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Abstract This chapter reviews the main features of multidimensional indices of
inequality and poverty. For each of these cases, the discussion is divided into two
approaches: a direct approach, where desirable properties are specified and ameasure
of inequality or poverty obtained; and the inclusive measure of well-being approach,
where an index of individual well-being is defined in a first step, and the measure
of inequality or poverty obtained in a second step. The emphasis will be on the
properties that different measures satisfy and on the main justifications put forward
when properties disagree.
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1 Introduction

The traditional focus for the assessment of the well-being or destitution of individu-
als has been on the income distribution. It is indeed true that a person’s income often
determines howmuchof different goods he or she can consume; higher income allows
a person to consume more of some of the goods and/or shift consumption to higher
quality variants. But income as the only attribute of well-being is often inappropriate.
A sub-optimal supply of a public good in a community might not be sufficient for

Thekind consent ofOxfordUniversityPress to reprint this article from its volume ‘OxfordHandbook
of Well-Being and Public Policy’, 2016 is acknowledged with utmost gratitude.

S. R. Chakravarty
Indian Statistical Institute, Kolkata 700108, India
e-mail: satyarchakravarty@gmail.com

M. A. Lugo (B)
World Bank, 1850 I Street NW (I4-405), Washington, DC 20433, United States of America
e-mail: mlugo1@worldbank.org

© Springer Nature Singapore Pte Ltd. 2019
S. R. Chakravarty (ed.), Poverty, Social Exclusion and Stochastic Dominance,
Themes in Economics, https://doi.org/10.1007/978-981-13-3432-0_14

223

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3432-0_14&domain=pdf
mailto:satyarchakravarty@gmail.com
mailto:mlugo1@worldbank.org
https://doi.org/10.1007/978-981-13-3432-0_14


224 S. R. Chakravarty and M. A. Lugo

the residents. For example, many people in developing countries suffer or even die
frommalaria because themalaria prevention program, a local public good, is not well
organized or available at any price. Thus, it may not be possible to trade-off income
for a better position in a non-income attributewhich is non-tradable in amarket. Like-
wise, a healthy porter who just earns hand-to-mouth daily by loading and unloading
of cargos in a dockyard cannot tradeoff his good health for any additional income.
These illustrations indicate that non-income dimensions of well-being contribute sig-
nificantly to quality of life. Examples of such dimensions are literacy, housing, life
expectancy, public goods, social cohesion, human security and so on. This supports
the view that traditional economic indices of well-being should be supplemented
with alternative indicators that capture non-economic or non-material dimensions
of human life. In fact, it is now commonly accepted that human well-being should
be regarded as a multidimensional phenomenon along the lines advocated by Rawls
(1971), Kolm (1977), Townsend (1979), Streeten (1981), Atkinson and Bourguignon
(1982), Sen (1985, 1993), Stewart (1985), Doyal and Gough (1991), Ramsay (1992),
Cummins (1996), Ravallion (1996), Nussbaum (2000) and Thorbecke (2008).1

Consequently, in recent years a very important development in the research on the
measurement ofwell-being of a population is the shift of emphasis froma singlemon-
etary dimension to a multidimensional framework that incorporates non-monetary
aspects as well. One of the most influential formalization of this is the capability
approach—discussed in more detail in Alkire chapter 21, the OUP Handbook. For
nearly two decades now, Sen (1985, 1993) has emphasized the need to move away
from the space of incomes or resources for assessing individuals’ well-being in favor
of a focus on the spaces of functionings and capabilities. Functionings are “parts
of the state of a person in particular the things that he or she manages to do or be
in leading a life” (Sen 1993, 31) (e.g., being healthy, riding a bicycle), whereas the
capability set is the set of potential functionings vectors available to the person. The
key idea behind the capabilities approach is that individuals differ in their ability to
transform resources into well-being or “flourishing”. Even for those goods for which
markets exist, there is no reason to believe that relative market prices between the
particular goods included as proxies for certain functionings is an appropriate approx-
imation for the well-being trade-off between the functionings themselves since the
rate of transformation of goods into functionings may differ and also vary across
individuals.

The recognition that well-being and deprivation are multi-faceted does not neces-
sarily lead to a multidimensional indicator—a single number summarizing society’s
overall condition, the degree of inequality, or the degree of poverty as a function of

1The World Development Report 2000–2001 stressed the view that traditional view of poverty
should be supplemented with low achievements in health and education. The multidimensional
nature of well-being is implicitly recognized by the set of dimensions considered by the European
Union to judge the performance of its member countries (Atkinson et al. 2002). European Union
policy recommends that for measuring failure in material living conditions income-based poverty
should be combined with low employment and material deprivation (Bossert et al. 2013). The
Commission on the Measurement of Economic Performance and Social Progress has also insisted
on looking at well-being of a population from a multidimensional perspective (Stiglitz et al. 2009).
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the pattern of individuals’ achievements along the multiple well-being dimensions.
Some have argued that a portfolio of indicators (Atkinson et al. 2002; Ravallion
2011), whereby each dimension is assessed separately, is to be preferred so that the
efforts are focused on the “best possible distinct measures of the various dimensions
of poverty […] rather than a single ‘multidimensional index’” (Ravallion 2011, 13).
This approach also avoids requiring agreement on the relative importance of each
dimension. On the other hand, the often called ‘dashboard approach’, while looking
at the distribution of each of the components, will overlook the dependency struc-
ture in the joint distribution of these achievements, whichmay represent an important
aspect in the comparison of distributions (Tsui 1999; Pogge 2002; Stiglitz et al. 2009).
Others have favoured an intermediate approach which combines a dimension-wise
assessment with a description of the dependency structure (Atkinson et al. 2010;
Decancq 2014; Ferreira and Lugo 2013). A third and influential approach is through
the use of a multivariate version of stochastic dominance (for instance, Atkinson
and Bourguignon 1982, 1987; Duclos et al. 2006; Muller and Trannoy 2011, 2012).
The multivariate stochastic dominance approach is more readily applied when the
number of dimensions is limited; for a discussion, see Duclos and Tiberti, chapter 23,
the OUP Handbook.

However, multidimensional indicators of social welfare (overall social condition),
inequality and deprivation have been embraced by both among academics and policy
makers. Since 1990 the United Nations Development Program has been using the
HumanDevelopment Index,which combines incomewith life expectancy at birth and
educational achievement, instead of the per capita GDP, to rank countries.2 Recently,
theMultidimensional Poverty IndexdevelopedbyAlkire andSantos (2010)3 has been
incorporated into the UNDP’s core indicators. The OECD launched the Better Life
Index website where the user can build her own index assigning weights to eleven
dimensions of well-being that have been found to be essential in many countries
and cultures (OECD 2011). Countries are also proposing their own measures of
multidimensional poverty.4 The National Council for the Evaluation of Social Policy
(CONEVAL) inMexico adopted amultidimensional index of poverty as the country’s
official poverty measure (CONEVAL 2010). A similar multidimensional measure is
used in Colombia and Bhutan and various other countries (such as El Salvador,
Pakistan, and Malaysia) are considering following these examples.

Undoubtedly, multidimensional indices are appealing in that they provide unique
rankings, and thus are seen as useful tools for governments and analysts to readily
obtain a picture of the distribution of well-being of a society.

2Alkire and Foster (2010) consider an inequality adjusted HDI, which uses an Atkinson-type aggre-
gation for each dimension.
3See Alkire, chapter 21, the OUP Handbook, for a discussion of the Multidimensional Poverty
Index.
4While the interest in developing a multidimensional poverty measure in Latin America and Europe
has gained force in recent years, there is a long tradition of using the counting approach to consider
the existence of multiple deprivations at the same time—for instance, the Basic Needs Approach
widely used in Latin American countries since the 1980s and still relevant nowadays. See Atkinson
(2003).
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Several normative issues are involved in the selection of a multidimensional indi-
cator—of overall social condition, poverty or inequality. Of critical importance, one
must decide on a functional form to aggregate attributes and on the relative weights
to be assigned to each of these attributes.5 The rest of the chapter will concentrate
on alternative functional forms proposed for measuring multidimensional inequality
and poverty.6 But weights also play a crucial role in determining the set of dimen-
sions to be included in the analysis (a dimension with zero weight is excluded) and
the trade-offs between the selected dimensions. See Decancq and Lugo (2013).

The literature suggests a variety of approaches for specifying multidimensional
indices of inequality and poverty. These include the axiomatic approach, which starts
with desirable properties of the indicator and derives a family of indices that satis-
fies these principles; the fuzzy set approach; information theory; and the statistical
approach. Often there may be insufficient information concerning achievements of
different attributes. In a situation of this type where indefiniteness arises from ambi-
guity, the fuzzy set approach is quite sensible (Chakravarty 2006). The statistical
approach relies on multivariate statistical techniques such as principal components
or latent variable models to aggregate dimensions (Klasen 2000; Krishnakumar and
Nadar 2008). In the information theory-based approach aggregation of achievements
relies on the Shannon entropy formula (Maasoumi 1986;Maasoumi and Lugo 2008).
In this chapter, our focus will be on the axiomatic approach. For ease of exposition,
the emphasis will be on the properties that different measures satisfy (rather than on
the set of axioms that characterize them) and on the main justifications put forward
when properties disagree.

