
Scalable Single-Source Shortest Path
Algorithms on Distributed Memory Systems

Thap Panitanarak(&)

Department of Mathematics and Computer Science, Chulalongkorn University,
Patumwan 10330, Bangkok, Thailand

Thap.p@chula.ac.th

Abstract. Single-source shortest path (SSSP) is a well-known graph compu-
tation that has been studied for more than half a century. It is one of the most
common graph analytical analysis in many research areas such as networks,
communication, transportation, electronics and so on. In this paper, we propose
scalable SSSP algorithms for distributed memory systems. Our algorithms are
based on a D-stepping algorithm with the use of a two dimensional (2D) graph
layout as an underlying graph data structure to reduce communication overhead
and improve load balancing. The detailed evaluation of the algorithms on var-
ious large-scale real-world graphs is also included. Our experiments show that
the algorithm with the 2D graph layout delivers up to three times the perfor-
mance (in TEPS), and uses only one-fifth of the communication time of the
algorithm with a one dimensional layout.

Keywords: SSSP � Parallel SSSP � Parallel algorithm � Graph algorithm

1 Introduction

With the advance of online social networks, World Wide Web, e-commerce and
electronic communication in the last several years, data relating to these areas has
become exponentially larger day by day. This data is usually analyzed in a form of
graphs modeling relations among data entities. However, processing these graphs is
challenging not only from a tremendous size of the graphs that is usually in terms of
billions of edges, but also from graph characteristics such as sparsity, irregularity and
scale-free degree distributions that are difficult to manage.

Large-scale graphs are commonly stored and processed across multiple machines or
in distributed environments due to a limited capability of a single machine. However,
current graph analyzing tools which have been optimized and used on sequential
systems cannot directly be used on these distributed systems without scalability issues.
Thus, novel graph processing and analysis are required, and parallel graph computa-
tions are mandatory to be able to handle these large-scale graphs efficiently.

Single-source shortest path (SSSP) is a well-known graph computation that has
been studied for more than half a century. It is one of the most common graph
analytical analysis for many graph applications such as networks, communication,
transportation, electronics and so on. There are many SSSP algorithms that have been
proposed such as a well-known Dijkstra’s algorithm [9] and a Bellman-Ford algorithm

© Springer Nature Singapore Pte Ltd. 2019
B. W. Yap et al. (Eds.): SCDS 2018, CCIS 937, pp. 19–33, 2019.
https://doi.org/10.1007/978-981-13-3441-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3441-2_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3441-2_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3441-2_2&domain=pdf
https://doi.org/10.1007/978-981-13-3441-2_2

[3, 10]. However, these algorithms are designed for serial machines, and do not effi-
ciently work on parallel environments. As a result, many researchers have studied and
proposed parallel SSSP algorithms or implemented SSSP as parts of their parallel graph
frameworks. Some well-known graph frameworks include the Parallel Boost Graph
Libray [14], GraphLab [16], PowerGraph [12], Galois [11] and ScaleGraph [8]. More
recent frameworks have been proposed based on Hadoop sytems [26] such as Cyclops
[6], GraphX [27] and Mizan [15]. For standalone implementations of SSSP, most
recent implementations usually are for GPU parallel systems such as [7, 25, 28].
However, high performance GPU architectures are still not widely available and they
also require fast CPUs to speed up the overall performance. Some SSSP implemen-
tations on shared memory systems include [17, 20, 21].

In this paper, we focus on designing and implementing efficient SSSP algorithms
for distributed memory systems. While the architectures are not relatively new, there
are few efficient SSSP implementations for this type of architectures. We aware of the
recent SSSP study of Chakaravarthy et al. [5] that is proposed for massively parallel
systems, IBM Blue Gene/Q (Mira). Their SSSP implementations have applied various
optimizations and techniques to achieve very good performance such as direction
optimization (or a push-pull approach), pruning, vertex cut and hybridization. How-
ever, most techniques are specifically for SSSP algorithms and can only be applied to a
limited variety of graph algorithms. In our case of SSSP implementations, most of our
techniques are more flexible and can be extended to many graph algorithms, while still
achieving good performance. Our main contributions include:

• Novel SSSP algorithms that combine advantages of various well-known SSSP
algorithms.

