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Abstract. In this study, an improved CVaR-based Portfolio Optimization
Method is presented. The method was used to test the performance of a
diversified bond portfolio in providing low expected loss and optimal CVaR.
A hypothetical diversified bond portfolio, which is a combination of Islamic
bond or Sukuk and conventional bond, was constructed using bonds issued by
four banking institutions. The performance of the improved method is deter-
mined by comparing the generated returns of the method against the existing
CVaR-based Portfolio Optimization Method. The simulation of the optimization
process of both methods was carried out by using the Geometric Brownian
Motion-based Monte Carlo Simulation method. The results of the improved
CVaR portfolio optimization method show that by restricting the upper and
lower bounds with certain floor and ceiling bond weights using volatility
weighting schemes, the expected loss can be reduced and an optimal CVaR can
be achieved. Thus, this study shows that the improved CVaR-based Portfolio
Optimization Method is able to provide a better optimization of a diversified
bond portfolio in terms of reducing the expected loss, and hence maximizes the
returns.
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1 Introduction

Capital markets are markets where securities such as equities and bonds are issued and
traded in raising medium to long-terms funds [1]. Securities are important components
in a financial system, which are issued by public or private companies and entities
including governments. Islamic capital markets carry the same definition as the con-
ventional capital markets, except that all transaction activities are Shariah compliant.

© Springer Nature Singapore Pte Ltd. 2019
B. W. Yap et al. (Eds.): SCDS 2018, CCIS 937, pp. 149-160, 2019.
https://doi.org/10.1007/978-981-13-3441-2_12


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3441-2_12&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3441-2_12&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3441-2_12&amp;domain=pdf
https://doi.org/10.1007/978-981-13-3441-2_12

150 N. I. Mat Rifin et al.

Bond is a type of debt investment, which is basically a transaction of loan that
involves a lender (investor) and a borrower (issuer). There are two types of bonds
which are conventional bond and Islamic bond or Sukuk. In the capital markets the
Sukuk has been established as an alternative financial instrument to the conventional
bond. The Sukuk differs from the conventional bond in the sense that Sukuk must
comply with the Shariah principles, while the conventional bond involves debt upon
sale which is prohibited in Islam.

From the bond issuance perspective, the issuer will either issue a conventional bond
or Sukuk to the investor in order to finance their project(s). Based on the agreement that
has been agreed upon by both parties, the issuer will make regular interest payments to
the investor at a specified rate on the amount that have been borrowed before or until a
specified date. As with any investment, both conventional bonds and Sukuk carry risks
such as market and credit risks. A known technique to manage risk is diversification.
Diversification is a risk management technique that is designed to reduce the risk level
by combining a variety of investment instruments which are unlikely to move in the
same direction within a portfolio [2]. To move in different directions here means that
the financial instruments involved in a diversified portfolio are negatively correlated
and have different price behaviours between them. Hence, investing in a diversified
portfolio affords the possibility of reducing the risks as compared to investing in an
undiversified portfolio.

Value-at-Risk (VaR) is an established method for measuring financial risk. How-
ever, VaR has undesirable mathematical characteristics such as lack of sub-additivity
and convexity [3]. The lack of sub-additivity means that the measurement of a portfolio
VaR might be greater than the sum of its assets [4]. While, convexity is the charac-
teristics of a set of points in which, for any two points in the set, the points on the curve
joining the two points are also in the set [S]. [6, 7] have shown that VaR can exhibit
multiple local extrema, and hence does not behave well as a function of portfolio
positions in determining an optimal mix of positions. Due to its disadvantages, VaR is
considered a non-coherent risk measure.

As an alternative, [3] proved that CVaR has better properties than VaR since it
fulfils all the properties (axioms) of a coherent risk measure and it is convex [§8]. By
using the CVaR approach, investors can estimate and examine the probability of the
average losses when investing in certain transactions [9]. Although it has yet to be a
standard in the finance industry, CVaR appears to play a major role in the insurance
industry. CVaR can be optimized using linear programming (LP) and non-smooth
optimization algorithm [4], due to its advantages over VaR.

