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Abstract The proposed approach involves detection of QRS complex and energy
power spectral distribution analysis of the segmented QRS complex to establish
the presence of arrhythmic beats in Electrocardiogram (ECG). The methods con-
sist of three steps: (i) the baseline drift and high-frequency artifacts could seriously
affect the detection performance, soMovingAverage Filtering (MAF) and Stationary
Wavelet Transform (SWT) are implemented at preprocessing stage. (ii) Localization
of R-peaks by implementing FFT-based windowing and thresholding techniques.
Then Q and S points are detected using search interval method based on the medical
definition. (iii) The segmented QRS complex is analyzed with period-gram and Con-
tinuous Wavelet Transform using FFT (CWTFT) to obtain time–frequency domain
power and energy of the complex. (iv) Statistical analysis has been proposed using
one-way ANOVA to differentiate the healthy and arrhythmic QRS complex. The
proposed QRS detection and analysis methodologies are evaluated with MIT-BIH
Arrhythmia Database (MITDB) and FANTASIA database. The detection perfor-
mance, i.e., Sensitivity Se(%) and the Specificity Sp(%) for FANTASIA 100% each
respectively, where as Se � 100% and Sp � 98.18% for MITD. The failed detection
percentage, Fd(%) � 0 for FANTASIA and Fd(%) � 1.85% forMITDB. The energy
power distributed parameters obtained from PSD and CWTFT are statistically ana-
lyzed with one-way ANOVA and the p-value are found to be <0.05 (i.e., CI � 95%)
for healthy and arrhythmia QRS complex which certainly signifies that the energy
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power features of the arrhythmic QRS complex are different than the normal QRS
complex.

Keywords QRS complex · CWTFT · One-way ANOVA · Energy power
distribution · MITDB · FANTASIA

1 Introduction

Time domain features and morphological fiducial points can add crucial inputs
towards decision-making and accurate diagnosis in electrocardiogram (ECG) [1].
Arrhythmia analysis can also be done by shape and time change observation of
QRS complex [2]. Difference Operation Method (DOM) was proposed by Yun-Chi
Yeh, et al. with a simple and computational-free algorithm for accurate detection
of QRS complex [3]. The wavelet transform is widely used in many of the earlier
proposed methods for QRS detection and analysis with the limitation of selection of
proper mother wavelet and decomposition level [4–9]. Few well-known QRS detec-
tion approaches which are more complex such asNeural Network (NN) [5], Support
Vector Machines (SVM) [10], Genetical algorithms [11], Hidden Markov Models
(HMM) [12], K-Nearest Neighbor (K-NN) [13], parallel functioning of different
algorithms [14, 15], Pan and Tompkins (PT) [16], Fractal Dimension Transforma-
tion (FDT) [17]. Unpredictable QRS Potentials (UIQP) were analyzed using Finite-
Impulse-Response (FIR) based prediction model to identify ventricular tachycardia
with patients undergoing high-risk ventricular arrhythmias [18]. Soroor and Jafar-
nia [19] proposed Multiresolution Wavelet with Thresholding Method and achieved
98.2% accuracy for QRS complex detection. QRS complexes could also be detected
performing fixed structure Mathematical Morphology (MM) operators [20]. Atiyeh
and Reza [21] have discussed a P-QRS-T waves-based detection approach, which is
simple and accurate having very less response time during its real-time operation.

As from the literature survey, it is also clear that arrhythmia can be identified by
analyzing QRS complex changes. Here the authors propose an algorithm by taking
such problem into account. Classification between normal QRS and arrhythmic QRS
of ECG is presented with efficient detection techniques and energy power spectral
distribution of this complex. The performance evaluation is done with FANTASIA
database and the MIT-BIH Arrhythmia Database (MITDB).
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2 Materials and Methods

2.1 Datasets

The proposed methodologies have been tested over 30 selected healthy (Fantasia
records) data having 1 row (signal) and 900,000 columns (samples/signal) with the
duration of 1 h having sampling frequency: 250 Hz and sampling interval: 0.004 s
[22]. 30 out of 48 lengthy arrhythmic records fromMITDB,with sampling frequency
360 Hz and 11-bit resolution ranging over 10 mV are considered for this analysis.
The proposed methodologies have been tested over these 30 selected arrhythmic
signals (total beats considered: 4,000) having first row (signal) and 650,000 columns
(samples/signal) with the duration of 1 h [23].

2.2 Preprocessing of Noisy ECG Signal

Moving average filter [24] and StationaryWavelet Transform [25] were implemented
to remove baseline drift and signal noise (Fig. 1).

2.3 R-Peaks Localization

Step 1: Discrete Fourier Transform (DFT) is computed fromFast Fourier Transform
(FFT) and the Fourier transform is an integral (4) of the form

F(u) � ∞∫
−∞

f(x)e−i2πuxdx (4)

Fig. 1 Noise cancelation for FANTASIA data #f1o04 (4 s data for better visualization)
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Fig. 2 R-peaks localization for MITDB data #105 (10 s data for better visual representation)

Low-frequencies component from the ECG signal is removed using FFT.
Step 2: Restoration of ECG signal is done with Inverse Fourier transform (5) and

the expression for inverse Fourier transform is

f(x) � ∞∫
−∞

F(u)ei2πuxdu (5)

Step 3: Windowed filter with default size for localization of maxima (only maxi-
mum values are being considered and other values are ignored).

Step 4: Implementation of threshold filters to remove small values and preserve
significant ones.

