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Abstract. Pathologists generally diagnose whether or not cervical cancer cells
have the potential to spread to other organs and assess the malignancy of cancer
through whole slide histopathology images using virtual microscopy. In this
process, the morphology of nuclei is one of the significant diagnostic indices,
including the size, the orientation and arrangement of the nuclei. Therefore,
accurate segmentation of nuclei is a crucial step in clinical diagnosis. However,
several challenges exist, namely a single whole slide image (WSI) often occu-
pies a large amount of memory, making it difficult to manipulate. More than
that, due to the extremely high density and variant shapes, sizes and overlapping
nuclei, as well as low contrast, weakly defined boundaries, different staining
methods and image acquisition techniques, it is difficult to achieve accurate
segmentation. A method is proposed, comprised of two main parts to achieve
lesion localization and automatic segmentation of nuclei. Initially, a U-Net
model was used to localize and segment lesions. Then, a multi-task cascade
network was proposed to combine nuclei foreground and edge information to
obtain instance segmentation results. Evaluation of the proposed method for
lesion localization and nuclei segmentation using a dataset comprised of cervical
tissue sections collected by experienced pathologists along with comparative
experiments, demonstrates the outstanding performance of this method.
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1 Introduction

Worldwide, cervical cancer is both the fourth-most common cause of cancer and cause
of death from cancer in women, and about 70% of cervical cancers occur in low and
middle-income countries [1]. Its development is a long-term process, from precancerous
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changes to cervical cancer, which typically takes 10 to 20 years [1]. In recent years, with
the widespread use of cervical cancer screening programs which allows for early
detection and intervention, as well as helping to standardize treatment, mortality has
been dramatically reduced [2]. With the development of digital pathology, clinicians
routinely diagnose disease through histopathological images obtained using whole slide
scanners and displayed using virtual microscopy. In this approach, the morphology of
nuclei is one of the significant diagnostic indices for assessing the degree of malignancy
of cervical cancer. It is of great significance to make accurate nuclei segmentation in
order to provide essential reference information for pathologists. Currently, many
hospitals, particularly primary medical institutions lack experienced experts, which
influences diagnostic efficiency and accuracy. Therefore achieving automatic segmen-
tation of nuclei is necessary to reduce the workload on pathologists and help improve
efficiency, as well as to assist in the determination of treatment plans and recovery
prognosis.

Whole slide images (WSI) with high resolution usually occupies large amounts of
memory. Therefore, it is difficult to achieve high efficiency and throughput if WSI are
directly processed. Due to overlapping, variant shape and sizes, extremely high density
of nuclei, as well as factors such as low contrast, weakly defined boundaries, and the
use of different staining methods and image acquisition techniques, accurate segmen-
tation of nuclei remains a significant challenge.

In recent years, with the application of deep learning methods for image segmen-
tation, a significant amount of research has been devoted to the development of
algorithms and frameworks to improve accuracy, especially in areas of non-biomedical
images. Broadly speaking, image segmentation includes two categories; semantic and
instance segmentation methods. The semantic method achieves pixel-level classifica-
tion, which transforms traditional CNN [3] models into end-to-end models [4] such as
existing frameworks including FCN [5], SegNet [6], CRFs [7], DeepLab [8], U-Net [9],
and DCAN [10]. Based upon semantic segmentation, the instance segmentation
method identifies different instances, and includes MNC [11], FCIS [12], Mask RCNN
[13], R-FCN [14], and similar implementations. Although these methods achieved
considerable results, their application in the field of biomedical images with complex
background is relatively poor, with the exception of U-Net [9]. U-Net [9] is a caffe-
based convolutional neural network which is often used for biomedical image seg-
mentation and obtains more than acceptable results in many practical applications.

In the case of whole slide images of cervical tissue sections, recommendation of a
pathologists’ clinical diagnostic process was followed, localizing lesions and seg-
menting nuclei for diagnosing diseases. The method relies upon two steps with the first
being localization and segmentation of lesions in WSI using the U-Net [9] model
(Fig. 1, Part1). The second step, nuclei segmentation, builds a multi-task cascade
network to segment the nuclei from lesions areas, hereinafter referred to as MTC-Net
(Fig. 1, Part2). Similar to DCAN [10], MTC-Net leverages end-to-end training which
reduces the number of parameters in the fully connected layer and improves compu-
tational efficiency. MTC-Net combines nuclei foreground and edge information for
accurate instance segmentation results. However it differs from DCAN [10] in that an
intermediate learning process, a noise reduction network of nuclei foreground and a
distance transformation learning network, are added. A nuclei segmentation dataset of
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stained cervical sections was used for comparative study, and the results show that
segmentation accuracy has been improved by using this method, especially in the case
of severely overlapping nuclei.

