈ X × X}. A bipolar neutrosophic face of G is a region, bounded by the
set of bipolar neutrosophic edges E ′ ⊂ E , of a geometric representation of G. The
truth, indeterminacy and falsity values of the bipolar neutrosophic face are:

1. min

{
T+
D (xy)i

T+
C (x) ∧ T+

C (y)
, 1 ≤ i ≤ m| xy ∈ E ′

}
,

2. max

{
T−
D (xy)i

T−
C (x) ∨ T−

C (y)
, 1 ≤ i ≤ m| xy ∈ E ′

}
,

3. min

{
I+
D (xy)i

I+
C (x) ∧ I+

C (y)
, 1 ≤ i ≤ m| xy ∈ E ′

}
,

4. max

{
I−
D (xy)i

I−
C (x) ∨ I−

C (y)
, 1 ≤ i ≤ m| xy ∈ E ′

}
,

5. max

{
F+
D (xy)i

F+
C (x) ∨ F+

C (y)
, 1 ≤ i ≤ m| xy ∈ E ′

}
,

6. min

{
F−
D (xy)i

F−
C (x) ∧ F−

C (y)
, 1 ≤ i ≤ m| xy ∈ E ′

}
.

Definition 3.32 A bipolar neutrosophic face is called strong bipolar neutrosophic
face if its positive true and indeterminacy value is greater than 0.5 but false value
is lesser than 0.5, and negative true and indeterminacy value is less than −0.5 but
false value is greater than−0.5. Otherwise, face is weak. Every bipolar neutrosophic
planar graph has an infinite region which is called outer bipolar neutrosophic face.
Other faces are called inner bipolar neutrosophic faces.

Example 3.14 Consider a bipolar neutrosophic planar graph as shown in Fig. 3.15.
The bipolar neutrosophic planar graph has the following faces.

• Bipolar neutrosophic face F1 is bounded by the edges
(v1v2, 0.5, 0.5, 0.1, −0.5, −0.5, −0.1), (v2v3, 0.6, 0.6, 0.1, −0.6, −0.6, −0.1),
(v1v3, 0.5, 0.5, 0.1, −0.5, −0.5, −0.1).

• Outer bipolar neutrosophic face F2 surrounded by edges
(v1v3, 0.5, 0.5, 0.1, −0.5, −0.5, −0.1), (v1v4, 0.5, 0.5, 0.1, −0.5, −0.5, −0.1),
(v2v4, 0.6, 0.6, 0.1, −0.6, −0.6, −0.1), (v2v3, 0.6, 0.6, 0.1, −0.6, −0.6, −0.1).

• Bipolar neutrosophic face F3 is bounded by the edges
(v1v2, 0.5, 0.5, 0.1, −0.5, −0.5, −0.1), (v2v4, 0.6, 0.6, 0.1, −0.6, −0.6, −0.1),
(v1v4, 0.5, 0.5, 0.1, −0.5, −0.5, −0.1).

Clearly, the positive truth, indeterminacy and falsity values of a bipolar neutrosophic
face F1 are 0.833, 0.833 and 0.333, respectively, and the negative truth, indetermi-
nacy and falsity values of a bipolar neutrosophic face F1 are −0.833, −0.833 and
−0.333, respectively. The positive truth, indeterminacy and falsity values of a bipo-
lar neutrosophic face F3 are 0.833, 0.833 and 0.333, respectively, and the negative
truth, indeterminacy and falsity values of a bipolar neutrosophic face F3 are −0.833,
−0.833 and −0.333, respectively. Thus, F1 and F3 are strong bipolar neutrosophic
faces.
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Fig. 3.15 Faces in bipolar neutrosophic planar graph

We now introduce dual of bipolar neutrosophic planar graph. In bipolar neu-
trosophic dual graph, vertices are corresponding to the strong bipolar neutrosophic
faces of the bipolar neutrosophic planar graph and each bipolar neutrosophic edge
between two vertices is corresponding to each edge in the boundary between two
faces of bipolar neutrosophic planar graph. The formal definition is given below.

Definition 3.33 Let G be a bipolar neutrosophic planar graph, and let
D = {(xy, T+

D (xy)i , I
+
D (xy)i , F

+
D (xy)i , T−

D (xy)i , I−
D (xy)i , F−

D (xy)i ), i = 1, 2,
. . . , m|xy ∈ X × X}. Let F1, F2, . . . , Fk be the strong bipolar neutrosophic faces
of G. The bipolar neutrosophic dual graph of G is a bipolar neutrosophic pla-
nar graph G ′ = (X ′,C ′, D′), where X ′ = {xi , i = 1, 2, . . . , k}, and the vertex xi
of G ′ is considered for the face Fi of G. The truth-membership, indeterminacy
and falsetruth-membership values of vertices are given by the mapping C ′ =
(T+

C ′ , I+
C ′ , F+

C ′ , T−
C ′ , I−

C ′ , F−
C ′) : X ′ → [0, 1] × [0, 1] × [0, 1] × [−1, 0] × [−1, 0] ×

[−1, 0] such that
T+
C ′ (xi ) = max{T+

D′(uv)i , 1 ≤ i ≤ p|uv is an edge of the boundary of the strong
bipolar neutrosophic face Fi},
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T−
C ′ (xi ) = min{T−

D′(uv)i , 1 ≤ i ≤ p|uv is an edge of the boundary of the strong bipo-
lar neutrosophic face Fi},
I+
C ′(xi ) = max{I+

D′(uv)i , 1 ≤ i ≤ p|uv is an edge of the boundary of the strong bipo-
lar neutrosophic face Fi},
I−
C ′(xi ) = min{I−

D′(uv)i , 1 ≤ i ≤ p|uv is an edge of the boundary of the strong bipo-
lar neutrosophic face Fi},
F+
C ′(xi ) = min{F+

D′(uv)i , 1 ≤ i ≤ p|uv is an edge of the boundary of the strong
bipolar neutrosophic face Fi},
F−
C ′(xi ) = max{F−

D′(uv)i , 1 ≤ i ≤ p|uv is an edge of the boundary of the strong
bipolar neutrosophic face Fi}.

There may exist more than one common edges between two faces Fi and Fj of
G. Thus, there may be more than one edges between two vertices xi and x j in
bipolar neutrosophic dual graphG ′. Let (T+)lD(xi x j ), (I+)lD(xi x j ) and (F+)lD(xi x j )

denote the positive truth-, indeterminacy- and falsity-membership values of the lth
edge between xi and x j , and let (T−)lD(xi x j ), (I−)lD(xi x j ) and (F−)lD(xi x j ) denote
the negative truth-, indeterminacy- and falsity-membership values of the lth edge
between xi and x j . The positive and negative truth, indeterminacy and falsity values
of the bipolar neutrosophic edges of the bipolar neutrosophic dual graph are given
as

T+
D′(xi x j )l = (T+)lD(uv) j , I+

D′(xi x j )l = (I+)lD(uv) j ,

F+
D′(xi x j )l = (F+)lD(uv) j , T−

D′(xi x j )l = (T−)lD(uv) j ,

I−
D′(xi x j )l = (I−)lD(uv) j , F−

D′(xi x j )l = (F−)lD(uv) j .

where (uv)l is an edge in the boundary between two strong bipolar neutrosophic faces
Fi and Fj and 1 ≤ l ≤ s, where s is the number of common edges in the boundary
between Fi and Fj or the number of edges between xi and x j . If there be any strong
pendant edge in the bipolar neutrosophic planar graph, then therewill be a self-loop in
G ′ corresponding to this pendant edge. The edge truth-membership, indeterminacy-
membership and falsity-membership values of the self-loop are equal to the truth-
membership, indeterminacy-membership and falsity-membership values of the pen-
dant edge. Single-valued neutrosophic dual graph of bipolar neutrosophic planar
graph does not contain point of intersection of edges for a certain representation, so
it is bipolar neutrosophic planar graph with planarity value (1, 1, 1,−1,−1,−1).
Thus, the bipolar neutrosophic face of bipolar neutrosophic dual graph can be simi-
larly described as in bipolar neutrosophic planar graphs.

Example 3.15 Consider a bipolar neutrosophic planar graphG = (X , A, B) as shown
in Fig. 3.16 such that A = {a,b,c,d},

C = {(a, 0.6, 0.6, 0.2,−0.6,−0.6,−0.2), (b, 0.7, 0.7, 0.2,−0.7,−0.7,−0.2),

(c, 0.8, 0.8, 0.2,−0.8,−0.8,−0.2), (d, 0.9, 0.9, 0.1,−0.9,−0.9,−0.1)},
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Fig. 3.16 Neutrosophic dual
graph
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D = {(ab, 0.5, 0.5, 0.01,−0.5,−0.5,−0.01), (ac, 0.4, 0.4, 0.01,−0.4,−0.4,−0.01),

(bc, 0.6, 0.6, 0.01,−0.6,−0.6,−0.01), (cd, 0.7, 0.7, 0.01,−0.7,−0.7,−0.01),

(ad, 0.55, 0.55, 0.01,−0.55,−0.55,−0.01), (bc, 0.45, 0.45, 0.01,−0.45,

− 0.45,−0.01)}.

The bipolar neutrosophic planar graph has the following faces.

• Bipolar neutrosophic face F1 is bounded by
(ab, 0.5, 0.5, 0.01, −0.5, −0.5, −0.01), (ac, 0.4, 0.4, 0.01, −0.4, −0.4, −0.01),
(bc, 0.45, 0.45, 0.01, −0.45, −0.45, −0.01).

• Bipolar neutrosophic face F2 is bounded by
(ad, 0.55, 0.55, 0.01, −0.55, −0.55, −0.01), (cd, 0.7, 0.7, 0.01, −0.7, −0.7,
−0.01), (ac, 0.4, 0.4, 0.01, −0.4, −0.4, −0.01).

• Bipolar neutrosophic face F3 is bounded by
(bc, 0.45, 0.45, 0.01, −0.45, −0.45, −0.01), (bc, 0.6, 0.6, 0.01, −0.6, −0.6,
−0.01).

• Outer bipolar neutrosophic face F4 is surrounded by
(ab, 0.5, 0.5, 0.01, −0.5, −0.5, −0.01), (bc, 0.6, 0.6, 0.01, −0.6, −0.6, −0.01),
(cd, 0.7, 0.7, 0.01, −0.7, −0.7, −0.01), (ad, 0.55, 0.55, 0.01, −0.55, −0.55,
−0.01).

Routine calculations show that all faces are strong bipolar neutrosophic faces. For
each strong bipolar neutrosophic face, we consider a vertex for the bipolar neutro-
sophic dual graph. So the vertex set X ′ = {x1, x2, x3, x4}, where the vertex xi is taken
corresponding to the strong bipolar neutrosophic face Fi , i = 1, 2, 3, 4. Thus,

T+
C ′ (x1) = max{0.5, 0.4, 0.45} = 0.5, T+

C ′ (x2) = max{0.55, 0.7, 0.4} = 0.7,

T−
C ′ (x1) = min{−0.5,−0.4,−0.45} = −0.5,

T−
C ′ (x2) = min{−0.55,−0.7,−0.4} = −0.7,

I+
C ′ (x1) = max{0.5, 0.4, 0.45} = 0.5, I+

C ′ (x2) = max{0.55, 0.7, 0.4} = 0.7,

I−
C ′ (x1) = min{−0.5,−0.4,−0.45} = −0.5,
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I−
C ′ (x2) = min{−0.55,−0.7,−0.4} = −0.7,

F+
C ′ (x1) = min{0.01, 0.01, 0.01} = 0.01, F+

C ′ (x2) = min{0.01, 0.01, 0.01} = 0.01,

F−
C ′ (x1) = max{−0.01,−0.01,−0.01} = −0.01,

F−
C ′ (x2) = max{−0.01,−0.01,−0.01} = −0.01,

T+
C ′ (x3) = max{0.45, 0.6} = 0.6, T+

C ′ (x4) = max{0.5, 0.6, 0.7, 0.55} = 0.7,

T−
C ′ (x3) = min{−0.45,−0.6} = −0.6,

T−
C ′ (x4) = min{−0.5,−0.6,−0.7,−0.55} = −0.7,

I+
C ′ (x3) = max{0.45, 0.6} = 0.6, I+

C ′ (x4) = max{0.5, 0.6, 0.7, 0.55} = 0.7,

F+
C ′ (x3) = min{0.01, 0.01} = 0.01, F+

C ′ (x4) = min{0.01, 0.01, 0.01, 0.01} = 0.01.

F−
C ′ (x3) = max{−0.01,−0.01} = −0.01,

F−
C ′ (x4) = max{−0.01,−0.01,−0.01,−0.01} = −0.01.

There are two common edges ad and cd between the faces F2 and F4 in G. Hence
between the vertices x2 and x4, there exist two edges in the bipolar neutrosophic dual
graph of G. Truth-membership, indeterminacy-membership and falsity-membership
values of these edges are given as

T+
D′(x2x4) = T+

D (cd) = 0.7, T+
D′(x2x4) = T+

D (ad) = 0.55,
I+
D′(x2x4) = I+

D (cd) = 0.7, I+
D′(x2x4) = I+

D (ad) = 0.55,
F+
D′(x2x4) = F+

D (cd) = 0.01, F+
D′(x2x4) = F+

D (ad) = 0.01,
T−
D′(x2x4) = T−

D (cd) = −0.7, T−
D′(x2x4) = T−

D (ad) = −0.55,
I−
D′(x2x4) = I−

D (cd) = −0.7, I−
D′(x2x4) = I−

D (ad) = −0.55,
F−
D′(x2x4) = F−

D (cd) = −0.01, F−
D′(x2x4) = F−

D (ad) = −0.01.

The truth-membership, indeterminacy-membership and falsity-membership values
of other edges of the bipolar neutrosophic dual graph are calculated as

T+
D′(x1x3) = T+

D (bc) = 0.45, T+
D′(x1x2) = T+

D (ac) = 0.4,
T+
D′(x1x4) = T+

D (ab) = 0.5, T+
D′(x3x4) = T+

D′(bc) = 0.6,
T−
D′(x1x3) = T−

D (bc) = −0.45, T−
D′(x1x2) = T−

D (ac) = −0.4,
T−
D′(x1x4) = T−

D (ab) = −0.5, T−
D′(x3x4) = T−

D′(bc) = −0.6,
I+
D′(x1x3) = I+

D (bc) = 0.45, I+
D′(x1x2) = I+

D (ac) = 0.4,
I+
D′(x1x4) = I+

D (ab) = 0.5, I+
D′(x3x4) = I+

D′(bc) = 0.6,
I−
D′(x1x3) = I−

D (bc) = −0.45, I−
D′(x1x2) = I−

D (ac) = −0.4,
I−
D′(x1x4) = I−

D (ab) = −0.5, I−
D′(x3x4) = I−

D′(bc) = −0.6,
F+
D′(x1x3) = T+

D (bc) = 0.01, F+
D′(x1x2) = F+

D (ac) = 0.01,
F+
D′(x1x4) = F+

D (ab) = 0.01, F+
D′(x3x4) = F+

D (bc) = 0.01,
F−
D′(x1x3) = T−

D (bc) = 0.01, F−
D′(x1x2) = F−

D (ac) = 0.01,
F−
D′(x1x4) = F−

D (ab) = 0.01, F−
D′(x3x4) = F−

D (bc) = 0.01.
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Thus, the bipolar neutrosophic edge set of bipolar neutrosophic dual graph is com-
puted as

D′ = {(x1x3, 0.45, 0.45, 0.01,−0.45,−0.45,−0.01),

(x1x2, 0.4, 0.4, 0.01,−0.4,−0.4,−0.01),

(x1x4, 0.5, 0.5, 0.01,−0.5,−0.5,−0.01),

(x3x4, 0.6, 0.6, 0.01,−0.6,−0.6,−0.01),

(x2x4, 0.7, 0.7, 0.01,−0.7,−0.7,−0.01),

(x2x4, 0.55, 0.55, 0.01,−0.55,−0.55,−0.01)}.

In Fig. 3.16, the bipolar neutrosophic dual graph G ′ = (X ′,C ′, D′) of G is drawn by
dotted line.

Weak edges in planar graphs are not considered for any calculation in bipolar neu-
trosophic dual graphs.

Theorem 3.19 Let G = (X,C, D) be a bipolar neutrosophic planar graph without
weak edges and the bipolar neutrosophic dual graph of G be G ′ = (X ′,C ′, D′).
The truth-membership, indeterminacy-membership and falsity-membership values
of bipolar neutrosophic edges of G ′ are equal to truth-membership, indeterminacy-
membership and falsity-membership values of the bipolar neutrosophic edges of G.

3.5 Applications of Neutrosophic Planar Graphs

Graph is considered an important part of Mathematics for solving countless real-
world problems in information technology, psychology, engineering, combinatorics
and medical sciences. Everything in this world is connected, for instance, cities and
countries are connected by roads, railways are linked by railway lines, flight networks
are connected by air, electrical devices are connected by wires, pages on internet by
hyperlinks, components of electric circuits by various paths. Scientists, analysts and
engineers are trying to optimize these networks to find a way to save millions of
lives by reducing traffic accidents, plane crashes and circuit shots. Planar graphs
are used to find such graphical representations of networks without any crossing
or minimum number of crossings. But there is always an uncertainty and degree of
indeterminacy in data which can be dealt using bipolar neutrosophic graphs. We now
present applications of bipolar neutrosophic graphs in road networks.

3.5.1 Road Network Model to Monitor Traffic

Roads are a mean of frequent and unacceptable number of fatalities every year. Road
accidents are increasing due to dense traffic, negligence of drivers and speed of
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vehicles. Traffic accidents can be minimized by modelling road networks to monitor
the traffic, apply quick emergency services and to take action against the speedily
going vehicles quickly. The practical approach of bipolar neutrosophic planar graphs
can be applied to construct road networks, as these are the combination of vertices
and edges along with the degree of truth, indeterminacy and falsity. The method for
the construction of road network is given in Algorithm3.5.1.

Algorithm 3.5.1 Construction of a road network

1. Input: The n number of location L1, L2, . . . , Ln .
2. Input: The bipolar neutrosophic set of cities.
3. Input: The adjacency matrix of ξ = [ξi j ]n×n of cities.
4. do i from 1 → n
5. do j from 1 → n
6. if(i < j, ξi j �= (0, 0, 1, 0, 0,−1))then
7. Draw an edge between Li and L j .
8. B(Li L j ) = ξi j
9. end if
10. end do
11. end do

Consider the problemof road networks between six locations L1, L2, L3, L4, L5, L6.
The degree of memberships of cities and roads between cities is given in Tables3.13
and 3.14. The positive degree of membership T+(x) of each vertex x represents the

Table 3.13 Bipolar neutrosophic set of cities

A L1 L2 L3 L4 L5 L6

T p
A 0.7 0.5 0.8 0.6 0.5 0.4

I pA 0.4 0.4 0.2 0.1 0.4 0.5

F p
A 0.2 0.3 0.2 0.1 0.4 0.5

T n
A −0.2 −0.3 −0.2 −0.1 −0.4 −0.5

I nA −0.4 −0.4 −0.2 −0.1 −0.4 −0.5

Fn
A −0.7 −0.5 −0.8 −0.6 −0.5 −0.4

Table 3.14 Bipolar neutrosophic set of roads

A L1L3 L1L6 L2L3 L2L4 L3L5 L5L6 L2L5 L3L6 L4L6

T p
B 0.4 0.4 0.5 0.5 0.5 0.4 0.5 0.4 0.4

I pB 0.2 0.4 0.2 0.1 0.2 0.4 0.4 0.2 0.1

F p
B 0.2 0.5 0.3 0.1 0.4 0.4 0.3 0.5 0.5

T n
B −0.2 −0.2 −0.3 −0.1 −0.2 −0.4 −0.3 −0.2 −0.1

I nB −0.4 −0.4 −0.2 −0.1 −0.2 −0.4 −0.4 −0.2 −0.1

Fn
B −0.7 −0.4 −0.8 −0.6 −0.8 −0.4 −0.5 −0.8 −0.6
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Fig. 3.17 Bipolar
neutrosophic road model
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percentage that vehicles travelling to or from this city are dense, I+(x) and F+(x)
represent the indeterminacy and falsity in this percentage. The negative degree of
membership T−(x) represents the percentage that traffic is not dense, I−(x) and
F−(x) represent the indeterminacy and falsity in this percentage. The positive degree
of memberships of each edge xy indicates the percentage of truth, indeterminacy and
falsity of road accidents through this road. The negative degree of memberships of
xy shows the percentage of truth, indeterminacy and falsity that the road is safer.
The bipolar neutrosophic model of road connections between the cities is shown
in Fig. 3.17. This bipolar neutrosophic model can be used to check and monitor
the percentage of annual accidents. Also, by monitoring and taking special security
actions, the total number of accidents can be minimized.

3.5.2 Electrical Connections

Graph theory is extensively used in designing circuit connections and installation of
wires in order to prevent crossing which can cause dangerous electrical hazards. The
twisted and crossing wires are a serious safety risk to human life. There is a need
to install electrical wires to reduce crossing. Bipolar neutrosophic planar graphs can
be used to model electrical connections and to study the degree of damage that can
cause due to the connection.

Consider the problem of setting electrical wires between five electrical utilities
and power plugs E1, E2, E3, E4, E5 in a factory as shown in Fig. 3.18. The positive
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Fig. 3.18 Electrical
connections
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degree of membership T+(Ei ) of each vertex Ei represents the percentage of faults
and electrical sparks of utility or power plug Ei ; I+(Ei ) and F p(Ei ) represent the
indeterminacy and falsity in this percentage. The negative degree of membership
T−(Ei ) represents the percentage that Ei is updated and safer; I−(x) and F−(x)
represent the indeterminacy and falsity in this percentage. The positive degree of
memberships of each edge Ei E j indicates the percentage of truth, indeterminacy
and falsity of electrical hazards through this connection. The negative degree of
memberships of Ei E j shows the percentage of truth, indeterminacy and falsity that
the connection is safer. The crossing of wires can be reduced if we change the
geometrical representation of Fig. 3.18. The other representation is shown in Fig. 3.19
which has only one crossing, at point P1, between the edges E1E4 and E2E5. The
electrical damage at crossing point P1 can be reduced by using better electrical
wires between E1 and E4, E2 and E5. The method for the construction of bipolar
neutrosophic planar graph is given in Algorithm3.5.2.

Algorithm 3.5.2 Construction of bipolar neutrosophic planar graph

1. Input: The n number of utilities E1, E2, . . . , En and p number of connections
e1, e2, . . . , ep.

2. Input: The bipolar neutrosophic set of utilities.
3. Input: The points of intersection P1, P2, . . . , Pr .
4. do i from 1 → r
5. Pi is a point of intersection between e j and ek .
6. Change the graphical representation of one of the edges e j and ek .
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Fig. 3.19 Bipolar
neutrosophic planar graph
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P
1

7. if There is no new point of intersection in this representation then
8. Keep this graphical representation.
9. else
10. Keep the previous graphical representation.
11. end if
12. end do

3.6 Bipolar Neutrosophic Line Graphs

Definition 3.34 Let L(G∗) = (Y, Z) be line graph of the crisp graph G∗ = (X, E).
Let A1=(T

+
A1
, I+

A1
, F−

A1
,T−

A1
, I−

A1
, F−

A1
) and B1 = (T+

B1
, I+

B1
, F−

B1
, T−

B1
, I−

B1
, F−

B1
) be

bipolar neutrosophic sets on A and E , respectively. A2 = (T+
A2
, I+

A2
, F−

A2
, T−

A2
, I−

A2
,

F−
A2
) and B2 = (T+

B2
, I+

B2
, F−

B2
, T−

B2
, I−

B2
, F−

B2
) are bipolar neutrosophic sets on Y and

Z , respectively. Then, a bipolar neutrosophic line graph of the bipolar neutrosophic
graph G = (A1, B1) is a bipolar neutrosophic graph L(G) = (A2, B2) such that

1. T+
A2
(Sx ) = T+

B1
(x) = T+

B1
(uxvx ), T

−
A2
(Sx ) = T−

B1
(x) = T−

B1
(uxvx ),

2. I+
A2
(Sx ) = I+

B1
(x) = I+

B1
(uxvx ), I

−
A2
(Sx ) = I−

B1
(x) = I−

B1
(uxvx ),

3. F−
A2
(Sx ) = F−

B1
(x) = F−

B1
(uxvx ), F

−
A2
(Sx ) = F−

B1
(x) = F−

B1
(uxvx ),

4. T+
B2
(Sx Sy) = T+

B1
(x) ∧ T+

B1
(y), T−

B2
(Sx Sy) = T−

B1
(x) ∨ T−

B1
(y),
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Table 3.15 Bipolar
neutrosophic set A

x ∈ X A(x)

a (0.7, 0.4, 0.4,−0.4,−0.4,−0.7)

b (0.8, 0.5, 0.5,−0.5,−0.7,−0.8)

c (0.9, 0.6, 0.6,−0.6,−0.5,−0.7)

d (0.6, 0.6, 0.4,−0.4,−0.5,−0.5)

e (0.7, 0.4, 0.2,−0.3,−0.3,−0.6)

Table 3.16 Bipolar
neutrosophic relation B

xy ∈ X × X B(xy)

ab (0.7, 0.4, 0.4,−0.4,−0.4,−0.7)

ac (0.6, 0.3, 0.2,−0.2,−0.3,−0.6)

be (0.5, 0.2, 0.2,−0.2,−0.3,−0.6)

bd (0.5, 0.5, 0.4,−0.4,−0.5,−0.5)

cd (0.3, 0.4, 0.4,−0.3,−0.5,−0.5)

de (0.6, 0.3, 0.2,−0.2,−0.3,−0.6)
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Fig. 3.20 Bipolar neutrosophic graph G

5. I+
B2
(Sx Sy) = I+

B1
(x) ∧ I+

B1
(y), I−

B2
(Sx Sy) = I−

B1
(x) ∨ I−

B1
(y),

6. F−
B2
(Sx Sy) = F−

B1
(x) ∨ F−

B1
(y), F−

B2
(Sx Sy) = F−

B1
(x) ∧ F−

B1
(y),

∀ Sx , Sy ∈ Y, Sx Sy ∈ Z .

Example 3.16 Let A be a bipolar neutrosophic set on X = {a, b, c, d, e}, given in
Table3.15, and B be a bipolar neutrosophic relation on X , given in Table3.16. It can
be seen that G = (A, B) as shown in Fig. 3.20 is a bipolar neutrosophic graph. The
bipolar neutrosophic line graph of Fig. 3.20 is shown in Fig. 3.21.

Proposition 3.8 L(G) = (A2, B2) is a bipolar neutrosophic line graph of some
bipolar neutrosophic graph G = (A1, B1) if and only if
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Fig. 3.21 Bipolar neutrosophic line graph

T+
B2
(Sx Sy) = T+

A2
(Sx ) ∧ T+

A2
(Sy), T N

B2
(Sx Sy) = T−

A2
(Sx ) ∨ T−

A2
(Sy),

I+
B2
(Sx Sy) = I+

A2
(Sx ) ∧ I+

A2
(Sy), I−

B2
(Sx Sy) = I−

A2
(Sx ) ∨ I−

A2
(Sy)),

F+
B2
(Sx Sy) = F+

A2
(Sx ) ∨ F+

A2
(Sy), F−

B2
(Sx Sy) = F−

A2
(Sx ) ∧ F−

A2
(Sy),

for all Sx , Sy ∈ Y.

Definition 3.35 Consider twobipolar neutrosophic graphsG1 = (A1, B1) andG2 =
(A2, B2). A mapping ψ : X1 → X2 is called homomorphism ψ : G1 → G2 if

(a)

{
T+
A1
(x1) ≤ T+

A2
(ψ(x1)), I+

A1
(x1) ≤ I+

A2
(ψ(x1)), F+

A1
(x1) ≤ F+

A2
(ψ(x1)),

T−
A1
(x1) ≥ T−

A2
(ψ(x1)), I−

A1
(x1) ≥ I−

A2
(ψ(x1)), F−

A1
(x1) ≥ F+

A2
(ψ(x1)),

(b)

⎧
⎨

⎩

T+
B1
(x1y1) ≤ T+

B2
(ψ(x1)ψ(y1)), T−

B1
(x1y1) ≥ T−

B2
(ψ(x1)ψ(y1)),

I+
B1
(x1y1) ≤ I+

B2
(ψ(x1)ψ(y1)), I−

B1
(x1y1) ≥ I−

B2
(ψ(x1)ψ(y1)),

F+
B1
(x1y1) ≤ F+

B2
(ψ(x1)ψ(y1)), F−

B1
(x1y1) ≥ F−

B2
(ψ(x1)ψ(y1)),

for all x1 ∈ X1, x1y1 ∈ E1. The weak vertex isomorphism of bipolar neutrosophic
graphs is a bijective homomorphism ψ : G1 → G2, such that

(c)

{
T+
A1
(x1) = T+

A2
(ψ(x1)), I+

A1
(x1) = I+

A2
(ψ(x1)), F+

A1
(x1) = F+

A2
(ψ(x1)),

T−
A1
(x1) = T−

A2
(ψ(x1)), I−

A1
(x1) = I−

A2
(ψ(x1)), F−

A1
(x1) = F−

A2
(ψ(x1)),

for all x1 ∈ X1 and ψ : G1 → G2 is called weak line isomorphism if

(d)

⎧
⎨

⎩

T+
B1
(x1y1) = T+

B2
(ψ(x1)ψ(y1)), T−

B1
(x1y1) = T−

B2
(ψ(x1)ψ(y1)),

I+
B1
(x1y1) = I+

B2
(ψ(x1)ψ(y1)), I−

B1
(x1y1) = I−

B2
(ψ(x1)ψ(y1)),

F+
B1
(x1y1) = F+

B2
(ψ(x1)ψ(y1)), F−

B1
(x1y1) = F−

B2
(ψ(x1)ψ(y1)),

for all x1y1 ∈ E1. The weak isomorphism ψ : G1 → G2 of two bipolar neutrosophic
graphs G1 and G2 is bijective homomorphism and satisfies (c) and (d). The weak
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isomorphism may not preserve the weights of the edges but preserves the weights of
vertices.

Proposition 3.9 The weak isomorphism of two bipolar neutrosophic graphs G1 and
G2 is an isomorphism between their crisp graphs Ĝ1 and Ĝ2.

Theorem 3.20 Let L(G) = (A2, B2) be a bipolar neutrosophic line graph corre-
sponding to a bipolar neutrosophic graph G = (A1, B1). Then,

(i) there is a week isomorphism between G and L(G) if and only if G∗ is a cyclic
graph and ∀ v ∈ X, x ∈ E,

T+
A1
(v) = T+

B1
(x), I+

A1
(v) = I+

B1
(x), F+

A1
(v) = F+

B1
(x),

T−
A1
(v) = T−

B1
(x), I−

A1
(v) = I−

B1
(x), F−

A1
(v) = F−

B1
(x),

i.e. A1 = (T+
A1
, I+

A1
, F+

A1
, T−

A1
, I−

A1
, F−

A1
) and B1 = (T+

B1
, I+

B1
, F+

B1
, T−

B1
, I−

B1
, F−

B1
)

are constant functions on the sets A and E, respectively, taking on same value.
(ii) If ψ is a weak isomorphism between G and L(G), then ψ is an isomorphism.

Proof Consider a weak isomorphism ψ : G ⇒ L(G). By Proposition3.8, G∗ =
(V, E) is a cycle.Let X = {v1, v2, . . . , vn} and E = {x1 = v1v2, x2 = v2v3, . . . , xn =
vnv1}, where v1v2v3 . . . vn is a cycle. Define bipolar neutrosophic sets

T+
A1
(vi ) = si , I+

A1
(vi ) = s′

i , F+
A1
(vi ) = s′′

i ,

T−
A1
(vi ) = ti , I−

A1
(vi ) = t ′i , F−

A1
(vi ) = t ′′i

T+
B1
(xi ) = T+

B1
(vivi+1) = ri , I+

B1
(xi ) = I+

B1
(vivi+1) = r ′

i , F+
B1
(xi ) = F+

B1
(vivi+1) = r ′′

i ,

T−
B1
(xi ) = T−

B1
(vivi+1) = qi , I−

B1
(xi ) = I−

B1
(vivi+1) = q ′

i , F−
B1
(xi ) = F−

B1
(vivi+1) = q ′′

i ,

i = 1, 2, . . . , n, vn+1 = v1. For s ′′
n+1 = s ′′

1 , s
′
n+1 = s ′

1, sn+1 = s1, t ′′n+1 = t ′′1 , t ′n+1 =
t ′1, tn+1 = t1, we have

ri ≤ si ∧ si+1, r ′
i ≤ s ′

i ∧ s ′
i+1, r ′′

i ≤ s ′′
i ∨ s ′′

i+1, (3.5)

qi ≥ ti ∨ ti+1, q ′
i ≥ t ′i ∨ t ′i+1, q ′′

i ≥ t ′′i ∧ t ′′i+1, (3.6)

1 ≤ i ≤ n. Now

X = {Sx1 , Sx2 , Sx3 , . . . , Sxn }, Y = {Sx1 Sx2 , Sx2 Sx3 , . . . , Sxn Sx1}.

Thus, for rn+1 = r1, we obtain

T+
A2
(Sxi ) = T+

B1
(xi ) = ri , I+

A2
(Sxi ) = I+

B1
(xi ) = r ′

i , F+
A2
(Sxi ) = F+

B1
(xi ) = r ′′

i ,

T+
B2
(Sxi Sxi+1) = T+

B1
(xi ) ∧ T+

B1
(xi+1) = ri ∧ ri+1,

I+
B2
(Sxi Sxi+1) = I+

B1
(xi ) ∧ I+

B1
(xi+1) = r ′

i ∧ r ′
i+1,
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F+
B2
(Sxi Sxi+1) = F+

B1
(xi ) ∨ F+

B1
(xi+1) = r ′′

i ∨ r ′′
i+1.

For qn+1 = q1, we obtain

T−
A2
(Sxi ) = T−

B1
(xi ) = qi , I−

A2
(Sxi ) = I−

B1
(xi ) = q ′

i , F−
A2
(Sxi ) = F−

B1
(xi ) = q ′′

i ,

T−
B2
(Sxi Sxi+1) = T−

B1
(xi ) ∨ T−

B1
(xi+1) = qi ∨ qi+1,

I−
B2
(Sxi Sxi+1) = I−

B1
(xi ) ∨ I−

B1
(xi+1) = q ′

i ∨ q ′
i+1,

F−
B2
(Sxi Sxi+1) = F−

B1
(xi ) ∧ F−

B1
(xi+1) = q ′′

i ∧ q ′′
i+1

for 1 ≤ i ≤ n, vn+1 = v1. Since ψ is isomorphism of Ĝ onto L(G∗), ψ is a bijection
of A onto Y . Also ψ preserves the adjacency. Hence, ψ induces a permutation π′ of
{1, 2, . . . , n} such that

ψ(vi ) = Svπ′(i)vπ′(i)+1

vivi+1 → ψ(vi )ψ(vi+1) = Svπ′(i)vπ′(i)+1
Svπ′(i+1)vπ′(i+1)+1

, 1 ≤ i ≤ n − 1.

Thus, we conclude that

si = T+
A1
(vi ) ≤ T+

A2
(ψ(vi )) = T+

A2
(Svπ′(i)vπ′(i)+1

) = T+
B1
(vπ′(i)vπ′(i)+1) = rπ′(i),

s ′
i = I+

A1
(vi ) ≤ I+

A2
(ψ(vi )) = I+

A2
(Svπ′(i)vπ′(i)+1

) = I+
B1
(vπ′(i)vπ′(i)+1) = r ′

π′(i),

s ′′
i = F+

A1
(vi ) ≤ F+

A2
(ψ(vi )) = F+

A2
(Svπ′(i)vπ′(i)+1

) = F+
B1
(vπ′(i)vπ′(i)+1) = r ′′

π′(i),

ti = T−
A1
(vi ) ≥ T−

A2
(ψ(vi )) = T−

A2
(Svπ′(i)vπ′(i)+1

) = T−
B1
(vπ′(i)vπ′(i)+1) = qπ′(i),

t ′i = I−
A1
(vi ) ≥ I−

A2
(ψ(vi )) = I−

A2
(Svπ′(i)vπ′(i)+1

) = I+
B1
(vπ′(i)vπ′(i)+1) = q ′

π′(i),

t ′′i = F−
A1
(vi ) ≥ F−

A2
(ψ(vi )) = F−

A2
(Svπ′(i)vπ′(i)+1

) = F−
B1
(vπ′(i)vπ′(i)+1) = q ′′

π′(i),

ri = T+
B1
(vivi+1) ≤ T+

B2
(ψ(vi )ψ(vi+1))

= T+
B2
(Svπ′(i)vπ′(i)+1

Svπ′(i+1)vπ′(i+1)+1
)

= T+
B1
(vπ′(i)vπ′(i)+1) ∧ T+

B1
(vπ′(i+1)vπ′(i+1)+1)

= rπ′(i) ∧ rπ′(i+1).
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r ′
i = I+

B1
(vivi+1) ≤ I+

B2
(ψ(vi )ψ(vi+1))

= I+
B2
(Svπ′(i)vπ′(i)+1

Svπ′(i+1)vπ′(i+1)+1
)

= I+
B1
(vπ′(i)vπ′(i)+1) ∧ I+

B1
(vπ′(i+1)vπ′(i+1)+1)

= r ′
π′(i) ∧ r ′

π′(i+1).

Similarly,

r ′′
i = F+

B1
(vivi+1) ≤ F+

B2
(ψ(vi )ψ(vi+1))

= F+
B2
(Svπ′(i)vπ′(i)+1

Svπ′(i+1)vπ′(i+1)+1
)

= F+
B1
(vπ′(i)vπ′(i)+1) ∨ F+

B1
(vπ′(i+1)vπ′(i+1)+1)

= r ′′
π′(i) ∨ r ′′

π′(i+1)

qi = T−
B1
(vivi+1) ≥ T−

B2
(ψ(vi )ψ(vi+1))

= T−
B2
(Svπ′(i)vπ′(i)+1

Svπ′(i+1)vπ′(i+1)+1
)

= T−
B1
(vπ′(i)vπ′(i)+1) ∨ T−

B1
(vπ′(i+1)vπ′(i+1)+1)

= qπ′(i) ∨ qπ′(i+1).

q ′
i = I−

B1
(vivi+1) ≥ I−

B2
(ψ(vi )ψ(vi+1))

= I−
B2
(Svπ′(i)vπ′(i)+1

Svπ′(i+1)vπ′(i+1)+1
)

= I−
B1
(vπ′(i)vπ′(i)+1) ∨ I−

B1
(vπ′(i+1)vπ′(i+1)+1)

= q ′
π′(i) ∨ q ′

π′(i+1).

Similarly,

q ′′
i = F−

B1
(vivi+1) ≥ F−

B2
(ψ(vi )ψ(vi+1))

= F−
B2
(Svπ′(i)vπ′(i)+1

Svπ′(i+1)vπ′(i+1)+1
)

= F−
B1
(vπ′(i)vπ′(i)+1) ∧ F−

B1
(vπ′(i+1)vπ′(i+1)+1)

= q ′′
π′(i) ∧ q ′′

π′(i+1)

for 1 ≤ i ≤ n. That is,

si ≤ rπ′(i), s ′
i ≤ r ′

π′(i), s ′′
i ≤ r ′′

π′(i), (3.7)

ti ≥ qπ′(i), t ′i ≥ q ′
π′(i), t ′′i ≥ q ′′

π′(i) (3.8)

ri ≤ rπ′(i) ∧ rπ′(i+1), r ′
i ≤ r ′

π′(i) ∧ r ′
π′(i+1), r ′′

i ≤ r ′′
π′(i) ∨ r ′′

π′(i+1), (3.9)

qi ≥ qπ′(i) ∨ qπ′(i+1), q ′
i ≥ q ′

π′(i) ∨ q ′
π′(i+1), q ′′

i ≥ q ′′
π′(i) ∧ q ′′

π′(i+1). (3.10)
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Thus, ri ≤ rπ′(i), r ′
i ≤ r ′

π′(i), r ′′
i ≤ r ′′

π′(i), qi ≥ qπ′(i), q ′
i ≥ q ′

π′(i), q ′′
i ≥ q ′′

π′(i), and so
rπ′(i) ≤ rπ′(π′(i)), r ′

π′(i) ≤ r ′
π′(π′(i)), r

′′
π′(i) ≤ r ′′

π′(π′(i)), qπ′(i) ≥ qπ′(π′(i)), q ′
π′(i) ≥ q ′

π′(π′(i)),
q ′′

π′(i) ≥ q ′′
π′(π′(i)) for all 1 ≤ i ≤ n. Continuing, we obtain

ri ≤ rπ′(i) ≤ · · · ≤ rπ′ j (i) ≤ ri ,

r ′
i ≤ r ′

π′(i) ≤ · · · ≤ r ′
π′ j (i) ≤ r ′

i ,

r ′′
i ≤ r ′′

π′(i) ≤ · · · ≤ r ′′
π′ j (i) ≤ r ′′

i ,

qi ≥ qπ′(i) ≥ · · · ≥ qπ′ j (i) ≥ qi ,

q ′
i ≥ q ′

π′(i) ≥ · · · ≥ q ′
π′ j (i) ≥ q ′

i ,

q ′′
i ≥ q ′′

π′(i) ≥ · · · ≥ q ′′
π′ j (i) ≥ q ′′

i ,

where π′ j+1 is identity map. So, ri = rπ′(i), r ′
i = r ′

π′(i), r
′′
i = r ′′

π′(i), qi = qπ′(i), q ′
i =

q ′
π′(i), q

′′
i = q ′′

π′(i) for all 1 ≤ i ≤ n. But, by (3.9), (3.10) we also have ri ≤ rπ′(i+1) =
ri+1, r ′

i ≤ r ′
π′(i+1) = r ′

i+1 and r
′′
i ≤ r ′′

π(i+1) = r ′′
i+1,qi ≥ qπ′(i+1) = qi+1,q ′

i ≥ q ′
π′(i+1) =

q ′
i+1 and q ′′

i ≥ q ′′
π(i+1) = q ′′

i+1, which together with rn+1 = r1, r ′
n+1 = r ′

1, r
′′
n+1 =

r ′′
1 ,qn+1 = q1, q ′

n+1 = q ′
1, q

′′
n+1 = q ′′

1 , implies ri = r1, r ′
i = r ′

1, r
′′
i = r ′′

1 , qi = q1,
q ′
i = q ′

1, q
′′
i = q ′′

1 . for all i = 1, 2, . . . , n. Hence by (3.5)–(3.8), we get

r1 = · · · = rn = s1 = · · · = sn,

r ′
1 = · · · = r ′

n = s ′
1 = · · · = s ′

n,

r ′′
1 = · · · = r ′′

n = s ′′
1 = · · · = s ′′

n .

q1 = · · · = qn = t1 = · · · = tn,

q ′
1 = · · · = q ′

n = t ′1 = · · · = t ′n,

q ′′
1 = · · · = q ′′

n = t ′′1 = · · · = t ′′n .

Thus, we proved the conclusion about A1 and B1 being constant function, but we
have also shown that (ii) holds. The converse part of (i) is obvious.

3.7 Application of Bipolar Neutrosophic Line Graphs

Child kidnapping is an illegal removal of children from the guardians for the sake of
ransom and profit. According to a US estimate, about 800,000 children are missing
every year. These type of criminal activities threaten the parents and have huge impact
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on society.Child kidnappers are in commonpractise to spread their network. It always
remain a difficult task for the security agencies to detect and expose such networks.
The telephone network of criminals can be used to detect the people involved in child
kidnapping. Graphs are a key tool to study such networks. As the data structures in
such cases contain only observations about the suspect, there is always uncertainty
in data. Bipolar neutrosophic graphs can be used to reduce uncertainty in data and
to detect the involvement of suspect in child kidnapping. If there are n number of
suspects under investigation, then the procedure for the detection of suspects involved
in kidnappers network is given in Algorithm3.7.1.

Algorithm 3.7.1 Detection of suspects involved in child kidnapping

1. Enter the number of suspects n.
2. Enter the membership value μ(si ) = (T+(si ), I+(si ), F+(si ), T−(si ), I−(si ),

F−(si )) of each suspect si , 1 ≤ i ≤ n.
3. Enter the adjacency matrix of the suspects’ network ξ = [si j ]n×n .
4. do i from 1 to n
5. do j from 1 to n
6. R(si ) = (T+(si ), I+(si ), F+(si ), T−(si ), I−(si ), F−(si ))
7. if(T+(si ) > 0 or I+(si ) > 0 or T−(si ) < 0 or I−(si ) < 0)then
8. R(si ) = R(si ) + μ(si )
9. end if
10. end do
11. end do
12. do i from 1 to n
13. T (si ) = 2 + T+(R(si )) − I+(R(si )) − F+(R(si ))
14. N (si ) = 2 − T−(R(si )) + I+(R(si )) + F+(R(si ))
15. S(si ) = T (si ) − N (si )
16. end do
17. A = 0
18. do i from 1 to n
19. A = max{A, S(si )}
20. end do
21. do i from 1 to n
22. if(A = S(si ))then
23. print*, si is the most suspicious person.
24. end if
25. end do

Description and time complexity: The algorithms start by taking the input of mem-
bership values and adjacency matrix; therefore, the time complexity of lines 1–3
is O(n2). The loops from lines 4–11 calculate the sum values for each si so, the
time complexity of these loops is O(n2). The do loop from lines 12–15 calculate
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Fig. 3.22 Telephone connection among suspects

the strength of exactness of observations against each si , 1 ≤ i ≤ n; the time com-
plexity is O(n). Lines 17–25 calculate and print the suspect with maximum strength
of involving in criminal activities; therefore, lines 17–25 has time complexity O(n).
Thus, the net time complexity of the Algorithm3.7.1 is O(n2).

An example of a bipolar neutrosophic graph with five suspects s1, s2, s3, s4, s5 is
shown in Fig. 3.22. The positive degree ofmembership (T+, I+, F+) of each suspect
shows the strength of truth, indeterminacy and falsity of observation to be involved in
criminal network. The negative degree of membership (T−, I−, F−) of each suspect
shows the strength of truth, indeterminacy and falsity of observation that he/she is
innocent. The positive degree of membership (T+, I+, F+) of each edge shows the
strength of truth, indeterminacy and falsity that the two suspects are in contact for
criminal activities. The negative degree of membership (T−, I−, F−) of each edge
shows the strength of truth, indeterminacy and falsity that the two suspects are in con-
tact for some other purpose. UsingAlgorithm 3.7.1, sum values sum (si ) and strength
of each suspect S(si ), 1 ≤ i ≤ 5, are shown in Table1.17. For each i , sum(si ) can be
obtained by taking the sum of membership value of each vertex and membership val-
ues of the incident edges. Also, T (si ) = 2 + T+(R(si )) − I+(R(si )) − F+(R(si )),
N (si ) = 2 − T−(R(si )) + I+(R(si )) + F+(R(si )) and S(si ) = T (si ) − N (si ). In
Table3.17, column 4 indicates the strength of correctness of observations against
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Table 3.17 Strength of exactness of observations

Suspects si R(si ) (T (si ), N (si )) S(si )

s1 (3.1, 2.3, 2.2,−2.0,−2.3,−3.1) (0.6,-1.4) 2.0

s2 (3.1, 1.7, 1.8,−1.8,−1.9,−3.2) (0.6,−1.8) 2.4

s3 (3.1, 2.2, 2.1,−1.9,−2.1,−3.0) (0.8,-1.2) 2.0

s4 (2.7, 2.4, 2.8,−2.4,−2.3,−2.7) (−0.5,−0.6) 0.1

s5 (3.5, 1.8, 1.9,−1.9,−2.0,−3.5) (1.8,−1.6) 3.4

the suspect in the investigation. For example, the strength of s5 shows the greatest
exactness of the investigation report against s5, whereas the strength of s4 shows the
least exactness of observations against s4. S(s4) indicates that s4 may be innocent;
therefore, the security agency should take it into consideration from the beginning.



Chapter 4
Graphs Under Interval-Valued
Neutrosophic Environment

In this chapter, we present the concept of interval-valued neutrosophic
competition graphs. We then discuss certain types, including k-competition interval-
valued neutrosophic graphs, p-competition interval-valued neutrosophic graphs and
m-step interval-valued neutrosophic competition graphs. Moreover, we present the
concept of m-step interval-valued neutrosophic neighbourhood graphs. This chapter
is due to [12].

4.1 Introduction

In 1975, Zadeh [199] introduced the notion of interval-valued fuzzy sets as an
extension of fuzzy sets [194] in which the values of the membership degrees are
intervals of numbers instead of the numbers. Interval-valued fuzzy sets provide a
more adequate description of uncertainty than traditional fuzzy sets. It is therefore
important to use interval-valued fuzzy sets in applications, such as fuzzy control.
One of the computationally most intensive parts of fuzzy control is defuzzification.
Smarandache [165] andWang et al. [172] presented the notion of single-valued neu-
trosophic sets to apply neutrosophic sets in real-life problems more conveniently.
In single-valued neutrosophic sets, three components are independent and their val-
ues are taken from the standard unit interval [0, 1]. Wang et al. [170] presented the
concept of interval-valued neutrosophic sets, which is more precise and more flex-
ible than the single-valued neutrosophic set. An interval-valued neutrosophic set is
a generalization of the concept of single-valued neutrosophic set, in which three
membership (T, I, F) functions are independent, and their values belong to the unit
interval [0, 1].
Definition 4.1 An interval-valued fuzzy set I in X is defined by

I = {(s, [T l
I (s), T

u
I (s)]) : s ∈ X},

© Springer Nature Singapore Pte Ltd. 2018
M. Akram, Single-Valued Neutrosophic Graphs, Infosys Science
Foundation Series, https://doi.org/10.1007/978-981-13-3522-8_4

189

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3522-8_4&domain=pdf
https://doi.org/10.1007/978-981-13-3522-8_4


190 4 Graphs Under Interval-Valued Neutrosophic Environment

where T l
I (s) and T

u
I (s) are fuzzy subsets of X such that T l

I (s) ≤ T u
I (s) for all x ∈ X .

An interval-valued fuzzy relation on X is an interval-valued fuzzy set J in X × X .

Definition 4.2 For any two interval-valued neutrosophic sets

I = ([T l
I (x), T

u
I (x)], [I lI (x), I uI (x)], [Fl

I (x), F
u
I (x)])

and
J = ([T l

J (x), T
u
J (x)], [I lJ (x), I uJ (x)], [Fl

J (x), F
u
J (x)])

in X , we define:

1.

I ∪ J = {(x,max(T l
I (x), T

l
J (x)),max(T u

I (x), T
u
J (x)),max(I lI (x), I

l
J (x)),

max(I uI (x), I
u
J (x)),min(Fl

I (x), F
l
J (x)),min(Fu

I (x), F
u
J (x))) : x ∈ X}.

2.

I ∩ J = {(x,min(T l
I (x), T

l
J (x)),min(T u

I (x), T
u
J (x)),min(I lI (x), I

l
J (x)),

min(I uI (x), I
u
J (x)),max(Fl

I (x), F
l
J (x)),max(Fu

I (x), F
u
J (x))) : x ∈ X}.

4.2 Interval-Valued Neutrosophic Graphs

Definition 4.3 An interval-valued neutrosophic graph on a nonempty set X is a
pair G = (A, B), where A is an interval-valued neutrosophic set on X and B is an
interval-valued neutrosophic relation on X such that

1. T l
B(xy) ≤ min(T l

A(x), T
l
A(y)), T

u
B (xy) ≤ min(T u

A (x), T
u
A (y)),

2. I lB(xy) ≤ min(I lA(x), I
l
A(y)), I

u
B(xy) ≤ min(I uA(x), I

u
A(y)),

3. Fl
B(xy) ≤ min(Fl

A(x), F
l
A(y)), F

u
B(xy) ≤ min(Fu

A(x), F
u
A(y)), for all x, y ∈ X .

Note that B is called symmetric relation on A.

Example 4.1 Consider a graph G∗ such that X = {a, b, c}, E = {ab, bc, ac}. Let
A be an interval-valued neutrosophic subset of X and let B be an interval-valued
neutrosophic subset of E ⊆ X × X , as shown in the following tables.

By routine calculations, it can be observed that the graph shown in Fig. 4.1 is an
interval-valued neutrosophic graph.

Definition 4.4 An interval-valued neutrosophic digraph on a nonempty set X is
a pair G = (A,

−→
B ), (in short, G), where A = ([T l

A, T
u
A ], [I lA, I uA],[Fl

A, F
u
A]) is an

interval-valued neutrosophic set on X and B = ([T l
B, T

u
B ], [I lB ,I uB],[Fl

B ,F
u
B]) is an

interval-valued neutrosophic relation on X , such that:
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a([0.2, 0.4], [0.3, 0.7], [0.4, 0.5])

b([0.2, 0.5], [0.3, 0.4], [0.2, 0.9]) c([0.2, 0.8], [0.3, 0.8], [0.2, 0.7])

([0.1, 0.3], [0.2, 0.3], [0.2, 0.5])([0
.1
, 0
.3
],
[0
.2
, 0
.3
],
[0
.2
, 0
.5
])

([0.1, 0.3], [0.2, 0.3], [0.2, 0.7])

A a b c
T l
A 0.2 0.2 0.2

Tu
A 0.4 0.5 0.8

IlA 0.3 0.3 0.3
IuA 0.7 0.4 0.8
F l
A 0.4 0.2 0.2

Fu
A 0.5 0.9 0.7

B ab bc ac
T l
B 0.1 0.1 0.1

Tu
B 0.3 0.3 0.3

IlB 0.2 0.2 0.2
IuB 0.3 0.3 0.3
F l
B 0.2 0.2 0.2

Fu
B 0.5 0.7 0.5

Fig. 4.1 Interval-valued neutrosophic graph

1. T l
B

−−−→
(s, w) ≤ T l

A(s) ∧ T l
A(w), T u

B

−−−→
(s, w) ≤ T u

A (s) ∧ T u
A (w),

2. I lB
−−−→
(s, w) ≤ I lA(s) ∧ I lA(w), I uB

−−−→
(s, w) ≤ I uA(s) ∧ I uA(w),

3. Fl
B

−−−→
(s, w) ≤ Fl

A(s) ∧ Fl
A(w), Fu

B

−−−→
(s, w) ≤ Fu

A(s) ∧ Fu
A(w), for all s, w ∈

X .

Example 4.2 We construct an interval-valued neutrosophic digraphG = (A,
−→
B ) on

X = {a, b, c} as shown in Fig. 4.2.

Definition 4.5 Let
−→
G be an interval-valued neutrosophic digraph; then interval-

valued neutrosophic out-neighbourhoods of a vertex s is an interval-valued neutro-
sophic set

N
+(s) = (X+

s , [T (l)+
s , T (u)+

s ], [I (l)+s , I (u)
+

s ], [F (l)+
s , T (u)+

s ]),
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Fig. 4.2 Interval-valued
neutrosophic digraph

a
([
0.
2,
0.
4]
, [
0.
3,
0.
5]
, [
0.
6,
0.
7]
)

b([0.6, 0.8], [0.3, 0.8], [0.2, 0.9])

c([0.1, 0.2], [0.2, 0.4], [0.3, 0.7])

([0.1
, 0.2

], [0.
2, 0.

3], [0
.1, 0

.6])

([0.1, 0.2], [0.1, 0.3], [0.2, 0.6])

([
0.
1,
0.
2]
, [
0.
2,
0.
3]
, [
0.
2,
0.
5]
)

where

X+
s = {w|[T l

B
−−−→
(s, w) > 0, T u

B
−−−→
(s, w) > 0], [I lB

−−−→
(s, w) > 0, I uB

−−−→
(s, w) > 0], [Fl

B
−−−→
(s, w) > 0, Fu

B
−−−→
(s, w) > 0]},

such thatT (l)+
s : X+

s → [0, 1], definedbyT (l)+
s (w) = T l

B

−−−→
(s, w),T (u)+

s : X+
s → [0, 1],

defined by T (u)+
s (w) = T u

B

−−−→
(s, w), I (l)

+
s : X+

s → [0, 1], defined by I (l)
+

s (w) =
I lB

−−−→
(s, w), I (u)

+
s : X+

s → [0, 1], definedby I (u)+s (w) = I uB
−−−→
(s, w), F (l)+

s : X+
s → [0, 1],

defined by F (l)+
s (w) = Fl

B

−−−→
(s, w), F (u)+

s : X+
s → [0, 1], defined by F (u)+

s (w) =
Fu
B

−−−→
(s, w).

Definition 4.6 Let
−→
G be an interval-valued neutrosophic digraph; then interval-

valued neutrosophic in-neighbourhoods of a vertex s is an interval-valued neutro-
sophic set

N
−(s) = (X−

s , [T (l)−
s , T (u)−

s ], [I (l)−s , I (u)
−

s ], [F (l)−
s , T (u)−

s ]),

where

X−
s = {w|[T l

B

−−−→
(w, s) > 0, T u

B

−−−→
(w, s) > 0], [I lB

−−−→
(w, s) > 0, I uB

−−−→
(w, s) > 0],

[Fl
B

−−−→
(w, s) > 0, Fu

B

−−−→
(w, s) > 0]},

such thatT (l)−
s : X−

s → [0, 1], definedbyT (l)−
s (w) = T l

B

−−−→
(w, s),T (u)−

s : X−
s → [0, 1],

defined by T (u)−
s (w) = T u

B

−−−→
(w, s), I (l)

−
s : X−

s → [0, 1], defined by I (l)
−

s (w) =
I lB

−−−→
(w, s), I (u)

−
s : X−

s → [0, 1], definedby I (u)−s (w) = I uB
−−−→
(w, s), F (l)−

s : X−
s → [0, 1],
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Fig. 4.3 Interval-valued
neutrosophic digraph

a([0.2, 0.4], [0.3, 0.5], [0.6, 0.7])

b
0[

(
.6
,0

.8],[0
.3
,0

.8],[0
.2
,0

.9])

c([0
.1
, 0

.2], [0
.2
, 0

.4], [0
.3
, 0

.7])

([0.1, 0.2], [0.2, 0.3], [0.1, 0.6])

([0
.1
, 0
.2
],
[0
.1
, 0
.3
],
[0
.2
, 0
.6
])

([0.1, 0.2], [0.2, 0.3], [0.2, 0.5])

Table 4.1 Interval-valued
neutrosophic out-
neighbourhoods

s N
+(s)

a {(b, [0.1, 0.2], [0.2, 0.3], [0.1, 0.6]), (c, [0.1, 0.2],
[0.1, 0.3], [0.2, 0.6])}

b ∅
c {(b, [0.1, 0.2], [0.2, 0.3], [0.2, 0.5])}

Table 4.2 Interval-valued
neutrosophic in-
neighbourhoods

s N
−(s)

a ∅
b {(a, [0.1, 0.2], [0.2, 0.3], [0.1, 0.6]), (c, [0.1, 0.2],

[0.2, 0.3], [0.2, 0.5])}

c {(a, [0.1, 0.2], [0.1, 0.3], [0.2, 0.6])}

defined by F (l)−
s (w) = Fl

B

−−−→
(w, s), F (u)−

s : X−
s → [0, 1], defined by F (u)−

s (w) =
Fu
B

−−−→
(w, s).

Example 4.3 Consider an interval-valued neutrosophic digraph G = (A,
−→
B ) on

X = {a, b, c} as shown in Fig. 4.3.
We have Tables4.1 and 4.2 representing interval-valued neutrosophic out- and

in-neighbourhoods, respectively.

Definition 4.7 The height of interval-valued neutrosophic set A = (s, [T l
A, T

u
A ],

[I lA, I uA], [Fl
A, F

u
A]) in universe of discourse X is defined as,

h(A) = ([hl1(A), hu1(A)], [hl2(A), hu2(A)], [hl3(A), hu3(A)]),
= ([sup

s∈X
T l
A(s), sup

s∈X
T u
A (s)], [sup

s∈X
I lA(s), sup

s∈X
I uA(s)], [ infs∈X Fl

A(s), infs∈X Fu
A(s)]), for all

s ∈ X.
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Fig. 4.4 Interval-valued
neutrosophic digraph

([0.2, 0.4], [0.3, 0.5], [0.6, 0.7])

b([0
.6
,0

.8],[0
.3
,0

.8],[0
.2
,0

.9])

c([0.1, 0.2], [0.2, 0.4], [0.3, 0.7])

([0.1, 0.2], [0.2, 0.3], [0.1, 0.6])

([
0.
1,
0.
2]
, [
0.
1,
0.
3]
, [
0.
2,
0.
6]
)

([0.1, 0.2
], [0.2, 0.3

], [0.2, 0.5
])

Table 4.3 Interval-valued
neutrosophic out-
neighbourhoods

s N
+(s)

a {(b, [0.1, 0.2], [0.2, 0.3], [0.1, 0.6]), (c, [0.1, 0.2],
[0.1, 0.3],[0.2, 0.6])}

b ∅
c {(b, [0.1, 0.2], [0.2, 0.3], [0.2, 0.5])}

Definition 4.8 An interval-valued neutrosophic competition graph of an interval-
valued neutrosophic graph

−→
G = (A,

−→
B ) is an undirected interval-valued neutro-

sophic graph C
−→
(G) = (A,W ) which has the same vertex set as in

−→
G and there is an

edge between two vertices s and w if and only if N+(s) ∩ N
+(w) �= ∅. The truth-

membership, indeterminacy-membership and falsity-membership values of the edge
(s, w) are defined as,

1. T l
W (s, w) = (T l

A(s) ∧ T l
A(w))hl1(N

+(s) ∩ N
+(w),T u

W (s, w) = (T u
A (s) ∧ T u

A (w))

hu1(N
+(s) ∩ N

+(w),
2. I lW (s, w) = (I lA(s) ∧ I lA(w))hl2(N

+(s) ∩ N
+(w), I uW (s, w) = (I uA(s) ∧ I uA(w))

hu2(N
+(s) ∩ N

+(w),
3. Fl

W (s, w) = (Fl
A(s) ∧ Fl

A(w))hl3(N
+(s) ∩ N

+(w), Fu
W (s, w) = (Fu

A(s) ∧ Fu
A(w))

hu3(N
+(s) ∩ N

+(w),

for all s, w ∈ X .

Example 4.4 Consider an interval-valued neutrosophic digraph G = (A,
−→
B ) on

X = {a, b, c} as shown in Fig. 4.4.
We have Tables4.3 and 4.4 representing interval-valued neutrosophic out- and

in-neighbourhoods, respectively.
Then interval-valued neutrosophic competition graph of Fig. 4.4 is shown in

Fig. 4.5.
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Table 4.4 Interval-valued
neutrosophic in-
neighbourhoods

s N
−(s)

a ∅
b {(a, [0.1, 0.2], [0.2, 0.3], [0.1, 0.6]), (c, [0.1, 0.2],

[0.2, 0.3], [0.2, 0.5])}

c {(a, [0.1, 0.2], [0.1, 0.3], [0.2, 0.6])}

Fig. 4.5 Interval-valued
neutrosophic
competition graph

([0
.2
, 0
.4
],
[0
.3
, 0
.5
],
[0
.6
, 0
.7
])

b([0.6, 0.8], [0.3, 0.8], [0.2, 0.9])

c([0.1, 0.2], [0.2, 0.4], [0.3, 0.

([0.01, 0.04], [0.04, 0.12], [0.06, 0.42])

Definition 4.9 Consider an interval-valued neutrosophic graph G = (A, B), where
A = ([Al

1, A
u
1], [A

l
2, A

u
2], [A

l
3, A

u
3)] and B = ([Bl

1, B
u
1 ], [B

l
2, B

u
2 ], [B

l
3, B

u
3 )]; then an

edge (s, w), s, w ∈ X is called independent strong if

1

2
[Al

1(s) ∧ Al
1(w)] < Bl

1(s, w),
1

2
[Au

1(s) ∧ Au
1(w)] < Bu

1 (s, w),

1

2
[Al

2(s) ∧ Al
2(w)] < Bl

2(s, w),
1

2
[Au

2(s) ∧ Au
2(w)] < Bu

2 (s, w),

1

2
[Al

3(s) ∧ Al
3(w)] > Bl

3(s, w),
1

2
[Au

3(s) ∧ Au
3(w)] > Bu

3 (s, w).

