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Introduction

Satya R. Chakravarty

Tony Atkinson has been and forever will remain an eminent figure in the field of
economics. He had devoted his entire life to rigorous study of income inequality,
poverty, and redistribution, with major contributions in every possible dimension
like models, data, policies, etc. Every single work of his is marked with unparalleled
clarity and depth leaving an impression on economists from around the globe. This
collection of 13 articles has been influenced heavily by some ofAtkinson’s innovative
ideas directly or indirectly.

The first essay, published in the Canadian Journal of Economics, 1983, considers
general ethically flexible relative and absolute indicators of poverty. The frame-
work we consider is axiomatic, which relies on Sen (1976). The relative index is
a reasonably natural change-over of the Atkinson (1970)-Kolm (1969)-Sen (1973)
relative inequality index of a censored income distribution, a distribution obtained by
replacing all incomes above the poverty threshold limit by the threshold limit itself,
into a relative poverty index. The poverty threshold limit or poverty line represents
an income level necessary to maintain a subsistence standard of living. The Atkin-
son–Kolm–Sen index is the relative shortfall of the equally distributed equivalent
or representative income of the society from its mean income. The representative
income associated with a distribution of income is that level of income which, if
enjoyed by everybody, makes the existing distribution socially welfare indifferent.
It is a relative index in the sense that it remains invariant under equi-proportionate
changes in all incomes. From policy perspective, it determines the fraction of total
income that could be saved if society distributed incomes equallywithout anywelfare
loss. It also indicates size of proportionate welfare loss resulting from presence of
inequality. Analogously, the relative poverty index, which remains unaltered under
equi-proportionate variations in all incomes and the threshold limit, gives the magni-
tude of similar welfare loss because of existence of poverty. Pyatt (1987) studied this
relative ethical poverty aggregator using the notion of affluence and basic incomes
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and examined the implications when the population representative income is the sum
of representative income of affluence and the representative basic income.

The absolute poverty index proposed in the essay turns out to be a fairly natural
conversion of the Blackorby–Donaldson (1980a) absolute inequality index, when
applied to a censored income profile, into an absolute poverty index. While an abso-
lute inequality index is insensitive to an equal absolute addition to all incomes, its
poverty sister fulfils this insensitivity property when along with incomes we also
translate the threshold limit by the same absolute amount. From policy point of view
the absolute poverty index ascertains the per capita cost of poverty. If in a censored
income distribution each individual were given the amount of money, as measured
by the value of the poverty index, then the index would be zero.

The ethical approach we adopt in the next essay of the collection, published in
Econometrica, has a similarity with the Blackorby-Donaldson (1980b) proposal.
Blackorby and Donaldson (1980b) showed that if social evaluation is done with
respect to the Gini welfare function of the poor, then their general ethical relative
poverty index, defined on the income distributions of the poor, coincides with the
Sen (1976) index of poverty. Unfortunately, as shown in the first essay, the Blackor-
by–Donaldson (and hence the Sen) indices violate continuity and the transfer axiom,
a postulate that requires poverty to increase from a poor person to any one richer, in
a specific situation. Shorrocks (1995) suggested a modification of the Sen index that
avoids this shortcoming. It is rigorously demonstrated in the second essay that this
modification coincides with the general functional form for relative indices proposed
in Essay 1, if social evaluation is done with respect to the Gini social welfare function
defined on the censored income distributions.

The third essay, published in Mathematical Social Sciences, characterizes a sub-
group decomposable index of poverty, using the symmetric utilitarian social welfare
function. The symmetric utilitarian social welfare function is given by the sum of
identical individual utility functions. In his pioneering contribution, Atkinson (1970)
made use of this form of welfare function for characterizing his inequality index.
He has also demonstrated that of two income distributions of a given total if one
has higher welfare value than the other for the symmetric utilitarian form welfare
function where the utility function is strictly concave, then the Lorenz curve of the
former lies nowhere below that of the latter and strictly inside at some places. The
converse is true as well. These two statements are equivalent to the condition that
the former can be obtained from the latter by a sequence of rank-preserving transfers
transferring incomes from persons with high incomes to persons with lower incomes.
These results have been generalized substantially from different perspectives, among
others, by Dasgupta et al. (1973) and Rothschild and Stiglitz (1970, 1973).

The subgroup decomposable index characterized in the third essay can be regarded
as a normalized sumof the utility shortfalls of the incomesof the poor from the income
situation when all the poor persons are at the poverty line. In the words of Zheng
(1997, p. 150), “following Sen’s axiomatic approach, Chakravarty (1983) proposed
a decomposable measure. This was among the first distribution-sensitive measures
possessing this property. Unlike the approach of Sen (1976), Chakravarty derived
his measure by solving a functional equation, which directly takes the three basic
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axioms into account”. The three basic axioms employed in the characterization are
transfer, monotonicity and normalization. While the monotonicity axiom demands
that a reduction in the income of a poor should increase poverty, the normalization
axiom requires the poverty index to take on the value one when all the incomes are
zero. According to subgroup decomposability, for any partitioning of the population
into two or more subgroups with respect to some homogenous characteristic, such as
age, sex, region, and ethnic classes; overall poverty is given by the population share
weighted average of subgroup poverty levels. This property enables us to identify
those subgroups that are characterized by lowpopulation proportions but highpoverty
values. Evidently, from poverty reduction policy perspective such subgroups should
be given priority by policy analysts. The index, thus, has a straightforward policy
application. Foster and Jin (1998) developed a poverty ordering using this index.
Severalmultidimensional extensions of the indexhavebeen suggested in the literature
from different perspectives (see Chapter “Multidimensional Indicators of Inequality
and Poverty” of this volume).

Apart from its extensive applications for poverty evaluation, this decomposable
index has been applied to many other situations, including vulnerability to poverty
and dynamic and forward-plooking poverty analysis because of its simple analytical
formulation. In a situation of vulnerability, it has been noted that “Calvo andDercon’s
measure is the expected Chakravarty index” (Dutta et al. 2011, p. 645) (see also
Calvo and Dercon 2013). In their analysis of forward-looking and dynamic metric of
poverty, Calvo and Dercon (2009, p. 57) argued that “one of the contributions of this
paper is to identify the Chakravarty poverty index as the best choice if the poverty
analysis moves from static poverty on to vulnerability”.

In many recent contributions, measurement of richness at the top of an income
distribution as a complement to poverty at the bottom of the profile has become a
cornerstone of analysis (see Piketty and Saez 2006; Atkinson 2007; Atkinson et al.
2017). Thepovertymeasure presented in the third essayhas been suitably transformed
into an index of richness for investigation of the extent of affluence in a society (see
Peichl et al. 2010).

A recent trend in the poverty literature is to consider an endogenous poverty
threshold, a poverty cut-off limit that is responsive to the actual distributionof income.
In fact, this is a well-accepted phenomenon in many developed countries. In many
OECDcountries, there is a practice of using a constant fraction of themean ormedian
income of a country as the poverty threshold of the respective country. Consequently,
any change in the income distribution of the country will change its poverty cut-off
limit also. In contrast, an absolute poverty threshold is independent of the actual
distribution of income and given exogenously. Chapter 4 of the volume, written
jointly with Nachiketa Cattopadhyay, Joseph Deutsch, Zoya Nissanov and Jacques
Silber, published in Research in Economic Inequality, 2016, develops an axiomatic
characterization of an amalgam poverty line, a poverty line expressed as a mixture of
an absolute poverty line and a reference income (e.g., the mean or median income).
Some of the existing suggestion, for instance, those put forward by Atkinson and
Bourguignon (2001) and EU standard for basing the poverty threshold on the actual
distributions of income, become polar cases of our general formulation.

https://doi.org/10.1007/978-981-13-3432-0_14
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Analysis of poverty based on a single period data does not give us a true picture of
the extent of deprivation of the poor people of a society. There are many reasons for
not regarding poverty as a timeless concept, instead to regard it as an inter-temporal
issue. There are studies that demonstrate that consecutive periods of poverty are
worse than scattered poverty occurrences over time (Rodgers and Rodgers 1993;
Jenkins 2000). A person afflicted by long duration of poverty may become deprived
from attainment of “minimally acceptable levels” of one or more basic dimensions
of human well-being (Sen 1992, p. 139). The fifth chapter of the volume, written
jointly with Bossert and D’Ambrosio, published in Journal of Economic Inequality,
2012, addresses this issue in an axiomatic framework. It examines the measurement
of individual and global poverty in an inter-temporal context using subgroup decom-
posability. Consequently, duration of poverty spells plays a significant role in the
analysis, which involves counting of the number of periods in poverty and number of
periods out of poverty. (See Atkinson 2003, for a counting based approach in a static
framework.) Importance of persistence of poverty in a state of poverty is focused.

Multidimensionality of human welfare is a well-accepted phenomenon now. As a
result, in welfare economics research there has been a shift of emphasis from single
dimensional to multidimensional framework in recent years. This is because often
income alone cannot be sufficient to represent the well-being of a population. For
instance, insufficient supply of a public good, say, inadequacy of amalaria prevention
program in a society cannot be traded off by a rich person’s high income. Prices of
many dimensions of well-being, such as pollution control program may not exist.
Consequently, an attempt to use prices as weights for dimensions to derive a single
indicator of well-being may not be worthwhile. It is, therefore, quite reasonable
to use dimension-by-dimension achievements of different individuals to design an
overall indicator of well-being of a population. An achievement matrix gives us
achievements of the persons in a society in different dimensions, when represented
in a matrix form. It is also referred to as a social distribution, or a social/distribution
matrix. (See Chakravarty 2018, for a detailed discussion.)