The intention of this study was to improve the CVaR-based portfolio optimization
method presented in [4]. In this paper, the improved CVaR portfolio optimization
method is introduced in Sect. 2. The method finds the optimal allocation (weight) of
various assets or financial instruments in a portfolio when the expected loss is mini-
mized, thus maximizing the expected returns. The results of the implementation of the
existing CVaR-based method in [4] and the improved CVaR-based method of this
study are presented and discussed in Sect. 3 and concluded in Sect. 4.
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2 Conditional Value-at-Risk (CVaR) - Based Portfolio
Optimization Method for Diversified Bond Portfolio

Diversification has been established as an effective approach in reducing investment
risk [2]. Portfolio optimization is considered a useful solution in investment diversi-
fication decision making where the investors will be able to allocate their funds in
many assets (portfolios) with minimum loss at a certain risk level. Hence, the CVaR-
based Portfolio Optimization Method has been developed in [4] to find the optimum
portfolio allocation with the lowest loss at a certain risk level.

2.1 CVaR-Based Portfolio Optimization Method

In this study, the portfolio optimization problem using the CVaR-based Portfolio
Optimization Method in [4] is solved by applying the approach presented in [2], which
uses linear programming. The optimization problem is described as follows:

min — w'y

subject to

wTrj+(p+sj20, j=1,...,J

where w represents the weight, y is the expected outcome of r, r; is the vector repre-
senting returns, @ is the value-at-risk (VaR), d is the conditional value-at-risk (CVaR)
limit, f is the level of confidence, J is the number of simulations and s is the auxiliary
variable. The computation for the optimization of (1) to find the portfolio allocation
when loss is minimized (or return is maximized) within a certain CVaR (risk) limit is
implemented using the MATLAB fmincon function. The fmincon function is a
general constraint optimization routine that finds the minimum of a constrained mul-
tivariable function and has the form

[w, fvall = fmincon (objfun, wy, A, b, Aeq, beq, LB, UB, [], options),

where the return value fval is the expected return under the corresponding constraints.
To use the fmincon function, several parameters of the linear programming
formulation of (1) need to be set up which are described as follows:
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i. Objective Function
The aim of the formulation is to minimize the loss —w’y in order to maximize the
expected returns.
ii. Decision variables
The decision variables of this formulation are wy, ws, ..., wy Which represent the
weights for N assets of the optimal portfolio.
iii. Constraints
(a) Inequality Constraints
The linear inequality of this formulation takes the form of Aw < b, where w
is the weight vector. Matrix A represents the constraint coefficient which
consists of the asset weights (wy,wa,...,wy), VaR (@) and the auxiliary
variables (s1 K T sj) as expressed in (1). Matrix b describes the constraints
level. Following (1), matrix A and b can be expressed as follows:

wi w2 WN ¢ S1 §2 Sj
1 _1 ... 1
0 0 0 1 Jx(1=B)  Jx(1-P) Jx(1-B)
—ry  —rp .- —rn -1 -1 0 0
A=y = o -1 0 -1 0
—rj —rp o =y —1 0 0 -1
)
0
b=| 0
0

J
The first row in matrix A and b represents the condition ¢ + 771 21 5; <38 in (1),
j=
while the remaining rows represent the condition w’r;+ ¢ +5;>0. Since the
objective of the formulation is to minimize the loss, then the returns must be
multiplied by —1. N and J in matrix A represents the number of bonds in a
portfolio and the number of simulations respectively.
(b) Equality Constraints
The equality constraints in this formulation are of the form Aeq * w = beq. The

equality matrices Aeg and beq are used to define

which means that the sum of all the asset weights is equal to 1 or 100%. The
equality matrices can be represented in the following matrix form:
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Aeg=(1 1 -~ 1.0 0 0 - 0)
beq = (1).