Otherwise, it is called weak.

We state the following theorems without their proofs.

Theorem 4.1 Suppose
−→
G is an interval-valued neutrosophic digraph. If N+(s) ∩

N
+(w) contains only one element of

−→
G , then the edge (s,w) ofC(

−→
G ) is independent

strong if and only if

|[N+(s) ∩ N
+(w)]|t l > 0.5, |[N+(s) ∩ N

+(w)]|tu > 0.5,

|[N+(s) ∩ N
+(w)]|i l > 0.5, |[N+(s) ∩ N

+(w)]|i u > 0.5,

|[N+(s) ∩ N
+(w)]| f l < 0.5, |[N+(s) ∩ N

+(w)]| f u < 0.5.

Theorem 4.2 If all the edges of an interval-valued neutrosophic digraph
−→
G are

independent strong, then
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Bl
1(s, w)

(Al
1(s) ∧ Al

1(w))2
> 0.5,

Bu
1 (s, w)

(Au
1(s) ∧ Au

1(w))2
> 0.5,

Bl
2(s, w)

(Al
2(s) ∧ Al

2(w))2
> 0.5,

Bu
2 (s, w)

(Au
2(s) ∧ Au

2(w))2
> 0.5,

Bl
3(s, w)

(Al
3(s) ∧ Al

3(w))2
< 0.5,

Bu
3 (s, w)

(Au
3(s) ∧ Au

3(w))2
< 0.5,

for all edges (s, w) in C(
−→
G ).

Definition 4.10 The interval-valued neutrosophic open-neighbourhood (interval-
valued neutrosophic open-neighbourhood) of a vertex s of an interval-valued neutro-
sophic graph G = (A, B) is interval-valued neutrosophic set N(s) = (Xs , [T l

s , T
u
s ],

[I ls , I us ], [Fl
s , F

u
s ]), where

Xs = {w|[Bl
1(s, w) > 0, Bu

1 (s, w) > 0], [Bl
2(s, w) > 0, Bu

2 (s, w) > 0],
[Bl

3(s, w) > 0, Bu
3 (s, w) > 0]},

and T l
s : Xs → [0, 1] defined by T l

s (w) = Bl
1(s, w), T u

s : Xs → [0, 1] defined by
T u
s (w) = Bu

1 (s,w), I ls : Xs → [0, 1] defined by I ls (w) = Bl
2(s,w), I us : Xs → [0, 1]

defined by I us (w) = Bu
2 (s,w), Fl

s : Xs → [0, 1] defined by Fl
s (w) = Bl

3(s,w), Fu
s :

Xs → [0, 1] defined by Fu
s (w) = Bu

3 (s, w). For every vertex s ∈ X , the interval-
valued neutrosophic singleton set, Ăs = (s, [Al′

1 , A
u′
1 ], [Al′

2 , A
u′
2 ], [Al′

3 , A
u′
3 ) such

that: Al′
1 : {s} → [0, 1], Au′

1 : {s} → [0, 1], Al′
2 : {s} → [0, 1], Au′

2 : {s} → [0, 1],
Al′
3 : {s} → [0, 1], Au′

3 : {s} → [0, 1], defined by Al′
1 (s) = Al

1(s), A
u′
1 (s) = Au

1(s),
Al′
2 (s) = Al

2(s), A
u′
2 (s) = Au

2(s), A
l′
3 (s) = Al

3(s) and Au′
3 (s) = Au

3(s), respectively.
The interval-valued neutrosophic closed-neighbourhood (interval-valued neutro-
sophic closed-neighbourhood) of a vertex s is N[s] = N(s) ∪ As .

Definition 4.11 Suppose G = (A, B) is an interval-valued neutrosophic graph.
Interval-valued neutrosophic open-neighbourhood graph (interval-valued neutro-
sophic open-neighbourhood-graph) of G is an interval-valued neutrosophic graph
N(G) = (A, B ′) which has the same interval-valued neutrosophic set of vertices
in G and has an interval-valued neutrosophic edge between two vertices s,w ∈ X in
N(G) if and only if N(s) ∩ N(w) is a nonempty interval-valued neutrosophic set in
G. The truth-membership, indeterminacy-membership, falsity-membership values
of the edge (s, w) are given by:

Bl′
1 (s, w) = [Al

1(s) ∧ Al
1(w)]hl1(N(s) ∩ N(w)),

Bl′
2 (s, w) = [Al

2(s) ∧ Al
2(w)]hl2(N(s) ∩ N(w)),

Bl′
3 (s, w) = [Al

3(s) ∧ Al
3(w)]hl3(N(s) ∩ N(w)),

Bu′
1 (s, w) = [Au

1(s) ∧ Au
1(w)]hu1(N(s) ∩ N(w)),

Bu′
2 (s, w) = [Au

2(s) ∧ Au
2(w)]hu2(N(s) ∩ N(w)),
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Bu′
3 (s, w) = [Au

3(s) ∧ Au
3(w)]hu3(N(s) ∩ N(w)), respectively.

Definition 4.12 Suppose G = (A, B) is an interval-valued neutrosophic graph.
Interval-valued neutrosophic closed-neighbourhood graph (interval-valued neutro-
sophic closed-neighbourhood-graph) of G is an interval-valued neutrosophic graph
N(G) = (A, B ′) which has the same interval-valued neutrosophic set of vertices
in G and has an interval-valued neutrosophic edge between two vertices s,w ∈ X in
N[G] if and only if N[s] ∩ N[w] is a nonempty interval-valued neutrosophic set in
G. The truth-membership, indeterminacy-membership, falsity-membership values
of the edge (s, w) are given by:

Bl′
1 (s, w) = [Al

1(s) ∧ Al
1(w)]hl1(N[s] ∩ N[w]),

Bl′
2 (s, w) = [Al

2(s) ∧ Al
2(w)]hl2(N[s] ∩ N[w]),

Bl′
3 (s, w) = [Al

3(s) ∧ Al
3(w)]hl3(N[s] ∩ N[w]),

Bu′
1 (s, w) = [Au

1(s) ∧ Au
1(w)]hu1(N[s] ∩ N[w]),

Bu′
2 (s, w) = [Au

2(s) ∧ Au
2(w)]hu2(N[s] ∩ N[w]),

Bu′
3 (s, w) = [Au

3(s) ∧ Au
3(w)]hu3(N[s] ∩ N[w]), respectively.

We now discuss the method of construction of interval-valued neutrosophic com-
petition graph of the Cartesian product of interval-valued neutrosophic digraph in
following theorem.

Theorem 4.3 LetC(
−→
G1) = (A1, B1) andC(

−→
G2) = (A2, B2) be two interval-valued

neutrosophic competition graphs of interval-valued neutrosophic digraphs
−→
G1 =

(A1,
−→
L1) and

−→
G2 = (A2,

−→
L2), respectively. ThenC(

−→
G1�

−→
G2) = G

C(
−→
G1)∗�C(

−→
G2)∗

∪ G�

where G
C(

−→
G1)∗�C(

−→
G2)∗

is an interval-valued neutrosophic graph on the crisp graph

(X1 × X2, EC(
−→
G1)∗

�E
C(

−→
G2)∗

), C(
−→
G1)

∗ and C(
−→
G2)

∗ are the crisp competition graphs

of
−→
G1 and

−→
G2, respectively. G� is an interval-valued neutrosophic graph on (X1 ×

X2, E�) such that:

1. E� = {(s1, s2)(w1, w2) : w1 ∈ N
−(s1)∗, w2 ∈ N

+(s2)∗}
E
C(

−→
G1)∗

�E
C(

−→
G2)∗

= {(s1, s2)(s1, w2) : s1 ∈ X1, s2w2 ∈ E
C(

−→
G2)∗

}
∪{(s1, s2)(w1, s2) : s2 ∈ X2, s1w1 ∈ E

C(
−→
G1)∗

}.
2. T l

A1�A2
= T l

A1
(s1) ∧ T l

A2
(s2), I lA1�A2

= I lA1
(s1) ∧ I lA2

(s2), Fl
A1�A2

=
Fl
A1
(s1) ∧ Fl

A2
(s2),

T u
A1�A2

= T u
A1
(s1) ∧ T u

A2
(s2), I uA1�A2

= I uA1
(s1) ∧ I uA2

(s2), Fu
A1�A2

=
Fu
A1
(s1) ∧ Fu

A2
(s2).

3. T l
B((s1, s2)(s1, w2)) = [T l

A1
(s1) ∧ T l

A2
(s2) ∧ T l

A2
(w2)] × ∨a2{T l

A1
(s1) ∧

T l−→
L2
(s2a2) ∧ T l−→

L2
(w2a2)},

(s1, s2)(s1, w2) ∈ E
C(

−→
G1)∗

�E
C(

−→
G2)∗

, a2 ∈ (N+(s2) ∩ N
+(w2))

∗.
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4. I lB((s1, s2)(s1, w2)) = [I lA1
(s1) ∧ I lA2

(s2) ∧ I lA2
(w2)] × ∨a2{I lA1

(s1) ∧
I l−→
L2
(s2a2) ∧ I l−→

L2
(w2a2)},

(s1, s2)(s1, w2) ∈ E
C(

−→
G1)∗

�E
C(

−→
G2)∗

, a2 ∈ (N+(s2) ∩ N
+(w2))

∗.
5. Fl

B((s1, s2)(s1, w2)) = [Fl
A1
(s1) ∧ Fl

A2
(s2) ∧ Fl

A2
(w2)] × ∨a2{Fl

A1
(s1) ∧

Fl−→
L2
(s2a2) ∧ Fl−→

L2
(w2a2)},

(s1, s2)(s1, w2) ∈ E
C(

−→
G1)∗

�E
C(

−→
G2)∗

, a2 ∈ (N+(s2) ∩ N
+(w2))

∗.
6. T u

B ((s1, s2)(s1, w2)) = [T u
A1
(s1) ∧ T u

A2
(s2) ∧ T u

A2
(w2)] × ∨a2{T u

A1
(s1) ∧

T u−→
L2
(s2a2) ∧ T u−→

L2
(w2a2)},

(s1, s2)(s1, w2) ∈ E
C(

−→
G1)∗

�E
C(

−→
G2)∗

, a2 ∈ (N+(s2) ∩ N
+(w2))

∗.
7. I uB((s1, s2)(s1, w2)) = [I uA1

(s1) ∧ I uA2
(s2) ∧ I uA2

(w2)] × ∨a2{I uA1
(s1) ∧

I u−→
L2
(s2a2) ∧ I u−→

L2
(w2a2)},

(s1, s2)(s1, w2) ∈ E
C(

−→
G1)∗

�E
C(

−→
G2)∗

, a2 ∈ (N+(s2) ∩ N
+(w2))

∗.
8. Fu

B((s1, s2)(s1, w2)) = [Fu
A1
(s1) ∧ Fu

A2
(s2) ∧ Fu

A2
(w2)] × ∨a2{Fu

A1
(s1) ∧

Fu−→
L2
(s2a2) ∧ Fu−→

L2
(w2a2)},

(s1, s2)(s1, w2) ∈ E
C(

−→
G1)∗

�E
C(

−→
G2)∗

, a2 ∈ (N+(s2) ∩ N
+(w2))

∗.
9. T l

B((s1, s2)(w1, s2)) = [T l
A1
(s1) ∧ T l

A1
(w1) ∧ T l

A2
(s2)] × ∨a1{T l

A2
(s2) ∧

T l−→
L1
(s1a1) ∧ T l−→

L1
(w1a1)},

(s1, s2)(w1, s2) ∈ E
C(

−→
G1)∗

�E
C(

−→
G2)∗

, a1 ∈ (N+(s1) ∩ N
+(w1))

∗.
10. I lB((s1, s2)(w1, s2)) = [I lA1

(s1) ∧ I lA1
(w1) ∧ I lA2

(s2)] × ∨a1{I lA2
(s2) ∧

I l−→
L1
(s1a1) ∧ I l−→

L1
(w1a1)},

(s1, s2)(w1, s2) ∈ E
C(

−→
G1)∗

�E
C(

−→
G2)∗

, a1 ∈ (N+(s1) ∩ N
+(w1))

∗.
11. Fl

B((s1, s2)(w1, s2)) = [Fl
A1
(s1) ∧ Fl

A1
(w1) ∧ Fl

A2
(s2)] × ∨a1{T l

A2
(s2) ∧

Fl−→
L1
(s1a1) ∧ Fl−→

L1
(w1a1)},

(s1, s2)(w1, s2) ∈ E
C(

−→
G1)∗

�E
C(

−→
G2)∗

, a1 ∈ (N+(s1) ∩ N
+(w1))

∗.
12. T u

B ((s1, s2)(w1, s2)) = [T u
A1
(s1) ∧ T u

A1
(w1) ∧ T u

A2
(s2)] × ∨a1{T u

A2
(s2) ∧

T u−→
L1
(s1a1) ∧ T u−→

L1
(w1a1)},

(s1, s2)(w1, s2) ∈ E
C(

−→
G1)∗

�E
C(

−→
G2)∗

, a1 ∈ (N+(s1) ∩ N
+(w1))

∗.
13. I uB((s1, s2)(w1, s2)) = [I uA1

(s1) ∧ I uA1
(w1) ∧ I uA2

(s2)] × ∨a1{I uA2
(s2) ∧

I u−→
L1
(s1a1) ∧ I u−→

L1
(w1a1)},

(s1, s2)(w1, s2) ∈ E
C(

−→
G1)∗

�E
C(

−→
G2)∗

, a1 ∈ (N+(s1) ∩ N
+(w1))

∗.
14. Fu

B((s1, s2)(w1, s2)) = [Fu
A1
(s1) ∧ Fu

A1
(w1) ∧ Fu

A2
(s2)] × ∨a1{T u

A2
(s2) ∧

Fu−→
L1
(s1a1) ∧ Fu−→

L1
(w1a1)},

(s1, s2)(w1, s2) ∈ E
C(

−→
G1)∗

�E
C(

−→
G2)∗

, a1 ∈ (N+(s1) ∩ N
+(w1))

∗.
15. T l

B((s1, s2)(w1, w2)) = [T l
A1
(s1) ∧ T l

A1
(w1) ∧ T l

A2
(s2) ∧ T l

A2
(w2)] × [T l

A1
(s1) ∧

T l−→
L1
(w1s1) ∧ T l

A2
(w2) ∧ T l−→

L2
(s2w2)],

(s1, w1)(s2, w2) ∈ E�.
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16. I lB((s1, s2)(w1, w2)) = [I lA1
(s1) ∧ I lA1

(w1) ∧ I lA2
(s2) ∧ I lA2

(w2)] × [I lA1
(s1) ∧

I l−→
L1
(w1s1) ∧ I lA2

(w2) ∧ I l−→
L2
(s2w2)],

(s1, w1)(s2, w2) ∈ E�.
17. Fl

B((s1, s2)(w1, w2)) = [Fl
A1
(s1) ∧ Fl

A1
(w1) ∧ Fl

A2
(s2) ∧

Fl
A2
(w2)] × [Fl

A1
(s1) ∧ Fl−→

L1
(w1s1) ∧ Fl

A2
(w2) ∧ Fl−→

L2
(s2w2)],

(s1, w1)(s2, w2) ∈ E�.
18. T u

B ((s1, s2)(w1, w2)) = [T u
A1
(s1) ∧ T u

A1
(w1) ∧ T u

A2
(s2) ∧ T u

A2
(w2)] × [T u

A1
(s1) ∧

T u−→
L1
(w1s1) ∧ T u

A2
(w2) ∧ T u−→

L2
(s2w2)],

(s1, w1)(s2, w2) ∈ E�.
19. I uB((s1, s2)(w1, w2)) = [I uA1

(s1) ∧ I uA1
(w1) ∧ I uA2

(s2) ∧ I uA2
(w2)] × [I uA1

(s1) ∧
I u−→
L1
(w1s1) ∧ I uA2

(w2) ∧ I u−→
L2
(s2w2)],

(s1, w1)(s2, w2) ∈ E�.
20. Fu

B((s1, s2)(w1, w2)) = [Fu
A1
(s1) ∧ Fu

A1
(w1) ∧ Fu

A2
(s2) ∧

Fu
A2
(w2)] × [Fu

A1
(s1) ∧ Fu−→

L1
(w1s1) ∧ Fu

A2
(w2) ∧ Fu−→

L2
(s2w2)],

(s1, w1)(s2, w2) ∈ E�.

4.3 k-Competition Interval-Valued Neutrosophic Graphs

In this section, we discuss an extension of interval-valued neutrosophic competi-
tion graphs, called k-competition interval-valued neutrosophic graphs.

Definition 4.13 The cardinality of an interval-valued neutrosophic set A is
denoted by

|A| = ([|A|t l , |A|tu
]
,
[|A|i l , |A|i u

]
,
[|A| f l , |A| f u

])
.

where
[|A|t l , |A|tu

]
,
[|A|i l , |A|i u

]
and

[|A| f l , |A| f u
]
represent the sum of truth-

membership values, indeterminacy-membership values and falsity-membership val-
ues, respectively, of all the elements of A.

Example 4.5 The cardinality of an interval-valued neutrosophic set A = {(a, [0.5,
0.7], [0.2, 0.8], [0.1, 0.3]), (b, [0.1, 0.2], [0.1, 0.5], [0.7, 0.9]), (c, [0.3, 0.5], [0.3,
0.8], [0.6, 0.9])} in X = {a, b, c} is

|A| = ([|A|t l , |A|tu
]
,
[|A|i l , |A|i u

]
,
[|A| f l , |A| f u

])

= ([0.9, 1.4], [0.6, 2.1], [1.4, 2.1]).

We now discuss k-competition interval-valued neutrosophic graphs.

Definition 4.14 Let k be a nonnegative number. Then k-competition interval-valued
neutrosophic graph Ck(

−→
G ) of an interval-valued neutrosophic digraph

−→
G = (A,−→

B ) is an undirected interval-valued neutrosophic graph G = (A, B) which has
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same interval-valued neutrosophic set of vertices as in
−→
G and has an interval-

valued neutrosophic edge between two vertices s, w ∈ X in Ck(
−→
G ) if and only

if |(N+(s) ∩ N
+(w))|t l > k, |(N+(s) ∩ N

+(w))|tu > k, |(N+(s) ∩ N
+(w))|i l > k,

|(N+(s) ∩ N
+(w))|i u > k, |(N+(s) ∩ N

+(w))| f l > k and |(N+(s) ∩ N
+(w))| f u >

k. The interval-valued truth-membership value of edge (s,w) inCk(
−→
G ) is t lB(s,w) =

kl1−k
kl1

[t lA(s) ∧ t lA(w)]hl1(N+(s) ∩ N
+(w)), where kl1 = |(N+(s) ∩ N

+(w))|t l and

tuB(s, w) = ku1−k
ku1

[tuA(s) ∧ tuA(w)]hu1(N+(s) ∩ N
+(w)), where ku1 = |(N+(s) ∩

N
+(w))|tu , the interval-valued indeterminacy-membership value of edge (s, w)

in Ck(
−→
G ) is i lB(s, w) = kl2−k

kl2
[i lA(s) ∧ i lA(w)]hl2(N+(s) ∩ N

+(w)), where

kl2 = |(N+(s) ∩ N
+(w))|i l , and i uB(s,w) = ku2−k

ku2
[i uA(s) ∧ i uA(w)]hu2(N+(s) ∩ N

+(w)),

where ku2 = |(N+(s) ∩ N
+(w))|i u , the interval-valued falsity-membership value of

edge (s, w) in Ck(
−→
G ) is f lB(s, w) = kl3−k

kl3
[ f lA(s) ∧ f lA(w)]hl3(N+(s) ∩ N

+(w)),

where kl3 = |(N+(s) ∩ N
+(w))| f l , and f uB (s,w) = ku3−k

ku3
[ f uA(s) ∧ f uA(w)]hu3(N+(s) ∩

N
+(w)), where ku3 = |(N+(s) ∩ N

+(w))| f u .

Example 4.6 Consider an interval-valued neutrosophic digraph G = (A,
−→
B ) on

X = {s, w, a, b, c}, such that A = {(s, [0.4, 0.5], [0.5, 0.7], [0.8, 0.9]), (w, [0.6, 0.7],
[0.4, 0.6], [0.2, 0.3]), (a, [0.2, 0.6], [0.3, 0.6], [0.2, 0.6]), (b, [0.2, 0.6], [0.1, 0.6],
[0.2, 0.6]), (c, [0.2, 0.7], [0.3, 0.5], [0.2, 0.6])}, and B = {(−−−→

(s, a), [0.1, 0.4], [0.3,
0.6], [0.2, 0.6]), (−−→

(s, b), [0.2, 0.4], [0.1, 0.5], [0.2, 0.6]), (−−→
(s, c), [0.2, 0.5], [0.3, 0.5],

[0.2, 0.6]), (−−−→
(w, a), [0.2, 0.5], [0.2, 0.5], [0.2, 0.3]), (−−−→

(w, b), [0.2, 0.6], [0.1, 0.6],
[0.2, 0.3]), (−−−→

(w, c), [0.2, 0.7], [0.3, 0.5], [0.2, 0.3])}, as shown in Fig. 4.6.
We calculate N

+(s) = {(a, [0.1, 0.4], [0.3, 0.6], [0.2, 0.6]), (b, [0.2, 0.4], [0.1,
0.5], [0.2, 0.6]), (c, [0.2, 0.5], [0.3, 0.5], [0.2, 0.6])} and N

+(w) = {(a, [0.2, 0.5],
[0.2, 0.5], [0.2, 0.3]), (b, [0.2, 0.6], [0.1, 0.6], [0.2, 0.3]), (c, [0.2, 0.7], [0.3, 0.5],
[0.2, 0.3])}. Therefore, N+(s) ∩ N

+(w) = {(a, [0.1, 0.4], [0.2, 0.5], [0.2, 0.3]), (b,
[0.2, 0.4], [0.1, 0.5], [0.2, 0.3]), (c, [0.2, 0.5], [0.3, 0.5], [0.2, 0.3)}. So, kl1 = 0.5,
ku1 = 1.3, kl2 = 0.6, ku2 = 1.5, kl3 = 0.6 and ku3 = 0.9. Let k = 0.4, then, t lB(s,
w) = 0.02, tuB(s,w) = 0.56, i lB(s,w) = 0.06, i uB(s,w) = 0.82, f lB(s,w) = 0.02 and
f uB (s, w) = 0.11. This graph is depicted in Fig. 4.7.

Theorem 4.4 Let
−→
G = (A,

−→
B ) be an interval-valued neutrosophic digraph. If

hl1(N
+(s) ∩ N

+(w)) = 1, hl2(N
+(s) ∩ N

+(w)) = 1, hl3(N
+(s) ∩ N

+(w)) = 1,

hu1(N
+(s) ∩ N

+(w)) = 1, hu2(N
+(s) ∩ N

+(w)) = 1, hu3(N
+(s) ∩ N

+(w)) = 1,

and

|(N+(s) ∩ N
+(w))|tl > 2k, |(N+(s) ∩ N

+(w))|i l > 2k, |(N+(s) ∩ N
+(w))| f l < 2k,

|(N+(s) ∩ N
+(w))|tu > 2k, |(N+(s) ∩ N

+(w))|iu > 2k, |(N+(s) ∩ N
+(w))| f u < 2k,
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s([0.4, 0.5], [0.5, 0.7], [0.8, 0.9])

w([0.6, 0.7], [0.4, 0.6], [0.2, 0.3])

a([0.2, 0.6], [0.3, 0.6], [0.2, 0.6])

c([0.2, 0.7], [0.3, 0.5], [0.2, 0.6])

b([0.2, 0.6], [0.1, 0.6], [0.2, 0.6])

([0.1, 0.
4], [0.3,

0.6], [0.
2, 0.6])

([0.2, 0.4], [0.1, 0.5], [0.2, 0.6])

([0.2, 0.5], [0.3, 0.5], [0.2, 0.6])

([0.2, 0
.5], [0.

2, 0.5],
[0.2, 0.

3])

([0.2
, 0.6

], [0.
1, 0.

6], [0
.2, 0

.3])

([0.2, 0.7], [0.3, 0.5], [0.2, 0.3])

Fig. 4.6 Interval-valued neutrosophic digraph

s([0.4, 0.5], [0.5, 0.7], [0.8, 0.9]) w(
[0.
6, 0

.7]
, [0

.4,
0.6

], [0
.2,

0.3
])

([0.2, 0.6], [0.3, 0.6], [0.2, 0.6])

([0.2, 0.7], [0.3, 0.5], [0.2, 0.

([0.2, 0.6], [0.1, 0.6], [0.2, 0.6])

([0.02, 0.56], [0.06, 0.82], [0.02, 0.11])

Fig. 4.7 0.4-competition interval-valued neutrosophic graph

Then the edge (s, w) is independent strong in Ck(
−→
G ).

Proof Let
−→
G = (A,

−→
B ) be an interval-valued neutrosophic digraph. Let Ck(

−→
G ) be

the corresponding k-competition interval-valued neutrosophic graph. If hl1(N
+(s) ∩

N
+(w)) = 1 and |(N+(s) ∩ N

+(w))|t l > 2k, then kl1 > 2k and therefore,

t lB(s, w) = kl1 − k

kl1
[t lA(s) ∧ t lA(w)]hl1(N+(s) ∩ N

+(w))

or, t lB(s, w) = kl1 − k

kl1
[t lA(s) ∧ t lA(w)]

t lB(s, w)

[t lA(s) ∧ t lA(w)] = kl1 − k

kl1
> 0.5.
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If hu1(N
+(s) ∩ N

+(w)) = 1 and |(N+(s) ∩ N
+(w))|tu > 2k, then ku1 > 2k and there-

fore,

tuB(s, w) = ku1 − k

ku1
[tuA(s) ∧ tuA(w)]hu1(N+(s) ∩ N

+(w))

or, tuB(s, w) = ku1 − k

ku1
[tuA(s) ∧ tuA(w)]

tuB(s, w)

[tuA(s) ∧ tuA(w)] = ku1 − k

ku1
> 0.5.

If hl2(N
+(s) ∩ N

+(w)) = 1 and |(N+(s) ∩ N
+(w))|i l > 2k, then kl2 > 2k and there-

fore,

i lB(s, w) = kl2 − k

kl2
[i lA(s) ∧ i lA(w)]hl2(N+(s) ∩ N

+(w))

or, i lB(s, w) = kl2 − k

kl2
[i lA(s) ∧ i lA(w)]

i lB(s, w)

[i lA(s) ∧ i lA(w)] = kl2 − k

kl2
> 0.5.

If hu2(N
+(s) ∩ N

+(w)) = 1 and |(N+(s) ∩ N
+(w))|i u > 2k, then ku2 > 2k and there-

fore,

i uB(s, w) = ku2 − k

ku2
[i uA(s) ∧ i uA(w)]hu2(N+(s) ∩ N

+(w))

or, i uB(s, w) = ku2 − k

ku2
[i uA(s) ∧ i uA(w)]

i uB(s, w)

[i uA(s) ∧ i uA(w)] = ku2 − k

ku2
> 0.5.

If hl3(N
+(s) ∩ N

+(w)) = 1 and |(N+(s) ∩ N
+(w))| f l < 2k, then kl3 < 2k and there-

fore,

f lB(s, w) = kl3 − k

kl3
[ f lA(s) ∧ f lA(w)]hl3(N+(s) ∩ N

+(w))

or, f lB(s, w) = kl3 − k

kl3
[ f lA(s) ∧ f lA(w)]

f lB(s, w)

[ f lA(s) ∧ f lA(w)] = kl3 − k

kl3
< 0.5.
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If hu3(N
+(s) ∩ N

+(w)) = 1 and |(N+(s) ∩ N
+(w))| f u < 2k, then ku3 < 2k and there-

fore,

f uB (s, w) = ku3 − k

ku3
[ f uA(s) ∧ f uA(w)]hu3(N+(s) ∩ N

+(w))

or, f uB (s, w) = ku3 − k

ku3
[ f uA(s) ∧ f uA(w)]

f uB (s, w)

[ f uA(s) ∧ f uA(w)] = ku3 − k

ku3
< 0.5.

Hence, the edge (s, w) is independent strong in Ck(
−→
G ).

4.4 p-Competition Interval-Valued Neutrosophic Graphs

In this section, we define another extension of interval-valued neutrosophic compe-
tition graphs, called p-competition interval-valued neutrosophic graphs.

Definition 4.15 The support of an interval-valued neutrosophic set A = (s, [T l
A,

T u
A ], [I lA, I uA], [Fl

A, F
u
A]) in X is the subset of X defined by

supp(A) = {s ∈ X : [T l
A(s) �= 0, T u

A (s) �= 0], [I lA(s) �= 0, I uA(s) �= 0],
[Fl

A(s) �= 1, Fu
A(s) �= 1]}

and |supp(A)| is the number of elements in the set.

Example 4.7 The support of an interval-valued neutrosophic set A = {(a, [0.5, 0.7],
[0.2, 0.8], [0.1, 0.3]), (b, [0.1, 0.2], [0.1, 0.5], [0.7, 0.9]), (c, [0.3, 0.5], [0.3, 0.8],
[0.6, 0.9]), (d, [0, 0], [0, 0], [1, 1])} in X = {a, b, c, d} is supp(A) = {a, b, c} and
|supp(A)| = 3.

We now define p-competition interval-valued neutrosophic graphs.

Definition 4.16 Let p be a positive integer. Then p-competition interval-valued
neutrosophic graph C

p(
−→
G ) of the interval-valued neutrosophic digraph

−→
G = (A,−→

B ) is an undirected interval-valued neutrosophic graph G = (A, B) which has
same interval-valued neutrosophic set of vertices as in

−→
G and has an interval-

valued neutrosophic edge between two vertices s, w ∈ X in C
p(

−→
G ) if and only if

|supp(N+(s) ∩ N
+(w))| ≥ p. The interval-valued truth-membership value of edge

(s, w) in C
p(

−→
G ) is t lB(s, w) = (i−p)+1

i [t lA(s) ∧ t lA(w)]hl1(N+(s) ∩ N
+(w)), and

tuB(s, w) = (i−p)+1
i [tuA(s) ∧ tuA(w)]hu1(N+(s) ∩ N

+(w)), the interval-valued

indeterminacy-membership value of edge (s, w) in C
p(

−→
G ) is i lB(s, w) =
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(i−p)+1
i [i lA(s) ∧ i lA(w)]hl2(N+(s) ∩ N

+(w)), and i uB(s, w) = (i−p)+1
i [i uA(s) ∧

i uA(w)]hu2(N+(s) ∩ N
+(w)), the interval-valued falsity-membership value of

edge (s, w) in C
p(

−→
G ) is f lB(s, w) = (i−p)+1

i [ f lA(s) ∧ f lA(w)]hl3(N+(s) ∩
N

+(w)), and f uB (s, w) = (i−p)+1
i [ f uA(s) ∧ f uA(w)]hu3(N+(s) ∩ N

+(w)), where
i = |supp(N+(s) ∩ N

+(w))|.
Example 4.8 Consider an interval-valued neutrosophic digraph G = (A,

−→
B ) on

X = {s, w, a, b, c}, such that A = {(s, [0.4, 0.5], [0.5, 0.7], [0.8, 0.9]), (w, [0.6, 0.7],
[0.4, 0.6], [0.2, 0.3]), (a, [0.2, 0.6], [0.3, 0.6], [0.2, 0.6]), (b, [0.2, 0.6], [0.1, 0.6],
[0.2, 0.6]), (c, [0.2, 0.7], [0.3, 0.5], [0.2, 0.6])}, and B = {(−−−→

(s, a), [0.1, 0.4], [0.3,
0.6], [0.2, 0.6]), (−−→

(s, b), [0.2, 0.4], [0.1, 0.5], [0.2, 0.6]), (−−→
(s, c), [0.2, 0.5], [0.3, 0.5],

[0.2, 0.6]), (−−−→
(w, a), [0.2, 0.5], [0.2, 0.5], [0.2, 0.3]), (−−−→

(w, b), [0.2, 0.6], [0.1, 0.6],
[0.2, 0.3]), (−−−→

(w, c), [0.2, 0.7], [0.3, 0.5], [0.2, 0.3])}, as shown in Fig. 4.8.
We calculate N

+(s) = {(a, [0.1, 0.4], [0.3, 0.6], [0.2, 0.6]), (b, [0.2, 0.4], [0.1,
0.5], [0.2, 0.6]), (c, [0.2, 0.5], [0.3, 0.5], [0.2, 0.6])} and N

+(w) = {(a, [0.2, 0.5],
[0.2, 0.5], [0.2, 0.3]), (b, [0.2, 0.6], [0.1, 0.6], [0.2, 0.3]), (c, [0.2, 0.7], [0.3, 0.5],
[0.2, 0.3])}. Therefore, N

+(s) ∩ N
+(w) = {(a, [0.1, 0.4], [0.2, 0.5], [0.2, 0.3]),

(b, [0.2, 0.4], [0.1, 0.5], [0.2, 0.3]), (c, [0.2, 0.5], [0.3, 0.5], [0.2, 0.3)}. Now,
i = |supp(N+(s) ∩ N

+(w))| = 3. For p = 3, we have, t lB(s,w) = 0.02, tuB(s,w) =
0.08, i lB(s, w) = 0.04, i uB(s, w) = 0.1, f lB(s, w) = 0.01 and f uB (s, w) = 0.03. This
graph is depicted in Fig. 4.9.

We state the following theorem without its proof.

Theorem 4.5 Let
−→
G = (A,

−→
B ) be an interval-valued neutrosophic digraph. If

hl1(N
+(s) ∩ N

+(w)) = 1, hl2(N
+(s) ∩ N

+(w)) = 1, hl3(N
+(s) ∩ N

+(w)) = 0,

hu1(N
+(s) ∩ N

+(w)) = 1, hu2(N
+(s) ∩ N

+(w)) = 1, hu3(N
+(s) ∩ N

+(w)) = 0,

inC[ i
2 ](

−→
G ), then the edge (s, w) is strong,where i = |supp(N+(s) ∩ N

+(w))|. (Note
that for any real number s, [s]=greatest integer not exceeding s.)

4.5 m-Step Interval-Valued Neutrosophic Competition
Graphs

We define here another extension of interval-valued neutrosophic competition graph
known as m-step interval-valued neutrosophic competition graph. We will use the
following notations:
Pm
s,w : An interval-valued neutrosophic path of length m from s to w,−→
P m

s,w : A directed interval-valued neutrosophic path of length m from s to w,
N

+
m(s) : m-step interval-valued neutrosophic out-neighbourhood of vertex s,

N
−
m(s) : m-step interval-valued neutrosophic in-neighbourhood of vertex s,
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s([0.4
, 0.5],

[0.5, 0
.7], [0.

8, 0.9]
)

w
([
0.
6,

0.
7]
,[
0.
4,

0.
6]
,[
0.
2,

0.
3]
)

a([0.2, 0.6], [0.3, 0.6], [0.2, 0.6])

c([0.
2, 0.

7], [0
.3, 0

.5], [
0.2,

0.6])

b([0.2, 0.6], [0.1, 0.6], [0.2, 0.6])

([0.1, 0.4], [0.3, 0.6], [0.2, 0.6])

([0.2, 0.4], [0.1, 0.5], [0.2, 0.6])

([0
.2
, 0
.5], [0

.3
, 0
.5], [0

.2
, 0
.6])

([0.2, 0.5], [0.2, 0.5], [0.2, 0.3])

([0.2, 0.6], [0.1, 0.6], [0.2, 0.3])

([0.2, 0.7], [0.3, 0.5], [0.2, 0.3])

Fig. 4.8 Interval-valued neutrosophic digraph

s([0.4, 0.5], [0.5, 0.7], [0.8, 0.9]) w(
[0.
6, 0

.7]
, [0

.4,
0.6

], [0
.2,

0.3
])

a([0.2, 0.6], [0.3, 0.6], [0.2, 0.6])

([0.2, 0.7], [0.3, 0.5], [0.2, 0.6])

b([0.2, 0.6], [0.1, 0.6], [0.2, 0.6])

([0.02, 0.08], [0.04, 0.1], [0.01, 0.03])

Fig. 4.9 3-competition interval-valued neutrosophic graph

Nm(s) : m-step interval-valued neutrosophic neighbourhood of vertex s,
Nm(G): m-step interval-valued neutrosophic neighbourhood graph of the interval-
valued neutrosophic graph G,

Cm
−→
(G):m-step interval-valuedneutrosophic competitiongraphof the interval-valued

neutrosophic digraph
−→
G .
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Definition 4.17 Suppose
−→
G = (A,

−→
B ) is an interval-valued neutrosophic digraph.

Them-step interval-valued neutrosophic digraph of
−→
G is denoted by

−→
G m = (A, B),

where interval-valued neutrosophic set of vertices of
−→
G is same with interval-valued

neutrosophic set of vertices of
−→
G m and has an edge between s and w in

−→
G m if and

only if there exists an interval-valued neutrosophic directed path
−→
P m

s,w in
−→
G .

Definition 4.18 Them-step interval-valued neutrosophic out-neighbourhood of ver-
tex s of an interval-valued neutrosophic digraph

−→
G = (A,

−→
B ) is interval-valued

neutrosophic set

N
+
m(s) = (X+

s , [t (l)
+

s , t (u)
+

s ], [i (l)+s , i (u)
+

s ], [ f (l)+s , f (u)
+

s ]), where

X+
s = {w| there exists a directed interval-valued neutrosophic path of length m

from s to w,
−→
P m

s,w}, t (l)+s : X+
s → [0, 1], t (u)+s : X+

s → [0, 1], i (l)+s : X+
s → [0, 1],

i (u)
+

s : X+
s → [0, 1], f (l)+s : X+

s → [0, 1] f (u)
+

s : X+
s → [0, 1] are defined by t (l)+s =

min{t l−−−−→
(s1, s2), (s1, s2) is an edge of

−→
P m

s,w}, t (u)+s = min{tu−−−−→
(s1, s2), (s1, s2) is an edge

of
−→
P m

s,w}, i (l)+s = min{i l−−−−→
(s1, s2), (s1, s2) is an edge of

−→
P m

s,w}, i (u)+s = min{i u−−−−→
(s1, s2),

(s1, s2) is an edge of
−→
P m

s,w}, f (l)
+

s = min{ f l−−−−→
(s1, s2), (s1, s2) is an edge of

−→
P m

s,w},
f (u)

+
s = min{ f u−−−−→

(s1, s2), (s1, s2) is an edge of
−→
P m

s,w}, respectively.

Example 4.9 Consider an interval-valued neutrosophic digraph G = (A,
−→
B ) on

X = {s, w, a, b, c, d}, such that A = {(s, [0.4, 0.5], [0.5, 0.7], [0.8, 0.9]), (w, [0.6,
0.7], [0.4, 0.6], [0.2, 0.3]), (a, [0.2, 0.6], [0.3, 0.6], [0.2, 0.6]), (b, [0.2, 0.6], [0.1,
0.6], [0.2, 0.6]), (c, [0.2, 0.7], [0.3, 0.5], [0.2, 0.6]), d([0.2, 0.6], [0.3, 0.6], [0.2,
0.6])}, and B = {(−−−→

(s, a), [0.1, 0.4], [0.3, 0.6], [0.2, 0.6]), (−−−→
(a, c), [0.2, 0.6], [0.3,

0.5], [0.2, 0.6]), (−−−→
(a, d), [0.2, 0.6], [0.3, 0.5], [0.2, 0.4]), (−−−→

(w, b), [0.2, 0.6], [0.1,
0.6], [0.2, 0.3]), (−−−→

(b, c), [0.2, 0.4], [0.1, 0.2], [0.1, 0.3]), (−−−→
(b, d), [0.1, 0.3], [0.1, 0.2],

[0.2, 0.4])}, as shown in Fig. 4.10.
Wecalculate 2-step interval-valuedneutrosophic out-neighbourhoods as,N+

2 (s) =
{(c, [0.1, 0.4], [0.3, 0.5], [0.2, 0.6]), (d, [0.1, 0.4], [0.3, 0.5], [0.2, 0.4])} and
N

+
2 (w) = {(c, [0.2, 0.4], [0.1, 0.2], [0.1, 0.3]), (d, [0.1, 0.3], [0.1, 0.2], [0.2, 0.3])}.

Definition 4.19 Them-step interval-valued neutrosophic in-neighbourhood of ver-
tex s of an interval-valued neutrosophic digraph

−→
G = (A,

−→
B ) is interval-valued

neutrosophic set

N
−
m(s) = (X−

s , [t (l)
−

s , t (u)
−

s ], [i (l)−s , i (u)
−

s ], [ f (l)−s , f (u)
−

s ]), where

X−
s = {w| there exists a directed interval-valued neutrosophic path of length m

from w to s,
−→
P m

w,s}, t (l)−s : X−
s → [0, 1], t (u)−s : X−

s → [0, 1], i (l)−s : X−
s → [0, 1],

i (u)
−

s : X−
s → [0, 1], f (l)−s : X−

s → [0, 1] f (u)
−

s : X−
s → [0, 1] are defined by t (l)−s =

min{t l−−−−→
(s1, s2), (s1, s2) is an edge of

−→
P m

w,s}, t (u)−s = min{tu−−−−→
(s1, s2), (s1, s2) is an edge
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s([0.4, 0.5], [0.5, 0.7], [0.8, 0.9]) w([0.6, 0.7], [0.4, 0.6], [0.2, 0.3])

a([0
.2
, 0.6], [0

.3
, 0.6], [0

.2
, 0.6])

c([0.2, 0.7], [0.3, 0.5], [0.2, 0.6])

b([0
.2
,0
.6],[0

.1
,0
.6],[0

.2
,0
.6])

d([0.2, 0.6], [0.3, 0.6], [0.2, 0.6])

([0
.1,
0.4
], [
0.3
, 0
.6]
, [0
.2,
0.6
])

([0.2, 0.6], [0.1, 0.6], [0.2, 0.3])

([0.2, 0.6], [0.3, 0.5], [0.2, 0.4])

([0.2, 0.6], [0.3, 0.5], [0.2, 0.6])

([0
.2,

0.4
], [0

.1,
0.2

], [0
.1,

0.3
])

([
0.
1,
0.
3]
, [
0.
1,
0.
2]
, [
0.
2,
0.
4]
)

Fig. 4.10 Interval-valued neutrosophic digraph

of
−→
P m

w,s}, i (l)−s = min{i l−−−−→
(s1, s2), (s1, s2) is an edge of

−→
P m

w,s}, i (u)−s = min{i u−−−−→
(s1, s2),

(s1, s2) is an edge of
−→
P m

w,s}, f (l)
−

s = min{ f l−−−−→
(s1, s2), (s1, s2) is an edge of

−→
P m

w,s},
f (u)

−
s = min{ f u−−−−→

(s1, s2), (s1, s2) is an edge of
−→
P m

w,s}, respectively.

Example 4.10 Consider an interval-valued neutrosophic digraph G = (A,
−→
B ) on

X = {s, w, a, b, c, d}, such that A = {(s, [0.4, 0.5], [0.5, 0.7], [0.8, 0.9]), (w, [0.6,
0.7], [0.4, 0.6], [0.2, 0.3]), (a, [0.2, 0.6], [0.3, 0.6], [0.2, 0.6]), (b, [0.2, 0.6], [0.1,
0.6], [0.2, 0.6]), (c, [0.2, 0.7], [0.3, 0.5], [0.2, 0.6]), d([0.2, 0.6], [0.3, 0.6], [0.2,
0.6])}, and B = {(−−−→

(s, a), [0.1, 0.4], [0.3, 0.6], [0.2, 0.6]), (−−−→
(a, c), [0.2, 0.6], [0.3,

0.5], [0.2, 0.6]), (−−−→
(a, d), [0.2, 0.6], [0.3, 0.5], [0.2, 0.4]), (−−−→

(w, b), [0.2, 0.6], [0.1,
0.6], [0.2, 0.3]), (−−−→

(b, c), [0.2, 0.4], [0.1, 0.2], [0.1, 0.3]), (−−−→
(b, d), [0.1, 0.3], [0.1, 0.2],

[0.2, 0.4])}, as shown in Fig. 4.11.
We calculate 2-step interval-valued neutrosophic in-neighbourhoods as,N−

2 (s) =
{(c, [0.1,0.4], [0.3,0.5], [0.2,0.6]), (d, [0.1,0.4], [0.3,0.5], [0.2,0.4])} and N−

2 (w) =
{(c, [0.2,0.4], [0.1,0.2], [0.1,0.3]), (d, [0.1,0.3], [0.1,0.2], [0.2,0.3])}.
Definition 4.20 Suppose

−→
G = (A,

−→
B ) is an interval-valued neutrosophic digraph.

The m-step interval-valued neutrosophic competition graph of interval-valued neu-
trosophic digraph

−→
G is denoted byCm(

−→
G ) = (A, B)which has same interval-valued

neutrosophic set of vertices as in
−→
G and has an edge between two vertices s, w ∈ X
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s([0.4, 0.5], [0.5, 0.7], [0.8, 0.9]) w([0.6, 0.7], [0.4, 0.6], [0.2, 0.3])

a([0
.2
, 0.6], [0

.3, 0
.6], [0

.2, 0.6])

c([0.2, 0.7], [0.3, 0.5], [0.2, 0.6])

b([0
.2
,0
.6],[0

.1
,0
.6],[0

.2
,0
.6])

d([0.2, 0.6], [0.3, 0.6], [0.2, 0.6])

([0.1
, 0.4

], [0
.3, 0

.6],
[0.2

, 0.6
])

([0.2, 0.6], [0.1, 0.6], [0.2, 0.3])

([0.2, 0.6], [0.3, 0.5], [0.2, 0.4])

([0.2, 0.6], [0.3, 0.5], [0.2, 0.6])

([0
.2,

0.4
], [0

.1,
0.2

], [0
.1,

0.3
])

([
0.
1,
0.
3]
, [
0.
1,
0.
2]
, [
0.
2,
0.
4]
)

Fig. 4.11 Interval-valued neutrosophic digraph

in Cm(
−→
G ) if and only if (N+

m(s) ∩ N
+
m(w)) is a nonempty interval-valued neutro-

sophic set in
−→
G . The interval-valued truth-membership value of edge (s, w) in

Cm(
−→
G ) is t lB(s, w) = [t lA(s) ∧ t lA(w)]hl1(N+

m(s) ∩ N
+
m(w)), and tuB(s, w) = [tuA(s) ∧

tuA(w)]hu1(N+
m(s) ∩ N

+
m(w)), the interval-valued indeterminacy-membership value of

edge (s, w) in Cm(
−→
G ) is i lB(s, w) = [i lA(s) ∧ i lA(w)]hl2(N+

m(s) ∩ N
+
m(w)), and i uB(s,

w) = [i uA(s) ∧ i uA(w)]hu2(N+
m(s) ∩ N

+
m(w)), the interval-valued falsity-membership

value of edge (s,w) inCm(
−→
G ) is f lB(s,w) = [ f lA(s) ∧ f lA(w)]hl3(N+

m(s) ∩ N
+
m(w)),

and f uB (s, w) = [ f uA(s) ∧ f uA(w)]hu3(N+
m(s) ∩ N

+
m(w)).

The 2-step interval-valued neutrosophic competition graph is illustrated by the fol-
lowing example.

Example 4.11 Consider an interval-valued neutrosophic digraph G = (A,
−→
B ) on

X = {s, w, a, b, c, d}, such that A = {(s, [0.4, 0.5], [0.5, 0.7], [0.8, 0.9]), (w, [0.6,
0.7], [0.4, 0.6], [0.2, 0.3]), (a, [0.2, 0.6], [0.3, 0.6], [0.2, 0.6]), (b, [0.2, 0.6], [0.1,
0.6], [0.2, 0.6]), (c, [0.2, 0.7], [0.3, 0.5], [0.2, 0.6]), d([0.2, 0.6], [0.3, 0.6], [0.2,
0.6])}, and B = {(−−−→

(s, a), [0.1, 0.4], [0.3, 0.6], [0.2, 0.6]), (−−−→
(a, c), [0.2, 0.6], [0.3,

0.5], [0.2, 0.6]), (−−−→
(a, d), [0.2, 0.6], [0.3, 0.5], [0.2, 0.4]), (−−−→

(w, b), [0.2, 0.6], [0.1,
0.6], [0.2, 0.3]), (−−−→

(b, c), [0.2, 0.4], [0.1, 0.2], [0.1, 0.3]), (−−−→
(b, d), [0.1, 0.3], [0.1, 0.2],

[0.2, 0.4])}, as shown in Fig. 4.12.
We calculate N

+
2 (s) = {(c, [0.1, 0.4], [0.3, 0.5], [0.2, 0.6]), (d, [0.1, 0.4], [0.3,

0.5], [0.2, 0.4])} and N
+
2 (w) = {(c, [0.2, 0.4], [0.1, 0.2], [0.1, 0.3]), (d, [0.1, 0.3],

[0.1, 0.2], [0.2, 0.3])}. Therefore,N+
2 (s) ∩ N

+
2 (w) = {(c, [0.1, 0.4], [0.1, 0.2], [0.2,

0.6]), (d, [0.1, 0.3], [0.1, 0.2], [0.2, 0.4])}. Thus, t lB(s, w) = 0.04, tuB(s, w) = 0.20,
i lB(s,w) = 0.04, i uB(s,w) = 0.12, f lB(s,w) = 0.04 and f uB (s,w) = 0.12. This graph
is depicted in Fig. 4.13.
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s([0.4, 0.5], [0.5, 0.7], [0.8, 0.9]) w([0.6, 0.7], [0.4, 0.6], [0.2, 0.3])

a([0.2, 0.6], [0
.3, 0

.6], [0
.2, 0.6])

c([0.2, 0.7], [0.3, 0.5], [0.2, 0.6])

b([0
.2
,0
.6],[0

.1
,0
.6],[0

.2
,0
.6])

d([0.2, 0.6], [0.3, 0.6], [0.2, 0.6])

([0.
1, 0

.4],
[0.3

, 0.6
], [0

.2, 0
.6]) ([0.2, 0.6], [0.1, 0.6], [0.2, 0.3])

([0.2, 0.6], [0.3, 0.5], [0.2, 0.4])

([0.2, 0.6], [0.3, 0.5], [0.2, 0.6])

([0
.2,

0.4
], [0

.1,
0.2

], [0
.1,

0.3
])

([
0.
1,
0.
3]
, [
0.
1,
0.
2]
, [
0.
2,
0.
4]
)

Fig. 4.12 Interval-valued neutrosophic digraph

Fig. 4.13 2-Step interval-valued neutrosophic competition graph

If a predator s attacks one prey w, then the linkage is shown by an edge
−−−→
(s, w) in

an interval-valued neutrosophic digraph. But, if predator needs help of many other
mediators s1, s2, …, sm−1, then linkage among them is shown by interval-valued
neutrosophic directed path

−→
P m

s,w in an interval-valued neutrosophic digraph. So,
m-step prey in an interval-valued neutrosophic digraph is represented by a vertex
which is the m-step out-neighbourhood of some vertices. Now, the strength of an
interval-valued neutrosophic competition graphs is defined below.

Definition 4.21 Let
−→
G = (A,

−→
B ) be an interval-valued neutrosophic digraph. Let

w be a common vertex of m-step out-neighbourhoods of vertices s1, s2, …, sl .

Also, let
−→
Bl
1(u1, v1),

−→
Bl
1(u2, v2), …,

−→
Bl
1(ur , vr ) and

−→
Bu
1 (u1, v1),

−→
Bu
1 (u2, v2), …,

−→
Bu
1 (ur , vr ) be the minimum interval-valued truth-membership values,

−→
Bl
2(u1, v1),−→

Bl
2(u2, v2),…,

−→
Bl
2(ur , vr ) and

−→
Bu
2 (u1, v1),

−→
Bu
2 (u2, v2), …,

−→
Bu
2 (ur , vr ) be the mini-
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mum indeterminacy-membership values,
−→
Bl
3(u1, v1),

−→
Bl
3(u2, v2), …,

−→
Bl
3(ur , vr ) and−→

Bu
3 (u1, v1),

−→
Bu
3 (u2, v2), …,

−→
Bu
3 (ur , vr ) be the maximum false-membership values,

of edges of the paths
−→
P m

s1,w,
−→
P m

s2,w, …,
−→
P m

sr ,w, respectively. The m-step prey w ∈ X
is strong prey if

−→
Bl
1(ui , vi ) > 0.5,

−→
Bl
2(ui , vi ) > 0.5,

−→
Bl
3(ui , vi ) < 0.5,

−→
Bu
1 (ui , vi ) > 0.5,

−→
Bu
2 (ui , vi ) > 0.5,

−→
Bu
3 (ui , vi ) < 0.5, for all i = 1, 2, . . . , r.

The strength of the prey w can be measured by the mapping S : X → [0, 1], such
that:

S(w) =1

r

{ r∑

i=1

[−→Bl
1(ui , vi )] +

r∑

i=1

[−→Bu
1 (ui , vi )] +

r∑

i=1

[−→Bl
2(ui , vi )]

+
r∑

i=1

[−→Bu
2 (ui , vi )] −

r∑

i=1

[−→Bl
3(ui , vi )] −

r∑

i=1

[−→Bu
3 (ui , vi )]

}
.

Example 4.12 Consider an interval-valued neutrosophic digraph
−→
G = (A,

−→
B ) as

shown in Fig. 4.12, the strength of the prey c is equal to

(0.2 + 0.2) + (0.6 + 0.4) + (0.1 + 0.1) + (0.6 + 0.2) − (0.2 + 0.1) − (0.3 + 0.3)

2
= 1.5

> 0.5.

Hence, c is strong 2-step prey.

We state the following theorem without its proof.

Theorem 4.6 If a prey w of
−→
G = (A,

−→
B ) is strong, then the strength of w, S(w) >

0.5.

Remark: The converse of the above theorem is not true; i.e., if S(w) > 0.5, then all
preys may not be strong. This can be explained as: Let S(w) > 0.5 for a prey w in−→
G . So,

S(w) = 1

r

{ r∑

i=1

[−→Bl
1(ui , vi )] +

r∑

i=1

[−→Bu
1 (ui , vi )] +

r∑

i=1

[−→Bl
2(ui , vi )]

+
r∑

i=1

[−→Bu
2 (ui , vi )] −

r∑

i=1

[−→Bl
3(ui , vi )] −

r∑

i=1

[−→Bu
3 (ui , vi )]

}
.
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Hence,

{ r∑

i=1

[−→Bl
1(ui , vi )] +

r∑

i=1

[−→Bu
1 (ui , vi )] +

r∑

i=1

[−→Bl
2(ui , vi )]

+
r∑

i=1

[−→Bu
2 (ui , vi )] −

r∑

i=1

[−→Bl
3(ui , vi )] −

r∑

i=1

[−→Bu
3 (ui , vi )]

}
>

r

2
.

This result does not necessarily imply that

−→
Bl
1(ui , vi ) > 0.5,

−→
Bl
2(ui , vi ) > 0.5,

−→
Bl
3(ui , vi ) < 0.5,

−→
Bu
1 (ui , vi ) > 0.5,

−→
Bu
2 (ui , vi ) > 0.5,

−→
Bu
3 (ui , vi ) < 0.5, for all i = 1, 2, . . . , r.

Since, all edges of the directed paths
−→
P m

s1,w,
−→
P m

s2,w,…,
−→
P m

sr ,w are not strong. So, the

converse of the above statement is not true; i.e., if S(w) > 0.5, the preyw of
−→
G may

not be strong. Now, m-step interval-valued neutrosophic neighbourhood graphs are
defines below.

Definition 4.22 Them-step interval-valued neutrosophic out-neighbourhood of ver-
tex s of an interval-valued neutrosophic digraph

−→
G = (A,

−→
B ) is interval-valued

neutrosophic set

Nm(s) = (Xs, [T l
s , T

u
s ], [I ls , I us ], [Fl

s , F
u
s ]), where

Xs = {w| there exists a directed interval-valued neutrosophic path of length m from
s to w, Pm

s,w}, T l
s : Xs → [0, 1], T u

s : Xs → [0, 1], I ls : Xs → [0, 1], I us : Xs → [0,
1], Fl

s : Xs → [0, 1], Fu
s : Xs → [0, 1], are defined by T l

s = min{t l(s1, s2), (s1, s2)
is an edge of Pm

s,w}, T u
s = min{tu(s1, s2), (s1, s2) is an edge of Pm

s,w}, I ls = min{i l(s1,
s2), (s1, s2) is an edge of Pm

s,w}, I us = min{i u(s1, s2), (s1, s2) is an edge of Pm
s,w},

Fl
s = min{ f l(s1, s2), (s1, s2) is an edge of Pm

s,w}, Fu
s = min{ f u(s1, s2), (s1, s2) is an

edge of Pm
s,w}, respectively.

Definition 4.23 Suppose G = (A, B) is an interval-valued neutrosophic graph.
Then m-step interval-valued neutrosophic neighbourhood graph Nm(G) is defined
byNm(G) = (A, B́)where A = ([Al

1, A
u
1], [Al

2, A
u
2], [Al

3, A
u
3]), B́ = ([B́l

1, B́
u
1 ], [B́l

2,
B́u
2 ], [B́l

3, B́
u
3 ]), B́l

1 : X × X → [0, 1], B́u
1 : X × X → [0, 1], B́l

2 : X × X → [0, 1],
B́u
2 : X × X → [0, 1], B́l

3 : X × X → [0, 1], and B́u
3 : X × X → [0,−1] are such

that:

B́l
1(s, w) = Al

1(s) ∧ Al
1(w)hl1(Nm(s) ∩ Nm(w)),

B́l
2(s, w) = Al

2(s) ∧ Al
2(w)hl2(Nm(s) ∩ Nm(w)),

B́l
3(s, w) = Al

3(s) ∧ Al
3(w)hl3(Nm(s) ∩ Nm(w)),
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B́u
1 (s, w) = Au

1(s) ∧ Au
1(w)hu1(Nm(s) ∩ Nm(w)),

B́u
2 (s, w) = Au

2(s) ∧ Au
2(w)hu2(Nm(s) ∩ Nm(w)),

B́u
3 (s, w) = Au

3(s) ∧ Au
3(w)hu3(Nm(s) ∩ Nm(w)), respectively.

We state the following theorems without their proofs.

Theorem 4.7 If all preys of
−→
G = (A,

−→
B )are strong, then all edges ofCm(

−→
G ) = (A,

B) are strong.

A relation is established between m-step interval-valued neutrosophic competi-
tion graph of an interval-valued neutrosophic digraph and interval-valued neutro-
sophic competition graph of m-step interval-valued neutrosophic digraph.

Theorem 4.8 If
−→
G is an interval-valued neutrosophic digraph and

−→
Gm is the m-step

interval-valued neutrosophic digraph of
−→
G , then C(

−→
G m) = Cm(

−→
G ).

Theorem 4.9 Let
−→
G = (A,

−→
B ) be an interval-valued neutrosophic digraph. If m >

|X |, then Cm(
−→
G ) = (A, B) has no edge.

Theorem 4.10 If all the edges of interval-valued neutrosophic digraph
−→
G = (A,−→

B ) are independent strong, then all the edges of Cm(
−→
G ) are independent strong.



Chapter 5
Interval-Valued Neutrosophic Graph
Structures

In this chapter, we present certain notions of interval-valued neutrosophic graph
structures. We elaborate the concepts of interval-valued neutrosophic graph struc-
tures with examples. Moreover, we discuss the concept of ϕ-complement of an
interval-valued neutrosophic graph structure. Finally, we describe some related prop-
erties, including ϕ-complement, totally self-complementary and totally strong self-
complementary, of interval-valued neutrosophic graph structures. This chapter is due
to [35].

5.1 Introduction

Zadeh [199] introduced interval-valued fuzzy set theory which is an extension of
fuzzy set theory [194]. Membership degrees in an interval-valued fuzzy set are inter-
vals rather than numbers, and uncertainty is reflected by length of interval member-
ship degree. Interval-valued fuzzy set theory has numerous applications in various
fields of science and technology, including fuzzy control, artificial intelligence, oper-
ations research and decision-making. An interval-valued neutrosophic graph con-
stitutes a generalization of the notion interval-valued fuzzy graph. Atanassov [47]
proposed an extension of fuzzy sets by adding a new component, called intuitionistic
fuzzy sets. The concept of intuitionistic fuzzy sets is more meaningful and inventive
due to the presence of degree of truth, indeterminacy and falsity-membership. The
intuitionistic fuzzy sets have more describing possibilities as compared to fuzzy sets.
The hesitation margin of an intuitionistic fuzzy set is its uncertainty by default, and
sum of truth-membership degree and falsity-membership degree does not exceed
unity. In many phenomenons, including information fusion, uncertainty and inde-
terminacy is doubtlessly quantified. Smarandache [165, 166] proposed the idea of
neutrosophic sets, and he mingled tricomponent logic, nonstandard analysis and
philosophy. For convenient and advantageous usage of neutrosophic sets in science
and engineering,Wang et al. [169] proposed the notion of single-valued neutrosophic
sets, whose three independent components have values in standard unit interval [0, 1].
© Springer Nature Singapore Pte Ltd. 2018
M. Akram, Single-Valued Neutrosophic Graphs, Infosys Science
Foundation Series, https://doi.org/10.1007/978-981-13-3522-8_5
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Neutrosophic set theory being a generalization of fuzzy set theory and intuitionistic
fuzzy set theory is more practical, advantageous and applicable in various fields,
including medical diagnosis, control theory, topology, decision-making problems
and in many more real-life problems. Wang et al. [170] proposed the notion of
interval-valued neutrosophic sets, which is more precise and flexible than the single-
valued neutrosophic sets. An interval-valued neutrosophic set is a generalization of
the notion of single-valued neutrosophic set, in which three independent components
(t, i, f ) are intervals which are subsets of standard unit interval [0, 1].
Definition 5.1 A graph structure G∗ = (X, E1, . . . , Et ) consists of a nonempty set
X together with relations E1, E2, . . . , Et on X which are mutually disjoint such that
each E j , 1 ≤ j ≤ t , is symmetric and irreflexive.

Definition 5.2 The interval-valued neutrosophic set I on set X is defined by
I = {(r, [t−(r), t+(r)], [i−(r), i+(r)], [ f −(r), f +(r)]) : r ∈ X}, where t−, t+, i−,
i+, f −, and f + are functions from U to [0, 1] such that:
t−(r) ≤ t+(r), i−(r) ≤ i+(r) and f −(r) ≤ f +(r) for all r ∈ X .

5.2 Notions of Interval-Valued Neutrosophic Graph
Structures

Definition 5.3 Ǧiv = (I, I1, I2, . . . , It ) is called an interval-valued neutrosophic
graph structure of graph structure G∗ = (X, E1, E2, . . . , Et ) if
I = {(r, [t−(r), t+(r)], [i−(r), i+(r)], [ f −(r), f +(r)]) : r ∈ X}
and I j = { ((r, s), [t−j (r, s), t+j (r, s)], [i−j (r, s), i+j (r, s)], [ f −

j (r, s), f +
j (r, s)]) :

(r, s) ∈ E j } are interval-valued neutrosophic sets on X and E j , respectively, such
that:

1. t−j (r, s) ≤ min{t−(r), t−(s)}, t+j (r, s) ≤ min{t+(r), t+(s)},
2. i−j (r, s) ≤ min{i−(r), i−(s)}, i+j (r, s) ≤ min{i+(r), i+(s)},
3. f −

j (r, s) ≤ min{ f −(r), f −(s)}, f +
j (r, s) ≤ min{ f +(r), f +(s)},

where t−j , t
+
j , i

−
j , i

+
j , f

−
j , and f +

j are functions from E j to [0, 1] such that
t−j (r, s) ≤ t+j (r, s), i−j (r, s) ≤ i+j (r, s) and f −

j (r, s) ≤ f +
j (r, s) for all (r, s) ∈ E j .

In this paper we will use rs in place of ordered pair (r, s) which represents an
edge between vertices r and s.