Step 5: Repeat Step 3 with adjusting the size of the windowed filter to improve
filtering performance. Then R-peaks are detected (Fig. 2).

Step 6: In case of negative QRS complexes, localization of minima is performed
for detection of R-peaks and the other above steps remains same.

2.4 Q and S Inflection Points Localization

Step 7: TakingRpoint as standard, the search interval-1 locates 20 sampling points
from prior and succeeding of R point. The least value found ahead of R
point marked as Q1 and the same found after, marked as S1 [3].

Step 8: Search interval-2 is defined such that, it covered 40 sampling points prior
and succeeding of R point. The least sampling point forth to R is Q2 and
succeeding to R is S2 [3].

Step 9: Localization of Q by checking the location and amplitude values of Q1
and Q2. If Q1 and Q2 located at different points and Q1 amplitude > Q2
amplitude, then Q1 is the location of Q or vice versa.

Step 10: Localization of S by checking the position of S1 and S2. (i) If the position
of S1 � position of S2, then S1 � S2 � S. (ii) If VS2 > VS1, then S � S1;
else S � S2, where VSi � amplitude of Si and i � 1, 2 (Fig. 3).
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Fig. 3 Q& S point’s localization for MITDB data #105 (10 s data for better visual representation)

The failed detection rates are calculated for both FANTASIA and MITDB
databases. Failed detection is calculated by [3]:

Fd(%) � FP + FN

Total Beats
× 100 (6)

The failed detection percentage, Fd(%)� 0 for FANTASIA and Fd(%) �
1.85%for MITDB.

Sp(%) � TP

TP + FP
× 100 (7)

Se(%) � TP

TP + FN
× 100 (8)

where, TP � True positive (properly detected beats), FN � False negative (failed to
detect a real beat), FP � False positive (detects a beat when no beat is present).

The evaluation of the detection performance is computed using Specificity
(
Sp

)

and Sensitivity (Se) [3], which are normally computed using (7) and (8). For FAN-
TASIA both Se and Sp found to be 100% where as Se � 100% and Sp � 98.18% for
MITDB (Table 1).

3 Feature Extraction from QRS Complex

3.1 Continuous Wavelet Transform Using FFT Algorithm
(CWTFT)

Themean of the detectedQRS complexes is segmented from the ECG signal and ana-
lyzed using CWTFT. CWT can be computed using the product of Fourier Transforms
(Inverse Fourier Transform (IFT)), from the below (9) equation
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Fig. 4 CWTFT of QRS complex for MITDB data #203

Fig. 5 a Max power, b energy estimation

C(x, y; g(t),ψ(t)) � 1

2�

∫ −∞

∞
ĝ(ω)

√
xψ

∧

∗ (xω)ejωydω (9)

Using period-gram (PSD) andCWTFTpower energy distribution (Fig. 4) of each sig-
nal of both the databases is computed in Table 1 where the power (Fig. 5a) (frequency
and time domain) and energy (maximum percentage (Fig. 5b) and scale maximum)
are tabulated.
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Table 2 Analysis of variance
of QRS complex for
frequency domain power of
FANTASIA and MITDB

Source DF Adj SS Adj MS F-value p-value

Factor 1 0.7491 0.74910 21.91 0.000

Error 58 1.9827 0.03418

Total 59 2.7318

Table 3 Analysis of variance
of QRS complex for
maximum energy percentage
of FANTASIA and MITDB

Source DF Adj SS Adj MS F-value p-value

Factor 1 3.105 3.10451 35.97 0.000

Error 58 5.006 0.08630

Total 59 8.110

3.2 One-Way ANOVA

One-way ANOVA is implemented to determine whether there are statistically sig-
nificant differences among the means of several populations (i.e., power and energy
of healthy and arrhythmic QRS complex).

Table 2 shows that there is a significant difference (i.e., p-value � 0.000) in
between the frequency domain power of QRS complex of healthy and arrhythmic
signals. In the frequency domain power of FANTASIA and MITDB, the intervals (at
95% CI) for the means of these two data sets do not overlap which suggests that the
population means for these levels are different.

Table 3 shows that there is a significant difference (i.e., p-value � 0.000) in
between themaximum energy percentage ofQRS complex of healthy and arrhythmic
signals. In between the maximum energy percentage of FANTASIA and MITDB,
the intervals (at 95% CI) for the means of these two data sets do not overlap which
suggests that the population means for these levels are different. The same results
are obtained with the time domain power and maximum scale energy parameters.

4 Conclusions

The PSD and CWTFT compute the average power and distribution of energy power
at different scales for normal and arrhythmic QRS complex. The mean energy power
spectral parameter of QRS complexes of healthy subjects (FANTASIA) and arrhyth-
mic (MITDB) signals proves to be lying in a different domain, which are validated
with one-way ANOVA (p-value < 0.05). The proposed methodology also considers
the critical role of a detection method for QRS complex where the failed detec-
tion percentage is found to be Fd(%) � 0 for FANTASIA and Fd(%) � 1.85%
for MITDB databases. Moreover, the high-frequency noise components are elimi-
nated using SWT (i.e., 50 Hz power line interference embedded with FANTASIA).
This proposed approach for analyzing QRS complex certainly formulates a new way
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of considering research possibility to detect arrhythmia segregating from healthy
signals. The further research lies in testing this methodology with different erratic
signals and extending the possibility of finding changes in ischemic heart disease
(IHD) by analyzing QRS, ST-segment, and T wave.
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