iv. Lower and Upper Bounds
The lower and upper bounds in this formulation follow the formulation in [2] and
are not restricted to the condition that any asset in a portfolio can have a maximum
of 100% of the portfolio weight and must be greater than 0. Matrices UB (upper
bound) and LB (lower bound) can be in the form of:

wi w2 Tt WN ¢ st 852 S
UB= (UB; UB, --- UBy inf inf inf --. inf).
LB= (LBy LB, --- LBy 0 O O --- 0).
The constraint is defined as s; >0, where j = 1,...,J and sy, 52,...,5; = 0 in LB.

v. Initial Parameter
The initial parameter for the fmincon needs to be set up first before it is used by
the optimizer. The initial parameter is the vector wyg, consists of the values
w1, Wy, ..., wy that are initialized by %, the initial values of sy, 52, . . ., s;, which are
all zeros and the initial value for ¢, which is the quantile of the equally weighted
portfolio returns, namely VaR,. Given these initial value wy can be described as

Lo L yaRy 00 - 0).

=~

wo = (

Various CVaR limits (3) were used to see the changes in the returns. The opti-
mization computations the weight vector w of the optimal portfolio where
wi, wa, ..., wy are the corresponding weights of N assets. Meanwhile, wy 4 | is the
corresponding VaR and fval is the expected return.

2.2 Improved CVaR-Based Portfolio Optimization Method

Asset allocation of a portfolio is one of the important key strategies in minimizing risk
and maximizing gains. Since the asset allocation in a portfolio is very important [10],
thus, an improvement of the existing CVaR-based Portfolio Optimization Method is
proposed in this paper. The improved CVaR-based Portfolio Optimization Method
focused on determining the upper and lower limits of the bond weight in a diversified
portfolio. In estimating the upper and lower limits of each bond weight, the volatility
weighting schemes have been used in this study due to the close relationship between
volatility and risk. Bond portfolio weight can be obtained by applying the formula in
[11] as follows:

w; = ki0'~_l (2)

1
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where
w; = weight of bond i,
o; = volatility of returns of bond i,
k; = variable that controls the amount of leverage of the volatility weighting such
that
b= ()
2o

i=1

in a diversified portfolio for i = 1,2, ..., n. The weight of each bond in the diversified
portfolio in (2) is used as an indication in setting the upper and lower limits by setting
the respective floor and ceiling values as follows:

[wi] <w; <[w;]. (4)

The floor and ceiling values of w; are rounded to the nearest tenth due the values of
w; being in percentage form, which have been evaluated using Microsoft Excel. Thus,
the improved CVaR-based Portfolio Optimization Method can be presented as follows:

min — w’y
subject to

weW,peR (5)

wTrj+(p+sj20, j=1,...,J

lwi] <w; < [wi

2.3 Simulation of Existing and Improved CVaR-Based Portfolio
Optimization Methods

The simulation of the optimization process of both the existing CVaR-based and the
improved CVaR-based Portfolio Optimization Methods in generating the returns were
carried out using the Monte Carlo Simulation method. The Geometric Brownian
Motion (GBM), or the stochastic pricing model of bonds, was used in the simulation to
generate future price of bond. GBM, which is also known as Exponential Brownian
Motion, is a continuous-time stochastic process that follows the Wiener Process, and is
defined as the logarithm of the random varying quantity.
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The diversified or multiple asset bond portfolios of this study comprises of bonds
issued by four banking institutions namely the Export-Import Bank of Malaysia Berhad
(EXIM), Commerce International Merchant Bankers (CIMB) Malaysia, European
Investment bank (EIB) and Emirates National Bank of Dubai (Emirates NBD). EXIM
and EIB issued the Sukuk while CIMB and Emirates NBD issued the conventional
bonds. Each bond price evolves according to the Brownian motions that are described
in (6):

S(At)y = S(0), exp K,uN - ? At + (GN\/E)SN]

fori=1,2,...,N, where
S(At), = Simulated bond price for bond i.

S(0); = Initial bond price for bond i.

Wi = Drift rate of returns over a holding period for bond i.

o = Volatility of returns over a holding period for bond i.

At = Time step for a week.