The sixth chapter of the collection presents the well-known Bour-
guignon–Chakravarty family of multidimensional relative poverty indices (Journal
of Economic Inequality, 2003). This ‘is an early seminal conceptual paper on this
topic’ (Klasen 2018, p. xiv). For each dimension, a threshold limit indicating mini-
mally acceptable level of the dimension, required for a subsistence standard of liv-
ing, is specified. A multidimensional relative poverty index is an indicator of global
deprivation that satisfies ratio scale invariance, that is, it is one whose value does not
change when achievements in a dimension and the associated poverty cutoff limit are
scaled up/down by the same positive quantity, where the scaling factor may change
from dimension to dimension. For instance, we can change income unit from euro
to dollar and calorie intake unit from calorie to joule. (The value of a multidimen-
sional absolute poverty index is insensitive to equal absolute changes in dimensional
achievements and threshold quantities. Equivalently, it fulfills the translation invari-
ance property.)

In this chapter, implications of postulates for a general multidimensional poverty
index are investigated, particularly, in terms of tradeoffs between dimensional
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achievements above and below threshold limits, and shapes of iso-poverty con-
tours are studied. Shapes of iso-poverty contours when the elasticity of substitu-
tion between dimensional deprivations, gaps between threshold limits and corre-
sponding dimensional achievements, depends on the poverty levels are examined as
well. The paper directly employs the notion of inter-dimensional association, sug-
gested in Atkinson and Bourguignon (Review of Economic Studies, 1982), to judge
how poverty changes under a correlation increasing switch between two individuals’
achievements.Whilemost of the axioms for a single dimensional poverty index canbe
generalized to a multidimensional framework, axioms relating to inter-dimensional
association do not have any single dimensional counterpart. Detailed investigations
aremade on the analytical properties of the Bourguignon–Chakravarty complements,
substitutes and Leontief indices (Vélez and Robles 2008). [For additional discussions
and excellent characterizations of the Bourguignon-Chakravarty family see Lasso de
la Vega et al. (2009) and Lasso de la Vega and Urrutia (2011).]

The seventh chapter, prepared jointly with Conchita D’Ambrosio, published in a
Springer Volume edited by Berenger and Bresson (2012), deals with a family of unit
consistent multidimensional poverty indices. Unit consistency of a multidimensional
poverty index demands that when the individual achievements in a dimension and
the corresponding threshold limit are equi-proportionally changed, where the pro-
portionality factor need not be the same across dimensions, then the poverty ranking
of two social distributions should not alter. Evidently, all relative indices are unit
consistent, but the converse is not true. No member of the family can be regarded
as an absolute index. Axioms relating to the Atkinson–Bourguignon (1982) notion
of inter-dimensional association play a significant role in making clear distinction
between members of the family in terms of parametric restrictions.

When complete information on dimensional achievements of different individuals
are available, it is possible to dichotomize their positionswith respect to deprivations,
that is, whether a person is deprived or non-deprived in a dimension. However,
often complete information on dimensional achievements becomes unavailable. For
instance, some people may be reluctant to reveal correct information on income
or expenditure data. Often it becomes difficult to judge exact literacy position of a
person. There may exist a wide range of cutoff limits that becomes acceptable to a
social planner. Consequently, it may become difficult to judge whether a person is
deprived or not in a dimension. An appropriate tool to measure poverty in such a
situation is fuzzy set theory. Essential to the notion of fuzzy set theory is amembership
function. Amembership function is used to map the position of a person with respect
to achievements of the person in different dimensions. The values of a membership
function are regarded as membership grades or values and these values are limited
between 0 and 1. If a person is fully deprived in a dimension, that is, his achievement
is at the minimum level, then the function takes on the value 1. In contrast, if the
person’s achievement is not below the dimensional threshold limit, the membership
grade is 0. When a person/surveyor is unclear about the status of achievement in a
dimension then the membership function assigns a grade lying between 0 and 1. It
decreases as the achievement level increases from theminimum level to the threshold
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cutoff. A membership function can be linear or non-linear, but it must possess the
property that its values are bounded between 0 and 1.

Chapter 8 of the volume presents a rigorous discussion on the axioms, including
the one involving the Atkinson–Bouruignon type inter-dimensional association, for
a multidimensional poverty index in a fuzzy set up. It is clearly indicated how stan-
dard multidimensional poverty indices can be reformulated in a fuzzy framework. A
characterization of a fuzzy membership function is also presented. Often the choice
of a threshold limit for a dimension in a multidimensional poverty measurement
analysis may involve ambiguity. It may vary in a certain range. This in turn raises the
possibility that the poverty ranking of two alternative social matrices for alternative
choices of threshold limits may not be the same. The ninth chapter of the volume, a
joint contribution of Bourguignon and Chakravarty, published in a volume edited by
Basu and Kanbur (Oxford University Press, 2008), looks for necessary and sufficient
conditions under which poverty ordering of two social matrices will be the same
when poverty threshold limits are allowed to vary within a broad range. The rank-
ing conditions depend explicitly on the nature of inter-dimensional association. This
notion of poverty ordering is known as poverty-threshold ordering, which contrasts
with poverty-measure ordering that establishes conditions for ranking of social dis-
tributions when threshold limits are assumed to be fixed but variability of functional
forms of poverty indicators is allowed. (For parallel single dimensional rankings, see
Atkinson 1987; Foster and Shorrocks 1988.)

Often it becomes necessary to dichotomize individual achievements in a dimen-
sion using a binary variable that takes on the values 0 and 1, where a value of
1 indicates that the person under consideration is deprived in the dimension, and
a value 0 means that the person has no feeling of deprivation with respect to the
dimension. For instance, sometimes it becomes necessary to know whether a person
has a desired level of literacy, his income exceeds a certain limit, he likes the envi-
ronment in his workplace; and so on. If the person is found to possess the desired
level of literacy, his income exceeds the given limit and likes the environment in the
workplace; then he is non-deprived in each of the three dimensions and the value 0
can be assigned to indicate his non-deprivation in each case. On the other hand, if
he is deprived in a dimension, for instance, if he does not possess the desired level
of literacy, then the value 1 can be assigned to indicate this deprivation. Note that
such dichotomizations of dimensional achievements apply to both ordinal and non-
ordinal dimensions. Examples of dimensions of the latter category can be income,
wealth, etc. and the former category include dimensions like self-reported health
status, environment in workplace, etc. We refer to the total number of dimensions
c in which a person is deprived as his deprivation count. If d stands for the num-
ber of dimensions of well-being, then the person’s functioning score, the number of
dimensions in which he is non-deprived, is given by (d−c).

The next three chapters of the volume, based on the counting approach (Atkinson
2003), rely on binary representation of dimensions of well-being. Of these the tenth
chapter, written jointly with Conchita D’Ambrosio, published in Review of Income
and Wealth, 2006, presents a formal treatment of the notion of social exclusion, an
area to which Atkinson contributed significantly. Social exclusion means relegation
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of one or more population subgroups and individuals to socially disadvantageous
positions, where disadvantage may arise with respect to one or more dimensions
of well-being. Examples of such dimensions can be health, literacy, income, and
social rights (e.g. communing with friends, access to banking facilities, labor market
participation), etc. In other words, social exclusion is a denial of human rights and it
segregates people from social relations, thus, blocking them from full participation
in normal activities of the society. It is a combined result of personal deprivations
in terms of individuals’ exclusion from regular participation in society functionings.
It is a failure of the society to provide basic rights of human living conditions.
Thus, social exclusion arises from the absence of consumption of the individuals due
to inability to afford, not due to their preferences. The affected individuals become
socially isolated and unimportant. Gender, caste, ethnic discrimination may translate
into social exclusion. From general perspective, it may be defined as the process that
excludes people from complete participation in the society in which they live. Hence
socially excluded individuals are unable to enjoy theminimal standard of well-being.
(For a recent treatment, see Atkinson et al. 2017.)

The chapter presents a formal treatment of social exclusion in an axiomatic frame-
work. It also investigates the implications of a social exclusion dominance relation
in terms of aggregate exclusion measures and a T-transformation, a transformation
reflecting egalitarianism. The essay clearly argues that social exclusion should not
be equated with multidimensional inequality or poverty.

Material deprivation is concerned with economic tightness arising from inability
of an individual to reach minimal consumption in dimensions representing material
living conditions. Qualitative dimensions such as whether a person is sick or not do
not come under the purview of analysis of material deprivation. While multidimen-
sional poverty, in addition to,material dimensions takes into non-material dimensions
like communing with friends also, material deprivations looks into living conditions
in former dimensions only. In their report prepared for the Commission of Economic
Performance and Social Progress, formed at the initiative of the French Government,
Stiglitz et al. (2009) suggested the inclusion of dimensions indicating material com-
fort for evaluation ofwell-being of a population from amultidimensional perspective.