The next section introduces the notation and framework that will be used through-
out the chapter. Sections 3 and 4 discuss the properties and provide some examples
of indicators of multidimensional inequality and poverty, respectively. Functional
forms of indicators when dimensions are measured on different scales, e.g. ratio or
ordinal, are discussed. Section 5 concludes.

2 Preliminaries

For simplicity of expositionwe refer to thepopulationunder consideration as a society
and the unit of analysis in the society as a person (see Chiappori, chapter 27, the OUP
Handbook, for inferring individual achievements from household data). Since some

5Other key decisions include: choosing the (set of) indicators for each dimension and the transfor-
mation function where the variables are not measured in the same measurement units and made
comparable. On transformation functions see Jacobs et al. (2004) and Nardo et al. (2005).
6Weymark (2006) discusses indicators of overall social condition defined directly on multidimen-
sional matrices. Of course, a traditional social welfare function (SWF) is also such an indicator.
SWFs are discussed in Weymark, chapter 5, the OUP Handbook, and in this chapter with refer-
ence to the inclusive-measure of well-being approach (IMWB) to multidimensional inequality and
poverty metrics.
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concepts relevant to our exposition, such as inequality, become meaningless for a
single-person society, it is assumed that each society contains at least two persons.

We denote the number of persons in the society by n (with n ∈ N ), where N is
the set of positive integers. Let d be the number of such dimensions, where d ≥ 2 is
an integer. We assume that the number of dimensions d is fixed—and exogenously
given—in order to make meaningful comparisons of well-being across populations.

Let xi j ≥ 0 be the achievement of person i in attribute or dimension j, where
achievement indicates the performance of a person in a given dimension such as
incomeor education. Person i’s achievements in different dimensions are summarized
in a d-dimensional vector xi. = (xi1, xi2, . . . , xid). The row vector xi. is the ith row
of an n × d distribution matrix X. The column vector x. j , which summarizes the
distribution of achievements in dimension j ( j = 1, 2, . . . , d) among n persons, is
the jth column of X and we denote the mean of this vector by μ

(
x. j

)
.

In a four-person society with three dimensions of well-being (say, years of edu-
cation, a six-point health score, and income), an example of a distribution matrix X
is

X =

⎡

⎢⎢
⎣

9 5 1200
6 3 900
8 6 1000
1 4 400

⎤

⎥⎥
⎦.

The entry in the third row and first column of the above matrix show that persons
3’s achievement in dimension 1 (education) is 8. Other entries of the matrix can
be similarly explained. If the set all n × d matrices with non-negative entries is
represented by M, then X ∈ M.

Finally, we define a d-dimensional vector z = (z1, z2, . . . , zd), where each ele-
ment zj is the poverty threshold for dimension d. An individual i is considered
deprived (or poor) in dimension d if her achievement xid < zd . For instance, a
relevant poverty lines vector for the matrix X above could be,

z = [
9 5 500

]
.

In this example, person 1 will be rich in all three dimensions, since her achieve-
ments lie always above or at the respective threshold, whereas person 2 is deprived
in education and health but his income level (900) is above the minimum required to
be considered deprived.

3 Multidimensional Inequality

We divide our discussion into two subsections. Section 3.1 describes the direct
approach, whereby axioms and indicators are specified directly in terms of distri-
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bution matrices. Section 3.2 describes the derivation of multidimensional inequality
metrics from an inclusive measure of well-being (IWMB).

3.1 The Direct Approach

The distribution of well-being has been the concern of social scientists since at least
Smith’s (1776) An Inquiry into the Nature and Causes of the Wealth of Nations.7

In the last 50 years, as household data became more easily available, economists
attempted to define ways of measuring the extent to which the observed distributions
differ from some ideal one. In the beginning of the 1970s, almost simultaneously,
Atkinson (1970), Kolm (1969), and Sen (1973) proposed a normative view to mea-
suring inequality as the loss in social welfare due to the fact that income (seen here as
themeasure of each individual’s well-being) is not distributed equally among all indi-
viduals. This approach is univariate (unidimensional) because d = 1; no dimension
of individual achievement other than income is included.

At this point several important families of univariate inequality indices have been
characterized using Aktinson–Kolm–Sen’s normative approach. Among the relative
inequality indices, these include the Gini coefficient, Atkinson index, Theil 0 and
Theil 1 (belonging to the General Entropy class of measures), and the Dalton Index.
Within the absolute measures, the Kolm index, the variance, and the absolute Gini
coefficient are the most widely used ones. All of these measures have been character-
ized axiomatically, from a set of desirable properties that either the underlying social
welfare function or the inequality index itself is required to satisfy (Ebert 1988). By
setting the desiderata upfront, all values are made explicit. The family of measures
derived is the one that satisfies these postulates simultaneously. (Detailed discussions
along this line are available in Cowell’s chapter of the OUP Handbook.)

In the last 20 years, various authors have presented generalizations of the most
salient univariate inequality measures along with their extensions in the multidimen-
sional context. In this chapter, the focus will be on the discussion on the postulates
behind multidimensional indicators where the extension is less straightforward.8 In
particular, we will discuss invariance, distributional, and decomposability properties
(formal definitions of axioms are relegated to the appendix). We will also present a
selection of multidimensional indices to illustrate how these properties are applied.

A multidimensional inequality indicator I is a real-valued continuous function
defined on set of well-being matrices M. More precisely, I : M → �1, where �1

is the set of real numbers. For any X ∈ M , I(X) determines the extent of inequality
that exists in the distribution matrix X.

We divide this subsection in three parts, based on the nature of the properties.

7See also Rousseau’s (1754) Discourse on the Origin and Basis of Inequality Among Men.
8We do not discuss here Normalization, Symmetry, Population Replication Invariance, and Conti-
nuity which are presented in the appendix with formal notation.
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3.1.1 Invariance Properties

Relative inequality indices are those that satisfy a property knownas ratio scale invari-
ance. In the unidimensional context, this property ensures that the measurement of
inequality does not vary when each person’s achievement is multiplied by the same
positive constant, such as when incomes are expressed in a different currency unit or
when everyone’s incomes are increased by the same proportion. The extension to the
multidimensional context requires more careful attention, since often the achieve-
ments in different dimensions are measured in different units of measurement.

• Ratio Scale Invariance (RSI) says that inequality is invariant to proportional
changes in the achievements in different dimensions. If, for instance, the duration
of education is measured in months instead of years, the evaluation of inequality
should not change. The RSI property allows for the rescaling factor to differ across
the different dimensions. This is particularly attractive when the variables are
expressed in different measurement units, such as income in dollars and schooling
in years. Importantly, this property permits the standardization of each vector by
an entry-specific rescaling such as division by their respective mean or range. For
instance, if distributionX* expressed each attribute as a proportion of its respective
median, a multidimensional inequality index satisfying RSI will consider that,

I (X) = I (X∗), where X =

⎡

⎢⎢
⎣

9 5 1200
6 3 900
8 6 1000
1 4 400

⎤

⎥⎥
⎦ and X∗ =

⎡

⎢⎢
⎣

1.3 1.1 1.3
0.9 0.7 0.9
1.1 1.3 1.1
0.1 0.9 0.4

⎤

⎥⎥
⎦

Note that X* is obtained by dividing each of the elements in matrix X by the
median of each of the attributes (columns).9 For instance, the median of the first
attribute (years of education) equals 7, thus the first element in matrix X* = 9/7
= 1.3. Similar calculation holds for other entries in X*.
An inequality indicator satisfying RSI is called relative.
On the other hand, RSI can be disputed because it implies that proportional changes
in one dimension (say, doubling of incomes) have no impact on overall inequal-
ity, ignoring possible interactions across dimensions. A stronger version of this
property (strong RSI) requires instead that the inequality index should remain
constant only when all attributes are rescaled by the same factor. That is, when
all attributes are doubled, then the measurement of multidimensional inequality
should not change. This property is particularly appealing when all attributes are
measured in the same scale.

• UnitConsistency (UCO) is aweaker formof ratio scale invariancewhichdemands
that the inequality ordering10 of two distribution matrices should remain unaltered

9Themedian of an odd number of observations that are non-decreasingly ordered is themiddle-most
observation. For the first column of X, the non-decreasingly ordered rearrangement is (1, 6, 8, 9)
and the median of these numbers is 7, the average of the two middle numbers.
10By inequality ordering, we mean the ranking of matrices by the inequality index.
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under changes in the scales of dimensions (Zheng 2007a, b; Diez et al. 2008;
Chakravarty and D’Ambrosio 2012). To illustrate this, suppose of two countries,
I and II, country I has lower multidimensional inequality than country II. Assume
that in both the countries incomes are expressed in the currency of country I and the
unit of educational attainment is one year. Now, let incomes in the two countries be
converted into the currency of country II and educational attainments be measured
in months, while the units of measurement of all other dimensions are assumed to
remain unaltered. Unit consistency demands that the ranking of the two countries
by the multidimensional inequality index should remain unchanged under this
alteration of units of measurement of two dimensions. As we will observe, all
ratio scale invariant multidimensional inequality indices are unit consistent, but
there exist unit consistent indices which do not satisfy ratio scale invariance.