2 Experiments

In this section, we describe in detail the preparation of our dataset, detailed explanation
of the network structure and loss function of every stage.

2.1 Dataset and Pre-processing

All of the cervical tissue section images in our WSI dataset were collected from the
pathology department of International Peace Maternity & Child Health Hospital of
China welfare institute (IPMCH) in Shanghai. The dataset contains 138 WSI of variant
size, with each sample imaged at 4x and 20x magnification and all ground truth
annotations labeled by two experienced pathologists.

Images at 4x magnification were chosen for the initial portion of the algorithm
using U-Net [9]; ninety for training/validation and 48 images for testing. Pathologists
labeled lesions present in all images in white with the rest of image, viewed as the
background region, masked in black. All training/validation images were resized to
512 * 512 in order to reduce computational and memory overhead.

Taking into account the time-consuming nature of labeling nuclei, while imple-
menting the second step MTC-Net, fifty randomly cropped images from the lesions of
the WSI dataset were prepared as our nuclei segmentation dataset, with a size of
500 * 500 pixels at 20x magnification. Then pathologists marked nuclei in every image
with different colors in order to distinguish between different instances. Ground truth
instance and boundary labels of nuclei were generated from pathologists’ labels in
preparation for model training. We chose 35 images for the training/validation and 15

MTC-Net

Image (4x)

U-Net

Lesions (20x)

Lesions (4x) Lesions (20x) Instance 
Segmentation result

Lesion 
Localization

Nuclei 
Segmentation
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Part2
patch size: 
500*500

stride

Fig. 1. The overview of the proposed method. Part1 is lesion localization using U-Net [9], the
input is a cervical cell image at 4x magnification. The output is a probability map of the input.
The lesion region with its coordinates, are chosen and mapped to the same image at 20x
magnification. In Part2, a randomly cropped nuclei image from the lesion localized in Part1 is
used as the input image of MTC-Net, finally obtaining the instance segmentation result.
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images for the testing portion. Given the limited number of images, the
training/validation dataset was enlarged using a sliding window with a size of
320 * 320 pixels, cropping in increments of 50 pixels. After obtaining small tiles using
the sliding window, each tile was processed with data augmentation strategies
including vertical/horizontal flip and rotation (0º, 90º, 180º, 270º). Finally, there were
3124 training images in total.

2.2 Lesion Localization

A fully convolutional neural network, U-Net [9], was used as the semantic segmen-
tation model to separate the lesions from the whole slide images (Fig. 2). The input is
an RGB image at 4x magnification, and the output of this network is a probability map
of grayscale pixel values varying from 0 to 1, with a threshold set to 0.6 in order to
obtain final segmentation result which is binary. When comparing with the binary
ground truth label with pixel values are 0 (background) and 1 (lesions), the semantic
segmentation loss function Ll is defined as:

LlðhlÞ ¼ Lbceðoutput; labelÞ ð1Þ

Lbce is the binary cross entropy loss function, hl denotes the parameters of the
semantic segmentation network U-Net [9].

2.3 Nuclei Segmentation

Loss Function
The training details of this network (Fig. 3) is divided into four stages, where UNET1
and UNET2 are both U-Net [11] models. The whole loss function Lseg is defined as:

Input (4x)

U-Net

WSI (20x)

Lesions (4x)Lesion 
Localization

Semantic Segmentation 
Loss 

Zoom In (to crop nuclei 
images)

Fig. 2. Procedure of lesion localization. Input is an RGB image and the output is a probability
map with grayscale pixel values varying from 0 to 1.

102 Q. Yang et al.



Lseg ¼
L1 stage1
L1 þ L2 stage2
L1 þ L2 þ L3 stage3
L1 þ L2 þ L3 þ L4 stage4

8>><
>>:

ð2Þ

L1 is the binary cross entropy loss of UNET1, L2 is the mean squared error loss of stack
Denoising Convolutional Auto-Encoder (sDCAE) [15], L3 is the mean squared error
loss of UNET2, L4 is the binary cross entropy loss of Encoder-Decoder (ED) [16].

