
Implementation of Lightweight Crypto
Processor Using Logistic Map for
Wireless Sensor Network

Monjul Saikia and Md. Anwar Hussain

Abstract Use of a suitable cryptographic algorithm for wireless sensor networks
is important due to the limitations of energy, computation capability and storage
resources of the sensor nodes. Among two basic types of cryptographic techniques,
namely asymmetric and symmetric key cryptography, symmetric cryptography tech-
nique is considered to be efficient over other in terms of computation cost. In sym-
metric key encryption, the secret key is known prior to encryption and decryption
process. Therefore, in a wireless sensor network where keys are pre-distributed with
Key Pre-distribution Schemes (KPS), can be used by both sides, i.e. sender and
receiver nodes. In this paper, we will discuss symmetric key encryption techniques
that can be efficiently used in wireless sensor network and explain the design possi-
bilities and computation cost of using symmetric key cryptographicmethod.We have
discussed the design of a crypto processor using a well-known chaotic map called
Logistic map. Also, we have performed some experiments on the crypto processor
and the results were stated.

Keywords Symmetric key encryption · Wireless sensor nodes ·
Encryption standards · Block cipher · Stream cipher · Security ·
Key pre-distribution scheme

M. Saikia (B)
Department of CSE, North Eastern Regional Institute of Science and Technology,
Nirjuli, Arunachal Pradesh, India
e-mail: msk@nerist.ac.in
URL: https://www.nerist.ac.in

M. A. Hussain
Department of ECE, North Eastern Regional Institute of Science and Technology,
Nirjuli, Arunachal Pradesh, India
e-mail: ah@nerist.ac.in

© Springer Nature Singapore Pte Ltd. 2019
R. Bera et al. (eds.), Advances in Communication, Devices and Networking,
Lecture Notes in Electrical Engineering 537,
https://doi.org/10.1007/978-981-13-3450-4_55

509

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3450-4_55&domain=pdf
mailto:msk@nerist.ac.in
https://www.nerist.ac.in
mailto:ah@nerist.ac.in
https://doi.org/10.1007/978-981-13-3450-4_55


510 M. Saikia and M. A. Hussain

Fig. 1 Symmetric key encryption setting

1 Introduction

Because of the limitations of node function, it is preferable to use symmetric key
encryption technology [1, 2] over the use of public key encryption technology [3].
A series of securitymechanisms for wireless sensor network is studied under security
protocol IEEE802.15.4, based on Advanced Encryption Standard (AES) algorithm
[1]. The Security Protocols for Sensor Network (SPINS) is established based on the
symmetric key system, and a more practical security scheme for sensor networks
in the security system is put forward. Simply symmetric key ciphers are used to
communicate certain secret data among twoparties over communication channel. The
both parties need to agree on a same key called symmetric key (say Ka and Kb; Ka =
Kb) and uses an encryption algorithm E at the sender side and similarly a decryption
algorithm D at destination end. The process can be shown diagrammatically as in
shown Fig. 1.

In general, the communication channel is assumed to public and therefore, there
is always chance of eavesdropper who tries to sneak into the communication channel
being his objective to understand the messages. Eavesdropper knows the algorithm
E and D, but not Ka or Kb at the same time, whichmade it difficult for him to decrypt
the actual message being sent. The symmetric key encryption is categorized into two
types block ciphers and stream ciphers. In block ciphers, a block of data is encrypted
at a time whereas in stream cipher process 1 bit at a time. In wireless sensor network
application point of view stream cipher is considered to bemore usefulwhere a sensor
node detects an event in real time and the same needs to be forwarded to Base station.
Essentially, block cipher will be mostly applicable when there is a need of deal with
tons of data. Due to advancement in processing power block cipher is used widely,
where n-bit block of plaintext is processed by the encryption algorithm to produce
a ciphertext block and same n-bit block is decrypted by the decryption algorithm
to get back the plaintext. Block cipher may be of two types, namely Transposition
cipher and Substitution cipher. The transposition cipher is rearrangement of the bits
using a transposition function, whereas substitution cipher substitute number of bits
with different set of bits.