In the eleventh essay of the volume, prepared jointly withWalter Bossert and Con-
chita D’Ambrosio, published in Review of Income and Wealth, 2013, an analytical
discussion on material deprivation is presented. A person is assumed to be materially
deprived if he is found to be deprived in at least one dimension. This contrasts with
the intersectionmethod of identification ofmaterial deprivationwhich requires depri-
vation in all the dimensions. The material deprivation score of a person is defined
as the number of dimensions in which he happens to be deprived. The essay charac-
terizes a social material deprivation index as a weighted sum of individual material
deprivation scores and investigates its properties. The index characterized is quite
general in the sense that it includes an arbitrary number of dimensions and no spe-
cific definition of materialistic dimensions is used. It is also employed to evaluate
material deprivation in the European Union. Various combinations of materialistic
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dimensions can be used to illustrate our general index. However, in the essay, for
illustrative purpose, the set of materialistic dimensions proposed by the European
Union are considered.

Stochastic dominance is a standard tool for ordering of social situations, for
instance, welfare ranking of income distributions (Atkinson 1970), ranking risky
prospects on the basis of rate of returns (Levy 2006; Chakravarty 2013) etc. The
variables considered are generally assumed to be of continuous type. But as we
have argued earlier, often dichotomization becomes necessary to indicate a person’s
achievements in dimensions like health, literacy, etc. There can be a clear division of
the total number of dimensions into functioning score, the number of dimensions in
which the person’s achievements are at the respective desired levels, and the depri-
vation count, the number of dimensions in which he is deprived. Consequently, the
functioning score of a person is a non-negative integer varying between 0 and the
total number of dimensions of well-being. The twelfth chapter of the volume, written
jointly with Claudio Zoli, published in Journal of Economic Theory, 2012, identi-
fies analytically the necessary and sufficient conditions under which one vector of
functioning scores integer generalized Lorenz dominates that of another. The integer
generalized Lorenz curve of a vector of functioning scores is the plot of cumulative
functioning scores, divided by the population size, against cumulative population
shares, when the scores are ranked from the lowest to the highest. If the generalized
integer Lorenz curve of a vector of functioning scores lies nowhere below that of
another, we say that the former integer generalized Lorenz dominates the latter. This
is also same as the stipulation that the former second-order integer dominates the
latter. It is rigorously shown that if the vector of functioning scores of one population
dominates that of another by the above criterion, then the former can be obtained
from the latter by a sequence of transformations satisfying monotonicity and non-
increasingness of marginal social evaluation, where a social evaluation function is
a real valued function defined on the set of vectors of functioning scores. The con-
verse is also true. According to monotonicity, if the functioning score of a person
increases by 1, then social evaluation of the profile of functioning scores cannot
reduce. Non-increasingness of marginal social evaluation demands that an increase
in the functioning score of a person by 1 has higher impact on social evaluation
the lower is the score of the person. These two conditions are also equivalent to
the requirement that the generalized Gini social evaluation function cannot assume
a lower value for the former profile than for the latter one. If the total number of
functioning scores of the two profiles are the same, then our result can be regarded as
integer counterpart to a well-known result on welfare ranking in income distribution
literature (see Atkinson 1970; Rothschild and Stiglitz 1970).

The final chapter of the volume, prepared jointlywithMariaAna Lugo, for Oxford
Handbook of Well-Being and Policy (edited by Adler and Fleurbaey 2016), presents
a survey of multidimensional indicators of welfare, inequality, and poverty. Given
thatwell-being of a population is amultidimensional phenomenon,multidimensional
economic inequality summarizes the level of dispersion arising from the distribution
of achievements in different dimensions ofwell-being among individuals in a society.
For both inequality and poverty, two different approaches are analyzed. The first is a
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direct approach which begins by specifying a set of desirable postulates for a general
indicator and the indices under consideration are scrutinized on the basis of these
postulates. The second approach defines a measure of well-being at the outset and
an underlying index is defined at the next step.

Aggregation of dimension-by-dimension indicators of inequality or poverty does
not give us a true picture of the desired objective since this dashboard-based approach
ignores a noteworthy feature of analysis of multidimensional well-being, possible
correlation, a measure of inter-dimensional association.

Atkinson’s multidimensional inequality index, which can be regarded as a mul-
tidimensional translation of the single dimensional Atkinson index, determines the
proportion of total achievements in each dimension that could be saved if the society
distributed the totals for different dimensions equally among persons without any
loss of welfare. It also gives the fraction of welfare lost through unequal distribution
of totals of different dimensional achievements. The chapter presents a conscientious
discussion on this quantifier of multidimensional inequality.

I wish to express sincere gratitude to my coauthors Walter Bossert, François
Bourguignon, Nachiketa Chattopadhyay, Conchita D’Ambrosio, Joseph Deutsch,
Maria Ana Lugo, Zoya Nissanov, Jacques Silber and Claudio Zoli for generously
permitting me to include our joint contributions in this volume. I sincerely thank
Anjan Mukherji who went through an earlier draft of this introductory chapter and
offered several suggestions. Nandish Chattopadhyay generated the figure files and
MS Word versions of some of the chapters were prepared by Chunu Ram Saren
that were available as journal articles in published form. It is a pleasure for me to
acknowledge the help I received from them.
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Ethically Flexible Measures of Poverty

Satya R. Chakravarty

Abstract This paper introduces new measures of both relative and absolute poverty
using the notion of representative income of a community corresponding to the
censored income distribution. These new measures satisfy the monotonicity and
transfer axioms proposed by Sen (1976) in all cases.
Abstract Des mesures de pauvrete′ e′thiquement flexibles. Ce me′moire
pre′sente des measures nouvelles de lapauvrete′ relative et absolute�a partir
de la notion de revenu representatif d’une communaute′ correspondant �a la
re′ parti tion du revenu censure′ au sens de Takayama. Ces mesures nouvelles sat-
isfont aux axiomes de monotonici te′ et de transfert propose′par Sen (1976) dans
tous les cas.

1 Introduction

This study proposes new indices for the measurement of poverty through a social
welfare approach, building on the papers by Takayama (1979), Blackorby and Don-
aldson (1980a), and Clark et al. (1981). Blackorby and Donaldson constructed their
poverty index employing a social evaluation function defined on the incomes of the
poor. With their poverty index it is possible that a transfer of income from a poor
person to the richest poor person may actually reduce the value of the index if the
transfer enables its recipient to cross the poverty line, thus violating what is known
as the transfer axiom (see the following section). Takayama defined the censored
income distribution as one where all incomes above the poverty line are set equal to
the poverty line, and he then used the Gini index of the censored income distribu-
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tion as an index of poverty. But this index violates the monotonicity axiom (see the
next section). The same difficulty arises with the other indices based on the same
approach proposed by Hamada and Takayama (1977). Clark, Hemming, and Ulph
defined the social evaluation function over the censored income distribution and used
a Blackorby–Donaldson type approach to construct their poverty index. However,
they did so only for the symmetric mean of order α(< 1) social evaluation function.

In this paper, we recognize that the Clark, Hemming, and Ulph approach does not
depend upon the use of such a restricted social evaluation function andwe present the
general approach implicit in the Clark, Hemming, and Ulph example. All the indices
introduced here will satisfy both the monotonicity and transfer axioms. We propose
measures of the relative as well as the absolute variety. The relative measures are
related to the Atkinson–Kolm–Sen (AKS) relative inequality indices (see Atkinson
1970; Kolm 1969; Sen 1973) and the absolute measures to the Blackorby–Donaldson
(BD) absolute inequality indices (see Blackorby and Donaldson 1980b), if applied
to the censored income distribution. The social evaluation functions that we employ
here are strictly S-concave.1 That is, if two censored income distributions have the
same mean and if one is more unequal than the other (by the Lorenz criterion), then
the former is ranked as worse than the latter by the social evaluation function. For a
given poverty line, this property is preserved in the indices we suggest for poverty
measurement.

2 Properties for a Measure of Poverty

With a population of size n, the distribution of incomes is represented by a vector
y = (y1, y2, . . . , yn), where yi ≥ 0 ∀ i = 1, 2, . . . , n. Let us assume that the
incomes are arranged in nonincreasing order, that is, y1 ≥ y2 ≥ · · · ≥ yn . Let
q(≤ n) be the number of the poor who have incomes not above the poverty line z
(given exogenously).

A poverty index which is assumed to be a nonnegative scalar function of y, and
z is said to be a relative poverty index or an absolute poverty index according as it
satisfies (a) or (b).

(a) The value of the poverty index remains unchanged when all the incomes and
the poverty line itself are multiplied by the same positive scalar.

(b) The value of the poverty index remains unchanged when the same amount of
income is added to or subtracted from all the incomes and the poverty line itself.

A poverty index P(y, z)—whether a relative index or an absolute index—is
required to satisfy the following properties:

1A numerical function f defined on Rn (the n-dimensional Euclidean space) is said to be S-concave
if f (yB) ≥ f (y) for all y∈Rn and for all bistochastic matrices B of order n. f is strictly S-concave
if the inequality is strict whenever yB is not a permutation of y. It can be shown that (Berge 1963)
S-concavity implies symmetry; and that symmetry and quasiconcavity imply S-concavity, but the
reverse is not true.
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1. P(y, z) is independent of the incomes of the rich. (This is a strong justification
for basing the poverty index on the censored income distribution.)

2. P(y, z) is increasing in z.
3. Given other things, a reduction in income of a person below the poverty line must

increase the poverty index (Monotonicity Axiom).
4. Given other things, a pure transfer of income from a person below the poverty

line to anyonewho is richermust increase the poverty index, unless the number of
persons below the poverty line is strictly reduced by the transfer (Weak Transfer
Axiom).