• Translation Scale Invariance (TSI), suggested by Kolm (1976), requires that the
addition of a constant to the quantities of different attributes does not alter the
level of inequality. If everyone’s health scores move up two points, then overall
inequality will not change. The implication is that from a normative perspective,
it does not matter where the zero is set. An inequality indicator satisfying this
property is called absolute.

Ratio scale invariance and translation scale invariance represent two different
value judgments concerning inequality invariance. These two axioms cannot be sat-
isfied simultaneously by amultidimensional inequality indicator—except for a trivial
indicator that assigns the same number to all distribution matrices.

3.1.2 Distributional Properties

Distributional axioms specify when a redistribution of achievements between indi-
viduals increases or decreases inequality. In the unidimensional framework, distri-
butional concerns are generally introduced through the Pigou–Dalton transfers prin-
ciple (Pigou 1912; Dalton 1920). This postulate demands that a progressive transfer,
a transfer of income from a person to a poorer one, should decrease inequality, pro-
vided that the donor does not become poorer than the recipient as a result of the
transfer and all other incomes remain unaffected. There are a number of ways in
which this principle has been extended to the multivariate framework. In the present
review, we will include three of the most widely used ones.

Formally, a Pigou–Dalton transfer can be expressed in terms of aT-transformation.
The formulation can bemotivated by an example. Let y = (3, 6, 7) and x = (4, 5, 7) be
two income distributions so that x is obtained from y by a Pigou–Dalton transfer of
1 unit of income from the second person to the first person. This transfer can also be

expressed in the following way: (4, 5, 7) = (3, 6, 7)

⎛

⎝ 2
3

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ + 1
3

⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠

⎞

⎠.

The firstmatrixwithin the first bracketed term on the right-hand side is a 3×3 identity
matrix each of whose diagonal elements is one and off-diagonal elements is zero. The
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second matrix is a 3× 3 permutation matrix, a matrix with entries 0 and 1, and each
of whose rows and columns sums to one. This matrix is obtained by exchanging the
first two rows of the identity matrix. The remaining row corresponds to the person
unaffected by the transfer. A weighted average of these two 3 × 3 matrices, where
the weights are respectively 2

3 and
1
3 , after matrix-multiplication with (3, 6, 7), gives

us the distribution (4, 5, 7). The weighted average

⎛

⎝ 2
3

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ + 1
3

⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠

⎞

⎠ is

known as a T -transformation (for more on this, see Marshall et al. 2011; Weymark
2006; Chakravarty 2009).

The unidimensional Pigou–Dalton transfer principle can be extended straight-
forwardly to the multidimensional case by applying the same sequence of T-
transformations to all the dimensions, as per the following postulate:

• Uniform Pigou–Dalton Transfers Principle (UPD) says that for any two distri-
bution matrices X and Y if X is obtained from Y by multiplying by a finite number
of T-transformations, then X has less inequality than Y.

However, the justifiability of UPD can be disputed. The complexity of extending
the Pigou–Dalton principle to multiple dimensions arises because of, precisely, the
existence of the other dimensions. Consider a case in which a Pigou–Dalton transfer
is implemented for each dimension between two individuals. If the donor has more
achievements than the recipient in some dimension (say, income) but less in others
(say, health and education), then it is not clear whether an income transfer from the
donor to the recipient reduces multidimensional inequality. Fleurbaey and Trannoy
(2003) offer a restricted version of the above, confining the relevant transfers to be
among individuals where the giver is at least as well-off as the recipient in every
dimension:

• Pigou–Dalton Bundle Transfers Principle (PBT) represents the idea that if,
between two individuals, one has at least as much achievement in every dimen-
sion as the other and strictly more in at last one dimension, then dimension-wise
Pigou–Dalton transfers from the former to the latter in one or more dimensions
reduces multidimensional inequality, given that achievements of all other individ-
uals remain unaffected.

Unfortunately PBT comes into conflict with efficiency. Fleurbaey and Trannoy
(2003) formally demonstrated that under certain verymild conditions a social ranking
of distribution matrices cannot simultaneously satisfy PBT and the Weak Pareto
Principle, which demands that if each individual prefers her vector of achievements
in ne matrix to a second, then the first is socially better than the latter.11 See also
Fleurbaey andManiquet (2011),Weymark (2013) and Bourguignon andChakravarty
(2003) for a variant of PBT, referred to as Multidimensional Transfer Principle.

11It may be worthwhile to mention that, following the literature, our formulation in this chapter uses
directly individual achievements. Therefore, our presentation has ignored individual preferences.



232 S. R. Chakravarty and M. A. Lugo

A third alternative for extending the unidimensional Pigou–Dalton transfer prin-
ciple to the multidimensional context is presented by Kolm (1976)—for discussions,
see also Marshall et al. (2011), Duclos et al. (2006, 2007), Weymark (2006) and
Chakravarty (2009). In this case, the series of transfers are the same (in percentage
terms) in all dimensions. Specifically, the following is noteworthy.

• UniformMajorization Principle (UM) requires that if there is a similar smooth-
ing of achievements in all the dimensions, multidimensional inequality should
decrease. For example, consider a matrix Y which is obtained from X after a
sequence of (mean-preserving) equalizing transfers across individuals for each
dimension.12

X =

⎡

⎢⎢
⎣

9 5 1200
6 3 900
8 6 1000
1 4 400

⎤

⎥⎥
⎦ and Y =

⎡

⎢⎢
⎣

6.2 4.5 890
6.7 3.9 970
7.6 5.5 1000
3.5 4.1 640

⎤

⎥⎥
⎦.

Wenote that the sumof all entries in each columnof the twomatricesX andY is the
same. Under this operation there is a smoothing of the distribution of achievements
in each dimension and all the dimensions are considered simultaneously. UM says
that Y should have lower inequality than X .

Lasso de la Vega et al. (2010) made a systematic comparison between PBT and
UM. Under UM one distribution matrix is obtained from another by transferring
achievements in all dimensions in the same proportions. This notion of transfer is not
valid if some of dimensions are ordinally measurable (see Sect. 4.3 for a discussion
on ordinal measurability of dimensions). In addition, and crucially, if transfers are
made between two persons in all dimensions where one is not unambiguously richer
than the other, then there is ambiguity regarding treatment of the new distributions
as more equitable. PBT takes care of all these difficulties. By definition, the transfer
is performed between two persons, one richer than the other. Also, the transfers in
different dimensions need not be made in the same proportions, or even at all in some
dimensions. The distinction between these two principles is particularly important
since, as Lasso de la Vega et al. (2010) noted, not all inequality indices, including
those satisfying UM, will satisfy PBT.

While the different versions of the Pigou–Dalton principle focus on the redistri-
bution of attributes among the persons, there is a second important form of inequality
that arises only in the multidimensional context. Atkinson and Bourguignon (1982)

12Formally, uniform mean-preserving averaging (smoothing) can be obtained by multiplying the
distribution matrix X by a bistochastic matrix, which is a square nonnegative matrix of appropriate
order where all the rows and columns add up to 1. UM says that B X should have lower inequality
than X . The B matrix in this case is

B =

⎡

⎢
⎢
⎣

0.2 0.3 0.3 0.2
0.4 0.5 0 0.1
0.3 0 0.6 0.1
0.1 0.2 0.1 0.6

⎤

⎥
⎥
⎦.
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Fig. 1 Example:
Distribution matrix X of
health and education in a
four-person society

argued that a multidimensional inequality indicator should capture the association
(more precisely, rank correlation) between distributions of achievements. Following
Epstein and Tanny (1980) and Tchen (1980), the authors introduced the concept of
a correlation increasing switch between two individuals, whereby one individual
receives at least as much of every attribute as the other and more of at least one
attribute (see also Boland and Prochan 1988; Decancq 2012). To understand this,
suppose that in the original distribution X presented above x11 > x21 but x22 > x12.
That is, the second person (person B) has six years of education (while person D has
only one), and scores three points in health (whereas person D scores 4). This situa-
tion is represented in Fig. 1, with diamond-shaped dots—for simplicity of exposition
income is ignored in this figure.

If we make a switch of the second attribute, say health, between the two individ-
uals, then their achievements after the switch are given by y11 = x11, y12 = x22,
y21 = x21 and y22 = x12 (positions B* and D* in Fig. 2 for persons B and D, respec-
tively). Person B, who had higher achievement in education, has higher achievement
in health as well after the switch. Consequently, the correlation between the attributes
has gone up.Note that a correlation increasing switch keeps themean of each attribute
constant, like UPD, PBT and UM.

Tsui (1999) formally introduced this idea to the literature on multidimensional
inequality indices via an axiom know as Correlation Increasing Majorization:

• Correlation Increasing Majorization (CIM) states that if a distribution Y is
obtained from another distribution X by a switch in attributes such that the corre-
lation across these attributes is increased, then Y is more unequal than X.
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Fig. 2 Example:
Distribution matrix X of
health and education after a
correlation increasing switch

In the example, consider the distributions X =

⎡

⎢⎢
⎣

9 5 1200
6 3 900
8 6 1000
1 4 400

⎤

⎥⎥
⎦ and Y =

⎡

⎢⎢
⎣

9 5 1200
6 4 900
8 6 1000
1 3 400

⎤

⎥⎥
⎦.