Although cryptography is said to be amethod for secure communication, still there
is a possibility of attack. Typically, the objective of attacking an encryption system
is to recover the key in use rather than simply to recover the plaintext of a single
ciphertext. There may be cryptanalytic attacks where it tries to gather knowledge of



Title Suppressed Due to Excessive Length 511

the algorithm from sample plaintext and ciphertext and attempts to find out the key
used. Another type of attack may be Brute-force attack where it tries every possible
key to obtain plaintext. Therefore, it is important to estimate the amount of effort or
time required to cryptanalysis successfully before using it in a specific application.
As we have stated earlier that wireless sensor nodes are less capable of complex
computation and therefore light version of cryptographic method is to be adopted.
Stream cipher takes one byte of plaintext as input to the encryption algorithm and
produces a ciphertext. It uses pseudorandom number at each step of encryption. The
algorithm is simple but yet robust against attack. In rest of the paper, we discuss
about stream cipher in details and its applicability option in wireless sensor network
environment.

2 Stream Cipher

Typical stream cipher encrypts plaintext one byte at a time; although a stream cipher
may be designed to operate on one bit at a time or on units larger than a byte at
a time. In stream cipher, a key is input to a pseudorandom bit generator [4] that
produces a stream of 8-bit numbers that are apparently random. The output of the
generator, called a keystream, is combined one byte at a time with the plaintext
stream using the bit-wise exclusive-OR (XOR) operation. For example, if the next
byte generated by the generator is 01101100 and the next plaintext byte is 11001100,
then the resulting ciphertext byte is 11001100 ⊕ 01101100 = 10100000 (ciphertext
bitstream). Decryption requires the use of the same key bitstream sequence 10100000
⊕ 01101100 = 11001100 (plaintext bitstream).

The stream cipher is similar to the one-time pad but the difference is that a one-
time pad uses a genuine random number stream, whereas a stream cipher uses a
pseudorandom number stream [5]. Figure 2 is a representative diagram of stream
cipher structure.

The basic idea is to generate a key stream z = z1z2 . . . and use these bitstream to
encrypt a plaintext string x = x1x2 . . . according to the rule in Eq.1.

Fig. 2 Stream cipher setup



512 M. Saikia and M. A. Hussain

y = y1y2 . . . = e(z1)(x1)e(z2)(x2) . . . (1)

Definition 1 A synchronous stream cipher is a tuple(P,C, K , L , E, D) together
with a function g, such that the following conditions are satisfied.

• P is a finite set of possible plaintext.
• C is finite set of possible ciphertext.
• K , the keyspace, is a finite set of possible keys
• L is a finite set called keystream alphabet
• g is the keystream generator. g takes a key form set K as input and generates a
infinite string z1z2 . . . called the keystream, where zi ∈ L for all i ≥ 1.

• For each z ∈ L , there is an encryption rule ez ∈ E and a corresponding decryption
rule dz ∈ D. ez : P → C and dz : C → P are functions such that dz(ez(x)) = x
for every plaintext element x ∈ P .

As the pseudorandom byte generator is the key function in the stream cipher, we will
discuss the possibility of design of random number generator which is applicable in
wireless sensor network in the next section.

3 Principles of Random Number Generations

Random bitstream generation is an important cryptographic function. These random
bits streams are used in both key generation and encryption process. While in gener-
ation and assignment of keys to sensor nodes, we used a specific key pre-distribution
scheme [6, 7] to preload the keys to a sensor node from a key pool of keys generated
using random number generator. In case of encryption we can design a pseudoran-
dom bitstream generator that produce bitstreamwhich is used for encryption in latter
phase.

In essence, there are two fundamentally different strategies for generating random
bits or random numbers. One strategy, which until recently dominated in crypto-
graphic applications, computes bits deterministically using an algorithm. This class
of random bit generators is known as pseudorandom number generators (PRNGs) or
deterministic random bit generators (DRBGs). The other strategy is to produce bits
nondeterministically using some physical source that produces some sort of random
output. This latter class of random bit generators is known as true random number
generators (TRNGs) or nondeterministic random bit generators (NRBGs).