The random numbers ¢, &, . . ., &y are correlated, whereby their correlation patterns

depend on the correlation patterns of bonds returns [12]. By using Cholesky factor-
ization of variance-covariance matrix, the correlated asset paths are generated from the
given correlation matrix. The Cholesky factorization can be described as follows:

c = U'u. (7)

Correlated random numbers are generated with the help of the upper triangular
matrix (with positive diagonal elements) U as follows:

Rr,c - Wr,c * Uc,c~ (8)

Before (8) can be applied, the uncorrelated random numbers W need to be gen-
erated first, followed by the construction of bond prices paths using (6) for all bonds.
The Cholesky factorization procedure is available in many statistical and computational
software packages such as ScaLAPACK [13] and MATLAB. In this study, Cholesky
factorization was evaluated by repeating the procedure 3000, 5000, 10000, 20000 times
to obtain a distribution of the next period’s portfolio price. The simulation for the
correlated bond prices based on the existing CVaR-based and the improved CVaR-
based Profolio Optimization Methods were generated in MATLAB using a source code
modified from [2] (Refer Appendix A).
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The results of the simulated bond prices were presented in the form of T-by-N-by-J
dimensional matrix where each row represent a holding period (f1,%,...,7r), each
column represents a different bond (a;,ay, . ..,ay) and each slice in the third dimen-
sion represents the number of simulations (Si, S, . ..,Sy). The returns from the sim-
ulated prices were calculated using the log-normal formula which is expressed as
follows:

P;
R =1 , 9
e i1 ®)
where
R; = Bond returns at week i.
P; = Bond price at week i.

P;_; = Bond price at week i — 1.

3 Results

The performance of the existing and the improved CVaR-based Portfolio Optimization
Methods in optimizing the diversified bond portfolio of this study were compared in
order to determine which of the two methods provides a better optimization. The
existing and the improved CVaR-based Portfolio Optimization Methods are summa-
rized in Table 1.

Table 1. CVaR portfolio optimization method and the improved CVaR portfolio optimization
method

Existing CVaR portfolio optimization by
Rockafellar and Uryasev [4]

Improved CVaR portfolio
optimization

Method

min —w’y
subject to
weW,peR
J
¢+ m;sjﬁﬁ
iz

5;>0, j=1,..,J
wlr+¢@+s; >0, j=1,..,J

min —w'y
subject to
weW, peR

J
o+ 1(117/;) _lej <?
=

57 >0, j=1,...,J
wlri+@+s;>0, j=1,...,J
[wi ] <w; < [w;]

Table 2 shows that the results of the optimal CVaR and the expected loss generated

using the improved method, which has restricted condition for the upper and lower
bounds, are lower than that of the existing method in [4], which has no restricted
conditions. The correct choice of maximum and minimum bond weight when per-
forming the optimization process can help reduce the portfolio’s VaR and CVaR along
with the expected loss.
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As demonstrated by the results in Table 3, the inclusion of the upper and lower
bounds for each bond in the diversified portfolio shows that each bond plays a sig-
nificant role in reducing the expected loss resulting in a more balanced portfolio as
compared to the optimization using the existing method. However, the Sukuk appears
to provide more benefits to investors and issuers in producing a balanced diversified
portfolio due to the reduced CVaR. The results obtained from the existing CVaR-based
Portfolio Optimization Method show unbalanced bond weight allocations of the
diversified portfolio leading to a bias towards the positive drift rate.

Table 2. Results generated by existing CVaR portfolio optimization method and the improved
CVaR portfolio optimization method

Existing CVaR portfolio Improved CVaR portfolio
optimization method optimization method
Results | Risk limit -2.50

Confidence 99.9

level

Expected ~0.0264 ~0.0194

loss

VaR -0.0125 -0.0125

portfolio

CVaR -0.0148 -0.013

portfolio

Table 3. Assets weights generated by existing CVaR portfolio optimization method and the
improved CVaR portfolio optimization method in the diversified portfolio

Generated assets weights
Existing CVaR portfolio Improved CVaR portfolio
optimization method optimization method
Results | EXIM 0.013 19.49

Sukuk (%)

EIB Sukuk 0.1777 29.96

(%)

CIMB (%) 99.789 39.97

Emirates 0.0193 10.58

NBD (%)