• Utilization of a two dimensional graph layout to reduce communication overhead
and improve load balancing of SSSP algorithms.

• Distributed cache-like optimization that filters out unnecessary SSSP updates and
communication to further increase the overall performance of the algorithms.

• Detailed evaluation of the SSSP algorithms on various large-scale graphs.

2 Single-Source Shortest Path Algorithms

Let G ¼ V ;E;wð Þ be a weighted, undirected graph with n ¼ Vj j vertices, m ¼ Ej j
edges, and integer weights w eð Þ[0 for all e 2 E. Define s 2 V called a source vertex,
and d vð Þ to be a tentative distance from s to v 2 V (initially set to 1). The single
source shortest path (SSSP) problem is to find d vð Þ� d vð Þ for all v 2 V . Define
d sð Þ ¼ 0, and d vð Þ ¼ 1 for all v that are not reachable from s.

Relaxation is an operation to update d vð Þ using in many well-known SSSP algo-
rithms such as Dijkstra’s algorithm and Bellman-Ford. The operation updates d vð Þ
using a previously updated d uð Þ for each u; vð Þ 2 E. An edge relaxation of u; vð Þ is
defined as d vð Þ ¼ min d vð Þ; d uð Þþw u; vð Þf g. A vertex relaxation of u is a set of edge
relaxations of all edges of u. Thus, a variation of SSSP algorithms is generally based on
the way the relaxation taken place.

20 T. Panitanarak

The classical Dijkstra’s algorithm relaxes vertices in an order starting from a vertex
with the lowest tentative distance first (starting with s). After all edges of that vertex are
relaxed, the vertex is marked as settled that is the distance to such vertex is the shortest
possible. To keep track of a relaxing order of all active vertices v (or vertices that have
been updated and wait to be relaxed), the algorithm uses a priority queue that orders
active vertices based on their d vð Þ. A vertex is added to the queue only if it is visited for
the first time. The algorithm terminates when the queue is empty. Another variant of
Dijkstra’s algorithm for integer weight graphs that is suited for parallel implementation
is called Dial’s algorithm. It uses a bucket data structure instead of a priority queue to
avoid the overhead from maintaining the queue while still giving the same work
performance as Dijkstra’s algorithm. Each bucket has a unit size, and holds all active
vertices that have the same tentative distance as a bucket number. The algorithm works
on buckets in order starting from the lowest to the highest bucket numbers. Any vertex
in each bucket has an equal priority, and can be processed simultaneously. Thus, the
algorithm concurrency is from the present of these buckets.

Another well-known SSSP algorithm, Bellman-Ford, allows vertices to be relaxed
in any order. Thus, there is no guarantee if a vertex is settled after it has been once
relaxed. Generally, the algorithm uses a first-in-first-out (FIFO) queue to maintain the
vertex relaxation order since there is no actual priority of vertices. A vertex is added to
the queue when its tentative distance is updated, and is removed from the queue after it
is relaxed. Thus, any vertex can be added to the queue multiple times whenever its
tentative distance is updated. The algorithm terminates when the queue is empty. Since
the order of relaxation does not affect the correctness of the Bellman-Ford algorithm, it
allows the algorithm to provide high concurrency from simultaneous relaxation.

While Dijkstra’s algorithm yields the best work efficiency since each vertex is
relaxed only once, it has very low algorithm concurrency. Only vertices that have the
smallest distance can be relaxed at a time to preserve the algorithm correctness. In
contrast, Bellman-Ford requires more works from (possibly) multiple relaxations of
each vertex. However, it provides the best algorithm concurrency since any vertex in
the queue can be relaxed at the same time. Thus, the algorithm allows simultaneously
relaxations while the algorithm’s correctness is still preserved.