Example 5.1 Consider the graph structure G∗ = (X, E1, E2) such that X = {r1, r2,
r3, r4}, E1 = {r1r3, r1r2, r3r4}, E2 = {r1r4, r2r3}. By defining interval-valued neu-
trosophic sets I , I1 and I2 on X , E1 and E2, respectively, we draw an interval-valued
neutrosophic graph structure as shown in Fig. 5.1.
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Fig. 5.1 Interval-valued
neutrosophic graph structure
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Definition 5.4 Let Ǧiv = (I, I1, I2, . . . , It ) be an interval-valued neutrosophic
graph structure of graph structure (GS) G∗ = (X, E1, E2, . . . , Et ). If
Ȟiv = (I ′, I ′

1, I
′
2, . . . , I

′
t ) is an interval-valued neutrosophic graph structure of G∗

such that

t ′−(r) ≤ t−(r), i ′−(r) ≤ i−(r), f ′−(r) ≤ f −(r),
t ′+(r) ≤ t+(r), i ′+(r) ≤ i+(r), f ′+(r) ≤ f +(r),

t ′−j (rs) ≤ t−j (rs), i ′−j (rs) ≤ i−j (rs), f ′−
j (rs) ≤ f −

j (rs),
t ′+j (rs) ≤ t+j (rs), i ′+j (rs) ≤ i+j (rs), f ′+

j (rs) ≤ f +
j (rs),

for all r ∈ X and rs ∈ E j , j = 1, 2, . . . , t.

Then Ȟiv is called an interval-valued neutrosophic subgraph structure of interval-
valued neutrosophic graph structure Ǧiv .

Example 5.2 Consider an interval-valued neutrosophic graph structure Ȟiv =
(I ′, I ′

1, I
′
2) of graph structure G∗ = (X, E1, E2) as illustrated in Fig. 5.2. Through

direct calculations, it is shown that Ȟiv is an interval-valued neutrosophic subgraph
structure of interval-valued neutrosophic graph structure Ǧiv shown in Fig. 5.1.

Definition 5.5 An interval-valued neutrosophic graph structure Ȟiv = (I ′, I ′
1,

I ′
2, . . . , I

′
t ) is called an induced subgraph structure of interval-valued neutrosophic

graph structure Ǧiv by Q ⊆ X if

t ′−(r) = t−(r), i ′−(r) = i−(r), f ′−(r) = f −(r),
t ′+(r) = t+(r), i ′+(r) = i+(r), f ′+(r) = f +(r),

t ′−j (rs) = t−j (rs), i ′−j (rs) = i−j (rs), f ′−
j (rs) = f −

j (rs), t ′+j (rs) = t+j (rs),
i ′+j (rs) = i+j (rs), f ′+

j (rs) = f +
j (rs), for all r, s ∈ Q, j = 1, 2, . . . , t.
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Fig. 5.2 Interval-valued
neutrosophic subgraph
structure
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Fig. 5.3 Interval-valued
neutrosophic-induced
subgraph structure
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Example 5.3 An interval-valued neutrosophic graph structure Ȟiv = (I ′, I ′
1, I

′
2) of

graph structureG∗ = (X, E1, E2) shown inFig. 5.3 is an interval-valuedneutrosophic-
induced subgraph structure of interval-valued neutrosophic graph structure Ǧiv =
(I, I1, I2) represented in Fig. 5.1.

Definition 5.6 An interval-valued neutrosophic graph structure Ȟiv = (I ′, I ′
1,

I ′
2, . . . , I

′
t ) is called spanning subgraph structure of interval-valued neutrosophic

graph structure Ǧiv = (I, I1, I2, . . . , It ) if I ′ = I and

t ′−j (rs) ≤ t−j (rs), i ′−j (rs) ≤ i−j (rs), f ′−
j (rs) ≤ f −

j (rs),

t ′+j (rs) ≤ t+j (rs), i ′+j (rs) ≤ i+j (rs), f ′+
j (rs) ≤ f +

j (rs), j = 1, 2, . . . , t.
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Fig. 5.4 Interval-valued
neutrosophic spanning
subgraph structure

I 1
([
0.
1,

0.
2]
,[
0.
4,

0.
5]
,[
0.
2,

0.
3]
)

r
4 ([0.3, 0.4], [0.4, 0.5], [0.3, 0.4])

r 3
([
0.
3,
0.
4]
, [
0.
6,
0.
7]
, [
0.
3,
0.
4]
)

2
([0
.2
, 0
.3
], [
0.
4,
0.
5]
, [0
.3
, 0
.4
])

r 1
([0
.2
, 0
.3
], [
0.
5,
0.
6]
, [0
.4
, 0
.5
])

I 2
([0
.1
, 0
.2
], [
0.
3,
0.
4]
, [0

.2
, 0
.3
])

I
1 ([0.2, 0.3], [0.3, 0.4], [0.1, 0.2])

I
2 ([0.1, 0.2], [0.3, 0.4], [0.1, 0.2])

I1(
[0.1

, 0.2
], [0

.3, 0
.4],

[0.2
, 0.3

])

Example 5.4 An interval-valued neutrosophic graph structure Ȟiv = (I ′, I ′
1, I

′
2)

shown in Fig. 5.4 is an interval-valued neutrosophic spanning subgraph structure of
interval-valued neutrosophic graph structure Ǧiv = (I, I1, I2) represented in Fig. 5.1.

Definition 5.7 Let Ǧiv = (I, I1, I2, . . . , It ) be an interval-valued neutrosophic graph
structure. Then edge rs ∈ I j is called an interval-valued neutrosophic I j -edge or in
short an I j -edge if

t−j (rs) > 0 or i−j (rs) > 0 or f −
j (rs) > 0 or t+j (rs) > 0 or i+j (rs) > 0 or
f +
j (rs) > 0

or all of conditions are satisfied. Hence support of I j is defined as;

supp(I j ) =
{rs ∈ I j : t−j (rs) > 0} ∪ {rs ∈ I j : i−j (rs) > 0} ∪ {rs ∈ I j : f −

j (rs) > 0}∪
{rs ∈ I j : t+j (rs) > 0} ∪ {rs ∈ I j : i+j (rs) > 0} ∪ {rs ∈ I j : f +

j (rs) > 0},
j = 1, 2, . . . , t.

Definition 5.8 An I j -path in an interval-valued neutrosophic graph structure Ǧiv =
(I, I1, I2, . . . , It ) is a sequence r1, r2, . . . , rt of distinct vertices (except rt = r1) in X
such that r j−1r j is an interval-valued neutrosophic I j -edge for all j = 2, 3, . . . , t .

Definition 5.9 An interval-valued neutrosophic graph structure Ǧiv = (I, I1,
I2, . . . , It ) is I j -strong for any j ∈ {1, 2, . . . , t} if
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Fig. 5.5 Strong interval-valued neutrosophic graph structure

t−j (rs) = min{t−(r), t−(s)}, i−j (rs) = min{i−(r), i−(s)},
f −
j (rs) = min{ f −(r), f −(s)}, t+j (rs) = min{t+(r), t+(s)},

i+j (rs) = min{i+(r), i+(s)}, f +
j (rs) = min{ f +(r), f +(s)},

for all rs ∈ supp(I j ). If Ǧiv is I j -strong for all j ∈ {1, 2, . . . , t}, then Ǧiv is called
a strong interval-valued neutrosophic graph structure.

Example 5.5 Consider an interval-valued neutrosophic graph structure Ǧiv = (I, I1,
I2, I3) as shown in Fig. 5.5. Ǧiv is a strong interval-valued neutrosophic graph struc-
ture, since it is I1, I2 and I3 strong.

Definition 5.10 An interval-valued neutrosophic graph structure Ǧiv = (I, I1,
I2, . . . , It ) is called complete , if

1. Ǧiv is a strong interval-valued neutrosophic graph structure.
2. Supp(I j ) �= ∅, for all j = 1, 2, . . . , t .
3. For all r, s ∈ X , rs is an I j − edge for some j.

Example 5.6 Let Ǧiv = (I, I1, I2, I3) be an interval-valued neutrosophic graph struc-
ture of graph structure G∗ = (X, E1, E2, E3), and it is shown in Fig. 5.6, where
X = {r1, r2, r3, r4, r5, r6}, E1 = {r1r6, r1r2, r2r4, r2r5, r2r6, r4r5}, E2 = {r4r3, r5r6,
r1r4}, and E3 = {r1r5, r5r3, r2r3, r1r3, r4r6}. By direct calculations, we can show that
Ǧiv is a strong interval-valued neutrosophic graph structure. Moreover, supp(I1) �=
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Fig. 5.6 Complete interval-valued neutrosophic graph structure

∅, supp(I2) �= ∅, supp(I3) �= ∅, and each pair r jrk of nodes in X is either an I1−
edge or I2−edge or I3− edge. Hence Ǧiv is a complete interval-valued neutrosophic
graph structure, that is, I1 I2 I3−complete interval-valued neutrosophic graph struc-
ture.

Definition 5.11 Let Ǧiv = (I, I1, I2, . . . , It ) be an interval-valued neutrosophic
graph structure. The truth strength [t−.PI j , t

+.PI j ], indeterminacy strength [i
−.PI j ,

i+.PI j ] and falsity strength [ f −.PI j , f +.PI j ] of an I j -path, PI j = r1, r2, . . . , rn are
defined as:

[t−.PI j , t+.PI j ] =
[

n∧
k=2

[t−I j (rk−1rk)],
n∧

k=2
[t+I j (rk−1rk)]

]
,

[i−.PI j , i+.PI j ] =
[

n∧
k=2

[i−I j (rk−1rk)],
n∧

k=2
[i+I j (rk−1rk)]

]
,

[ f −.PI j , f +.PI j ] =
[

n∧
k=2

[ f −
I j

(rk−1rk)],
n∧

k=2
[ f +

I j
(rk−1rk)]

]
.

Example 5.7 Consider an interval-valued neutrosophic graph structure Ǧiv = (I, I1,
I2) of graph structure G∗ = (X, E1, E2) as shown in Fig. 5.7. For I2-path PI2 =
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Fig. 5.7 Interval-valued neutrosophic graph structure Ǧiv = (I, I1, I2)

r1, r5, r3, r6, [t−.PI2 , t+.PI2 ] = [0.2, 0.3], [i−.PI2 , i+.PI2 ] = [0.1, 0.2] and [ f −.PI2 ,
f +.PI2 ] = [0.3, 0.4].

Definition 5.12 Let Ǧiv = (I, I1, I2, . . . , It ) be an interval-valued neutrosophic
graph structure. Then

• I j—Truth strength of connectedness between two nodes r and s is defined by:
[t−∞
I j

(rs), t+∞
I j

(rs)] = [
∨
i≥1

{t−i
I j

(rs)}, ∨
i≥1

{t+i
I j

(rs)}] such that

[t−i
I j

(rs), t+i
I j

(rs)] = [(t−(i−1)
I j

◦ t−(1)
I j

)(rs), (t+(i−1)
I j

◦ t+(1)
I j

)(rs)] for i ≥ 2 and

[t−2
I j

(rs), t+2
I j

(rs)] = [(t−1
I j

◦ t−1
I j

)(rs), (t+1
I j

◦ t+1
I j

)(rs)]

= [
∨
y
(t−1

I j
(r y) ∧ t−1

I j
(ys)),

∨
y
(t+1

I j
(r y) ∧ t+1

I j
(ys))].

• I j—Indeterminacy strength of connectedness between twonodes r and s is defined
by:
[i−∞
I j

(rs), i+∞
I j

(rs)] = [
∨
i≥1

{i−i
I j

(rs)}, ∨
i≥1

{i+i
I j

(rs)}] such that

[i−i
I j

(rs), i+i
I j

(rs)] = [(i−(i−1)
I j

◦ i−(1)
I j

)(rs), (i+(i−1)
I j

◦ i+(1)
I j

)(rs)] for i ≥ 2 and

[i−2
I j

(rs), i+2
I j

(rs)] = [(i−1
I j

◦ i−1
I j

)(rs), (i+1
I j

◦ i+1
I j

)(rs)]

= [
∨
y
(i−1

I j
(r y) ∧ i−1

I j
(ys)),

∨
y
(i+1

I j
(r y) ∧ i+1

I j
(ys))].

• I j—Falsity strength of connectedness between two nodes r and s is defined by:
[ f −∞

I j
(rs), f +∞

I j
(rs)] = [

∨
i≥1

{ f −i
I j

(rs)}, ∨
i≥1

{ f +i
I j

(rs)}] such that

[ f −i
I j

(rs), f +i
I j

(rs)] = [( f −(i−1)
I j

◦ f −(1)
I j

)(rs), ( f +(i−1)
I j

◦ f +(1)
I j

)(rs)] for i ≥ 2 and
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Fig. 5.8 Interval-valued
neutrosophic I2-cycle
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[ f −2
I j

(rs), f +2
I j

(rs)] = [( f −1
I j

◦ f −1
I j

)(rs), ( f +1
I j

◦ f +1
I j

)(rs)]

= [
∨
y
( f −1

I j
(r y) ∧ f −1

I j
(ys)),

∨
y
( f +1

I j
(r y) ∧ f +1

I j
(ys))].

Definition 5.13 An interval-valued neutrosophic graph structure Ǧiv = (I, I1,
I2, . . . , It ) is called an I j -cycle if (supp(I ),
supp(I1), supp(I2), . . . , supp(It )) is an I j − cycle.

Definition 5.14 An interval-valued neutrosophic graph structure Ǧiv = (I, I1,
I2, . . . , It ) is an interval-valued neutrosophic I j -cycle (for some j) if Ǧiv is an I j -
cycle and no unique I j -edge rs exists in Ǧiv such that:
[t−I j (rs), t

+
I j
(rs)] = [min{t−I j (uv) : uv ∈ I j = supp(I j )},

min{t+I j (uv) : uv ∈ I j = supp(I j )}] or
[i−I j (rs), i

+
I j
(rs)] = [min{i−I j (uv) : uv ∈ I j = supp(I j )},

min{i+I j (uv) : uv ∈ I j = supp(I j )}] or
[ f −

I j
(rs), f +

I j
(rs)] = [min{ f −

I j
(uv) : uv ∈ I j = supp(I j )},

min{ f +
I j

(uv) : uv ∈ I j = supp(I j )}].
Example 5.8 Consider an interval-valued neutrosophic graph structure
Ǧiv = (I, I1, I2) of graph structure G∗ = (X, E1, E2) as shown in Fig. 5.8. This
interval-valued neutrosophic graph structure Ǧiv is an I2-cycle, that is, r1 − r4 −
r2 − r3 − r1, and no unique I2-edge rs exists in Ǧiv satisfying following condition:
[t−I2 (rs), t

+
I2
(rs)] = [min{t−I2 (uv) : uv ∈ I2 = supp(I2)},

min{t+I2 (uv) : uv ∈ I2 = supp(I2)}] or
[i−I2 (rs), i

+
I2
(rs)] = [min{i−I2 (uv) : uv ∈ I2 = supp(I2)},

min{i+I2 (uv) : uv ∈ I2 = supp(I2)}] or
[ f −

I2
(rs), f +

I2
(rs)] = [min{ f −

I2
(uv) : uv ∈ I2 = supp(I2)},

min{ f +
I2

(uv) : uv ∈ I2 = supp(I2)}].
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Definition 5.15 Let Ǧiv = (I, I1, I2, . . . , It ) be an interval-valued neutrosophic
graph structure and ‘r ’ be a vertex of Ǧiv . If (I ′, I ′

1, I
′
2, . . . , I

′
t ) is an interval-

valued neutrosophic subgraph structure of Ǧiv induced by U \ {r} such that for
all u �= r, v �= r

t−I ′ (r) = i−I ′ (r) = f −
I ′ (r) = t−I ′

j
(ru) = i−I ′

j
(ru) = f −

I ′
j
(ru) = 0,

t+I ′ (r) = i+I ′ (r) = f +
I ′ (r) = t+I ′

j
(ru) = i+I ′

j
(ru) = f +

I ′
j
(ru) = 0,

[t−I ′ (u), t+I ′ (u)] = [t−I (u), t+I (u)], [i−I ′ (u), i+I ′ (u)] = [i−I (u), i+I (u)],
[ f −

I ′ (u), f +
I ′ (u)] = [ f −

I (u), f +
I (u)],

[t−I ′
j
(uv), t+I ′

j
(uv)] = [t−I j (uv), t+I j (uv)], [i−I ′

j
(uv), i+I ′

j
(uv)] = [i−I j (uv), i+I j (uv)],

[ f −
I ′
j
(uv), f +

I ′
j
(uv)] = [ f −

I j
(uv), f +

I j
(uv)].

for all edges ru, uv ∈ Ǧiv , then vertex r is an interval-valued neutrosophic I j
cut-vertex, if

1. t−∞
I j

(uv) > t−∞
I ′
j

(uv), t+∞
I j

(uv) > t+∞
I ′
j

(uv), [t−∞
I j

(uv), t+∞
I j

(uv)] ∩
[t−∞
I ′
j

(uv), t+∞
I ′
j

(uv)] = ∅
2. i−∞

I j
(uv) > i−∞

I ′
j

(uv), i+∞
I j

(uv) > i+∞
I ′
j

(uv), [i−∞
I j

(uv), i+∞
I j

(uv)] ∩
[i−∞
I ′
j

(uv), i+∞
I ′
j

(uv)] = ∅
3. f −∞

I j
(uv) > f −∞

I ′
j

(uv), f +∞
I j

(uv) > f +∞
I ′
j

(uv), [ f −∞
I j

(uv), f +∞
I j

(uv)] ∩
[ f −∞

I ′
j

(uv), f +∞
I ′
j

(uv)] = ∅
for some u, v ∈ X \ {r}. Note that vertex r is an
• interval-valued neutrosophic I j − t cut-vertex, if t−∞

I j
(uv) > t−∞

I ′
j

(uv),

t+∞
I j

(uv) > t+∞
I ′
j

(uv), [t−∞
I j

(uv), t+∞
I j

(uv)]∩ [t−∞
I ′
j

(uv), t+∞
I ′
j

(uv)] = ∅
• interval-valued neutrosophic I j − i cut-vertex, if i−∞

I j
(uv) > i−∞

I ′
j

(uv),

i+∞
I j

(uv) > i+∞
I ′
j

(uv), [i−∞
I j

(uv), i+∞
I j

(uv)]∩ [i−∞
I ′
j

(uv), i+∞
I ′
j

(uv)] = ∅
• interval-valued neutrosophic I j − f cut-vertex, if f −∞

I j
(uv) > f −∞

I ′
j

(uv),

f +∞
I j

(uv) > f +∞
I ′
j

(uv), [ f −∞
I j

(uv), f +∞
I j

(uv)]∩ [ f −∞
I ′
j

(uv), f +∞
I ′
j

(uv)] = ∅
Example 5.9 Consider an interval-valued neutrosophic graph structure
Ǧiv = (I, I1, I2) of graph structure G∗ = (X, E1, E2) as represented in Fig. 5.9. Ȟiv

= (I ′, I ′
1, I

′
2) is an interval-valued neutrosophic subgraph structure of interval-valued

neutrosophic graph structure Ǧiv , which is obtained by deleting vertex r2 and shown
in Fig. 5.10.

The vertex r2 is an interval-valued neutrosophic I1 − i cut-vertex. Since
i−∞
I ′
1

(r4r5) = 0.3, i−∞
I1

(r4r5) = 0.5, i+∞
I ′
1

(r4r5) = 0.4, i+∞
I1

(r4r5) = 0.6.

Clearly i−∞
I1

(r4r5) = 0.5 > 0.3 = i−∞
I ′
1

(r4r5), i
+∞
I1

(r4r5) = 0.6 > 0.4 = i+∞
I ′
1

(r4r5),

[i−∞
I1

(r4r5), i
+∞
I1

(r4r5)] ∩ [i−∞
I ′
1

(r4r5), i
+∞
I ′
1

(r4r5)] = [0.5, 0.6] ∩ [0.3, 0.4] = ∅.
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Fig. 5.9 Interval-valued
neutrosophic graph structure
Ǧiv = (I, I1, I2)
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Fig. 5.10 Interval-valued
neutrosophic graph structure
Ȟiv = (I ′, I ′

1, I
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Definition 5.16 Let Ǧiv = (I, I1, I2, . . . , It ) be an interval-valued neutrosophic
graph structure and rs be an I j − edge. If (I ′, I ′

1, I
′
2, . . . , I

′
t ) is an interval-valued

neutrosophic spanning subgraph structure of Ǧiv , such that

t−I ′
j
(rs) = i−I ′

j
(rs) = f −

I ′
j
(rs) = 0, t+I ′

j
(rs) = i+I ′

j
(rs) = f +

I ′
j
(rs) = 0,

[t−I ′
j
(wx), t+I ′

j
(wx)] = [t−I j (wx), t+I j (wx)], [i−I ′

j
(wx), i+I ′

j
(wx)] = [i−I j (wx),

i+I j (wx)],
[ f −

I ′
j
(wx), f +

I ′
j
(wx)] = [ f −

I j
(wx), f +

I j
(wx)],

for all edges wx �= rs, then edge rs is an interval-valued neutrosophic I j -bridge if

1. t−∞
I j

(uv) > t−∞
I ′
j

(uv), t+∞
I j

(uv) > t+∞
I ′
j

(uv), [t−∞
I j

(uv), t+∞
I j

(uv)]∩
[t−∞
I ′
j

(uv), t+∞
I ′
j

(uv)] = ∅
2. i−∞

I j
(uv) > i−∞

I ′
j

(uv), i+∞
I j

(uv) > i+∞
I ′
j

(uv), [i−∞
I j

(uv), i+∞
I j

(uv)]∩
[i−∞
I ′
j

(uv), i+∞
I ′
j

(uv)] = ∅
3. f −∞

I j
(uv) > f −∞

I ′
j

(uv), f +∞
I j

(uv) > f +∞
I ′
j

(uv), [ f −∞
I j

(uv), f +∞
I j

(uv)]∩
[ f −∞

I ′
j

(uv), f +∞
I ′
j

(uv)] = ∅
for some u, v ∈ X . Note that edge rs is an

• interval-valued neutrosophic I j − t bridge, if t−∞
I j

(uv)

> t−∞
I ′
j

(uv), t+∞
I j

(uv) > t+∞
I ′
j

(uv), [t−∞
I j

(uv), t+∞
I j

(uv)]∩ [t−∞
I ′
j

(uv), t+∞
I ′
j

(uv)] = ∅
• interval-valued neutrosophic I j − i bridge, if i−∞

I j
(uv)

> i−∞
I ′
j

(uv), i+∞
I j

(uv) > i+∞
I ′
j

(uv), [i−∞
I j

(uv), i+∞
I j

(uv)]∩ [i−∞
I ′
j

(uv), i+∞
I ′
j

(uv)] = ∅
• interval-valued neutrosophic I j − f bridge, if f −∞

I j
(uv)

> f −∞
I ′
j

(uv), f +∞
I j

(uv) > f +∞
I ′
j

(uv), [ f −∞
I j

(uv), f +∞
I j

(uv)]∩ [ f −∞
I ′
j

(uv),

f +∞
I ′
j

(uv)] = ∅

Example 5.10 Consider an interval-valued neutrosophic graph structure Ǧiv =
(I, I1, I2) of graph structureG∗ = (X, E1, E2) as shown in Fig. 5.11. Ȟiv = (I ′, I ′

1, I
′
2)

is an interval-valued neutrosophic spanning subgraph structure of interval-valued
neutrosophic graph structure Ǧiv obtained by deleting an I1-edge r2r5 and shown in
Fig. 5.12. The edge r2r5 is an interval-valued neutrosophic I1 − bridge since

• t−∞
I ′
1

(r2r5) = 0.2, t−∞
I1

(r2r5) = 0.7, t+∞
I ′
1

(r2r5) = 0.3, t+∞
I1

(r2r5) = 0.8. t−∞
I1

(r2r5)

= 0.7 > 0.2 = t−∞
I ′
1

(r2r5), t+∞
I1

(r2r5) = 0.8 > 0.3 = t+∞
I ′
1

(r2r5), [t
−∞
I1

(r2r5),

t+∞
I1

(r2r5)] ∩ [t−∞
I ′
1

(r2r5), t
+∞
I ′
1

(r2r5)]= [0.7, 0.8] ∩ [0.2, 0.3] = ∅.
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Fig. 5.11 Interval-valued
neutrosophic graph structure
Ǧiv = (I, I1, I2)

Fig. 5.12 Interval-valued
neutrosophic graph structure
Ȟiv = (I ′, I ′

1, I
′
2)

r
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I 1
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.4
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I 2
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,
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.

)]4

I 1
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[0
.7
, 0
.8
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[0
.5
, 0
.6
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I
1 ([0.2, 0.3], [0.3, 0.4], [0.3, 0.4])

I
1 ([0.2, 0.3], [0.5, 0.6], [0.3, 0.4])
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226 5 Interval-Valued Neutrosophic Graph Structures

• i−∞
I ′
1

(r2r5) = 0.3, i−∞
I1

(r2r5) = 0.5, i+∞
I ′
1

(r2r5) = 0.4, i+∞
I1

(r2r5) =
0.6. i−∞

I1
(r2r5) = 0.5 > 0.3 = i−∞

I ′
1

(r2r5), i+∞
I1

(r2r5) = 0.6 > 0.4 = i+∞
I ′
1

(r2r5),

[i−∞
I1

(r2r5), i
+∞
I1

(r2r5)] ∩ [i−∞
I ′
1

(r2r5), i
+∞
I ′
1

(r2r5)]= [0.5, 0.6] ∩ [0.3, 0.4] = ∅.
• f −∞

I ′
1

(r2r5) = 0.3, f −∞
I1

(r2r5) = 0.5, f +∞
I ′
1

(r2r5) = 0.4, f +∞
I1

(r2r5) = 0.7.

f −∞
I1

(r2r5) = 0.5 > 0.3 = f −∞
I ′
1

(r2r5), f +∞
I1

(r2r5) = 0.7 > 0.4 = f +∞
I ′
1

(r2r5),

[ f −∞
I1

(r2r5), f
+∞
I1

(r2r5)] ∩ [ f −∞
I ′
1

(r2r5), f
+∞
I ′
1

(r2r5)] =
[0.5, 0.7] ∩ [0.3, 0.4] = ∅.

Definition 5.17 An interval-valued neutrosophic graph structure Ǧiv = (I, I1,
I2, . . . , It ) is an I j -tree if (supp(I ), supp(I1), supp(I2), . . . , supp(It )) is an I j −
tree. Alternatively, Ǧiv is an I j -tree, if Ǧiv has a subgraph induced by supp(I j ) that
forms a tree.

Definition 5.18 An interval-valued neutrosophic graph structure Ǧiv = (I, I1,
I2, . . . , It ) is an interval-valued neutrosophic I j -tree if Ǧiv has an interval-valued
neutrosophic spanning subgraph structure Ȟiv = (I ′′, I ′′

1 , I ′′
2 , . . . , I ′′

t ) such that for
all I j -edges rs not in Ȟiv ,
Ȟiv is an I ′′

j -tree and

1. t−I j (rs) < t−∞
I ′′
j

(rs), t+I j (rs) < t+∞
I ′′
j

(rs), [t−I j (rs), t+I j (rs)] ∩
[t−∞
I ′′
j

(rs), t+∞
I ′′
j

(rs)] = ∅
2. i−I j (rs) < i−∞

I ′′
j

(rs), i+I j (rs) < i+∞
I ′′
j

(rs), [i−I j (rs), i
+
I j
(rs)] ∩

[i−∞
I ′′
j

(rs), i+∞
I ′′
j

(rs)] = ∅
3. f −

I j
(rs) < f −∞

I ′′
j

(rs), f +
I j

(rs) < f +∞
I ′′
j

(rs), [ f −
I j

(rs), f +
I j

(rs)] ∩
[ f −∞

I ′′
j

(rs), f +∞
I ′′
j

(rs)] = ∅
In particular,

• Ǧiv is an interval-valued neutrosophic I j − t tree if t−I j (rs) < t−∞
I ′′
j

(rs), t+I j (rs)
< t+∞

I ′′
j

(rs), [t−I j (rs), t
+
I j
(rs)] ∩ [t−∞

I ′′
j

(rs), t+∞
I ′′
j

(rs)] = ∅
• Ǧiv is an interval-valued neutrosophic I j − i tree if i−I j (rs) < i−∞

I ′′
j

(rs), i+I j (rs)
< i+∞

I ′′
j

(rs), [i−I j (rs), i
+
I j
(rs)] ∩ [i−∞

I ′′
j

(rs), i+∞
I ′′
j

(rs)] = ∅
• Ǧiv is an interval-valued neutrosophic I j − f tree if f −

I j
(rs) < f −∞

I ′′
j

(rs), f +
I j

(rs)

< f +∞
I ′′
j

(rs), [ f −
I j

(rs), f +
I j

(rs)] ∩ [ f −∞
I ′′
j

(uv), f +∞
I ′′
j

(uv)] = ∅

Example 5.11 Consider an interval-valued neutrosophic graph structure Ǧiv =
(I, I1, I2) of graph structure G∗ = (X, E1, E2) as shown in Fig. 5.13. This interval-
valued neutrosophic graph structure is I2-tree, not I1-tree. But it is interval-valued
neutrosophic I1 − t tree, since it has an interval-valued neutrosophic spanning sub-
graph structure Ȟiv = (I ′′, I ′′

1 , I ′′
2 ) as an I ′′

1 -tree, which is obtained by deleting I1-edge
r2r5 from Ǧiv and shown in Fig. 5.14. By direct calculations, we found that
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Fig. 5.13 Ǧiv = (I, I1, I2)
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Fig. 5.14 Ȟiv = (I ′′, I ′′
1 , I ′′

2 )
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Fig. 5.15 Interval-valued
neutrosophic graph structure
Ǧiv1 = (I, I1, I2) I2([0.2, 0.3], [0.2, 0.3], [0.5, 0.6])
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)] 5

I2 ([0.3, 0.4], [0.2, 0.3], [0.5, 0.6])

r4([0.3, 0.4], [0.2, 0.3], [0.5, 0.6])

t−∞
I ′′
1

(r2r5) = 0.3, t+∞
I ′′
1

(r2r5) = 0.5, t−I1 (r2r5) = 0.1, t+I1 (r2r5) = 0.2,

t−I1 (r2r5) = 0.1 < 0.3 = t−∞
I ′′
1

(r2r5), t
+
I1
(r2r5) = 0.2 < 0.5 = t+∞

I ′′
1

(r2r5),

[t−∞
I ′′
1

(r2r5), t
+∞
I ′′
1

(r2r5)] ∩ [t−I1 (r2r5), t
+
I1
(r2r5)] = [0.3, 0.5] ∩ [0.1, 0.2] = ∅.

Definition 5.19 An interval-valued neutrosophic graph structure Ǧiv1 = (I1, I11,
I12, . . . , I1t ) of graph structure G∗

1 = (X1, E11, E12, . . . , E1t ) is isomorphic to
interval-valued neutrosophic graph structure Ǧiv2 = (I2, I21, I22, . . . , I2t ) of graph
structure G∗

2 = (X2, E21, E22, . . . , E2t ), if there is a pair ( f, ϕ), where f : U1 → U2

is bijection and ϕ is a permutation on set {1, 2, . . . , t} such that:

[t−I1 (r), t+I1 (r)] = [t−I2 ( f (r)), t+I2 ( f (r))], [i−I1 (r), i+I1 (r)] = [i−I2 ( f (r)), i+I2 ( f (r))],
[ f −

I1
(r), f +

I1
(r)] = [ f −

I2
( f (r)), f +

I2
( f (r))],

[t−I1 j (rs), t+I1 j (rs)] = [t−I2ϕ( j)
( f (r) f (s)), t+I2ϕ( j)

( f (r) f (s))],
[i−I1 j (rs), i+I1 j (rs)] = [i−I2ϕ( j)

( f (r) f (s)), i+I2ϕ( j)
( f (r) f (s))],

[ f −
I1 j

(rs), f +
I1 j

(rs)] = [ f −
I2ϕ( j)

( f (r) f (s)), f +
I2ϕ( j)

( f (r) f (s))],

for all r ∈ X1, rs ∈ I1 j , j ∈ {1, 2, . . . , t}.
Example 5.12 Let Ǧiv1 = (I, I1, I2) and Ǧiv2 = (I ′, I ′

1, I
′
2) be two interval-valued

neutrosophic graph structures of two GSs G1 = (X, E1, E2) and G2 = (X ′, E ′
1, E

′
2)

as shown in Figs. 5.15 and 5.16, respectively.
Ǧiv1 and Ǧiv2 are isomorphic under ( f, ϕ), where f : U → U ′ is bijection and

ϕ is permutation on set {1, 2} defined as ϕ(1) = 2, ϕ(2) = 1, such that:
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Fig. 5.16 Interval-valued
neutrosophic graph structure
Ǧiv2 = (I ′, I ′

1, I
′
2)
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[t−I (ri ), t
+
I (ri )] = [t−I ′ ( f (ri )), t

+
I ′ ( f (ri ))],

[i−I (ri ), i
+
I (ri )] = [i−I ′ ( f (ri )), i

+
I ′ ( f (ri ))],

[ f −
I (ri ), f +

I (ri )] = [ f −
I ′ ( f (ri )), f +

I ′ ( f (ri ))],
[t−I j (rirk), t+I j (rirk)] = [t−Iϕ( j)

( f (ri ) f (rk)), t
+
Iϕ( j)

( f (ri ) f (rk))],
[i−I j (rirk), i+I j (rirk)] = [i−Iϕ( j)

( f (ri ) f (rk)), i
+
Iϕ( j)

( f (ri ) f (rk))],
[ f −

I j
(rirk), f +

I j
(rirk)] = [ f −

Iϕ( j)
( f (ri ) f (rk)), f +

Iϕ( j)
( f (ri ) f (rk))],

for all ri ∈ X , rirk ∈ I j , j ∈ {1, 2} and i, k ∈ {1, 2, 3, 4}.
Definition 5.20 An interval-valued neutrosophic graph structure Ǧiv1 = (I1, I11,
I12, . . . , I1t ) of graph structure G∗

1 = (X1, E11, E12, . . . , E1t ) is identical to interval-
valued neutrosophic graph structure Ǧiv2 = (I2, I21, I22, . . . , I2t ) of graph structure
G∗

2 = (X2, E21, E22, . . . , E2t ) if f : U1 → U2 is a bijection, such that

[t−I1 (r), t+I1 (r)] = [t−I2 ( f (r)), t+I2 ( f (r))], [i−I1 (r), i+I1 (r)] = [i−I2 ( f (r)), i+I2 ( f (r))],
[ f −

I1
(r), f +

I1
(r)] = [ f −

I2
( f (r)), f +

I2
( f (r))],

[t−I1 j (rs), t+I1 j (rs)] = [t−I2 j ( f (r) f (s)), t+I2 j ( f (r) f (s))],
[i−I1 j (rs), i+I1 j (rs)] = [i−I2 j ( f (r) f (s)), i+I2 j ( f (r) f (s))],

[ f −
I1 j

(rs), f +
I1 j

(rs)] = [ f −
I2 j

( f (r) f (s)), f +
I2 j

( f (r) f (s))],

for all r ∈ X1, rs ∈ X1 j , j ∈ {1, 2, . . . , t}.
Example 5.13 Let Ǧiv1 = (I, I1, I2) and Ǧiv2 = (I ′, I ′

1, I
′
2) be two interval-valued

neutrosophic graph structures of the graph structures G∗
1 = (X, E1, E2) and G∗

2 =
(X ′, E ′

1, E
′
2), respectively, as shown in Figs. 5.17 and 5.18, respectively.

Interval-valued neutrosophic graph structure Ǧiv1 is identical to Ǧiv2 under f : X →
X ′ defined as :
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.3,

0.4
], [0

.6,
0.7

])

I2
([0

.2,
0.3

], [0
.3,

0.4
], [0

.5,
0.6

])

I1([0.4, 0.5], [0.4, 0.5], [0.2, 0.3])
I2
([0

.2,
0.3

], [0
.2,

0.3
], [0

.3,
0.4

])

I1
([0

.4,
0.5

], [0
.2,

0.3
], [0

.5,
0.6

])

I2
([0

.6,
0.7

], [0
.5,

0.6
], [0

.5,
0.6

])

I2([0.3, 0.4], [0.3, 0.4], [0.4, 0.5])

I2([0.4, 0.5], [0.3, 0.4], [0.5, 0.6])

I1([0.3, 0.4], [0.3, 0.4], [0.4, 0.5])
I1
([0

.3,
0.4

], [0
.2,

0.3
], [0

.4,
0.5

])

Fig. 5.17 Interval-valued neutrosophic graph structure Ǧiv1

Fig. 5.18 Interval-valued neutrosophic graph structure Ǧiv2

f (r1) = s2, f (r2) = s1, f (r3) = s4, f (r4) = s3, f (r5) = s5, f (r6) = s8, f (r7) = s7,
f (r8) = s6. Moreover,

[t−I (ri ), t
+
I (ri )] = [t−I ′ ( f (ri )), t

+
I ′ ( f (ri ))],

[i−I (ri ), i
+
I (ri )] = [i−I ′ ( f (ri )), i

+
I ′ ( f (ri ))],

[ f −
I (ri ), f +

I (ri )] = [ f −
I ′ ( f (ri )), f +

I ′ ( f (ri ))],
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[t−I j (rirk), t+I j (rirk)] = [t−I ′
j
( f (ri ) f (rk)), t

+
I ′
j
( f (ri ) f (rk))],

[i−I j (rirk), i+I j (rirk)] = [i−I ′
j
( f (ri ) f (rk)), i

+
I ′
j
( f (ri ) f (rk))],

[ f −
I j

(rirk), f +
I j

(rirk)] = [ f −
I ′
j
( f (ri ) f (rk)), f +

I ′
j
( f (ri ) f (rk))],

for all ri ∈ X , rirk ∈ E j , j ∈ {1, 2}, i, k ∈ {1, 2, . . . , 8}.

5.3 ϕ-Complement of Interval-Valued Neutrosophic Graph
Structure

Definition 5.21 Let Ǧiv = (I, I1, I2, . . . , It ) be an interval-valued neutrosophic
graph structure and ϕ be a permutation on {I1, I2, . . . , It } on the set {1, 2, . . . , t},
that is, ϕ(I j ) = Il if and only if ϕ( j) = l for all j . If rs ∈ I j and

[t−
I ϕ

j
(rs), t+

I ϕ

j
(rs)] = [t−I (r) ∧ t−I (s) − ∨

l �= j
t−ϕ(Il )

(rs),

t+I (r) ∧ t+I (s) − ∨
l �= j

t+ϕ(Il )
(rs)], [i−

I ϕ

j
(rs), i+

I ϕ

j
(rs)] =

[i−I (r) ∧ i−I (s) − ∨
l �= j

i−ϕ(Il )
(rs), i+I (r) ∧ i+I (s) − ∨

l �= j
i+ϕ(Il )

(rs)],

[ f −
I ϕ

j
(rs), f +

I ϕ

j
(rs)] =

[ f −
I (r) ∧ f −

I (s) − ∨
l �= j

f −
ϕ(Il )

(rs), f +
I (r) ∧ f +

I (s) − ∨
l �= j

f +
ϕ(Il )

(rs)],

j = 1, 2, . . . , t , then rs ∈ I ϕ
u , where u is selected, such that

• t−
I ϕ
u
(rs) ≥ t−

I ϕ

j
(rs), t+

I ϕ
u
(rs) ≥ t+

I ϕ

j
(rs), [t−

I ϕ
u
(rs), t+

I ϕ
u
(rs)] ∩ [ t−

I ϕ

j
(rs), t+

I ϕ

j
(rs)] = ∅

• i−
I ϕ
u
(rs) ≥ i−

I ϕ

j
(rs), i+

I ϕ
u
(rs) ≥ i+

I ϕ

j
(rs), [i−

I ϕ
u
(rs), i+

I ϕ
u
(rs)] ∩ [ i−

I ϕ

j
(rs), i+

I ϕ

j
(rs)] = ∅

• f −
I ϕ
u
(rs) ≥ f −

I ϕ

j
(rs), f +

I ϕ
u
(rs) ≥ f +

I ϕ

j
(rs), [ f −

I ϕ
u
(rs), f +

I ϕ
u
(rs)] ∩ [ f −

I ϕ

j
(rs), f +

I ϕ

j
(rs)] =

∅
for all j . Then interval-valued neutrosophic graph structure (I, I ϕ

1 , I ϕ
2 , . . . , I ϕ

t ) is
said to be ϕ-complement of interval-valued neutrosophic graph structure Ǧiv and
denoted by Ǧϕc

iv .

Example 5.14 Let I = {(r1, [0.4, 0.5], [0.4, 0.5], [0.7, 0.8]), (r2, [0.6, 0.7], [0.6,
0.7], [0.4, 0.5]), (r3, [0.8, 0.9], [0.5, 0.6], [0.3, 0.4])}, I1 = {(r1r3, [0.4, 0.5], [0.4,
0.5], [0.3, 0.4])}, I2 = {(r2r3, [0.6, 0.7], [0.4, 0.5], [0.3, 0.4])}, I3 = {(r1r2, [0.4,
0.5], [0.3, 0.4], [0.4, 0.5])} be interval-valued neutrosophic subsets of
U = {r1, r2, r3}, E1 = {r1r3}, E2 = {r2r3}, E3 = {r1r2}, respectively. Obviously,
Ǧiv = (I, I1, I2, I3) is an interval-valued neutrosophic graph structure of GS G∗
= (X, E1, E2, E3) as shown in Fig. 5.19.
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Fig. 5.19 Ǧiv =
(I, I1, I2, I3)

r3([0.8, 0.9], [0.5, 0.6], [0.3, 0.4])

I
3 ([0.4, 0.5], [0.3, 0.4], [0.4, 0.5])

I2([0.6, 0.7], [0.4, 0.5], [0.3, 0.4])

I 1
([
0.
4,
0.
5]
, [
0.
4,
0.
5]
, [
0.
3,
0.
4]
)

r1([0.4, 0.5], [0.4, 0.5], [0.7, 0.8])

r2([0.6, 0.7], [0.6, 0.7], [0.4, 0.5])

Fig. 5.20 Ǧiv =
(I, I ϕ

1 , I ϕ
2 , I ϕ

3 )

r 3
([
0.
8,

0.
9]
,
0[
.5
,0

.
] 6
,
0[
.3
,0

.
)] 4

I
ϕ 2
([
0.
4,
0.
5]
, [
0.
4,
0.
5]
, [
0.
4,
0.
5]
)

I ϕ1 ([0.6, 0.7], [0.5, 0.6], [0.3, 0.4])

Iϕ
3 ([0.4, 0.5], [0.4, 0.5], [0.3, 0.4])r 1

([
0.
4,

0.
5]
, [
0.
4,

0.
5]
, [
0.
7,

0.
8]
)

r2([0.6, 0.7], [0.6, 0.7], [0.4, 0.5])

Simple calculations of edges r1r3, r2r3, r1r2 ∈ I1, I2, I3, respectively, show that
r1r3 ∈ I ϕ

3 , r2r3 ∈ I ϕ
1 , r1r2 ∈ I ϕ

2 . So, Ǧ
ϕc
iv =(I, I ϕ

1 , I ϕ
2 , I ϕ

3 ) isϕ-complement of interval-
valued neutrosophic graph structure Ǧiv as shown in Fig. 5.20.

Proposition 5.1 ϕ-complement of an interval-valued neutrosophic graph structure
Ǧiv = (I, I1, I2, . . . , It ) is a strong interval-valued neutrosophic graph structure.
Moreover, if ϕ( j) = u, where j, u ∈ {1, 2, . . . , t}, then all Iu-edges in interval-
valued neutrosophic graph structure (I, I1, I2, . . . , It ) become I ϕ

j -edges in (I, I ϕ
1 ,

I ϕ
2 , . . . , I ϕ

t ).

Proof By definition of ϕ-complement,

[t−
Iϕj

(rs), t+
Iϕj

(rs)] = [t−I (r) ∧ t−I (s) −
∨
l �= j

t−
ϕ(Il )

(rs), t+I (r) ∧ t+I (s) −
∨
l �= j

t+
ϕ(Il )

(rs)], (5.1)

[i−
Iϕj

(rs), i+
Iϕj

(rs)] = [i−I (r) ∧ i−I (s) −
∨
l �= j

i−
ϕ(Il )

(rs), i+I (r) ∧ i+I (s) −
∨
l �= j

i+
ϕ(Il )

(rs)], (5.2)

[ f −
Iϕ
j
(rs), f +

Iϕ
j
(rs)] = [ f −

I (r) ∧ f −
I (s) −

∨
l �= j

f −
ϕ(Il )

(rs), f +
I (r) ∧ f +

I (s) −
∨
l �= j

f +
ϕ(Il )

(rs)], (5.3)
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for j ∈ {1, 2, . . . , t}. For expression of truth-membership value:
As t−I (r) ∧ t−I (s) ≥ 0, t+I (r) ∧ t+I (s) ≥ 0 and

∨
l �= j

t−ϕ(Il )
(rs) ≥ 0,

∨
l �= j

t+ϕ(Il )
(rs) ≥ 0.

Since t−I j (rs) ≤ t−I (r) ∧ t−I (s), t+I j (rs) ≤ t+I (r) ∧ t+I (s), for all I j . This implies∨
l �= j

t−ϕ(Il )
(rs) ≤ t−I (r) ∧ t−I (s) and

∨
l �= j

t+ϕ(Il )
(rs) ≤ t+I (r) ∧ t+I (s). It shows that t−I (r) ∧

t−I (r) − ∨
l �= j

t−ϕ(Il )
(rs) ≥ 0, t+I (r) − ∨

l �= j
t+ϕ(Il )

(rs) ≥ 0. Hence t−
I ϕ

j
(rs) ≥ 0 and

t+
I ϕ

j
(rs) ≥ 0, for all j . Furthermore, t−

I ϕ

j
(rs) and t+

I ϕ

j
(rs) obtain maximum value when∨

l �= j
t−ϕ(Il )

(rs) and
∨
l �= j

t+ϕ(Il )
(rs) are zero. Obviously, when ϕ(I j ) = Iu and rs is an

Iu-edge then
∨
l �= j

t−ϕ(Il )
(rs) and

∨
l �= j

t+ϕ(Il )
(rs) acquire zero value. Hence

[t−
Iϕj

(rs), t+
Iϕj

(rs)] = [t−I (r) ∧ t−I (s), t+I (r) ∧ t+I (s)], f or (rs) ∈ Iu , ϕ(I j ) = Iu . (5.4)

For expression of indeterminacy-membership value:
As i−I (r) ∧ i−I (s) ≥ 0, i+I (r) ∧ i+I (s) ≥ 0 and

∨
l �= j

i−ϕ(Il )
(rs) ≥ 0,

∨
l �= j

i+ϕ(Il )
(rs) ≥ 0.

Since i−I j (rs) ≤ i−I (r) ∧ i−I (s), i+I j (rs) ≤ i+I (r) ∧ i+I (s), for all I j . This implies∨
l �= j

i−ϕ(Il )
(rs) ≤ i−I (r) ∧ i−I (s) and

∨
l �= j

i+ϕ(Il )
(rs) ≤ i+I (r) ∧ i+I (s). It shows that i−I (r) ∧

i−I (r) − ∨
l �= j

i−ϕ(Il )
(rs) ≥ 0, i+I (r) − ∨

l �= j
i+ϕ(Il )

(rs) ≥ 0. Hence i−
I ϕ

j
(rs) ≥ 0 and

i+
I ϕ

j
(rs) ≥ 0, for all j . Furthermore, i−

I ϕ

j
(rs) and i+

I ϕ

j
(rs) achieve maximum value

when
∨
l �= j

i−ϕ(Il )
(rs) and

∨
l �= j

i+ϕ(Il )
(rs) are zero. Obviously, when ϕ(I j ) = Iu and rs

is an Iu-edge then
∨
l �= j

i−ϕ(Il )
(rs) and

∨
l �= j

i+ϕ(Il )
(rs) get zero value. Hence

[i−
Iϕj

(rs), i+
Iϕj

(rs)] = [i−I (r) ∧ i−I (s), i+I (r) ∧ i+I (s)], f or (rs) ∈ Iu , ϕ(I j ) = Iu . (5.5)

For expression of falsity-membership value:
As f −

I (r) ∧ f −
I (s) ≥ 0, f +

I (r) ∧ f +
I (s) ≥ 0 and

∨
l �= j

f −
ϕ(Il )

(rs) ≥ 0,
∨
l �= j

f +
ϕ(Il )

(rs) ≥
0. Since f −

I j
(rs) ≤ f −

I (r) ∧ f −
I (s), f +

I j
(rs) ≤ f +

I (r) ∧ f +
I (s), for all I j . This implies∨

l �= j
f −
ϕ(Il )

(rs) ≤ f −
I (r) ∧ f −

I (s) and
∨
l �= j

f +
ϕ(Il )

(rs) ≤ f +
I (r) ∧ f +

I (s). It shows that

f −
I (r) ∧ f −

I (r) − ∨
l �= j

f −
ϕ(Il )

(rs) ≥ 0, f +
I (r) − ∨

l �= j
f +
ϕ(Il )

(rs) ≥ 0. Hence f −
I ϕ

j
(rs) ≥ 0

and f +
I ϕ

j
(rs) ≥ 0, for all j . Furthermore, f −

I ϕ

j
(rs) and f +

I ϕ

j
(rs) obtain maximum value

when
∨
l �= j

f −
ϕ(Il )

(rs) and
∨
l �= j

f +
ϕ(Il )

(rs) are zero. Obviously, when ϕ(I j ) = Iu and rs is

an Iu-edge then
∨
l �= j

f −
ϕ(Il )

(rs) and
∨
l �= j

f +
ϕ(Il )

(rs) acquire zero value. Hence

[ f −
Iϕj

(rs), f +
Iϕj

(rs)] = [ f −
I (r) ∧ f −

I (s), f +
I (r) ∧ f +

I (s)], f or (rs) ∈ Iu , ϕ(I j ) = Iu . (5.6)
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r 7
([
0.
3,
0.
4]
, [
0.
3,
0.
4]
, [
0.
4,
0.
5]
)

r1([0.8, 0.9], [0.4, 0.5], [0.5, 0.6])

I 3
([0
.3
, 0
.4
], [
0.
3,
0.
4]
, [0

.5
, 0
.6
])

I 3
([0

.3
, 0
.4
],
[0
.3
, 0
.4
],
[0
.4
, 0
.5
])

I
1 ([0.3, 0.4], [0.3, 0.4], [0.4, 0.5])

I
2 ([0.5, 0.6], [0.4, 0.5], [0.5, 0.6])

r 5
([
0.
3,
0.
4]
, [
0.
4,
0.
5]
, [
0.
5,
0.
6]
)

I 2
([
0.
3,
0.
4]
, [
0.
4,
0.
5]
, [
0.
5,
0.
6]
)

r 6
([0

.5
, 0
.6
],
[0
.5
, 0
.6
],
[0
.6
, 0
.7
])r

2 ([0.5, 0.6], [0.5, 0.6], [0.6, 0.7])
r
4 ([0.5, 0.6], [0.5, 0.6], [0.5, 0.6])

I
1 ([0.5, 0.6], [0.4, 0.5], [0.5, 0.6])

r
3 ([0.3, 0.4], [0.3, 0.4], [0.4, 0.5])

Fig. 5.21 Totally strong self-complementary interval-valued neutrosophic graph structure

From expressions (4), (5) and (6), it is clear that

t−j (rs) = min{t−(r), t−(d)}, i−j (rs) = min{i−(r), i−(s)},
f −
j (rs) = min{ f −(−), f −(s)}, t+j (rs) = min{t+(r), t+(s)},

i+j (rs) = min{i+(r), i+(s)}, f +
j (rs) = min{ f +(r), f +(s)},

Hence Ǧiv is a strong interval − valuedneutrosophicgraphstructure and all
Iu-edges in interval-valued neutrosophic graph structure (I, I1, I2, . . . , It ) become
I ϕ

j -edges in (I, I ϕ
1 , I ϕ

2 , . . . , I ϕ
t ).

Definition 5.22 Let Ǧiv = (I, I1, I2, . . . , It ) be an interval-valued neutrosophic
graph structure and ϕ be a permutation on {1, 2, . . . , t}. Then
(i) Ǧiv is self-complementary interval-valued neutrosophic graph structure if Ǧiv

is isomorphic to Ǧϕc
iv .

(ii) Ǧiv is strong self-complementary interval-valued neutrosophic graph structure
if Ǧiv is identical to Ǧϕc

iv .

Definition 5.23 Let Ǧiv = (I, I1, I2, . . . , It ) be an interval-valued neutrosophic
graph structure. Then

(i) Ǧiv is totally self-complementary interval-valued neutrosophic graph structure
if Ǧiv is isomorphic to Ǧϕc

iv , for all permutations ϕ on {1, 2, . . . , t}.
(ii) Ǧiv is totally strong self-complementary interval-valued neutrosophic graph

structure if Ǧiv is identical to Ǧϕc
iv , for all permutations ϕ on {1, 2, . . . , t}.



5.3 ϕ-Complement of Interval-Valued Neutrosophic Graph Structure 235

Example 5.15 An interval-valued neutrosophic graph structure Ǧiv = (I, I1, I2, I3)
shown in Fig. 5.21 is identical to ϕ−complement for all permutations ϕ on set
{1, 2, 3}. Hence it is totally strong self-complementary interval-valued neutrosophic
graph structure.

Theorem 5.1 An interval-valued neutrosophic graph structure is totally self-
complementary if and only if it is a strong interval-valued neutrosophic graph
structure.

Proof Consider a strong interval-valued neutrosophic graph structure Ǧiv and
permutation ϕ on {1,2, …, t}. By Proposition5.1, ϕ-complement of interval-valued
neutrosophic graph structure Ǧiv = (I, I1, I2, . . . , It ) is a strong interval-valued
neutrosophic graph structure. Moreover, if ϕ−1(u) = j , where j, u ∈ {1, 2, . . . , t},
then all Iu-edges in interval-valued neutrosophic graph structure (I, I1, I2, . . . , It )
become I ϕ

j -edges in (I, I ϕ
1 , I ϕ

2 , . . . , I ϕ
t ), this leads

t−Iu (rs) = t−I (r) ∧ t−I (s) = t−
I ϕ

j
(rs), i−Iu (rs) = i−I (r) ∧ i−I (s) = i−

I ϕ

j
(rs),

f −
Iu

(rs) = f −
I (r) ∧ f −

I (s) = f −
I ϕ

j
(rs), t+Iu (rs) = t+I (r) ∧ t+I (s) = t+

I ϕ

j
(rs),

i+Iu (rs) = i+I (r) ∧ i+I (s) = i+
I ϕ

j
(rs), f +

Iu
(rs) = f +

I (r) ∧ f +
I (s) = f +

I ϕ

j
(rs).

Therefore, under f : U → U (identity mapping), Ǧiv and Ǧϕ

iv are isomorphic such
that:

t−I (r) = t−I ( f (r)), i−I (r) = i−I ( f (r)), f −
I (r) = f −

I ( f (r)),
t+I (r) = t+I ( f (r)), i+I (r) = i+I ( f (r)), f +

I (r) = f +
I ( f (r)).

t−Iu (rs) = t−
I ϕ

j
( f (r) f (s)) = t−

I ϕ

j
(rs), t+Iu (rs) = t+

I ϕ

j
( f (r) f (s)) = t+

I ϕ

j
(rs),

i−Iu (rs) = i−
I ϕ

j
( f (r) f (s)) = i−

I ϕ

j
(rs), i+Iu (rs) = i+

I ϕ

j
( f (r) f (s)) = i+

I ϕ

j
(rs),

f −
Iu

(rs) = f −
I ϕ

j
( f (r) f (s)) = f −

I ϕ

j
(rs), f +

Iu
(rs) = f +

I ϕ

j
( f (r) f (s)) = f +

I ϕ

j
(rs),

for all rs ∈ Iu , for ϕ−1(u) = j ; j, u = 1, 2, . . . , t .
This holds for every permutation ϕ on {1, 2, . . . , t}. Hence Ǧiv is totally self-

complementary interval-valued neutrosophic graph structure. Conversely, let Ǧiv be
isomorphic to Ǧϕ

iv for each permutation ϕ on {1, 2, . . . , t}. Moreover, according to
the definitions of isomorphism of interval-valued neutrosophic graph structures and
ϕ-complement of an interval-valued neutrosophic graph structure

t−Iu (rs) = t−
I ϕ

j
( f (r) f (s)) = t−I ( f (r)) ∧ t−I ( f (s)) = t−I (r) ∧ t−I (s),

t+Iu (rs) = t+
I ϕ

j
( f (r) f (s)) = t+I ( f (r)) ∧ t+I ( f (s)) = t+I (r) ∧ t+I (s),

i−Iu (rs) = i−
I ϕ

j
( f (r) f (s)) = i−I ( f (r)) ∧ i−I ( f (s)) = i−I (r) ∧ i−I (s),

i+Iu (rs) = i+
I ϕ

j
( f (r) f (s)) = i+I ( f (r)) ∧ i+I ( f (s)) = i+I (r) ∧ i+I (s),
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f −
Iu

(rs) = f −
I ϕ

j
( f (r) f (s)) = f −

I ( f (r)) ∧ f −
I ( f (s)) = f −

I (r) ∧ f −
I (s),

f +
Iu

(rs) = f +
I ϕ

j
( f (r) f (s)) = f +

I ( f (r)) ∧ f +
I ( f (s)) = f +

I (r) ∧ f +
I (s),

for all rs ∈ Iu , u = 1, 2, . . . , t . Hence Ǧiv is a strong interval-valued neutrosophic
graph structure.

Remark 5.1 Every self-complementary interval-valued neutrosophic graph structure
is totally self-complementary.

Theorem 5.2 If G∗ = (X, E1, E2, . . . , Et ) is a totally strong self-complementary
graph structure and I = ([t−I , t+I ], [i−I , i+I ], [ f −

I , f +
I ]) is an interval-valued neutro-

sophic subset of X, where t−I , i−I , f −
I , t+I , i+I , f +

I are constant functions, then every
strong interval-valued neutrosophic graph structure of G∗ with interval-valued neu-
trosophic vertex set I is a totally strong self-complementary interval-valued neutro-
sophic graph structure.

Proof Let a, a′ ∈ [0, 1], b, b′ ∈ [0, 1] and c, c′ ∈ [0, 1] be six constants and

t−I (r) = a, i−I (r) = b, f −
I (r) = c, t+I (r) = a′, i+I (r) = b′, f +

I (r) = c′,
for all r ∈ X.

Since G∗ is a totally strong self-complementary GS, so for every permutation ϕ−1

on {1, 2, . . . , t} there is a bijection f : X → U , such that for every Iu−edge (rs),
(f(r)f(s)) [an I j -edge in G∗ ] is an Iu-edge in Gs

ϕ−1c. Thus for every Iu-edge (rs),

(f(r)f(s)) [an I j -edge in Ǧiv ] is an I ϕ
u -edge in Ǧiv

ϕ−1c
.

Moreover, Ǧiv is a strong interval-valued neutrosophic graph structure, so

t−I (r) = a = t−I ( f (r)), i−I (r) = b = i−I ( f (r)), f −
I (r) = c = f −

I ( f (r)),
t+I (r) = a′ = t+I ( f (r)), i+I (r) = b′ = i+I ( f (r)), f +

I (r) = c′ = f +
I ( f (r)),

for all r ∈ X , and

t−Iu (rs) = t−I (r) ∧ t−I (s) = t−I ( f (r)) ∧ t−I ( f (s)) = t−
I ϕ

j
( f (r) f (s)),

i−Iu (rs) = i−I (r) ∧ i−I (s) = i−I ( f (r)) ∧ i−I ( f (s)) = i−
I ϕ

j
( f (r) f (s)),

f −
Iu

(rs) = f −
I (r) ∧ i−I (s) = f −

I ( f (r)) ∧ f −
I ( f (s)) = f −

I ϕ

j
( f (r) f (s)),

t+Iu (rs) = t+I (r) ∧ t+I (s) = t+I ( f (r)) ∧ t+I ( f (s)) = t+
I ϕ

j
( f (r) f (s)),

i+Iu (rs) = i+I (r) ∧ i+I (s) = i+I ( f (r)) ∧ i+I ( f (s)) = i+
I ϕ

j
( f (r) f (s)),

f +
Iu

(rs) = f +
I (r) ∧ i+I (s) = f +

I ( f (r)) ∧ f +
I ( f (s)) = f +

I ϕ

j
( f (r) f (s)),

for all rs ∈ I j , j = 1, 2, . . . , t .
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This shows Ǧiv is a strong self-complementary interval-valuedneutrosophic graph
structure. This satisfies for each permutation ϕ and ϕ−1 on set {1, 2, . . . , t}, thus Ǧiv

is a totally strong self-complementary interval-valued neutrosophic graph structure.
This completes the proof.

Remark 5.2 Converse of Theorem5.2 may not true; for example, a interval-
valued neutrosophic graph structure depicted in Fig. 5.21 is totally strong self-
complementary interval-valued neutrosophic graph structure, and it is also strong
interval-valuedneutrosophic graph structurewith a totally strong self-complementary
underlying graph structure, but t−I , i

−
I , f

−
I ,t+I , i

+
I , f

+
I are not the constant functions.



Chapter 6
Graphs Under Neutrosophic Hybrid
Models

Rough sets and single-valued neutrosophic sets aremathematical models to deal with
incomplete and vague information. These two models can be combined into two
frameworks for modelling and processing incomplete information in information
systems. Thus, single-valued neutrosophic rough set model and rough single-valued
neutrosophic set model are hybrid models, which give more precision, flexibility
and compatibility to the system as compared to the classic and fuzzy models. In this
chapter, we present rough single-valued neutrosophic digraphs (rough neutrosophic
digraphs, for short) and neutrosophic rough digraphs and describe methods of their
construction. We consider the concept of self-complementary rough neutrosophic
digraphs. We discuss regular neutrosophic rough digraphs. We also give a compara-
tive analysis of rough neutrosophic digraphs and neutrosophic rough digraphs. This
chapter is due to [16, 123, 162].

6.1 Introduction

Pawlak [142] introduced the concept of rough set. He was a Polish mathematician
(citizen of Poland) and computer scientist. Rough means approximate or inexact.
Rough set theory expresses vagueness in terms of a boundary region of a set not
in terms of membership function as in fuzzy set. The idea of rough set theory is
a generalization of classical set theory to study the intelligence systems containing
inexact, uncertain or incomplete information. It is an effective drive for bestowal
with uncertain or incomplete information. Rough set theory is a novel mathematical
approach to imprecise knowledge. Rough set theory expresses vagueness by means
of a boundary region of a set. The emptiness of boundary region of a set shows that
this is a crisp set, and nonemptiness shows that this is a rough set. Nonemptiness
of boundary region also describes the deficiency of our knowledge about a set. A
subset of a universe in rough set theory is expressed by two approximations which
are known as lower and upper approximations. Equivalence classes are the basic
building blocks in rough set theory, for upper and lower approximations.

© Springer Nature Singapore Pte Ltd. 2018
M. Akram, Single-Valued Neutrosophic Graphs, Infosys Science
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Lower approximation of Y

Set Y

Upper approximation of Y

The set of objectsX

Fig. 6.1 Diagram of a rough set

Neutrosophic set and rough set are two different theories to deal with uncertain,
imprecise and incomplete information. Due to the limitation of human knowledge to
understand the complex problems, it is very difficult to apply only a single type of
uncertainty method to deal with such problems. Therefore, it is necessary to develop
hybrid models by incorporating the advantages of many other different mathematical
models dealing the uncertainty. Thus, by combining these two mathematical tools,
Broumi et al. [61] introduced the concept of rough neutrosophic sets. Yang et al.
[177] proposed single-valued neutrosophic rough sets by combining single-valued
neutrosophic sets and rough sets, and established an algorithm for decision-making
based on single-valued neutrosophic rough sets on two universes.