In all of the dimensions, except in dimension 2 (say, health), the achievements
of the second person (B) in the distribution X are more than the corresponding
achievements of the fourth person (D). The distribution matrix Y obtained from X
by a switch in achievements in health between these two individuals is such that
the second person has now higher achievements than the fourth one in all three
dimensions. This transfer has increased the correlation between dimensions which
implies that the situation of the person who was better off in some dimensions is now
also better off in the other dimension. CIM will assess this new distribution as being
less equal (not preferable) to the original one.

Tsui (1999) showed that UM andCIM are independent axioms. That is, there exist
indicators that satisfy bothUMandCIM; and also there are indicators that satisfyUM
but are violators of CIM and vice versa. Weymark (2006) and Chakravarty (2009)
provide further discussion along this line.

A weaker version of CIM has been proposed by Dardanoni (1996) as follows:

• UnfairRearrangementPrinciple (UR) requires that the initial distributionmatrix
is preferred to one in which the distributional profiles in all dimensions are unal-
tered but where the dimensions are perfectly rank-correlated.

To understand this property, let us assume a new distribution Z where one person
is ranked first in all dimensions, another one is ranked second in all dimensions and
so on. For instance, consider
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Fig. 3 Example:
Distribution matrix X̄ of
health and education after a
switch that makes
dimensions perfectly
correlated

Z =

⎡

⎢⎢
⎣

9 6 1200
6 4 900
8 5 1000
1 3 400

⎤

⎥⎥
⎦, depicted in Fig. 3 [once again, for clarity of exposition the

figure only depicts education and health, but income also follows the same rule]. UR
implies that distributions X and Y will be preferred to distribution Z, but does not
determine the ranking of X versus Y. Thus, UR is indeed a weak property and can be
seen as a minimum requirement to be imposed when correlation across dimension
is deemed undesirable.

3.1.3 Decomposability Properties

Since the mid-1980s, many multidimensional inequality indicators have been pro-
posed in the literature that can be seen as extensions of themostwidely usedmeasures
on inequality in the unidimensional framework, including Gini, Atkinson, General-
ized Entropy (Theils), and Kolm indices. Table 1 presents a selection of extension
of these indices, and the properties that they satisfy. Only for exposition purposes,
we consider at least one measure for each family of unidimensional indices, but rec-
ognize that the literature contains many more measures that are not discussed here.

Tsui developed a characterization of the multidimensional Atkinson inequality
indicator (Tsui 1995), as well as an extension of the Generalized Entropy inequality
index (Tsui 1999). These indices have the advantage of being able to satisfy a con-
venient property related to the decomposability of the measures. One such property
is the following:

• Subgroup Decomposability (SDE): For any partitioning of the population into
subgroups such as race, religion, sex, ethnic groups, age etc., overall inequality
can be expressed in terms of inequality levels of subgroups, vectors of means
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of attributes corresponding to different subgroups and population sizes of the
subgroups.

Such decompositions become particularly useful for policy makers interested in
determining the significance of variations of attributes corresponding to these various
characteristics.

A second well-known family of measures is associated with the widely used Gini
inequality index. This index has several multivariate extensions (see for example,
Koshevoy and Mosler 1996; List 1999; Gajdos and Weymark 2005; Banerjee 2010;
Decancq and Lugo 2012). In this chapter, we consider two that are explicitly nor-
mative, as characterized by Gajdos and Weymark (2005) and by Decancq and Lugo
(2012), respectively. The two indices differ mainly in the order of aggregation of
dimensions and individuals; the former aggregates first across individuals and then
across dimensions whereas the latter does the reverse. As in the univariate case, these
multidimensional extensions of the Gini index are not subgroup decomposable. Yet,
the measure proposed by Gajdos and Weymark is separable across dimensions of
well-being (that is, overall inequality can be calculated as a function of the inequality
in each of the separate dimensions). Formally, this measure satisfies a restricted form
of attribute separability proposed by Shorrocks (1982).

• Factor Decomposability (FDE): Overall inequality is the sum of attribute-wise
indicators. FDE becomes helpful for assessment of inequality contribution of dif-
ferent dimensions of well-being.

The Gajdos and Weymark generalized Gini index satisfies FD for α = θ = 1
(see Table 1). Nonetheless, the cost of satisfying FDE is that Gajdos and Weymark’s
measure (as any two-step measure that first aggregate across dimensions and then
across attributes) is insensitive to changes in the correlation across the different
attributes. Instead,Decancq andLugo’sGinimeasure is able to satisfyUR for specific
choices of parameter values at the expense of a weaker separability axiom, that is,
the axiom of rank-dependent separability which states that the comparison of two
distributions is not affected by the magnitude of the common attributes as long as
the initial ranking is maintained (formal definition in the appendix).

3.2 The Inclusive—Measure-of Well-Being Approach

This section considers the inclusive measure of well-being approach (IMWB), which
assigns a well-being number to each person i as a function of the person’s achieve-
ments in all d dimensions. These indices of individual well-being can be then
aggregated across persons to arrive at an evaluation of “social welfare” (overall
social condition), inequality or poverty. Formally, person i’s IMWB is denoted by
U (xi.) = U (xi1, xi2, . . . , xid), where U : Q → �1 is the individual well-being
function, Q ⊂ �d being the set of all achievements that individuals can pos-
sess in the d dimensions. A social policy evaluation metric W ranks outcomes
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by incorporating the associated well-being numbers. In other words, the distri-
bution of achievements (x1.., x2., . . . , x.n.)

′ is at least as good as the distribution
(y1.., y2.., . . . , yn..)

′ if and only if W ranks (U (x1..), U (x2...), . . . , U (xn..)) at least as
good as (U (y1..), U (y2...), . . . , U (yn..)).

There are two distinct ways in which the IMWB approach can be used to derive
a multidimensional inequality indicator. In the first variation, W is a social wel-
fare function (SWF), which is then used to construct a multidimensional inequality
indicator. In the second variation, W is a unidimensional inequality index, which is
applied directly to the vector of individual well-being levels (as in Maasoumi 1986).

In the first alternative, a SWF ranks vectors of individual well-being numbers, or
“utilities.” See Weymark, chapter 5, the OUP Handbook. In the literature on income
inequality, individual income is often seen as a proxy for individual welfare, and
thus a SWF is used to rank vectors of individual incomes. See Cowell, chapter 4,
the OUP Handbook. The Atkinson-Kolm-Sen (AKS) approach, used to deriving
an income inequality metric from an SWF applied to incomes, is as follows. The
AKS representative income xe corresponding to the distribution x is the level of
income which, if enjoyed by everybody, would make the distribution x ethically
indifferent, that is, W (xe., xe, . . . , xe) = W (x). The AKS relative inequality index
IAKS is thus defined as the proportionate gap between xe and the mean income μ(x).
When efficiency considerations are absent, that is, when the mean income is fixed,
an increase in social welfare is equivalent to a reduction in inequality and vice versa.
From a policy perspective, this inequality index determines the fraction of total
income that could be saved if the society distributed incomes equally without any
loss of social welfare or, in other words, the fractional social welfare loss resulting
from the existence of inequality.

We can now describe the first variation of the IMWB approach. Kolm (1977)
extends the AKS approach to the multidimensional context—showing how to derive
a multidimensional inequality indicator from a social ranking of matrices, such as
the ranking defined by an SWF.

Let us define Xλ as the distributionmatrix inwhich each person enjoys the average
level of achievements in each dimension μ

(
x. j

)
so that Xμ represents the perfectly

equal situation. Now, define �(X) implicitly by W
(
Xμ�(X)

) = W (X), that is, as a
positive scalar which, whenmultiplied by the ideal distributionmatrix Xμ, is socially
or ethically indifferent to the existing distributionmatrixX (according toW ).�(X) is
the multidimensional counterpart to the Atkinson-Kolm-Sen representative income.
Given appropriate assumptions about W, �(X) is well-defined and 0 < Xμ < 1 if
X �= Xμ and takes on the maximal value 1 when each attribute is equally distributed
among the individuals (Weymark 2006).

ThemultidimensionalKolm (1977) inequality indicator IKM : M → �1 is defined
as IKM(X) = 1 − �(X), where X ∈ M is arbitrary. IKM determines the fraction of
welfare loss incurred by moving from the ideal distribution Xμ to the actual dis-
tribution X. If there is only one dimension, say income, IKM coincides with the
Atkinson–Kolm–Sen inequality index. Assume that the W fulfils the strong Pareto
principle, is continuous and increasing under a smoothing of the distribution of
achievements. Given these assumptions, the continuous indicator IKM satisfies sym-
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metry (SYM) and UM.13 For an unequal distribution matrix X , IKM is positive and
bounded above by one. IKM takes on the minimum value zero if X = Xμ. The
behaviour of IKM under a correlation increasing switch depends on the form of the
utility function.