The D-stepping algorithm [18] compromises between these two extremes by
introducing an integer parameter D� 1 to control the trade-off between work efficiency
and concurrency. At any iteration k� 0, the D-stepping algorithm relaxes the active
vertices that have tentative distances in kD; kþ 1ð ÞD� 1½ �. With 1\D\1, the
algorithm yields better concurrency than the Dijkstra’s algorithm and lower work
redundancy than the Bellman-Ford algorithm. To keep track of active vertices to be
relaxed in each iteration, the algorithm uses a bucket data structure that puts vertices
with the same distant ranges in the same bucket. The bucket k contains all vertices that
have the tentative distance in the range kD; kþ 1ð ÞD� 1½ �. To make the algorithm more
efficient, two processing phases are introduced in each iteration. When an edge is
relaxed, it is possible that the updated distance of an adjacency vertex may fall into the
current bucket, and it can cause cascading re-updates as in Bellman-Ford. To minimize
these re-updates, edges of vertices in the current bucket with weights less than D (also
called light edges) are relaxed first. This forces any re-insertion to the current bucket to
happen earlier, and, thus, decreasing the number of re-updates. This phase is called a

Scalable Single-Source Shortest Path Algorithms 21

light phase, and it can iterate multiple times until there is no more re-insertion, or the
current bucket is empty. After that, all edges of vertices which are previously relaxed in
the light phases with weights greater than D (also called heavy edges) are then relaxed.
This phase is called a heavy phase. It only occurs once at the end of each iteration
since, with edge weights greater than D, the adjacency vertices from updating tentative
distances are guaranteed not to fall into the current bucket. The D-stepping algorithm
can be viewed as a general case of SSSP algorithms with the relaxation approach. The
algorithm with D ¼ 1 is equivalent to Dijkstra’s algorithm, while the algorithm with
D ¼ 1 yields Bellman-Ford.

3 Novel Parallel SSSP Implementations

3.1 General Parallel SSSP for Distributed Memory Systems

We consider SSSP implementations in [19] which are based on a bulk-synchronous D-
stepping algorithm for distributed memory sysyem. The algorithm composes of three
main steps, a local discovery, an all-to-all exchange and a local update for both light
and heavy phases. In the local discovery step, each processor looks up to all adja-
cencies v of its local vertices u in the current bucket, and generates corresponding
tentative distances dtv ¼ d uð Þþw u; vð Þ of those adjacencies. Note that, in the light
phase, only adjacencies with light edges are considered, while, in the heavy phase, only
adjacencies with heavy edges are processed. For each u; vð Þ, a pair v; dtvð Þ is generated,
and stored in a queue called QRequest. The all-to-all exchange step distributes these
pairs in QRequest to make them local to processors so that each processor can use these
information to update a local tentative distance list in the local update step. An edge
relaxation is part of the local update step that invokes updating vertex tentative dis-
tances, and adding/removing vertices to/from buckets based on their current distances.

3.2 Parallel SSSP with 2D Graph Layout

A two dimensional (2D) graph layout had been previously studied in [4] for breadth-
first search. This approach partitions an adjacency matrix of graph vertices into grid
blocks instead of a traditional row partition or as one dimensional (1D) graph layout.
The 2D layout reduces communication space and also provides better edge distribu-
tions of a distributed graph than the 1D layout as any dense row of the high degree
vertices can now be distributed across multiple processors instead of only one pro-
cessor as in the 1D layout.

To apply the 2D graph layout for the D-stepping algorithm, each of the three steps
needs to be modified according to the changes in the vertex and edge distributions.
While the vertices are distributed in similar manner as in the 1D graph layout, edges are
now distributed differently. Previously in the 1D layout, all edges of local vertices are
assigned to one processor. However, with the 2D layout, these edges are now

22 T. Panitanarak

distributed among row processors that have the same row number. Figure 1(a) illus-
trates the partitioning of vertices and edges for the 2D layout.

In the local discovery step, there is no need to modify the actual routine. The only
work that needs to be done is merging all current buckets along the processor rows by
using a row-wise all-gather communication. The reason is that the edge information
(such as edge weights and adjacencies) of local vertices owned by each processor is
now distributed among the processor rows. Thus, each processor with the same row
number is required to know all the active vertices in the current bucket of their neighbor
processor rows before the discovery step can take place. After the current buckets are
merged (see Fig. 1(b)), each processor can now simultaneously work on generating
pairs v; dtvð Þ of its local active vertices (see Fig. 1(c)).