5. Given other things, a pure transfer of income from a person below the poverty
line to anyone who is richer must increase the poverty index (Strong Transfer
Axiom).

6. P(y, z) is left unchanged by a permutation of the incomes (Impartiality).
7. P(y, z) is jointly continuous in (y, z).

Property 1 states that income variations of any individual above the poverty line
do not change the poverty index unless the individual falls below the poverty line.
Property 2 demands that the index of poverty should increase as the poverty line
representing the subsistence income level is raised. Properties 3, 4, and 5 have been
discussed in the literature (see, e.g., Sen 1976, 1977, 1979; Chakravarty 1980, 1981;
Kakwani 1980) and need no fresh discussion. Property 6 is unavoidable as long as
income recipients are not distinguished by anything other than income. In addition
to the above properties, the poverty index may be required to satisfy the population
symmetry axiom, which is stated as follows: “If the same population is replicated
several times, then the poverty index should be the same for the original income
distribution and for the distribution obtained through replication.” This axiom is
parallel to Dalton’s (1920) principle of population for inequality indices.

3 Relative Measures of Poverty

Beforewe propose the new index, we shall briefly discuss theAKS relative inequality
indices, the Takayama and Hamada–Takayama indices, and the Blackorby–Donald-
son index.

3.1 The AKS Relative Inequality Indices

Throughout the third section, we shall assume thatW, the social evaluation function,
is continuous, increasing, strictly S-concave and homothetic. Homotheticity means
W should be of the form

W = φ
(
W̄ (y)

)
, (1)
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where φ is increasing in its argument and W̄ is positively linearly homogeneous.
The AKS representative income (ξ) of the population is that income that, if dis-

tributed equally, is ethically indifferent (indifferent as measured by the social evalu-
ation function) to y and is implicitly defined by

W (ξ 1n) = W (y), (2)

where 1n is the n-co-ordinated vector of ones. Solving (2) (uniquely) for ξ , we get

ξ = E(y), (3)

where E is a particular numerical representation of W. E is homogeneous of degree
one.

Letting λ > 0 be the mean of the distribution y, the AKS inequality index is
defined as

I (y) = 1 − E(y)/λ. (4)

Clearly, I is homogeneous of degree zero; that is, it is a relative index. Further, I
is strictly S-convex (it agrees with Lorenz quasi-ordering) ifW is strictly S-concave
and, in this case, it is symmetric and ranges between zero and one, attaining the value
of zero at equality. Given a functional form for I, we can find E andW from (4), (3),
and (1).

3.2 The Takayama and Hamada–Takayama Indices

Takayama (1979) defined the censored income distribution y* corresponding to y as

y∗ = (
y∗
1 , y

∗
2 , . . . , y

∗
n

)

= (
z, z, . . . , z, yn−q+1, . . . , yn

)
. (5)

He defined the Gini coefficient I ∗
G of the censored income distribution y∗ as the

Gini coefficient of poverty of distribution y.

I ∗
G(y) = 1

2 n2 λ∗

n∑

i=1

n∑

j=1

∣∣y∗
i − y∗

j

∣∣

= 1 − 1

n2 λ∗

n∑

i=1

n∑

j=1

(2i − 1)y∗
i , (6)

where λ∗ = 1
n

n∑

i=1
y∗
i .
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Other measures of relative inequality have been applied to the censored income
profile to derive correspondingmeasures of poverty inHamada andTakayama (1977).

To show that all such indices violate the monotonicity axiom2 we assume, for
simplicity, that all the incomes are below the poverty line.3 Now suppose all the
incomes are multiplied by some positive scalar c such that all of them remain below
the poverty line. Then a poverty measure should increase or decrease according as c
is less than or greater than unity. But the Takayama andHamada–Takayamameasures
remain invariant under such circumstances. Hence we have the following theorem.

Theorem 1 If a relative inequality index defined on the censored income distribution
is used as a relative poverty index (the Takayama and Hamada–Takayama approach),
the poverty index will violate the monotonicity axiom.

3.3 The Blackorby–Donaldson Index

In the case of the Blackorby–Donaldson poverty index we shall additionally assume
that the social evaluation function W is completely strictly recursive (any group of
poorer people is strictly separable from the richer ones).4 This particular requirement
allows the “representative income of the poor” to be defined for each possible q and
to be independent of the incomes of the rich. The representative income of the poor
ξp is given by

W
(
y1, y2, . . . , yn−q , ξp, ξp, . . . , ξp

) = W (y). (7)

SinceW is completely strictly recursive, ξp is independent of
(
y1, y2, . . . , yn−q

)
,

and we may write

ξp = Eq
(
yn−q+1, . . . , yn

)
, (8)

where Eq is homogeneous of degree one.
Blackorby and Donaldson (1980a) considered

B(y, z) = q/n
[
1 − ξp/z

]
, (9)

as a general relative poverty index. B (y, z) is Sen’s (1976) index if the evaluation
is done with the Gini social evaluation function of the poor (see Blackorby and

2Kakwani (1981) demonstrates that Takayama’s index violates the monotonicity axiom only when
the poverty line strictly exceeds the median of the income distribution.
3In such a case, if all the incomes assume a common value, then the Takayama and Hamada
Takayama indices take the value zero, irrespective of the common income value. This result is
clearly undesirable.
4For a detailed discussion of the notion of recursivity, see Blackorby et al. (1978, ch. 6).
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Donaldson 1980a, b). The Gini function5 is not completely strictly recursive, but
complete strict recursivity is only a minimal requirement for B (y, z).

The index B (y, z) suffers from a number of defects; apart from the require-
ment that the social evaluation function is completely strictly recursive. First, B
(y, z) is not continuous. To prove this, let yn−q+1 = z and yn−q+2 < z. The
income profile is y0 = (

y1, . . . , yn−q , z, yn−q+2, . . . yn
)
. We now raise yn−q+1

by τ > 0 lowering the number of poor to (q − 1). The new income profile is
yτ = (

y1, . . . , yn−q , z + τ yn−q+2, . . . yn
)
. Let ξ 0

p and ςτ
p denote the representative

incomes of the poor corresponding to the income profiles y0 and yτ , respectively.
Since W is strictly recursive, we have

W (yτ ) = W
(
y1, . . . , yn−q , z + τ, ξ τ

p , . . . , ξ
τ
p

)
(10)

and

W
(
y0

) = W
(
y1, . . . , yn−q , z, ξ

τ
p , . . . , ξ

τ
p

)

= W
(
y1, . . . , yn−q , ξ

0
p, . . . , ξ

0
p

)
. (11)

By strict S-concavity, ξ τ
p < z

(
since yn−q+2 < z

)
and

ξ 0
p <

(
(q − 1) ξ τ

p + z
)
/q. (12)

Now

B
(
y0, z

) = (q/n)
[((

z − ξ 0
p

)
/z

)]

> (q/n)
[
1 − (

(q − 1)ξ τ
p + z

)
/qz

]

= (q/n)
[(
qz − (q − 1)ξ τ

p − z
)
/qz

]

= ((q − 1)/n)
[(
z − ξ τ

p

)
/z

]

= B(yτ , z). (13)

Equation (13) must hold for all τ > 0. But B
(
y0, z

)
is independent of τ , and,

because of independence of the incomes of the rich (guaranteed by strict recursivity),
so is B(yτ , z). Therefore, continuity of B requires B

(
y0, z

)
> B

(
y0, z

)
, a contradic-

tion.6

We now show that B (y, z) violates the strong transfer axiom. Consider the income
profile ȳ = (

y1, . . . , yn−q , z − υ/q, z − 2υ/q, . . . , z − ((q − 1)υ)/q, z − υ
)

where υ > 0 is small. Transfer υ amount of income from the
poorest person to the richest poor person. The new income profile is
yυ = (

y1, . . . , yn−q , z + ((q − 1)υ)/q, z − 2υ/q, . . . , z − ((q − 1)υ)/q, z − 2υ
)
.

5For a discussion, see Blackorby and Donaldson (1978).
6The author thanks one of the referees for pointing to the discontinuity aspect of B (y, z)
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Denote the representative incomes of the poor corresponding to the distributions ȳ
and yυ by ξ̄p, and ξυ

p , respectively. Since the social evaluation function is continuous
and υ > 0 is arbitrary, we can make

(
z − ξ̄p

)
very close to

(
z − ξυ

p

)
so that the

inequality

(q/n)
[(
z − ξ̄p

)
/z

]
< ((q − 1)/n)

[(
z − ξυ

p

)
/z

]
(14)

does not hold. This shows that B (y, z) violates the strong transfer axiom.
We summarize the above results in the following theorem.

Theorem 2 The Blackorby–Donaldson relative poverty index violates (i) continuity
and (ii) the strong transfer axiom.