Definition 6.1 Let X be a nonempty finite universe and R an equivalence relation
on X . A pair (X, R) is called a Pawlak approximation space. Let Y be a subset of
X , then the lower and upper approximations of Y are defined as follows:

R(Y ) ={x ∈ X : [x]R ⊆ Y },
R(Y ) ={x ∈ X : [x]R ∩ Y �= φ},

where
[x]R = {y ∈ X : (x, y) ∈ R}

denotes equivalence class of R containing x . R and R are called the lower and upper
approximations operators, respectively. The pair (R(Y ), R(Y )) is called a Pawlak
rough set.

The graphical representation of rough set is shown in Fig. 6.1

Example 6.1 Let X = {1, 2, 3, 4, 5, 6} be a universe and R = {{1, 5}, {2, 3}, {4, 6}}
an equivalence relation on X . Let Y = {2, 3, 5}. Then
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[1]R = {1, 5} = [5]R � Y but [1]R ∩ Y �= ∅ �= [5]R ∩ Y
[2]R = {2, 3} = [3]R ⊆ Y but [3]R ∩ Y �= ∅ �= [2]R ∩ Y
[4]R = {4, 6} = [6]R � Y but [4]R ∩ Y = ∅
Hence R(Y ) = {2, 3} and
R(Y ) = {1, 2, 3, 5}
bd(X) = R(Y ) − R(Y ) = {1, 5} �= ∅
Thus, (R(Y ), R(Y )) is a rough set w.r.t. R.

Definition 6.2 Let X be a nonempty universe and R an equivalence relation on X .
Let A be a neutrosophic set on X , defined as

A = {< x, TA(x), IA(x), FA(x) >: x ∈ X}.

Then lower and upper approximations of A in the approximation space (X, R)

denoted by RA and RA, respectively, are defined as follows:

RA = {< x, TR(A)(x), IR(A)(x), FR(A)(x) >: y ∈ [x]R, x ∈ X},
RA = {< x, TR(A)(x), IR(A)(x), FR(A)(x) >: y ∈ [x]R, x ∈ X},

where

TR(A)(x) =
∧

y∈[x]R
TA(y), TR(A)(x) =

∨

y∈[x]R
TA(y),

IR(A)(x) =
∧

y∈[x]R
IA(y), IR(A)(x) =

∨

y∈[x]R
IA(y),

FR(A)(x) =
∨

y∈[x]R
FA(y), FR(A)(x) =

∧

y∈[x]R
FA(y).

A pair (RA, RA) is called rough neutrosophic set.

6.2 Rough Neutrosophic Digraphs

Definition 6.3 Let X be a nonempty set and R an equivalence relation on X . Let A
be a single-valued neutrosophic set on X , defined as

A = {< x, TA(x), IA(x), FA(x) >: x ∈ X}.

Then the lower and upper approximations of A represented by RA and RA, respec-
tively, are characterized as single-valued neutrosophic sets in X such that ∀ x ∈ X ,
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R(A) = {< x, TR(A)(x), IR(A)(x), FR(A)(x) >: y ∈ [x]R},
R(A) = {< x, TR(A)(x), IR(A)(x), FR(A)(x) >: y ∈ [x]R},

where

TR(A)(x) =
∧

y∈[x]R
TA(y), TR(A)(x) =

∨

y∈[x]R
TA(y),

IR(A)(x) =
∧

y∈[x]R
IA(y), IR(A)(x) =

∨

y∈[x]R
IA(y),

FR(A)(x) =
∨

y∈[x]R
FA(y), FR(A)(x) =

∧

y∈[x]R
FA(y).

Let E ⊆ X × X and S be an equivalence relation on E such that

((x1, x2), (y1, y2)) ∈ S ⇔ (x1, y1), (x2, y2) ∈ R.

Let B be a single-valued neutrosophic set on E ⊆ X × X defined as

B = {< xy, TB(xy), IB(xy), FB(xy) >: xy ∈ X × X},

such that

TB(xy) ≤ min{TRA(x), TRA(y)},
IB(xy) ≤ min{IRA(x), IRA(y)},
FB(xy) ≤ max{FRA(x), FRA(y)}, ∀x, y ∈ X.

Then the lower and upper approximations of B represented by SB and SB are defined
as follows

SB = {< xy, TSB(xy), ISB(xy), FSB(xy) >: wz ∈ [xy]S, xy ∈ X × X},
SB = {< xy, TSB(xy), ISB(xy), FSB(xy) >: wz ∈ [xy]S, xy ∈ X × X},

where,

TS(B)(xy) =
∧

wz∈[xy]S
TB(wz), TS(B)(xy) =

∨

wz∈[xy]S
TB(wz),

IS(B)(xy) =
∧

wz∈[xy]S
IB(wz), IS(B)(xy) =

∨

wz∈[xy]S
IB(wz),

FS(B)(xy) =
∨

wz∈[xy]S
FB(wz), FS(B)(xy) =

∧

wz∈[xy]S
FB(wz).

A pair SB = (SB, SB) is called a rough single-valued neutrosophic relation.
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Definition 6.4 A rough single-valued neutrosophic digraph on a nonempty set X is
a four-ordered tuple G = (R, RA, S, SB) such that

(a) R is an equivalence relation on X .
(b) S is an equivalence relation on E ⊆ X × X .
(c) RA = (RA, RA) is a rough single-valued neutrosophic set on X .
(d) SB = (SB, SB) is a rough single-valued neutrosophic relation on X .
(e) (RA, SB) is a rough single-valued neutrosophic digraph whereG = (RA, SB)

andG = (RA, SB) are lower and upper approximate single-valued neutrosophic
digraphs of G such that

TSB(x, y) ≤ min{TRA(x), TRA(y)},
ISB(x, y) ≤ min{IRA(x), IRA(y)},
FSB(x, y) ≤ max{FRA(x), FRA(y)},

and

TSB(x, y) ≤ min{TRA(x), TRA(y)},
ISB(x, y) ≤ min{IRA(x), IRA(y)},
FSB(x, y) ≤ max{FRA(x), FRA(y)}, ∀ x, y ∈ X.

Throughout this chapter, wewill use a rough neutrosophic set, rough neutrosophic
relation and rough neutrosophic digraph, for short.

Example 6.2 Let X = {a, b, c, d}be a set and R an equivalence relation on X defined
as:

R =

⎡

⎢⎢⎣

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

⎤

⎥⎥⎦ .

Let A1={(a, 0.2, 0.4, 0.9), (b, 0.1, 0.3, 0.5), (c, 0.2, 0.3, 0.6), (d, 0.5, 0.6, 0.7)}
be a neutrosophic set on X . The lower and upper approximations of A1 are given by

RA1 = {(a, 0.1, 0.3, 0.9), (b, 0.1, 0.3, 0.9), (c, 0.2, 0.3, 0.7), (d, 0.2, 0.3, 0.7)},
RA1 = {(a, 0.2, 0.4, 0.5), (b, 0.2, 0.4, 0.5), (c, 0.5, 0.6, 0.6), (d, 0.5, 0.6, 0.6)}.

Let E = {(a, b), (b, c), (b, d), (c, d)} ⊆ X × X and S be an equivalence relation on
E defined as:

S =

⎡

⎢⎢⎣

1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

⎤

⎥⎥⎦ .
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Fig. 6.2 Rough neutrosophic digraph G1 = (G1,G1)

Let B1 = {((a, b), 0.1, 0.2, 0.4), ((b, c), 0.1, 0.3, 0.6), ((b, d), 0.1, 0.2, 0.6),
((c, d), 0.2, 0.1, 0.5)} be a neutrosophic set on E and SB1 = (SB1, SB1) a rough
neutrosophic relation, where SB1 and SB1 are given as:

SB1 = {((a, b), 0.1, 0.2, 0.4), ((b, c), 0.1, 0.2, 0.6), ((b, d), 0.1, 0.2, 0.6), ((c, d), 0.2, 0.1, 0.5)},
SB1 = {((a, b), 0.1, 0.2, 0.4), ((b, c), 0.1, 0.3, 0.6), ((b, d), 0.1, 0.3, 0.6), ((c, d), 0.2, 0.1, 0.5)}.

Thus, G1 = (RA1, SB1) and G1 = (RA1, SB1) are neutrosophic digraphs as shown
in Fig. 6.2.

Example 6.3 Let X = {a, b, c} be a crisp set and R an equivalence relation on X
defined as:

R =
⎡

⎣
1 0 0
0 1 1
0 1 1

⎤

⎦ .

Let A2 = {(a, 0.1, 0.7, 0.8), (b, 0.9, 0.6, 0.5), (c, 0.2, 0.4, 0.3)} be a neutrosophic
set on X and RA2 = (RA2, RA2) a rough neutrosophic set, where RA2 and RA2

are given as:

RA2 = {(a, 0.1, 0.7, 0.8), (b, 0.2, 0.4, 0.5), (c, 0.2, 0.4, 0.5)},
RA2 = {(a, 0.1, 0.7, 0.8), (b, 0.9, 0.6, 0.3), (c, 0.9, 0.6, 0.3)}.

Let E = {(a, b), (b, c)} ⊆ X × X and S be an equivalence relation on E defined as:

S =
[
1 0
0 1

]
.

Let B2 = {((a, b), 0.1, 0.4, 0.7), ((b, c), 0.2, 0.3, 0.2)} be a neutrosophic set on E ,
then by definition we have
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a(0.1, 0.7, 0.8)

b(0.2, 0.4, 0.5)

c(0.2, 0.4, 0.5)

(0
.1
, 0
.4
, 0
.7
)

(0.2, 0.3, 0.2)

a(0.1, 0.7, 0.8)

b(0.9, 0.6, 0.3)

c(0.9, 0.6, 0.3)

(0
.1
, 0
.4
, 0
.7
) (0.2, 0.3, 0.2)

G2 = (RA2, SB2) G2 = (RA2, SB2)

Fig. 6.3 Rough neutrosophic digraph G2 = (G2,G2)

SB2 = {((a, b), 0.1, 0.4, 0.7), ((b, c), 0.2, 0.3, 0.2)},
SB2 = {((a, b), 0.1, 0.4, 0.7), ((b, c), 0.2, 0.3, 0.2)}.

Thus, G2 = (RA2, SB2) and G2 = (RA2, SB2) are neutrosophic digraphs as shown
in Fig. 6.3.

Definition 6.5 Let G1 = (G1,G1) and G2 = (G2,G2) be two rough neutrosophic
digraphs on a set X . Then the lexicographic product of G1 and G2 is a rough
neutrosophic digraph G = G1 
 G2 = (G1 
 G2,G1 
 G2), where G1 
 G2 =
(RA1 
 RA2, SB1 
 SB2) and G1 
 G2 = (RA1 
 RA2, SB1 
 SB2) are neutro-
sophic digraphs, respectively, such that

(1) TRA1
RA2 (x1, x2) = min{TRA1 (x1), TRA2 (x2)},
IRA1
RA2 (x1, x2) = min{IRA1 (x1), TRA2 (x2)},
FRA1
RA2 (x1, x2) = max{FRA1 (x1), TRA2 (x2)}, ∀ (x1, x2) ∈ RA1 � RA2,

TSB1
SB2 ((x, x2), (x, y2)) = min{TRA1 (x), TSB2 (x2, y2)},
ISB1
SB2 ((x, x2), (x, y2)) = min{IRA1 (x), ISB2 (x2, y2)},
FSB1
SB2 ((x, x2), (x, y2)) = max{FRA1 (x), FSB2 (x2, y2)}, ∀ x ∈ RA1, (x2, y2) ∈ SB2,

TSB1
SB2 ((x1, x2), (y1, y2)) = min{TSB1 (x1, y1), TSB2 (x2, y2)},
ISB1
SB2 ((x1, x2), (y1, y2)) = min{ISB1 (x1, y1), ISB2 (x2, y2)},
FSB1
SB2 ((x1, x2), (y1, y2)) = max{FSB1 (x1, y1), FSB2 (x2, y2)}, ∀ (x1, y1) ∈ SB1, (x2, y2) ∈ SB2.

(2) TRA1
RA2
(x1, x2) = min{TRA1

(x1), TRA2
(x2)},

IRA1
RA2
(x1, x2) = min{IRA1

(x1), TRA2
(x2)},

FRA1
RA2
(x1, x2) = max{FRA1

(x1), TRA2
(x2)}, ∀ (x1, x2) ∈ RA1 � RA2,

TSB1
SB2
((x, x2), (x, y2)) = min{TRA1

(x), TSB2 (x2, y2)},
ISB1
SB2

((x, x2), (x, y2)) = min{IRA1
(x), ISB2 (x2, y2)},

FSB1
SB2
((x, x2), (x, y2)) = max{FRA1

(x), FSB2
(x2, y2)}, ∀ x ∈ RA1, (x2, y2) ∈ SB2,

TSB1
SB2
((x1, x2), (y1, y2)) = min{TSB1 (x1, y1), TSB2 (x2, y2)},

ISB1
SB2
((x1, x2), (y1, y2)) = min{ISB1 (x1, y1), ISB2 (x2, y2)},

FSB1
SB2
((x1, x2), (y1, y2)) = max{FSB1

(x1, y1), FSB2
(x2, y2)}, ∀ (x1, y1) ∈ SB1, (x2, y2) ∈ SB2.
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((a, a), 0.1, 0.3, 0.9)

((c, a), 0.1, 0.3, 0.8)

((b, c), 0.1, 0.3, 0.9)((b, b), 0.1, 0.3, 0.9)((b, a), 0.1, 0.3, 0.9)

((a, c), 0.1, 0.3, 0.9)((a, b), 0.1, 0.3, 0.9)

((d, c), 0.2, 0.3, 0.7)((d, b), 0.2, 0.3, 0.7)((d, a), 0.1, 0.3, 0.8)

((c, c), 0.2, 0.3, 0.7)((c, b), 0.2, 0.3, 0.7)

(0.1, 0.2, 0.7)

(0.1, 0.2, 0.7)

(0.1, 0.2, 0.4)

(0.1, 0.2, 0.6)

(0.1, 0.1, 0.7)

(0.2, 0.1, 0.5)

(0.1, 0.2, 0.7)

(0.1, 0.2, 0.6)

(0.1, 0.3, 0.7)

(0.1, 0.3, 0.9)(0.1, 0.3, 0.9)

(0.1, 0.3, 0.9)(0.1, 0.3, 0.9)

(0.1, 0.3, 0.7)

(0.1, 0.3, 0.7)(0.1, 0.3, 0.7)

Fig. 6.4 G1 
 G2 = (RA1 
 RA2, SB1 
 SB2)

Example 6.4 Consider the two rough neutrosophic digraphs G1 and G2 as shown in
Figs. 6.2 and 6.3. The lexicographic product ofG1 andG2 isG = G1 
 G2 = (G1 

G2,G1 
 G2), where G1 
 G2 = (RA1 
 RA2, SB1 
 SB2) and G1 
 G2 =
(RA1 
 RA2, SB1 
 SB2) are neutrosophic digraphs as shown in Figs. 6.4 and 6.5.

Definition 6.6 The strong product of two rough neutrosophic digraphs G1 and
G2 is a rough neutrosophic digraph G = G1 � G2 = (G1 � G2,G1 � G2), where
G1 � G2 = (RA1 � RA2, SB1 � SB2) andG1 � G2 = (RA1 � RA2, SB1 � SB2)

are neutrosophic digraphs, respectively, such that

(1) TRA1�RA2
(x, y) = min{TRA1 (x), TRA2 (y)},

IRA1�RA2
(x, y) = min{IRA1 (x), IRA2 (y)},

FRA1�RA2
(x, y) = max{FRA1 (x), FRA2 (y)}, ∀ (x, y) ∈ RA1 × RA2,

TSB1�SB2 ((x, x2), (x, y2)) = min{TRA1 (x), TSB2 (x2, y2)},
ISB1�SB2 ((x, x2), (x, y2)) = min{IRA1 (x), ISB2 (x2, y2)},
FSB1�SB2 ((x, x2), (x, y2)) = max{FRA1 (x), FSB2 (x2, y2)}, ∀ x ∈ RA1, (x2, y2) ∈ SB2,

TSB1�SB2 ((x1, y), (y1, y)) = min{TSB1 (x1, y1), TRA2 (y)},
ISB1�SB2 ((x1, y), (y1, y)) = min{ISB1 (x1, y1), IRA2 (y)},
FSB1�SB2 ((x1, y), (y1, y)) = max{FSB1 (x1, y1), FRA2 (y)}, ∀ (x1, y1) ∈ SB1, y ∈ RA2,

TSB1�SB2 ((x1, x2), (y1, y2)) = min{TSB1 (x1, y1), TSB2 (x2, y2)},
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((a, a), 0.1, 0.4, 0.8)

((c, a), 0.1, 0.6, 0.8)

((b, c), 0.2, 0.4, 0.5)((b, b), 0.2, 0.4, 0.5)((b, a), 0.1, 0.4, 0.8)

((a, c), 0.2, 0.4, 0.5)((a, b), 0.2, 0.4, 0.5)

((d, c), 0.5, 0.6, 0.6)((d, b), 0.5, 0.6, 0.6)((d, a), 0.1, 0.6, 0.8)

((c, c), 0.5, 0.6, 0.6)((c, b), 0.5, 0.6, 0.6)

(0.1, 0.3, 0.7)

(0.1, 0.2, 0.7)

(0.1, 0.2, 0.4)

(0.1, 0.3, 0.6)

(0.1, 0.1, 0.7)

(0.2, 0.1, 0.5)

(0.1, 0.3, 0.7)

(0.1, 0.3, 0.6)

(0.1, 0.4, 0.7)

(0.2, 0.3, 0.5)(0.1, 0.4, 0.7)
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Fig. 6.5 G1 
 G2 = (RA1 
 RA2, SB1 
 SB2)

ISB1�SB2 ((x1, x2), (y1, y2)) = min{ISB1 (x1, y1), ISB2 (x2, y2)},
FSB1�SB2 ((x1, x2), (y1, y2)) = max{FSB1 (x1, y1), FSB2 (x2, y2)}, ∀ (x1, y1) ∈ SB1, (x2, y2) ∈ SB2.

(2) TRA1�RA2
(x, y) = min{TRA1

(x), TRA2
(y)},

IRA1�RA2
(x, y) = min{IRA1

(x), IRA2
(y)},

FRA1�RA2
(x, y) = max{FRA1

(x), FRA2
(y)}, ∀ (x, y) ∈ RA1 × RA2,

TSB1�SB2
((x, x2), (x, y2)) = min{TRA1

(x), TSB2 (x2, y2)},
ISB1�SB2

((x, x2), (x, y2)) = min{IRA1
(x), ISB2 (x2, y2)},

FSB1�SB2
((x, x2), (x, y2)) = max{FRA1

(x), FSB2
(x2, y2)}, ∀ x ∈ RA1, (x2, y2) ∈ SB2,

TSB1�SB2
((x1, y), (y1, y)) = min{TSB1 (x1, y1), TRA2

(y)},
ISB1�SB2

((x1, y), (y1, y)) = min{ISB1 (x1, y1), IRA2
(y)},

FSB1�SB2
((x1, y), (y1, y)) = max{FSB1

(x1, y1), FRA2
(y)}, ∀ (x1, y1) ∈ SB1, y ∈ RA2,

TSB1�SB2
((x1, x2), (y1, y2)) = min{TSB1 (x1, y1), TSB2 (x2, y2)},

ISB1�SB2
((x1, x2), (y1, y2)) = min{ISB1 (x1, y1), ISB2 (x2, y2)},

FSB1�SB2
((x1, x2), (y1, y2)) = max{FSB1

(x1, y1), FSB2
(x2, y2)}, ∀ (x1, y1) ∈ SB1, (x2, y2) ∈ SB2.

Example 6.5 Consider the two rough neutrosophic digraphs G1 and G2 as shown
in Figs. 6.2 and 6.3. The strong product of G1 and G2 is G = G1 � G2 = (G1 �
G2,G1 � G2), where G1 � G2 = (RA1 � RA2, SB1 � SB2) and G1 � G2 =
(RA1 � RA2, SB1 � SB2) are neutrosophic digraphs as shown in Figs. 6.6 and 6.7.
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Fig. 6.6 Rough neutrosophic digraph G1 � G2
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Fig. 6.7 Rough neutrosophic digraph G1 � G2
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Definition 6.7 Let G1 = (G1,G1) and G2 = (G2,G2) be two rough neutrosophic
digraphs on a set X . Then the rejection ofG1 andG2 is a rough neutrosophic digraph
G = G1|G2 = (G1|G2,G1|G2), where G1|G2 = (RA1|RA2, SB1|SB2) and
G1|G2 = (RA1|RA2, SB1|SB2) are neutrosophic digraphs, respectively, such that

(1) TRA1|RA2 (x1, x2) = min{TRA1 (x1), TRA2 (x2)},
IRA1|RA2 (x1, x2) = min{IRA1 (x1), TRA2 (x2)},
FRA1|RA2 (x1, x2) = max{FRA1 (x1), TRA2 (x2)},∀ (x1, x2) ∈ RA1 � RA2,

TSB1|SB2 ((x, x2), (x, y2)) = min{TRA1 (x), TRA2 (x2), TRA2 (y2)},
ISB1|SB2 ((x, x2), (x, y2)) = min{IRA1 (x), IRA2 (x2), IRA2 (y2)},
FSB1|SB2 ((x, x2), (x, y2)) = max{FRA1 (x), FRA2 (x2), FRA2 (y2)},∀ x ∈ RA1, (x2, y2) /∈ SB2,

TSB1|SB2 ((x1, z), (y1, z)) = min{TRA1 (x1), TRA1 (y1), TRA2 (z)},
ISB1|SB2 ((x1, z), (y1, z)) = min{IRA1 (x1), IRA1 (y1), IRA2 (z)},
FSB1|SB2 ((x1, z), (y1, z)) = max{FRA1 (x1), FRA1 (y1), FRA2 (z)},∀ (x1, y1) /∈ SB1, z ∈ RA2,

TSB1|SB2 ((x1, x2), (y1, y2)) = min{TRA1 (x1), TRA1 (y1), TRA2 (x2), TRA2 (y2)},
ISB1|SB2 ((x1, x2), (y1, y2)) = min{IRA1 (x1), IRA1 (y1), IRA2 (x2), IRA2 (y2)},
FSB1|SB2 ((x1, x2), (y1, y2)) = max{FRA1 (x1), FRA1 (y1), FRA2 (x2), FRA2 (y2)},∀ (x1, y1) /∈ SB1, (x2, y2) /∈ SB2.

(2) TRA1|RA2
(x1, x2) = min{TRA1

(x1), TRA2
(x2)},

IRA1|RA2
(x1, x2) = min{IRA1

(x1), TRA2
(x2)},

FRA1|RA2
(x1, x2) = max{FRA1

(x1), TRA2
(x2)},∀ (x1, x2) ∈ RA1 � RA2,

TSB1|SB2 ((x, x2), (x, y2)) = min{TRA1
(x), TRA2

(x2), TRA2
(y2)},

ISB1|SB2 ((x, x2), (x, y2)) = min{IRA1
(x), IRA2

(x2), IRA2
(y2)},

FSB1|SB2 ((x, x2), (x, y2)) = max{FRA1
(x), FRA2

(x2), FRA2
(y2)},∀ x ∈ RA1, (x2, y2) /∈ SB2,

TSB1|SB2 ((x1, z), (y1, z)) = min{TRA1
(x1), TRA1

(y1), TRA2
(z)},

ISB1|SB2 ((x1, z), (y1, z)) = min{IRA1
(x1), IRA1

(y1), IRA2
(z)},

FSB1|SB2 ((x1, z), (y1, z)) = max{FRA1
(x1), FRA1

(y1), FRA2
(z)},∀(x1, y1) /∈ SB1, z ∈ RA2,

TSB1|SB2 ((x1, x2), (y1, y2)) = min{TRA1
(x1), TRA1

(y1), TRA2
(x2), TRA2

(y2)},
ISB1|SB2 ((x1, x2), (y1, y2)) = min{IRA1

(x1), IRA1
(y1), IRA2

(x2), IRA2
(y2)},

FSB1|SB2 ((x1, x2), (y1, y2)) = max{FRA1
(x1), FRA1

(y1), FRA2
(x2), FRA2

(y2)},∀ (x1, y1) /∈ SB1, (x2, y2) /∈ SB2.

Example 6.6 Consider the two rough neutrosophic digraphs G1 and G2 as shown
in Figs. 6.8 and 6.9. The rejection of G1 and G2 is G = G1|G2 = (G1|G2,G1|G2),
where G1|G2 = (RA1|RA2, SB1|SB2) and G1|G2 = (RA1|RA2, SB1|SB2) are
neutrosophic digraphs as shown in Figs. 6.10 and 6.11.

Definition 6.8 The tensor product of two rough neutrosophic digraphs G1 and G2

is a rough neutrosophic digraphG = (G1 � G2,G1 � G2), whereG1 � G2 = (RA1 �

RA2, SB1 � SB2) and G1 � G2 = (RA1 � RA2, SB1 � SB2) are neutrosophic
digraphs, respectively, such that
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Fig. 6.8 Rough neutrosophic digraph G1 = (G1,G1)

Fig. 6.9 Rough neutrosophic digraph G2 = (G2,G2)
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Fig. 6.10 G1|G2 = (RA1|RA2, SB1|SB2)
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Fig. 6.11 G1|G2 = (RA1|RA2, SB1|SB2)

(1) TRA1�RA2 (x, y) = min{TRA1 (x), TRA2 (y)},
IRA1�RA2 (x, y) = min{IRA1 (x), IRA2 (y)},
FRA1�RA2 (x, y) = max{FRA1(x), FRA2 (y)}, ∀ (x, y) ∈ RA1 × RA2,

TRA1�RA2 ((x1, x2), (y1, y2)) = min{TSB1 (x1, y1), TSB2 (x2, y2)},
IRA1�RA2 ((x1, x2), (y1, y2)) = min{ISB1 (x1, y1), ISB2 (x2, y2)},
FRA1�RA2 ((x1, x2), (y1, y2)) = max{FSB1 (x1, y1), FSB2 (x2, y2)}, ∀ (x1, y1) ∈ SB1, (x2, y2) ∈ SB2.

(2) TRA1�RA2
(x, y) = min{TRA1

(x), TRA2
(y)},

IRA1�RA2
(x, y) = min{IRA1

(x), IRA2
(y)},

FRA1�RA2
(x, y) = max{FRA1(x)

, FRA2
(y)}, ∀ (x, y) ∈ RA1 × RA2,

TRA1�RA2
((x1, x2), (y1, y2)) = min{TSB1 (x1, y1), TSB2 (x2, y2)},

IRA1�RA2
((x1, x2), (y1, y2)) = min{ISB1 (x1, y1), ISB2 (x2, y2)},

FRA1�RA2
((x1, x2), (y1, y2)) = max{FSB1

(x1, y1), FSB2
(x2, y2)}, ∀ (x1, y1) ∈ SB1, (x2, y2) ∈ SB2.

Example 6.7 Let X1 = {a, b, c} and X2 = {w, x, y, z} be two crisp sets. Let G1 =
(G1,G1) and G2 = (G2,G2) be two rough neutrosophic digraphs on X1 and
X2, respectively, where G1 = (RA1, SB1) and G1 = (RA1, SB1) are neutrosophic
digraphs as shown in Fig. 6.12.

G2 = (RA2, SB2) andG2 = (RA2, SB2) are alsoneutrosophic digraphs as shown
in Fig. 6.13.

The tensor product of G1 and G2 is G = G1 � G2 = (G1 � G2,G1 � G2), where
G1 � G2 = (RA1 � RA2, SB1 � SB2) and G1 � G2 = (RA1 � RA2, SB1 � SB2) are
neutrosophic digraphs as shown in Figs. 6.14 and 6.15, respectively.
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Fig. 6.12 Rough neutrosophic digraph G1 = (G1,G1)
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Fig. 6.13 Rough neutrosophic digraph G2 = (G2,G2)
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Fig. 6.14 G1 � G2 = (RA1 � RA2, SB1 � SB2)
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Fig. 6.15 G1 � G2 = (RA1 � RA2, SB1 � SB2)

Definition 6.9 A rough neutrosophic digraph G = (G,G) is self-complementary if
G and G ′ are isomorphic, that is, G ∼= G ′ and G ∼= G

′
.

Example 6.8 Let X = {a, b, c} be a set and R an equivalence relation on X defined
as:

R =
⎡

⎣
1 0 1
0 1 0
1 0 1

⎤

⎦ .

Let A = {(a, 0.2, 0.4, 0.8), (b, 0.2, 0.4, 0.8), (c, 0.4, 0.6, 0.4)} be a neutrosophic
set on X . The lower and upper approximations of A are given as
RA = {(a, 0.2, 0.4, 0.8), (b, 0.2, 0.4, 0.8), (c, 0.2, 0.4, 0.8)},
RA = {(a, 0.4, 0.6, 0.4), (b, 0.2, 0.4, 0.8), (c, 0.4, 0.6, 0.4)}.

Let E = {aa, ab, ac, ba} ⊆ X × X and S be an equivalence relation on E
defined as

S =

⎡

⎢⎢⎣

1 0 1 0
0 1 0 0
1 0 1 0
0 0 0 1

⎤

⎥⎥⎦ .

Let B = {(aa, 0.1, 0.3, 0.2), (ab, 0.1, 0.2, 0.4), (ac, 0.2, 0.2, 0.4), (ba, 0.1, 0.2,
0.4)} be a neutrosophic set on E and SB = (SB, SB) a rough neutrosophic rela-
tion, where SB and SB are given as
SB={(aa, 0.1, 0.2, 0.4), (ab, 0.1, 0.2, 0.4), (ac, 0.1, 0.2, 0.4), (ba, 0.1, 0.2, 0.4)},
SB={(aa, 0.2, 0.3, 0.2), (ab, 0.1, 0.2, 0.4), (ac, 0.2, 0.3, 0.2), (ba, 0.1, 0.2, 0.4)}.
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.1
, 0
.2
, 0
.4
)

(0.1, 0.2, 0.4)
(0.1, 0.2,

0.4)

(0
.1
, 0
.2
, 0
.4
)

c(0.4, 0.6, 0.4)

a(0.4, 0.6, 0.4) b(0.2, 0.4, 0.8)(0
.2
, 0
.3
, 0
.2
)

(0.1, 0.2, 0.4)
(0.1, 0.2, 0.4

)

(0
.2
, 0
.3
, 0
.2
)

G = G G = G

Fig. 6.16 Self-complementary rough neutrosophic digraph G = (G,G)

Thus, G = (RA, SB) and G = (RA, SB) are neutrosophic digraphs as shown in
Fig. 6.16. The complement of G is G ′ = (G ′,G ′

), where G ′ = G and G
′ = G are

neutrosophic digraphs as shown in Fig. 6.16, and it can be easily shown that G and
G ′ are isomorphic. Hence, G = (G,G) is a self-complementary rough neutrosophic
digraph.

Theorem 6.1 LetG = (G,G)bea self-complementary roughneutrosophic digraph.
Then

∑

w,z∈X
TSB(wz) = 1

2

∑

w,z∈X
(TRA(w) ∧ TRA(z)),

∑

w,z∈X
ISB(wz) = 1

2

∑

w,z∈X
(IRA(w) ∧ IRA(z)),

∑

w,z∈X
FSB(wz) = 1

2

∑

w,z∈X
(FRA(w) ∨ FRA(z)),

∑

w,z∈X
TSB(wz) = 1

2

∑

w,z∈X
(TRA(w) ∧ TRA(z)),

∑

w,z∈X
ISB(wz) = 1

2

∑

w,z∈X
(IRA(w) ∧ IRA(z)),

∑

w,z∈X
FSB(wz) = 1

2

∑

w,z∈X
(FRA(w) ∨ FRA(z)).

Proof Let G = (G,G) be a self-complementary rough neutrosophic digraph. Then
there exist two isomorphisms g : X −→ X and g : X −→ X , respectively, such that

T(RA)′(g(w)) = TRA(w),

I(RA)′(g(w)) = IRA(w),

F(RA)′(g(w)) = FRA(w), ∀ w ∈ X,

T(SB)′(g(w)g(z)) = TSB(wz),
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I(SB)′(g(w)g(z)) = ISB(wz),

F(SB)′(g(w)g(z)) = FSB(wz), ∀ w, z ∈ X.

and

T(RA)′(g(w)) = TRA(w),

I(RA)′(g(w)) = IRA(w),

F(RA)′(g(w)) = FRA(w), ∀ w ∈ X,

T(SB)′(g(w)g(z)) = TSB(wz),

I(SB)′(g(w)g(z)) = ISB(wz),

F(SB)′(g(w)g(z)) = FSB(wz), ∀ w, z ∈ X.

By Definition of compliment, we have

T(SB)′(g(w)g(z)) = (TRA(w) ∧ TRA(z)) − TSB(wz)

TSB(wz) = (TRA(w) ∧ TRA(z)) − TSB(wz)
∑

w,z∈X
TSB(wz) =

∑

w,z∈X
(TRA(w) ∧ TRA(z)) −

∑

w,z∈X
TSB(wz)

2
∑

w,z∈X
TSB(wz) =

∑

w,z∈X
(TRA(w) ∧ TRA(z))

∑

w,z∈X
TSB(wz) = 1

2

∑

w,z∈X
(TRA(w) ∧ TRA(z))

I(SB)′(g(w)g(z)) = (IRA(w) ∧ IRA(z)) − ISB(wz)

ISB(wz) = (IRA(w) ∧ IRA(z)) − ISB(wz)
∑

w,z∈X
ISB(wz) =

∑

w,z∈X
(IRA(w) ∧ IRA(z)) −

∑

w,z∈X
ISB(wz)

2
∑

w,z∈X
ISB(wz) =

∑

w,z∈X
(IRA(w) ∧ IRA(z))

∑

w,z∈X
ISB(wz) = 1

2

∑

w,z∈X
(IRA(w) ∧ IRA(z))

F(SB)′(g(w)g(z)) = (FRA(w) ∨ FRA(z)) − FSB(wz)

FSB(wz) = (FRA(w) ∨ FRA(z)) − FSB(wz)
∑

w,z∈X
FSB(wz) =

∑

w,z∈X
(FRA(w) ∨ FRA(z)) −

∑

w,z∈X
FSB(wz)

2
∑

w,z∈X
FSB(wz) =

∑

w,z∈X
(FRA(w) ∨ FRA(z))
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∑

w,z∈X
FSB(wz) = 1

2

∑

w,z∈X
(FRA(w) ∨ FRA(z))

Similarly, it can be shown that

∑

w,z∈X
TSB(wz) = 1

2

∑

w,z∈X
(TRA(w) ∧ TRA(z))

∑

w,z∈X
ISB(wz) = 1

2

∑

w,z∈X
(IRA(w) ∧ IRA(z))

∑

w,z∈X
FSB(wz) = 1

2

∑

w,z∈X
(FRA(w) ∨ FRA(z)).

This completes the proof.

6.3 Applications of Rough Neutrosophic Digraphs

6.3.1 Optimal Flight Path for Weather Emergency Landing

In this application, we use the concept of rough neutrosophic digraph for decision-
making in real-life problems. To obtain the optimal decision, we use the following
formula:

Si j = (TSi j , ISi j , FSi j ),

where

(i)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

TSi j = TSB ⊕ TSB(vi , v j ) = TRA(vi )∗TRA(v j )

3−
(
TSB (vi ,v j )+TSB (vi ,v j )−TSB (vi ,v j )∗TSB (vi ,v j )

) ,

ISi j = ISB ⊕ ISB(vi , v j ) = IRA(vi )∗IRA(v j )

3−
(
ISB (vi ,v j )+ISB (vi ,v j )−ISB (vi ,v j )∗ISB (vi ,v j )

) ,

FSi j = FSB ⊕ FSB(vi , v j ) = FRA(vi )∗FRA(v j )

3−
(
FSB (vi ,v j )+FSB (vi ,v j )−FSB (vi ,v j )∗FSB (vi ,v j )

) .

Flight planning is the process of producing a flight plan to describe a proposed
aeroplane flight. Flight plan generally includes basic information such as depar-
ture and arrival points, estimated time en route, alternate airports in case of bad
weather. The presented application provides alternate airports for a plane in case of
bad weather.

Suppose X = {Chicago(CHI), Beijing(BJ), Lahore(LHR), Paris(PAR), Istanbul
(IST)} be the set of cities under consideration and R an equivalence relation on X ,
where equivalence classes represent cities having same characteristics.
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R =

⎡

⎢⎢⎢⎢⎣

1 0 0 1 0
0 1 1 0 1
0 1 1 0 1
1 0 0 1 0
0 1 1 0 1

⎤

⎥⎥⎥⎥⎦
.

Assume that a flight Boeing 747 of Pakistan International Airways (PIA) travels
to these cities. In case of bad weather, the flight will be directed to the city with good
weather condition among the cities under consideration.

Let A={(CHI, 0.1, 0.2, 0.8), (BJ, 0.9, 0.7, 0.5), (LHR, 0.8, 0.4, 0.3), (PAR, 0.6, 0.5, 0.4), (IST, 0.2, 0.4, 0.6)}

be a neutrosophic set on X which describe the characteristic of each city, and
RA = (RA, RA) a rough neutrosophic set, where RA and RA are lower and upper
approximations of A, respectively, as follows:

RA = {(CH I, 0.1, 0.2, 0.8), (BJ, 0.2, 0.4, 0.6), (LH R, 0.2, 0.4, 0.6), (PAR, 0.1, 0.2, 0.8), (I ST, 0.2, 0.4, 0.6)}
RA = {(CH I, 0.6, 0.5, 0.4), (BJ, 0.9, 0.7, 0.3).(LH R, 0.9, 0.7, 0.3), (PAR, 0.6, 0.5, 0.4), (I ST, o.9, 0.7, 0.3)}.

Let E = {(BJ,CH I ), (LH R,CH I ), (BJ, LH R), (I ST, BJ ), (PAR, BJ ), (PAR, LH R)}

be a subset of X × X and S an equivalence relation on E defined as:

S =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 1 1 0
1 0 0 1 1 0
0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
,

where S represents the equivalence classes of “weather between different cities”.
For example the relationships (BJ,CHI), (IST,BJ) and (PAR,BJ) belong to the same
equivalence class. This means that weather between Beijing and Chicago is the same
as the weather between Paris and Beijing.

Let B = {((BJ,CHI), 0.1, 0.1, 0.3), ((LHR,CHI), 0.1, 0.2, 0.3), ((BJ,LHR), 0.1, 0.3, 0.2),

((I ST, BJ ), 0.2, 0.1, 0.1), ((PAR, BJ ), 0.1, 0.1, 0.4), ((PAR, LH R), 0.2, 0.2, 0.3))}

be a neutrosophic set on E which describes the comparison of weathers of the cities
under consideration. Let SB = (SB, SB) be a rough neutrosophic set, where SB
and SB are lower and upper approximations of B, respectively, as follows:
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Fig. 6.17 G = (RA, SB)
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.3
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Fig. 6.18 G = (RA, SB)

SB = {((BJ,CH I ), 0.1, 0.1, 0.4), ((LH R,CH I ), 0.1, 0.2, 0.3), ((BJ, LH R)0.1, 0.3, 0.2),

((I ST, BJ ), 0.1, 0.1, 0.4), ((PAR, BJ ), 0.1, 0.1, 0.4), ((PAR, LH R), 0.2, 0.2, 0.3))},
SB = {((BJ,CH I ), 0.2, 0.1, 0.1), ((LH R,CH I ), 0.1, 0.2, 0.3), ((BJ, LH R)0.1, 0.3, 0.2),

((I ST, BJ ), 0.2, 0.1, 0.1), ((P J, BJ ), 0.2, 0.1, 0.1), ((PAR, LH R), 0.2, 0.2, 0.3))}.

Thus, G = (RA, SB) and G = (RA, SB) are neutrosophic digraphs as shown in
Figs. 6.17 and 6.18.

To find the city with good weather condition, we use the formula which we
mentioned in equation (i).

Our decision is ek if ek = max
i

(TSB ⊕ TSB)(ei ), where ei = (vi , v j ). By direct

calculations, we have
TSB ⊕ TSB(BJ,CH I ) = 0.044, ISB ⊕ ISB(BJ,CH I ) = 0.071,
FSB ⊕ FSB(BJ,CH I ) = 0.094.
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TSB ⊕ TSB(LH R,CH I ) = 0.043, ISB ⊕ ISB(LH R,CH I ) = 0.076,
FSB ⊕ FSB(LH R,CH I ) = 0.096.
TSB ⊕ TSB(BJ, LH R) = 0.064, ISB ⊕ ISB(BJ, LH R) = 0.112,
FSB ⊕ FSB(BJ, LH R) = 0.068.
TSB ⊕ TSB(I ST, BJ ) = 0.066, ISB ⊕ ISB(I ST, BJ ) = 0.100,
FSB ⊕ FSB(I ST, BJ ) = 0.070.
TSB ⊕ TSB(PAR, BJ ) = 0.033, ISB ⊕ ISB(PAR, BJ ) = 0.050,
FSB ⊕ FSB(PAR, BJ ) = 0.094.
TSB ⊕ TSB(PAR, LH R) = 0.034, ISB ⊕ ISB(PAR, LH R) = 0.155,
FSB ⊕ FSB(PAR, LH R) = 0.096.
Hence the weather condition between Istanbul and Beijing is good, and Boeing 747
can use this path in case of weather emergency.

We present an algorithm for the above-mentioned application. The presented algo-
rithm can be applied to avoid lengthy calculations when dealing with a large number
of objects.

Algorithm 6.3.1 1. Input the vertex set X .
2. Construct an equivalence relation R on the set X .
3. Calculate the approximation sets RA and RA.
4. Input the edge set E ⊆ X × X .
5. Construct an equivalence relation S on E .
6. Calculate the approximation sets SB and SB.
7. Calculate the score value, by using the formula

TSB ⊕ TSB(vi , v j ) = TRA(vi ) ∗ TRA(v j )

3 − (
TSB(vi , v j ) + TSB(vi , v j ) − TSB(vi , v j ) ∗ TSB(vi , v j )

) ,

ISB ⊕ ISB(vi , v j ) = IRA(vi ) ∗ IRA(v j )

3 − (
ISB(vi , v j ) + ISB(vi , v j ) − ISB(vi , v j ) ∗ ISB(vi , v j )

) ,

FSB ⊕ FSB(vi , v j ) = FRA(vi ) ∗ FRA(v j )

3 − (
FSB(vi , v j ) + FSB(vi , v j ) − FSB(vi , v j ) ∗ FSB(vi , v j )

) .

8. Decision is ek if ek = max
i

(TSB ⊕ TSB)(ei ), where ei = (vi , v j ).

9. If ek has more than one value, then any one of S(vk) may be chosen.

6.3.2 Suitable Investment Company

Investment is a very good way of getting profit, and wisely invested money surely
gives certain profit. The most important factors that influence individual investment
decision are: company’s reputation, corporate earnings and prices per share. In this
application, we combine these factors into one factor: company’s status in industry,
to describe overall performance of the company. Let us consider an individual Mr.
Shahid who wants to invest his money. For this purpose, he considers some private
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companies which are telecommunication company (TC), carpenter company (CC),
real estate (RE) business, vehicle leasing (VL) company, advertising (AD) company,
textile testing (TT) company. Let X = {TC, CC, RE, VL, AD, TT } be a set. Let R
be an equivalence relation defined on X as follows:

R =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 0
0 1 0 0 0 0
1 0 1 0 1 0
0 0 0 1 0 1
1 0 1 0 1 0
0 0 0 1 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Let A = {(TC, 0.3, 0.4, 0.1), (CC, 0.8, 0.1, 0.5), (RE, 0.1, 0.2, 0.6), (V L , 0.9,
0.6, 0.1), (AD, 0.2, 0.5, 0.2), (T T, 0.8, 0.6, 0.5)} be a neutrosophic set on X
with three components corresponding to each company, which represents its status
in the industry and RA = (RA, RA) a rough neutrosophic set, where RA and RA
are lower and upper approximations of A, respectively, as follows:

RA = {(TC, 0.1, 0.2, 0.6), (CC, 0.8, 0.1, 0.5), (RE, 0.1, 0.2, 0.6), (V L , 0.8, 0.6, 0.5), (AD,

0.1, 0.2, 0.6), (T T, 0.8, 0.6, 0.5)},
RA = {(TC, 0.3, 0.5, 0.1), (CC, 0.8, 0.1, 0.5), (RE, 0.3, 0.5, 0.1), (V L , 0.9, 0.6, 0.1), (AD,

0.3, 0.5, 0.1), (T T, 0.9, 0.6, 0.1)}.
Let E = {(TC,CC), (TC, AD), (TC, RE), (CC, V L), (CC, T T ), (AD, RE), (T T, V L)},

be the set of edges and S an equivalence relation on E defined as follows:

S =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 1 0 0 1 0
0 1 1 0 0 1 0
0 0 0 1 1 0 0
0 1 0 1 1 0 0
0 0 1 0 0 1 0
0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let B = {((TC,CC), 0.1, 0.1, 01
)
,
(
(TC, AD), 0.1, 0.2, 0.1

)
,
(
(TC, RE), 0.1, 0.2, 0.1

)
,

(
(CC, V L), 0.8, 0.1, 0.5

)
,
(
(CC, T T ), 0.8, 0.1, 0.5

)
,
(
(AD, RE), 0.1, 0.2, 0.1

)
,

(
(T T, V L), 0.8, 0.6, 0.1

)}

be a neutrosophic set on E which represents relationship between companies and
SB = (SB, SB) a rough neutrosophic relation, where SB and SB are lower and
upper approximations of B, respectively, as follows:
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Fig. 6.19 Rough neutrosophic digraph G = (G,G)

SB = {((TC,CC), 0.1, 0.1, 0.1
)
,
(
(TC, AD), 0.1, 0.2, 0.1

)
,
(
(TC, RE), 0.1, 0.2, 0.1

)
,

(
(CC, V L), 0.8, 0.1, 0.5

)
,
(
(CC, T T ), 0.8, 0.1, 0.5

)
,
(
(AD, RE), 0.1, 0.2, 0.1

)
,

(
(T T, V L), 0.8, 0.6, 0.1

)},
SB = {((TC,CC), 0.1, 0.1, 0.1

)
,
(
(TC, AD), 0.1, 0.2, 0.1

)
,
(
(TC, RE), 0.1, 0.2, 0.1

)
,

(
(CC, V L), 0.8, 0.1, 0.5

)
,
(
(CC, T T ), 0.8, 0.1, 0.5

)
,
(
(AD, RE)0.1, 0.2, 0.1

)
,

(
(T T, V L), 0.8, 0.6, 0.1

)}.

Thus, G = (RA, SB) and G = (RA, SB) are rough neutrosophic digraphs as
shown in Fig. 6.19.
In order to find out the most suitable investment company, we define the score

values

S(vi ) =
∑

viv j∈E

T (v j ) + I (v j ) − F(v j )

3 − (T (viv j ) + I (viv j ) − F(viv j ))
,

where

T (v j ) = T (v j ) + T (v j )

2
,

I (v j ) = I (v j ) + I (v j )

2
,

F(v j ) = F(v j ) + F(v j )

2
,
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and

T (viv j ) = T (viv j ) + T (viv j )

2
,

I (viv j ) = I (viv j ) + I (viv j )

2
,

F(viv j ) = F(viv j ) + F(viv j )

2
.

of each selected company and industry decision is vk if vk = max
i

S(vi ). By calcu-

lation, we have
S(TC) = 0.4926, S(CC) = 1.4038, S(RE) = 0.0667, S(V L) = 0.3833,
S(AD) = 0.1429 and S(T T ) = 1.3529.Clearly,CC is the optimal decision. There-
fore, the carpenter company is selected to get maximum possible profit. We present
our proposed method as an algorithm. This algorithm returns the optimal solution
for the investment problem.

Algorithm 6.3.2 1. Input the vertex set X .
2. Construct an equivalence relation R on the set X .
3. Calculate the approximation sets RA and RA.
4. Input the edge set E ⊆ X × X .
5. Construct an equivalence relation S on E .
6. Calculate the approximation sets SB and SB.
7. Calculate the score value, by using the formula

S(vi ) =
∑

viv j∈E

T (v j ) + I (v j ) − F(v j )

3 − (T (viv j ) + I (viv j ) − F(viv j ))
.

8. The decision is S(vk) = max
vi∈X

S(vi ).

9. If vk has more than one value, then any one of S(vk) may be chosen.

6.4 Neutrosophic Rough Digraphs

Definition 6.10 Let X be a nonempty universe and R̂ a single-valued neutrosophic
relation on X . Let A be a single-valued neutrosophic set on X , defined as

A = {< x, TA(x), IA(x), FA(x) >: x ∈ X}.

Then the lower and upper approximations of A represented by R̂ A and R̂ A, respec-
tively, are characterized as single-valued neutrosophic sets in X such that ∀x ∈ X
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R̂ A = {< x, TR̂(A)(x), IR̂(A)(x), FR̂(A)(x) >: y ∈ X},
R̂ A = {< x, T

R̂(A)
(x), I

R̂(A)
(x), F

R̂(A)
(x) >: y ∈ X},

where

TR̂A(x) =
∧

y∈X

(
FR̂(x, y) ∨ TA(y)

)
,

IR̂A(x) =
∨

y∈X

(
1 − IR̂(x, y) ∧ IA(y)

)
,

FR̂A(x) =
∨

y∈X

(
TR̂(x, y) ∧ FA(y)

)
,

and

T
R̂A

(x) =
∨

y∈X

(
TR̂(x, y) ∧ TA(y)

)
,

I
R̂A

(x) =
∧

y∈X

(
IR̂(x, y) ∨ IA(y)

)
,

F
R̂A

(x) =
∧

y∈X

(
FR̂(x, y) ∨ FA(y)

)
.

A pair (R̂ A, R̂ A) is called a single-valued neutrosophic rough set.

Definition 6.11 Let X be a nonempty set and R̂ a single-valued neutrosophic toler-
ance relation on X . Let A be a neutrosophic set on X defined as:

A = {< x, TA(x), IA(x), FA(x) >: x ∈ X}.

Then the lower and upper approximations of A represented by R̂ A and R̂ A, respec-
tively, are characterized as single-valued neutrosophic sets in X such that ∀ x ∈ X

R̂A = {< x, TR̂A(x), IR̂ A(x), FR̂A(x) >: y ∈ X},
R̂ A = {< x, T

R̂A
(x), I

R̂ A
(x), F

R̂A
(x) >: y ∈ X},

where

TR̂A(x) =
∧

y∈X

(
FR̂(x, y) ∨ TA(y)

)
,

IR̂A(x) =
∧

y∈X

(
1 − IR̂(x, y) ∨ IA(y)

)
,
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FR̂A(x) =
∨

y∈X

(
TR̂(x, y) ∧ FA(y)

)
,

and

T
R̂A

(x) =
∨

y∈X

(
TR̂(x, y) ∧ TA(y)

)
,

I
R̂A

(x) =
∨

y∈X

(
IR̂(x, y) ∧ IA(y)

)
,

F
R̂A

(x) =
∧

y∈X

(
FR̂(x, y) ∨ FA(y)

)
.

Let E ⊆ X × X and Ŝ be a single-valued neutrosophic tolerance relation on E such
that

TŜ((x1, x2)(y1, y2)) =min{TR̂(x1, y1), TR̂(x2, y2)},
IŜ((x1, x2)(y1, y2)) =min{IR̂(x1, y1), IR̂(x2, y2)},
FŜ((x1, x2)(y1, y2)) =max{FR̂(x1, y1), FR̂(x2, y2)}.

Let B be a neutrosophic set on E defined as:

B = {< xy, TB(xy), IB(xy), FB(xy) >: xy ∈ E},

such that

TB(xy) ≤min{TR̂A(x), TR̂A(y)},
IB(xy) ≤min{IR̂A(x), IR̂ A(y)},
FB(xy) ≤max{F

R̂A
(x), F

R̂A
(y)} ∀ x, y ∈ X.

Then the lower and the upper approximations of B represented by ŜB and ŜB are
defined as follows:

ŜB = {< xy, TŜB(xy), IŜB(xy), FŜB(xy) >: xy ∈ E},
ŜB = {< xy, T

ŜB
(xy), I

ŜB
(xy), F

ŜB
(xy) >: xy ∈ E},

where

TŜB(xy) =
∧

wz∈E

(
FŜ((xy), (wz)) ∨ TB(wz)

)
,

IŜB(xy) =
∧

wz∈E

(
(1 − IŜ((xy), (wz))) ∨ IB(wz)

)
,
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FŜB(xy) =
∨

wz∈E

(
TŜ((xy), (wz)) ∧ FB(wz)

)
,

and

T
ŜB

(xy) =
∨

wz∈E

(
TŜ((xy), (wz)) ∧ TB(wz)

)
,

I
ŜB

(xy) =
∨

wz∈E

(
IŜ((xy), (wz)) ∧ IB(wz)

)
,

F
ŜB

(xy) =
∧

wz∈E

(
FŜ((xy), (wz)) ∨ FB(wz)

)
.

A pair ŜB = (ŜB, ŜB) is called single-valued neutrosophic rough relation.

Definition 6.12 A single-valued neutrosophic rough digraph on a nonempty set X
is a four-ordered tuple G = (R̂, R̂ A, Ŝ, ŜB) such that

(a) R̂ is a single-valued neutrosophic tolerance relation on X .
(b) Ŝ is a single-valued neutrosophic tolerance relation on E ⊆ X × X .

(c) R̂ A = (R̂ A, R̂ A) is a single-valued neutrosophic rough set on X .

(d) ŜB = (ŜB, ŜB) is a single-valued neutrosophic rough relation on X .
(e) (R̂ A, ŜB) is a neutrosophic rough digraph, where G = (R̂ A, ŜB) and G =

(R̂ A, ŜB) are lower and upper approximate single-valued neutrosophic digraphs
of G such that

TŜB(xy) ≤ min{TR̂A(x), TR̂A(y)},
IŜB(xy) ≤ min{IR̂A(x), IR̂ A(y)},
FŜB(xy) ≤ max{FR̂A(x), FR̂A(y)},
T
ŜB

(xy) ≤ min{T
R̂A

(x), T
R̂A

(y)},
I
ŜB

(xy) ≤ min{I
R̂A

(x), I
R̂ A

(y)},
F
ŜB

(xy) ≤ max{F
R̂A

(x), F
R̂A

(y)}, ∀ x, y ∈ X.

Throughout this chapter, we will use neutrosophic rough set, neutrosophic rough
relation and neutrosophic rough digraph, for short.

Example 6.9 Let X = {p, q, r, s, t} be a nonempty set and R̂ a neutrosophic toler-
ance relation on X which is given as:
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R̂ p q r s t
p (1, 1, 0) (0.5, 0.2, 0.3) (0.1, 0.9, 0.4) (0.6, 0.5, 0.2) (0.2, 0.1, 0.8)
q (0.5, 0.2, 0.3) (1, 1, 0) (0.3, 0.7, 0.5) (0.1, 0.9, 0.6) (0.6, 0.5, 0.1)
r (0.1, 0.9, 0.4) (0.3, 0.7, 0.5) (1, 1, 0) (0.2, 0.8, 0.7) (0.1, 0.9, 0.6)
s (0.6, 0.5, 0.2) (0.1, 0.9, 0.6) (0.2, 0.8, 0.7) (1, 1, 0) (0.2, 0.3, 0.1)
t (0.2, 0.1, 0.8) (0.6, 0.5, 0.1) (0.1, 0.9, 0.6) (0.2, 0.3, 0.1) (1, 1, 0)

Let A1 = {(p, 0.2, 0.1, 0.7), (q, 0.4, 0.5, 0.6), (r, 0.7, 0.8, 0.9), (s, 0.2, 0.9, 0.1),
(t, 0.6, 0.8, 0.4)} be a neutrosophic set on X . The lower and upper approximations
of A1 are given as:

R̂ A1 = {(p, 0.2, 0.1, 0.7), (q, 0.3, 0.5, 0.6), (r, 0.4, 0.1, 0.9), (s, 0.2, 0.5, 0.6), (t, 0.2, 0.5, 0.6)},
R̂ A1 = {(p, 0.4, 0.2, 0.8), (q, 0.6, 0.9, 0.4), (r, 0.7, 0.8, 0.6), (s, 0.2, 0.9, 0.1), (t, 0.6, 0.8, 0.1)}.

Let E = {pr, qs, r t, sp, tq} ⊆ X × X and Ŝ be a neutrosophic tolerance relation
which is given as:

Ŝ pr qs rt sp tq
pr (1, 1, 0) (0.2, 0.2, 0.7) (0.1, 0.9, 0.6) (0.1, 0.5, 0.4) (0.2, 0.1, 0.8)
qs (0.2, 0.2, 0.7) (1, 1, 0) (0.2, 0.3, 0.5) (0.1, 0.5, 0.6) (0.1, 0.5, 0.6)
r t (0.1, 0.9, 0.6) (0.2, 0.3, 0.5) (1, 1, 0) (0.2, 0.1, 0.8) (0.1, 0.5, 0.6)
sp (0.1, 0.5, 0.4) (0.1, 0.5, 0.6) (0.2, 0.1, 0.8) (1, 1, 0) (0.2, 0.2, 0.3)
tq (0.2, 0.1, 0.8) (0.1, 0.5, 0.6) (0.1, 0.5, 0.6) (0.2, 0.2, 0.3) (1, 1, 0)

Let B1 = {(pr, 0.2, 0.1, 0.5), (qs, 0.1, 0.3, 0.3), (r t, 0.2, 0.1, 0.4), (sp, 0.1, 0.1,
0.2), (tq, 0.1, 0.4, 0.3)} be a neutrosophic set on E . The lower and upper approxi-
mations of B1 are given as:

ŜB1 = {(pr, 0.2, 0.1, 0.5), (qs, 0.1, 0.3, 0.3), (r t, 0.2, 0.1, 0.4), (sp, 0.1, 0.1, 0.2), (tq, 0.1, 0.4, 0.3)},
ŜB1 = {(pr, 0.2, 0.2, 0.4), (qs, 0.2, 0.4, 0.3), (r t, 0.2, 0.4, 0.4), (sp, 0.2, 0.3, 0.2), (tq, 0.2, 0.4, 0.3)}.

Thus, G = (R̂ A1, ŜB1) and G = (R̂ A1, ŜB1) are neutrosophic digraphs as shown
in Fig. 6.20.
Example 6.10 Let X = {u, v, w, x, y, z} be a crisp set and R̂ a neutrosophic toler-
ance relation on X given by

R̂ u v w x y z
u (1, 1, 0) (0.2, 0.3, 0.5) (0.5, 0.6, 0.9) (0.3, 0.8, 0.3) (0.3, 0.2, 0.1) (0.1, 0.1, 0.5)
v (0.2, 0.3, 0.5) (1, 1, 0) (0.9, 0.5, 0.6) (0.1, 0.5, 0.7) (0.8, 0.9, 0.1) (0.8, 0.9, 0.1)
w (0.5, 0.6, 0.9) (0.9, 0.5, 0.6) (1, 1, 0) (0.3, 0.6, 0.8) (0.2, 0.3, 0.6) (0.7, 0.6, 0.6)
x (0.3, 0.8, 0.3) (0.1, 0.5, 0.7) (0.3, 0.6, 0.8) (1, 1, 0) (0.5, 0.1, 0.9) (0.8, 0.7, 0.2)
y (0.3, 0.2, 0.1) (0.8, 0.9, 0.1) (0.2, 0.3, 0.6) (0.5, 0.1, 0.9) (1, 1, 0) (0.6, 0.5, 0.9)
z (0.1, 0.1, 0.5) (0.8, 0.9, 0.1) (0.7, 0.6, 0.6) (0.8, 0.7, 0.2) (0.6, 0.5, 0.9) (1, 1, 0)

Let A = {(u, 0.9, 0.3, 0.1), (v, 0.5, 0.6, 0.2), (w, 0.8, 0.5, 0.3), (x, 0.7, 0.6, 0.9),
(y, 0.5, 0.2, 0.1), (z, 0.9, 0.7, 0.3)} be a neutrosophic set on X . Then the lower and
upper approximations of A are given as follows:
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G1 = (R̂A1, ŜB1) G1 = (R̂A1, ŜB1)

Fig. 6.20 Neutrosophic rough digraph G1 = (G1,G1)

R̂ A = {(u, 0.5, 0.3, 0.3), (v, 0.5, 0.2, 0.3), (w, 0.6, 0.4, 0.3), (x, 0.7, 0.3, 0.9), (y, 0.5, 0.2, 0.5),

(z, 0.5, 0.5, 0.8)},
R̂ A = {(u, 0.9, 0.6, 0.1), (v, 0.8, 0.7, 0.1), (w, 0.8, 0.6, 0.3), (x, 0.8, 0.7, 0.3), (y, 0.6, 0.6, 0.1),

(z, 0.9, 0.7, 0.2)}.

Let E = {uv, vw,wx, xy, yz, zu, zw, vy} ⊆ X × X and Ŝ be a neutrosophic toler-
ance relation on E given as

Ŝ uv vw wx xy yz zu zw vy

uv (1, 1, 0) (0.2, 0.3, 0.6) (0.1, 0.5, 0.9) (0.3, 0.8, 0.3) (0.3, 0.2, 0.1) (0.1, 0.1, 0.5) (0.1, 0.1, 0.6) (0.2, 0.3, 0.5)
vw (0.2, 0.3, 0.6) (1, 1, 0) (0.3, 0.5, 0.8) (0.1, 0.3, 0.7) (0.7, 0.6, 0.6) (0.5, 0.6, 0.9) (0.8, 0.9, 0.1) (0.2, 0.3, 0.6)
wx (0.1, 0.5, 0.9) (0.3, 0.5, 0.8) (1, 1, 0) (0.3, 0.1, 0.9) (0.2, 0.3, 0.6) (0.3, 0.6, 0.6) (0.3, 0.6, 0.8) (0.5, 0.1, 0.9)
xy (0.3, 0.8, 0.3) (0.1, 0.3, 0.7) (0.3, 0.1, 0.9) (1, 1, 0) (0.5, 0.1, 0.9) (0.3, 0.2, 0.2) (0.2, 0.3, 0.6) (0.1, 0.5, 0.7)
yz (0.3, 0.2, 0.1) (0.7, 0.6, 0.6) (0.2, 0.3, 0.6) (0.5 ,0.1, 0.9) (1, 1, 0) (0.1, 0.1, 0.9) (0.6, 0.5, 0.9) (0.6, 0.5, 0.9)
zu (0.1, 0.1, 0.5) (0.5, 0.6, 0.9) (0.3, 0.6, 0.6) (0.3, 0.2, 0.2) (0.1, 0.1, 0.9) (1, 1, 0) (0.5, 0.6, 0.9) (0.3, 0.3, 0.1)
zw (0.1, 0.1, 0.6) (0.8, 0.9, 0.1) (0.3, 0.6, 0.8) (0.2, 0.3, 0.6) (0.6, 0.5, 0.9) (0.5, 0.6, 0.9) (1, 1, 0) (0.2, 0.3, 0.6)
vy (0.2, 0.3, 0.5) (0.2, 0.3, 0.6) (0.5, 0.1, 0.9) (0.1, 0.5, 0.7) (0.6, 0.5, 0.9) (0.3, 0.2, 0.1) (0.2, 0.3, 0.6) (1, 1, 0)

Let B be a neutrosophic set on E defined as
B = {(uv, 0.5, 0.2, 0.1), (vw, 0.5, 0.2, 0.3), (wx, 0.5, 0.3, 0.3), (xy, 0.5, 0.2, 0.3),
(yz, 0.5, 0.2, 0.2),
(zu, 0.5, 0.3, 0.2), (zw, 0.5, 0.4, 0.3), (vy, 0.5, 0.2, 0.1)}.
Then the lower and upper approximations of B are given as

ŜB = {(uv, 0.5, 0.2, 0.3), (vw, 0.5, 0.2, 0.3), (wx, 0.5, 0.3, 0.3), (xy, 0.5, 0.2, 0.3), (yz, 0.5, 0.2, 0.3),

(zu, 0.5, 0.3, 0.3), (zw, 0.5, 0.2, 0.3), (vy, 0.5, 0.2, 0.3)},
ŜB = {(uv, 0.5, 0.3, 0.1), (vw, 0.5, 0.4, 0.3), (wx, 0.5, 0.4, 0.3), (xy, 0.5, 0.3, 0.3), (yz, 0.5, 0.4, 0.1),

(zu, 0.5, 0.4, 0.1), (zw, 0.5, 0.4, 0.3), (vy, 0.5, 0.3, 0.1)}.
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Fig. 6.21 Neutrosophic rough digraph G = (G,G)

Thus, G = (R̂ A, ŜB) and G = (R̂ A, ŜB) are the neutrosophic digraphs as shown
in Fig. 6.21.