The procedure may be illustrated using some examples. Tsui’s (1995) charac-
terization of the multidimensional Atkinson inequality index can be accommodated
within the IMWB approach. Tsui characterized the symmetric utilitarian social wel-
fare function W (X) = ∑n

i=1 U
(
xi. .

)
, where the identical individual multi-attribute

utility function is either of the product type or of the logarithmic type.14 For this
form of the utility function, the resulting Kolm (1977) inequality index becomes
the multidimensional Atkinson inequality index. If there is only one dimension, the
formula coincides with the single dimensional Atkinson (1970) index.

Another example of the first variation of the IMWB-based approach is the double-
CES multi-attribute inequality indicator suggested by Bosmans et al. (2013). The
individual utility function aggregates individual achievements (assumed to be always
positive) using a CES-type aggregator. Next, the social welfare function uses a CES
function to aggregate utilities at the social level. The corresponding Kolm (1977)
multi-attribute inequality indicator is the Bosmans–Decancq–Ooghe (2013) multi-
dimensional inequality index. This symmetric index satisfies UM for all permissible
values of the parameters. It is unambiguously increasing under a correlation increas-
ing switch if the parameter associated with the CES utility function is higher than
the corresponding parameter in the welfare function.15

These two examples clearly demonstrate that there are multi-attribute inequality
indices that relate to social welfare functions applied to some measure of individual
well-being. They show that the two-stage approach can be justified by a solid theo-
retical background within the normative framework. But there also exists inequality
indices that cannot be supported by the IMWB structure. The Gajdos–Weymark
generalized Gini index is an example of an inequality indicator that cannot be sup-
ported by the IMWB structure because in this case aggregation is first done across
individuals and then the obtained values are aggregated across dimensions. It is in
fact the Kolm index IKM where the underlying multidimensional generalized Gini
social evaluation function is defined directly on the set of distributionmatrices, rather
than being a social welfare function operating on vectors of individual utilities. The
social evaluation function is assumed to satisfy continuity, strong Pareto principle and
increasingness under a smoothing of the distribution of achievements (see Weymark
2006).

13SYM demands that any reordering of the individuals does not change inequality. That is, any
characteristic other than the achievement levels, for example, the names of the individuals, is
irrelevant to the measurement of inequality.
14Formally, the individual utility function is defined as a strictly increasing concave function assum-
ing the forms: a + b

∏d
j=1 x

c j
i j or a + b

∑d
j=1 c j log xi j , where a is an arbitrary constant, and the

parameters b and c j should be appropriately restricted to ensure that U(.) is increasing and strictly
concave.
15For a characterization of a multidimensional social welfare function where the individual well-
being function is linear, see Bosmans et al. (2009).
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The second variation of the IMWB approach is suggested by Maasoumi (1986).
The author developed the first extension of the Generalized Entropy index to themul-
tidimensional set up using a CES-type utility function in the first step to aggregate
dimensional achievements of an individual, and a Generalized Entropy-type aggre-
gation of individual utilities in the second step. In other words, Maasoumi employs
a uni-dimensional inequality metric, instead of a welfare function, to aggregate indi-
vidual well-beings. Unfortunately, Maasoumi’s index has the weakness that it may
not satisfy UM or other multivariate formulations of the Pigou–Dalton principle.
The Pigou–Dalton principle is satisfied, however, in the (unidimensional) well-being
space.16

4 Multidimensional Poverty

Even in the early twenty-first century, poverty alleviation remains one of the major
economic policies in many countries of the world. In order to understand the depth
and threat of poverty, it is helpful to quantify poverty and measure its change over
time. The objective of this section is to briefly outline different poverty measurement
methodologies that have been suggested in the literature and that adopt an explicitly
multidimensional structure, as adopted, among others, by Tsui (2002), Bourguignon
and Chakravarty (2003) and Alkire and Foster (2011). As in Sect. 3, we first dis-
cuss the direct approach—the main approach in the literature—whereby axioms and
poverty measures are defined directly onmultidimensional matrices. See also Duclos
and Tiberti’s chapter 23 in the OUP Handbook for a similar discussion. We then turn
to the IMWB perspective on poverty measurement.

4.1 The Direct Approach

We divide the discussion in this subsection into several parts.

4.1.1 Properties

Since well-being of a population is a multidimensional phenomenon, poverty, which
arises because of insufficiency of achievements in one or more dimensions, is as well
a multidimensional aspect of human life. As Sen (1976) argued, in income poverty
measurement two exercises are involved: (i) the identification of the poor and (ii)

16Tsui (1999) also proposes a multidimensional extension of the Generalized Entropy index but he
does it in one stage, and thus it is not directly based on individual well-being levels—i.e. is based
on a direct approach. The literature contains many more indices that do not use such a two-step
aggregation method (for further discussion see Chakravarty 2009, Chap. 5).
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aggregation of the characteristics of the poor into an overall indicator of poverty in
society. The former problem requires the specification of a poverty line, the income
necessary for a subsistence standard of living. A person is regarded as income poor
if his income falls below the poverty line. The second problem requires aggregation
of income shortfalls of the poor from the poverty line. See Cowell, chapter 4, the
OUP Handbook, discussing univariate (income) poverty measures.

Following Sen (1976), various authors have suggested extensions of the standard
properties associated with each of these two steps for the multivariate setting and
derived multidimensional poverty measures. The introduction of multiple dimen-
sions requires an additional step in the derivation of the poverty measure, which is
the aggregation across dimensions. The dimension-wise aggregation is done before
the aggregation across individuals (step ii above) but can be done either before or
after the specification of the poverty threshold (step i). The decision on the sequence
of these steps will have implications in terms of the substitutability assumed across
dimensions. In fact,most of the proposals in the literature opt to set the poverty thresh-
olds for each dimension and then aggregate each individual’s dimension-specific
achievements into a single indicator of each individual’s poverty.17 The argument is
that each attribute is considered essential so no substitution across dimension should
be permitted above and below the “minimum acceptable levels” (Sen 1992, 139).
See, for instance, Tsui (2002), Bourguignon and Chakravarty (2003), Chakravarty
and Silber (2008) andAlkire and Foster (2011). These exogenously given “minimally
acceptable levels” are the threshold limits for different dimensions for a person to be
non-deprived in the dimensions.

Formally, we can define a vector of poverty thresholds z = (z1, . . . , zd) ∈ Z ⊂
�d++, where �d++ is the strictly positive part of the d-dimensional Euclidean space.
Person i is said to be deprived or non-deprived in dimension j according as xi j <

z j or xi j ≥ z j and he is called non-deprived if xi j ≥ z j for all j. A multidimensional
poverty index P is a non-constant real-valued continuous function defined on M × Z ,
that is, P : M × Z → �1. For any n ∈ N , X ∈ M and z ∈ Z , P(X; z) gives the
level of poverty associated with X and the threshold limit vector z.

When thresholds are imposed before the aggregation across dimensions, the iden-
tification ofwho is to be considered poor presents the additional challenge of defining
the number of dimensions in which a person needs to be deprived in order to consider
her multidimensionally poor. One extreme is known as the union method of identifi-
cation which says that a person is poor if she is deprived in at least one dimension. On
the other hand, the intersection criterion identifies a person as poor if she is deprived
in all d dimensions (see Tsui 2002; Atkinson 2003; Bourguignon and Chakravarty
2003). The Alkire–Foster (2011)’s counting approach, in turn, propose an interme-
diate option that contains these two extremes as special cases. According to these

17The alternativemethod, of aggregatingfirst across dimensions and then setting a poverty threshold,
will be discussed in Sect. 4.1 below.
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authors a person is identified as multidimensionally poor if she is deprived in at least
k dimensions, where 1 ≤ k ≤ d, whenever dimensions are weighted equally.18

To illustrate the concepts better, suppose threshold vector is z = (9, 5, 500) and
consider the matrix X presented above, which we repeat here for ease of exposition.

X =

⎡

⎢⎢
⎣

9 5 1200
6 3 900
8 6 1000
1 4 400

⎤

⎥⎥
⎦

According to the union rule the second, third, and fourth persons are multidi-
mensionally poor since each of them is deprived in at least one attribute. Person
two is deprived in dimensions 1 and 2, person three is only deprived in dimension
1, whereas person four is deprived in all the dimensions. The intersection approach
instead would only identify the fourth person as poor. Finally, if a person is con-
sidered multidimensionally poor if she is deprived in at least two dimensions (k =
2), then the intermediate approach will identify persons two and four as poor, while
person three will be considered non-poor.

As in the case of inequality indices presented in Sect. 3, multidimensional poverty
measures can be obtained by defining a set of desirable properties (axioms) that
the index should satisfy. Most of the postulates we consider below are immediate
generalizations of different axioms proposed for an income poverty index.19 Unless
stated otherwise, all the axioms and indicators presented in this section follow the
union rule of identification.20

One of the most important postulates in poverty measurement is the requirement
of focus on the poor, that is, those whose well-being fall below the poverty threshold.
Extending this principle to the multivariate setting has two main variations:

• Weak Focus (WFC): Poverty does not change under an improvement in the
achievement of a non-poor person (Bourguignon and Chakravarty 2003).