3.4 The New Index

Let ξ ∗ denote the representative income corresponding to the censored income dis-
tribution y∗ = (

y∗
1 , . . . , y

∗
n

)
. So

ξ ∗ = E
(
y∗
1 , y

∗
2 , . . . , y

∗
n

)

= E
(
z, z, . . . , z, yn−q+1, . . . , yn

)
. (15)

Our new relative poverty index Q is the proportionate gap between the poverty
line z and the representative income ξ ∗ corresponding to y∗; that is,

Q = (z, y) = (
z − ξ ∗)/z. (16)

The index Q lies in the interval [0, 1], the lower and upper limits being attained,
respectively, when yi ≥ z ∀ = 1, 2, . . . , n and when yi = 0 ∀ i = 1, 2, . . . , n. Since
E is homogeneous of degree one, we can rewrite Q (y, z) as

Q(y, z) = 1 − E
(
1, 1, . . . , 1, yn−q+1/z, . . . , yn/z

)
. (17)

Since E is increasing,Q is increasing in z. It is obvious thatQ satisfies continuity.
The claim thatQ satisfies the monotonicity axiom follows from increasingness of

E. Since E(y∗) is strictly S-concave, it ranks any Lorenz superior censored income
distribution with the same mean as y* as better than y*. This is equivalent to the
condition that y* is obtained from theLorenz superior distribution by afinite sequence
of transformations transferring income from the worse off persons to the better off
persons (see Dasgupta et al. 1973, Theorem 1, 181–3). This shows that Q satisfies
the weak and strong versions of the transfer axiom. Impartiality of Q follows from
symmetry of W, which is a consequence of S-concavity. We therefore have proved
the following.
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Theorem 3 The new relative poverty index Q (y, z) satisfies all the properties listed
(1–7) in the second section.

The specific functional form of W will determine whether the index satisfies the
population symmetry axiom or not.

Our next result is as follows.

Theorem 4 If the social evaluation function is completely strictly recursive, then Q
(y, z) and B (y, z) are related by

B(y, z) < Q(y, z) <
(
z − ξp

)
/z (18)

as long as ξp < z and q < n.

Proof Using complete strict recursivity, we have

ξ ∗ = E
(
z, . . . , z, yn−q+1, . . . , yn

)

= E
(
z, . . . , z, ξp, . . . , . . . ξp

)
. (19)

By strict S-concavity, we have

ξ ∗ <
(
q ξp + (n − q)z

)
/n. (20)

∴ Q(y, z) = (
z − ξ ∗)/z

>
(
nz − qξp − (n − q)z

)
/nz

= (
nz − q ξp − nz + qz

)
/nz

= q/n
[(
z − ξp

)
/z

]
. (21)

In (19), since ξp < z and E is strictly S-concave, ξ ∗ > ξp. Hence

Q(y, z) = (
z − ξ ∗)/z <

(
z − ξp

)
/z (22)

and (18) is established.7

Note that the bounds is (18) are actually attained with

W (y) = min{yi } (themaximumcriterion) andW (y) =
n∑

i=1
yi (which is S-concave

but not strictly so).
We can rewrite Q in (16) as

Q(y, z) = 1 − (
λ∗(1 − I ∗(y))

)
/z, (23)

7The author is grateful to one of the referees for this result.
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where I ∗(y) is the AKS inequality index based on y∗. Therefore, for two censored
income distributions x* and y* with the same mean λ∗, we have

Q(y, z) ≥ Q(x, y)⇔I ∗(y) ≥ I ∗(x). (24)

It is now clear that given (16), to every homothetic social evaluation function there
corresponds a different relative poverty index. These indices will differ only in the
manner inwhich the amount of relative inequality in the censored income distribution
is taken into account. Therefore, the indexQ is a fairly natural translation of a relative
inequality index of a censored income distribution into a relative poverty index.

Examples 1. Consider the social evaluation function that corresponds to the single-
parameter Ginis (Donaldson and Weymark 1980). Then

W̄β

(
y∗) = 1

nβ

n∑

i=1

[
iβ − (i − 1)β

]
y∗
i , (25)

where β > 1. The requirement β > 1 is necessary and sufficient for W̄β(y∗) to be
strictly S-concave in y*. The associated poverty index is

Qβ(y, z) = 1 − 1

nβ z

n∑

i=1

[
iβ − (i − 1)β

]
y∗
i . (26)

The distributional sensitivity of Qβ increases asβ increases.Whenβ = 2, W̄2(y∗)
is the Gini social evaluation function for the censored income distribution and when
β→ ∞, W∞(y∗) = min

{
y∗
i

}
(the maximin social evaluation function producing

Q∞(y, z) = 1 − mini
{
y∗
i

}
/z, the relative maximin index.

2. Assume that the social evaluation function is the symmetric mean of order α,then

Eα

(
y∗) =

[
1

n

n∑

i=1

(y∗
i )

α

]1/α

, α < 1, α �=0,

=
n∏

i=1

(
y∗
i

)1/n
, α = 0. (27)

The corresponding poverty index is

Qα(y, z) = 1 −
⎛

⎝
[
1

n

n∑

i=1

(
y∗
i

)α

]1/α
⎞

⎠/z, α < 1, α �=0,



22 S. R. Chakravarty

= 1 −
(

n∏

i=1

(
y∗
i

)1/n
)

/z, α = 0. (28)

which is the measure of Clark, Hemming, and Ulph. A transfer from person i to
person j will increase Qα , by a larger amount, the richer is person j. The smaller the
value of α the more is the sensitivity of Qα to transfers. As α→ − ∞,

E−∞
(
y∗) = min

i

{
y∗
i

}

and the associated poverty index is the relative maximin index.

4 Absolute Measures of Poverty

In this section, we shall assume thatW is continuous, increasing, strictly S-concave,
and translatable. In the case of the Blackorby–Donaldson poverty index, we shall
further assume that W is completely strictly recursive. W is translatable if it can be
written as

W (y) = φ
(
Ŵ (y)

)
, (29)

where φ is increasing in its argument and Ŵ is unit translatable. Ŵ is said to be
unit-translatable if

Ŵ (y + a1n) = Ŵ (y) + a, (30)

where α is any scalar such that y + α 1n is in the domain of definition of W. The
overall representative income ξ can be written as

ξ = F(y), (31)

where F is unit translatable. IfW is completely strictly recursive, we can write ξp as

ξp = Fq
(
yn−q+1,, . . . , yn

)
, (32)

where Fq is unit translatable.
We now present results analogous to those presented in the third section. We start

with a discussion of the BD absolute inequality index. The BD inequality index
corresponding toW is defined as

A(y) = λ − F(y). (33)
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A is an absolute index (i.e., it is invariant with respect to equal absolute changes
in all incomes), because F is unit-translatable. Further, A is strictly S-convex (it
agrees with Lorenz quasi-ordering) if W is strictly S-concave, and in this case it is
symmetric, nonnegative, and equal to zero at equality. Given a functional form for
A, we can find W from (33), (31), and (29).

At this stage, one might consider the absolute measures of inequality, when
applied to the censored income profile, as absolute measures of poverty. However,
the approach is not a fruitful one in view of theorem 5, which is easy to demonstrate.

Theorem 5 If an absolute inequality index defined on the censored income dis-
tribution is used as an absolute poverty index, the poverty index will violate the
monotonicity axiom.

Blackorby and Donaldson (1980a) suggested the use of

D(y, z) = q
[
z − ξp

]
, (34)

as a general absolute poverty index. The following theorem, whose proof is com-
pletely analogous to that of Theorem 2, shows that as an absolute poverty index D
(y, z) is not a suitable candidate.

Theorem 6 The Blackorby–Donaldson absolute poverty index violates (i) continu-
ity and (ii) the strong transfer axiom.

In contrast, as a general absolute poverty index we introduce the measure

T (y, z) = z − ξ ∗

= z − F (z, . . . , z, yn−q+1,, . . . , yn). (35)

T lies between zero and z. The index T measures the per capita poverty. In a
censored income profile if each person were given (z − ξ ∗) amount of money, then
the indexwould be zero (sinceF is unit-translatable) at an aggregate cost of nT (y, z).
Hence nT (y, z) gives the money unit cost of poverty. Therefore, we can also use the
index

T̄ (y, z) = n
(
z − ξ ∗) (36)

as an absolute poverty index. This index measures total absolute poverty rather than
per capita poverty. The specific functional form of W determines whether the per
capita indexwill satisfy the population symmetry axiom or not. If the per capita index
meets this axiom, then replicating the population would raise T̄ (y, z) in proportion
to n. The following theorems can be proved easily

Theorem 7 The new absolute poverty index T (y, z) satisfies all the properties listed
(1–7) in the second section.

Theorem 8 IfW is completely strictly recursive, thenD (y, z) and T (y, z) are related
by
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D(y, z) < nT (y, z) < n
(
z − ξp

)
, (37)

as long as ξp < z and q < n.
We can rewrite T in (35) as

T (y, z) = z − λ∗ + A∗(y), (38)

where A∗(y) is the BD absolute inequality index defined on y*. Therefore, for two
censored income distributions y∗ and x∗ with the same mean λ∗, we have

T (y, z) ≥ T (x, y)⇔A∗(y) ≥ A∗(x). (39)

An absolute poverty index that depends on absolute differentials only exists for
every translatable social evaluation function defined on the censored income distri-
bution.

Examples 1. Let the social evaluation function correspond to the single-parameter
Ginis:

Ŵβ

(
y∗) = 1

n

n∑

i=1

[
iβ − (i − 1)β

]
y∗
i , (40)

where β > 1. This social evaluation function is homothetic as well as translatable.
The associated poverty index is

Tβ(y, z) = z − 1

nβ

n∑

i=1

[
iβ − (i − 1)β

]
y∗
i . (41)

For β = 2, the index becomes the absolute Gini index of poverty, and β→ ∞,
T∞(y, z) = z − mini

{
y∗
i

}
, the absolute maximin index.