4 Conclusion

In conclusion, this study has successfully improved the existing CVaR-based method
for optimizing a diversified portfolio presented in [4] by using the approach presented
in [2]. The need to improve the existing method is due to the possibility of the method
resulting in an unbalanced bond weight allocation for a diversified portfolio. The
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improved method proposed in this study appears to overcome this problem. The
method is found to be more helpful in allocating the optimal weight of bonds in a
diversified portfolio in order to minimize the loss for a certain risk level. The improved
CVaR-based Optimization Method minimizes the loss by introducing new constraint
level on the upper and lower limit of the bond weight. The constraint is based on the
volatility weighting scheme for the optimization formulation since there is a strong
relationship between volatility and risk. Given the results, it can be concluded that the
improved CVaR-based Optimization Method is able to provide positive results in terms
of lower expected loss and optimal CVaR.
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APPENDIX A

Source Code
A.1: Simulated Price and Return to Run A.2

function([S,r] = Simulated(S0,drift,vol,corr,steps,nsims)

nAssets = length(S0);
dt=1/52;%time steps for one week%
$to stimulate correlated asset path (bond prices) based on MCS%
R = chol (corr);%cholesky factorization%
S = nan(steps+l,nsims,nAssets) ;
for irand = l:nsims
x = randn(steps,size(corr,2));
ep = x*R;
S(:,irand,:) = [ones(l,nAssets);
cumprod (exp (repmat (drift*dt, steps, 1) +tep*diag(vol) *sqrt (dt)))1*
diag(s0);
end

nAssets=size(S,3);

nsims=size (S, 2);

$to generate return from simulated prices$%
r=nan (nsims, nAssets);

for iSim = 1: nAssets

k = squeeze (S(:,:, 1Sim ));
rSim = log(k(end,:)./k(1 ,:));
r(:,1iSim) = rSim;

end

end
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A.2: CVaR Portfolio Optimization

function Optimization CVaR (r,beta,CVaRLimit,UB, LB)
% Sizes
[nsims, nAssets]=size(r);
% Inequality constraints
Al=[zeros (1,nAssets) 1 1/(l-beta)*1/nsims*
ones (1l,nsims)];
A2=-r;
A3=-ones (nsims, 1) ;
Ad=-eye (nsims,nsims) ;
A=[A2 A3 RA4];
A=[Al;A];
b=[-CVaRLimit zeros(l,nsims)];
b=b';
% Equality constraints --> sum of weights has to be
100%
Aeqg = [ones(l,nAssets) zeros(l,nsims+1)];
beq = [1];
% Upper and lower bounds
if UB==1
UB=[repmat (UB,1,nAssets) +Inf*ones(l,nsims+1)];
else
UB=[UB +Inf*ones(l,nsims+1)];
End

if LB==0
LB = [repmat (LB,1,nAssets) zeros(l,nsims+1)];
else
IB = [LB zeros(l,nsims+1)];
end
% Initial weights and initial VaR
wO=[ (1/nAssets) *ones (1, nAssets) ];
VaRO=quantile (r*w0',beta);
w0=[w0 VaR0 zeros(l,nsims)];
% Objective function
objfun = @(w) -mean(r(:,l:nAssets))*w(l: nAssets)';
options = optimoptions (@fmincon, 'Algorithm',
'interior-point');
options = optimoptions (options, 'MaxFunEvals',
100000) ;
% Optimization %
[w,fval,exitflag, output]=£fmincon (objfun,w0,A,b, Aeq,
beq,LB,UB, [],0options) ;
history = [];

wopt=w (l:nAssets)'; % Optimal weight$%
Asset_Weight Optimal=wopt*100
ExpectedReturn=-fval % Expected Return %
ropt=r*wopt; % Optimal Return %
VaR_OptPort=—w(nAssets+1)/100 $Optimal VaR%
p=sort (ropt, 'descend') ;
CVaR _OptPort= mean (ropt (ropt<vaR OptPort));
% Optimal CVaR$%

display (CVaR_OptPort);

end
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