Definition 2 Let k, l be positive integers such that l ≥ k + 1. A (k, l)-bit generator
is a function f : Zk

2 → Z
l
2 that can be computed in polynomial time (as a function of

k). The input s0 ∈ Z
k
2 is called the seed, and the output f (s0) ∈ Z

l
2 is called generated

bitstream. It will always be required that l is a polynomial function of k.

The function f is deterministic; therefore the bitstream f (s) is dependent only
on the seed.



Title Suppressed Due to Excessive Length 513

3.1 Logistic Map as Sequence Generator

The logistic map is a type of recurrence relation which is a polynomial mapping
of degree 2 and chaotic behaviour can arise from very simple nonlinear dynamical
Eq.1 [8]. In the year 1976 biologist Robert May [9] discussed the logistic equation
as Simple mathematical models with very complicated dynamics.

Mathematically, the logistic map is written as

xn+1 = r xn(1 − xn) (2)

where xn is a number in the between [0, 1] and the parameter r are those in the interval
[0, 4]. Algorithm for Logistic Map sequence generator is given in Algorithm 1.

Algorithm 1 LogisticMap()
1: x0 ← seed � 0 < seed < 1
2: r ← val � 0 < val ≤ 4
3: for i = 0 → ∞ do
4: xn+1 ← r xn(1 − xn)
5: end for

3.2 Chaotic Behaviour Analysis of the Logistic Map

Chaotic behaviour does not exist for all values of r . It can be seen from the following
experiments by setting different values of r . At first we set values of r = 2.8 and
we consider initial seed as x0 = 0.35. It is seen that it doesn’t give any randomness
after some iteration Fig. 3a. Increasing the value of r to r = 3.0 and setting same
initial seed as x0 = 0.35 just oscillates the sequence between two values as shown
in Fig. 3b.

(a) x0 = 0.35 and r = 2.8 (b) x0 = 0.35 and r = 3.2

Fig. 3 Chaotic behaviour analysis: plot of first 100 points of the orbit



514 M. Saikia and M. A. Hussain

Fig. 4 Plot of first 50 points
of the orbit [x0 = 0.35
(blue), x0 = 0.70 (red) and
r = 3.5]

Fig. 5 The bifurcation
graph for logistic map

In the next experiment we take two cases, case1with the initial value of x0 = 0.35
and case2 with initial value x0 = 0.7 and set the value of r = 3.5. It is seen from
Fig. 4 that both converge rapidly to a stable period of orbit 4.

It can also be shown that convergence occurs for any initial condition in the interval
(0, 1) while we consider value of r = 3.5.

The general behaviour of the logistic map depends critically on value of parameter
r , as we have already seen in the previous examples. If we produce graphic that
captures the change in behaviour as a function of r and r ∈ [0, 4] , we get a graph
called bifurcation graph as shown in Fig. 5.

Fromvarious experiments, it is seen thatwhenparameter r in the rangeof 3.5699 <

r ≤ 4, the numbers generated in successive iterations of themapping become chaotic
in nature.

Therefore we consider two nearly identical x0 = 0.35 and x0 = 0.3501 as initial
seed conditions with the parameter r = 4. This shows the chaotic behaviour, which
is often thought of as ‘sensitive dependence on initial conditions’. In this scenario,
even though the orbits are nearly identical at the start, after 100 points or so, there’s
no way to detect, either statistically or by looking at Fig. 6, any such correlation
between the two orbits.