(a) Local active vertices (b) Row-wise all-gather (c) Local discovery

(d) Column-wise all-to-all (e) Transpose (f) Local update

Fig. 1. The main SSSP operations with the 2D layout. (a) Each color bar shows the vertex
information for active vertices owned to each processor Pi;j. (b) The row-wise all-gather
communication gathers all information of actives vertices among the same processor rows to all
processors in the same row. (c) Each processor uses the information to update the vertex
adjacencies. (d,e) The column-wise all-to-all and transpose communications group the
information of the updated vertices owned by the same processors and send this information
to the owner processors. (f) Each processor uses the received information to update its local
vertex information (Color figure online).

Scalable Single-Source Shortest Path Algorithms 23

In the all-to-all exchange step, the purpose of this step is to distribute the generated
pairs v; dtvð Þ to the processors that are responsible to maintain the information relating
to vertices v. In our implementation, we use two sub-communications, a column-wise
all-to-all exchange and a send-receive transposition. The column-wise all-to-all com-
munication puts all information pairs of vertices owned by the same owner onto one
processor. Figure 1(d) shows a result of this all-to-all exchange. After that, each pro-
cessor sends and receives these pair lists to the actual owner processors. The latter
communication can be viewed as a matrix transposition as shown in Fig. 1(e).

In the local update step, there is no change within the step itself, but only in the data
structure of the buckets. Instead of only storing vertices in buckets, the algorithm needs
to store both vertices and their current tentative distances so that each processor knows
the distance information without initiating any other communication. Figure 1(f)
illustrates the local update step. Since all pairs d; dtvð Þ are local, each processor can
update the tentative distances of their local vertices simultaneously.

The complete SSSP algorithm with the 2D graph layout is shown in Algorithm 1.
The algorithm initialization shows in the first 10 lines. The algorithm checks for the
termination in line 11. The light and heavy phases are shown in lines 12–25 and lines
26-35, respectively. The termination checking for the light phases of a current bucket is
in line 12. The local discovery, all-to-all exchange and local update steps of each light
phase are shown in lines 13–19, 20 and 22, respectively. Similarly for each heavy
phase, its local discovery, all-to-all exchange and local update steps are shown in lines
26–31, 32 and 34, respectively. Algorithm 2 shows the relaxation procedure used in
Algorithm 1.

3.3 Other Optimizations

To further improve the algorithm performance, we apply other three optimizations, a
cache-like optimization, a heuristic Δ increment and a direction optimization. The
detailed explanation is as follows.

Cache-like optimization: We maintain a tentative distance list of every unique
adjacency of the local vertices as a local cache. This list holds the recent values of
tentative distances of all adjacencies of local vertices. Every time a new tentative
distance is generated (during the discovery step), this newly generated distance is
compared to the local copy in the list. If the new distance is shorter, it will be processed
in the regular manner by adding the generated pair to the QRequest, and the local copy
in the list is updated to this value. However, if the new distance is longer, it will be
discarded since the remote processors will eventually discard this request during the
relaxation anyway. Thus, with a small trade-off of additional data structures and
computations, this approach can significantly avoid unnecessary work that involves
both communication and computation in the later steps.

24 T. Panitanarak

Scalable Single-Source Shortest Path Algorithms 25

Heuristic Δ increment: The idea of this optimization is from the observation of the D-
stepping algorithm that the algorithm provides a good performance in early iterations
when D is small since it can avoid most of the redundant work in the light phases.
Meanwhile, with a large D, the algorithm provides a good performance in later itera-
tions since most of vertices are settled so that the portion of the redundant work is low.
Thus, the benefit of the algorithm concurrency outweighs the redundancy. The algo-
rithm with D that can be adjusted when needed can provide better performance. From
this observation, instead of using a fix D value, we implement algorithms that starts
with a small D until some thresholds are met, then, the D is increased (usually to 1) to
speed up the later iterations.