In the example presented above, since person 1 in distributionX is non-deprived in
all three attributes, an increase in this person’s achievement in any dimension should
not affect poverty. A stronger version of this axiom has also been put forward.

• Strong Focus (SFC): If a person is non-deprived in a dimension, then an increase
in his/her achievement in the dimension does not change poverty. This holds irre-
spective of whether the person is deprived or not in any other dimension. Strong
Focus rules out the possibility of reducing poverty by subsidizing a poor per-

18When dimensions are not weighted equally, the condition for a person to be considered multidi-
mensionally poor is when the minimum dimension weight ≤ k ≤ d.
19For discussion on properties of an income poverty index, see Sen (1976), Foster et al. (1984),
Donaldson and Weymark (1986), Chakravarty (1983, 2009), Foster and Shorrocks (1991), and
Zheng (1997).
20We can as well state these axioms for other rules of identifying the poor.
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son in a non-deprived dimension but leaving unaffected her achievements in the
dimensions where she is deprived.21

For example, if the achievement in dimension 3 (income) of the second person
reduces to 750, then the distribution matrix becomes

Y =

⎡

⎢⎢
⎣

9 5 1200
6 3 750
8 6 1000
1 4 400

⎤

⎥⎥
⎦. SFC demands that poverty remains unchanged because this

person, while deprived in dimensions 1 and 2, is not deprived in dimension 3.
If instead of affecting the attainments of dimensions for which the person is not

deprived, one modifies the achievement in the deprived dimension, poverty mea-
surement should be impacted. For instance, if we reduce achievement in second
dimension of person 4 from 4 to 3, poverty should increase. This is required by
monotonicity.

• Monotonicity (MON): A reduction in the achievement of a deprived dimension
of a poor person increases poverty.

A second type of monotonicity, relevant for the multidimensional setting, has
been introduced by Alkire and Foster (2011).

• Dimensional Monotonicity (DIM): Poverty should not decrease if a poor person
who is non-deprived in a dimension becomes deprived in the dimension.

For instance, if person 3 who is not deprived in dimension 2 in X sees her attain-

ment reduced from 6 to 4, and the distribution becomes Y =

⎡

⎢⎢
⎣

9 5 1200
6 3 900
8 4 1000
1 4 400

⎤

⎥⎥
⎦, then

DIM requires that P(X; z) ≤ P(Y ; z). While this property is consistent with both
the union and intersection approaches, it is particularly important for the intermedi-
ate option proposed by Alkire and Foster, where the number of deprivations suffered
by individuals plays a crucial role in the measurement of poverty.

As in the case of inequality indices reviewed in Sect. 3, multidimensional poverty
indicators are desired to satisfy three postulates related to decomposition, distribu-
tion sensitivity within dimensions and correlation sensitivity across dimensions, in
addition to invariance and normalization axioms stated in the Appendix.

Two decomposability postulates are used in the poverty measurement context; the
first relates to decomposing the measure across population groups and the second
across attributes.

• SubgroupDecomposability (SUD) says that for any partitioning of the population
into subgroups with respect to individuals’ exogenous characteristic, like age, sex,

21Alkire andFoster (2011) refer to strong focus axiomaspoverty focus andweak focus as deprivation
focus.
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region etc., the overall poverty becomes the population share weighted average of
poverty levels of individual subgroups.

SUD shows that the percentage contribution made by subgroup i to the overall

poverty is
ni P(Xi ;z)
n P(X;z) ∗100,whereni is the population size of group i. Such contributions

become helpful in isolating subgroups of the population that are more affected by
poverty and hence to formulate anti-poverty policy (see Anand 1997; Chakravarty
1983, 2009; Foster et al. 1984; Foster and Shorrocks 1991). Assuming that P(X; z)
satisfies SUD, repeated application of the axiom shows that we can write the poverty
indicator as

P(X; z) = 1

n

n∑

i=1

P(xi.; z).

Given that P(xi.; z) depends only on person i’s achievements,we call it ‘individual
poverty function’. Thus, under SUD, the overall poverty is a simple average of
individual poverty levels.

• FactorDecomposability (FAD) says that the overall poverty is aweighted average
of dimensional poverty levels, such that P(X; z) = ∑d

j=1 b j P
(
x. j , z j

)
, where

b j ≥ 0 is the weight assigned to the poverty in dimension j and
∑d

j=1 b j = 1.

The contribution of dimension j to overall poverty is given by
b j P(x. j ;z j)

P(X;z) . FADwas
introduced by Chakravarty et al. (1998) and adopted by Alkire and Foster (2011),
and is stated under the assumption that only the deprivations of the poor are taken
into account and the deprivations of the non-poor are ignored. The coefficient b j may
be interpreted as the importance that a policy maker assigns to eliminating poverty
from dimension j. Being able to decompose poverty into the different dimensions
is particularly attractive in structuring government policy to reduce poverty—by
indicating the attributes where deprivations are the largest. But, as in the case of
FDE for inequality measures, the cost of imposing this property is that it makes the
measure insensitive to changes in the degree of dependence across attributes.

Regarding distributional properties, we consider the poverty counterpart to UM.
Discussions for other variants are similar.

• Multidimensional Transfers Principle (MT) requires that if a new distribution
is obtained by an averaging of achievements among the deprived dimensions of
the poor, then poverty should decrease.

In addition, it is often thought to be appropriate that poverty indicators reflect
the dependency structure across dimensions. Formally, we consider the following,
which is the stronger version of a Bourguignon and Chakravarty (2003) axiom:

• Increasing Poverty under Correlation Increasing Switch (IPC) requires that
poverty should go up after a switch such that the correlation across dimensions is
increased. This property is the equivalent of CIMpresented above, where attributes
are seen as substitutes.
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The intuitive reasoning of this property is that among dimensions that fall below
their respective poverty thresholds, one can compensate the insufficiency in one
attribute (say, education) with additional quantities of another attribute (say, income).
If a switch in the quantities of oneof the dimensions is performedacross twopoor indi-
viduals such that the person who is more deprived on a second dimension (income)
becomes worse off in the first (education) after the switch and poor person who
was richer in income has now higher education, poverty should increase. The cor-
responding property when the attributes are seen as complements requires poverty
to decrease under such a switch (DPC). If a poverty indicator remains insensitive to
a correlation—increasing switch, then the attributes are regarded as ‘independents’.
It is evident that a poverty indicator satisfying FAD cannot satisfy at the same time
IPC or DPC. In other words, multidimensional poverty measures that are required
to be able to be decomposable by dimension, need to assume that deficiencies in
one attribute cannot be compensated or complemented with additions of the other
attributes.

4.1.2 Indicators

Table 2 presents some examples of multidimensional poverty measures presented
in the literature. Chakravarty et al. (1998) (CMR) were among the first to suggest
axiomatic multidimensional poverty indicators. One of themost attractive features of
this measure is that the function f (.) can be defined such that it becomes generaliza-
tions of three well-known one-dimensional poverty indices: the Foster–Greer–Thor-
becke (1984), the Chakravarty (1983), and the Watts (1968) unidimensional poverty
indices. Tsui (2002) presented a slightly different version of this index that has as
special cases both the Charkravarty and the Watts indices.

The CMR indicator satisfies the axioms introduced above, as well as ratio-scale
invariance (RSI), except for being sensitive to changes in correlation across attributes.
As explained, this is due to the fact that the indicator satisfies FAD which is incom-
patible with IPC/DPC. In contrast, Tsui’s measure is a violator of FAD but satisfies
all other axioms including IPC. Tsui also presented a translation invariant poverty
index that includes a generalization of the Zheng (2000) single dimensional index
and the multidimensional extension of the absolute poverty gap, as special cases.

A highly influential paper in this literature is by Bourguignon and Chakravarty
(2003). The measure proposed aggregates a weighted average of individual depri-
vations across dimensions by taking a power function type transformation over the
set of poor persons. The dimension weight a j may be interpreted as the importance
that a policy maker assigns to dimension j. The measure Pα,θ is a single-parameter
generalization of the Foster–Greer–Thorbecke (1984) single dimensional index.22

Since Pα,θ is, in general, not additive across dimensions it does not satisfy FAD;
however it fulfills all other axioms for all positive values of parameters and MT for a

22Bourguignon and Chakravarty (2003) suggested an alternative generalization of this family using
the transformation f (t) = tα j , where α j > 1 is a parameter, in CMR indicator.
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subset of these. Pα,θ satisfies IPC or DPC (and even independence) under alternative
assumptions about the parameters.

Alkire and Foster (2011) adopted an intermediate identification method, where
people are identified as multidimensionally poor if they are deprived in at least k
dimensions, where 1 ≤ k ≤ d, when dimensions are equally weighted or in at
least minimum weight dimensions, where this is ≤ k ≤ d. PAFM is the sum of αth
powers of the normalized achievement gaps of the poor divided by the maximal
value that this sum can assume. This measure is subgroup decomposable, and meets
MTP for values of the parameter α > 1. However, the Alkire–Foster measure is non-
decreasing under a correlation increasing switch for allα > 0, even if transformations
of such measure can permit IPC to be satisfied (see Silber and Yalonetzky 2013, for
a recent discussion).