Title Suppressed Due to Excessive Length 515

Fig. 6 Plot of two nearly
identical seed [x0 = 0.35
and x0 = 0.3501

4 Hardware Implementation of Logistic Sequence
Generator

As random number generator is the basics for stream cipher, an efficient processor
that can compute the bitstream is often desirable. Considering the limitations of a
sensor node in wireless sensor network, design of lightweight hardware architecture
[10, 11] for generation of random sequence is an important issue. The function f (x)
for Logistic map can be implemented in two type of architecture by taking the basic
equation in the form of the following equations.

xn+1 = 4xn(1 − xn) (3)

xn+1 = 4xn − 4xnxn (4)

Designmakes simplewhile we set r = 4.Withminimal requirement ofmultiplier,
adder, shift registers and subtractor blocks aLogisticMap sequence generatormodule
can be designed as shown in Fig. 7a, b using the said equations. The initial seed is
feedback by module Z−1 to the module Z0, where it is subtracted from constant 1.
Then, multiplication with r = 4 is done by 2-bit shift register, the resultant value
then passed to multiplier to get 4x(1 − x). Then, MUX selector selects this output
to the output register, which is the generated Logistic sequence.

In the second design two 2-bit shift registers are used. The first shift register
produces 4x by taking value of x from the feedback and second shift register finds
4xx from the output xx produced by the multiplier.

(a) Design with equation (3) (b) Design with equation (4)

Fig. 7 Simulink block design for logistic sequence generator



516 M. Saikia and M. A. Hussain

The requirement of hardware for designing a Logistic bitstream depends of num-
ber of precession considered.

5 Model for Stream Cipher Using Logistic Sequence
Generator

The basicmodel for streamcipher inwireless sensor network is depicted in Fig. 8. The
key pre-distribution scheme discussed in [7], assigns a set of keys Ki = {k1, k2, . . .}
to the sensor nodes i , which were generated using a Logistic sequence generator.
Sensor nodes having a shared key may undergo message exchange using that key.
The key is passed to Logistic sequence generator, which produce random byte stream
then and performs the encryption over plaintext. Similarly, the receiver sensor node
uses the same key for its key chain to decrypt the message. If it requires further
forwarding of the message, then the same strategy is being used, which is shown
in Fig. 9. Figure 9 shows process of message transmission in case of multiple hop

Fig. 8 Stream cipher setup for WSN



Title Suppressed Due to Excessive Length 517

Fig. 9 Secure message forwarding in WSN multi-hop path

paths. Sensor S1 encrypts the sensing data using shared key of sensor S2, sensor S2
then decrypts the data and encrypts the same with the shared key of sensor S3 and so
on.

6 Experimental Results

For our experiments, we take simple 8-bit logistic sequence generator. We take
eight registers to store the 8 successive sequence produced by the generator. 8-bit
precision is the initial seed to the logistic generator. The generator produces 8-bit
sequences which are stored in 8 registers successively. Bitstreams are fetched from
each significant bit of the registers. Figure 10a shows an example of the method used,
where 16 numbers of bitstream outputs were shown by taking x0 = [1011010].

Encryption process is simply the XOR with the sequence of plaintext bitstream,
which is as shown clearly in Fig. 10b. For the experiment, we take 8-bit stream

(b)(a)

Fig. 10 a A bitstream generation process, b encryption of plaintext ‘CRYPTOGRAPHY ’ using
8-bit sequence generator



518 M. Saikia and M. A. Hussain

Fig. 11 Overlapping plot of
plaintext and cipher text
bitstream

generator and plaintext ‘CRYPTOGRAPHY ’ is converted to ASCII character, then
converted to binary 8-bit and perform bit-wise XOR operation to get ciphertext.

Correlation between the plaintext and ciphertext is found to be 0.0161. A over-
lapping plot with plaintext (Blue line) and ciphertext (Red line) is shown in Fig. 11.
Similarly, decryption can be done in the similar manner by the receiver sensor.

7 Conclusion

In this paper, we have discussed requirement of symmetric cipher as a security tool
for wireless sensor network. We have discussed importance of lightweight crypto
processor for a sensor node. Symmetric cipher is a simple but yet effective technique
of encryption. Implementation of symmetric cipher requires random bitstream gen-
erator, which is discussed here. Hardware implementation of Logistic Map based
sequence generator is discussed with its minimum requirement of logic units in two
possible ways. Wireless sensor network uses key pre-distribution scheme prior to
deployment of sensor node into target field, the same logistic sequence generator can
be used to generate a key pool, from where keys are preloaded to the sensor nodes.
In case of multi-hop path, the same crypto processor can be used for encryption and
decryption processes, until data reached at its final destination.