Training and Implementation Details
During training stages, the network in each stage focuses on the learning of a sub-task
and relies upon the previous output. Therefore, the whole training process is a multi-
task cascaded network (MTC-Net). The first stage implements UNET1 for foreground
extraction network to isolate the nuclei from the complex background, as much as
possible. The input is an RGB image, and the semantic output C is the preliminary
segmentation image, with semantic segmentation loss L1 defined as:

Input(RGB)

UNET1

sDCAE

UNET2

ED

+

C

R

D

E

Semantic Segmentation Loss 

Reconstruction Loss

Regression Loss

Semantic Segmentation Loss 
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Stage2

Stage3
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Multi-task Training

Fig. 3. The procedure of Cervical nuclei segmentation using a multi-task cascaded network
(MTC-Net).
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L1ðh1Þ ¼ LbceðC; inputðRGBÞÞ ð3Þ

Lbce is the binary cross entropy loss function, h1 denotes the parameters of UNET1.
The second stage implements sDCAE [15] as the noise reduction network to

reconstruct nuclei foreground and segments edges from the semantic output C. As an
end-to-end training, fully convolutional network, sDCAE [15] is not sensitive to the
size of input images and more efficient with less parameters when compared to fully
connected layers. The input is semantic output C and the output R is the reconstruction
image after noise reduction, semantic reconstruction loss is defined as:

L2ðh2Þ ¼ LmseðR;CÞ ð4Þ

Lmse is the mean squared error loss function, h2 denotes the parameters of sDCAE
[15].

The third stage is using UNET2 as the distance transformation learning network of
the nuclei. Inputs are the RGB image, C and R, with the output D is a distance
transformation image. At the same time, distance transformation is used to convert the
ground truth instance labels into distance transformation labels (DT). Then making a
regression on DT and D, so regression loss L3 is defined as:

L3ðh3Þ ¼ LmseðD;DTÞ ð5Þ

Lmse is the mean squared error loss function, h3 denotes the parameters of UNET2.
The last stage uses ED [16] as the edge learning network of the nuclei. The

construction of ED [16] uses conventional convolution, deconvolution and pooling
layers. The input is D and output is the prediction segmentation mask E of nuclei.
According to ground truth boundary label B, the semantic segmentation loss L4 is
defined as:

L4ðh4Þ ¼ LbceðE;BÞ ð6Þ

Lbce is the binary cross entropy loss function, h4 denotes the parameters of ED [16].
When generating the final instance result of the input image, the predicted proba-

bility maps of R and E were fused, and the final segmentation mask seg is defined as:

segði; jÞ ¼ 1 E i; jð Þ� k and R i; jð Þ�x
0 otherwise

�
ð7Þ

where seg(i, j) is one of the pixel of seg, E(i, j) and R(i, j) are the pixels at coordinate (i,
j) of the nuclei segmentation prediction mask E and the predicted probability maps
R respectively, k and x are thresholds, set to 0.5 empirically. Then each connected
domain in seg is filled with different values to show the instance segmentation result of
nuclei.

The whole framework is implemented under the open-source deep learning network
Torch. Every stages’ weights were initially set as 0, the learning rate was set as 1e−4

initially and multiplied by 0.1 every 50 epochs.
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3 Evaluation and Discussion

To illustrate the superiority and provide effective evaluation metrics for our model, the
winning model of the Gland Segmentation Challenge Contest in MICCAI 2015–
DCAN [10] was chosen as a baseline to perform a comparative experiment.

3.1 Evaluation Metric

In the initial step (Lesion Localization), U-Net [9] used the common metric IoU to
evaluate the effect of localization. IoU is defined as:

IoUðGw; SwÞ ¼ ðjGw \ SwjÞ=ðjGwj [ jSwjÞ ð8Þ

where |Gw| and |Sw| are the total number of pixels belonging to the ground truth lesions
and the semantic segmentation result of lesions respectively.