We now discuss regular neutrosophic rough digraphs.

Definition 6.13 LetG = (G,G) be a neutrosophic rough digraph on a nonempty set
X . The indegree of a vertex x ∈ G is the sum of membership degree, indeterminacy
and falsity of all edges towards x from other vertices in G and G, respectively,
represented by idG(x) and defined by

idG(x) = idG(x) + idG(x),

where

idG(x) =
( ∑

x,y∈ŜB
TG(yx),

∑

x,y∈ŜB
IG(yx),

∑

x,y∈ŜB
FG(yx)

)
,

idG(x) =
( ∑

x,y∈ŜB
TG(yx),

∑

x,y∈ŜB
IG(yx),

∑

x,y∈ŜB
FG(yx)

)
.

The outdegree of a vertex x ∈ G is the sum of membership degree, indeterminacy
and falsity of all edges outwards from x to other vertices in G and G, respectively,
represented by odG(x) and defined by

odG(x) = odG(x) + odG(x),

where
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odG(x) =
( ∑

x,y∈ŜB
TG(xy),

∑

x,y∈ŜB
IG(xy),

∑

x,y∈ŜB
FG(xy)

)
,

odG(x) =
( ∑

x,y∈ŜB
TG(xy),

∑

x,y∈ŜB
IG(xy),

∑

x,y∈ŜB
FG(xy)

)
.

dG(x) = idG(x) + odG(x) is called degree of vertex x .

Definition 6.14 A neutrosophic rough digraph is called a regular neutrosophic
rough digraph of degree (m1,m2,m3) if

dG(x) = (m1,m2,m3),∀x ∈ X.

Example 6.11 Let X = {p, q, r, s} be a nonempty set and R̂ a neutrosophic tolerance
relation on X which is given as:

R̂ p q r s
p (1, 1, 0) (0.1, 0.9, 0.8) (0.7, 0.5, 0.8) (0.1, 0.9, 0.8)
q (0.9, 0.8, 0.1) (1, 1, 0) (0.1, 0.9, 0.8) (0.4, 0.3, 0.9)
r (0.7, 0.5, 0.8) (0.1, 0.9, 0.8) (1, 1, 0) (0.1, 0.9, 0.8)
s (0.1, 0.9, 0.8) (0.4, 0.3, 0.9) (0.1, 0.9, 0.8) (1, 1, 0)

Let A1 = {(p, 0.1, 0.4, 0.8), (q, 0.2, 0.3, 0.9), (r, 0.1, 0.6, 0.8), (s, 0.9, 0.6, 0.3)}
be a neutrosophic set on X . Then the lower and upper approximations of A1 are
given as:

R̂ A1 = {(p, 0.1, 0.3, 0.8), (q, 0.2, 0.3, 0.9), (r, 0.1, 0.3, 0.8), (s, 0.8, 0.4, 0.4)},
R̂ A1 = {(p, 0.1, 0.6, 0.8), (q, 0.4, 0.6, 0.8), (r, 0.1, 0.6, 0.8), (s, 0.9, 0.6, 0.3)}.

Let E = {pq, qr, rs, sp} ⊆ X × X and Ŝ be a neutrosophic tolerance relation on E
which is given as:

Ŝ pq qr rs sp
pq (1, 1, 0) (0.1, 0.9, 0.8) (0.4, 0.3, 0.9) (0.1, 0.9, 0.8)
qr (0.1, 0.9, 0.8) (1, 1, 0) (0.1, 0.9, 0.8) (0.4, 0.3, 0.9)
rs (0.4, 0.3, 0.9) (0.1, 0.9, 0.8) (1, 1, 0) (0.1, 0.9, 0.8)
sp (0.1, 0.9, 0.8) (0.4, 0.3, 0.9) (0.1, 0.9, 0.8) (1, 1, 0)

Let B1 = {(pq, 0.1, 0.3, 0.8), (qr, 0.1, 0.3, 0.3), (rs, 0.1, 0.3, 0.8), (sp, 0.1, 0.3,
0.8)} be a neutrosophic set on E . Then the lower and upper approximations of B1

are given as:
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G1 = (R̂A1, ŜB1) G1 = (R̂A1, ŜB1)

Fig. 6.22 Regular neutrosophic rough digraph G1 = (G1,G1)

ŜB1 = {(pq, 0.1, 0.3, 0.8), (qr, 0.1, 0.3, 0.3), (rs, 0.1, 0.3, 0.8), (sp, 0.1, 0.3, 0.8)},
ŜB1 = {(pq, 0.1, 0.3, 0.8), (qr, 0.1, 0.3, 0.3), (rs, 0.1, 0.3, 0.8), (sp, 0.1, 0.3, 0.8)}.

Thus, G1 = (G1,G1) is a regular neutrosophic rough digraph as shown in Fig. 6.22.

Definition 6.15 LetG1 = (G1,G1) andG2 = (G2,G2) be two neutrosophic rough
digraphs. Then the direct sum of G1 and G2 is a neutrosophic rough digraph G =
G1 ⊕ G2 = (G1 ⊕ G2,G1 ⊕ G2), where G1 ⊕ G2 = (R̂ A1 ⊕ R̂ A2, ŜB1 ⊕ ŜB2)

and G1 ⊕ G2 = (R̂ A1 ⊕ R̂ A2, ŜB1 ⊕ ŜB2) are neutrosophic digraphs such that

(1)

TR̂A1⊕R̂ A2
(x) =

⎧
⎪⎨

⎪⎩

TR̂A1
(x), if x ∈ R̂ A1 − R̂ A2

TR̂A2
(x), if x ∈ R̂ A2 − R̂ A1

max(TR̂A1
(x), TR̂A2

(x)), if x ∈ R̂ A1 ∩ R̂ A2

IR̂A1⊕R̂ A2
(x) =

⎧
⎪⎨

⎪⎩

IR̂A1
(x), if x ∈ R̂ A1 − R̂ A2

IR̂A2
(x), if x ∈ R̂ A2 − R̂ A1

max(IR̂A1
(x), IR̂ A2

(x)), if x ∈ R̂ A1 ∩ R̂ A2

FR̂A1⊕R̂ A2
(x) =

⎧
⎪⎨

⎪⎩

FR̂A1
(x), if x ∈ R̂ A1 − R̂ A2

FR̂A2
(x), if x ∈ R̂ A2 − R̂ A1

min(FR̂A1
(x), FR̂A2

(x)), if x ∈ R̂ A1 ∩ R̂ A2
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TŜB1⊕ŜB2
(x, y) =

{
TŜB1

(x, y), if (x, y) ∈ ŜB1

TŜB2
(x, y), if (x, y) ∈ ŜB2

IŜB1⊕ŜB2
(x, y) =

{
IŜB1

(x, y), if (x, y) ∈ ŜB1

IŜB2
(x, y), if (x, y) ∈ ŜB2

FŜB1⊕ŜB2
(x, y) =

{
FŜB1

(x, y), if (x, y) ∈ ŜB1

FŜB2
(x, y), if (x, y) ∈ ŜB2

(2)

T
R̂A1⊕R̂ A2

(x) =

⎧
⎪⎪⎨

⎪⎪⎩

T
R̂A1

(x), if x ∈ R̂ A1 − R̂ A2

T
R̂A2

(x), if x ∈ R̂ A2 − R̂ A1

max(T
R̂A1

(x), T
R̂A2

(x)), if x ∈ R̂ A1 ∩ R̂ A2

I
R̂A1⊕R̂ A2

(x) =

⎧
⎪⎪⎨

⎪⎪⎩

I
R̂A1

(x), if x ∈ R̂ A1 − R̂ A2

I
R̂A2

(x), if x ∈ R̂ A2 − R̂ A1

max(I
R̂A1

(x), I
R̂ A2

(x)), if x ∈ R̂ A1 ∩ R̂ A2

F
R̂A1⊕R̂ A2

(x) =

⎧
⎪⎪⎨

⎪⎪⎩

F
R̂A1

(x), if x ∈ R̂ A1 − R̂ A2

F
R̂A2

(x), if x ∈ R̂ A2 − R̂ A1

min(F
R̂A1

(x), F
R̂A2

(x)), if x ∈ R̂ A1 ∩ R̂ A2

T
ŜB1⊕ŜB2

(x, y) =
⎧
⎨

⎩
T
ŜB1

(x, y), if (x, y) ∈ ŜB1

T
ŜB2

(x, y), if (x, y) ∈ ŜB2

I
ŜB1⊕ŜB2

(x, y) =
⎧
⎨

⎩
I
ŜB1

(x, y), if (x, y) ∈ ŜB1

I
ŜB2

(x, y), if (x, y) ∈ ŜB2

F
ŜB1⊕ŜB2

(x, y) =
⎧
⎨

⎩
F
ŜB1

(x, y), if (x, y) ∈ ŜB1

F
ŜB2

(x, y), if (x, y) ∈ ŜB2

Example 6.12 Let X = {p, q, r, s, t} be a set. Let G1=(G1,G1) and G2 = (G2,G2)

be two neutrosophic rough digraphs on X as shown in Figs. 6.20 and 6.23. The
direct sum of G1 and G2 is G = (G1 ⊕ G2,G1 ⊕ G2), where G1 ⊕ G2 = (R̂ A1 ⊕



272 6 Graphs Under Neutrosophic Hybrid Models
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G2 = (R̂A2, ŜB2) G2 = (R̂A2, ŜB2)

Fig. 6.23 Neutrosophic rough digraph G2 = (G2,G2)

Fig. 6.24 Neutrosophic rough digraph G = (G1 ⊕ G2,G1 ⊕ G2)

R̂ A2, ŜB1 ⊕ ŜB2) and G1 ⊕ G2 = (R̂ A1 ⊕ R̂ A2, ŜB1 ⊕ ŜB2) are neutrosophic
digraphs as shown in Fig. 6.24.

Remark 6.1 The direct sum of two regular neutrosophic digraphs may not be a
regular neutrosophic digraph as it can be seen in the following example.

Example 6.13 Consider the two regular neutrosophic digraphs G1 = (G1,G1) and
G2 = (G2,G2) as shown in Figs. 6.22 and 6.25, respectively; then the direct sum
G = (G1 ⊕ G2,G1 ⊕ G2) of G1 and G2 as shown in Fig. 6.26 is not a regular
neutrosophic rough digraph.

Definition 6.16 LetG1 = (G1,G1) andG2 = (G2,G2) be two neutrosophic rough
digraphs on crisp sets X1 and X2, respectively. The residue product of G1 and
G2 is a neutrosophic rough digraph G = G1 ∗ G2 = (G1 ∗ G2,G1 ∗ G2), where

G1 ∗ G2 = (R̂ A1 ∗ R̂ A2, ŜB1 ∗ ŜB2) and G1 ∗ G2 = (R̂ A1 ∗ R̂ A2, ŜB1 ∗ ŜB2) are
neutrosophic digraphs, respectively, such that
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Fig. 6.25 Regular neutrosophic rough digraph G2 = (G2,G2)
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G1 ⊕ G2 = (R̂A1 ⊕ R̂A2, ŜB1 ⊕ ŜB2)G1 ⊕ G2 = (R̂A1 ⊕ R̂A2, ŜB1 ⊕ ŜB2)

Fig. 6.26 Neutrosophic rough digraph G = (G1 ⊕ G2,G1 ⊕ G2)

(1)

TR̂A1∗R̂ A2
(x1, x2) = max{TR̂A1

(x1), TR̂A2
(x2)},

IR̂A1∗R̂ A2
(x1, x2) = max{IR̂A1

(x1), IR̂A2
(x2)},

FR̂A1∗R̂ A2
(x1, x2) = min{FR̂A1

(x1), FR̂A2
(x2)}, ∀(x1, x2) ∈ R̂ A1 × R̂ A2
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Fig. 6.27 Neutrosophic rough digraph G1 = (G1,G1)

TŜB1∗ŜB2
(x1, x2)(y1, y2) = TŜB1

(x1, y1),

IŜB1∗ŜB2
(x1, x2)(y1, y2) = IŜB1

(x1, y1),

FŜB1∗ŜB2
(x1, x2)(y1, y2) = FŜB1

(x1, y1), ∀(x1, y1) ∈ ŜB1, x1 �= y2

(2)

T
R̂A1∗R̂ A2

(x1, x2) = max{T
R̂A1

(x1), TR̂A2
(x2)},

I
R̂A1∗R̂ A2

(x1, x2) = max{I
R̂A1

(x1), IR̂A2
(x2)},

F
R̂A1∗R̂ A2

(x1, x2) = min{F
R̂A1

(x1), FR̂A2
(x2)}, ∀(x1, x2) ∈ R̂ A1 × R̂ A2

T
ŜB1∗ŜB2

(x1, x2)(y1, y2) = T
ŜB1

(x1, y1),

I
ŜB1∗ŜB2

(x1, x2)(y1, y2) = I
ŜB1

(x1, y1),

F
ŜB1∗ŜB2

(x1, x2)(y1, y2) = F
ŜB1

(x1, y1), ∀(x1, y1) ∈ ŜB1, x1 �= y2

Example 6.14 Let G1 = (G1,G1) and G2 = (G2,G2) be two neutrosophic rough
digraphs on the two crisp sets X1 = {p, q} and X2 = {u, v, w, x} as shown in
Figs. 6.27 and 6.28. Then the residue product of G1 and G2 is a neutrosophic rough
digraphG = G1 ∗ G2 = (G1 ∗ G2,G1 ∗ G2)whereG1 ∗ G2 = (R̂ A1 ∗ R̂ A2, ŜB1 ∗
ŜB2) and G1 ∗ G2 = (R̂ A1 ∗ R̂ A2, ŜB1 ŜB2) and the respective figure is shown in
Fig. 6.29.

Theorem 6.2 If G1 = (G1,G1) and G2 = (G2,G2) are two neutrosophic rough
digraphs such that |X2| > 1, then their residue product is regular if and only if G1

is regular.

Proof Let G1 ∗ G2 be a regular neutrosophic rough digraph.
Then, for any two vertices (x1, x2) and (y1, y2) in X1 × X2,

dG1∗G2(x1, x2) = dG1∗G2(y1, y2)
⇒ dG1(x1) = dG1(y1)

This is true for all vertices in X1.HenceG1 is a regular neutrosophic rough digraph.
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Fig. 6.28 Neutrosophic rough digraph G2 = (G2,G2)
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Fig. 6.29 Neutrosophic rough digraph G = (G1 ∗ G2,G1 ∗ G2)

Conversely suppose that G1 = (G1,G1) is a (m1,m2,m3)-regular neutrosophic
rough digraph and G2 = (G2,G2) is any neutrosophic rough digraph with |X2| >

1. If |X2| > 1, then dG1∗G2(x1, x2) = dG1(x1) = (m1,m2,m3). This is a constant
ordered triplet for all vertices in X1 × X2. Hence G1 ∗ G2 ia regular neutrosophic
rough digraph.

6.5 Applications of Neutrosophic Rough Digraphs

In this section, we present some real-life applications of neutrosophic rough digraphs
in decision-making. In decision-making, the selection is facilitated by evaluating each
choice on the set of criteria. The criteria must be measurable, and their outcomes
must be measured for every decision alternatives.
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Table 6.1 Companies and their ratings

X Good reviews (%) Neutral (%) Bad reviews (%)

PEL 45 29 37

Dawlance 52 25 49

Haier 51 43 45

Waves 47 41 38

Orient 51 35 48

6.5.1 Online Reviews and Ratings

Customer reviews are increasingly available online for a wide range of products and
services. As customers search online for product information and to evaluate product
alternatives, they often have access to dozens or hundreds of product review from
other customers. These reviews are very helpful in product selection. But only con-
sidering the good reviews about a product is not very helpful in decision-making. The
customer should keep in mind bad and neutral reviews as well. We use percentages
of good reviews, bad reviews and neutral reviews of a product as truth-membership,
false-membership and indeterminacy, respectively.

Mrs. Sadia wants to purchase a refrigerator. For this purpose she visits websites
of different refrigerator companies. The refrigerator companies and their ratings by
other customers are shown in Table. 6.1

Here X = {Pel(P), Dawlance(D), Haier(H), Waves(W), Orient(O)} and the neu-
trosophic set on X according to the reviews will be

A = {(P, 0.45, 0.29, 0.37), (D, 0.52, 0.25, 0.49), (H, 0.51, 0.43, 0.45), (W, 0.47, 0.41, 0.38)(O, 0.51, 0.35, 0.48)}.

The neutrosophic tolerance relation on X is given below

R̂ P D H W O
P (1, 1, 0) (0.5, 0.6, 0.9) (0.2, 0.3, 0.6) (0.1, 0.2, 0.3) (0.4, 0.6, 0.8)
D (0.5, 0.6, 0.9) (1, 1, 0) (0.1, 0.6, 0.9) (0.4, 0.5, 0.9) (0.9, 0.8, 0.2)
H (0.2, 0.3, 0.6) (0.1, 0.6, 0.9) (1, 1, 0) (0.2, 0.9, 0.6) (0.1, 0.9, 0.7)
W (0.1, 0.2, 0.3) (0.4, 0.5, 0.9) (0.2, 0.9, 0.6) (1, 1, 0) (0.2, 0.5, 0.9)
O (0.4, 0.6, 0.8) (0.9, 0.8, 0.2) (0.1, 0.9, 0.7) (0.2, 0.5, 0.9) (1, 1, 0)

The lower and upper approximations of A are as follows:

R̂ A = {(P, 0.45, 0.29, 0.49), (D, 0.51, 0.25, 0.49), (H, 0.51, 0.35, 0.45),

(W, 0.45, 0.41, 0.40), (O, 0.51, , 0.25, 0.49)},
R̂ A = {(P, 0.50, 0.35, 0.37), (D, 0.52, 0.43, 0.48), (H, 0.51, 0.43, 0.45),

(W, 0.47, 0.43, 0.37), (O, 0.52, 0.43, 0.48)}.
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Let E={(P, D), (P, H), (D, H), (D,W ), (H,W ), (H, O), (W, P), (W, O), (O, P),
(O, D)} be the subset of X × X , and the neutrosophic tolerance relation Ŝ on E is
given as follows:

Ŝ (P,D) (P,H) (D,H) (D,W) (H,W)
(P,D) (1, 1, 0) (0.1, 0.6, 0.9) (0.1, 0.6, 0.9) (0.4, 0.5, 0.9) (0.2, 0.3, 0.9)
(P,H) (0.1, 0.6, 0.9) (1, 1, 0) (0.5, 0.6, 0.9) (0.2, 0.6, 0.9) (0.2, 0.3, 0.6)
(D,H) (0.1, 0.6, 0.9) (0.5, 0.6, 0.9) (1, 1, 0) (0.2, 0.9, 0.6) (0.1, 0.6, 0.9)
(D,W) (0.4, 0.5, 0.9) (0.2, 0.6, 0.9) (0.2, 0.6, 0.9) (1, 1, 0) (0.1, 0.6, 0.9)
(H,W) (0.2, 0.3, 0.9) (0.2, 0.3, 0.6) (0.1, 0.6, 0.9) (0.1, 0.6, 0.9) (1, 1, 0)
(H,O) (0.2, 0.3, 0.6) (0.1, 0.3, 0.7) (0.1, 0.6, 0.9) (0.1, 0.5, 0.9) (0.2, 0.5, 0.9)
(W,P) (0.1, 0.2, 0.9) (0.1, 0.2, 0.6) (0.2, 0.3, 0.9) (0.1, 0.2, 0.9) (0.1, 0.2, 0.6)
(W,O) (0.1, 0.2, 0.3) (0.1, 0.2, 0.7) (0.1, 0.5, 0.9) (0.2, 0.5, 0.9) (0.2, 0.5, 0.9)
(O,P) (0.4, 0.6, 0.9) (0.2, 0.3, 0.8) (0.2, 0.3, 0.6) (0.1, 0.2, 0.3) (0.1, 0.2, 0.7)
(O,D) (0.4, 0.6, 0.8) (0.1, 0.6, 0.9) (0.1, 0.6, 0.9) (0.4, 0.5, 0.9) (0.1, 0.5, 0.9)
Ŝ (H,O) (W,P) (W,O) (O,P) (O,D)

(P,D) (0.2, 0.3, 0.6) (0.1, 0.2, 0.9) (0.1, 0.2, 0.3) (0.4, 0.6, 0.9) (0.4, 0.6, 0.8)
(P,H) (0.1, 0.3, 0.7) (0.1, 0.2, 0.6) (0.1, 0.2, 0.7) (0.2, 0.3, 0.8) (0.1, 0.6, 0.9)
(D,H) (0.2, 0.3, 0.9) (0.1, 0.5, 0.9) (0.2, 0.3, 0.6) (0.1, 0.6, 0.9) (0.1, 0.6, 0.9)
(D,W) (0.1, 0.2, 0.9) (0.2, 0.5, 0.9) (0.1, 0.2, 0.3) (0.4, 0.5, 0.9) (0.1, 0.5, 0.9)
(H,W) (0.1, 0.2, 0.6) (0.2, 0.5, 0.9) (0.1, 0.2, 0.7) (0.1, 0.5, 0.9) (0.2, 0.5, 0.9)
(H,O) (1, 1, 0) (0.2, 0.6, 0.8) (0.2, 0.9, 0.6) (0.1, 0.6, 0.8) (0.1, 0.8, 0.7)
(W,P) (0.2, 0.6, 0.8) (1, 1, 0) (0.4, 0.6, 0.8) (0.2, 0.5, 0.9) (0.2, 0.5, 0.9)
(W,O) (0.2, 0.9, 0.6) (0.4, 0.6, 0.8) (1, 1, 0) (0.2, 0.5, 0.9) (0.2, 0.5, 0.9)
(O,P) (0.1, 0.6, 0.8) (0.2, 0.5, 0.9) (0.2, 0.5, 0.9) (1, 1, 0) (0.5, 0.6, 0.9)
(O,D) (0.1, 0.8, 0.7) (0.2, 0.5, 0.9) (0.2, 0.5, 0.9) (0.5, 0.6, 0.9) (1, 1, 0)

Thus, the lower and upper approximations of B are calculated as follows:

ŜB = {((P, D), 0.42, 0.23, 0.47), ((P, H), 0.45, 0.28, 0.45), ((D, H), 0.50, 0.21, 0.45),

((D,W ), 0.43, 0.22, 0.45), ((H,W ), 0.41, 0.30, 0.44), ((H, O), 0.51, 0.22, 0.46),

((W, P), 0.42, 0.26, 0.40), ((W, O), 0.42, 0.23, 0.44), ((O, P), 0.43, 0.25, 0.48),

((O, D), 0.50, 0.22, 0.48)},
ŜB = {((P, D), 0.42, 0.30, 0.44), ((P, H), 0.50, 0.30, 0.41), ((D, H), 0.50, 0.30, 0.45),

((D,W ), 0.43, 0.30, 0.45), ((H,W ), 0.41, 0.30, 0.44), ((H, O), 0.51, 0.30, 0.46),

((W, P), 0.42, 0.26, 0.37), ((W, O), 0.45, 0.30, 0.44), ((O, P), 0.50, 0.28, 0.45),

((O, D), 0.50, 0.30, 0.47)}.

Thus,G = (R̂ A, ŜB) andG = (R̂ A, ŜB) are the neutrosophic digraphs as shown
in Fig. 6.30. To find the best company, we use the following formula:

S(vi ) =
∑

vi∈X

(TR̂A(vi ) × T
R̂A

(vi )) + (IR̂A(vi ) × I
R̂A

(vi )) − (FR̂A(vi ) × F
R̂A

(vi ))

1 − {T (viv j ) + I (viv j ) − F(viv j )} ,
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Fig. 6.30 G = (G,G)

where

T (viv j ) = max
v j∈X

TŜB(viv j ) × max
v j∈X

T
ŜB

(viv j ),

I (viv j ) = max
v j∈X

IŜB(viv j ) × max
v j∈X

I
ŜB

(viv j ),

F(viv j ) = min
v j∈X

FŜB(viv j ) × min
v j∈X

F
ŜB

(viv j ).

By direct calculations we have

S(P) = 0.167, S(D) = 0.156, S(H) = 0.268, S(W ) = 0.272, S(O) = 0.155.

From the above calculations it is clear thatWaves is the best company for refrigerator.

6.5.2 Context of Recruitment

Choosing the right candidate for the position available is not something that should
be left to chance or guesswork.

How to Choose the Right Candidate

In any recruitment process the ability of the candidate is weighed up against the
suitability of the candidate. Pakistan Telecommunication Company Limited (PTCL)
wants to recruit a person for the post of administrator. To keep the procedure sim-
ple the company wants to appoint their employee on the basis of education(Edu)
and experience (Exp). Let X = {(C1, Edu), (C1, Exp), (C2, Edu), (C2, Exp),
(C3, Edu), (C3, Exp)} be the set of candidates who applied to the post and their
corresponding attributes. Let R̂ be a neutrosophic tolerance relation on X given as
follows:
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R̂ (C1,Edu) (C1,Exp) (C2,Edu) (C2,Exp) (C3,Edu) (C3,Exp)

(C1,Edu) (1, 1, 0) (0.3, 0.6, 0.1) (0.6, 0.7, 0.2) (0.6, 0.5, 0.8) (0.3, 0.2, 0.1) (0.9, 0.1, 0.1)
(C1,Exp) (0.3, 0.6, 0.1) (1, 1, 0) (0.9, 0.9, 0.3) (0.8, 0.7, 0.6) (0.4, 0.5, 0.9) (0.3, 0.1, 0.1)
(C2,Edu) (0.6, 0.7, 0.2) (0.9, 0.9, 0.3) (1, 1, 0) (0.6, 0.5, 0.1) (0.3, 0.2, 0.1) (0.4, 0.8, 0.7)
(C2,Exp) (0.6, 0.5, 0.8) (0.8, 0.7, 0.6) (0.6, 0.5, 0.1) (1, 1, 0) (0.1, 0.1, 0.2) (0.5, 0.6, 0.7)
(C3,Edu) (0.3, 0.2, 0.1) (0.4, 0.5, 0.9) (0.3, 0.2, 0.1) (0.1, 0.1, 0.2) (1, 1, 0) (0.2, 0.1, 0.2)
(C3,Exp) (0.9, 0.1, 0.1) (0.3, 0.1, 0.1) (0.4, 0.8, 0.7) (0.5, 0.6, 0.7) (0.2, 0.1, 0.2) (1, 1, 0)

Let A = {((C1, Edu), 0.9, 0.1, 0.5), ((C1, Exp), 0.2, 0.6, 0.5), ((C2, Edu), 0.7,
0.2, 0.3), ((C2, Exp), 0.1, 0.3, 0.9), ((C3, Edu), 0.4, 0.6, 0.8), ((C3, Exp), 0.8,
0.1, 0.2)} be a neutrosophic set defined on X . Then the lower and upper approx-
imations of A are given as:

R̂ A = {((C1, Edu), 0.2, 0.1, 0.6), ((C1, Exp), 0.2, 0.2, 0.8), ((C2, Edu), 0.1, 0.2, 0.6),

((C2, Exp), 0.1, 0.3, 0.9), ((C3, Edu), 0.2, 0.6, 0.8), ((C3, Exp), 0.2, 0.1, 0.5)},
R̂ A = {((C1, Edu), 0.9, 0.6, 0.2), ((C1, Exp), 0.7, 0.6, 0.2), ((C2, Edu), 0.7, 0.6, 0.3),

((C2, Exp), 0.6, 0.6, 0.3), ((C3, Edu), 0.4, 0.6, 0.2), ((C3, Exp, 0.9, 0.3, 0.2)}.

Let E = {(C1, Edu)(C1, Exp), (C1, Exp)(C2, Edu), (C1, Edu)(C3, Exp), (C3,
Exp)(C1, Exp), (C1, Exp)(C2, Exp), (C2, Exp)(C2, Edu), (C3, Exp)(C3,
Edu), (C3, Edu)(C2, Exp), (C3, Exp)(C2, Exp)} ⊆ X × X and Ŝ be a neutro-
sophic tolerance relation on E given as follows:

Ŝ (C1,Edu)(C1,Exp) (C1,Exp)(C2,Edu) (C1,Edu)(C3,Exp) (C3,Exp)(C1,Exp) (C1,Exp)(C2,Exp)

(C1,Edu)(C1,Exp) (1, 1, 0) (0.3, 0.6, 0.3) (0.3, 0.1, 0.1) (0.9, 0.1, 0.1) (0.3, 0.6, 0.6)
(C1,Exp)(C2,Edu) (0.3, 0.6, 0.3) (1, 1, 0) (0.3, 0.6, 0.7) (0.3, 0.1, 0.3) (0.6, 0.5, 0.1)
(C1,Edu)(C3,Exp) (0.3, 0.1, 0.1) (0.3, 0.6, 0.7) (1, 1, 0) (0.3, 0.1, 0.1) (0.3, 0.6, 0.7)
(C3,Exp)(C1,Exp) (0.9, 0.1, 0.1) (0.3, 0.1, 0.3) (0.3, 0.1, 0.1) (1, 1, 0) (0.3, 0.1, 0.6)
(C1,Exp)(C2,Exp) (0.3, 0.6, 0.6) (0.6, 0.5, 0.1) (0.3, 0.6, 0.7) (0.3, 0.1, 0.6) (1, 1, 0)
(C2,Exp)(C2,Edu) (0.6, 0.5, 0.8) (0.8, 0.7, 0.6) (0.4, 0.5, 0.8) (0.5, 0.6, 0.7) (0.6, 0.5, 0.6)
(C3,Exp)(C2,Exp) (0.8, 0.1, 0.6) (0.3, 0.1, 0.1) (0.5, 0.1, 0.7) (0.8, 0.7, 0.6) (0.3, 0.1, 0.1)
(C3,Exp)(C3,Edu) (0.4, 0.1, 0.9) (0.3, 0.1, 0.1) (0.2, 0.1, 0.2) (0.4, 0.5, 0.9) (0.1, 0.1, 0.2)
(C3,Edu)(C2,Exp) (0.3, 0.2, 0.6) (0.4, 0.5, 0.9) (0.3, 0.2, 0.7) (0.2, 0.1, 0.6) (0.4, 0.5, 0.9)

Ŝ (C2,Exp)(C2,Edu) (C3,Exp)(C2,Exp) (C3,Exp)(C3,Edu) (C3,Edu)(C2,Exp)
(C1,Edu)(C1,Exp) (0.6, 0.5, 0.8) (0.8, 0.1, 0.6) (0.4, 0.1, 0.9) (0.3, 0.2, 0.6)
(C1,Exp)(C2,Edu) (0.8, 0.7, 0.6) (0.3, 0.1, 0.1) (0.3, 0.1, 0.1) (0.4, 0.5, 0.9)
(C1,Edu)(C3,Exp) (0.4, 0.5, 0.8) (0.5, 0.1, 0.7) (0.2, 0.1, 0.2) (0.3, 0.2, 0.7)
(C3,Exp)(C1,Exp) (0.5, 0.6, 0.7) (0.8, 0.7, 0.6) (0.4, 0.5, 0.9) (0.2, 0.1, 0.6)
(C1,Exp)(C2,Exp) (0.6, 0.5, 0.6) (0.3, 0.1, 0.1) (0.1, 0.1, 0.2) (0.4, 0.5, 0.9)
(C2,Exp)(C2,Edu) (1, 1, 0) (0.5, 0.5, 0.7) (0.3, 0.2, 0.7) (0.1, 0.1, 0.2)
(C3,Exp)(C2,Exp) (0.5, 0.5, 0.7) (1, 1, 0) (0.1, 0.1, 0.2) (0.2, 0.1, 0.2)
(C3,Exp)(C3,Edu) (0.3, 0.2, 0.7) (0.1, 0.1, 0.2) (1, 1, 0) (0.1, 0.1, 0.2)
(C3,Edu)(C2,Exp) (0.1, 0.1, 0.2) (0.2, 0.1, 0.2) (0.1, 0.1, 0.2) (1, 1, 0)
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Fig. 6.31 Neutrosophic digraph G = (R̂ A, ŜB)

Let B={((C1, Edu)(C1, Exp), 0.2, 0.1, 0.1), ((C1, Exp)(C2, Edu), 0.1, 0.1, 0.3),
((C1, Edu)(C3, Exp),0.2, 0.1, 0.2), ((C3, Exp)(C1, Exp), 0.2, 0.1, 0.2), ((C1,
Exp)(C2, Exp), 0.1, 0.2, 0.3), ((C2, Exp)(C2, Edu), 0.1, 0.2, 0.3)), ((C3, Exp)
(C2, Exp), 0.1, 0.1, 0.3), ((C3, Exp)(C3, Edu), 0.2, 0.1, 0.2), ((C3, Edu)(C2,
Exp), 0.1, 0.3, 0.3)} be neutrosophic rough set on E . Then the lower and upper
approximations of B are given as follows:

ŜB = {((C1, Edu)(C1, Exp), 0.2, 0.1, 0.3), ((C1, Exp)(C2, Edu), 0.1, 0.1, 0.3),

((C1, Edu)(C3, Exp), 0.2, 0.1, 0.3), ((C3, Exp)(C1, Exp), 0.2, 0.1, 0.3),

((C1, Exp)(C2, Exp), 0.1, 0.2, 0.3), ((C2, Exp)(C2, Edu, 0.1, 0.2, 0.3)),

((C3, Exp)(C2, Exp), 0.1, 0.1, 0.3), ((C3, Exp)(C3, Edu), 0.1, 0.1, 0.3),

((C3, Edu)(C2, Exp), 0.1, 0.3, 0.3)},
ŜB = {((C1, Edu)(C1, Exp), 0.2, 0.2, 0.1), ((C1, Exp)(C2, Edu), 0.2, 0.3, 0.2),

((C1, Edu)(C3, Exp), 0.2, 0.2, 0.1), ((C3, Exp)(C1, Exp), 0.2, 0.2, 0.1),

((C1, Exp)(C2, Exp), 0.2, 0.2, 0.1), ((C2, Exp)(C2, Edu, 0.2, 0.2, 0.3)),

((C3, Exp)(C2, Exp), 0.2, 0.2, 0.2), ((C3, Exp)(C3, Edu), 0.2, 0.2, 0.2),

((C3, Edu)(C2, Exp), 0.2, 0.3, 0.2)}.

Thus, G = (R̂ A, ŜB) and G = (R̂ A, ŜB) are the neutrosophic digraphs as shown
in Figs. 6.31 and 6.32.

To find the best employee using the following calculations, we have

I
R̂A

(C1) = I
R̂A

(C1, Edu) + I
R̂A

(C1, Exp)

2
= 0.9 + 0.7

2
= 0.8
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Fig. 6.32 Neutrosophic digraph G = (R̂ A, ŜB)

I
R̂A

(C2) = I
R̂A

(C2, Edu) + I
R̂A

(C2, Exp)

2
= 0.7 + 0.6

2
= 0.65

I
R̂A

(C3) = I
R̂A

(C3, Edu) + I
R̂A

(C3, Exp)

2
= 0.4 + 0.9

2
= 0.65

max{I
R̂A

(C1), I
R̂ A

(C2), I
R̂ A

(C3)} = max{0.8, 0.65, 0.65} = 0.8.

Thus, C1 is best employee for the post under consideration. So PTCL can hire C1
for the post of administrator.

6.6 Comparative Analysis of Hybrid Models

Rough neutrosophic digraphs and neutrosophic rough digraphs are two different
notions on the basis of their construction and approach. In rough neutrosophic
digraphs, the relation defined on the universe of discourse is crisp equivalence relation
that only classifies the elements which are related. On the other hand, in neutrosophic
rough digraphs the relation defined on the set is neutrosophic tolerance relation. The
neutrosophic tolerance relation not just classifies the elements of the set which are
related but also expresses their relation in terms of three components, namely truth-
membership (T), indeterminacy (I) and falsity (F). This approach leaves a room for
indeterminacy and incompleteness.

Belowweapply themethodof roughneutrosophic digraphs to the above-presented
application (online reviews and ratings).

Here X = {Pel(P), Dawlance(D), Haier(H),Waves(W ), Orient (O)} and
the neutrosophic set on X according to the reviews will be
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A={(P, 0.45, 0.29, 0.37), (D, 0.52, 0.25, 0.49), (H, 0.51, 0.43, 0.45)}(W, 0.47,
0.41, 0.38), (O, 0.51, 0.35, 0.48)}. The equivalence relation on X is given below

R̂ P D H W O
P 1 0 1 0 1
D 0 1 0 0 0
H 1 0 1 0 1
W 0 0 0 1 0
O 1 0 1 0 1

The lower and upper approximations of A are as follows:

R̂ A = {(P, 0.45, 0.29, 0.48), (D, 0.52, 0.25, 0.49), (H, 0.45, 0.29, 0.48),

(W, 0.47, 0.41, 0.38), (O, 0.45, , 0.29, 0.48)},
R̂ A = {(P, 0.51, 0.43, 0.37), (D, 0.52, 0.25, 0.49), (H, 0.51, 0.43, 0.37),

(W, 0.47, 0.41, 0.38), (O, 0.51, 0.43, 0.37)}.

Let E={(P, D), (P, H), (D, H), (D,W ), (H,W ), (H, O), (W, P), (W, O), (O, P),

(O, D)} be the subset of X × X , and the equivalence relation Ŝ on E is given as
follows:

Ŝ (P,D) (P,H) (D,H) (D,W) (H,W) (H,O) (W,P) (W,O) (O,P) (O,D)
(P,D) 1 0 0 0 0 0 0 0 0 0
(P,H) 0 1 0 0 0 1 0 0 1 1
(D,H) 0 0 1 0 0 0 0 0 0 0
(D,W) 0 0 0 1 0 0 0 0 0 0
(H,W) 0 0 0 0 1 0 0 0 0 0
(H,O) 0 1 0 0 0 1 0 0 1 1
(W,P) 0 0 0 0 0 0 1 1 0 0
(W,O) 0 0 0 0 0 0 1 1 0 0
(O,P) 0 1 0 0 0 1 0 0 1 1
(O,D) 0 1 0 0 0 1 0 0 1 1

Thus, the lower and upper approximations of B are calculated as follows:

ŜB = {((P, D), 0.45, 0.25, 0.48), ((P, H), 0.42, 0.24, 0.37), ((D, H), 0.45, 0.25, 0.47),

((D,W ), 0.45, 0.24, 0.48), ((H,W ), 0.45, 0.29, 0.38), ((H, O), 0.42, 0.24, 0.37),

((W, P), 0.42, 0.22, 0.37), ((W, O), 0.42, 0.22, 0.37), ((O, P), 0.42, 0.24, 0.37),

((O, D), 0.42, 0.24, 0.37)},
ŜB = {((P, D), 0.45, 0.25, 0.48), ((P, H), 0.45, 0.29, 0.37), ((D, H), 0.45, 0.25, 0.47),

((D,W ), 0.45, 0.24, 0.48), ((H,W ), 0.45, 0.29, 0.38), ((H, O), 0.45, 0.29, 0.37),

((W, P), 0.45, 0.29, 0.35), ((W, O), 0.45, 0.29, 0.35), ((O, P), 0.45, 0.29, 0.37),

((O, D), 0.45, 0.29, 0.37)}.
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To find the best company, we use the following formula:

S(vi ) =
∑

vi∈X

(TR̂A(vi ) × T
R̂A

(vi )) + (IR̂A(vi ) × I
R̂A

(vi )) − (FR̂A(vi ) × F
R̂A

(vi ))

1 − {T (viv j ) + I (viv j ) − F(viv j )} ,

where

T (viv j ) = max
v j∈X

TŜB(viv j ) × max
v j∈X

T
ŜB

(viv j ),

I (viv j ) = max
v j∈X

IŜB(viv j ) × max
v j∈X

I
ŜB

(viv j ),

F(viv j ) = min
v j∈X

FŜB(viv j ) × min
v j∈X

F
ŜB

(viv j ).

By direct calculations, we have

S(P) = 0.20, S(D) = 0.0971, S(H) = 0.2077, S(W ) = 0.2790, S(O) = 0.2011.

From the above calculations, we have Waves as the best choice and Dawlance as
the least choice for refrigerator; this is because the relation applied in this method
is crisp equivalence relation which does not consider the uncertainty between the
companies of same equivalence class, whereas in our proposed method least choice
for refrigerator is different. So, the results may vary when we apply the method of
rough neutrosophic digraphs and neutrosophic rough digraphs to the same applica-
tion. It means that rough neutrosophic digraphs and neutrosophic rough digraphs
have a different approach.



Chapter 7
Graphs Under Neutrosophic Soft
Environment

In this chapter, we present concepts of neutrosophic soft graphs and intuitionistic
neutrosophic soft graphs. We describe methods of their construction. We consider
applications of neutrosophic soft graphs and intuitionistic neutrosophic soft graphs.
This chapter is due to [22, 23].

7.1 Introduction

In 1999, Molodtsov [116] initiated soft set theory as a new approach for modelling
uncertainties. Later on, Maji et al. [112] expanded this theory to fuzzy soft set the-
ory. Based on the idea of parametrization, a soft set gives a series of approximate
descriptions of a complicate object from various different aspects. Each approximate
description has two parts, namely predicate and approximate value set. A soft set
can be determined by a set-valued mapping assigning to each parameter exactly one
crisp subset of the universe. More specifically, we can define the notion of soft set
in the following way: let X be the universe of discourse and P be the universe of
all possible parameters related to the objects in X . Each parameter is a word or a
sentence. In most cases, parameters are considered to be attributes, characteristics
or properties of objects in X . The pair (X, P) is also known as a soft universe. The
power set of X is denoted by P(X).

Definition 7.1 A pair FM = (F,M) is called soft set over X , where M ⊆ P , and
F is a set-valued function F : M → P(X). In other words, a soft set over X is a
parameterized family of subsets of X . For any e ∈ M , F(e) may be considered as
set of e-approximate elements of soft set (F,M). A soft set FM over the universe X
can be represented by the set of ordered pairs

FM = {(e, FM(e)) | e ∈ M, FM(e) ∈ P(X)}.
© Springer Nature Singapore Pte Ltd. 2018
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Table 7.1 Tabular arrangement of the soft set

Parameters 1 2 3 4 5 6 7 8 9 10

e1 0 1 0 1 0 1 0 1 0 1

e2 0 0 1 0 0 1 0 0 1 0

e3 0 0 0 1 0 0 0 1 0 0

e4 0 0 0 0 1 0 0 0 0 1

Bymeans of parametrization, a soft set produces a series of approximate descriptions
of a complicated object being perceived from various points of view. It is apparent
that a soft set (F,M) over a universe X can be viewed as a parameterized family of
subsets of X . For any parameter e ∈ M , the subset F(e) ⊆ X may be interpreted as
the set of e-approximate elements.

Example 7.1 Let X = {1, 2, 3, . . . , 10} be a set of first ten positive integers and
P = {e1, e2, e3, e4, e5} be the set of parameters, where
e1 stands for the parameter “divisibility by 2”
e2 stands for the parameter “divisibility by 3”
e3 stands for the parameter “divisibility by 4”
e4 stands for the parameter “divisibility by 5”
e5 stands for the parameter “divisibility by prime numbers”.
If M = {e1, e2, e3, e4}, then the soft set (F,M) is given by

S = {F(e1), F(e2), F(e3), F(e4)},

where

F(e1) = {2, 4, 6, 8, 10}, F(e2) = {3, 6, 9}, F(e3) = {4, 8}, F(e4) = {5, 10}.

Thus the soft set (F,M) is a parameterized family of subsets of X . The tabular
arrangement of the soft set (F,M) is shown in Table7.1.

Example 7.2 Suppose a soft set (F,M) describes attractiveness of the shirts which
the authors are going to wear. Here

X = the set of all shirts under consideration = {x1, x2, x3, x4, x5},
M = {colorful, bright, cheap, warm} = {e1, e2, e3, e4},

F(e1) = {x1, x5}, F(e2) = {x2, x4}, F(e3) = {x2, x5}, F(e4) = {x1, x2, x5}.

So, the soft set (F,M) is a subfamily {F(e1), F(e2), F(e3), F(e4)} of P(X), which
represents the attractiveness of shirts w. r. t the parameters given.

In 2013, Maji [111] introduced the concept of neutrosophic soft sets and Deli and
Broumi [66] introduced the notion of neutrosophic soft relations.

Definition 7.2 Let X be an initial universe. Let P be a set of parameters andM ⊂ P .
Let P(X) denote the set of all neutrosophic sets of X . The collection (F,M) is
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termed to be the neutrosophic soft set over X , where F is a mapping given by
F : M → P(X).

Definition 7.3 Let (F,M) and (G, N ) be two neutrosophic soft sets over the com-
mon universe X . (F,M) is said to be neutrosophic soft subset of (G, N ) if M ⊂ N ,
and

TF(e)(x) ≤ TG(e)(x),

IF(e)(x) ≤ IG(e)(x),

FF(e)(x) ≥ FG(e)(x) for all e ∈ M, x ∈ X.

Definition 7.4 Let (H,M) and (G, N ) be two neutrosophic soft sets over the com-
mon universe X . The union of two neutrosophic soft sets (H,M) and (G, N )

is neutrosophic soft set (K ,C) = (H,M) ∪ (G, N ), where C = M ∪ N and the
truth-membership, indeterminacy-membership and falsity-membership of (K ,C)

are defined by

TK (e)(x) =
⎧
⎨

⎩

TH(e)(x), if e ∈ M − N ,

TG(e)(x), if e ∈ N − M,

max(TH(e)(x), TG(e)(x)) if e ∈ M ∩ N .

IK (e)(x) =
⎧
⎨

⎩

IH(e)(x), if e ∈ M − N ,

IG(e)(x), if e ∈ N − M,

max(IH(e)(x), IG(e)(x)) if e ∈ M ∩ N .

FK (e)(x) =
⎧
⎨

⎩

FH(e)(x), if e ∈ M − N ,

FG(e)(x), if e ∈ N − M,

min(FH(e)(x), FG(e)(x)) if e ∈ M ∩ N .

Definition 7.5 Let (H,M) and (G, N ) be two neutrosophic soft sets over the com-
mon universe X . The intersection of two neutrosophic soft sets (H,M) and (G, N )

is neutrosophic soft set (K ,C) = (H,M) ∩ (G, N ), where C = M ∩ N and the
truth-membership, indeterminacy-membership and falsity-membership of (K ,C)

are defined by

TK (e)(x) =
⎧
⎨

⎩

TH(e)(x), if e ∈ M − N ,

TG(e)(x), if e ∈ N − M,

min(TH(e)(x), TG(e)(x)) if e ∈ M ∩ N .

IK (e)(x) =
⎧
⎨

⎩

IH(e)(x), if e ∈ M − N ,

IG(e)(x), if e ∈ N − M,

min(IH(e)(x), IG(e)(x)) if e ∈ M ∩ N .
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FK (e)(x) =
⎧
⎨

⎩

FH(e)(x), if e ∈ M − N ,

FG(e)(x), if e ∈ N − M,

max(FH(e)(x), FG(e)(x)) if e ∈ M ∩ N .

Definition 7.6 Let (H,M) and (G, N ) be two neutrosophic soft sets over the same
universe X . The Cartesian product of (H,M) and (G, N ) is denoted by (H,M) ×
(G, N ) = (K ,M × N ), and the truth-membership, indeterminacy-membership and
falsity-membership functions of (K ,M × N ) are defined by

TK (a,b)(x) = min{TH(a)(x), TG(b)(x)},
IK (a,b)(x) = min{IH(a)(x), IG(b)(x)},
FK (a,b)(x) = max{FH(a)(x), FG(b)(x)}.

Definition 7.7 Let (H,M) and (G, N ) be two neutrosophic soft sets over the same
universe X . A neutrosophic soft relation from (H,M) to (G, N ) is of the form
(R,C), where C ⊂ M × N and R(x, y) ⊂ (H,M) × (G, N ) for all (e1, e2) ∈ C .

7.2 Neutrosophic Soft Graphs

Definition 7.8 A single-valued neutrosophic soft graph on a nonempty set X is an
three-ordered tuple G = (F, K ,M) if it satisfies the following conditions:
(i) M is a nonempty set of parameters.
(ii) (F,M) is a single-valued neutrosophic soft set over X.
(iii) (K ,M) is a single-valued neutrosophic soft set over E ⊆ X × X .
(iv) (F(e), K (e)) is a single-valued neutrosophic graph, that is,

TK (e)(xy) ≤ min{TF(e)(x), TF(e)(y)},
IK (e)(xy) ≤ min{IF(e)(x), IF(e)(y)},
FK (e)(xy) ≤ max{FF(e)(x), FF(e)(y)}

such that

0 ≤ TK (e)(xy) + IK (e)(xy) + FK (e)(xy) ≤ 3 ∀ e ∈ M, x, y ∈ X.

The neutrosophic graph (F(e), K (e)) is denoted by H(e) for convenience. A single-
valued neutrosophic soft graph is a parameterized family of single-valued neutro-
sophic graphs. The class of all single-valued neutrosophic soft graphs is denoted by
NS(G∗). Note that

TK (e)(xy) = IK (e)(xy) = 0, FK (e)(xy) = 1, ∀ xy ∈ X × X − E, e /∈ M.
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Fig. 7.1 Neutrosophic soft graph G = {H(e1), H(e2)}

Definition 7.9 Let G1 = (F1, K1,M) and G2 = (F2, K2, N ) be two neutrosophic
soft graphs of G∗. Then G1 is neutrosophic soft subgraph of G2 if

(i) M ⊆ N ,
(ii) H1(e) is a partial subgraph of H2(e) for all e ∈ M .

Example 7.3 Consider a simple graph G∗ such that X = {y1, y2, y3, y4} and E =
{y1y2, y1y3, y1y4, y2y4, y3y4}. Let M = {e1, e2} be a set of parameters, and let
(F,M) be a neutrosophic soft set over X with neutrosophic approximation func-
tion
F : M → P(X) defined by

F(e1) = {(y1, 0.5, 0.4, 0.6), (y2, 0.2, 0.6, 0.7), (y3, 0.2, 0.4, 0.5), (y4, 0.1, 0.4, 0.3)},

F(e2) = {(y1, 0.2, 0.3, 0.5), (y2, 0.4, 0.7, 0.3), (y3, 0.6, 0.7, 0.4), (y4, 0.2, 0.4, 0.5)}.

Let (K ,M) be a neutrosophic soft set over E with neutrosophic approximation
function
K : M → P(E) defined by

K (e1) = {(y1y2, 0.1, 0.3, 0.5), (y1y3, 0.2, 0.3, 0.3), (y1y4, 0.1, 0.2, 0.4)},

K (e2) = {(y1y3, 0.1, 0.2, 0.4), (y2y4, 0.1, 0.3, 0.4), (y3y4, 0.2, 0.3, 0.5)}.

Clearly, H(e1) = (F(e1), K (e1)) and H(e2) = (F(e2), K (e2)) are neutrosophic
graphs corresponding to the parameters e1 and e2, respectively, as shown in Fig. 7.1.

Hence G = {H(e1), H(e2)} is a neutrosophic soft graph of G∗.
Tabular representation of a neutrosophic soft graph is given in Table7.2.

Definition 7.10 The neutrosophic soft graph G1 = (G∗, F1, K1, N ) is called span-
ning neutrosophic soft subgraph of G = (G∗, F, K ,M) if
(i) N ⊆ M,

(ii) TF1(e)(y) = TF(e)(y),
IF1(e)(y) = IF(e)(y),
FF1(e)(y) = FF(e)(y), for all e ∈ M, y ∈ X.
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Table 7.2 Tabular representation of neutrosophic soft graph

F y1 y2 y3 y4

e1 (0.5, 0.4, 0.6) (0.2, 0.6, 0.7) (0.2, 0.4, 0.5) (0.1, 0.4, 0.3)

e2 (0.2, 0.3, 0.5) (0.4, 0.7, 0.3) (0.6, 0.7, 0.4) (0.2, 0.4, 0.5)

K y1y2 y2 y3 y1y3 y1y4 y2 y4 y3y4
e1 (0.1, 0.3, 0.5) (0.0, 0.0, 1.0) (0.2, 0.3, 0.3) (0.1, 0.2, 0.4) (0.0, 0.0, 1.0) (0.0, 0.0, 1.0)
e2 (0.0, 0.0, 1.0) (0.0, 0.0, 1.0) (0.1, 0.2, 0.4) (0.0, 0.0, 1.0) (0.1, 0.3, 0.4) (0.2, 0.3, 0.5)

Definition 7.11 Let G1 = (F1, K1,M) and G2 = (F2, K2, N ) be two neutrosophic
soft graphs of G∗

1 = (X1, E1) and G∗
2 = (X2, E2), respectively. TheCartesian prod-

uct of G1 and G2 is a neutrosophic soft graph G = G1 × G2 = (F, K ,M × N ),
where
(F = F1 × F2,M × N ) is a neutrosophic soft set over

X = X1 × X2,

(K = K1 × K2,M × N ) is a neutrosophic soft set over

E = {((x, y1), (x, y2)) : x ∈ X1, (y1, y2) ∈ E2} ∪ {((x1, y), (x2, y)) : y ∈ X2, (x1, x2) ∈ E1}

and (F, K ,M × N ) are neutrosophic soft graphs such that
(i)

TF(a,b)(x, y) = TF1(a)(x) ∧ TF2(b)(y),
IF(a,b)(x, y) = IF1(a)(x) ∧ IF2(b)(y),
FF(a,b)(x, y) = FF1(a)(x) ∨ FF2(b)(y), ∀ (x, y) ∈ X, (a, b) ∈ M × N ,

(ii)

TK (a,b)
(
(x, y1), (x, y2)

) = TF1(a)(x) ∧ TK2(b)(y1, y2),
IK (a,b)

(
(x, y1), (x, y2)

) = IF1(a)(x) ∧ IK2(b)(y1, y2),
FK (a,b)

(
(x, y1), (x, y2)

) = FF1(a)(x) ∨ FK2(b)(y1, y2), ∀ x ∈ X1, (y1, y2) ∈ E2,

(iii)

TK (a,b)
(
(x1, y), (x2, y)

) = TF2(b)(y) ∧ TK1(a)(x1, x2),
IK (a,b)

(
(x1, y), (x2, y)

) = IF2(b)(y) ∧ IK1(a)(x1, x2),
FK (a,b)

(
(x1, y), (x2, y)

) = FF2(b)(y) ∨ FK1(a)(x1, x2), ∀ y ∈ X2, (x1, x2) ∈ E1.

H(a, b) = H1(a) × H2(b) for all (a, b) ∈ M × N are neutrosophic graphs of G.
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Example 7.4 LetM = {e1, e2} and N = {e3, e4}be a set of parameters. Consider two
neutrosophic soft graphs G1 = (H1,M) = {H1(e1), H1(e2)} and G2 = (H2, N ) =
{H2(e3), H2(e4)} such that

H1(e1) = ({(x1, 0.2, 0.4, 0.6), (x2, 0.4, 0.5, 0.7), (x3, 0.4, 0.5, 0.7)},
{(x1x2, 0.2, 0.3, 0.4), (x2x3, 0.2, 0.3, 0.4), (x1x3, 0.1, 0.2, 0.5)}

)
,

H1(e2) = ({(x1, 0.3, 0.5, 0.7), (x2, 0.4, 0.5, 0.6), (x3, 0.5, 0.4, 0.3)},
{(x1x2, 0.2, 0.4, 0.5), (x1x3, 0.2, 0.3, 0.4)}

)
,

H2(e3) = ({(y1, 0.40.5, 0.3), (y2, 0.3, 0.4, 0.1), (y3, 0.3, 0.5, 0.8), (y4, 0.5, 0.3, 0.4)},
{(y1y2, 0.2, 0.3, 0.3), (y1y3, 0.2, 0.3, 0.5), (y3y4, 0.2, 0.2, 0.5)}

)
,

H2(e4) = ({(y1, 0.4, 0.5, 0.8), (y2, 0.6, 0.3, 0.7), (y3, 0.4, 0.4, 0.5), (y4, 0.7, 0.2, 0.6)},
{(y1y2, 0.3, 0.4, 0.6), (y1y3, 0.2, 0.3, 0.5), (y1y4, 0.3, 0.2, 0.5)}

)
.

The Cartesian product of G1 and G2 is G1 × G2 = G = (H,M × N ), where

M × N = {(e1, e3), (e1, e4), (e2, e3), (e2, e4)},
H(e1, e3) = H1(e1) × H2(e3),

H(e1, e4) = H1(e1) × H2(e4),

H(e2, e3) = H1(e2) × H2(e3),

H(e2, e4) = H1(e2) × H2(e4),

are neutrosophic graphs of G = G1 × G2.
H(e1, e3) = H1(e1) × H2(e3) is shown in Fig. 7.2.
In the similar way, Cartesian product of

H(e1, e4) = H1(e1) × H2(e4),

H(e2, e3) = H1(e2) × H2(e3),

H(e2, e4) = H1(e2) × H2(e4)

can be drawn. Hence G = G1 × G2 = {H(e1, e3), H(e1, e4), H(e2, e3), H(e2, e4)}
is a neutrosophic soft graph.

Theorem 7.1 The Cartesian product of two neutrosophic soft graphs is a neutro-
sophic soft graph.

Proof LetG1 = (F1, K1,M) andG2 = (F2, K2, N )be twoneutrosophic soft graphs
of G∗

1 = (X1, E1) and G∗
2 = (X2, E2), respectively. Let G = G1 × G2 =

(F, K ,M × N ) be the Cartesian product of G1 and G2. We claim that G =
(F, K ,M × N ) is a neutrosophic soft graph and

(H,M × N ) = {F1 × F2(ai , b j ), K1 × K2(ai , b j )}, ∀ ai ∈ M, b j ∈ N

for i = 1, 2, . . . ,m, j = 1, 2, . . . , n are neutrosophic graphs of G.
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Fig. 7.2 Cartesian product:
H1(e1) × H2(e3)
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Consider,

TK(ai ,b j )

(
(x, y1), (x, y2)

) =min{TF1(ai )(x), TK2(b j )(y1, y2)}
≤min{TF1(ai )(x),min{TF2(b j )(y1), TF2(b j )(y2)}}
=min{min{TF1(ai )(x), TF2(b j )(y1)},min{TF1(ai )(x), TF2(b j )(y2)}}
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TK(ai ,b j )

(
(x, y1), (x, y2)

) ≤min{(TF1(ai ) × TF2(b j ))(x, y1), (TF1(ai ) × TF2(b j ))(x, y2)},
for i = 1, 2, . . . ,m, j = 1, 2, . . . , n,

IK(ai ,b j )

(
(x, y1), (x, y2)

) =min{IF1(ai )(x), IK2(b j )(y1, y2)}
≤min{IF1(ai )(x),min{IF2(b j )(y1), IF2(b j )(y2)}}
=min{min{IF1(ai )(x), IF2(b j )(y1)},min{IF1(ai )(x), IF2(b j )(y2)}}

IK(ai ,b j )

(
(x, y1), (x, y2)

) ≤min{(IF1(ai ) × IF2(b j ))(x, y1), (IF1(ai ) × IF2(b j ))(x, y2)},
for i = 1, 2, . . . ,m, j = 1, 2, . . . , n

FK(ai ,b j )

(
(x, y1), (x, y2)

) =max{FF1(ai )(x), FK2(b j )(y1, y2)}
f or i = 1, 2, . . . ,m, j = 1, 2, . . . , n

≤max{FF1(ai )(x),max{FF2(b j )(y1), FF2(b j )(y2)}}
=max{max{FF1(ai )(x), FF2(b j )(y1)},max{FF1(ai )(x), FF2(b j )(y2)}}

FK(ai ,b j )

(
(x, y1), (x, y2)

) ≤max{(FF1(ai ) × FF2(b j ))(x, y1), (FF1(ai ) × FF2(b j ))(x, y2)},
for i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

Similarly,

TK(ai ,b j )
((x1, y), (x2, y)) ≤min{(TF1(ai ) × TF2(b j ))(x1, y), (TF1(ai ) × TF2(b j ))(x2, y)},

for i = 1, 2, . . . ,m, j = 1, 2, . . . , n,

IK(ai ,b j )
((x1, y), (x2, y)) ≤min{(IF1(ai ) × IF2(b j ))(x1, y), (IF1(ai ) × IF2(b j ))(x2, y)},

for i = 1, 2, . . . ,m, j = 1, 2, . . . , n,

FK(ai ,b j )
((x1, y), (x2, y)) ≤max{(FF1(ai ) × FF2(b j ))(x1, y), (FF1(ai ) × FF2(b j ))(x2, y)},

for i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

Hence G = (F, K ,M × N ) is a neutrosophic soft graph.

Definition 7.12 The cross product of G1 and G2 is a neutrosophic soft graph
G = G1 � G2 = (F, K ,M × N ),where (F,M × N ) is a neutrosophic soft set over
X = X1 × X2, (K ,M × N ) is a neutrosophic soft set over E = {((x1, y1), (x2, y2)) :
(x1, x2) ∈ E1, (y1, y2) ∈ E2}, and (F, K ,M × N ) are neutrosophic soft graphs such
that
(i)

TF(a,b)(x, y) = TF1(a)(x) ∧ TF2(b)(y),
IF(a,b)(x, y) = IF1(a)(x) ∧ IF2(b)(y),
FF(a,b)(x, y) = FF1(a)(x) ∨ FF2(b)(y), ∀ (x, y) ∈ X, (a, b) ∈ M × N
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(ii)

TK (a,b)
(
(x1, y1), (x2, y2)

) = TK1(a)(x1, x2) ∧ TK2(b)(y1, y2),
IK (a,b)

(
(x1, y1), (x2, y2)

) = IK1(a)(x1, x2) ∧ IK2(b)(y1, y2),
FK (a,b)

(
(x1, y1), (x2, y2)

) = FK1(a)(x1, x2) ∨ FK2(b)(y1, y2), ∀ (x1, x2) ∈ E1, (y1, y2) ∈ E2.

H(a, b) = H1(a) � H2(b) for all (a, b) ∈ M × N are neutrosophic graphs of G.

Theorem 7.2 The cross product of two neutrosophic soft graphs is a neutrosophic
soft graph.