2. Another alternative of interest arises from the Kolm-Pollak social evaluation
function. Its implicit poverty index is

TK P(y, z) = z −
[

−1

θ
log

(

(1/n)

n∑

i=1

e−θy∗
t

)]

= 1

θ
log

[
1

n

n∑

i=1

eθ(z−y∗
i )

]

, (42)

where θ > 0. Here θ is a free parameter which determines the curvature of the social
indifference surfaces. As θ increases, the measure attaches more weight to transfers
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lower down the income scale. As θ→ ∞, TK P approaches the absolute maximin
index.

The general measure introduced in this section incorporates an absolute measure
of inequality of a censored income profile for purposes of measurement of poverty.
To every translatable social evaluation function there corresponds a particular index.
These indices will differ in the way they take account of the absolute inequality in
the censored income distribution.

5 Conclusions

While the Takayama and Hamada–Takayama indices do not satisfy the monotonicity
axiom and Blackorby–Donaldson’s ethical indices do not satisfy the transfer axiom,
the general ethical indices introduced in this paper satisfy both the axioms. These
indices make use of the notion of representative income of the population corre-
sponding to the censored income distribution. To every homothetic social evaluation
function there corresponds a relative poverty index of the type and for every translat-
able social evaluation function there exists a corresponding absolute poverty index.
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On Shorrocks’ Reinvestigation of the Sen
Poverty Index

Satya R. Chakravarty

Abstract This paper demonstrates that the Shorrocks (Econometrica 63:225–1230,
1995)modification of the Sen (Econometrica 44:219–231, 1976) poverty index drops
out as a particular case of theChakravarty (Canadian Journal of Economics 16:74–85,
1983) general ethical index of poverty.

Keywords Sen index · Shorrocks modification · Chakravarty general ethical index

In a pioneering article, Sen (1976) argued that a poverty index should meet two
desirable properties: the monotonicity axiom, which requires poverty to increase if
the income of a poor person decreases; and the transfer axiom, which demands that
poverty should increase under a transfer of income from a poor person to anyone
who is richer. He also axiomatically derived a poverty index that, for a large number
of poor persons, is given by

S(y, z) = H I + H(1 − I )G, (1)

where y = (y1, y2, . . . , yn), y1 ≤ y2 ≤ . . . ≤ yn , is the income distribution
in an n-person economy; z > 0 is the poverty line; I = ∑q

i=1 (z − yi )/qz, the
income gap ratio, with q being the number of poor persons, that is, yi ≤ z for
i = 1, . . . , q, yi > z for i = q + 1, . . . , n; H = q/n, the head-count ratio; and
G = 1 − ∑q

i=1 (2(q − i) + 1)yi/mq2, the Gini index for the poor, with m being
their mean income. In the literature, S(y, z) is popularly referred to as the Sen index.

Blackorby and Donaldson (1980) offered an alternative interpretation and a gen-
eralization of S(y, z) as an ethical index. Unfortunately, the Sen–Blackorby–Don-
aldson poverty indices violate continuity and the transfer axiom [Chakravarty (1983,
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1990)], Chakravarty (1983) proposed a general ethical index that avoids these short-
comings.

In a recent article, Shorrocks (1995) suggested a modification of the Sen index
whichmeets continuity, themonotonicity, and the transfer axioms. It can also be inter-
preted in terms of the area under the inverse generalized Lorenz curve for poverty
gaps. We show that this modification is in fact a particular case of the general index
introduced by Chakravarty (1983). To see this, define the censored income y∗

i associ-
atedwith yi asmin (yi , z). Thus, the censored incomedistribution y∗ corresponding to
y is obtained by replacing all non-poor incomes by the poverty line. LetW be the con-
tinuous, increasing, strictly S-concave, homothetic social evaluation function (SEF)
defined on the income distributions. The representative income y∗

i corresponding to
y* is that level of income which, if given to each person, will make the distribution
y∗ ethically indifferent.

Finally,

W (y∗
f , . . . , y

∗
f ) = W (y∗). (2)

The general ethical index proposed by Chakravarty (1983) is given by

C(y, z) = 1 − y∗
f

z
. (3)

Now, suppose that the evaluation in (2) is done with respect to the Gini SEF. Then
y∗
f = ∑n

i=1 (2(n − i) + 1)y∗
i /n

2, which, when substituted in (3), gives

C(y, z) =
n∑

i=1

(2(n − i) + 1)(z − y∗
i )/n

2z

=
q∑

i=1

(2(n − i) + 1)(z − yi )/n
2z, (4)

the Shorrocks modification of the Sen index.
Though the index (4) has been proposed earlier in the literature, Shorrocks’ ana-

lytical derivation along with its graphical interpretation enriches our understanding
of the issue substantially.
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A New Index of Poverty

Satya R. Chakravarty

Abstract This paper introduces a new index of poverty. The index satisfies all the
axioms for ‘a good index of poverty’.

Keywords Measurement of poverty · A new index based on the “utility gaps” of
the poor

1 Introduction

Inmeasuring the incidence of poverty, themost widely used statistic is the proportion
of population that falls below the poverty line. But this index does not reflect the
intensity of poverty suffered by the poor. As an alternative, the aggregate value of the
difference between the incomes of the poor and the poverty line has been considered.
This index is insensitive to transfers of income among the poor so long as nobody
crosses the poverty line as a result of such transfers. In his pioneering paper, Sen
(1976) introduced a superior (ordinal) index of poverty. Alternatives and variations
of Sen’s index have been proposed in the literature (see Sect. 4 for a discussion). But
almost all of the existing indices have one or more shortcomings.

This paper introduces a new poverty index that avoids many of the shortcom-
ings of other indices. Moreover, the index possesses some attractive properties, e.g.,
attaching greater weight to transfers lower down the income scale and decompos-
ability.
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2 Axioms for a Good Index of Poverty

With a population of size n, the distribution of incomes is represented by a vector
y = (y1, y2, . . . , yn), where yi ≥ 0∀i = 1, 2, . . . , n. We assume that the incomes
are arranged in nondecreasing order, i.e., y1 ≤ y2 ≤ . . . ≤ yn, q(≤ n) is the number
of the poor who have incomes below the poverty line z (given exogenously).

A poverty index P which is assumed to be a nonnegative scalar function of y and
z should satisfy the following properties:

(i) Continuity (C): P(y, z) is jointly continuous in (y, z).
(ii) Independence of the incomes of the rich (IIR): Given the number of people,

the number of poor and the poverty line, P (y, z) is independent of the incomes
of the rich.

(iii) Scale invariance (SI): P (y, z) remains unchanged if all the incomes and the
poverty line itself are multiplied by the same positive scalar.1

(iv) Normalization (N): If all n persons have zero income, then P (y, z) takes the
value unity2

(v) Increasingness in subsistence income (ISI): P (y, z) is increasing in z.
(vi) Monotonicity (M): Given other things, a reduction in incomeof a person below

the poverty line must increase P (y, z).
(vii) Transfer (T ): Given other things, a transfer of income from a poor person to

anyone who is richer increases P(y, z).3

(viii) Diminishing transfer (DT): If a transfer of a fixed amount of income takes
place from the i th poorwith income yi to a poorwith income (yi + h), then for
a given h > 0, the magnitude of increase in P (y, z) decreases as i increases.
This axiom gives more weight to transfers of income at the lower end of the
distribution than at the upper ends. There is a considerable discussion of a
similar axiom in the literature on income inequality (see Atkinson 1970; Sen
1973; Kolm 1976).

(ix) Impartiality (I): P (y, z) is left unchanged by a permutation of the incomes.
This axiom is unavoidable as long as income recipients are not distinguished
by anything other than income.

(x) Decomposability (D): If the population is divided into two or more mutually
exclusive groups or regions, then the overall poverty index equals theweighted

1Strictly speaking, a poverty index satisfying axiom Sl is called a relative poverty index. On the
other hand, a poverty index is called an absolute poverty index if it remains unchanged when the
same amount of income is added to or subtracted from all the incomes and the poverty line itself.
For a detailed discussion, see Blackorby and Donaldson (1980a) and Chakravarty (1983).
2This axiom rules out any utility function which is undefined for zero incomes, e.g. a logarithmic
utility function.
3AxiomsM and T were introduced by Sen (1976) (but not used in the derivation of his index). Sen
(1977, 1979, 1981) questioned the merit of using a transfer axiom that allows the possibility of a
change in the number of persons below the poverty line occurring as a result of transfers considered
in the axiom, and opted for a weak transfer (WT) axiom. Sen stated his weak transfer axiom as:
Given other things, a transfer of income from a poor person to a richer poor person that does not
change the number of poor increases P (y, z).
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average of the poverty indices for different groups, the weights being the
population shares of different groups.

If the population is partitioned into groups according to some characteristic (e.g.,
age, sex, race, occupation, and educational standard), then a poverty index satisfying
axiom D is useful in analyzing the influence of poverty within each group on the
aggregate poverty. This helps us to inquire into factors contributing to poverty using
income data and in choosing and implementing policies for the reduction of poverty.

In deriving the new index, we shall use only axioms N and SI. The other axioms
will be shown to be satisfied by the new index.

3 The New Index

Let Ui denote the utility function of individual i. We assume that Ui depends only
on yi . We further assume that U ′

i s are the same for all, i.e., Ui (·) = U (·) and that U
is increasing and strictly concave. Let hi = (U (z) −U (yi )) denote the utility gap of
individual i. Obviously, his are positive for the poor and nonpositive for others.