In second step (Nuclei Segmentation), the evaluation criteria include traditional
dice coefficient D1 and ensemble dice D2. D1 measures the overall overlapping between
the ground truth and the predicted segmentation results. D2 captures mismatch in the
way the segmentation regions are split, while the overall region may be very similar.
The two dice coefficients will be computed for each image tile in the test dataset. The
Score for the image tile will be the average of the two dice coefficients. The score for
the entire test dataset will be the average of the scores for the image tiles. D1 and D2 are
defined as:

D1ðGn; SnÞ ¼ ðjGn \ SnjÞ=ðjGnj [ jSnjÞ
D2 ¼ 1� Gn�Snj j

jGnj [ jSnj
Score ¼ D1 þD2

2

8<
: ð9Þ

Where |Gn| and |Sn| are the total number of pixels belonging to the nuclei ground
truth annotations and the nuclei instance segmentation results respectively, Score is the
final comprehensive metric of the method.

3.2 Results and Discussion

Some semantic segmentation results of testing data in lesion localization, and the
visualization of the comparative instance segmentation results in nuclei segmentation,
were analyzed.

The architecture of U-Net [9] combines low-level features to ensure the resolution
and precision of the output and high-level features used to earn different and complex
features for accurate segmentation at the same time. Another advantage is that U-Net
[9] utilizes the auto-encoder framework to strengthen the boundary recognition capa-
bilities by adding or removing noise automatically.
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U-Net [9] in Part1 can accurately localize and segment the lesions from WSI
(Fig. 4). The semantic segmentation results of the network with the threshold set to 0.6
are almost the same as the ground truth, and the results achieved the IoU above 97%,
which laid the foundation for the subsequent work of nuclei instance segmentation to
obtain good results.

Nuclei instance segmentation results compared with DCAN [10] (Fig. 5), with
MTC-Net exhibiting higher sensitivity for nuclei with severe overlap or blurred
boundaries. The application of UNET2 enhanced the segmentation edges and improved
the model sensitivity of nuclei edges, and then improved the accuracy of this model.

Quantitative comparative results between DCAN [10] and MTC-Net on the nuclei
segmentation dataset were obtained (Table 1), with thresholds k and x both set to 0.5.
In order to account for possible errors from edge segmentation in nuclei foreground,
both segmentation results of DCAN [10] and MTC-Net were operated by morpho-
logical expansion. MTC-Net achieves better performance, with the final score about
3% higher than DCAN [10]. The comparative results demonstrate MTC-Net is more
effective than DCAN [10] in the field of nuclei segmentation.

Fig. 4. Semantic segmentation results of testing data in lesion localization. (a): WSI at 4x
magnification. (b): ground truth masks of WSI. (c): segmented images.
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4 Conclusions

A two-part method for lesion localization and automatic nuclei segmentation of WSI
images of stained cervical tissue sections was introduced. A U-Net [9] model to
localize and segment lesions was implemented. A multi-task cascaded network, named
MTC-Net, was proposed to segment nuclei from lesions, which is potentially a crucial
step for clinical diagnosis of cervical cancer. Similar to DCAN [10], MTC-Net com-
bines nuclei foreground and edge information to obtain instance segmentation results,
but the difference is that MTC-Net adds intermediate learning process in the form of a
noise reduction network of nuclei foreground and a distance transformation learning
network of nuclei. Comparative results were obtained based on our nuclei segmentation
dataset, which demonstrated better performance of MTC-Net. After practical applica-
tion, it was found to some extent that this work provides essential reference information

Fig. 5. The comparative nuclei segmentation results using DCAN [10] and MTC-Net. The first
row are original image and the ground truth segmentation of this image (left to right). The second
row are segmentation results of nuclei foreground, nuclei edges and instance segmentation results
(left to right) using model DCAN [10]. The third row are nuclei foreground noise reduction
segmentation results, the distance transformation results, nuclei edges segmentation results and
the instance segmentation results (left to right) using MTC-Net.

Table 1. The quantitative comparative results between DCAN [10] and MTC-Net on our nuclei
segmentation dataset.

Method Performance
D1 D2 Score

DCAN [10] 0.7828 0.7021 0.7424
MTC-Net 0.8246 0.7338 0.7792
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for pathologists in assessing the degree of malignancy of cervical cancer, which can
reduce the workload on pathologists and help improve efficiency. Future work will
continue to optimize MTC-Net and focus on training with a larger dataset to achieve
higher segmentation accuracy.
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