Diez et al. (2008) and Chakravarty and D’Ambrosio (2012) axiomatically charac-
terized the family of unit consistent multidimensional poverty indicator. This family
of indices satisfies IPC/DPC under certain conditions, allowing for attributes to be
considered substitutes or complement, but does not comply with FAD. In addition,
if there are only two dimensions MTP holds for a subset of parameter values.

4.2 IMWB-Based Approach to Poverty

In this subsection we briefly analyze the possibility of accommodating multidimen-
sional poverty indices within the IMWB-based approach to poverty measurement.
First, we ask whether standard multidimensional poverty indicators, which use a
series of dimension-specific poverty thresholds, correspond to a univariate poverty
metric applied to a vector of individual well-being numbers.

The issue can be illustrated using some examples. The first example we consider
is Tsui’s (2002) generalization of the Chakravarty index. From the formulation (in
Table 2) it appears that at the first stage for each individual, a product-type well-being
function is used to aggregate allocation of the d dimensions into ameasure of personal
well-being and then at the second stage a simple averaging is applied to aggregate a
transformation of these well-being levels. (All achievement quantities are assumed
to be positive.) But this well-being function is implausible in the sense that it is not
uniformly sensitive to the given person’s achievements below and above poverty
thresholds for different dimensions. All achievements above any threshold, however
small or large they may be, are replaced by the threshold itself. Therefore, the Tsui
(2002) index cannot be regarded as an IMWB-based index. The same remark applies
to the Chakravarty–Mukherjee–Ranade (1998), Bourguignon–Chakravarty (2003),
and Alkire–Foster (2011) indices.

Different from all these previous proposals, Maasoumi and Lugo (2008) (ML)
suggested an indicator of multidimensional poverty that inverts the sequence of steps
to derive the measure. Relying on an information theory-based approach, the authors
in a first stage aggregate attributes of well-being—as done in Maasoumi (1986)—to
obtain an individual well-being function. Dimension-specific poverty thresholds are
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aggregated using the same criterion defining a poverty frontier. Thus, in the second
stage, a person’s poverty levels are obtained as the shortfall of the ratio between
the aggregated achievements and the aggregated poverty thresholds. The third step
involves applying a Foster–Greer–Thorbecke (1984) type transformation over the
individual poverty functions across persons to arrive at the overall poverty indicator.
By construction, the indicator allows for some degree of substitution across attributes
even between those that fall above the dimension-specific poverty threshold. This
implies, for instance, that if a person does not have the “minimum acceptable level”
of one dimension, say education, but she is, say, extremely income rich, she might be
considered non poor. Essentiality of attributes is relaxed, at least to a certain degree,
depending on the parameter defining the degree of substitution allowed. Therefore, in
terms of postulates, theMLmeasure satisfies theweak version of the focus axiom, but
not the strong one—SFC. In addition, the measure meets MT unambiguously and is
subgroup decomposable. However, it satisfies only IPC, that is, all the dimensions are
implicitly assumed to be substitutes and compensation across dimensions is allowed.

By construction an IMWB-based index is a violator of the strong focus axioms.
One way to resolve this issue is to adopt Decancq et al. (2013) suggestion to look
to individual preferences in order to identify the poor and aggregate dimensional
achievements. Under these authors’ approach, the strong Pareto principle is satisfied
among the poor. Furthermore, the assessment of complementarity or substitutability
betweendimensions is left to the individuals themselves.This contrastswith the direct
approach where the complementarity-substitutability issue is resolved by imposing
parameter restrictions in the form of composite indicator, which may or may not
respect individual preferences.

Specifically, Decancq et al. (2013) have characterized a poverty indicator based
on the idea that there is a single poverty threshold vector z and a person is treated as
poor if and only if he/she prefers z over his/her current consumption bundle. Thus,
this contribution offers a two-fold suggestion: endogenizing the poverty thresholds
and using individual preferences in the context of identification of the poor.

4.3 Measurement of Multidimensional Poverty for Ordinally
Measurable Dimensions

While some of the typical dimensions of well-being and deprivation correspond to
ratio scale variables (for instance, income and wealth), others such as health and
literacy are generally represented by ordinal variables. (See Alkire’s chapter 21 in
the OUP Handbook for a similar discussion.) Ordinal variables like gender, eth-
nicity, and religion have one or more categories or types and their categories have
a well-defined ordering rule. For instance, self-reported health is often presented
in the following six categories ‘very poor’, ‘poor’, ‘fair’, ‘good’, ‘very good’ and
‘excellent’. To each of these categories, one can assign positive integral values in
an increasing order. This assignment of integral values is arbitrary; the only restric-
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tion is that to preserve the ordering a higher number should be assigned to a better
category—so that ‘very good’ should get a higher number than ‘good’ (see Allison
and Foster 2004). A second example can be ordering of educational achievement
levels of individuals in a society starting from illiteracy to university education by
assigning numbers in an increasing way (see Chakravarty and Zoli 2012). Several
indicators of multidimensional poverty have been proposed in the literature to incor-
porate ordinal characteristic of the dimensions. Ordinal measurability information
invariance for a multidimensional poverty indicator requires that the poverty level
based on xi j and z j values should be same as that based on any arbitrary increasing
transformation applied to these values, where the transformations need not be the
same across dimensions.

The headcount ratio, while a violator of DIM, is an appropriate indicator of mul-
tidimensional poverty if some of the dimensions are measurable on ordinal scale and
the other dimensions have ratio scale significance. The Alkire–Foster (2011) dimen-
sion adjusted headcount ratio also survives this requirement. It is defined as the ratio
between the deprivation score of the poor in the Alkire–Foster (intermediate) sense
and nd, which is the society deprivation count when all the persons become deprived
in all the dimensions.23 (This is a limiting case of PAFM as α → 0 and it satisfies
DIM (see Table 2)).

Chakravarty and D’Ambrosio (2006) suggested an indicator of multidimensional
social exclusion when the dimensions have ordinal significance. This normalized
indicator verifies SFC, SUD, DIM but not FAD. It is non-decreasing under a correla-
tion increasing switch, but not increasing.24 A related indicator is proposed byBossert
et al. (2013) who characterize a multidimensional indicator where the dimensions
are discrete in nature and used it for evaluating material deprivation in the European
Union. They have defined a person as materially deprived if his deprivation score is
at least one. The measure satisfies similar properties as the previous index.

5 Conclusions

The increasing interest among both academics and policy makers in alternative con-
ceptualizations of well-being and deprivation that take into account multiple dimen-
sions has spawned the development of a wide range of measures of multidimensional
inequality and poverty. The present chapter attempted to summarize, in a structured
way, the main relevant considerations in developing these measures. Within both
inequality and poverty, the discussion has been divided into two lines: the direct
approach—where a set of desirable properties or postulates in terms of multidi-
mensional matrices are first identified and then measures satisfying these properties

23For a recent discussion on the counting approach to multidimensioned deprivation, see Dutta and
Yalonetzky (2014).
24Jayaraj and Subramanian (2009) employed this indicator to determine multidimensional poverty
in India.
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are obtained; and the inclusive measure of well-being approach, where a multidi-
mensional indicator of inequality or poverty is derived by applying a social welfare
function, univariate inequality measure, or univariate poverty measure to a vector of
individual well-being numbers that take account of each individual’s multidimen-
sional achievements.

Irrespective of the approach and set of properties chosen, selecting any scalar indi-
cator to summarize the complete distribution of well-being or deprivation attributes
across individuals involves imposing important value judgments. There is no escape
from that, and thus, there will be always grounds to object to any given multidimen-
sional indicator. However, it is vitally important that policy makers be aware of the
full range of normatively plausible options. It may beworthwhile tomention that, fol-
lowing the literature, our formulation in this chapter uses directly individual achieve-
ments. Therefore, our presentation has ignored individual preferences. Research on
multidimensional poverty and inequality metrics continues to be extremely fertile;
alternative new postulates and indicators are proposed on a regular basis. Although
there has been tremendous progress in this area, reviewed in this chapter, there is
much still to learn.
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Appendix

Let xi j ≥ 0 be the achievement of person i in attribute or dimension j. An achieve-
ment indicates the performance of a person in a dimension, for instance, howmuch is
his or her income. Person i’s achievements in different dimensions are summarized
by a d-dimensional vector xi. = (xi1, xi2, . . . , xid). The row vector xi. is the ith row
of an n × d distribution matrix X . The column vector x. j , which summarizes the
distribution of achievements in dimension j ( j = 1, 2, . . . , d) among n persons, is
the jth column of X and we denote the mean of this vector by μ

(
x. j

)
. If we denote

the set all n × d matrices whose entries are non-negative real numbers by Mn
1 , then

X ∈ Mn
1 . Similarly, Mn

2 stands for the set of all distributionmatrices such that xi j ≥ 0
for all pairs (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , d} and μ

(
x. j

)
> 0 for all 1 ≤ j ≤ d.