For a given income configuration y, the index of poverty Q is defined as the
normalized aggregate utility gap of the poor. That is,

Q(y, z) = A

[
q∑

i=1

U (z) −U (yi )

]
, (1)

where A > 0 is the coefficient of normalization. Therefore, given z,Q can be regarded
as a (cardinal) measure of distance separating the income profile of the poor from
the social state z1q , where 1q is the q-coordinated vector of ones.

Theorem The only poverty index of the form (1) satisfying axioms N and SI is given
by

Q(y, z) = 1

n

q∑
i=1

[
1 −

(
yi
z

)e]
, (2)

where 0 < e < 1.

Proof Q in (1) satisfying axiom N gives

A = 1

n[U (z) −U (0)] , (3)

which on substitution in (1) yields

Q(y, z) =
∑q

i=1 [(U (z) −U (y)]
n[U (z) −U (0)] (4)
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= 1

n

q∑
i=1

[
1 − f (yi )

f (z)

]
, (5)

where f (x) = U (z) −U (x).
For n = 1 and 0 < y1 < z by axiom SI the index depends only on y1/z. But for

this special case the index in (5) is 1 − [ f (y1)/ f (z)]. That is, f (y1)/ f (z) depends
on y1/z. Therefore, f (x)/ f (s) is of the form g(x/s) for some continuous function
g. This shows

f (x) = βxe, (6)

where β and e are constants (see Aczel 1966, p. 144). Increasingness and strict
concavity of f (·) require that β > 0 and 0 < e < 1. Substituting U (x) = α + βxe,
where a = U (0), in (4) we get the desired form of Q. This establishes the necessity
part of the theorem. The sufficiency can be verified by checking thatQ in (2) satisfies
axioms SI and N. �

The poverty index Q has the following properties:

(i) It lies in the interval [0, 1], the lower limit is attained in the case when there
is no person below the poverty line and the upper limit in the extreme case
described in axiom N.

(ii) It remains invariant under affine transformations of U (·).4
(iii) It satisfies axioms C, IIR, ISI,M, I, and D.
(iv) When 0 < e < 1, Q embodies a social evaluation function which is strictly

concave in the incomes of the poor and axioms T and WT are satisfied. The
change in Q due to a transfer of income between two individuals depends on
the difference in the marginal utilities of the individuals concerned. Therefore,
Q satisfies axiom DT. As e decreases, Q becomes more sensitive to transfers
lower down the income scale.

(v) For a given y and a poverty line z, Q increases as e increases, (e–1) it may be
noted, is the constant elasticity of marginal utility with respect to income.

4 A Comparison with the Existing Indices

Sen’s index is the normalized weighted sum of the income gaps gi = (z − yi ) of
the poor, the weight of gi being the rank of i in the interpersonal income ordering
of the poor. Kakwani (1980) proposed a generalization of Sen’s index where the
weight of gi is the r th power of the income rank used in Sen’s index. The motivation
for introducing the new index is to enable it to satisfy the axiom DT. Sen’s index
corresponds to r = 1 making it, as Kakwani puts it, “equally sensitive to a transfer

4This goes well beyond the ordinal information restriction imposed by Sen.
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of income at all income positions”. But as Clark et al. (1981) have pointed out, the
use of this index involves the search for an appropriate value of r because different
values of r would be needed for different distributions to meet axiom DT.

Blackorby and Donaldson (1980a) offered an alternative interpretation and a gen-
eralization of Sen’s index. As a general poverty index, they introduced the index

B(y, z) = q

n

[
z − y p

f

z

]
, (7)

where y p
f is the representative income of the poor.

5 y p
f is implicitly defined by

F(y p
f .1q) = F(y p), (8)

where yP is the income vector of the poor and F is their ordinal social evaluation
function. It is assumed that F is continuous, increasing, strictly S-concave6 and
homothetic.7

It is clear that to every homothetic social evaluation function8 there corresponds a
different poverty index of the form (7). For example, suppose that y p

j is determined
from the social evaluation function φ

(∑q
i=1 yi (q + 1 − i)r

)
, where φ′ > 0 and

r ≥ 1. Then B is Kakwani’s index. The index B may decrease if a disequalizing
transfer enables its recipient to cross the poverty line, thus violating the transfer
axiom (see Chakravarty 1981, 1983). For Sen’s index this behavior was pointed out
in Sen (1977).9

With a view to accommodating deprivation relative to individuals above the
poverty line, Takayama (1979) defined the censored income distribution as onewhere
all incomes above the poverty line are set equal to the poverty line, and then used
the Gini index of the censored income distribution as an index of poverty. Other
indices of inequality have been applied to the censored income distribution to derive
corresponding measures of poverty in Hamada and Takayama (1977). But all such
indices violate axiomM (see Sen 1979, 1981; Chakravarty 1981, 1983). In contrast

5For the population as a whole this representative income is the same as the Atkinson-Kolm-Sen
equally distributed equivalent income. See Atkinson (1970), Kolm (1969) and Sen (1973). Also,
see Blackorby and Donaldson (1978, 1980b) and Weymark (1981).
6F is S-concave if F(y pR) for all bistochastic matrics R of order q. Strict S-concavity requires
a strict inequality whenever y pR is not a permutation of yp . It can be shown that (Berge 1963)
S-concavity implies symmetry; and that symmetry and quasi-concavity imply S-concavity but the
reverse is not true. An S-concave function ranks any Lorenz superior distribution of income with
the same mean as no worse, a strictly S-concave function ranks it as better.
7Homotheticity of F is necessary and sufficient for B to satisfy axiom SI. Hornotheticity means F
should be of the form φ(F∗(y p)), where ¢ is increasing in its argument and F* is positively linearly
homogeneous.
8Blackorby and Donaldson pointed out the need for complete strict recursivity (strict separability
of a special kind that permits us to rank distributions of income among the poor independently of
the incomes of the rich) of the social evaluation function.
9Sen (1979, p. 302) argued that such behavior of an index may be treated as reasonable.
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to Kakwani’s and Takayama’s indices, Clark et al. defined a new poverty index as the
proportionate gap between z and the equally distributed equivalent income according
to the social evaluation function:

V (y∗) = 1

β

n∑
i=1

(
y∗
1

)β
, (9)

where y∗ = (y∗
1 , y

∗
2 , . . . y

∗
n ) is the censored income distribution corresponding to y

and β < 1. The resulting index is

H(y, z) = 1 −

⎡
⎢⎢⎣

1
n

n∑
i=1

(y∗
i )

β

z

⎤
⎥⎥⎦

1/β

. (10)

The index H satisfies axioms M, T, WT, and DT. But it becomes independent of
β when all the n persons are poor and have the same positive income. Independently
of how low the incomes of the poor are, the index remains unaffected by changes in
the value of the parameter β. Of course, this is no more than what Clark et al. said
about their second index

K (y, z) = q

nz

[
1

q

q∑
i=1

gε
l

] 1
ε

, (11)

where ε > 1.10 It is not clear how serious this criticism is. Denoting the equally dis-
tributed equivalent income of the population according to some continuous, increas-
ing, strictly S-concave, homothetic social evaluation function defined on the censored
income distribution by y∗

t the index H becomes a special case of the general ethical
index

L(y, z) = 1 − (y∗
f /z) (12)

if the evaluation is done with the symmetric mean of order β(< 1) social evaluation
function (see Chakravarty 1983).

5 Conclusions

In this paper, we have suggested a new index of poverty. The index has been defined
as the normalized “aggregate utility gap” of the poor. The index satisfies Sen’s mono-
tonicity and transfer axioms, and also attaches greater weight to transfers of income

10The index K behaves in the same way as B with respect to axiom T (see Chakravarty 1981).
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at the lower end of the income distribution. Moreover, if the population is parti-
tioned into groups, then the index can be decomposed into components that reflect
the partition.
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Abstract A recent trend in the study of poverty is to consider a relative poverty
line, one that is responsive to the nature of the income distribution. We develop an
axiomatic approach to the determination of an amalgam poverty line. Given a ref-
erence income (e.g., the mean or the median), the amalgam poverty line becomes a
weighted average of the absolute poverty line and the reference income, where the
weights depend on the policy maker’s preferences for aggregating the two compo-
nents. The paper ends with an empirical illustration comparing urban and rural areas
in the People’s Republic of China and India.
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1 Introduction

Even in the early years of the twenty-first century, removal of poverty remains one of
the major goals of economic policy in many countries of the world. A wide variety
of poverty indices have been proposed in the literature and the determination of an
income or consumption threshold on which the definition of poverty relies has been
a debatable issue for quite some time (see among others, Ruggles 1990; Ravallion
1994; Citro and Michael 1995). A distinction is made between an “absolute poverty
line”, which has a fixed real value over time and is given exogenously, and a “relative
poverty line” which is responsive to the income distribution.1 The major distinction
between the relative and absolute thresholds arises not from specification of their
values but from how the values change under changes in the distribution.

In fact virtually all developing countries use absolute poverty lines, whereby any
standard measure of poverty decreases if all incomes grow at the same rate (leaving
relative inequality unchanged). Following Ravallion et al. (1991), the World Bank
thus used a $1 per day poverty line for the developing world and this threshold was
updated by Ravallion et al. (2009) to $1.25 a day at 2005 purchasing power parity
(PPP). Deaton (2010) argued that many problems are involved in the calculation of
a global poverty line and correction for international price differences using PPP
exchange rates. More recently the World Bank adopted a new international poverty
line equal to $1.90 (see, Ferreira et al. 2015).