Direction-optimization: This optimization is a heuristic approach first introduced in
[2] for breadth-first search (BFS). Conventional BFS usually proceeds in an top-down
approach such that, in every iteration, the algorithm checks all adjacencies of each
vertex in a frontier whether they are not yet visited, adds them to the frontier, and then
marks them as visited. The algorithm terminates whenever there is no vertex in the
frontier. We can see that the algorithm performance is highly based on processing
vertices in this frontier. The more vertices in the frontier, the more work that needs to
be done. From this observation, the bottom-up approach can come to play for effi-
ciently processing of the frontier. The idea is that instead of proceeding BFS only using
the top-down approach, it can be done in a reverse direction if the current frontier has
more work than the work using the bottom-up approach. With a heuristic determina-
tion, the algorithm can alternately switch between top-down and bottom-up approaches
to achieve an optimal performance. Since the discovery step in SSSP is done in similar
manner as BFS, Chakaravarthy et al. [5] adapts a similar technique called a push-pull
heuristic to their SSSP algorithms. The algorithms proceed with a push (similar to the
top-down approach) by default during heavy phases. If a forward communication
volume of the current bucket is greater than a request communication volume of
aggregating of later buckets, the algorithms switch to a pull. This push-pull heuristic
considerably improves an overall performance of the algorithm. The main reason of the
improvement is because of the lower of the communication volume, thus, the conse-
quent computation also decreases.

26 T. Panitanarak

3.4 Summary of Implementations

In summary, we implement four SSSP algorithms:

1. SP1a: The SSSP algorithm based on Δ-stepping with the cache-like optimization
2. SP1b: The SP1a algorithm with the direction optimization
3. SP2a: The SP1a algorithm with the 2D graph layout
4. SP2b: The SP2a algorithm with the Δ increment heuristic

The main differences of each algorithm are the level of optimizations that addi-
tionally increases from SP#a to SP#b that is the SP#b algorithms are the SP#a algo-
rithms with more optimizations, and from SP1x to SP2x that is the SP1x algorithms use
the 1D layout while the SP2x algorithms use the 2D layout.

4 Performance Results and Analysis

4.1 Experimental Setup

Our experiments are run on a virtual cluster using StarCluster [24] with the MPICH2
complier version 1.4.1 on top of Amazon Web Service (AWS) Elastic Compute Cloud
(EC2) [1]. We use 32 instances of AWS EC2 m3.2xlarge. Each instance consists of 8
cores of high frequency Intel Xeon E5-2670 v2 (Ivy Bridge) processors with 30 GB of
memory. The graphs that we use in our experiments are listed in Table 1. The graph500
is a synthetic graph generated from the Graph500 reference implementation [13]. The
graph generator is based on the RMAT random graph model with the parameters
similar to those use in the default Graph500 benchmark. In this experiment, we use the
graph scale of 27 with edge factor of 16 that is the graphs are generated with 227

vertices with an average of 16 degrees for each vertex. The other six graphs are real-
world graphs that are obtained from Stanford Large Network Dataset Collection
(SNAP) [22], and the University of Florida Sparse Matrix Collection [23]. The edge
weights of all graphs are randomly, uniformly generated between 1 and 512.

We fix the value of D to 32 for all algorithms. Please note that this value might not
be the optimal value in all test cases, but, in our initial experiments on the systems, it
gives good performance in most cases. To get the optimal performance in all cases is

Table 1. The list of graphs used in the experiments

Graph Number of vertices
(millions)

Number of edges
(billions)

Reference

graph500 134 2.1 [13]
it-2004 41 1.1 [23]
sk-2005 50 1.9 [23]
friendster 65 1.8 [22]
orkut 3 0.12 [22]
livejournal 4 0.07 [22]

Scalable Single-Source Shortest Path Algorithms 27

not practical since D needs to be changed accordingly to the systems such as CPU,
network bandwidth and latency, and numbers of graph partitions. For more discussion
about the D value, please see [19].