Finally, Mn
3 denotes the set of all distribution matrices such that xi j > 0 for all pairs

(i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , d}. Thus, for matrices in the sets Mn
2 and Mn

3 the
mean of each attribute is positive. Since our analysis will often involve different-sized
populations, it will be necessary to consider the set M1 = ∪n∈N Mn

1 of all distribution
matrices with d columns. Let M2 and M3 be the corresponding sets associated with
Mn

2 and Mn
3 and M = {M1, M2, M3}. We denote an arbitrary element of the set M

by M , that is, the set M can be anyone of the three Mi sets.
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An n × n matrix B with non-negative entries is called a bistochastic matrix of
order n if each of its columns and rows sums to unity. Any permutation matrix is a
bistochastic matrix, but the converse is not true.

An n × n matrix is called a diagonal matrix of order n if its off-diagonal elements
are equal to zero, but diagonal elements may or may not be equal to zero. Throughout
this chapter we will consider diagonal matrices with positive diagonal entries. We
will denote a diagonal matrix � of order n by � = diag(ω1, ω2, . . . , ωd), where
ωi > 0 for all i .

For any n ∈ N , X, Y ∈ Mn , X is said to be obtained from Y by a simple increment
if xi j = yi j + δ for some pair (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , d}, where δ > 0
is a scalar and xlk = ylk for all pairs (l, k) ∈ {1, 2, . . . , n} × {1, 2, . . . , d} such that
(l, k) �=(i, j).

Axioms for multidimensional inequality indices

• Ratio Scale Invariance (RSI): An inequality indicator I : M → �1 is a ratio
scale invariant or relative indicator if for all n ∈ N , X ∈ Mn ,

I (X�) = I (X), (1)

where � = diag(ω1, ω2, . . . , ωd), ωi > 0 for all i .

• Unit Consistency (UCO): For any n ∈ N , X1, X2∈ Mn , I
(
X1

)
< I

(
X2

)
implies

that I
(
X1�

)
< I

(
X2�

)
for all � = diag(ω1, ω2, . . . ωd), ωi > 0 for all i.

• Translation Scale Invariance (TSI): An inequality indicator I : M → �1 is a
translation scale invariant or an absolute indicator if for all n ∈ N , X ∈ Mn ,

I (X + A) = I (X), (2)

where A is any n × d matrix with identical rows such that X + A ∈ M .

• Symmetry (SYM): For all n ∈ N , X ∈ Mn , I (�X) = I (X), where � is any
n × n permutation matrix.

• Population Replication Invariance (PRI): For all n ∈ N , X ∈ Mn , I (X) =

I
(
X (l)

)
, where X (l) is the l-fold replication X, that is, X(l) =

⎛

⎜⎜⎜
⎝

X1

X2

...

Xl

⎞

⎟⎟⎟
⎠

with each

Xi = X , and l ≥ 2 is any integer.
• Normalization (NOM): For all n ∈ N , X ∈ Mn , if X has identical rows, then

I (X) = 0.
• Continuity (CON): For all n ∈ N , I(X) is a continuous function.
• Uniform Pigou–Dalton Transfers Principle (UPD): For all n ∈ N , X, Y ∈ Mn

if X is obtained by pre-multiplying Y by a T-transformation, then I (X) < I (Y ),
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where a T-transformation is a linear transformation defined by an n × n matrix
T of the form T = t I Mn + (1 − t)�i j , for some t ∈ (0, 1), I Mn is the n × n
identity matrix, and �i j is the n × n permutation matrix that interchanges the i
and j coordinates for some i, j ∈ {1, 2, . . . , n}.
Definition: Let X, Y ∈ Mn . Distribution Y is derived from X by a PDB transfer

if there exist two individuals p, q such that: (i) xq > x p; (ii) ym = xm∀m �= p, q;
(iii) yq = xq − δ and yp = x p + δ where δ = (δ1, . . . , δd) ∈ �d+ with at least one
δ j > 0; (iv) yq ≥ yp.

• Pigou–Dalton Bundle Transfer Principle (PBT): For all n ∈ N , X, Y ∈ Mn if
Y is obtained from X by a finite sequence of PBD transfers, then I(Y ) ≤ I(X).

• Uniform Majorization Principle (UM): For all n ∈ N , X, Y ∈ Mn , if X = BY
for some n×n bistochastic matrix B that is not a permutation matrix, then I (X) <

I (Y ).

Definition: For a, b ∈ Rd , define a ∨ b = (max{a1, b1}, . . . ,max{ad , bd}) and
a ∧ b = (min{a1, b1}, . . . ,min{ad , bd}). For X, Y ∈ Mn , we say that X is obtained
from Y by a correlation increasing switch if X �= Y and there exist 1 ≤ i, l ≤ n
such that (i) xi. = yi. ∧ yl., (ii) xl. = yi. ∨ yl., (iii) xi1. = yi1. for all i1 /∈ {i, l}. That
is, a correlation increasing switch between two individuals means a rearrangement
of their achievements such that one of them (l) receives at least as much of every
attribute as the other (i) and more of at least one attribute.

• Correlation Increasing Majorization (CIM): For all n ∈ N , X, Y ∈ Mn , if Y is
obtained from X by a correlation increasing switch, then I (X) < I (Y ).

• Unfair Rearrangement (UR): For all n ∈ N , X, Y ∈ Mn , if Y is obtained from
X by a sequence of dimension-wise permutations which make one individual in Y
top-ranked in all dimensions, another individual second-ranked in all dimensions
as so forth, and Y �= X, then I (X) < I (Y ).

• Subgroup Decomposability (SDE): For all n1, n2 ∈ N , X ∈ Mn1 , Y ∈ Mn2 ,

I (X, Y )/ = A
(

I (X), I (Y );μ(X), μ(Y ); n1, n2

)
, where the aggregative function

A is continuous and increasing in first two arguments, μ(X) and μ(Y ) are the
vectors of means of attributes corresponding to the distribution matrices X and Y
respectively and / denotes transpose.

• Factor Decomposability (FDE): For all n ∈ N , X ∈ Mn , I (X) = ∑d
j=1 I

(
x . j

)
.

Axioms for multidimensional poverty indices

• Normalization (NOM): For any (X; z) ∈ Mn × Z if xi j ≥ z j for all i and j , then
P(X; z) = 0.

• Symmetry (SYM): For any (X; z) ∈ Mn × Z , P(X; z) = P(�X; z), where �

is any n × n permutation matrix.
• Population Replication Principle (PRI): For any (X; z) ∈ Mn × Z , P(X; z) =

P
(
X (l); z

)
, where X (l) is the l-fold replication of X .

• Ratio Scale Invariance (RSI): For all (X; z) ∈ Mn × Z , P(X; z) = P(X�; z�),
where � = diag(ω1, ω2, . . . ωd), ωi > 0 for all i.
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• Weak Focus (WFC): For X, Y ∈ Mn if for some i , xi j ≥ z j for all j and for
some j ∈ {1, 2, . . . , d}, yi j = xi j + η, where η > 0, and xhk = yhk for all
(h, k) �= (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , d}, then P(Y ; z) = P(X; z).

• Strong Focus (SFC): Suppose Y ∈ Mn is obtained from X ∈ Mn such that for
some pair (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , d}, yi j = xi j + η, where xi j ≥ z j ,
η > 0, and xhk = yhk for all (h, k) �= (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , d}. Then
P(Y ; z) = P(X; z).

• Monotonicity (MON): Suppose Y ∈ Mn is obtained from X ∈ Mn such that
for some pair (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , d}, yi j = xi j − c, where i ∈
π(X), xi j < z j , c > 0, and xhk = yhk for all (h, k) �= (i, j) ∈ {1, 2, . . . , n} ×
{1, 2, . . . , d}. Then, P(Y ; z) > P(X; z).

• Dimensional Monotonicity (DIM): Suppose Y ∈ Mn is obtained from X ∈ Mn

such that for some pair (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , d}, yi j = xi j − c < z j ,
where i ∈ π(X), where π(X) is the set of poor persons in X, xi j ≥ z j , c > 0,
and xhk = yhk for all (h, k) �= (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , d}. Then,
P(Y ; z) > P(X; z).

• Subgroup Decomposability (SUD): For any X1, X2, . . . , Xl ∈ M and z ∈ Z ,
P(X; z) = ∑l

i=1
ni
n P

(
Xi ; z

)
, where X = (X1, . . . , Xl)/ ∈ Mn , / denotes trans-

pose, ni is the population size associated with Xi and
∑l

i=1 ni = n.
• Factor Decomposability (FAD): For any (X; z) ∈ Mn × Z , P(X; z) =∑d

j=1 b j P
(
x. j , z j

)
, where b j ≥ 0 is the weight assigned to the poverty in dimen-

sion j and
∑d

j=1 b j = 1.
• Multidimensional Transfers Principle (MT): For any X, Y ∈ Mn if X is
obtained from Y by an averaging of achievements among the deprived dimen-
sions of the poor, then P(X; z) < P(Y ; z).

• Increasing Poverty under Correlation Increasing Switch (IPC): Under SUD,
for any X ∈ Mn , if Y ∈ Mn is obtained from X by a correlation-increasing switch
between two poor persons, then P(X; z) < P(Y ; z), given that the two attributes
are substitutes.
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