Proof LetG1 = (F1, K1,M) andG2 = (F2, K2, N )be twoneutrosophic soft graphs
of G∗

1 = (X1, E1) and G∗
2 = (X2, E2), respectively. Let G = G1 � G2 = (F, K ,

M × N ) be the cross product of G1 and G2. We claim that G = (F, K ,M × N ) is
a neutrosophic soft graph and

(H,M × N ) = {F1 � F2(ai , b j ), K1 � K2(ai , b j )} ∀ ai ∈ M, b j ∈ N

for i = 1, 2, . . . ,m, j = 1, 2, . . . , n are neutrosophic graphs of G.
Consider,

TK (ai ,b j )

(
(x1, y1), (x2, y2)

) =min{TK1(ai )(x1, x2), TK2(b j )(y1, y2)},
for i = 1, 2, . . . ,m, j = 1, 2, . . . , n

≤min{min{TF1(ai )(x1), TF1(ai )(x2)},min{TF2(b j )(y1), TF2(b j )(y2)}}
=min{min{TF1(ai )(x1), TF2(b j ))(y1)},min{TF1(ai )(x2), TF2(b j )(y2)}}

TK (ai ,b j )

(
(x1, y1), (x2, y2)

) ≤min{TF1(ai ) � TF2(b j )(x1, y1), TF1(ai ) � TF2(b j )(x2, y2)},
for i = 1, 2, . . . ,m, j = 1, 2, . . . , n,

IK (ai ,b j )

(
(x1, y1), (x2, y2)

) =min{IK1(ai )(x1, x2), IK2(b j )(y1, y2)},
for i = 1, 2, . . . ,m, j = 1, 2, . . . , n

≤min{min{IF1(ai )(x1), IF1(ai )(x2)},min{IF2(b j )(y1), IF2(b j )(y2)}}
=min{min{IF1(ai )(x1), IF2(b j ))(y1)},min{IF1(ai )(x2), IF2(b j )(y2)}}

IK (ai ,b j )

(
(x1, y1), (x2, y2)

) ≤min{IF1(ai ) � IF2(b j )(x1, y1), IF1(ai ) � IF2(b j )(x2, y2)},
for i = 1, 2, . . . ,m, j = 1, 2, . . . , n,

FK (ai ,b j )

(
(x1, y1), (x2, y2)

) =max{FK1(ai )(x1, x2), FK2(b j )(y1, y2)},
for i = 1, 2, . . . ,m, j = 1, 2, . . . , n

≤max{max{FF1(ai )(x1), FF1(ai )(x2)},max{FF2(b j )(y1), FF2(b j )(y2)}}
=max{max{FF1(ai )(x1), FF2(b j ))(y1)},max{FF1(ai )(x2), FF2(b j )(y2)}}

FK (ai ,b j )

(
(x1, y1), (x2, y2)

) ≤max{FF1(ai ) � FF2(b j )(x1, y1), FF1(ai ) � FF2(b j )(x2, y2)},
for i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

Hence G = (F, K ,M × N ) is a neutrosophic soft graph.
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Definition 7.13 The lexicographic product ofG1 andG2 is a neutrosophic soft graph
G = G1�G2 = (F, K ,M × N ), where (F,M × N ) is a neutrosophic soft set over
X = X1 × X2, (K ,M × N ) is a neutrosophic soft set over E = {((x, y1), (x, y2)) :
u ∈ X1, (y1, y2) ∈ E2} ∪ {((x1, y1), (x2, y2)) : (x1, x2) ∈ E1, (y1, y2) ∈ E2}, and
(F, K ,M × N ) are neutrosophic soft graphs such that
(i)

TF(a,b)(x, y) = TF1(a)(x) ∧ TF2(b)(y),
IF(a,b)(x, y) = IF1(a)(x) ∧ IF2(b)(y),
FF(a,b)(x, y) = FF1(a)(x) ∨ FF2(b)(y), ∀ (x, y) ∈ X, (a, b) ∈ M × N ,

(ii)

TK (a,b)
(
(x, y1), (x, y2)

) = TF1(a)(x) ∧ TK2(b)(y1, y2),
IK (a,b)

(
(x, y1), (x, y2)

) = IF1(a)(x) ∧ IK2(b)(y1, y2),
FK (a,b)

(
(x, y1), (x, y2)

) = FF1(a)(x) ∨ FK2(b)(y1, y2), ∀ x ∈ X1, (y1, y2) ∈ E2,

(iii)

TK (a,b)
(
(x1, y1), (x2, y2)

) = TK1(a)(x1, x2) ∧ TK2(b)(y1, y2),
IK (a,b)

(
(x1, y1), (x2, y2)

) = IK1(a)(x1, x2) ∧ IK2(b)(y1, y2),
FK (a,b)

(
(x1, y1), (x2, y2)

) = FK1(a)(x1, x2) ∨ FK2(b)(y1, y2), ∀ (x1, x2) ∈ E1, (y1, y2) ∈ E2.

H(a, b) = H1(a) � H2(b) for all (a, b) ∈ M × N are neutrosophic graphs of G.

Theorem 7.3 The lexicographic product of two neutrosophic soft graphs is a neu-
trosophic soft graph.

Definition 7.14 The strong product of G1 and G2 is a neutrosophic soft graph G =
G1 ⊗ G2 = (F, K ,M × N ),where (F,M × N ) is a neutrosophic soft set over X =
X1 × X2, (K ,M × N ) is a neutrosophic soft set over E = {((x, y1), (x, y2)) : u ∈
X1, (y1, y2) ∈ E2} ∪ {((x1, y), (x2, y)) : y ∈ X2, (x1, x2) ∈ E1} ∪ {((x1, y1),
(x2, y2)) : (x1, x2) ∈ E1, (y1, y2) ∈ E2}, and (F, K ,M × N ) are neutrosophic soft
graphs such that
(i)

TF(a,b)(x, y) = TF1(a)(x) ∧ TF2(b)(y),
IF(a,b)(x, y) = IF1(a)(x) ∧ IF2(b)(y),
FF(a,b)(x, y) = FF1(a)(x) ∨ FF2(b)(y), ∀ (x, y) ∈ X, (a, b) ∈ M × N ,

(ii)

TK (a,b)
(
(x, y1), (x, y2)

) = TF1(a)(x) ∧ TK2(b)(y1, y2),
IK (a,b)

(
(x, y1), (x, y2)

) = IF1(a)(x) ∧ IK2(b)(y1, y2),
FK (a,b)

(
(x, y1), (x, y2)

) = FF1(a)(x) ∨ FK2(b)(y1, y2), ∀ x ∈ X1, (y1, y2) ∈ E2,
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(iii)

TK (a,b)
(
(x1, y), (x2, y)

) = TF2(b)(y) ∧ TK1(a)(x1, x2),
IK (a,b)

(
(x1, y), (x2, y)

) = IF2(b)(y) ∧ IK1(a)(x1, x2),
FK (a,b)

(
(x1, y), (x2, y)

) = FF2(b)(y) ∨ FK1(a)(x1, x2), ∀ y ∈ X2, (x1, x2) ∈ E1,

(iv)

TK (a,b)
(
(x1, y1), (x2, y2)

) = TK1(a)(x1, x2) ∧ TK2(b)(y1, y2),
IK (a,b)

(
(x1, y1), (x2, y2)

) = IK1(a)(x1, x2) ∧ IK2(b)(y1, y2),
FK (a,b)

(
(x1, y1), (x2, y2)

) = FK1(a)(x1, x2) ∨ FK2(b)(y1, y2), ∀ (x1, x2) ∈ E1, (y1, y2) ∈ E2.

H(a, b) = H1(a) ⊗ H2(b) for all (a, b) ∈ M × N are neutrosophic graphs of G.

Theorem 7.4 The strong product of two neutrosophic soft graphs is a neutrosophic
soft graph.

Definition 7.15 The composition of G1 and G2 is a neutrosophic soft graph G =
G1[G2] = (F, K ,M × N ), where
(F,M × N ) is a neutrosophic soft set over

X = X1 × X2,

(K ,M × N ) is a neutrosophic soft set over

E = {((x, y1), (x, y2)) : u ∈ X1, (y1, y2) ∈ E2} ∪
{((x1, y), (x2, y)) : v ∈ X2, (x1, x2) ∈ E1} ∪
{((x1, y1), (x2, y2)) : (x1, x2) ∈ E1, y1 �= y2}

and (F, K ,M × N ) are neutrosophic soft graphs such that
(i)

TF(a,b)(x, y) = TF1(a)(x) ∧ TF2(b)(y),
IF(a,b)(x, y) = IF1(a)(x) ∧ IF2(b)(y),
FF(a,b)(x, y) = FF1(a)(x) ∨ FF2(b)(y), ∀ (x, y) ∈ X, (a, b) ∈ M × N ,

(ii)

TK (a,b)((x, y1), (x, y2)) = TF1(a)(x) ∧ TK2(b)(y1, y2),
IK (a,b)((x, y1), (x, y2)) = IF1(a)(x) ∧ IK2(b)(y1, y2),
FK (a,b)((x, y1), (x, y2)) = FF1(a)(x) ∨ FK2(b)(y1, y2), ∀ x ∈ X1, (y1, y2) ∈ E2,

(iii)

TK (a,b)
(
(x1, y), (x2, y)

) = TF2(b)(y) ∧ TK1(a)(x1, x2),
IK (a,b)

(
(x1, y), (x2, y)

) = IF2(b)(y) ∧ IK1(a)(x1, x2),
FK (a,b)

(
(x1, y), (x2, y)

) = FF2(b)(y) ∨ FK1(a)(x1, x2), ∀ y ∈ X2, (x1, x2) ∈ E1,
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(iv)

TK (a,b)
(
(x1, y1), (x2, y2)

) = TK1(a)(x1, x2) ∧ TF2(b)(y1) ∧ TF2(b)(y2),
IK (a,b)

(
(x1, y1), (x2, y2)

) = IK1(a)(x1, x2) ∧ IF2(b)(y1) ∧ IF2(b)(y2),
FK (a,b)

(
(x1, y1), (x2, y2)

) = FK1(a)(x1, x2) ∨ FF2(b)(y1) ∨ FF2(b)(y2), ∀ (x1, x2) ∈ E1,

where y1 �= y2.

H(a, b) = H1(a)[H2(b)] for all (a, b) ∈ M × N are neutrosophic graphs of G.

Example 7.5 Let M = {e1} and N = {e2, e3} be the parameter sets. Let G1 and G2

be the two neutrosophic soft graphs defined as follows:

G1 = {H1(e1)} = {({(x1, 0.3, 0.4, 0.6), (x2, 0.4, 0.5, 0.7)}, {(x1x2, 0.3, 0.4, 0.6)})},

G2 = {H2(e2), H2(e3)} = {({(y1, 0.4, 0.5, 0.3), (y2, 0.7, 0.2, 0.4), (y3, 0.5, 0.6, 0.3)},
{(y1y3, 0.4, 0.5, 0.2), (y2y3, 0.5, 0.2, 0.4)}),
({(y1, 0.3, 0.4, 0.4), (y2, 0.2, 0.4, 0.8), (y3, 0.6, 0.5, 0.7)},
{(y1y2, 0.2, 0.3, 0.7), (y1y3, 0.1, 0.3, 0.6)})}.

The composition of G1 and G2 is G = G1[G2] = (H,M × N ), where

M × N = {(e1, e2), (e1, e3)},
H(e1, e2) = H1(e1)[H2(e2)],
H(e1, e3) = H1(e1)[H2(e3)]

are neutrosophic graphs of G1[G2]. H1(e1)[H2(e2)] is shown in Fig. 7.3.
Similarly, composition of neutrosophic graphs H1(e1) and H2(e3) of G1 and G2,

respectively, can be drawn.
Hence G = G1[G2] = {H1(e1)[H2(e2)], H1(e1)[H2(e3)]} is a neutrosophic soft

graph.

Theorem 7.5 If G1 and G2 are neutrosophic soft graphs, then G1[G2] is a neutro-
sophic soft graph.

Proof G1 = (F1, K1,M) andG2 = (F2, K2, N ) are two neutrosophic soft graphs of
G∗

1 = (X1, E1) and G∗
2 = (X2, E2), respectively. Let G1[G2] = G = (F, K ,M ×

N ) be the composition ofG1 andG2. We claim thatG1[G2] = G = (F, K ,M × N )

is a neutrosophic soft graph and

(H,M × N ) = {F1(ai )[F2(b j )], K1(ai )[K2(b j )]}, ∀ ai ∈ M, b j ∈ N ,

for i = 1, 2, . . . ,m, j = 1, 2, . . . , n are neutrosophic graphs of G.
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Fig. 7.3 Composition: H1(e1)[H2(e2)]

Let u ∈ X1 and (y1, y2) ∈ E2, and we have

TK (ai ,b j )
(
(x, y1), (x, y2)

) =min{TF1(ai )(x), TK2(b j )(y1, y2)}, for i = 1, 2, . . . ,m, j = 1, 2, . . . , n

TK (ai ,b j )
(
(x, y1), (x, y2)

) ≤min{TF1(ai )(x),min{TF2(b j )(y1), TF2(b j )(y2)}}
=min{min{TF1(ai )(x), TF2(b j )(y1)}min{TF1(ai )(x), TF2(b j )(y2)}}
=min{(TF1(ai ) × TF2(b j ))(x, y1), (TF1(ai ) × TF2(b j ))(x, y2)}

TK (ai ,b j )
(
(x, y1), (x, y2)

) ≤min{TF(ai ,b j )(x, y1), TF(ai ,b j )(x, y2)},

IK (ai ,b j )
(
(x, y1), (x, y2)

) =min{IF1(ai )(x), IK2(b j )(y1, y2)}, for i = 1, 2, . . . ,m, j = 1, 2, . . . , n

IK (ai ,b j )
(
(x, y1), (x, y2)

) ≤min{IF1(ai )(x),min{IF2(b j )(y1), IF2(b j )(y2)}}
=min{min{IF1(ai )(x), IF2(b j )(y1)},min{IF1(ai )(x), IF2(b j )(y2)}}
=min{(IF1(ai ) × IF2(b j ))(x, y1), (IF1(ai ) × IF2(b j ))(x, y2)}

IK (ai ,b j )
(
(x, y1), (x, y2)

) ≤min{IF(ai ,b j )(x, y1), IF(ai ,b j )(x, y2)},

FK (ai ,b j )
(
(x, y1), (x, y2)

) =max{FF1(ai )(x), FK2(b j )(y1, y2)}, for i = 1, 2, . . . ,m, j = 1, 2, . . . , n

FK (ai ,b j )
(
(x, y1), (x, y2)

) ≤max{FF1(ai )(x),max{FF2(b j )(y1), FF2(b j )(y2)}}
=max{max{FF1(ai )(x), FF2(b j )(y1)},max{FF1(ai )(x), FF2(b j )(y2)}}
=max{(FF1(ai ) × FF2(b j ))(x, y1), (FF1(ai ) × FF2(b j ))(x, y2)}

FK (ai ,b j )
(
(x, y1), (x, y2)

) ≤max{FF(ai ,b j )(x, y1), FF(ai ,b j )(x, y2)}.

Similarly, for any y ∈ X2 and (x1, x2) ∈ E1, we have

TK (ai ,b j )

(
(x1, y), (x2, y)

) ≤min{TF(ai ,b j )(x1, y), TF(ai ,b j )(x2, y)},
IK (ai ,b j )

(
(x1, y), (x2, y)

) ≤min{IF(ai ,b j )(x1, y), IF(ai ,b j )(x2, y)},
FK (ai ,b j )

(
(x1, y), (x2, y)

) ≤max{FF(ai ,b j )(x1, y), FF(ai ,b j )(x2, y)}.
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Let (x1, y1)(x2, y2) ∈ E , (x1, x2) ∈ E1, and y1 �= y2. Then, we have

TK (ai ,b j )

(
(x1, y1), (x2, y2)

) =min{TK1(ai )(x1, x2), TF2(b j )(y1), TF2(b j )(y2)}
≤min{min{TF1(ai )(x1), TF1(ai )(x2)}, TF2(b j )(y1), TF2(b j )(y2)}
=min{min{TF1(ai )(x1), TF2(b j )(y1)},min{TF1(ai )(x2), TF2(b j )(y2)}}

TK (ai ,b j )

(
(x1, y1), (x2, y2)

) ≤min{TF(ai ,b j )(x1, y1), TF(ai ,b j )(x2, y2)},

IK (ai ,b j )

(
(x1, y1), (x2, y2)

) =min{IK1(ai )(x1, x2), IF2(b j )(y1), IF2(b j )(y2)}
≤min{min{IF1(ai )(x1), IF1(ai )(x2)}, IF2(b j )(y1), IF2(b j )(y2)}
=min{min{IF1(ai )(x1), IF2(b j )(y1)},min{IF1(ai )(x2), IF2(b j )(y2)}}

IK (ai ,b j )

(
(x1, y1), (x2, y2)

) ≤min{IF(ai ,b j )(x1, y1), IF(ai ,b j )(x2, y2)},

FK (ai ,b j )

(
(x1, y1), (x2, y2)

) =max{FK1(ai )(x1, x2), FF2(b j )(y1), FF2(b j )(y2)}
≤max{max{FF1(ai )(x1), FF1(ai )(x2)}, FF2(b j )(y1), FF2(b j )(y2)}
=max{max{FF1(ai )(x1), FF2(b j )(y1)},max{FF1(ai )(x2), FF2(b j )(y2)}}

FK (ai ,b j )

(
(x1, y1), (x2, y2)

) ≤max{FF(ai ,b j )(x1, y1), FF(ai ,b j )(x2, y2)}.

Hence G = (F, K ,M × N ) is a neutrosophic soft graph.

Definition 7.16 The complement of a neutrosophic soft graph G = (F, K ,M)

denoted by Gc = (Fc, Kc,Mc) is defined as follows:

(i) Mc = M,

(ii) Fc(e) = F(e),
(iii) TKc(e)(x, y) = TF(e)(x) ∧ TF(e)(y) − TK (e)(x,y),

IK c(e)(x, y) = IF(e)(x) ∧ IF(e)(y) − IK (e)(x,y),

FKc(e)(x, y) = FF(e)(x) ∨ FF(e)(y) − FK (e)(x,y), for all x, y ∈ X, e ∈ M.

Example 7.6 Consider an undirected graph G∗, where X = {x1, x2, x3, x4} and
E = {x1x2, x2x4, x3x4}. Let M = {e1, e2} and let (F,M) be a neutrosophic soft set
over X with its approximate function F : M → P(X) given by

F(e1) = {(x1, 0.5, 0.6, 0.7), (x2, 0.4, 0.5, 0.3), (x3, 0.7, 0.5, 0.8), (x4, 0.4, 0.9, 0.5)},
F(e2) = {(x1, 0.4, 0.5, 0.2), (x2, 0.3, 0.6, 0.8), (x3, 0.3, 0.4, 0.5), (x4, 0.7, 0.8, 0.5)}.

Let (K ,M) be a neutrosophic soft set over E with its approximate function
K : M → P(E) given by

K (e1) = {(x1x2, 0.3, 0.4, 0.5), (x2x4, 0.3, 0.4, 0.4), (x1x3, 0.4, 0.3, 0.6)},
K (e2) = {(x1x2, 0.2, 0.3, 0.5), (x2x3, 0.1, 0.3, 0.4), (x3x4, 0.2, 0.2, 0.4)}.

By routine calculations, it is easy to see that H(e1) and H(e2) are neutrosophic
graphs corresponding to the parameters e1 and e2, respectively, as shown in Fig. 7.4.
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Fig. 7.4 G = {H(e1) = (F(e1), K (e1)), H(e2) = (F(e2), K (e2))}
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Fig. 7.5 Gc = {Hc(e1) = (Fc(e1), Kc(e1)), Hc(e2) = (Fc(e2), Kc(e2))}

By the complement of neutrosophic soft graph G is the complement of neutro-
sophic graphs H(e1) and H(e2) which are shown in Fig. 7.5.

Definition 7.17 A neutrosophic soft graph G is self-complementary if G ≈ Gc.

Definition 7.18 A neutrosophic soft graph G is a complete neutrosophic soft graph
if H(e) is a complete neutrosophic graph of G for all e ∈ M , i.e.,

TK (e)(xy) =min {TF(e)(x), TF(e)(y)},
IK (e)(xy) =min {IF(e)(x), IF(e)(y)},
FK (e)(xy) =max {FF(e)(x), FF(e)(y)}, ∀ x, y ∈ X, e ∈ M.

Example 7.7 Consider the simple graph G∗ = (X, E) where X = {x1, x2, x3, x4}
and E = {x1x2, x2x3, x3x4, x1x3, x1x4, x2x4}. Let M = {e1, e2, e3}. Let (F,M) be a
neutrosophic soft set over X with its approximation function F : M → P(X) defined
by

F(e1) = {(x1, 0.5, 0.7, 0.7), (x2, 0.3, 0.4, 0.6), (x3, 0.5, 0.4, 0.6)},
F(e2) = {(x1, 0.8, 0.5, 0.4), (x2, 0.4, 0.6, 0.8), (x3, 0.4, 0.5, 0.6), (x4, 0.7, 0.8, 0.3)},
F(e3) = {(x1, 0.6, 0.7, 0.4), (x2, 0.7, 0.4, 0.9), (x3, 0.8, 0.5, 0.9), (x4, 0.5, 0.7, 0.7)}.

Let (K ,M) be a neutrosophic soft set over E with its approximation function
K : M → P(E) defined by
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Fig. 7.6 Complete neutrosophic soft graph G = {H(e1), H(e2), H(e3)}

K (e1) = {(x1x2, 0.3, 0.4, 0.7), (x1x3, 0.5, 0.4, 0.7), (x2x3, 0.3, 0.4, 0.6)},
K (e2) = {(x1x2, 0.4, 0.5, 0.8), (x2x3, 0.4, 0.5, 0.8), (x3x4, 0.4, 0.5, 0.6),

(x1x3, 0.4, 0.5, 0.6), (x1x4, 0.7, 0.5, 0.4), (x2x4, 0.4, 0.6, 0.8)},
K (e3) = {(x1x2, 0.6, 0.4, 0.9), (x2x3, 0.7, 0.4, 0.9), (x3x4, 0.5, 0.5, 0.9),

(x1x3, 0.6, 0.5, 0.9), (x1x4, 0.5, 0.7, 0.7), (x2x4, 0.5, 0.4, 0.9)}.

It is easy to see that H(e1), H(e2) and H(e3) are complete neutrosophic graphs of
G corresponding to the parameters e1, e2 and e3, respectively, as shown in Fig. 7.6.

Definition 7.19 A neutrosophic soft graph G is a strong neutrosophic soft graph if
H(e) is a strong neutrosophic graph for all e ∈ M.

Example 7.8 Consider the simple graph G∗ where X = {x1, x2, x3, x4} and E =
{x1x2, x2x3, x3x4, x1x3, x1x4, x2x4}. Let M = {e1, e2, e3}. Let (F,M) be a neutro-
sophic soft set over X with its approximation function F : M → P(X) defined by

F(e1) = {(x1, 0.5, 0.7, 0.7), (x2, 0.3, 0.4, 0.6), (x3, 0.5, 0.4, 0.6)},
F(e2) = {(x1, 0.8, 0.5, 0.4), (x2, 0.4, 0.6, 0.8), (x3, 0.4, 0.5, 0.6), (x4, 0.7, 0.8, 0.3)},
F(e3) = {(x1, 0.6, 0.7, 0.4), (x2, 0.7, 0.4, 0.9), (x3, 0.8, 0.5, 0.9), (x4, 0.5, 0.7, 0.7)}.

Let (K ,M) be a neutrosophic soft set over E with its approximation function
K : M → P(E) defined by

K (e1) = {(x1x2, 0.3, 0.4, 0.7), (x1x3, 0.5, 0.4, 0.7), (x2x3, 0.3, 0.4, 0.6)},
K (e2) = {(x2x3, 0.4, 0.5, 0.8), (x1x4, 0.7, 0.5, 0.4)},
K (e3) = {(x1x2, 0.6, 0.4, 0.9), (x1x3, 0.6, 0.5, 0.9), (x2x4, 0.5, 0.4, 0.9)}.
H(e1) = (F(e1), K (e1)), H(e2) = (F(e2), K (e2)), H(e3) = (F(e3), K (e3))

are strong neutrosophic graphs of G corresponding to the parameters e1, e2 and e3,
respectively, as shown in Fig. 7.7.
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Fig. 7.7 Strong neutrosophic soft graph G = {H(e1), H(e2), H(e3)}

Proposition 7.1 If G1 and G2 are strong neutrosophic soft graphs, then G1 × G2,
G1[G2] and G1+̃G2 are strong neutrosophic soft graphs.

Definition 7.20 The complement of a strong neutrosophic soft graph
G = (F, K ,M) is a neutrosophic soft graph Gc = (Fc, Kc,Mc) defined by

(i) Mc = M ,
(ii) Fc(e)(x) = F(e)(x), for all e ∈ M and x ∈ X ,

(iii) TKc(e)(x, y) =
{
0 if TK (e)(x, y) > 0,
min{TF(e)(x), TF(e)(y)}, if TK (e)(x, y) = 0,

IK c(e)(x, y) =
{
0 if IK (e)(x, y) > 0,
min{IF(e)(x), IF(e)(y)}, if IK (e)(x, y) = 0,

FKc(e)(x, y) =
{
0 if FK (e)(x, y) > 0,
max{FF(e)(x), FF(e)(y)}, if FK (e)(x, y) = 0,

We state the following propositions without their proofs.

Proposition 7.2 If G is a strong neutrosophic soft graph over G∗, then Gc is also a
strong neutrosophic soft graph.

Proposition 7.3 If G andGc are strong neutrosophic soft graphs of G∗, then G ∪ Gc

is a complete neutrosophic soft graph.

7.3 Application of Neutrosophic Soft Graphs

In this section, we apply the concept of neutrosophic soft graphs to a decision-making
problem and then we describe an algorithm for the selection of optimal object based
on given set of information. Suppose that X = {h1, h2, h3, h4, h5, h6} is the set of
six houses under consideration which Mr. Aslam is going to buy a house on the
basis of wishing parameters or attributes set M = {e1 = large, e2 = beautiful, e3 =
green surrounding}. So (F,M) is the neutrosophic soft set on X which describes the
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value of the houses based on the given parameters e1 = large, e2 = beautiful, e3 =
green surrounding, respectively.

F(e1) = {(h1, 0.3, 0.5, 0.8), (h2, 0.2, 0.8, 0.5), (h3, 0.4, 0.5, 0.2),
(h4, 0.5, 0.2, 0.7), (h5, 0.4, 0.7, 0.6), (h6, 0.2, 0.5, 0.8)},

F(e2) = {(h1, 0.6, 0.7, 0.4), (h2, 0.6, 0.2, 0.9), (h3, 0.2, 0.6, 0.3),
(h4, 0.7, 0.4, 0.2), (h5, 0.0, 0.0, 0.0), (h6, 0.6, 0.2, 0.6)},

F(e3) = {(h1, 0.6, 0.3, 0.5), (h2, 0.5, 0.2, 0.8), (h3, 0.4, 0.4, 0.8),
(h4, 0.5, 0.6, 0.4), (h5, 0.6, 0.4, 0.2), (h6, 0.4, 0.7, 0.8)}.

(K ,M) is the neutrosophic soft set on

E={h1h2, h1h3, h1h5, h1h6, h2h4, h2h6, h2h3, h2h5, h3h4, h3h5, h4h5,h4h6, h5h6}

which describes the value of two houses corresponding to the given parameters
e1 = large, e2 = beautiful, e3 = green surrounding, respectively.

K (e1) = {(h1h2, 0.1, 0.3, 0.6), (h1h4, 0.2, 0.1, 0.4), (h2h3, 0.2, 0.4, 0.3),
(h2h4, 0.1, 0.1, 0.6), (h2h5, 0.2, 0.2, 0.4), (h3h5, 0.3, 0.4, 0.5),

(h3h6, 0.1, 0.3, 0.6), (h4h5, 0.3, 0.1, 0.2), (h5h6, 0.2, 0.4, 0.7)},
K (e2) = {(h1h2, 0.5, 0.1, 0.6), (h1h3, 0.1, 0.5, 0.3), (h1h4, 0.4, 0.3, 0.3),

(h2h4, 0.5, 0.1, 0.7), (h2h6, 0.4, 0.1, 0.7), (h3h4, 0.1, 0.3, 0.3),

(h3h6, 0.2, 0.1, 0.4)},
K (e3) = {(h1h2, 0.4, 0.1, 0.7), (h1h5, 0.4, 0.2, 0.3), (h2h3, 0.3, 0.1, 0.6),

(h2h4, 0.3, 0.1, 0.5), (h3h5, 0.3, 0.2, 0.7), (h3h6, 0.3, 0.2, 0.6),

(h4h5, 0.4, 0.3, 0.1), (h5h6, 0.2, 0.3, 0.5), (h4h5, 0.3, 0.1, 0.2),

(h5h6, 0.2, 0.4, 0.7)}.

The neutrosophic graphs H(ei ) (i = 1, 2, 3) of neutrosophic soft graph G = (F,
K ,M) corresponding to the parameters ei for i = 1, 2, 3 are shown in Fig. 7.8.

The neutrosophic graphs H(e1), H(e2) and H(e3) corresponding to the param-
eters “large”, “beautiful” and “green surrounding”, respectively, are represented by
the following incidence matrices

H(e1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(0, 0, 0) (0.1, 0.3, 0.6) (0, 0, 0) (0.2, 0.1, 0.4) (0, 0, 0) (0, 0, 0)
(0.1, 0.3, 0.6) (0, 0, 0) (0.2, 0.4, 0.3) (0.1, 0.1, 0.6) (0.2, 0.2, 0.4) (0, 0, 0)

(0, 0, 0) (0.2, 0.4, 0.3) (0, 0, 0) (0, 0, 0) (0.3, 0.4, 0.5) (0.1, 0.3, 0.6)
(0.2, 0.1, 0.4) (0.1, 0.1, 0.6) (0, 0, 0) (0, 0, 0) (0.3, 0.1, 0.2) (0, 0, 0)

(0, 0, 0) (0, 0, 0) (0.1, 0.3, 0.6) (0, 0, 0) (0.2, 0.4, 0.7) (0, 0, 0)
(0, 0, 0) (0, 0, 0) (0.1, 0.3, 0.6) (0, 0, 0) (0.2, 0.4, 0.7) (0, 0, 0)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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Fig. 7.8 Neutrosophic soft graph G = {H(e1), H(e2), H(e3)}

H(e2) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(0, 0, 0) (0.5, 0.1, 0.6) (0.1, 0.5, 0.3) (0.4, 0.3, 0.3) (0, 0, 0) (0, 0, 0)
(0.5, 0.1, 0.6) (0, 0, 0) (0, 0, 0) (0.5, 0.1, 0.7) (0, 0, 0) (0.4, 0.1, 0.7)
(0.1, 0.5, 0.3) (0, 0, 0) (0, 0, 0) (0.1, 0.3, 0.3) (0, 0, 0) (0.2, 0.1, 0.4)
(0.4, 0.3, 0.3) (0.5, 0.1, 0.7) (0.1, 0.3, 0.3) (0, 0, 0) (0, 0, 0) (0, 0, 0)

(0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
(0, 0, 0) (0.4, 0.1, 0.7) (0.2, 0.1, 0.4) (0, 0, 0) (0, 0, 0) (0, 0, 0)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and

H(e3) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(0, 0, 0) (0.4, 0.1, 0.7) (0, 0, 0) (0, 0, 0) (0.4, 0.2, 0.3) (0, 0, 0)
(0.4, 0.1, 0.7) (0, 0, 0) (0.3, 0.1, 0.6) (0.3, 0.1, 0.5) (0, 0, 0) (0, 0, 0)

(0, 0, 0) (0.3, 0.1, 0.6) (0, 0, 0) (0, 0, 0) (0.3, 0.2, 0.7) (0.3, 0.2, 0.6)
(0, 0, 0) (0.3, 0.1, 0.5) (0, 0, 0) (0, 0, 0) (0.4, 0.3, 0.1) (0, 0, 0)

(0.4, 0.2, 0.3) (0, 0, 0) (0.3, 0.2, 0.7) (0.4, 0.3, 0.1) (0, 0, 0) (0.2, 0.3, 0.5)
(0, 0, 0) (0, 0, 0) (0.3, 0.2, 0.6) (0, 0, 0) (0.2, 0.3, 0.5) (0, 0, 0)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

After performing some operations (AND or OR), we obtain the resultant neu-
trosophic graph H(e), where e = e1 ∧ e2 ∧ e3. The incidence matrix of resultant
neutrosophic graph is

H(e) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(0, 0, 0) (0.1, 0.1, 0.7) (0, 0, 0.3) (0, 0, 0.4) (0, 0, 0.3) (0, 0, 0)
(0.1, 0.1, 0.7) (0, 0, 0) (0, 0, 0.6) (0.1, 0.1, 0.7) (0, 0, 0.4) (0, 0, 0.7)
(0, 0, 0.3) (0, 0, 0.6) (0, 0, 0) (0, 0, 0.3) (0, 0, 0.7) (0.1, 0.1, 0.6)
(0, 0, 0.4) (0.1, 0.1, 0.7) (0, 0, 0.3) (0, 0, 0) (0, 0, 0.2) (0, 0, 0)
(0, 0, 0.3) (0, 0, 0.4) (0, 0, 0.7) (0, 0, 0.2) (0, 0, 0) (0, 0, 0.7)
(0, 0, 0) (0, 0, 0.7) (0.1, 0.2, 0.6) (0, 0, 0) (0, 0, 0.7) (0, 0, 0)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Tabular representation of score values of incidence matrix of resultant neutro-
sophic graph H(e) with average score function Sk = Tk+Ik+1−Fk

3 and choice value
for each house hk for k = 1, 2, 3, 4, 5, 6 are given in Table7.3.
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Table 7.3 Tabular representation of score values with choice values

h1 h2 h3 h4 h5 h6 h́k

h1 0.334 0.167 0.234 0.2 0.234 0.334 1.503

h2 0.167 0.334 0.133 0.334 0.2 0.334 1.502

h3 0.234 0.133 0.334 0.234 0.1 0.2 1.235

h4 0.2 0.167 0.234 0.334 0.267 0.334 1.536

h5 0.234 0.2 0.1 0.267 0.334 0.1 1.235

h6 0.334 0.1 0.234 0.334 0.1 0.334 1.436

Clearly, the maximum score value is 1.536, scored by the h4. Mr. Aslam will buy
the house h4.
We present our method as Algorithm 7.3.1 that is used in our application.

Algorithm 7.3.1

1. Input the set P of choice parameters of Mr. Aslam, M is a subset of P .
2. Input the neutrosophic soft sets (F,M) and (K ,M).
3. Construct the neutrosophic soft graph G = (F, K ,M).
4. Compute the resultant neutrosophic graph

H(e) = ⋂

k
H(ek) for e = ∧

k
ek ∀ k.

5. Consider the neutrosophic graph H(e) and its incidence matrix form.
6. Compute the score Sk of hk ∀ k.
7. The decision is hk if h́k = maxi h́i .
8. If k has more than one value, then any one of hk may be chosen.

7.4 Intuitionistic Neutrosophic Soft Graphs

Bhowmik and Pal [55] introduced intuitionistic neutrosophic set and discussed some
of its properties. Broumi and Smarandache [60] proposed intuitionistic neutrosophic
soft sets.

Definition 7.21 Let X be an initial universe, and let P be the set of all parameters.
N (X) denotes the set of all intuitionistic single-valued neutrosophic soft sets of
X . Let N be a subset of P . A pair (F, N ) is called an intuitionistic single-valued
neutrosophic soft set over X .

Let N (X) denote the set of all intuitionistic single-valued neutrosophic soft sets of
X and N (E) denote the set of all intuitionistic single-valued neutrosophic soft sets
of E .

Definition 7.22 An intuitionistic single-valued neutrosophic soft graph on a
nonempty X is an three-ordered tuple G = (F, K , N ) such that

1. N is a nonempty set of parameters.



306 7 Graphs Under Neutrosophic Soft Environment

2. (F, N ) is an intuitionistic single-valued neutrosophic soft set over X .
3. (K , N ) is an intuitionistic single-valued neutrosophic soft relation on X , i.e.,

K : N → N (X × X), where N (X × X) is an intuitionistic neutrosophic power
set.

4. (F(e), K (e)) is an intuitionistic single-valued neutrosophic graph for all e ∈ N .

That is,
TK (e)(xy) ≤ min{TF(e)(x), TF(e)(y)},

IK (e)(xy) ≤ min{IF(e)(x), IF(e)(y)},

FK (e)(xy) ≤ max{FF(e)(x), FF(e)(y)},
such that 0 ≤ TK (e)(xy) + IK (e)(xy) + FK (e)(xy) ≤ 2 ∀ e ∈ N , x, y ∈ X .

The intuitionistic single-valued neutrosophic graph (F(e), K (e)) is denoted by
H(e). Note that TK (e)(xy) = IK (e)(xy) = 0 and FK (e)(xy) = 1 for all xy ∈ X × X −
E, e /∈ N . (F, N ) is called an intuitionistic single-valued neutrosophic soft vertex
and (K , N ) is called an intuitionistic single-valued neutrosophic soft edge. Thus,
((F, N ), (K , N )) is called an intuitionistic single-valued neutrosophic soft graph if

TK (e)(xy) ≤ min{TF(e)(x), TF(e)(y)},

IK (e)(xy) ≤ min{IF(e)(x), IF(e)(y)},

FK (e)(xy) ≤ max{FF(e)(x), FF(e)(y)},

such that 0 ≤ TK (e)(xy) + IK (e)(xy) + FK (e)(xy) ≤ 2 ∀ e ∈ N , x, y ∈ X . In other
words, an intuitionistic single-valued neutrosophic soft graph is a parameterized fam-
ily of intuitionistic single-valued neutrosophic graphs. The class of all intuitionistic
single-valued neutrosophic soft graphs is denoted by INS(G∗). The order of an
intuitionistic single-valued neutrosophic soft graph is

O(G) =
⎛

⎝
∑

ei∈N

(
∑

w∈X
TF(ei )(w)

)

,
∑

ei∈N

(
∑

w∈X
IF(ei )(w)

)

,
∑

ei∈N

(
∑

w∈X
FF(ei )(w)

)⎞

⎠ .

The size of an intuitionistic single-valued neutrosophic soft graph is

S(G) =
⎛

⎝
∑

ei∈N

(
∑

wv∈E
TK (ei )(wv)

)

,
∑

ei∈N

(
∑

wv∈E
IK (ei )(wv)

)

,
∑

ei∈N
(

∑

wv∈E
FK (ei )(wv))

⎞

⎠ .

Example 7.9 Consider a simple graph G∗ such that X = {w1, w2, w3, w4, w5} and
E = {w1w2, w2w3, w1w3, w1w5}. Let N = {e1, e2, e3} be a set of parameters, and
let (F, N ) be an intuitionistic neutrosophic soft set over X with intuitionistic neu-
trosophic approximation function F : N → N (X) defined by
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H(e1) corresponding
to parameter e1

H(e2) corresponding
to parameter e2

H(e3) corresponding
to parameter e3

w2(0.5, 0.4, 0.6)

w1(0.4, 0.5, 0.3)

w3(0.6, 0.5, 0.4)

w1(0.6, 0.2, 0.3)

w3(0.6, 0.5, 0.3) w5(0.7, 0.5, 0.4)

w2(0.5, 0.5, 0.3) w3(0.6, 0.5, 0.4)w1(0.8, 0.5, 0.4)

(0.4, 0.5, 0.4) (0.6, 0.5, 0.3)

0(
.3
,
0.
3,

0.
6)

(0.5, 0.4, 0.6)

(0.6, 0.1, 0.4)

(0
.6
, 0
.2
, 0
.2
)

Fig. 7.9 Intuitionistic neutrosophic soft graph G = {H(e1), H(e2), H(e3)}

F(e1) = {(w1, 0.4, 0.5, 0.3), (w2, 0.5, 0.4, 0.6), (w3, 0.6, 0.5, 0.4)},
F(e2) = {(w1, 0.6, 0.2, 0.3), (w3, 0.6, 0.5, 0.3), (w5, 0.7, 0.5, 0.4)},
F(e3) = {(w1, 0.8, 0.5, 0.4), (w2, 0.5, 0.5, 0.3), (w3, 0.6, 0.5, 0.4)}.
Let (K , N ) be an intuitionistic neutrosophic soft set over E with intuitionistic neu-
trosophic approximation function K : N → N (E) defined by
K (e1) = {(w1w2, 0.3, 0.3, 0.6), (w2w3, 0.5, 0.4, 0.6)},
K (e2) = {(w1w3, 0.6, 0.2, 0.2), (w1w5, 0.6, 0.1, 0.4)},
K (e3) = {(w1w2, 0.4, 0.5, 0.4), (w1w3, 0.6, 0.5, 0.3)}.
Clearly, H(e1) = (F(e1), K (e1)), H(e2) = (F(e2), K (e2)) and H(e3) = (F(e3),
K (e3)) are intuitionistic neutrosophic graphs corresponding to the parameters e1,
e2 and e3, respectively, as shown in Fig. 7.9.

Hence G = {H(e1), H(e2), H(e3)} is an intuitionistic neutrosophic soft graph of
G∗. Tabular representation of an intuitionistic neutrosophic soft graph is given in
Table7.4.

Table 7.4 Tabular representation of an intuitionistic neutrosophic soft graph

F w1 w2 w3 w4 w5

e1 (0.4, 0.5, 0.3) (0.5, 0.4, 0.6) (0.6, 0.5, 0.4) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)

e2 (0.6, 0.2, 0.3) (0.0, 0.0, 0.0) (0.6, 0.5, 0.3) (0.0, 0.0, 0.0) (0.7, 0.5, 0.4)

e3 (0.8, 0.5, 0.4) (0.5, 0.5, 0.3) (0.6, 0.5, 0.4) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)

K w1w2 w2w3 w1w3 w1w5

e1 (0.3, 0.3, 0.6) (0.5, 0.4, 0.6) (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)
e2 (0.0, 0.0, 0.0) (0.0, 0.0, 0.0) (0.6, 0.2, 0.2) (0.6, 0.1, 0.4)
e3 (0.4, 0.5, 0.4) (0.0, 0.0, 0.0) (0.6, 0.5, 0.3) (0.0, 0.0, 0.0)

The order of intuitionistic neutrosophic soft graph G is O(G) = (
(0.4 + 0.5 +

0.6) + (0.6 + 0.6 + 0.7) + (0.8 + 0.5+0.6), (0.5 + 0.4 + 0.5)+(0.2 + 0.5 + 0.5)
+ (0.5+0.5+0.5), (0.3+ 0.6 + 0.4) + (0.3 + 0.3 + 0.4) + (0.4 + 0.3 + 0.4)

) =
(5.3, 4.1, 3.4).The size of intuitionistic neutrosophic soft graphG is S(G) = (

(0.3 +
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0.5) + (0.6 + 0.6) + (0.4 + 0.6), (0.3 + 0.4) + (0.2 + 0.1) + (0.5 + 0.5), (0.6 +
0.6) + (0.2 + 0.4) + (0.4 + 0.3)

) = (3.0, 2.0, 2.5).

Definition 7.23 LetG1 = (F1, K1, N1) andG2 = (F2, K2, N2)be two intuitionistic
neutrosophic soft graphs ofG∗

1 andG
∗
2, respectively. TheCartesian product ofG1 and

G2 is an intuitionistic neutrosophic soft graph G = G1 × G2 = (F, K , N1 × N2),
where (F = F1 × F2, N1 × N2) is an intuitionistic neutrosophic soft set over X =
X1 × X2, (K = K1 × K2, N1 × N2) is an intuitionistic neutrosophic soft set over
E = {((w, v1), (w, v2)) : w ∈ X1, (v1, v2) ∈ E2} ∪ {((w1, v), (w2, v)) : v ∈ X2,

(w1, w2) ∈ E1} defined as

(i) TF(e1,e2)(w, v) = TF1(e1)(w) ∧ TF2(e2)(v),
IF(e1,e2)(w, v) = IF1(e1)(w) ∧ IF2(e2)(v),
FF(e1,e2)(w, v) = FF1(e1)(w) ∨ FF2(e2)(v) ∀ (w, v) ∈ X,
(e1, e2) ∈ N1 × N2,

(ii) TK (e1,e2)
(
(w, v1), (w, v2)

) = TF1(e1)(w) ∧ TK2(e2)(v1, v2),

IK (e1,e2)
(
(w, v1), (w, v2)

) = IF1(e1)(w) ∧ IK2(e2)(v1, v2),

FK (e1,e2)
(
(w, v1), (w, v2)

) = FF1(e1)(w) ∨ FK2(e2)(v1, v2) ∀ w ∈ X1,

(v1, v2) ∈ E2,
(iii) TK (e1,e2)

(
(w1, v), (w2, v)

) = TF2(e2)(v) ∧ TK1(e1)(w1, w2),

IK (e1,e2)
(
(w1, v), (w2, v)

) = IF2(e2)(v) ∧ IK1(e1)(w1, w2),

FK (e1,e2)
(
(w1, v), (w2, v)

) = FF2(e2)(v) ∨ FK1(e1)(w1, w2) ∀ v ∈ X2,

(w1, w2) ∈ E1.

H(e1, e2) = H1(e1) × H2(e2) for all (e1, e2) ∈ N1 × N2 are intuitionistic neutro-
sophic graphs.

Definition 7.24 The cross product of G1 and G2 is an intuitionistic neutrosophic
soft graph G = G1 � G2 = (F, K , N1 × N2), where (F, N1 × N2) is an intuition-
istic neutrosophic soft set over X = X1 × X2, (K , N1 × N2) is an intuitionistic
neutrosophic soft set over E = {((w1, v1), (w2, v2)) : (w1, w2) ∈ E1, (v1, v2) ∈ E2}
defined as

(i) TF(e1,e2)(w, v) = TF1(e1)(w) ∧ TF2(e2)(v),
IF(e1,e2)(w, v) = IF1(e1)(w) ∧ IF2(e2)(v),
FF(e1,e2)(w, v) = FF1(e1)(w) ∨ FF2(e2)(v) ∀ (w, v) ∈ X, (e1, e2) ∈ N1 × N2

(ii) TK (e1,e2)
(
(w1, v1), (w2, v2)

) = TK1(e1)(w1, w2) ∧ TK2(e2)(v1, v2),

IK (e1,e2)
(
(w1, v1), (w2, v2)

) = IK1(e1)(w1, w2) ∧ IK2(e2)(v1, v2),

FK (e1,e2)
(
(w1, v1), (w2, v2)

) = FK1(e1)(w1, w2) ∨ FK2(e2)(v1, v2) ∀ (w1, w2)

∈ E1, (v1, v2) ∈ E2.

H(e1, e2) = H1(e1) � H2(e2) for all (e1, e2) ∈ N1 × N2 are intuitionistic neutro-
sophic graphs.

Definition 7.25 The lexicographic product of G1 and G2 is an intuitionistic neu-
trosophic soft graph G = G1�G2 = (F, K , N1 × N2), where (F, N1 × N2) is an
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intuitionistic neutrosophic soft set over X = X1 × X2, (K , N1 × N2) is an intu-
itionistic neutrosophic soft set over E = {((w, v1), (w, v2)) : w ∈ X1, (v1, v2) ∈
E2} ∪ {((w1, v1), (w2, v2)) : (w1, w2) ∈ E1, (v1, v2) ∈ E2} defined as

(i) TF(e1,e2)(w, v) = TF1(e1)(w) ∧ TF2(e2)(v),
IF(e1,e2)(w, v) = IF1(e1)(w) ∧ IF2(e2)(v),
FF(e1,e2)(w, v) = FF1(e1)(w) ∨ FF2(e2)(v) ∀ (w, v) ∈ X, (e1, e2) ∈ N1 × N2,

(ii) TK (e1,e2)
(
(w, v1), (w, v2)

) = TF1(e1)(w) ∧ TK2(e2)(v1, v2),
IK (e1,e2)

(
(w, v1), (w, v2)

) = IF1(e1)(w) ∧ IK2(e2)(v1, v2),
FK (e1,e2)

(
(w, v1), (w, v2)

) = FF1(e1)(w) ∨ FK2(e2)(v1, v2) ∀ w ∈ X1, (v1, v2) ∈
E2,

(iii) TK (e1,e2)
(
(w1, v1), (w2, v2)

) = TK1(e1)(w1, w2) ∧ TK2(e2)(v1, v2),
IK (e1,e2)

(
(w1, v1), (w2, v2)

) = IK1(e1)(w1, w2) ∧ IK2(e2)(v1, v2),
FK (e1,e2)

(
(w1, v1), (w2, v2)

) = FK1(e1)(w1, w2) ∨ FK2(e2)(v1, v2) ∀ (w1, w2)

∈ E1, (v1, v2) ∈ E2.

H(e1, e2) = H1(e1) � H2(e2) for all (e1, e2) ∈ N1 × N2 are intuitionistic neutro-
sophic graphs.

Definition 7.26 The strong product of G1 and G2 is an intuitionistic neutro-
sophic soft graph G = G1⊗G2 = (F, K , N1 × N2),where (F, N1 × N2) is an intu-
itionistic neutrosophic soft set over X = X1 × X2, (K , A × N2) is an intuition-
istic neutrosophic soft set over E = {((w, v1), (w, v2)) : w ∈ X1, (v1, v2) ∈ E2} ∪
{((w1, v), (w2, v)) : v ∈ X2, (w1, w2) ∈ E1} ∪ {((w1, v1), (w2, v2)) : (w1, w2) ∈ E1,

(v1, v2) ∈ E2} such that

(i) TF(e1,e2)(w, v) = TF1(e1)(w) ∧ TF2(e2)(v),
IF(e1,e2)(w, v) = IF1(e1)(w) ∧ IF2(e2)(v),
FF(e1,e2)(w, v) = FF1(e1)(w) ∨ FF2(e2)(v) ∀ (w, v) ∈ X, (e1, e2) ∈ N1 × N2,

(ii) TK (e1,e2)
(
(w, v1), (w, v2)

) = TF1(e1)(w) ∧ TK2(e2)(v1, v2),
IK (e1,e2)

(
(w, v1), (w, v2)

) = IF1(e1)(w) ∧ IK2(e2)(v1, v2),
FK (e1,e2)

(
(w, v1), (w, v2)

) = FF1(e1)(w) ∨ FK2(e2)(v1, v2) ∀ w ∈ X1, (v1, v2) ∈
E2,

(iii) TK (e1,e2)
(
(w1, v), (w2, v)

) = TF2(e2)(v) ∧ TK1(e1)(w1, w2),
IK (e1,e2)

(
(w1, v), (w2, v)

) = IF2(e2)(v) ∧ IK1(e1)(w1, w2),

FK (e1,e2)
(
(w1, v), (w2, v)

) = FF2(e2)(v) ∨ FK1(e1)(w1, w2) ∀ v ∈ X2, (w1, w2)

∈ E1,
(iv) TK (e1,e2)

(
(w1, v1), (w2, v2)

) = TK1(e1)(w1, w2) ∧ TK2(e2)(v1, v2),

IK (e1,e2)
(
(w1, v1), (w2, v2)

) = IK1(e1)(w1, w2) ∧ IK2(e2)(v1, v2),

FK (e1,e2)
(
(w1, v1), (w2, v2)

) = FK1(e1)(w1, w2) ∨ FK2(e2)(v1, v2) ∀ (w1, w2) ∈
E1, (v1, v2) ∈ E2.

H(e1, e2) = H1(e1) ⊗ H2(e2) for all (e1, e2) ∈ N1 × N2 are intuitionistic neutro-
sophic graphs.

Definition 7.27 The composition of G1 and G2 is an intuitionistic neutrosophic
soft graph G = G1[G2] = (F, K , N1 × N2), where (F, N1 × N2) is an intuition-
istic neutrosophic soft set over X = X1 × X2, (K , N1 × N2) is an intuitionis-
tic neutrosophic soft set over E = {((w, v1), (w, v2)) : w ∈ X1, (v1, v2) ∈ E2} ∪
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{((w1, v), (w2, v)) : v ∈ X2, (w1, w2) ∈ E1} ∪ {((w1, v1), (w2, v2)) : (w1, w2) ∈
E1, v1 �= v2} defined as

(i) TF(e1,e2)(w, v) = TF1(e1)(w) ∧ TF2(e2)(v),
IF(e1,e2)(w, v) = IF1(e1)(w) ∧ IF2(e2)(v),
FF(e1,e2)(w, v) = FF1(e1)(w) ∨ FF2(e2)(v) ∀ (w, v) ∈ X, (e1, e2) ∈ N1 × N2,

(ii) TK (e1,e2)((w, v1), (w, v2)) = TF1(e1)(w) ∧ TK2(e2)(v1, v2),
IK (e1,e2)((w, v1), (w, v2)) = IF1(e1)(w) ∧ IK2(e2)(v1, v2),

FK (e1,e2)((w, v1), (w, v2)) = FF1(e1)(w) ∨ FK2(e2)(v1, v2) ∀ w ∈ X1, (v1, v2) ∈
E2,

(iii) TK (e1,e2)
(
(w1, v), (w2, v)

) = TF2(e2)(v) ∧ TK1(e1)(w1, w2),

IK (e1,e2)
(
(w1, v), (w2, v)

) = IF2(e2)(v) ∧ IK1(e1)(w1, w2),

FK (e1,e2)
(
(w1, v), (w2, v)

) = FF2(e2)(v) ∨ FK1(e1)(w1, w2) ∀ v ∈ X2, (w1, w2)

∈ E1,
(iv) TK (e1,e2)

(
(w1, v1), (w2, v2)

) = TF1(e1)(w1, w2) ∧ TF2(e2)(v1) ∧ TF2(e2)(v2),
IK (e1,e2)

(
(w1, v1), (w2, v2)

) = IF1(e1)(w1, w2) ∧ IF2(e2)(v1) ∧ IF2(e2)(v2),
FK (e1,e2)

(
(w1, v1), (w2, v2)

)=FF1(e1)(w1, w2) ∨ FF2(e2)(v1)∨FF2(e2)(v2) ∀(w1,

w2) ∈ E1, where v1 �= v2, v1, v2 ∈ X2.

H(e1, e2) = H1(e1)[H2(e2)] for all (e1, e2) ∈ N1 × N2 are intuitionistic neutro-
sophic graphs.

Proposition 7.4 TheCartesianproduct, cross product, lexicographic product, strong
product and composition of two intuitionistic neutrosophic soft graphs are an intu-
itionistic neutrosophic soft graph.

Definition 7.28 Let G1 = (F1, K1, N1) and G2 = (F2, K2, N2) be two intuitionis-
tic neutrosophic soft graphs. The intersection of G1 and G2 is an intuitionistic neu-
trosophic soft graph denoted by G = G1 ∩ G2 = (F, K , N1 ∪ N2), where (F, N1 ∪
N2) is an intuitionistic neutrosophic soft set over X = X1 ∩ X2, (K , N1 ∪ N2) is
an intuitionistic neutrosophic soft set over E = E1 ∩ E2, and the truth-membership,
indeterminacy-membership and falsity-membership functions of G for all w, v ∈ X
are defined by,

(i) TF(e)(v) =
⎧
⎨

⎩

TF1(e)(v) if e ∈ N1 − N2;
TF2(e)(v) if e ∈ N2 − N1;
TF1(e)(v) ∧ TF2(e)(v), if e ∈ N1 ∩ N2.

IF(e)(v) =
⎧
⎨

⎩

IF1(e)(v) if e ∈ N1 − N2;
IF2(e)(v) if e ∈ N2 − N1;
IF1(e)(v) ∧ IF2(e)(v), if e ∈ N1 ∩ N2.

FF(e)(v) =
⎧
⎨

⎩

FF1(e)(v) if e ∈ N1 − N2;
FF2(e)(v) if e ∈ N2 − N1;
FF1(e)(v) ∨ FF2(e)(v), if e ∈ N1 ∩ N2.
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(ii) TK (e)(wv) =
⎧
⎨

⎩

TK1(e)(wv) if e ∈ N1 − N2;
TK2(e)(wv) if e ∈ N2 − N1;
TK1(e)(wv) ∧ TK2(e)(wv), if e ∈ N1 ∩ N2.

IK (e)(wv) =
⎧
⎨

⎩

IK1(e)(wv) if e ∈ N1 − N2;
IK2(e)(wv) if e ∈ N2 − N1;
IK1(e)(wv) ∧ IK2(e)(wv), if e ∈ N1 ∩ N2.

FK (e)(wv) =
⎧
⎨

⎩

FK1(e)(wv) if e ∈ N1 − N2;
FK2(e)(wv) if e ∈ N2 − N1;
FK1(e)(wv) ∨ FK2(e)(wv), if e ∈ N1 ∩ N2.

Definition 7.29 Let G1 = (F1, K1, N1) and G2 = (F2, K2, N2) be two intuition-
istic neutrosophic soft graphs. The union of G1 and G2 may or may not be intu-
itionistic neutrosophic soft graph denoted by G = G1 ∪ G2 = (F, K , N1 ∪ N2),
where (F, N1 ∪ N2) is an intuitionistic neutrosophic soft set over X = X1 ∪ X2,
(K , N1 ∪ N2) is an intuitionistic neutrosophic soft set over E = E1 ∪ E2, and the
truth-membership, indeterminacy-membership and falsity-membership functions of
G for all w, v ∈ X are defined by,

(i) TF(e)(v) =
⎧
⎨

⎩

TF1(e)(v) if e ∈ N1 − N2;
TF2(e)(v) if e ∈ N2 − N1;
TF1(e)(v) ∨ TF2(e)(v), if e ∈ N1 ∩ N2.

IF(e)(v) =
⎧
⎨

⎩

IF1(e)(v) if e ∈ N1 − N2;
IF2(e)(v) if e ∈ N2 − N1;
IF1(e)(v) ∧ IF2(e)(v), if e ∈ N1 ∩ N2.

FF(e)(v) =
⎧
⎨

⎩

FF1(e)(v) if e ∈ N1 − N2;
FF2(e)(v) if e ∈ N2 − N1;
FF1(e)(v) ∧ FF2(e)(v), if e ∈ N1 ∩ N2.

(ii) TK (e)(wv) =
⎧
⎨

⎩

TK1(e)(wv) if e ∈ N1 − N2;
TK2(e)(wv) if e ∈ N2 − N1;
TK1(e)(wv) ∨ TK2(e)(wv), if e ∈ N1 ∩ N2.

IK (e)(wv) =
⎧
⎨

⎩

IK1(e)(wv) if e ∈ N1 − N2;
IK2(e)(wv) if e ∈ N2 − N1;
IK1(e)(wv) ∧ IK2(e)(wv), if e ∈ N1 ∩ N2.

FK (e)(wv) =
⎧
⎨

⎩

FK1(e)(wv) if e ∈ N1 − N2;
FK2(e)(wv) if e ∈ N2 − N1;
FK1(e)(wv) ∧ FK2(e)(wv), if e ∈ N1 ∩ N2.

Remark 7.1 Let G1 and G2 be two intuitionistic neutrosophic soft graphs over G∗
then G1 ∪ G2 may or may not be intuitionistic neutrosophic soft graph.

Definition 7.30 Let G1 and G2 be two intuitionistic neutrosophic soft graphs. The
join of G1 and G2 may or may not be intuitionistic neutrosophic soft graph denoted
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byG1 + G2 = (F1 + F2, K1 + K2, N1 ∪ N2), where (F1 + F2, N1 ∪ N2) is an intu-
itionistic neutrosophic soft set over X1 ∪ X2, (K1 + K2, N1 ∪ N2) is an intuitionistic
neutrosophic soft set over E1 ∪ E2 ∪ É defined by

(i) (F1 + F2, N1 ∪ N2) = (F1, N1) ∪ (F2, N2),
(ii) (K1 + K2, N1 ∪ N2) = (K1, N1) ∪ (K2, N2) if wv ∈ E1 ∪ E2,

where e ∈ N1 ∩ N2, wv ∈ É and É is the set of all edges joining the vertices of
X1 and X2, and the truth-membership, indeterminacy-membership and falsity-
membership functions are defined by

TK1+K2(e)(wv) = min{TF1(e)(w), TF2(e)(v)},
IK1+K2(e)(wv) = min{IF1(e)(w), IF2(e)(v)},
FK1+K2(e)(wv) = max{FF1(e)(w), FF2(e)(v)} ∀wv ∈ É .

Proposition 7.5 If G1 and G2 are two intuitionistic neutrosophic soft graphs, then
their join G1 + G2 may or may not be intuitionistic neutrosophic soft graph.

Definition 7.31 The complement of an intuitionistic neutrosophic soft graph G =
(F, K , N ) denoted by Gc = (Fc, Kc, Nc) is defined as follows:

(i) Nc = N ,
(ii) Fc(e) = F(e),
(iii) TKc(e)(w, v) = TF(e)(w) ∧ TF(e)(v) − TK (e)(w, v),
(iv) IK c(e)(w, v) = IF(e)(w) ∧ IF(e)(v) − IK (e)(w, v) and
(v) FKc(e)(w, v) = FF(e)(w) ∨ FF(e)(v) − FK (e)(w, v), for all w, v ∈ X, e ∈ N .

Example 7.10 LetG∗ be a crisp graphwith X = {v1, v2, v3, v4} and E={v1v2, v1v4,
v1v3, v2v3, v3v4}. Let N = {e1, e2} be a set of parameters, and let (F, N ) be an intu-
itionistic neutrosophic soft set over X with intuitionistic neutrosophic approximation
function F : N → N (X) defined by
F(e1)={(v1, 0.4, 0.6, 0.1), (v2, 0.5, 0.4, 0.7), (v3, 0.5, 0.3, 0.4), (v4, 0.5, 0.6, 0.2)},
F(e2)={(v1, 0.4, 0.2, 0.2), (v2, 0.5, 0.3, 0.4), (v3, 0.6, 0.3, 0.5), (v4, 0.5, 0.4, 0.2)}.
Let (K , N ) be an intuitionistic neutrosophic soft set over E with intuitionistic neu-
trosophic approximation function K : N → N (E) defined by
K (e1) = {(v1v2, 0.3, 0.3, 0.5), (v1v4, 0.2, 0.5, 0.2), (v1v3, 0.4, 0.3, 0.4), (v2v3, 0.5, 0.3, 0.5)},
K (e2) = {(v1v3, 0.3, 0.2, 0.5), (v1v4, 0.4, 0.1, 0.1), (v3v4, 0.5, 0.3, 0.4), (v3v2, (0.5, 0.3,

0.5)}.
Clearly, G = {H(e1) = (F(e1), K (e1)), H(e2) = (F(e2), K (e2))} is intuitionistic
neutrosophic soft graph, and H(e1) and H(e2) are intuitionistic neutrosophic graphs
corresponding to the parameters e1 and e2, respectively, as shown in Fig. 7.10.

Now, the complement of intuitionistic neutrosophic soft graph G = {H(e1),
H(e2)} is the complement of intuitionistic neutrosophic graphs H(e1) and H(e2)
which are shown in Fig. 7.11.
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Fig. 7.10 Intuitionistic neutrosophic soft graph G = {H(e1), H(e2)}
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Fig. 7.11 Complement of intuitionistic neutrosophic soft graph Gc = {Hc(e1), Hc(e2)}

Definition 7.32 An intuitionistic neutrosophic soft graph G is a complete intuition-
istic neutrosophic soft graph if H(e) is a complete intuitionistic neutrosophic graph
for all e ∈ N , i.e.,

TK (e)(wv) = min(TF(e)(w), TF(e)(v)),

IK (e)(wv) = min(IF(e)(w), IF(e)(v)),

FK (e)(wv) = max(FF(e)(w), FF(e)(v))

∀ w, v ∈ X, e ∈ N .

Definition 7.33 An intuitionistic neutrosophic soft graphG is a strong intuitionistic
neutrosophic soft graph if H(e) is a strong intuitionistic neutrosophic graph for all
e ∈ N .

Example 7.11 Consider the simple graph G∗ where X = {v1, v2, v3, v4, v5, v6} and
E = {v1v2, v2v5, v3v5, v1v3, v1v4, v3v6, v5v6}. Let N = {e1, e2}. Let (F, N ) be an
intuitionistic neutrosophic soft set over X with its approximation function F : N →
N (X) defined by
F(e1) = {(v1, 0.4, 0.5, 0.7), (v2, 0.6, 0.5, 0.5), (v3, 0.6, 0.3, 0.5), (v4, 0.7, 0.5, 0.4), (v5, 0.7, 0.4, 0.5),
(v6, 0.3, 0.5, 0.7)},
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Fig. 7.12 Strong intuitionistic neutrosophic soft graph G = {H(e1), H(e2)}

F(e2) = {(v1, 0.6, 0.4, 0.3), (v2, 0.5, 0.3, 0.8), (v3, 0.5, 0.6, 0.3), (v4, 0.8, 0.5, 0.4), (v5, 0.6,
0.3, 0.2)}.

Let (K , N ) be an intuitionistic neutrosophic soft set over E with its approximation
function K : N → N (E) defined by
K (e1) = {(v1v2, 0.4, 0.5, 0.7), (v1v3, 0.4, 0.3, 0.7), (v1v4, 0.4, 0.5, 0.7), (v2v5, 0.6, 0.4, 0.5),

(v3v5, 0.6, 0.3, 0.5), (v3v6, 0.3, 0.3, 0.7), (v5v6, 0.3, 0.5, 0.7)},
K (e2) = {(v1v3, 0.5, 0.4, 0.3), (v1v4, 0.6, 0.4, 0.4), (v1v2, 0.5, 0.3, 0.8), (v2v3, 0.5, 0.3, 0.8),

(v2v4, 0.5, 0.3, 0.8), (v2v5, 0.5, 0.3, 0.8)}.
H(e1) = (F(e1), K (e1)) and H(e2) = (F(e2), K (e2)) are strong intuitionistic neu-
trosophic graphs corresponding to the parameters e1 and e2, respectively, as shown
in Fig. 7.12. Hence G = {H(e1), H(e2)} is a strong intuitionistic neutrosophic soft
graph of G∗.