4.2 Algorithm and Communication Cost Analysis

For SSSP algorithms with the 2D layout, when the number of columns increases, the
all-to-all communication overhead also decreases, and the edge distribution is more
balanced. Consider processing a graph with n vertices and m edges on p ¼ r � c
processors. The all-to-all and all-gather communication spaces are usually proportional
to r and c, respectively. In other words, the maximum number of messages for each all-
to-all communication is proportional to m=c while the maximum number of messages
for each all-gather communication is proportional to n=r. In each communication
phase, processor Pi;j requires to interact with processors Pk;j for the all-to-all com-
munication where 0� k\r, and with processors Pi;l for the all-gather communication

(a) The number of requested
vertices: graph500

(b) The number of requested
vertices: it-2004

(d) The number of sent
vertices: graph500

(e) The number of sent
vertices: it-2004

Fig. 2. The numbers of (a,b) requested and (c,d) sent vertices during the highest relaxation
phase of the SP2a algorithm on graph500 and it-2004 using different combinations of processor
rows and columns on 256 MPI tasks.

28 T. Panitanarak

where 0� l\c. For instance, by setting r ¼ 1 and c ¼ p, the algorithms do not need
any all-to-all communication, but the all-gather communication now requires all pro-
cessors to participate.

During the SSSP process on scale-free graphs, there are usually a few phases of the
algorithms that consume most of the computation and communication times due to the
present of few vertices with high degrees. The Fig. 2(a,b) and (c,d) show the average,
minimum and maximum vertices to be requested and sent, respectively, for relaxations
during the phase that consumes the most time of the algorithms SP1a, SP1b and SP2a
on graph500 and it-2004 with 256 MPI tasks. Note that we use the abbreviation SP2a-
R � C for the SP2a algorithm with R and C processor rows and columns, respectively.
For example, SP2a-64 � 4 is the SP2a algorithm with 64 row and 4 column processors
(which are 256 processors in total). The improvement of load balancing of the
requested vertices for relaxations can easily be seen in Fig. 2(a,b) as the minimum and
maximum numbers of the vertices decrease on both graphs from SP1a to SP1b and
SP1a to SP2a. The improvement from SP1a to SP1b is significant as the optimization is
specifically implemented for reducing the computation and communication overheads
during the high-requested phases. On the other hand, SP2a still processes on the same
number of vertices, but with lower communication space and better load balancing. Not
only the load balancing of the communication improves, but the numbers of (average)
messages among inter-processors also reduce as we can see in Fig. 2(c,d). However,
there are some limitations of both SP1b and SP2a. For SP1b, the push-pull heuristic

(a) graph500 (b) it-2004 (c) sk-2005

(d) friendster (e) orkut (f) livejournal

Fig. 3. The performance (in TEPS) of SSSP algorithms up to 256 MPI tasks

Scalable Single-Source Shortest Path Algorithms 29

may not trigger in some phases that the costs of push and pull approaches are slightly
different. In contrast, for SP2a, although increasing numbers of columns improves load
balancing and decreases the all-to-all communication in every phase, it also increases
the all-gather communication proportionally. There is no specific number of columns
that gives the best performance of the algorithms since it depends on various factors
such as the number of processors, the size of the graph and other system specifications.

4.3 Benefits of 2D SSSP Algorithms

Figure 3 shows the algorithm performance in terms of traversed edges per second
(TEPS) on Amazon EC2 up to 256 MPI tasks. Although SP1b can significantly reduce
computation and communication during the high-requested phases, its overall perfor-
mance is similar to SP2a. The SP2b algorithm gives the best performance in all cases,
and it also gives the best scaling when the number of processors increases. The peak
performance of SP2b-32 � 8 is approximately 0.45 GTEPS that can be observed on
graph500 with 256 MPI tasks, which is approximately 2x faster than the performance
of SP1a on the same setup. The SP2b algorithm also shows good scaling on large
graphs such as graph500, it-2004, sk-2005 and friendster.