References

1. Delfs H, Knebl H (2007) Symmetric-key encryption. Introduction to cryptography. Springer,
Berlin, pp 11–31

2. Agrawal M, Mishra P (2012) A comparative survey on symmetric key encryption techniques.
Int J Comput Sci Eng 4(5):877

3. Wander, AS et al (2005) Energy analysis of public-key cryptography for wireless sensor net-
works. In: Third IEEE international conference on pervasive computing and communications,
2005. PerCom 2005. IEEE

4. Zulfikar Z (2014) FPGA implementations of uniform randomnumber based on residuemethod.
Trans J Rekayasa Elektrika 11(1)



Title Suppressed Due to Excessive Length 519

5. Lehmer DH (1954) Random number generation on the BRL high speed computing machines,
by M. L. Juncosa. Math Rev 15:559

6. Eschenauer L, Gligor VD (2002) A key-management scheme for distributed sensor networks.
In: Proceedings of the 9th ACM conference on computer and communications security. ACM

7. BoeingG (2016)Visual analysis of nonlinear dynamical systems: chaos, fractals, self-similarity
and the limits of prediction. Systems 4(4):37. https://doi.org/10.3390/systems4040037

8. May RM (1976) Simple mathematical models with very complicated dynamics. Nature
261(5560):459467. https://doi.org/10.1038/261459a0

9. Dabal P, Pelka R (2011) A chaos-based pseudo-random bit generator implemented in FPGA
device. In: 2011 IEEE 14th international symposium on design and diagnostics of electronic
circuits & systems (DDECS). IEEE

10. Blum L, Blum M, Shub M (1986) A simple unpredictable pseudo-random number generator.
SIAM J Comput, no. 2

11. Pathan A-SK, Lee H-W, Hong CS (2006) Security in wireless sensor networks: issues and
challenges. In: The 8th international conference on advanced communication technology, 2006.
ICACT 2006, vol 2. IEEE

12. Zulfikar Z (2012) Novel area optimization in FPGA implementation using efficient VHDL
code. Trans J Rekayasa Elektrika 10(2) (2012)

13. Walters JP et al (2007) Wireless sensor network security: a survey. Secur Distrib Grid Mob
Pervasive Comput 1:367

14. Hoang T (2012) An efficient FPGA implementation of the advanced encryption standard algo-
rithm. In: 2012 IEEE RIVF international conference on computing and communication tech-
nologies, research, innovation, and vision for the future (RIVF). IEEE

15. Intel Corp (2012) Intel digital random number generator (DRNG) software implementation
guide, 7 Aug 2012

16. Ma D, Tsudik G (2010) Security and privacy in emerging wireless networks. IEEE Wirel
Commun

17. Park S, Miller K (1988) Random number generators: good ones are hard to find. Commun
ACM

18. Chan H, Perrig A, Song D (2003) Random Key predistribution schemes for sensor networks.
In: Proceedings of the 2003 IEEE symposium on security and privacy. IEEE

19. MayRM(1976) Simplemathematicalmodelswith very complicated dynamics.Nature 261:459
20. Tanaka H, Sato S, Nakajima K (2000) Integrated circuits of map chaos generators. Analog

Integr Circuits Signal Process 25(3):329–335

https://doi.org/10.3390/systems4040037
https://doi.org/10.1038/261459a0

	Implementation of Lightweight Crypto Processor Using Logistic Map for Wireless Sensor Network
	1 Introduction
	2 Stream Cipher
	3 Principles of Random Number Generations
	3.1 Logistic Map as Sequence Generator
	3.2 Chaotic Behaviour Analysis of the Logistic Map

	4 Hardware Implementation of Logistic Sequence Generator
	5 Model for Stream Cipher Using Logistic Sequence Generator
	6 Experimental Results
	7 Conclusion
	References