Proposition 7.6 If G1 and G2 are strong intuitionistic neutrosophic soft graphs,
then G1 × G2 and G1[G2] are strong intuitionistic neutrosophic soft graphs.

Remark 7.2 The union of two strong intuitionistic neutrosophic soft graphs is not
necessarily strong intuitionistic neutrosophic soft graph.

Example 7.12 Let N1 = {e1} and N2 = {e1, e2} be the parameter sets. Let G1 and
G2 be the two strong intuitionistic neutrosophic soft graphs defined as follows:
G1 = {H1(e1), H1(e2)} = {({(w1, 0.5, 0.6, 0.4), (w2, 0.7, 0.4, 0.5), (w3, 0.5, 0.8, 0.4)},

{(w1w2, 0.5, 0.4, 0.5), (w2w3, 0.5, 0.4, 0.5)}), ({(w1, 0.4, 0.6, 0.5), (w3, 0.5, 0.7, 0.4)},
{(w1w3, 0.4, 0.6, 0.5)})},
G2 = {H2(e1)} = {(w1, 0.4, 0.9, 0.3), (w2, 0.5, 0.6, 0.4), (w1w2, 0.4, 0.6, 0.4)}.

The union of G1 and G2 is G = G1 ∪ G2 = (H, N1 ∪ N2), where N1 ∪ N2 =
{e1, e2}, H(e1) = H1(e1) ∪ H2(e1) and H(e2) = H1(e2) are as shown in Fig. 7.13.
Clearly, G = {H(e1), H(e2)} is not a strong intuitionistic neutrosophic soft graph as
shown in Fig. 7.14.

Proposition 7.7 If G1 × G2 is strong intuitionistic neutrosophic soft graph, then at
least G1 or G2 must be strong intuitionistic neutrosophic soft graph.
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Fig. 7.13 Strong intuitionistic neutrosophic soft graphs G1 and G2
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Proposition 7.8 If G1[G2] is strong intuitionistic neutrosophic soft graph, then at
least G1 or G2 must be strong intuitionistic neutrosophic soft graph.

Definition 7.34 The complement of a strong intuitionistic neutrosophic soft graph
G = (F, K , N ) is an intuitionistic neutrosophic soft graph Gc = (Fc, Kc, Nc)

defined by

(i) Nc = N ,
(ii) Fc(e)(w) = F(e)(w) for all e ∈ N and w ∈ X ,

(iii) TKc(e)(w, v) =
{
0 if TK (e)(w, v) > 0,
min{TF(e)(w), TF(e)(v)}, if TK (e)(w, v) = 0,

IK c(e)(w, v) =
{
0 if IK (e)(w, v) > 0,
min{IF(e)(w), IF(e)(v)}, if IK (e)(w, v) = 0,

FKc(e)(w, v) =
{
0 if FK (e)(w, v) > 0,
max{FF(e)(w), FF(e)(v)}, if FK (e)(w, v) = 0,
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Proposition 7.9 If G is a strong intuitionistic neutrosophic soft graph over G∗, then
Gc is also a strong intuitionistic neutrosophic soft graph.

Theorem 7.6 If G and Gc are strong intuitionistic neutrosophic soft graphs of G∗,
then G ∪ Gc is a complete intuitionistic neutrosophic soft graph.

7.5 Isomorphism of Intuitionistic Neutrosophic Soft
Graphs

Definition 7.35 Let G1 = (F1, K1, N ) and G2 = (F2, K2, N ) be two intuitionis-
tic neutrosophic soft graphs of G∗

1 = (X1, E1) and G∗
2 = (X2, E2), respectively. A

homomorphism fN : G1 → G2 is a mapping fN : X1 → X2 which satisfies the fol-
lowing conditions:

(i) TF1(e)(v1) ≤ TF2(e)( fe(v1)), IF1(e)(v1) ≤ IF2(e)( fe(v1)), FF1(e)(v1) ≥ FF2(e)

( fe(v1)),
(ii) TK1(e)(v1v2) ≤ TK2(e)( fe(v1) fe(v2)), IK1(e)(v1v2) ≤ IK2(e)( fe(v1) fe(v2)), FK1(e)(v1v2) ≥

FK2(e)( fe(v1) fe(v2)), for all e ∈ N , v1 ∈ X1, v1v2 ∈ E1.

A bijective homomorphism is called a weak isomorphism if
TF1(e)(v1) = TF2(e)( fe(v1)), IF1(e)(v1) = IF2(e)( fe(v1)), FF1(e)(v1) = FF2(e)( fe(v1)),
∀e ∈ N , v1 ∈ X1.

A bijective homomorphism fN : G1 → G2 such that
TK1(e)(v1v2) = TK2(e)( fe(v1) fe(v2)), IK1(e)(v1v2) = IK2(e)( fe(v1) fe(v2)), FK1(e)

(v1v2) = FK2(e)( fe(v1) fe(v2)), for all e ∈ N , v1v2 ∈ E1 is called a coweak isomor-
phism.

An endomorphism of intuitionistic neutrosophic soft graphG with X as the under-
lying set is a homomorphism of G into itself.

Definition 7.36 Let G1 = (F1, K1, N ) and G2 = (F2, K2, N ) be two intuitionistic
neutrosophic soft graphs ofG∗

1 = (X1, E1) andG∗
2 = (X2, E2), respectively. An iso-

morphism fN : G1 → G2 is a mapping fN : X1 → X2 which satisfies the following
conditions:

(i) TF1(e)(v1) = TF2(e)( fe(v1)), IF1(e)(v1) = IF2(e)( fe(v1)), FF1(e)(v1) = FF2(e)

( fe(v1)),
(ii) TK1(e)(v1v2) = TK2(e)( fe(v1) fe(v2)), IK1(e)(v1v2) = IK2(e)( fe(v1) fe(v2)), FK1(e)

(v1v2) = FK2(e)( fe(v1) fe(v2)), for all e ∈ N , v1 ∈ X1, v1v2 ∈ E1.

Example 7.13 Let N = {e1, e2} be a parameter set. G1 = (F1, K1, N ) and G2 =
(F1, K2, N ) are two intuitionistic neutrosophic soft graphs defined as follows:
G1 = {H1(e1), H1(e2)} = {({(v1, 0.3, 0.4, 0.7), (v2, 0.7, 0.4, 0.3)},
{(v1v2, 0.2, 0.3, 0.6)}),
({(v1, 0.3, 0.4, 0.8), (v2, 0.2, 0.1, 0.6), (v3, 0.4, 0.5, 0.3)}, {(v1v2, 0.1, 0.1, 0.7),
(v1v3, 0.1, 0.3, 0.7)})},
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Fig. 7.15 G1 = {H1(e1), H1(e2)} and G2 = {H2(e1), H2(e2)}

G2 = {H2(e1), H2(e2)} = {({(w1, 0.7, 0.4, 0.3), (w2, 0.3, 0.4, 0.7)},
{(w1w2, 0.2, 0.4, 0.6)}),
({(w1, 0.4, 0.5, 0.3), (w2, 0.3, 0.4, 0.8), (w3, 0.2, 0.1, 0.6)}, {(w1w2, 0.1, 0.3, 0.7),
(w2w3, 0.1, 0.1, 0.5)})}.
A mapping fN : X1 → X2 is defined by fe1(v1) = w2, fe1(v2) = w1 and
fe2(v1) = w2, fe2(v2) = w3, and fe2(v3) = w1, then TF1(e1)(v1) = TF2(e1)(w2),
IF1(e1)(v1) = IF2(e1)(w2), FF1(e1)(v1) = FF2(e1)(w2), and TF1(e1)(v2) = TF2(e1)(w1),
IF1(e1)(v2)=IF2(e1)(w1), FF1(e1)(v2)=FF2(e1)(w1), but TK1(e1)(v1v2) = TK2(e1)(w2w1),
IK1(e1)(v1v2) �= IK2(e1)(w2w1), FK1(e1)(v1v2) = FK2(e1)(w2w1). Clearly, H1(e1) is
weak isomorphic to H2(e1). By routine computation, we can see that H1(e2) is weak
isomorphic to H2(e2).

Hence G1 is weak isomorphic to G2 but not isomorphic as shown in Fig. 7.15.

Example 7.14 Let N = {e1, e2} be a parameter set. G1 = (F1, K1, N ) and G2 =
(F1, K2, N ) are two intuitionistic neutrosophic soft graphs as shown in Fig. 7.16.
A mapping fN : X1 → X2 is defined by fe1(w1) = v2, fe1(w2) = v1, fe1(w3) = v4,
fe1(w4) = v3 and fe2(w1) = v1, fe2(w2) = v2 and fe2(w3) = v3. By routine com-
putations, we can see that G1 is coweak isomorphic to G2 but not isomorphic
as TF1(e1)(w2) = TF2(e1)(v1), IF1(e1)(w2) �= IF2(e1)(v1), FF1(e1)(w2) �= FF2(e1)(v1) and
TF1(e2)(w3) �= TF2(e2)(v3), IF1(e2)(w3) �= IF2(e2)(v3), FF1(e2)(w3) �= FF2(e2)(v3).

Theorem 7.7 For any two isomorphic intuitionistic neutrosophic soft graphs their
orders and sizes are same.

Definition 7.37 Let G be an intuitionistic neutrosophic soft graph with X as the
underlying set. A one-to-one onto map fN : X → X is an automorphism of G if

(i) TF1(e)(v1) = TF2(e)( fe(v1)), IF1(e)(v1) = IF2(e)( fe(v1)), FF1(e)(v1) = FF2(e)

( fe(v1)),
(ii) TK1(e)(v1v2) = TK2(e)( fe(v1) fe(v2)), IK1(e)(v1v2) = IK2(e)( fe(v1) fe(v2)), FK1(e)(v1v2) =

FK2(e)( fe(v1) fe(v2)), for all e ∈ N , v1, v2 ∈ X .
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Fig. 7.16 G1 = {H1(e1), H1(e2)} and G2 = {H2(e1), H2(e2)}

Definition 7.38 An intuitionistic neutrosophic soft graphG = (F, K , N )ofG∗ is an
ordered intuitionistic neutrosophic soft graph if it satisfies the following conditions:
TF(e)(v1) ≤ TF(e)(v2), IF(e)(v1) ≤ IF(e)(v2), FF(e)(v1) ≥ FF(e)(v2),
TF(e)(w1) ≤ TF(e)(w2), IF(e)(w1) ≤ IF(e)(w2), FF(e)(w1) ≥ FF(e)(w2),

for v1, v2, w1, w2 ∈ X, v1 �= w1, v2 �= w2, for all e ∈ N , imply
TK (e)(v1w1) ≤ TK (e)(v2w2), IK (e)(v1w1)≤IK (e)(v2w2), FK (e)(v1w1)≥FK (e)(v2w2).

Proposition 7.10 Let G1, G2 and G3 be intuitionistic neutrosophic soft graphs.
Then the isomorphism between these intuitionistic neutrosophic soft graphs is an
equivalence relation.

Proof Let G1 = (F1, K1, N ), G2 = (F2, K2, N ) and G3 = (F3, K3, N ) be three
intuitionistic neutrosophic soft graphs with the underlying sets X1, X2 and X3,
respectively.

(1) Reflexive: Consider identity mapping fN : X1 → X1, fe(v) = v for all v ∈
X1,satisfying
TF1(e)(v) = TF2(e)( fe(v)), IF1(e)(v) = IF2(e)( fe(v)), FF1(e)(v) = FF2(e)( fe(v)),
TK1(e)(uv) = TK2(e)( fe(u) fe(v)), IK1(e)(uv) = IK2(e)( fe(u) fe(v)), FK1(e)(uv) =
FK2(e)( fe(u) fe(v)),
for all u, v ∈ X1, e ∈ N . Hence fN is an isomorphism of intuitionistic neutro-
sophic soft graph to itself.

(2) Symmetric: Let fN : X1 → X2 be an isomorphism of G1 onto G2, fe(v) = v′
for all v ∈ X1, such that
TF1(e)(v) = TF2(e)( fe(v)), IF1(e)(v) = IF2(e)( fe(v)), FF1(e)(v) = FF2(e)( fe(v)),
TK1(e)(uv) = TK2(e)( fe(u) fe(v)), IK1(e)(uv) = IK2(e)( fe(u) fe(v)), FK1(e)(uv) =
FK2(e)( fe(u) fe(v)),
for all u, v ∈ X1, e ∈ N .
As fN is a bijective mapping, f −1(v′) = v for all v′ ∈ X2, then
TF2(e)(v

′) = TF1(e)( f
−1(v′)), IF2(e)(v

′) = IF1(e)( f
−1(v′)), FF2(e)(v

′) = FF1(e)

( f −1(v′)),
TK2(e)(u

′v′) = TK1(e)( f
−1(u′) f −1(v′)), IK2(e)(u

′v′) = IK1(e)( f
−1(u′) f −1(v′)),

FK2(e)(u
′v′) = FK1(e)( f

−1(u′) f −1(v′)) for all u′, v′ ∈ X2, e ∈ N .
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Hence f −1 : X2 → X1 is an isomorphism from G2 to G1; that is, G1
∼= G2

implies G2
∼= G1.

(3) Transitive: Let fN : X1 → X2 and gN : X2 → X3 be isomorphisms of the intu-
itionistic neutrosophic soft graphs G1 onto G2 and G2 onto G3, respectively.
For transitive relation we consider a bijective mapping gN ◦ fN : X1 → X3 such
that (gN ◦ fN )(u) = ge( fe(u)) for all u ∈ X1.

As fN : X1 → X2 is an isomorphism from G1 onto G2, such that fe(v) = v′ for
all v ∈ X1, then
TF1(e)(v) = TF2(e)( fe(v)) = TF2(e)(v

′), IF1(e)(v) = IF2(e)( fe(v)) = IF2(e)(v
′),

FF1(e)(v) = FF2(e)( fe(v)) = FF2(e)(v
′), and

TK1(e)(uv) = TK2(e)( fe(u) fe(v)) = TK2(e)(u
′v′), IK1(e)(uv) = IK2(e)( fe(u)

fe(v)) = IK2(e)(u
′v′),

FK1(e)(uv) = FK2(e)( fe(u) fe(v)) = FK2(e)(u
′v′), for all u, v ∈ X1, e ∈ N .

As gN : X2 → X3 is an isomorphism from G2 onto G3 such that ge(v′) = v′′ for
all v′ ∈ X2, then

TF2(e)(v
′) = TF3(e)(ge(v

′)) = TF2(e)(v
′′), IF2(e)(v′) = IF3(e)(ge(v

′)) = IF3(e)(v
′′),

FF2(e)(v
′) = FF3(e)(ge(v

′)) = FF3(e)(v
′′), and

TK2(e)(u
′v′) = TK3(e)(ge(u

′)ge(v′)) = TK3(e)(u
′′v′′), IK2(e)(u

′v′) = IK3(e)(ge(u
′)

ge(v
′)) = IK2(e)(u

′′v′′),
FK2(e)(u

′v′) = FK3(e)(ge(u
′)ge(v′)) = FK3(e)(u

′′v′′), for all u′, v′ ∈ X2, e ∈ N .

For transitive relationwe consider a bijectivemapping gN ◦ fN : X1 → X3; then

TF1(e)(v) = TF2(e)( fe(v)) = TF2(e)(v
′) = TF3(e)(ge( fe(v))),

IF1(e)(v) = IF2(e)( fe(v)) = IF2(e)(v
′) = IF3(e)(ge( fe(v))),

FF1(e)(v) = FF2(e)( fe(v)) = FF2(e)(v
′) = FF3(e)(ge( fe(v))), and

TK1(e)(uv) = TK2(e)( fe(u) fe(v)) = TK2(e)(u
′v′) = TK3(e)(ge( fe(u))ge( fe(v))),

IK1(e)(uv) = IK2(e)( fe(u) fe(v)) = IK2(e)(u
′v′) = IK3(e)(ge( fe(u))ge( fe(v))),

FK1(e)(uv) = FK2(e)( fe(u) fe(v)) = FK2(e)(u
′v′) = FK3(e)(ge( fe(u))ge( fe(v)))

for all u, v ∈ X1, e ∈ N .

Therefore gN ◦ fN is an isomorphism between G1 and G3.

Hence isomorphism between intuitionistic neutrosophic soft graphs by (1), (2) and
(3) is an equivalence relation.

Proposition 7.11 Let G1, G2 and G3 be intuitionistic neutrosophic soft graphs.
Then the weak isomorphism between these intuitionistic neutrosophic soft graphs is
a partial order relation

Proof Let G1 = (F1, K1, N ), G2 = (F2, K2, N ) and G3 = (F3, K3, N ) be three
intuitionistic neutrosophic soft graphs with the underlying sets X1, X2 and X3,
respectively.

(1) Reflexive: Consider identity mapping fN : X1 → X1, fe(v) = v for all v ∈ X1,
satisfying
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TF1(e)(v) = TF2(e)( fe(v)), IF1(e)(v) = IF2(e)( fe(v)), FF1(e)(v) = FF2(e)( fe(v)),
TK1(e)(uv) = TK2(e)( fe(u) fe(v)), IK1(e)(uv) = IK2(e)( fe(u) fe(v)), FK1(e)(uv) =
FK2(e)( fe(u) fe(v)),
for all u, v ∈ X1, e ∈ N . Hence fN is a weak isomorphism of intuitionistic neu-
trosophic soft graph to itself. Thus G1 is a weak isomorphic to itself.

(2) Antisymmetric: Let fN : X1 → X2 be an isomorphism of G1 onto G2, fe(v) =
v′ for all v ∈ X1, such that
TF1(e)(v) = TF2(e)( fe(v)), IF1(e)(v) = IF2(e)( fe(v)), FF1(e)(v) = FF2(e)( fe(v)),
TK1(e)(uv) ≤ TK2(e)( fe(u) fe(v)), IK1(e)(uv) ≤ IK2(e)( fe(u) fe(v)), FK1(e)(uv) ≥
FK2(e)( fe(u) fe(v)),
for all u, v ∈ X1, e ∈ N .
Let gN : X2 → X1 be an isomorphism ofG2 ontoG1, ge(v′) = v for all v′ ∈ X2,

such that
TF2(e)(v

′)=TF1(e)(ge(v
′)), IF2(e)(v′)=IF1(e)(ge(v

′)), FF2(e)(v
′) = FF2(e)(ge(v

′)),
TK2(e)(u

′v′) ≤ TK1(e)(ge(u
′)ge(v′)), IK2(e)(u

′v′) ≤ IK1(e)(ge(u
′)ge(v′)), FK2(e)

(u′v′) ≥ FK1(e)(ge(u
′)ge(v′)),

for all u′, v′ ∈ X2, e ∈ N .
Bothweak isomorphisms fN fromG1 ontoG2 and gN fromG2 ontoG3 are holds
when G1 and G2 have same number of edges, and the corresponding edges have
same truth-membership degree, indeterminacy-membership degree and falsity-
membership degree corresponding to the parameter to the set of parameters.
Hence G1 and G2 are identical.

(3) Transitive: Let fN : X1 → X2 and gN : X2 → X3 be weak isomorphisms of the
intuitionistic neutrosophic soft graphsG1 ontoG2 andG2 ontoG3, respectively.
For transitive relation we consider a bijective mapping gN ◦ fN : X1 → X3 such
that (gN ◦ fN )(u) = ge( fe(u)) for all u ∈ X1.

As fN : X1 → X2 is a weak isomorphism fromG1 ontoG2, such that fe(v) = v′
for all v ∈ X1, then

TF1(e)(v) = TF2(e)( fe(v)) = TF2(e)(v
′), IF1(e)(v) = IF2(e)( fe(v)) = IF2(e)(v

′),
FF1(e)(v) = FF2(e)( fe(v)) = FF2(e)(v

′), and
TK1(e)(uv) ≤ TK2(e)( fe(u) fe(v)) = TK2(e)(u

′v′), IK1(e)(uv) ≤ IK2(e)( fe(u) fe(v))
= IK2(e)(u

′v′),
FK1(e)(uv) ≥ FK2(e)( fe(u) fe(v)) = FK2(e)(u

′v′), for all u, v ∈ X1, e ∈ N .

As gN : X2 → X3 is an isomorphism from G2 onto G3 such that ge(v′) = v′′ for
all v′ ∈ X2, then

TF2(e)(v
′) = TF3(e)(ge(v

′)) = TF3(e)(v
′′), IF2(e)(v′) = IF3(e)(ge(v

′)) = IF3(e)(v
′′),

FF2(e)(v
′) = FF3(e)(ge(v

′)) = FF3(e)(v
′′), and

TK2(e)(u
′v′) ≤ TK3(e)(ge(u

′)ge(v′)) = TK3(e)(u
′′v′′), IK2(e)(u

′v′) ≤ IK3(e)(ge(u
′)

ge(v
′)) = IK3(e)(u

′′v′′),

FK2(e)(u
′v′) ≥ FK3(e)(ge(u

′)ge(v′)) = FK3(e)(u
′′v′′), for all u′, v′ ∈ X2, e ∈ N .

For transitive relationwe consider a bijectivemapping gN ◦ fN : X1 → X3; then
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TF1(e)(v) = TF2(e)( fe(v)) = TF2(e)(v
′) = TF3(e)(ge( fe(v))),

IF1(e)(v) = IF2(e)( fe(v)) = IF2(e)(v
′) = IF3(e)(ge( fe(v))),

FF1(e)(v) = FF2(e)( fe(v)) = FF2(e)(v
′) = FF3(e)(ge( fe(v))), and

TK1(e)(uv) ≤ TK2(e)( fe(u) fe(v)) = TK2(e)(u
′v′) ≤ TK3(e)(ge( fe(u))ge( fe(v))),

IK1(e)(uv) ≤ IK2(e)( fe(u) fe(v)) = IK2(e)(u
′v′) ≤ IK3(e)(ge( fe(u))ge( fe(v))),

FK1(e)(uv) ≥ FK2(e)( fe(u) fe(v)) = FK2(e)(u
′v′) ≥ FK3(e)(ge( fe(u))ge( fe(v)))

for all u, v ∈ X1, e ∈ N .

Therefore gN ◦ fN is a weak isomorphism between G1 and G3, i.e., weak iso-
morphism satisfying transitivity.

Hence isomorphism between intuitionistic neutrosophic soft graphs by (1), (2) and
(3) is a partial order relation.

Definition 7.39 An intuitionistic neutrosophic soft graph G is self-complementary
if G ≈ Gc.

Proposition 7.12 Let G1 and G2 be intuitionistic neutrosophic soft graphs. Then
G1

∼= G2 if and only if Gc
1

∼= Gc
2.

Proof Let G1 and G2 be the two intuitionistic neutrosophic soft graphs. Suppose
that G1

∼= G2, then there exist a bijective mapping fN : X1 → X2 such that fe(v) =
v′ for all v ∈ X1, TF1(e)(v) = TF2(e)( fe(v)), IF1(e)(v) = IF2(e)( fe(v)), FF1(e)(v) =
FF2(e)( fe(v)) and TK1(e)(uv) = TK2(e)( fe(u) fe(v)),
IK1(e)(uv) = IK2(e)( fe(u) fe(v)), FK1(e)(uv) = FK2(e)( fe(u) fe(v)), for allu, v ∈ X1,

e ∈ N . By the definition of complement of intuitionistic neutrosophic soft graphs

T c
K1(e)(uv) = TF1(e)(u) ∧ TF1(e)(v) − TK1(e)(uv),

= TF2(e)( fe(u)) ∧ TF2(e)( fe(v)) − TK2(e)( fe(u) fe(v))

= T c
K2(e)( fe(u) fe(v)),

I cK1(e)(uv) = IF1(e)(u) ∧ IF1(e)(v) − IK1(e)(uv),

= IF2(e)( fe(u)) ∧ TF2(e)( fe(v)) − IK2(e)( fe(u) fe(v))

= I cK2(e)( fe(u) fe(v)),

Fc
K1(e)(uv) = FF1(e)(u) ∨ FF1(e)(v) − FK1(e)(uv),

= FF2(e)( fe(u)) ∧ FF2(e)( fe(v)) − FK2(e)( fe(u) fe(v))

= Fc
K2(e)( fe(u) fe(v))

Hence Gc
1

∼= Gc
2.
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Conversely, assume thatGc
1

∼= Gc
2, then there exist an isomorphismgN : X1 → X2

such that ge(v) = v′,
TF1(e)(v) = TF2(e)(ge(v)), IF1(e)(v) = IF2(e)(ge(v)), FF1(e)(v) = FF2(e)( fe(v)), for all
v ∈ X1, e ∈ N ,T c

K1(e)
(uv) = T c

K2(e)
(ge(u)ge(v)),

I cK1(e)
(uv) = I cK2(e)

(ge(u)ge(v)), Fc
K1(e)

(uv) = Fc
K2(e)

(ge(u)ge(v)), for all u, v ∈ X1,

e ∈ N .

By using the definition of complement of intuitionistic neutrosophic soft graph

T c
K1(e)(uv) = T c

F1(e)(u) ∧ T c
F1(e)(v) − TK1(e)(uv),

T c
K2(e)(ge(u)ge(v)) = T c

F2(e)(ge(u)) ∧ T c
F2(e)(ge(v)) − TK2(e)(ge(u)ge(v)),

I cK1(e)(uv) = I cF1(e)(u) ∧ I cF1(e)(v) − IK1(e)(uv),

I cK2(e)(ge(u)ge(v)) = I cF2(e)(ge(u)) ∧ I cF2(e)(ge(v)) − IK2(e)(ge(u)ge(v)),

Fc
K1(e)(uv) = Fc

F1(e)(u) ∨ Fc
F1(e)(v) − FK1(e)(uv),

Fc
K2(e)(ge(u)ge(v)) = Fc

F2(e)(ge(u)) ∨ Fc
F2(e)(ge(v)) − FK2(e)(ge(u)ge(v)).

As T c
K1(e)

(uv) = T c
K2(e)

(ge(u)ge(v)), I cK1(e)
(uv) = I cK2(e)

(ge(u)ge(v)), Fc
K1(e)

(uv) =
Fc
K2(e)

(ge(u)ge(v)), for all u, v ∈ X1, e ∈ N , gN : X1 → X2 is an isomorphism
between G1 and G2, that is G1

∼= G2.

Proposition 7.13 If G1 is coweak isomorphic to G2, then there can be a homomor-
phism between Gc

1 and Gc
2.

Proposition 7.14 If G1 is weak isomorphic to G2, then Gc
1 and Gc

2 are weak iso-
morphic intuitionistic neutrosophic soft graphs.

7.6 Applications of Intuitionistic Neutrosophic Soft Graphs

Intuitionistic neutrosophic soft graph has several applications in decision-making
problems and used to deal with uncertainties fromour different daily life problems. In
this section, we apply the concept of intuitionistic neutrosophic soft sets in decision-
making problems.Many practical problems can be represented by graphs.We present
an application of intuitionistic neutrosophic soft graph to amultiple criteria decision-
making problem.We present an algorithm for most appropriate selection of an object
in a multiple criteria decision-making problem.

Algorithm 7.6.1

1. Input the set of parameters e1, e2, . . . , ek .
2. Input the intuitionistic neutrosophic soft sets (F, N ) and (K , N ).
3. Input the intuitionistic neutrosophic graphs H(e1), H(e2), . . . , H(ek).
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4. Calculate the score values of intuitionistic neutrosophic graphs H(e1), H(e2),
. . . , H(ek) using formula

Si j :=
√

(Tj )2 + (I j )2 + (1 − Fj )2 (7.1)

Tabular representation of score values of intuitionistic neutrosophic graphs
H(ek), ∀ k.

5. Compute the choice values of Cp = ∑

j
Si j for all i = 1, 2, . . . , n and p =

1, 2, . . . , k.

6. The decision is Si if Si = n
max
i=1

{ k
min
p=1

Cp}.
7. If i has more than one value, then any one of Si may be chosen.

An algorithm for the selection of optimal object based on given set of information.

7.6.1 An Appropriate Selection of a Machine

An appropriate selection of a machine for a specific task is an important decision-
making problem for a machine manufacturing corporation. The performance of a
manufacturing corporation is badly affected by the wrong selection. The main pur-
pose in machine selection is that machine will achieve the require tasks within pos-
sible short time and minimum cost. The main purpose is to select the machine that
will complete the required task within the time available for the lowest possible cost.
Rate of productivity, automatic system and price are important aspects considered
in selection of a machine. The rate of productivity, value of product and charge of
manufacturing depend upon the performance of machine. Mr. X should be an expert
or at least familiar with the machine properties, to select the best machine among
the parameters (alternatives), i.e., “price”, “rate of productivity” and “automatic sys-
tem”. Let X = {m1,m2,m3,m4,m5,m6} be set of six machines to be considered as
the universal set and N = {e1, e2, e3} be the set of parameters that characterize the
machine, and the parameters e1, e2 and e3 stands for “price”, “rate of productivity”
and “automatic system”, respectively.Consider the intuitionistic neutrosophic soft set
(F, N ) over X which define the “efficiency of machines” corresponding to the given
parameters that Mr. X want to select. (K , N ) is an intuitionistic neutrosophic soft set
over E={m1m2,m2m3,m6m1,m1m3,m1m4,m1m5,m2m4,m2m5,m2m6,m3m4,m3

m5,m3m6,m4m5,m4m6,m5m6} and defines degree of truth-membership, degree of
indeterminacy and degree of falsity-membership of the connection between two
machines corresponding to the selected attributes e1, e2 and e3. The intuitionis-
tic neutrosophic graphs H(e1), H(e2) and H(e3) of intuitionistic neutrosophic soft
graph G = {H(e1), H(e2), H(e3)} corresponding to the parameters “price”, “rate of
productivity” and “automatic system”, respectively, are shown in Fig. 7.17.
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Fig. 7.17 Intuitionistic neutrosophic soft graph G = {H(e1), H(e2), H(e3)}

Table 7.5 Tabular representation of score values and choice values of H(e1)

m1 m2 m3 m4 m5 m6 ḿk

m1 0 0.62 0.62 0.80 0.67 0.71 3.42

m2 0.62 0 0 0.66 0.91 0.97 3.16

m3 0.62 0 0 0.70 0.94 0.99 3.25

m4 0.80 0.66 0.70 0 0 0.75 2.91

m5 0.67 0.91 0.94 0 0 1.0 3.52

m6 0.71 0.97 0.94 0.75 1.0 0 4.37

Tabular representation Tables7.3, 7.6 and 7.7 of score values of intuitionistic
neutrosophic graphs H(e1), H(e2) and H(e3) with normalized score function Si j =
√
(Tj )2 + (I j )2 + (1 − Fj )2 and choice value for eachmachinemi for i = 1, 2, 3, 4,

5, 6 are given in Table7.5.

The decision is Si if Si = 6
max
i=1

{ 3
min
p=1

mp} = 6
max
i=1

{3.42, 2.48, 3.25, 2.91, 3.52,
2.73} = 3.52. Clearly, the maximum score value is 3.52, scored by the m5. Mr.
X will buy the machine m5.
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Table 7.6 Tabular representation of score values and choice values of H(e2)

m1 m2 m3 m4 m5 m6 ḿk

m1 0 0.79 0.94 1.0 0.88 0.78 4.39

m2 0.79 0 0.75 0 0.94 0 2.48

m3 0.94 0.75 0 0.95 0.93 0 3.57

m4 1.0 0 0.95 0 1.0 0.95 3.9

m5 0.88 0.94 0.93 1.0 0 1.0 4.75

m6 0.78 0 0 0.95 1.0 0 2.73

Table 7.7 Tabular representation of score values and choice values of H(e3)

m1 m2 m3 m4 m5 m6 ḿk

m1 0 0.94 0.94 0.95 0.99 0.81 4.63

m2 0.94 0 0.94 0.94 1.0 0.67 4.49

m3 0.94 0.94 0 0.94 0.86 0 3.68

m4 0.95 0.94 0.94 0 0 0.79 3.62

m5 0.99 1.0 0.86 0 0 0.70 3.55

m6 0.81 0.67 0 0.79 0.70 0 2.97

7.6.2 Selection of Brand in Product Marketing

We present a multicriteria decision-making problem for product marketing if there
are multiple brands of a product; product marketing has intuitionistic neutrosophic
behaviour. Consider Mr. X who is a retail owner wants to maximize his profit by
selling some electronic items which meets all the requirements which is set by a
retail outlet owner. Let X = {S1, S2, S3, S4, S5} be a set of five brands of an item
to be sold in an international market, and let N = {e1 = “price”, e2 = “quality”}
be a set of parametric factors in product marketing. Let (F, N ) be the intuition-
istic neutrosophic soft set over X , which describes the effectiveness of the brands,
TF(ek )(Si ), TF(ek )(Si ) and TF(ek )(Si ), for i = 1, 2, . . . , 5, k = 1, 2 represent the degree
of membership (goodness), degree of indeterminacy and degree of nonmember-
ship (poorness) of the brands corresponding to the parameters e1 = “price” and
e2 = “quality”, respectively, and (K , N ) be the intuitionistic neutrosophic soft set
on E = {S1S2, S1S4, S1S3, S2S3, S3S4, S2S5, S3S5, S1S5, S4S5} which describes the
relationship between brands corresponding to the parameters e1 = “price” and e2
= “quality”. The intuitionistic neutrosophic soft graph is shown in Fig. 7.18. The
method for selection of brand in product marketing is presented in Algorithm 7.6.2.

Algorithm 7.6.2

1. Input the set of parameters e1, e2, . . . , ek .
2. Input the intuitionistic neutrosophic soft sets (F, N ) and (K , N ).
3. Construct intuitionistic neutrosophic graph H(e1) ∩ H(e2) ∩ . . . ∩ H(ek).
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Fig. 7.18 Intuitionistic neutrosophic soft graph

Fig. 7.19 H(e1) ∩ H(e2) S1(0.4, 0.3, 0.6) S2(0.6, 0.3, 0.8)
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Table 7.8 Tabular representation of score values with choice values

S1 S2 S3 S4 S5 Ći

S1 0 0.27 0 0.23 0 0.5

S2 0.27 0 0.27 04 0 0.54

S3 0 0.27 0 0.30 0.30 0.87

S4 0.23 0 0.30 0 0 0.53

S5 0 0 0.30 0 0 0.30

4. Calculate the average score values of intuitionistic neutrosophic graphs H(e)
using formula

ζi j := Tj F(e) + I j F(e) + 1 − Fj F(e)

3
, (7.2)

Tabular representation of score values of intuitionistic neutrosophic graphs H(e).
5. Compute the choice values of Ci = ∑

j
ζi j for all i = 1, 2, . . . , n.

6. The decision is Si if Si = n
max
i=1

Ci .

7. If i has more than one value, then any one of Si may be chosen.



7.6 Applications of Intuitionistic Neutrosophic Soft Graphs 327

The intuitionistic neutrosophic graph H(e1) ∩ H(e2) is shown in Fig. 7.19, and
tabular representation of average score values of intuitionistic neutrosophic graph is
shown in Table7.8.

Clearly, the maximum score value is 0.87, scored by the S3. Mr. X will choose
the brand S3.



Chapter 8
Neutrosophic Soft Rough Graphs

Neutrosophic soft rough set model is a hybrid model by combining neutrosophic soft
sets with rough sets. We apply neutrosophic soft rough sets to graphs. We present the
concept of neutrosophic soft rough graphs and describe different methods of their
construction. We develop an efficient algorithm of our method to solve decision-
making problems. This chapter is due to [17].

8.1 Introduction

Pawlak [142] introduced the concept of rough set. He was a Polish mathematician
(citizen of Poland) and computer scientist. Rough means approximate or inexact.
Rough set theory expresses vagueness in terms of a boundary region of a set not
in terms of membership function as in fuzzy set. The idea of rough set theory is
a generalization of classical set theory to study the intelligence systems containing
inexact, uncertain or incomplete information. It is an effective drive for bestowal
with uncertain or incomplete information. Rough set theory is a novel mathematical
approach to imprecise knowledge. Rough set theory expresses vagueness by means
of a boundary region of a set. The emptiness of boundary region of a set shows that
this is a crisp set, and nonemptiness shows that this is a rough set. Nonemptiness
of boundary region also describes the deficiency of our knowledge about a set. A
subset of a universe in rough set theory is expressed by two approximations which
are known as lower and upper approximations. Equivalence classes are the basic
building blocks in rough set theory, for upper and lower approximations. Dubois
and Prade [74] investigated rough sets and fuzzy sets and concluded that these two
theories are different approaches to handle vagueness. They reported that these are
not opposite theories and to obtain beneficial results, both theories can be combined.
Following this idea, Broumi et al. [61] introduced the concept of rough neutrosophic
sets. Yang et al. [177] proposed single-valued neutrosophic rough sets by combining
single-valued neutrosophic sets and rough sets, and established an algorithm for
decision-making problem based on single-valued neutrosophic rough sets on two

© Springer Nature Singapore Pte Ltd. 2018
M. Akram, Single-Valued Neutrosophic Graphs, Infosys Science
Foundation Series, https://doi.org/10.1007/978-981-13-3522-8_8
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Table 8.1 List of notations

Symbols Stand for

X Universal set

P Parameter set

M Subset of parameter set

R Neutrosophic soft relation on X

(F, A) Neutrosophic soft set

A Neutrosophic set on M

RA Neutrosophic soft rough set on X

R(A) Lower neutrosophic soft rough approximation on X

R(A) Upper neutrosophic soft rough approximation on X

X́ X × X

E Subset of X́

Ḿ M × M

L Subset of Ḿ

S Neutrosophic soft relation on E

B Neutrosophic set on L

SB Neutrosophic soft rough relation on X́

S(B) Lower neutrosophic soft rough approximation on E

S(B) Upper neutrosophic soft rough approximation on E

α The sum of upper neutrosophic soft rough set and lower neutrosophic soft rough set

β The sum of upper neutrosophic soft rough relation and lower neutrosophic soft rough
relation

γ The score function

universes. Zhang et al. [203] presented the notion of intuitionistic fuzzy rough sets.
The notions of soft rough neutrosophic sets and neutrosophic soft rough sets as hybrid
models are described in [26]. We give a list of notations in Table8.1.

Definition 8.1 Let X be an initial universal set, P a universal set of parameters and
M ⊆ P . For an arbitrary neutrosophic soft relation R over X × M , (X,M,R) is
called neutrosophic soft approximation space.

For any neutrosophic set A ∈ N (M),we define the upper neutrosophic soft rough
approximation and the lower neutrosophic soft rough approximation operators of A
with respect to (X,M,R) denoted by R(A) and R(A), respectively, as follows:

R(A) ={(x, T
R(A)(x), IR(A)(x), FR(A)(x)) | x ∈ X},

R(A) ={(x, TR(A)(x), IR(A)(x), FR(A)(x)) | x ∈ X},

where
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Table 8.2 Neutrosophic soft relation R

R x1 x2 x3 x4

m1 (0.3, 0.4, 0.5) (0.4, 0.2, 0.3) (0.1, 0.5, 0.4) (0.2, 0.3, 0.4)

m2 (0.1, 0.5, 0.4) (0.3, 0.4, 0.6) (0.4, 0.4, 0.3) (0.5, 0.3, 0.8)

m3 (0.3, 0.4, 0.4) (0.4, 0.6, 0.7) (0.3, 0.5, 0.4) (0.5, 0.4, 0.6)

T
R(A)(x) =

∨

m∈M

(
TR(A)(x,m) ∧ TA(m)

)
, I

R(A)(x) =
∧

m∈M

(
IR(A)(x,m) ∨ IA(m)

)
,

F
R(A)(x) =

∧

m∈M

(
FR(A)(x,m) ∨ FA(m)

); TR(A)(x) =
∧

m∈M

(
FR(A)(x,m) ∨ TA(m)

)
,

IR(A)(x) =
∨

m∈M

(
(1 − IR(A)(x,m)) ∧ IA(m)

)
, FR(A)(x) =

∨

m∈M

(
TR(A)(x,m) ∧ FA(m)

)
.

Thepair (R(A),R(A)) is calledneutrosophic soft rough setof Aw.r.t. (X,M,R), and
R and R are referred to as the lower neutrosophic soft rough approximation and the
upper neutrosophic soft rough approximation operators, respectively.

Example 8.1 Suppose that X = {x1, x2, x3, x4} is the set of careers under consid-
eration, Mr. X wants to select best suitable career. M = {m1,m2,m3} be a set of
decision parameters. Mr. X describe the “most suitable career” by defining a neutro-
sophic soft set R = (F,M) on X which is a neutrosophic relation from X to M as
shown in Table8.2.

Now,Mr.Xgives themost favourable decision object Awhich is a neutrosophic set
on M defined as follows: A={(m1,0.5,0.2,0.4),(m2,0.2,0.3,0.1),(m3,0.2,0.4,0.6)}.
By Definition 8.1, we have

T
R(A)(x1) = 0.3, I

R(A)(x1) = 0.4, F
R(A)(x1) = 0.4,

T
R(A)(x2) = 0.4, I

R(A)(x2) = 0.2, F
R(A)(x2) = 0.4,

T
R(A)(x3) = 0.2, I

R(A)(x3) = 0.4, F
R(A)(x3) = 0.3,

T
R(A)(x4) = 0.2, I

R(A)(x4) = 0.3, F
R(A)(x4) = 0.4.

Similarly,

TR(A)(x1) = 0.4, IR(A)(x1) = 0.4, FR(A)(x1) = 0.3,

TR(A)(x2) = 0.5, IR(A)(x2) = 0.4, FR(A)(x2) = 0.4,

TR(A)(x3) = 0.4, IR(A)(x3) = 0.4, FR(A)(x3) = 0.3,

TR(A)(x4) = 0.5, IR(A)(x4) = 0.4, FR(A)(x4) = 0.5.
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Thus, we obtain

R(A) ={(x1, 0.3, 0.4, 0.4), (x2, 0.4, 0.2, 0.4), (x3, 0.2, 0.4, 0.3), (x4, 0.2, 0.3, 0.4)},
R(A) ={(x1, 0.4, 0.4, 0.3), (x2, 0.5, 0.4, 0.4), (x3, 0.4, 0.4, 0.3), (x4, 0.5, 0.4, 0.5)}.

Hence (R(A),R(A)) is a neutrosophic soft rough set of A.

The conventional neutrosophic soft set is a mapping from a parameter to the
neutrosophic subset of universe, and let R=(F,M) be neutrosophic soft set. Now,
we present the constructive definition of neutrosophic soft rough relation by using
a neutrosophic soft relation S from M×M=Ḿ to N (X×X=X́), where X be a
universal set and M be a set of parameter.

Definition 8.2 A neutrosophic soft rough relation (S(B),S(B)) on X is a neutro-
sophic soft rough set, andS : Ḿ → N (X́) is a neutrosophic soft relation on X defined
by S(mim j ) = {xi x j | ∃xi ∈ R(mi ), x j ∈ R(m j )}, xi x j ∈ X́ , such that

TS(xi x j ,mim j ) ≤min{TR(xi ,mi ), TR(x j ,m j )}
IS(xi x j ,mim j ) ≤max{IR(xi ,mi ), IR(x j ,m j )}
FS(xi x j ,mim j ) ≤max{FR(xi ,mi ), FR(x j ,m j )}.

For any B∈N (Ḿ), B={(mim j ,TB(mim j ),IB(mim j ),FB(mim j )
)
mim j∈Ḿ},

TB(mim j ) ≤min{TA(mi ), TA(m j )},
IB(mim j ) ≤max{IA(mi ), IA(m j )},
FB(mim j ) ≤max{FA(mi ), FA(m j )}.

The upper neutrosophic soft approximation and the lower neutrosophic soft approx-
imation of B w.r.t. (X́ , Ḿ,S) are defined as follows:

S(B) = {(xi x j , TS(B)(xi x j ), IS(B)(xi x j ), FS(B)(xi x j )) | xi x j ∈ X́},

S(B) = {(xi x j , TS(B)(xi x j ), IS(B)(xi x j ), FS(B)(xi x j )) | xi x j ∈ X́},

where

T
S(B)(xi x j ) =

∨

mim j∈Ḿ

(
TS(xi x j ,mim j ) ∧ TB(mim j )

)
,

I
S(B)(xi x j ) =

∧

mim j∈Ḿ

(
IS(xi x j ,mim j ) ∨ IB(mim j )

)
,

F
S(B)(xi x j ) =

∧

mim j∈Ḿ

(
FS(xi x j ,mim j ) ∨ FB(mim j )

)
,
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TS(B)(xi x j ) =
∧

mim j∈Ḿ

(
FS(xi x j ,mim j ) ∨ TB(mim j )

)
,

IS(B)(xi x j ) =
∨

mim j∈Ḿ

(
(1 − IS(xi x j ,mim j )) ∧ IB(mim j )

)
,

FS(B)(xi x j ) =
∨

mim j∈Ḿ

(
TS(xi x j ,mim j ) ∧ FB(mim j )

)
.

Thepair (S(B),S(B)) is calledneutrosophic soft rough relation, andS,S : N (Ḿ) →
N (X́) are called the lower neutrosophic soft rough approximation and the upper
neutrosophic soft rough approximation operators, respectively.

Remark 8.1 Consider a neutrosophic set B on Ḿ and a neutrosophic set A on M ;
according to the definition of neutrosophic soft rough relation, we get

T
S(B)(xi x j ) ≤min{T

R(A)(xi ), TR(A)(x j )},
I
S(B)(xi x j ) ≤max{I

R(A)(xi ), IR(A)(x j )},
F

S(B)(xi x j ) ≤max{F
R(A)(xi ), FR(A)(x j )}.

Similarly, for lower neutrosophic soft rough approximation operator S(B),

TS(B)(xi x j ) ≤min{TR(A)(xi ), TR(A)(x j )},
IS(B)(xi x j ) ≤max{IR(A)(xi ), IR(A)(x j )},
FS(B)(xi x j ) ≤max{FR(A)(xi ), FR(A)(x j )}.

Example 8.2 Let X = {x1, x2, x3} be a universal set and M = {m1,m2,m3} a set of
parameters. A neutrosophic soft set R = (F,M) on X can be defined in Table8.3 as
follows.

Let E = {x1x2, x2x3, x2x2, x3x2} ⊆ X́ and L = {m1m3,m2m1,m3m2} ⊆ Ḿ .
Then a soft relation S on E (from L to E) can be defined in Table8.4 as follows.
Let A = {(m1, 0.2, 0.4, 0.6), (m2, 0.4, 0.5, 0.2), (m3, 0.1, 0.2, 0.4)} be a neutro-
sophic set on M , then
R(A) = {(x1, 0.4, 0.2, 0.4), (x2, 0.3, 0.4, 0.3), (x3, 0.4, 0.2, 0.3)}
R(A) = {(x1, 0.3, 0.5, 0.4), (x2, 0.2, 0.5, 0.6), (x3, 0.4, 0.5, 0.6)}.
Let B = {(m1m3, 0.1, 0.3, 0.5), (m2m1, 0.2, 0.4, 0.3), (m3m2, 0.1, 0.2, 0.3)} be a
neutrosophic set on L , then

Table 8.3 Neutrosophic soft set R = (F,M)

R x1 x2 x3

m1 (0.4, 0.5, 0.6) (0.7, 0.3, 0.2) (0.6, 0.3, 0.4)

m2 (0.5, 0.3, 0.6) (0.3, 0.4, 0.3) (0.7, 0.2, 0.3)

m3 (0.7, 0.2, 0.3) (0.6, 0.5, 0.4) (0.7, 0.2, 0.4)
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Table 8.4 Neutrosophic soft relation S

S x1x2 x2x3 x2x2 x3x2

m1m3 (0.4, 0.4, 0.5) (0.6, 0.3, 0.4) (0.5, 0.4, 0.2) (0.5, 0.4, 0.3)

m2m1 (0.3, 0.3, 0.4) (0.3, 0.2, 0.3) (0.2, 0.3, 0.3) (0.7, 0.2, 0.2)

m3m2 (0.3, 0.3, 0.2) (0.5, 0.3, 0.2) (0.2, 0.4, 0.4) (0.3, 0.4, 0.4)

S(B) = {(x1x2, 0.2, 0.3, 0.3), (x2x3, 0.2, 0.3, 0.3), (x2x2, 0.2, 0.4, 0.3),
(x3x2, 0.2, 0.4, 0.3)}

S(B) = {(x1x2, 0.2, 0.4, 0.4), (x2x3, 0.2, 0.4, 0.5), (x2x2, 0.3, 0.4, 0.5),
(x3x2, 0.2, 0.4, 0.5)}

Hence SB = (S(B),S(B)) is neutrosophic soft rough relation.

8.2 Neutrosophic Soft Rough Information

Definition 8.3 A neutrosophic soft rough graph on a nonempty X is a four-ordered
tuple (X,M,RA,SB) such that

(i) M is a set of parameters.
(ii) R is an arbitrary neutrosophic soft relation over X × M .
(iii) S is an arbitrary neutrosophic soft relation over X́ × Ḿ .
(vi) RA = (R(A),R(A)) is a neutrosophic soft rough set of X .
(v) SB = (S(B),S(B)) is a neutrosophic soft rough relation on X́ ⊆ X × X .

G = (RA,SB) is a neutrosophic soft rough graph, where G = (R(A),S(B)) and
G = (R(A),S(B)) are lower neutrosophic approximate graph and upper neutro-
sophic approximate graph, respectively, of neutrosophic soft rough graph G =
(RA,SB).

Example 8.3 Let X = {x1, x2, x3, x4, x5, x6} be a vertex set and M = {m1,m2,m3}
a set of parameters. A neutrosophic soft relation over X × M can be defined in
Table8.5 as follows.
Let A = {(m1, 0.5, 0.4, 0.6), (m2, 0.7, 0.4, 0.5), (m3, 0.6, 0.2, 0.5)} be a neutro-
sophic set on M , then

Table 8.5 Neutrosophic soft relation R

R x1 x2 x3 x4 x5 x6

m1 (0.4, 0.5, 0.6) (0.7, 0.3, 0.5) (0.6, 0.2, 0.3) (0.4, 0.4, 0.2) (0.5, 0.5, 0.6) (0.4, 0.5, 0.6)

m2 (0.5, 0.4, 0.2) (0.6, 0.4, 0.5) (0.7, 0.3, 0.4) (0.5, 0.3, 0.2) (0.4, 0.5, 0.4) (0.6, 0.5, 0.4)

m3 (0.5, 0.4, 0.1) (0.6, 0.3, 0.2) (0.5, 0.4, 0.3) (0.6, 0.2, 0.3) (0.5, 0.4, 0.4) (0.7, 0.3, 0.5)
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R(A) ={(x1, 0.5, 0.4, 0.5), (x2, 0.6, 0.3, 0.5), (x3, 0.7, 0.4, 0.5), (x4, 0.6, 0.2, 0.5), (x5, 0.5,
0.4, 0.5), (x6, 0.6, 0.3, 0.5)},

R(A) ={(x1, 0.6, 0.4, 0.5), (x2, 0.5, 0.4, 0.6), (x3, 0.5, 0.4, 0.6), (x4, 0.5, 0.4, 0.5), (x5, 0.6,
0.4, 0.5), (x6, 0.6, 0.4, 0.5)}.

Let E = {x1x1, x1x2, x2x1, x2x3, x4x5, x3x4, x5x2, x5x6} ⊆ X́ and L = {m1m3,

m2m1,m3m2} ⊆ Ḿ . Then a neutrosophic soft relation S on E (from L to E) can
be defined in Tables8.6 and 8.7 as follows.
Let B = {(m1m2, 0.4, 0.4, 0.5), (m2m3, 0.5, 0.4, 0.5), (m1m3, 0.5, 0.2, 0.5)} be a
neutrosophic set on L, then

S(B) ={(x1x1, 0.5, 0.4, 0.5), (x1x2, 0.4, 0.2, 0.5), (x2x1, 0.4, 0.2, 0.5), (x2x3, 0.5, 0.3, 0.5),
(x3x4, 0.5, 0.2, 0.5), (x4x5, 0.4, 0.3, 0.5), (x5x2, 0.5, 0.3, 0.5), (x5x6, 0.5, 0.3, 0.5)},

S(B) ={(x1x1, 0.4, 0.4, 0.5)(x1x2, 0.5, 0.4, 0.4), (x2x1, 0.5, 0.4, 0.4), (x2x3, 0.4, 0.4, 0.5),
(x3x4, 0.4, 0.4, 0.5), (x4x5, 0.4, 0.4, 0.4), (x5x2, 0.4, 0.4, 0.5), (x5x6, 0.4, 0.4, 0.5)}.

Hence SB = (S(B),S(B)) is neutrosophic soft rough relation on X́ . Thus, G =
(R(A),S(B)) and G = (R(A),S(B)) are lower neutrosophic approximate graph
and upper neutrosophic approximate graph, respectively, as shown in Fig. 8.1. Hence,
G = (G,G) is neutrosophic soft rough graph.

Definition 8.4 Let G1 = (G1,G1) and G2 = (G2,G2) be two neutrosophic soft
rough graphs on X . The union of G1 and G2 is a neutrosophic soft rough graph G =
G1 ∪ G2 = (G1 ∪ G2,G1 ∪ G2), where G1 ∪ G2 = (R(A1) ∪ R(A2),S(B1) ∪ S

(B2)) and G1 ∪ G2 = (R(A1) ∪ R(A2),S(B1) ∪ S(B2)) are neutrosophic graphs,
such that

(i) ∀x ∈ RA1 but x /∈ RA2.

Table 8.6 Neutrosophic soft relation S

S x1x1 x1x2 x2x1 x2x3

m1m2 (0.4, 0.4, 0.2) (0.4, 0.4, 0.5) (0.4, 0.4, 0.5) (0.6, 0.3, 0.4)

m2m3 (0.5, 0.4, 0.1) (0.4, 0.3, 0.2) (0.4, 0.3, 0.2) (0.5, 0.3, 0.2)

m1m3 (0.4, 0.4, 0.1) (0.4, 0.2, 0.2) (0.4, 0.2, 0.2) (0.5, 0.3, 0.3)

Table 8.7 Neutrosophic soft relation S

S x3x4 x4x5 x5x2 x5x6

m1m2 (0.4, 0.2, 0.2) (0.4, 0.4, 0.2) (0.4, 0.3, 0.4) (0.3, 0.2, 0.3)

m2m3 (0.6, 0.2, 0.4) (0.3, 0.2, 0.1) (0.4, 0.3, 0.2) (0.4, 0.3, 0.4)

m1m3 (0.4, 0.2, 0.3) (0.4, 0.3, 0.1) (0.5, 0.3, 0.2) (0.5, 0.3, 0.5)
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(x1, 0.5, 0.4, 0.5) (x2, 0.6, 0.3, 0.5)

(x5, 0.5, 0.4, 0.5)

(x4, 0.6, 0.2, 0.5)
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G = (R(A), S(B))G = (R(A), S(B))

(0
.5
,0
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,0

.5)

(0
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. 4
,0

.5)

Fig. 8.1 Neutrosophic soft rough graph G = (G,G)

T
R(A1)∪R(A2)

(x) =T
R(A1)

(x), TR(A1)∪R(A2)(x) = TR(A1)(x),

I
R(A1)∪R(A2)

(x) =I
R(A1)

(x), IR(A1)∪R(A2)(x) = IR(A1)(x),

F
R(A1)∪R(A2)

(x) =F
R(A1)

(x), FR(A1)∪R(A2)(x) = FR(A1)(x).

(ii) ∀x /∈ RA1 but x ∈ RA2.

T
R(A1)∪R(A2)

(x) =T
R(A2)

(x), TRA1∪R(A2)(x) = TR(A2)(x),

I
R(A1)∪R(A2)

(x) =I
R(A2)

(x), IR(A1)∪R(A2)(x) = IR(A2)(x),

F
R(A1)∪R(A2)

(x) =F
R(A2)

(x), FR(A1)∪R(A2)(x) = FR(A2)(x).

(iii) ∀x ∈ RA1 ∩ RA2

T
R(A1)∪R(A2)

(x) =max{T
R(A1)

(x), T
R(A2)

(x)},
TR(A1)∪R(A2)(x) =max{TR(A1)(x), TR(A2)(x)},
I
R(A1)∪R(A2)

(x) =min{I
R(A1)

(x), I
R(A2)

(x)},
IR(A1)∪R(A2)(x) =min{IR(A1)(x), IR(A2)(x)},
F

R(A1)∪R(A2)
(x) =min{F

R(A1)
(x), F

R(A2)
(x)},

FR(A1)∪R(A2)(x) =min{FR(A1)(x), FR(A2)(x)}.

(iv) ∀xy ∈ SB1 but xy /∈ SB2.

T
S(B1)∪S(B2)

(xy) =T
S(B1)

(xy), TS(B1)∪S(B2)(xy) = TS(B1)(xy),

I
S(B1)∪S(B2)

(xy) =I
S(B1)

(xy), IS(B1)∪S(B2)(xy) = IS(B1)(xy),

F
S(B1)∪S(B2)

(xy) =F
S(B1)

(xy), FS(B1)∪S(B2)(xy) = FS(B1)(xy).

(v) ∀xy /∈ SB1 but xy ∈ SB2
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Table 8.8 Neutrosophic soft relation R

R x1 x2 x3 x4

m1 (0.5, 0.4, 0.3) (0.7, 0.6, 0.5) (0.7, 0.6, 0.4) (0.5, 0.7, 0.4)

m2 (0.3, 0.5, 0.6) (0.4, 0.5, 0.1) (0.3, 0.6, 0.5) (0.4, 0.8, 0.2)

m3 (0.7, 0.5, 0.8) (0.2, 0.3, 0.8) (0.7, 0.3, 0.5) (0.6, 0.4, 0.3)

T
S(B1)∪S(B2)

(xy) =T
S(B2)

(xy), TS(B1)∪S(B2)(xy) = TS(B2)(xy),

I
S(B1)∪S(B2)

(xy) =I
S(B2)

(xy), IS(B1)∪S(B2)(xy) = IS(B2)(xy),

F
S(B1)∪S(B2)

(xy) =F
S(B2)

(xy), FS(B1)∪S(B2)(xy) = FS(B2)(xy).

(vi) ∀xy ∈ SB1 ∩ S(B2)

T
S(B1)∪S(B2)

(xy) =max{T
S(B1)

(xy), T
S(B2)

(xy)},
TS(B1)∪S(B2)(xy) =max{TS(B1)(xy), TS(B2)(xy)},
I
S(B1)∪S(B2)

(xy) =min{I
S(B1)

(xy), I
S(B2)

(xy)},
IS(B1)∪S(B2)(xy) =min{IS(B1)(xy), IS(B2)(xy)},
F

S(B1)∪S(B2)
(xy) =min{F

S(B1)
(xy), F

S(B2)
(xy)},

FS(B1)∪S(B2)(xy) =min{FS(B1)(xy), FS(B2)(xy)}.

Example 8.4 Let X = {x1, x2, x3, x4} be a set of universe and M = {m1,m2,m3} a
set of parameters. Then a neutrosophic soft relation over X × M can be written as
in Table8.8.

Let A1 = {(m1, 0.5, 0.7, 0.8), (m2, 0.7, 0.5, 0.3), (m3, 0.4, 0.5, 0.3)}, and
A2 = {(m1, 0.6, 0.3, 0.5), (m2, 0.5, 0.8, 0.2), (m3, 0.5, 0.7, 0.2)} be two
neutrosophic sets on M , Then RA1 = (R(A1),R(A1)) and RA2 = (R(A2),R(A2))

are neutrosophic soft rough sets, where

R(A1) ={(x1, 0.5, 0.6, 0.5), (x2, 0.5, 0.5, 0.7)(x3, 0.5, 0.5, 0.7), (x40.4, 0.5, 0.5)},
R(A1) ={(x1, 0.5, 0.5, 0.6), (x2, 0.5, 0.5, 0.3), (x3, 0.5, 0.5, 0.5), (x40.5, 0.5, 0.3)};
R(A2) ={(x1, 0.6, 0.5, 0.5), (x2, 0.5, 0.7, 0.5), (x3, 0.5, 0.7, 0.5), (x4, 0.5, 0.6, 0.5)},
R(A2) ={(x1, 0.5, 0.4, 0.5), (x2, 0.6, 0.6, 0.2), (x3, 0.6, 0.6, 0.5), (x4, 0.5, 0.7, 0.2)}.

Let E = {x1x2, x1x4, x2x2, x2x3, x3x3, x3x4} ⊆ X × X , and L = {m1m2,m1m3,

m2m3} ⊂ Ḿ. Then a neutrosophic soft relation on E can be written as in Table8.9
Let B1 = {(m1m2, 0.5, 0.4, 0.5), (m1m3, 0.3, 0.4, 0.5), (m2m3, 0.4, 0.4, 0.3)},

and B2 = {(m1m2, 0.5, 0.3, 0.2), (m1m3, 0.4, 0.3, 0.3), (m2m3, 0.4, 0.6, 0.2)} be
two neutrosophic sets on L . Then SB1 = (S(B1),S(B1)) and SB2 = (S(B2),S(B2))

are neutrosophic soft rough relations, where
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Table 8.9 Neutrosophic soft relation S

S x1x2 x1x4 x2x2 x2x3 x3x3 x3x4

m1m2 (0.3, 0.4, 0.1) (0.4, 0.4, 0.2) (0.4, 0.5, 0.1) (0.3, 0.5, 0.4) (0.3, 0.4, 0.4) (0.4, 0.5, 0.2)

m1m3 (0.2, 0.3, 0.3) (0.4, 0.3, 0.2) (0.2, 0.3, 0.5) (0.4, 0.3, 0.3) (0.5, 0.3, 0.3) (0.5, 0.4, 0.3)

m2m3 (0.2, 0.3, 0.5) (0.3, 0.3, 0.3) (0.2, 0.3, 0.1) (0.4, 0.3, 0.1) (0.3, 0.3, 0.5) (0.3, 0.4, 0.3)

(x1, 0.5, 0.6, 0.5)

(x
2
, 0

.5
, 0

.5
,0

.
)3

(x3, 0.5, 0.5, 0.5)(x4, 0.5, 0.5, 0.3)

(x1, 0.5, 0.5, 0.6)

(x3, 0.5, 0.5, 0.7) (x4, 0.4, 0.5, 0.5)

(x2, 0.5, 0.5, 0.7)

G1 = (R(A1), S(B1))
G1 = (R(A1), S(B1))

(0.3, 0.4, 0.3)

(0.
4, 0

.4,
0.3

)
0(
.3
, 0

.4
, 0

.
)5

(0.3, 0.4, 0.5)

(0.3, 0.4, 0.4)

(0.4, 0.4, 0.3)

(0
.3,

0.4
, 0
.4)

(0.4
, 0.4

, 0.3
)

(0.4, 0.4, 0.4)

(0.3, 0.4, 0.5)

(0.4, 0.4, 0.3)

(0.3, 0.4, 0.5)

Fig. 8.2 Neutrosophic soft rough graph G1 = (G1,G1)

S(B1) ={(x1x2, 0.3, 0.4, 0.3), (x1x4, 0.3, 0.4, 0.4), (x2x2, 0.4, 0.4, 0.4), (x2x3, 0.3, 0.4, 0.4),
(x3x3, 0.3, 0.4, 0.5), (x3x4, 0.3, 0.4, 0.5)},

S(B1) ={(x1x2, 0.3, 0.4, 0.5), (x1x4, 0.4, 0.4, 0.3), (x2x2, 0.4, 0.4, 0.3), (x2x3, 0.4, 0.4, 0.3),
(x3x3, 0.3, 0.4, 0.5), (x3x4, 0.4, 0.4, 0.3)};

S(B2) ={(x1x2, 0.4, 0.6, 0.2), (x1x4, 0.4, 0.6, 0.3), (x2x2, 0.4, 0.6, 0.2), (x2x3, 0.4, 0.6, 0.3),
(x3x3, 0.4, 0.6, 0.3), (x3x4, 0.4, 0.6, 0.3)},

S(B2) ={(x1x2, 0.3, 0.3, 0.2), (x1x4, 0.4, 0.3, 0.2), (x2x2, 0.4, 0.3, 0.2), (x2x3, 0.4, 0.3, 0.2),
(x3x3, 0.4, 0.3, 0.3), (x3x4, 0.4, 0.4, 0.2)}.