(a) graph500 (b) it-2004 (c) sk-2005

(d) friendster (e) orkut (f) livejournal

Fig. 4. The communication and computation times of SSSP algorithms on 256 MPI tasks

30 T. Panitanarak

4.4 Communication Cost Analysis

Figure 4 shows the breakdown execution time of total computation and communication
of each algorithm. More than half of the time for all algorithms is spent on commu-
nication as the networks of Amazon EC2 is not optimized for high performance
computation. The improvement of SP1b over SP1a is from the reduction of compu-
tation overhead as the number of processing vertices in some phases are reduced. On
the other hand, SP2a provides lower communication overhead over SP1a as the
communication space is decreased from the use of the 2D layout. The SP2b algorithm
further improves the overall performance by introducing more concurrency in the later
phases resulting in lower both communication and communication overhead during the
SSSP runs. Figure 5 shows the breakdown communication time of all algorithms. We
can see that when the number of processor rows increases, it decreases the all-to-all
communication, and slightly increases the all-gather and transpose communications. In
all cases, SP2b shows the least communication overhead with up to 10x faster for the
all-to-all communication and up to 5x faster for the total communication.

(a) graph500 (b) it-2004 (c) sk-2005

(d) friendster (e) orkut (f) livejournal

Fig. 5. Communication breakdown of SSSP algorithms on 256 MPI tasks

Scalable Single-Source Shortest Path Algorithms 31

5 Conclusion and Future Work

We propose scalable SSSP algorithms based on the D-stepping algorithm. Our algo-
rithms reduce both communication and computation overhead from the utilization of
the 2D graph layout, the cache-like optimization and the D increment heuristic. The 2D
layout improves the algorithm performance by decreasing the communication space,
thus, reducing overall communication overhead. Furthermore, the layout also improves
the distributed graph load balancing, especially, on scale-free graphs. The cached-like
optimization avoid unnecessary workloads for both communication and communica-
tion by filtering out all update requests that are known to be discarded. Finally, by
increasing the D values during the algorithms progress, we can improve the concur-
rency of the algorithms in the later iterations.

Currently, our algorithm is based on the bulk-synchronous processing for dis-
tributed memory systems. We plan to extend our algorithms to also utilize the shared
memory parallel processing that can further reduce the inter-processing communication
of the algorithms.

Acknowledgement. The author would like to thank Dr. Kamesh Madduri, an associate pro-
fessor at Pennsylvania State University, USA, for the inspiration and kind support.

References

1. Amazon Web Services: Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/.
Accessed 15 July 2018

2. Beamer, S., Asanovi´c, K., Patterson, D.: Direction-optimizing breadth-first search. Sci.
Prog. 21(3–4), 137–148 (2013)

3. Bellman, R.: On a routing problem. Q. Appl. Math. 16, 87–90 (1958)
4. Buluc, A., Madduri, K.: Parallel breadth-first search on distributed memory systems. In:

Proceedings of High Performance Computing, Networking, Storage and Analysis
(SC) (2011)

5. Chakaravarthy, V.T., Checconi, F., Petrini, F., Sabharwal, Y.: Scalable single source shortest
path algorithms for massively parallel systems. In: Proceedings of IEEE 28th International
Parallel and Distributed Processing Symposium, pp. 889–901 May 2014

6. Chen, R., Ding, X., Wang, P., Chen, H., Zang, B., Guan, H.: Computation and
communication efficient graph processing with distributed immutable view. In: Proceedings
of the 23rd International Symposium on High-Performance Parallel and Distributed
Computing, pp. 215–226. ACM (2014)

7. Davidson, A.A., Baxter, S., Garland, M., Owens, J.D.: Work-efficient parallel GPU methods
for single-source shortest paths. In: International Parallel and Distributed Processing
Symposium, vol. 28 (2014)

8. Dayarathna, M., Houngkaew, C., Suzumura, T.: Introducing ScaleGraph: an X10 library for
billion scale graph analytics. In: Proceedings of the 2012 ACM SIGPLAN X10 Workshop,
p. 6. ACM (2012)

9. Dijkstra, E.W.: A note on two problems in connection with graphs. Numer. Math. 1(1), 269–
271 (1959)

10. Ford, L.A.: Network flow theory. Technical. report P-923, The Rand Corporation (1956)
11. Galois. http://iss.ices.utexas.edu/?p=projects/galois. Accessed 15 July 2018

32 T. Panitanarak

http://aws.amazon.com/ec2/
http://iss.ices.utexas.edu/?p=projects/galois

12. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: PowerGraph: distributed graph-
parallel computation on natural graphs. In: OSDI, vol. 12, p. 2 (2012)

13. The Graph 500. http://www.graph500.org. Accessed 15 July 2018
14. Gregor, D., Lumsdaine, A.: The Parallel BGL: a generic library for distributed graph

computations. Parallel Object-Oriented Sci. Comput. (POOSC) 2, 1–18 (2005)
15. Khayyat, Z., Awara, K., Alonazi, A., Jamjoom, H., Williams, D., Kalnis, P.: Mizan: a system

for dynamic load balancing in large-scale graph processing. In: Proceedings of the 8th ACM
European Conference on Computer Systems, pp. 169–182. ACM (2013)

16. Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.: Distributed
GraphLab: a framework for machine learning and data mining in the cloud. Proc. VLDB
Endow. 5(8), 716–727 (2012)

17. Madduri, K., Bader, D.A., Berry, J.W., Crobak, J.R.: An experimental study of a parallel
shortest path algorithm for solving large-scale graph instances, Chap. 2, pp. 23–35 (2007)

18. Meyer, U., Sanders, P.: Δ-stepping: a parallelizable shortest path algorithm. J. Algorithms 49
(1), 114–152 (2003)

19. Panitanarak, T., Madduri, K.: Performance analysis of single-source shortest path algorithms
on distributed-memory systems. In: SIAM Workshop on Combinatorial Scientific Comput-
ing (CSC), p. 60. Citeseer (2014)

20. Prabhakaran, V., Wu, M., Weng, X., McSherry, F., Zhou, L., Haridasan, M.: Managing large
graphs on multi-cores with graph awareness. In: Proceedings of USENIX Annual Technical
Conference (ATC) (2012)

21. Shun, J., Blelloch, G.E.: Ligra: a lightweight graph processing framework for shared
memory. In: Proceedings of the 18th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 2013 pp. 135–146 (2013)

22. SNAP: Stanford Network Analysis Project. https://snap.stanford.edu/data/. Accessed 15 July
2018

23. The University of Florida Sparse Matrix Collection. https://www.cise.ufl.edu/research/
sparse/matrices/. Accessed 15 July 2018

24. StarCluster. http://star.mit.edu/cluster/. Accessed 15 July 2018
25. Wang, Y., Davidson, A., Pan, Y., Wu, Y., Riffel, A. Owens, J.D.: Gunrock: a high-

performance graph processing library on the GPU. In: Proceedings of the 20th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pp. 265–266. PPoPP 2015 (2015)

26. White, T.: Hadoop: The Definitive Guide. O’Reilly Media Inc, Sebastopol (2012)
27. Xin, R.S., Gonzalez, J.E., Franklin, M.J. Stoica, I.: Graphx: A resilient distributed graph

system on spark. In: First International Workshop on Graph Data Management Experiences
and Systems, p. 2. ACM (2013)

28. Zhong, J., He, B.: Medusa: simplified graph processing on GPUs. Parallel Distrib. Syst.
IEEE Trans. 25(6), 1543–1552 (2014)

Scalable Single-Source Shortest Path Algorithms 33

http://www.graph500.org
https://snap.stanford.edu/data/
https://www.cise.ufl.edu/research/sparse/matrices/
https://www.cise.ufl.edu/research/sparse/matrices/
http://star.mit.edu/cluster/

	Scalable Single-Source Shortest Path Algorithms on Distributed Memory Systems
	Abstract
	1 Introduction
	2 Single-Source Shortest Path Algorithms
	3 Novel Parallel SSSP Implementations
	3.1 General Parallel SSSP for Distributed Memory Systems
	3.2 Parallel SSSP with 2D Graph Layout
	3.3 Other Optimizations
	3.4 Summary of Implementations

	4 Performance Results and Analysis
	4.1 Experimental Setup
	4.2 Algorithm and Communication Cost Analysis
	4.3 Benefits of 2D SSSP Algorithms
	4.4 Communication Cost Analysis

	5 Conclusion and Future Work
	Acknowledgement
	References