Thus G1 = (G1,G1) and G2 = (G2,G2) are neutrosophic soft rough graphs, where
G1 = (R(A1),S(B1)), G1 = (R(A1),S(B1)) as shown in Fig. 8.2

G2 = (R(A2),S(B2)), G2 = (R(A2),S(B2)) as shown in Fig. 8.3.
The union ofG1 = (G1,G1) andG2 = (G2,G2) is neutrosophic soft rough graph

G = G1 ∪ G2 = (G1 ∪ G2,G1 ∪ G2) as shown in Fig. 8.4.

Definition 8.5 Let G1 = (G1,G1) and G2 = (G2,G2) be two neutrosophic soft
rough graphs on X . The intersection ofG1 andG2 is a neutrosophic soft rough graph
G = G1 ∩ G2 = (G1 ∩ G2,G1 ∩ G2), where G1 ∩ G2 = (R(A1) ∩ R(A2),S(B1)∩
S(B2)) and G1 ∩ G2 = (R(A1) ∩ R(A2),S(B1) ∩ S(B2)) are neutrosophic graphs,
respectively, such that

(i) ∀x ∈ RA1 but x /∈ RA2.
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(x1, 0.6, 0.5, 0.5)

(x1, 0.5, 0.4, 0.5)

(x4, 0.5, 0.7, 0.2)

(x2, 0.6, 0.6, 0.2)

(x2, 0.5, 0.7, 0.5) (x4, 0.5, 0.6, 0.5)

(x3, 0.5, 0.7, 0.5)

G2 = (R(A2), S(B2)) G2 = (R(A2), S(B2))
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Fig. 8.3 Neutrosophic soft rough graph G2 = (G2,G2)
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G1 ∪ G2 = (R(A1) ∪ R(A2), S(B1) ∪ S(B2)) G1 ∪ G2 = (R(A1) ∪ R(A2), S(B1) ∪ S(B2))

Fig. 8.4 Neutrosophic soft rough graph G1 ∪ G2 = (G1 ∪ G2,G1 ∪ G2)

T
R(A1)∩R(A2)

(x) =T
R(A1)

(x), TR(A1)∩R(A2)(x) = TR(A1)(x),

I
R(A1)∩R(A2)

(x) =I
R(A1)

(x), IR(A1)∩R(A2)(x) = IR(A1)(x),

F
R(A1)∩R(A2)

(x) =F
R(A1)

(x), FR(A1)∩R(A2)(x) = FR(A1)(x).

(ii) ∀x /∈ RA1 but x ∈ RA2.

T
R(A1)∩R(A2)

(x) =T
R(A2)

(x), TR(A1)∩R(A2)(x) = TR(A2)(x),

I
R(A1)∩R(A2)

(x) =I
R(A2)

(x), IR(A1)∩R(A2)(x) = IR(A2)(x),

F
R(A1)∩R(A2)

(x) =F
R(A2)

(x), FR(A1)∩R(A2)(x) = FR(A2)(x).
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(iii) ∀x ∈ RA1 ∩ RA2
T

R(A1)∩R(A2)
(x) =min{T

R(A1)
(x), T

R(A2)
(x)},

TR(A1)∩R(A2)(x) =min{TR(A1)(x), TR(A2)(x)},
I
R(A1)∩R(A2)

(x) =max{I
R(A1)

(x), I
R(A2)

(x)},
IR(A1)∩R(A2)(v) =max{IR(A1)(x), IR(A2)(x)},
F

R(A1)∩R(A2)
(x) =max{F

R(A1)
(x), F

R(A2)
(x)},

FR(A1)∩R(A2)(v) =max{FR(A1)(x), FR(A2)(x)}.

(iv) ∀xy ∈ SB1 but xy /∈ SB2.

T
S(B1)∩S(B2)

(xy) =T
S(B1)

(xy), TS(B1)∩S(B2)(xy) = TS(B1)(xy),

I
S(B1)∩S(B2)

(xy) =I
S(B1)

(xy), IS(B1)∩S(B2)(xy) = IS(B1)(xy),

F
S(B1)∩S(B2)

(xy) =F
S(B1)

(xy), FS(B1)∩S(B2)(xy) = FS(B1)(xy).

(v) ∀xy /∈ SB1 but xy ∈ SB2

T
S(B1)∩S(B2)

(xy) =T
S(B2)

(xy), TS(B1)∩S(B2)(xy) = TS(B2)(xy),

I
S(B1)∩S(B2)

(xy) =I
S(B2)

(xy), IS(B1)∩S(B2)(xy) = IS(B2)(xy),

F
S(B1)∩S(B2)

(xy) =F
S(B2)

(xy), FS(B1)∩S(B2)(xy) = FS(B2)(xy).

(vi) ∀xy ∈ SB1 ∩ S(B2)

T
S(B1)∩S(B2)

(xy) =min{T
S(B1)

(xy), T
S(B2)

(xy)},
TS(B1)∩S(B2)(xy) =min{TS(B1)(xy), TS(B2)(xy)},
I
S(B1)∩S(B2)

(xy) =max{I
S(B1)

(xy), I
S(B2)

(xy)},
IS(B1)∩S(B2)(xy) =max{IS(B1)(xy), IS(B2)(xy)},
F

S(B1)∩S(B2)
(xy) =max{F

S(B1)
(xy), F

S(B2)
(xy)},

FS(B1)∩S(B2)(xy) =max{FS(B1)(xy), FS(B2)(xy)}.

Definition 8.6 Let G1 = (G1,G1) and G2 = (G2,G2) be two neutrosophic soft
rough graphs on X . The join of G1 and G2 is a neutrosophic soft rough graph G =
G1 + G2 = (G1 + G2,G1 + G2), where G1 + G2 = (R(A1) + R(A2),S(B1) +
S(B2)) and G1 + G2 = (R(A1) + R(A2),S(B1) + S(B2)) are neutrosophic graphs,
respectively, such that

(i) ∀x ∈ RA1 but x /∈ RA2.

T
R(A1)+R(A2)

(x) =T
R(A1)

(x), TR(A1)+R(A2)(x) = TR(A1)(x),

I
R(A1)+R(A2)

(x) =I
R(A1)

(x), IR(A1)+R(A2)(x) = IR(A1)(x),

F
R(A1)+R(A2)

(x) =F
R(A1)

(x), FR(A1)+R(A2)(x) = FR(A1)(x).
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(ii) ∀x /∈ RA1 but x ∈ RA2.

T
R(A1)+R(A2)

(x) =T
R(A2)

(x), TR(A1)+R(A2)(x) = TR(A2)(x),

I
R(A1)+R(A2)

(x) =I
R(A2)

(x), IR(A1)+R(A2)(x) = IR(A2)(x),

F
R(A1)+R(A2)

(x) =F
R(A2)

(x), FR(A1)+R(A2)(x) = FR(A2)(x).

(iii) ∀x ∈ RA1 ∩ RA2

T
R(A1)+R(A2)

(x) =max{T
R(A1)

(x), T
R(A2)

(x)},
TR(A1)+R(A2)(x) =max{TR(A1)(x), TR(A2)(x)},
I
R(A1)+R(A2)

(x) =min{I
R(A1)

(x), I
R(A2)

(x)},
IR(A1)+R(A2)(x) =min{IR(A1)(x), IR(A2)(x)},
F

R(A1)+R(A2)
(x) =min{F

R(A1)
(x), F

R(A2)
(x)},

FR(A1)+R(A2)(x) =min{FR(A1)(x), FR(A2)(x)}.

(iv) ∀xy ∈ SB1 but xy /∈ SB2.

T
S(B1)+S(B2)

(xy) =T
S(B1)

(xy), TS(B1)+S(B2)(xy) = TS(B1)(xy),

I
S(B1)+S(B2)

(xy) =I
S(B1)

(xy), IS(B1)+S(B2)(xy) = IS(B1)(xy),

F
S(B1)+S(B2)

(xy) =F
S(B1)

(xy), FS(B1)+S(B2)(xy) = FS(B1)(xy).

(v) ∀xy /∈ SB1 but xy ∈ SB2

T
S(B1)+S(B2)

(xy) =T
S(B2)

(xy), TS(B1)+S(B2)(xy) = TS(B2)(xy),

I
S(B1)+S(B2)

(xy) =I
S(B2)

(xy), IS(B1)+S(B2)(xy) = IS(B2)(xy),

F
S(B1)+S(B2)

(xy) =F
S(B2)

(xy), FS(B1)+S(B2)(xy) = FS(B2)(xy).

(vi) ∀xy ∈ SB1 ∩ S(B2)

T
S(B1)+S(B2)

(xy) =max{T
S(B1)

(xy), T
S(B2)

(xy)},
TS(B1)+S(B2)(xy) =max{TS(B1)(xy), TS(B2)(xy)},
I
S(B1)+S(B2)

(xy) =min{I
S(B1)

(xy), I
S(B2)

(xy)},
IS(B1)+S(B2)(xy) =min{IS(B1)(xy), IS(B2)(xy)},
F

S(B1)+S(B2)
(xy) =min{F

S(B1)
(xy), F

S(B2)
(xy)},

FS(B1)+S(B2)(xy) =min{FS(B1)(xy), FS(B2)(xy)}.

(vii) ∀xy ∈ Ẽ , where Ẽ is the set of edges joining vertices of RA1 and RA2.
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T
S(B1)+S(B2)

(xy) =min{T
R(A1)

(x), T
R(A2)

(y)},
TS(B1)+S(B2)(xy) =min{TR(A1)(x), TR(A2)(y)},
I
S(B1)‘+S(B2)

(xy) =max{I
R(A1)

(x), I
R(A2)

(y)},
IS(B1)+S(B2)(xy) =max{IR(A1)(x), IR(A2)(y)},
F

S(B1)+S(B2)
(xy) =max{F

R(A1)
(x), F

R(A2)
(y)},

FS(B1)+S(B2)(xy) =max{FR(A1)(x), FR(A2)(y)}.

Definition 8.7 The Cartesian product of G1 and G2 is a G = G1 � G2 = (G1 �

G2,G1 � G2), where G1 � G2 = (R(A1) � R(A2),S(B1) � S(B2)) and G1 �

G2 = (R(A1) � R(A2),S(B1) � S(B2)) are neutrosophic graphs, such that

(i) ∀ (x, y) ∈ RA1 × RA2.

T
R(A1)�R(A2)

(x, y) =min{T
R(A1)

(x), T
R(A2)

(x)},
TR(A1)�R(A2)(x, y) =min{TR(A1)(x), TR(A2)(x)},
I
R(A1)�R(A2)

(x, y) =max{I
R(A1)

(x), I
R(A2)

(x)},
IR(A1)�R(A2)(x, y) =max{IR(A1)(x), IR(A2)(x)},
F

R(A1)�R(A2)
(x, y) =max{F

R(A1)
(x), F

R(A2)
(x)},

FR(A1)�R(A2)(x, y) =max{FR(A1)(x), FR(A2)(x1)}.

(ii) ∀y1y2 ∈ SB2, x ∈ RA1.

T
S(B1)�S(B2)

(
(x, y1)(x, y2)

) =min{T
R(A1)

(x), T
S(B2)

(y1y2)},
TS(B1)�S(B2)

(
(x, y1)(x, y2)

) =min{TR(A1)(x), TS(B2)(y1y2)},
I
S(B1)�S(B2)

(
(x, y1)(x, y2)

) =max{I
R(A1)

(x), I
S(B2)

(y1y2)},
IS(B1)�S(B2)

(
(x, y1)(x, y2)

) =max{IR(A1)(x), IS(B2)(y1y2)},
F

S(B1)�S(B2)

(
(x, y1)(x, y2)

) =max{F
R(A1)

(x), F
S(B2)

(y1y2)},
FS(B1)�S(B2)

(
(x, y1)(x, y2)

) =max{FR(A1)(x), FS(B2)(y1y2)}.

(iii) ∀x1x2 ∈ SB1, y ∈ RA2.

TS(B1)�S(B2)

(
(x1, y)(x2, y)

) =min{TS(B1)(x1x2), TR(A2)(y)},
T

S(B1)�S(B2)

(
(x1, y)(x2, y)

) =min{T
S(B1)

(x1x2), TR(A2)
(y)},

I
S(B1)�S(B2)

(
(x1, y)(x2, y)

) =max{I
S(B1)

(x1x2), IR(A2)
(y)},

IS(B1)�S(B2)

(
(x1, y)(x2, y)

) =max{IS(B1)(x1x2), IR(A2)(y)},
F

S(B1)�S(B2)

(
(x1, y)(x2, y)

) =max{F
S(B1)

(x1x2), FR(A2)
(y)},

FS(B1)�S(B2)

(
(x1, y)(x2, y)

) =max{FS(B1)(x1x2), FR(A2)(y)}.
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Definition 8.8 The cross product of G1 and G2 is a neutrosophic soft rough graph
G = G1 � G2 = (G1 � G2,G1 � G2),whereG1 � G2 = (R(A1) � R(A2),S(B1)

� S(B2)) and G1 � G2 = (R(A1) � R(A2),S(B1) � S(B2)) are neutrosophic
graphs, respectively, such that

(i) ∀ (x, y) ∈ RA1 × RA2.

T
R(A1)�R(A2)

(x, y) =min{T
R(A1)

(x), T
R(A2)

(x)},
TR(A1)�R(A2)(x, y) =min{TR(A1)(x), TR(A2)(x)},
I
R(A1)�R(A2)

(x, y) =max{I
R(A1)

(x), I
R(A2)

(x)},
IR(A1)�R(A2)(x, y) =max{IR(A1)(x), IR(A2)(x)},
F

R(A1)�R(A2)
(x, y) =max{F

R(A1)
(x), F

R(A2)
(x)},

FR(A1)�R(A2)(x, y) =max{FR(A1)(x), FR(A2)(x)}.

(ii) ∀x1x2 ∈ SB1, y1y2 ∈ SB2.

T
S(B1)�S(B2)

(
(x1, y1)(x2, y2)

) =min{T
S(B1)

(x1x2), TS(B2)
(y1y2)},

TS(B1)�S(B2)

(
(x1, y1)(x2, y2)

) =min{TS(B1)(x1x2), TS(B2)(y1y2)},
I
S(B1)�S(B2)

(
(x1, y1)(x2, y2)

) =max{I
S(B1)

(x1x2), IS(B2)
(y1y2)},

IS(B1)�S(B2)

(
(x1, y1)(x2, y2)

) =max{IS(B1)(x1x2), IS(B2)(y1y2)},
F

S(B1)�S(B2)

(
(x1, y1)(x2, y2)

) =max{F
S(B1)

(x1x2), FS(B2)
(y1y2)},

FS(B1)�S(B2)

(
(x1, y1)(x2, y2)

) =max{FS(B1)(x1x2), FS(B2)(y1y2)}.

Definition 8.9 The rejection of G1 and G2 is a neutrosophic soft rough graph G =
G1|G2 = (G1|G2,G1|G2),whereG1|G2 = (SA1|SA2,S(B1)|S(B2)) andG1|G2 =
(SA1|SA2,S(B1)|S(B2)) are neutrosophic graphs such that

(i) ∀ (x, y) ∈ RA1 × RA2.

T
R(A1)|R(A2)

(x, y) =min{T
R(A1)

(x), T
R(A2)

(y)},
TR(A1)|R(A2)(x, y) =min{TR(A1)(x), TR(A2)(y)},
I
R(A1)|R(A2)

(x, y) =max{I
R(A1)

(x), I
R(A2)

(y)},
IR(A1)|R(A2)(x, y) =max{IR(A1)(x), IR(A2)(y)},
F

R(A1)|R(A2)
(x, y) =max{F

R(A1)
(x), F

R(A2)
(y)},

FR(A1)|R(A2)(x, y) =max{FR(A1)(x), FR(A2)(y)}.

(ii) ∀y1y2 /∈ SB2, x ∈ RA1.

T
S(B1)|S(B2)

(
(x, y1)(x, y2)

) =min{T
R(A1)

(x), T
R(A2)

(y1), TR(A2)
(y2)},

TS(B1)|RB2)

(
(x, y1)(x, y2)

) =min{TR(A1)(x), TR(A2)(y1), TR(A2)(y2)},
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(I
S(B1)|S(B2)

(
(x, y1)(x, y2)

) =max{I
R(A1)

(x), I
R(A2)

(y1), IR(A2)
(y2)},

(IS(B1)|S(B2)

(
(x, y1)(x, y2)

) =max{IR(A1)(x), IR(A2)(y1), IR(A2)(y2)},
(F

S(B1)|S(B2)

(
(x, y1)(x, y2)

) =max{F
R(A1)

(x), F
R(A2)

(y1), FR(A2)
(y2)},

(FS(B1)|S(B2)

(
(x, y1)(x, y2)

) =max{FR(A1)(x), FR(A2)(y1), FR(A2)(y2)}.

(iii) ∀x1x2 /∈ SB1, y ∈ RA2,

TS(B1)|S(B2)

(
(x1, y)(x2, y)

) =min{TR(A1)(x1), TR(A)1(x2), TR(A2)(y)},
IS(B1)|S(B2)

(
(x1, y)(x2, y)

) =max{IR(A1)(x1), IR(A)1(x2), IR(A2)(y)},
FS(B1)|S(B2)

(
(x1, y)(x2, y)

) =max{FR(A1)(x1), FR(A)1(x2), FR(A2)(y)},
T

S(B1)|S(B2)

(
(x1, y)(x2, y)

) =min{T
R(A1)

(x1), TR(A)1(x2), TR(A2)
(y)},

I
S(B1)|S(B2)

(
(x1, y)(x2, y)

) =max{I
R(A1)

(x1), IR(A)1(x2), IR(A2)
(y)},

F
S(B1)|S(B2)

(
(x1, y)(x2, y)

) =max{F
R(A1)

(x1), FR(A)1(x2), FR(A2)
(y)}.

(iv) ∀x1x2 /∈ SB1, y1y2 /∈ SB2, x1 = x2, y1 = y2.

TS(B1)|S(B2)
(
(x1, y1)(x2, y2)

) =min{TR(A1)(x1), TR(A)1 (x2), TR(A2)(y1), TR(A2)(y2)},
IS(B1)|S(B2)

(
(x1, y1)(x2, y2)

) =max{IR(A1)(x1), IR(A)1 (x2), IR(A2)(y1), IR(A2)(y2)},
FS(B1)|S(B2)

(
(x1, y1)(x2, y2)

) =max{FR(A1)(x1), FR(A)1 (x2), FR(A2)(y1), FR(A2)(y2)},
T

S(B1)|S(B2)
(
(x1, y1)(x2, y2)

) =min{T
R(A1)

(x1), TR(A)1
(x2), TR(A2)

(y1), TR(A2)
(y2)},

I
S(B1)|S(B2)

(
(x1, y1)(x2, y2)

) =max{I
R(A1)

(x1), IR(A)1
(x2), IR(A2)

(y1), IR(A2)
(y2)},

F
S(B1)|S(B2)

(
(x1, y1)(x2, y2)

) =max{F
R(A1)

(x1), FR(A)1
(x2), FR(A2)

(y1), FR(A2)
(y2)},

Example 8.5 Let G1 = (G1,G1) and G2 = (G2,G2) be two neutrosophic soft
rough graphs on X , where G1 = (R(A1),S(B1)) and G1 = (R(A1),S(B1)) are
neutrosophic graphs as shown in Fig. 8.2 and G2 = (R(A2),S(B2)) and G2 =
(R(A2),S(B2)) are neutrosophic graphs as shown in Fig. 8.3. The Cartesian prod-
uct of G1 = (G1,G1) and G2 = (G2,G2) is neutrosophic soft rough graph G =
G1 × G2 = (G1 × G2,G1 × G2) as shown in Fig. 8.5.

Definition 8.10 The symmetric difference of G1 and G2 is a neutrosophic soft
rough graph G = G1 ⊕ G2 = (G1 ⊕ G2,G1 ⊕ G2), where G1 ⊕ G2 = (R(A1) ⊕
R(A2),S(B1) ⊕ S(B2)) andG1 ⊕ G2 = (R(A1) ⊕ R(A2),S(B1) ⊕ S(B2)) are neu-
trosophic graphs, respectively, such that

(i) ∀ (x, y) ∈ RA1 × RA2.

T
R(A1)⊕R(A2)

(x, y) =min{T
R(A1)

(x), T
R(A2)

(y)},
TR(A1)⊕R(A2)(x, y) =min{TR(A1)(x), TR(A2)(y)},
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Fig. 8.5 Cartesian product of two neutrosophic soft rough graphs G1 × G2
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I
R(A1)⊕R(A2)

(x, y) =max{I
R(A1)

(x), I
R(A2)

(y)},
IR(A1)⊕R(A2)(x, y) =max{IR(A1)(x), IR(A2)(y)},
F

R(A1)⊕R(A2)
(x, y) =max{F

R(A1)
(x), F

R(A2)
(y)},

FR(A1)⊕R(A2)(x, y) =max{FR(A1)(x), FR(A2)(y)}.

(ii) ∀y1y2 ∈ SB2, x ∈ RA1.

T
S(B1)⊕S(B2)

(
(x, y1)(x, y2)

) =min{T
R(A1)

(x), T
S(B2)

(y1y2)},
TS(B1)⊕S(B2)

(
(x, y1)(x, y2)

) =min{TR(A1)(x), TS(B2)(y1y2)},
I
S(B1)⊕S(B2)

(
(x, y1)(x, y2)

) =max{I
R(A1)

(x), I
S(B2)

(y1y2)},
IS(B1)⊕S(B2)

(
(x, y1)(x, y2)

) =max{IR(A1)(x), IS(B2)(y1y2)},
F

S(B1)⊕S(B2)

(
(x, y1)(x, y2)

) =max{F
R(A1)

(x), F
S(B2)

(y1y2)},
FS(B1)⊕S(B2)

(
(x, y1)(x, y2)

) =max{FR(A1)(x), FS(B2)(y1y2)}.

(iii) ∀x1x2 ∈ SB1, y ∈ RA2.

T
S(B1)⊕S(B2)

(
(x1, y)(x2, y)

) =min{T
S(B1)

(x1x2), TR(A2)
(y)},

TS(B1)⊕S(B2)

(
(x1, y)(x2, y)

) =min{TS(B1)(x1x2), TR(A2)(y)},
I
S(B1)⊕S(B2)

(
(x1, y)(x2, y)

) =max{I
S(B1)

(x1x2), IR(A2)
(y)},

IS(B1)⊕S(B2)

(
(x1, y)(x2, y)

) =max{IS(B1)(x1x2), IR(A2)(y)},
F

S(B1)⊕S(B2)

(
(x1, y)(x2, y)

) =max{F
S(B1)

(x1x2), FR(A2)
(y)},

FS(B1)⊕S(B2)

(
(x1, y)(x2, y)

) =max{FS(B1)(x1x2), FR(A2)(y)}.

(iv) ∀x1x2 ∈ SB1, y1y2 /∈ SB2.

T
S(B1)⊕S(B2)

(
(x1, y1)(x2, y2)

) =min{T
S(B1)

(x1x2), TR(A2)
(y1), TR(A2)

(y2)},
TS(B1)⊕S(B2)

(
(x1, y1)(x2, y2)

) =min{TS(B1)(x1x2), TR(A2)(y1), TR(A2)(y2)},
I
S(B1)⊕S(B2)

(
(x1, y1)(x2, y2)

) =max{I
S(B1)

(x1x2), IR(A2)
(y1), IR(A2)

(y2)},
IS(B1)⊕S(B2)

(
(x1, y1)(x2, y2)

) =max{IS(B1)(x1x2), IR(A2)(y1), IR(A2)(y2)},
F

S(B1)⊕S(B2)

(
(x1, y1)(x2, y2)

) =max{F
S(B1)

(x1x2), FR(A2)
(y1), FR(A2)

(y2)},
FS(B1)⊕S(B2)

(
(x1, y1)(x2, y2)

) =max{FS(B1)(x1x2), FR(A2)(y1), FR(A2)(y2)}.

(v) ∀x1x2 /∈ SB1, y1y2 ∈ SB2.

T
S(B1)⊕S(B2)

(
(x1, y1)(x2, y2)

) =min{T
R(A1)

(x1), TR(A1)
(x2), TS(B2)

(y1y2)},
TS(B1)⊕S(B2)

(
(x1, y1)(x2, y2)

) =min{TR(A1)(x1), TR(A1)(x2), TS(B2)(y1y2)},
I
S(B1)⊕S(B2)

(
(x1, y1)(x2, y2)

) =max{I
R(A1)

(x1), IR(A1)
(x2), IS(B2)

(y1y2)},
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G1 = (R(A1), S(B1)) G1 = (R(A1), S(B1))

Fig. 8.6 Neutrosophic soft rough graph G1 = (G1,G1)

(a, 0.5, 0.3, 0.0)

(b,
0.4

, 0
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0.3
)

(c, 0.1, 0.3, 0.2)

(0
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, 0
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)
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(0
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(0.5, 0.3, 0.1)

G2 = (R(A2), S(B2)) G2 = (R(A2), S(B2))

Fig. 8.7 Neutrosophic soft rough graph G2 = (G2,G2)

IS(B1)⊕S(B2)

(
(x1, y1)(x2, y2)

) =max{IR(A1)(x1), IR(A1)(x2), IS(B2)(y1y2)},
F

S(B1)⊕S(B2)

(
(x1, y1)(x2, y2)

) =max{F
R(A1)

(x1), FR(A1)
(x2), FS(B2)

(y1y2)},
FS(B1)⊕S(B2)

(
(x1, y1)(x2, y2)

) =max{FR(A1)(x1), FR(A1)(x2), FS(B2)(y1y2)}.

Example 8.6 Let G1 = (G1,G1) and G2 = (G2,G2) be two neutrosophic soft
rough graphs on X , where G1 = (R(A1),S(B1)) and G1 = (R(A1),S(B1)) are
neutrosophic graphs as shown in Fig. 8.6 and G2 = (R(A2),S(B2)) and G2 =
(R(A2),S(B2)) are neutrosophic graphs as shown in Fig. 8.7

The symmetric difference of G1 and G2 is G = G1 ⊕ G2 = (G1 ⊕ G2,G1 ⊕
G2), where G1 ⊕ G2 = (R(A1) ⊕ R(A2),S(B1) ⊕ S(B2)) and G1 ⊕ G2 =
(R(A1) ⊕ R(A2),S(B1) ⊕ S(B2)) are neutrosophic graphs as shown in Fig. 8.8.

Definition 8.11 The lexicographic productofG1 andG2 is a neutrosophic soft rough
graph G = G1 � G2=(G1∗ � G2∗,G∗

1 � G∗
2), where G1∗ � G2∗=(RA1 � RA2,

SB1 � SB2) and G∗
1 � G∗

2 = (RA1 � RA2,SB1 � SB2) are neutrosophic graphs,
respectively, such that

(i) ∀ (x, y) ∈ RA1 × RA2.

T
R(A1)�R(A2)

(x, y) =min{T
R(A1)

(x), T
R(A2)

(y)},
TR(A1)�R(A2)(x, y) =min{TR(A1)(x), TR(A2)(y)},
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G1 ⊕ G2 = (R(A1) ⊕ R(A2), S(B1) ⊕ S(B2))
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Fig. 8.8 Neutrosophic soft rough graph G1 ⊕ G2 = (G1 ⊕ G2,G1 ⊕ G2)

I
R(A1)�R(A2)

(x, y) =max{I
R(A1)

(x), I
R(A2)

(y)},
IR(A1)�R(A2)(x, y) =max{IR(A1)(x), IR(A2)(y)},
F

R(A1)�R(A2)
(x, y) =max{F

R(A1)
(x), F

R(A2)
(y)},

FR(A1)�R(A2)(x, y) =max{FR(A1)(x), FR(A2)(y)}.

(ii) ∀y1y2 ∈ SB2, x ∈ RA1.

T
S(B1)�S(B2)

(
(x, y1)(x, y2)

) =min{T
R(A1)

(x), T
S(B2)

(y1y2)},
TS(B1)�S(B2)

(
(x, y1)(x, y2)

) =min{TR(A1)(x), TS(B2)(y1y2)},
I
S(B1)�S(B2)

(
(x, y1)(x, y2)

) =max{I
R(A1)

(x), I
S(B2)

(y1y2)},
IS(B1)�S(B2)

(
(x, y1)(x, y2)

) =max{IR(A1)(x), IS(B2)(y1y2)},
F

S(B1)�S(B2)

(
(x, y1)(x, y2)

) =max{F
R(A1)

(x), F
S(B2)

(y1y2)},
FS(B1)�S(B2)

(
(x, y1)(x, y2)

) =max{FR(A1)(x), FS(B2)(y1y2)}.

(iii) ∀x1x2 ∈ SB1, y1y2 ∈ SB2.

T
S(B1)�S(B2)

(
(x1, y1)(x2, y2)

) =min{T
S(B1)

(x1x2), TS(B2)
(y1y2)},

TS(B1)�S(B2)

(
(x1, y1)(x2, y2)

) =min{TS(B1)(x1x2), TS(B2)(y1y2)},
I
S(B1)�S(B2)

(
(x1, y1)(x2, y2)

) =max{I
S(B1)

(x1x2), IS(B2)
(y1y2)},

IS(B1)�S(B2)

(
(x1, y1)(x2, y2)

) =max{IS(B1)(x1x2), IS(B2)(y1y2)},
F

S(B1)�S(B2)

(
(x1, y1)(x2, y2)

) =max{F
S(B1)

(x1x2), FS(B2)
(y1y2)},

FS(B1)�S(B2)

(
(x1, y1)(x2, y2)

) =max{FS(B1)(x1x2), FS(B2)(y1y2)}.
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Definition 8.12 The strong product ofG1 andG2 is a neutrosophic soft rough graph
G = G1 ⊗ G2 = (G1∗ ⊗ G2∗,G∗

1 ⊗ G∗
2), where G1∗ ⊗ G2∗ = (RA1 ⊗ RA2,

SB1 ⊗ SB2) and G∗
1 ⊗ G∗

2 = (RA1 ⊗ RA2,SB1 ⊗ SB2) are neutrosophic graphs,
respectively, such that

(i) ∀ (x, y) ∈ RA1 × RA2.

T
R(A1)⊗R(A2)

(x, y) =min{T
R(A1)

(x), T
R(A2)

(y)},
TR(A1)⊗R(A2)(x, y) =min{TR(A1)(x), TR(A2)(y)},
I
R(A1)⊗R(A2)

(x, y) =max{I
R(A1)

(x), I
R(A2)

(y)},
IR(A1)⊗R(A2)(x, y) =max{IR(A1)(x), IR(A2)(y)},
F

R(A1)⊗R(A2)
(x, y) =max{F

R(A1)
(x), F

R(A2)
(y)},

FR(A1)⊗R(A2)(x, y) =max{FR(A1)(x), FR(A2)(y)}.

(ii) ∀y1y2 ∈ SB2, x ∈ RA1.

T
S(B1)⊗S(B2)

(
(x, y1)(x, y2)

) =min{T
R(A1)

(x), T
S(B2)

(y1y2)},
TS(B1)⊗S(B2)

(
(x, y1)(x, y2)

) =min{TR(A1)(x), TS(B2)(y1y2)},
I
S(B1)⊗S(B2)

(
(x, y1)(x, y2)

) =max{I
R(A1)

(x), I
S(B2)

(y1y2)},
IS(B1)⊗S(B2)

(
(x, y1)(x, y2)

) =max{IR(A1)(x), IS(B2)(y1y2)},
F

S(B1)⊗S(B2)

(
(x, y1)(x, y2)

) =max{F
R(A1)

(x), F
S(B2)

(y1y2)},
FS(B1)⊗S(B2)

(
(x, y1)(x, y2)

) =max{FR(A1)(x), FS(B2)(y1y2)}.

(iii) ∀x1x2 ∈ SB1, y ∈ RA2.

T
S(B1)⊗S(B2)

(
(x1, y)(x2, y)

) =min{T
S(B1)

(x1x2), TR(A2)
(y)},

TS(B1)⊗S(B2)

(
(x1, y)(x2, y)

) =min{TS(B1)(x1x2), TR(A2)(y)},
I
S(B1)⊗S(B2)

(
(x1, y)(x2, y)

) =max{I
S(B1)

(x1x2), IR(A2)
(y)},

IS(B1)⊗S(B2)

(
(x1, y)(x2, y)

) =max{IS(B1)(x1x2), IR(A2)(y)},
F

S(B1)⊗S(B2)

(
(x1, y)(x2, y)

) =max{F
S(B1)

(x1x2), FR(A2)
(y)},

FS(B1)⊗S(B2)

(
(x1, y)(x2, y)

) =max{FS(B1)(x1x2), FR(A2)(y)}.

(iv) ∀x1x2 ∈ SB1, y1y2 ∈ SB2.

T
S(B1)⊗S(B2)

(
(x1, y1)(x2, y2)

) =min{T
S(B1)

(x1x2), TS(B2)
(y1y2)},

TS(B1)⊗S(B2)

(
(x1, y1)(x2, y2)

) =min{TS(B1)(x1x2), TS(B2)(y1y2)},
I
S(B1)⊗S(B2)

(
(x1, y1)(x2, y2)

) =max{I
S(B1)

(x1x2), IS(B2)
(y1y2)},

IS(B1)⊗S(B2)

(
(x1, y1)(x2, y2)

) =max{IS(B1)(x1x2), IS(B2)(y1y2)},
F

S(B1)⊗S(B2)

(
(x1, y1)(x1, y2)

) =max{F
S(B1)

(x1x2), FS(B2)
(y1y2)},
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FS(B1)⊗S(B2)

(
(x1, x1)(x1, x2)

) =max{FS(B1)(x1x2), FS(B2)(y1y2)}.

Definition 8.13 The composition of G1 and G2 is a neutrosophic soft rough graph
G = G1[G2] = (G1∗[G2∗],G∗

1[G∗
2]),whereG1∗[G2∗] = (RA1[RA2],SB1[SB2])]

and G∗
1[G∗

2] = (RA1[RA2],SB1[SB2]) are neutrosophic graphs, respectively, such
that

(i) ∀(x, y) ∈ RA1 × RA2.

T
R(A1)×R(A2)

(x, y) =min{T
R(A1)

(x), T
R(A2)

(y)},
TR(A1)×R(A2)(x, y) =min{TR(A1)(x), TR(A2)(y)},
I
R(A1)×R(A2)

(x, y) =max{I
R(A1)

(x), I
R(A2)

(y)},
IR(A1)×R(A2)(x, y) =max{IR(A1)(x), IR(A2)(y)},
F

R(A1)×R(A2)
(x, y) =max{F

R(A1)
(x), F

R(A2)
(y)},

FR(A1)×R(A2)(x, y) =max{FR(A1)(x), FR(A2)(y)}.

(ii) ∀y1y2 ∈ SB2, x ∈ RA1.

T
S(B1)×S(B2)

(
(x, y1)(x, y2)

) =min{T
R(A1)

(x), T
S(B2)

(y1y2)},
TS(B1)×S(B2)

(
(x, y1)(x, y2)

) =min{TR(A1)(x), TS(B2)(y1y2)},
I
S(B1)×S(B2)

(
(x, y1)(x, y2)

) =max{I
R(A1)

(x), I
S(B2)

(y1y2)},
IS(B1)×S(B2)

(
(x, y1)(x, y2)

) =max{IR(A1)(x), IS(B2)(y1y2)},
F

S(B1)×S(B2)

(
(x, y1)(x, y2)

) =max{F
R(A1)

(x), F
S(B2)

(y1y2)},
FS(B1)×S(B2)

(
(x, y1)(x, y2)

) =max{FR(A1)(x), FS(B2)(y1y2)}.

(iii) ∀x1x2 ∈ SB1, y ∈ RA2.

T
S(B1)×S(B2)

(
(x1, y)(x2, y)

) =min{T
S(B1)

(x1x2), TR(A2)
(y)},

TS(B1)×S(B2)

(
(x1, y)(x2, y)

) =min{TS(B1)(x1x2), TR(A2)(y)},
I
S(B1)×S(B2)

(
(x1, y)(x2, y)

) =max{I
S(B1)

(x1x2), IR(A2)
(y)},

IS(B1)×S(B2)

(
(x1, y)(x2, y)

) =max{IS(B1)(x1x2), IR(A2)(y)},
F

S(B1)×S(B2)

(
(x1, y)(x2, y)

) =max{F
S(B1)

(x1x2), FR(A2)
(y)},

FS(B1)×S(B2)

(
(x1, y)(x2, y)

) =max{FS(B1)(x1x2), FR(A2)(y)}.

(iv) ∀x1x2 ∈ SB1, y1 = y2 ∈ RA2.

T
S(B1)×S(B2)

(
(x1, y1)(x2, y2)

) =min{T
S(B1)

(x1x1), TR(A2)
(y1), TR(A2)

(y2)},
TS(B1)×S(B2)

(
(x1, y1)(x2, y2)

) =min{TS(B1)(x1x1), TR(A2)(y1), TR(A2)(y2)},
I
S(B1)×S(B2)

(
(x1, y1)(x2, y2)

) =max{I
S(B1)

(x1x1), IR(A2)
(y1), IR(A2)

(y2)},
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Fig. 8.9 Neutrosophic soft rough graph G = (G,G)

IS(B1)×S(B2)

(
(x1, y1)(x2, y2)

) =max{IS(B1)(x1x1), IR(A2)(y1), IR(A2)(y2)},
F

S(B1)×S(B2)

(
(x1, y1)(x2, y2)

) =max{F
S(B1)

(x1x1), FR(A2)
(y1), FR(A2)

(y2)},
FS(B1)×S(B2)

(
(x1, y1)(x2, y2)

) =max{FS(B1)(x1x1), FR(A2)(y1), FR(A2)(y2)}.

Definition 8.14 Let G = (G,G) be a neutrosophic soft rough graph. The com-

plement of G, denoted by Ǵ = (Ǵ, Ǵ), is a neutrosophic soft rough graph, where

Ǵ = ( ´R(A), ´S(B)) and Ǵ = (
´

R(A), ´
S(B)) are neutrosophic graphs such that

(i) ∀x ∈ RA.

´T
R(A)(x) =T

R(A)(x),
´I

R(A)(x) = I
R(A)(x),

´F
R(A)(x) = F

R(A)(x),

´TR(A)(x) =TR(A)(x), ´IR(A)(x) = IR(A)(x), ´FR(A)(x) = FR(A)(x).

(ii) ∀ v, u ∈ RA.

´T
S(B)(xy) =min{T

R(A)(x), TR(A)(y)} − T
S(B)(xy),

´I
S(B)(xy) =max{I

R(A)(x), IR(A)(y)} − I
S(B)(xy),

´F
S(B)(xy) =max{F

R(A)(x), FR(A)(y)} − F
S(B)(xy),

´TS(B)(xy) =min{TR(A)(x), TR(A)(y)} − TS(B)(xy),

´IS(B)(xy) =max{IR(A)(x), IR(A)(y)} − I
S(B)(xy),

´FS(B)(xy) =max{FR(A)(x), FR(A)(y)} − FS(B)(xy).

Example 8.7 Consider a neutrosophic soft rough graphs G as shown in Fig. 8.9. The

complement of G is Ǵ = (Ǵ, Ǵ) obtained by using Definition 8.14, where Ǵ =
( ´R(A), ´S(B)) and Ǵ = (

´
R(A), ´

S(B)) are neutrosophic graphs as shown in Fig. 8.10.

Definition 8.15 A graph G is called self-complement if G = Ǵ, i.e.

(i) ∀x ∈ RA.
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G = (R(A), S(B))G = (R(A), S(B))

Fig. 8.10 Neutrosophic soft rough graph Ǵ = (Ǵ, Ǵ)

Table 8.10 Neutrosophic
soft rough set on X

X R(A) R(A)

u (0.8, 0.5, 0.2) (0.7, 0.5, 0.2)

v (0.9, 0.5, 0.1) (0.7, 0.5, 0.2)

w (0.7, 0.5, 0.1) (0.7, 0.5, 0.2)

´T
R(A)(x) =T

R(A)(x),
´I

R(A)(x) = I
R(A)(x),

´F
R(A)(x) = F

R(A)(x),

´TR(A)(x) =TR(A)(x), ´IR(A)(x) = IR(A)(x), ´FR(A)(x) = FR(A)(x).

(ii) ∀ x, y ∈ RA.

´T
S(B)(xy) =T

S(B)(xy), ´I
S(B)(xy) = I

S(B)(xy), ´F
S(B)(xy) = F

S(B)(xy),

´TS(B)(xy) =TS(B)(xy), ´IS(B)(xy) = IS(B)(xy), ´FS(B)(xy) = FS(B)(xy).

Definition 8.16 A neutrosophic soft rough graph G is called strong neutrosophic
soft rough graph if ∀xy ∈ SB,

T
S(B)(xy) =min{T

R(A)(x), TR(A)(y)},
I
S(B)(xy) =max{I

R(A)(x), IR(A)(y)}),
F

S(B)(xy) =max{F
R(A)(x), FR(A)(y)},

TS(B)(xy) =min{TR(A)(x), TR(A)(y)},
IS(B)(xy) =max{IR(A)(x), IR(A)(y)},
FS(B)(xy) =max{FR(A)(x), FR(A)(y)}.

Example 8.8 Consider a graph G such that X = {u, v, w} and E = {uv, vw,wu}.
Let RA be a neutrosophic soft rough set of X , and let SB be a neutrosophic soft
rough set of E defined in Tables8.10 and 8.11, respectively.

Hence, G = (RA,SB) is a strong neutrosophic soft rough graph as shown in
Fig. 8.11.

Definition 8.17 A neutrosophic soft rough graph G is called complete neutrosophic
soft rough graph if ∀ x, y ∈ X,
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Table 8.11 Neutrosophic soft rough set on E

E S(B) S(B)

uv (0.8, 0.5, 0.2) (0.7, 0.5, 0.2)

vw (0.7, 0.5, 0.1) (0.7, 0.5, 0.2)

wu (0.7, 0.5, 0.2) (0.7, 0.5, 0.2)

u(0.8,0.5,0.2)v(0.9,0.5,0.1)

w(0.7,0.5,0.2)

(0
.7
,
0.
5,

0.
2) (0.8, 0.5, 0.2)

G = (R(A), S(B))

(0.7
, 0.5

, 0.2
)

u(0.7,0.5,0.2)v(0.7,0.5,0.2)

w(0.7,0.5,0.2)

(0
.7
,
0.
5,

0.
2) (0.7, 0.5, 0.2)

G = (R(A), S(B))

(0.7
, 0.5

, 0.2
)

Fig. 8.11 Strong neutrosophic soft rough graph G = (RA,SB)

T
S(B)(xy) =min{T

R(A)(x), TR(A)(y)},
I
S(B)(xy) =max{I

R(A)(x), IR(A)(y)},
F

S(B)(xy) =max{F
R(A)(x), FR(A)(y)},

TS(B)(xy) =min{TR(A)(x), TR(A)(y)},
IS(B)(xy) =max{IR(A)(x), IR(A)(y)},
FS(B)(xy) =max{FR(A)(x), FR(A)(y)}.

Remark 8.2 Every complete neutrosophic soft rough graph is a strong neutrosophic
soft rough graph. But the converse is not true.

Definition 8.18 A neutrosophic soft rough graph G is isolated if ∀x, y ∈ X .

TS(B)(xy) = 0, IS(B)(xy) = 0, FS(B)(xy) = 0, T
S(B)(xy) = 0, I

S(B)(xy) = 0, F
S(B)(xy) = 0,

Theorem 8.1 The rejection of two neutrosophic soft rough graphs is a neutrosophic
soft rough graph.

Proof Let G1 = (G1,G1) and G2 = (G2,G2) be two neutrosophic soft rough
graphs. Let G = G1|G2 = (G1|G2,G1|G2) be the rejection of G1 and G2, where
G1|G2 = (R(A1)|R(A2),S(B1)|S(B2)) and G1|G2 = (R(A1)|R(A2),S(B1)|
S(B2)).Weclaim thatG = G1|G2 is an neutrosophic soft rough graph. It is enough to
show that S(B1)|S(B2) and S(B1)|S(B2) are neutrosophic relations on R(A1)|R(A2)

and R(A1)|R(A2), respectively. First, we show that S(B1)|S(B2) is a neutrosophic
relation on R(A1)|R(A2).
If x ∈ R(A1), y1y2 /∈ S(B2), then
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TS(B1)|S(B2)((x, y1)(x, y2)) =(TR(A1)(x) ∧ (TR(A2)(y2) ∧ TR(A2)(y2)))

=(TR(A1)(x) ∧ TR(A2)(y2)) ∧ (TR(A1)(x) ∧ TR(A2)(y2))

=TR(A1)|R(A2)(x, y1) ∧ TR(A1)|R(A2)(x, y2)

TS(B1)|S(B2)((x, y1)(x, y2)) =TR(A1)|R(A2)(x, y1) ∧ TR(A1)|R(A2)(x, y2)

Similarly, IS(B1)|S(B2)((x, y1)(x, y2)) =IR(A1)|R(A2)(x, y1) ∨ IR(A1)|R(A2)(x, y2)

FS(B1)|S(B2)((x, y1)(x, y2)) =FR(A1)|R(A2)(x, y1) ∨ FR(A1)|R(A2)(x, y2)

If x1x2 /∈ S(B1), y ∈ R(A2), then

TS(B1)|S(B2)((x1, y)(x2, y)) =((TR(A1)(x1) ∧ TR(A1)(x2)) ∧ TR(A2)(y))

=((TR(A1)(x1) ∧ TR(A2)(y)) ∧ (TR(A1)(x2) ∧ TR(A2)(y)))

=TR(A1)|R(A2)(x1, y) ∧ TR(A1)|R(A2)(x2, y)

TS(B1)|S(B2)((x1, y)(x2, y)) =TR(A1)|R(A2)(x1, y) ∧ TR(A1)|R(A2)(x2, y)

Similarly, IS(B1)|S(B2)((x1, y)(x2, y)) =IR(A1)|R(A2)(x1, y) ∨ IR(A1)|R(A2)(x2, y)

FS(B1)|S(B2)((x1, y)(x2, y)) =FR(A1)|R(A2)(x1, y) ∨ FR(A1)|R(A2)(x2, y)

If x1x2 /∈ S(B1), y1, y2 /∈ S(B2), then

TS(B1)|S(B2)((x1, y1)(x2, y2)) =((TR(A1)(x1) ∧ TR(A1)(x2)) ∧ (TR(A2)(y1) ∧ TR(A2)(y2)))

=(TR(A1)(x1) ∧ TR(A2)(y1)) ∧ (TR(A1)(x2) ∧ TR(A2)(y2))

=TR(A1)|R(A2)(x1, y1) ∧ TR(A1)|R(A2)(x2, y2)

TS(B1)|S(B2)((x1, y1)(x2, y2)) =TR(A1)|R(A2)(x1, y1) ∧ TR(A1)|R(A2)(x2, y2)

Similarly, IS(B1)|S(B2)((x1, y1)(x2, y2)) =IR(A1)|R(A2)(x1, y1) ∨ IR(A1)|R(A2)(= y1, y2)

FS(B1)|S(B2)((x1, y1)(x2, y2)) =FR(A1)|R(A2)(x1, y1) ∨ FR(A1)|R(A2)(x2, y2)

Thus, S(B1)|S(B2) is a neutrosophic relation on R(A1)|R(A2). Similarly, we can
show that S(B1)|S(B2) is a neutrosophic relation on R(A1)|R(A2). Hence, G is a
neutrosophic soft rough graph.

Theorem 8.2 The Cartesian product of two neutrosophic soft rough graphs is a
neutrosophic soft rough graph.

Proof Let G1 = (G1,G1) and G2 = (G2,G2) be two neutrosophic soft rough
graphs. Let G = G1 � G2 = (G1 � G2,G1 � G2) be the Cartesian product of
G1 and G2, where G1 � G2 = (R(A1) � R(A2),S(B1) � S(B2)) and G1 � G2 =
(R(A1) � R(A2),S(B1) � S(B2)). We claim that G = G1 � G2 is a neutrosophic
soft rough graph. It is enough to show that S(B1) � S(B2) and S(B1) � S(B2) are
neutrosophic relations on R(A1) � R(A2) and R(A1) � R(A2), respectively. We
have to show that S(B1) � S(B2) is a neutrosophic relation on R(A1) � R(A2).
If x ∈ R(A1), y1y2 ∈ S(B2), then
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TS(B1)�S(B2)((x, y1)(x, y2)) =TR(A1))(x) ∧ TS(B2)(y1y2)

≤TR(A1))(x) ∧ (TR(A2)(y1) ∧ TR(A2)(y2))

=(TR(A1))(x) ∧ TR(A2)(y1)) ∧ (TR(A1))(x) ∧ TR(A2)(y2))

=TR(A1)�R(A2)(x, y1) ∧ TR(A1)�R(A2)(x, y2)

TS(B1)�S(B2)((x, y1)(x, y2)) ≤TR(A1)�R(A2)(x, y1) ∧ TR(A1)�R(A2)(x, y2)

Similarly, IS(B1)�S(B2)((x, y1)(x, y2)) ≤IR(A1)�R(A2)(x, y1) ∨ IR(A1)�R(A2)(x, y2)

FS(B1)�S(B2)((x, y1)(x, y2)) ≤FR(A1)�R(A2)(x, y1) ∨ FR(A1)�R(A2)(x, y2)

If x1x2 ∈ S(B1), z ∈ R(A2), then

TS(B1)�S(B2)((x1, z)(x2, z)) =TS(B1))(x1x2) ∧ TR(A2)(z)

≤(TR(A1))(x1)∧R(A1))(x2)) ∧ TR(A2)(z)

=TR(A1)�R(A2)(x1, z) ∧ TR(A1)�R(A2)(x2, z)

TS(B1)�S(B2)((x1, z)(x2, z)) ≤TR(A1)�R(A2)(x1, z) ∧ TR(A1)�R(A2)(x2, z)

Similarly, IS(B1)�S(B2)((x1, z)(x2, z)) ≤IR(A1)�R(A2)(x1, z) ∨ IR(A1)�R(A2)(x2, z)

FS(B1)�S(B2)((x1, z)(x2, z)) ≤FR(A1)�R(A2)(x1, z) ∨ FR(A1)�R(A2)(x2, z)

Therefore, S(B1) � S(B2) is a neutrosophic relation on R(A1) � R(A2). Similarly,
S(B1) � S(B2) is a neutrosophic relation on R(A1) � R(A2). Hence, G is a neutro-
sophic rough graph.

Theorem 8.3 The cross product of two neutrosophic soft rough graphs is a neutro-
sophic soft rough graph.

Proof Let G1 = (G1,G1) and G2 = (G2,G2) be two neutrosophic soft rough
graphs. Let G = G1 � G2 = (G1 � G2,G1 � G2) be the cross product of G1 and
G2,whereG1 � G2 = (R(A1) � R(A2),S(B1) � S(B2)) andG1 � G2 = (R(A1) �
R(A2),S(B1) � S(B2)). We claim that G = G1 � G2 is a neutrosophic soft rough
graph. It is enough to show that S(B1) � S(B2) and S(B1) � S(B2) are neutrosophic
relations on R(A1) � R(A2) and R(A1) � R(A2), respectively. First, we show that
S(B1) � S(B2) is a neutrosophic relation on R(A1) � R(A2).
If x1x2 ∈ S(B1), y1y2 ∈ S(B2), then

TS(B1)�S(B2)((x1, y1)(x2, y2)) =TS(B1))(x1x2) ∧ TS(B2)(y1y2)

≤(TR(A1))(x1) ∧ TR(A1))(x2) ∧ (TR(A2)(y1) ∧ TR(A2)(y2))

=(TR(A1))(x1) ∧ TR(A2)(x2)) ∧ (TR(A1))(y1) ∧ TR(A2)(y2))

=TR(A1)�R(A2)(x1, x2) ∧ TR(A1)�R(A2)(y1, y2)

TS(B1)�S(B2)((x1, x2)(y1, y2)) ≤TR(A1)�R(A2)(x1, y1) ∧ TR(A1)�R(A2)(x2, y2)

Similarly, IS(B1)�S(B2)((x1, y1)(x2, y2)) ≤IR(A1)�R(A2)(x1, y1) ∨ IR(A1)�R(A2)(x2, y2)

FS(B1)�S(B2)((x1, y1)(x2, y2)) ≤FR(A1)�R(A2)(x1, y1) ∨ FR(A1)�R(A2)(x2, y2)
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Thus, S(B1) � S(B2) is a neutrosophic relation on R(A1) � R(A2). Similarly, we
can show that S(B1) � S(B2) is a neutrosophic relation on R(A1) � R(A2). Hence,
G is a neutrosophic soft rough graph.

8.3 Application of Neutrosophic Soft Rough Graphs

In this section, we apply the concept of neutrosophic soft rough sets to a decision-
making problem. In recent times, the object recognition problem has gained consid-
erable importance. The object recognition problem can be considered as a decision-
making problem, in which final identification of object is founded on given set of
information. A detailed description of the algorithm for the selection of most suitable
object based on available set of alternatives is given, and purposed decision-making
method can be used to calculate lower and upper approximation operators to progress
deep concerns of the problem. The presented algorithms can be applied to avoid
lengthy calculations when dealing with a large number of objects. This method can
be applied in various domains for multicriteria selection of objects.

Selection of Most Suitable Generic Version of Brand Name Medicine

In pharmaceutical industry, different pharmaceutical companies develop, produce
and discover pharmaceutical medicines (drugs) for use as medication. These phar-
maceutical companies deals with “brand name medicine” and “generic medicine”.
Brand name medicine and generic medicine are bioequivalent, generic medicine rate
and element of absorption. Brand name medicine and generic medicine have the
same active ingredients, and the inactive ingredients may differ. The most impor-
tant difference is cost. Generic medicine is less expensive as compared to brand
name comparators. Usually generic drug manufacturers have competition to pro-
duce cost less products. The product may possibly be slightly dissimilar in colour,
shape or markings. The major difference is cost. We consider a brand name drug
“u = Loratadine” used for seasonal allergies medication. Consider

X = {x1 = Triamcinolone, x2 = Cetirizine/Pseudoephedrine,

x3 = Pseudoephedrine, x4 = loratadine/pseudoephedrine,

x5 = Fluticasone}

is a set of generic versions of “Loratadine”. We want to select the most suitable
generic version of Loratadine on the basis of parameters e1 = highly soluble, e2 =
highly permeable, e3 = rapidly dissolving. M = {e1, e2, e3} be a set of paraments.
Let R be a neutrosophic soft relation from X to parameter set M , describes truth-
membership, indeterminacy-membership and false-membership degrees of generic
version medicines corresponding to the parameters as shown in Table8.12.

Suppose A = {(e1, 0.2, 0.4, 0.5), (e2, 0.5, 0.6, 0.4), (e3, 0.7, 0.5, 0.4)} is most
favourable object which is a neutrosophic set on the parameter set M under con-
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Table 8.12 Neutrosophic soft set R = (F,M)

R x1 x2 x3 x4 x5

e1 (0.4, 0.5, 0.6) (0.5, 0.3, 0.6) (0.7, 0.2, 0.3) (0.5, 0.7, 0.5) (0.6, 0.5, 0.4)

e2 (0.7, 0.3, 0.2) (0.3, 0.4, 0.3) (0.6, 0.5, 0.4) (0.8, 0.4, 0.6) (0.7, 0.8, 0.5)

e3 (0.6, 0.3, 0.4) (0.7, 0.2, 0.3) (0.7, 0.2, 0.4) (0.8, 0.7, 0.6) (0.7, 0.3, 0.5)

Table 8.13 Neutrosophic soft relation S
S x1x2 x1x3 x4x1 x2x3 x5x3 x2x4 x2x5

e1e2 (0.3, 0.4, 0.2) (0.4, 0.4, 0.5) (0.4, 0.4, 0.5) (0.6, 0.3, 0.4) (0.4, 0.2, 0.2) (0.4, 0.4, 0.2) (0.4, 0.3, 0.4)

e2e3 (0.5, 0.4, 0.1) (0.4, 0.3, 0.2) (0.4, 0.3, 0.2) (0.3, 0.3, 0.2) (0.6, 0.2, 0.4) (0.3, 0.2, 0.1) (0.3, 0.3, 0.2)

e1e3 (0.4, 0.4, 0.1) (0.4, 0.2, 0.2) (0.4, 0.2, 0.2) (0.5, 0.3, 0.3) (0.4, 0.2, 0.3) (0.4, 0.3, 0.1) (0.5, 0.3, 0.2)

sideration. Then (R(A),R(A)) is a neutrosophic soft rough set in neutrosophic soft
approximation space (X,M,R), where

R(A) = {(x1, 0.6, 0.5, 0.4), (x2, 0.7, 0.4, 0.4), (x3, 0.7, 0.4, 0.4), (x4, 0.7, 0.6, 0.5), (x5, 0.7, 0.5, 0.5)},
R(A) = {(x1, 0.5, 0.6, 0.4), (x2, 0.5, 0.6, 0.5), (x3, 0.3, 0.3, 0.5), (x4, 0.5, 0.6, 0.5), (x5, 0.4, 0.5, 0.5)}.

Let E = {x1x2, x1x3, x4x1, x2x3, x5x3, x2x4, x2x5} ⊆ X́ and L = {e1e3, e2e1, e3
e2} ⊆ Ḿ .
Then a neutrosophic soft relation S on E (from L to E) can be defined in Table8.13
as follows:

Let B = {(e1e2, 0.2, 0.4, 0.5), (e2e3, 0.5, 0.4, 0.4), (e1e3, 0.5, 0.2, 0.5)}be aneu-
trosophic set on L which describes some relationship between the parameters under
consideration, then SB = (S(B), S(B)) is a neutrosophic soft rough relation, where

S(B) = {(x1x2, 0.5, 0.4, 0.4), (x1x3, 0.4, 0.2, 0.4), (x4x1, 0.4, 0.2, 0.4), (x2x3, 0.5, 0.3, 0.4),
(x5x3, 0.5, 0.2, 0.4), (x2x4, 0.4, 0.3, 0.4), (x2x5, 0.5, 0.3, 0.4)},

S(B) = {(x1x2, 0.2, 0.4, 0.4)(x1x3, 0.5, 0.4, 0.4), (x4x1, 0.5, 0.4, 0.4), (x2x3, 0.4, 0.4, 0.5),
(x5x3, 0.2, 0.4, 0.4), (x2x4, 0.2, 0.4, 0.4), (x2x5, 0.4, 0.4, 0.5)}.

Thus, G = (G,G) is a neutrosophic soft rough graph as shown in Fig. 8.12.
The sum of two neutrosophic numbers is defined as follows.

Definition 8.19 Let C and D be two single-valued neutrosophic numbers, and the
sum of two single-valued neutrosophic numbers is defined as follows:

C ⊕ D =< TC + TD − TC × TD, IC × ID, FC × FD > . (8.1)

The sum of upper neutrosophic soft rough set RA and the lower neutrosophic soft
rough set RA and sum of lower neutrosophic soft rough relation SB and the upper
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Fig. 8.12 Neutrosophic soft rough graph G = (G,G)

neutrosophic soft rough relation SB are neutrosophic sets RA ⊕ RA and SB ⊕ SB,
respectively, defined by

α = RA ⊕ RA = {(x1, 0.8, 0.3, 0.16), (x2, 0.85, 0.24, 0.2), (x3, 0.79, 0.2, 0.2), (x4, 0.85, 0.36, 0.25),
(x5, 0.82, 0.25, 0.25)},

β = SB ⊕ SB = {(x1x2, 0.6, 0.16, 0.16), (x1x3, 0.7, 0.8, 0.16), (x4x1, 0.7, 0.8, 0.16), (x2x3, 0.7,
0.12, 0.2), (x5x3, 0.6, 0.08, 0.16), (x2x4, 0.52, 0.12, 0.16), (x2x5, 0.7, 0.12, 0.2), }.

The score function γ(xk) defines for each generic version medicine xi ∈ X ,

γ(xi ) =
∑

xi x j∈E

Tα(x j ) + Iα(x j ) − Fα(x j )

3 − (Tβ(xi x j ) + Iβ(xi x j ) − Fβ(xi x j ))
(8.2)

and xk with the larger score value xk = max
i

γ(xi ) is themost suitable generic version

medicine. By calculations, we have

γ(x1) = 0.88, γ(x2) = 0.69, γ(x3) = 0.26 γ(x4) = 0.57, and γ(x5) = 0.33.
(8.3)

Here, x1 is the optimal decision, and themost suitable generic version of “Loratadine”
is “Triamcinolone”. We have used software MATLAB for calculating the required
results in the application. The algorithm is given in Algorithm 8.3.1.

Algorithm 8.3.1 Algorithm for selection of most suitable objects

1. Input the number of elements in vertex set X = {x1, x2, . . . , xn}.

2. Input the number of elements in parameter set M = {e1, e2, . . . , em}.

3. Input a neutrosophic soft relation R from X to M .
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4. Input a neutrosophic set A on M .

5. Compute neutrosophic soft rough vertex set RA = (R(A),R(A)).
6. Input the number of elements in edge set E = {x1x1, x1x2, . . . , xkx1}.

7. Input the number of elements in parameter set Ḿ = {e1e1, e1e2, . . . , ele1}.

8. Input a neutrosophic soft relation S from X́ to Ḿ .

9. Input a neutrosophic set B on Ḿ .

10. Compute neutrosophic soft rough edge set SB = (S(B),S(B)).
11. Compute neutrosophic set α = (Tα(xi ), Iα(xi ), Fα(xi )), where

Tα(xi ) = T
R(A)(xi ) + TR(A)(xi ) − T

R(A)(xi ) × TR(A)(xi ),

Iα(xi ) = T
R(A)(xi ) × TR(A)(xi ),

Fα(xi ) = F
R(A)(xi ) × FR(A)(xi );

12. Compute neutrosophic set β = (Tβ(xi xi ), Iβ(xi x j ), Fβ(xi x j )), where

Tβ(xi x j ) = T
S(B)(xi x j ) + TS(B)(xi x j ) − T

S(B)(xi x j ) × TS(B)(xi x j ),

Iβ(xi x j ) = T
S(B)(xi x j ) × TS(B)(xi x j ),

Fβ(xi x j ) = F
S(B)(xi x j ) × FS(B)(xi x j );

13. Calculate the score values of each object xi , and score function is defined as
follows:

γ(xi ) =
∑

xi x j∈E

Tα(x j ) + Iα(x j ) − Fα(x j )

3 − (Tβ(xi x j ) + Iβ(xi x j ) − Fβ(xi x j ))
;

14. The decision is xi if γi = n
max
i=1

γi .

15. If i has more than one value, then any one of xi may be chosen.
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Interval-valued neutrosophic digraph, 190
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Intuitionistic fuzzy sets, 1
Intuitionistic single-valued neutrosophic

soft graph, 305
Irregular, 28
Isomorphic, 228
I j − t bridge, 224
I j − t cut-vertex, 222
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Regular bipolar neutrosophic graph, 145
Regular neutrosophic rough digraph, 269
Rejection, 249
Relation, 1
Residue product, 272
Rough neutrosophic set, 241
Rough set, 239, 329
Rough single-valued neutrosophic digraph,

243
Rough single-valued neutrosophic relation,

242

S
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Spectrum, 56
Spectrum of Laplacian matrix, 60
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structure, 218
Strongly irregular, 29
Strong product, 84, 106, 141, 246
Strong self-complementary, 97, 234
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T
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Totally edge regular, 15

Totally irregular, 28
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Trace, 57
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tion, 6
Truth strength, 219
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ϕ-complement, 231
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