Developed countries, especially the OECD countries, on the other hand use a
constant proportion of mean or median income as the poverty line so that an equi-
proportionate increase in all incomes leaves the poverty level unchanged. This is
called a strongly relative poverty measure (SR). Such an approach requires, however,
quite implausible assumptions, namely that people are concerned solely with relative
deprivation and/or that the costs of social inclusion can fall to nearly zero in the
poorest places.

Various attempts havebeenmade to incorporate relativity in povertymeasurement.
Some studies suggested adjusting poverty lines across demographic subgroups. The
idea of equivalence scale has as well been used for determining a relative poverty
line.2 More recently, Kakwani (2011) employed consumer theory to construct food
and nonfood poverty thresholds.

An original approach was taken by Ravallion and Chen (2011) who introduced
the concept of weakly relative poverty. They argued that selecting a strongly relative

1Examples of relative poverty lines include 50% of the median (Fuchs 1969) and 50% of the mean
(O’Higgins and Jenkins 1990). Atkinson and Bourguignon (2001) considered a relative poverty line
equal to the mean income (or expenditure) multiplied by 0.37. Chen and Ravallion (2001) preferred
to use 0.33 instead of 0.37 as the multiplicative factor. The EU standard set poverty line as 60%
of the median. In contrast, the US official poverty, which is largely due to Orshansky (1965), is
based on family pre-tax income and an absolute poverty threshold. Currently, a new supplemental
poverty measure (SPM) which uses more general definitions and adjustments for family size and
composition, has been introduced in 2011. India uses separate absolute poverty lines for rural and
urban sectors. (See Subramanian 2011, for a recent discussion.)
2See, for example, Blackorby and Donaldson (1994) and Foster (1998) for further discussion.
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poverty measure (SR) in terms of the costs of social exclusion, where an implicit
assumption is made according to which this cost is proportional to mean income,
may not be tenable in the case of the developing world. They therefore proposed a
weakly relative poverty line (WR)whose elasticitywith respect to themean income is
positivewith unity as its upper bound. In theirmodel, theymade a distinction between
an income and a welfare space and assumed that V = V

(
Z,

(
Z
M

))
, where V is the

fixed welfare poverty line, Z is the income poverty line andM is the mean or median
income. For a non-welfarist interpretation of relative poverty line, they proposed a
generalization of the Atkinson and Bourguignon (AB) approach. The AB approach
links the physical survival needs to absolute poverty line and the social inclusion
needs to the relative line. Ravallion and Chen (2011) specified that Z = Z∗ +Ψ (M ),
where Z∗ and Ψ (M ) are, respectively, the minimum expenditure required to assure
the basic consumption needs and the cost of the incremental social needs beyondbasic
consumption. This ensures domination of absolute lines at low consumption levels
(developing world) while the poverty line becomes relative beyond some higher level
(developed world) and sets up a framework to make global poverty comparisons.

In another paper, Chen and Ravallion (2013) argued that there may in fact be two
quite different reasons why poverty lines might vary systematically with the average
consumption or income of a society. One reason is that there may be a common
underlying poverty level of welfare, but that the level of consumption needed to
attain it varies, stemming from social effects. The other reason does not require such
effects, but rather postulates that social norms vary, implying different reference
levels of welfare. Furthermore, the choice between these two interpretations has
implications concerning the choice of relative versus absolute poverty lines. If one
thinks that it is really only social norms that differ, with welfare depending solely
on one’s own consumption, then one would probably prefer an absolute measure,
imposing a common norm (though one may want to consider more than one possible
line). If however one is convinced that there are social effects on welfare, then one
would be more inclined to use a relative line in the consumption or income space,
anchored to a commonwelfare standard. Theweakly relative povertymeasures entail
that the poverty line only rises with the mean above some critical value and it then
does so with elasticity less than one. A process of distribution-neutral growth will
then reduce the incidence of weakly relative poverty. The absolute measure is only
obtained as a special case for sufficiently poor countries. Ideas quite similar to those
expressed in Ravallion and Chen (2011) and Chen and Ravallion (2013) may be
found in Ravallion (2008) and Ravallion (2012).

An obvious place to look for identifying the parameters of a schedule of weakly
relative poverty lines is the set of national poverty lines found across developing
countries. It then appears that national poverty lines among developing countries
show a systematic nonnegative relationship with the average consumption of a coun-
try. Given that the determination of the poverty line is still a disputable matter, we
wish to propose an axiomatic approach to the calculation of a relative poverty line.
It is assumed that the poverty line is relative in the income/consumption space. Our
approach follows a long tradition of identifying welfare with utility. Utility depends
on the absolute income and the relative income, that is, income relative to some
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reference standard. There is in fact a vast literature that stresses the importance of
incorporating relative position in decision-making analysis (see, Duesenberry 1949;
Kahneman and Tversky 1991; Frank 1985, 1999; Clark and Oswald 1996; Easterlin
2001; Falk and Knell 2004; Ferrer-i-Carbonell 2005). The focus on relative eco-
nomic position in utility analysis has also been recognized in the theory of relative
deprivation (Runciman 1966).3

In this paper, we assume that individual utility is increasing, concave in absolute
income but decreasing, convex in the reference standard (see, Clark and Oswald
1998). Our analysis relies on a general reference income level, of which some pro-
portions of mean or median income can be special cases. An additive form and a
multiplicative form of the utility function are characterized using two different sets
of intuitively reasonable axioms. Now, suppose a reference income is given. We
then employ a utility-consistency condition to determine the poverty line uniquely
in terms of a reference income and a given poverty line. More precisely, given a
reference income and a person with income equal to an arbitrarily set poverty line,
who is just poor, we determine the level of the corresponding utility. We then con-
sider an alternative setting where the person is again just poor, that is, with income at
some alternative poverty line. However, in this situation, his utility is not affected by
the reference income. Since the effect of the reference income on utility is captured
through the absolute or relative divergence of a person’s income with the reference
income, the annulment of the effect is obtained by setting his own income to be his
reference income. Utility-consistency requires that the person is equally satisfied in
both positions. In other words, we equate the utility in this later state of affairs with
the level of utility derived for the arbitrarily set poverty line and reference income
situation to determine the arbitrary poverty line uniquely. This assumption of equal
satisfaction is quite plausible because in each case the individual is at the existing
poverty line income.

It may be worthwhile to note that the idea of utility-consistency goes back a
long way in classical welfare measurement. The interpretation of the poverty line
as a money metric of utility can be found in Blackorby and Donaldson (1987). A
more recent treatment of the issue in the context of poverty analysis can be found in
Kakwani (2011).

An innovative feature of our paper is that, for either form of the utility function, the
new poverty line becomes an amalgam, a weighted average, of the given poverty line
and the reference income. Therefore, our derivation allows the possibility of a change
in the question “absolute or relative?” to “how much relative?” A second novelty of
our contribution is that Foster’s (1998) suggestion for a “hybrid” poverty threshold,
a weighted geometric mean of a relative threshold and an absolute threshold, can be
supported by our utility-consistency condition. Thus, our suggestion bears a close
similarity with that of Foster (1998) and hence can as well be treated as a hybrid
approach.

3See also, Yitzhaki (1979), Berrebi and Silber (1985), Chakravarty and Moyes (2003), Bossert and
D’Ambrosio (2007) and Zheng (2007).
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Another attractive feature of our framework is that some of the suggestions that
exist in the literature (e.g.,Atkinson-Bourguignon (2001) andEUstandard) for basing
the poverty line directly on some location parameter, such as the mean or median,
become particular cases of our formulation.

The paper is organized as follows. Section 2 develops the theoretical framework.
The main contribution of this section is that we characterize the utility functions
using both the ratio and difference form comparisons. For the sake of completeness,
Sect. 2 also provides a systematic comparison of our framework with the approach
of Blackorby–Donaldson (1987). Next, Sect. 3 gives a short empirical illustration
based on separate data on rural and urban areas in the People’s Republic of China
and India. Section 4 then briefly concludes.

2 Formal Framework

The model relies on two assumptions about an individual’s utility function. The
first assumption specifies that utility depends in part on the individual’s absolute
income. According to the second assumption, utility also depends on the relative
income, income relative to some reference standard. This latter condition is one
way of ensuring that utility partly depends on his relative position (or “status”) in
the society in terms of some attribute of wellbeing. Such assumptions about utility
functions are quite common in the literature (see, for example, Clark and Oswald
1998). As Clark and Oswald (1998) suggested, relativity can be incorporated into
the framework by having difference comparisons or ratio comparisons.

Let x and m, respectively, be the absolute income and reference income of an
individual in the society. Both x and m are assumed to be drawn from the finite
nonnegative nondegenerate interval [0,∞), that is, x,m ∈ [0,∞). The reference
incomem can be treated as a positional good and it is assumed that x does not exceed
the reference income.4 Examples of m can be the mean and the median incomes in
the population or some positive scalar transformations of them.

Let U denote the nonconstant real valued utility function of the individual. Fol-
lowing Clark and Oswald (1998), the function U (x,m) is assumed to be increasing,
concave in x and decreasing, convex inm. Increasingness and concavity assumptions
in absolute income are quite standard.5 Suppose a person with a low income regards
the income level m as his targeted income. He may be optimistic about receiving
this income by working hard and/or receiving some subsidy. An increase in mmight
increase his difficulty to fulfil the objective of receiving the higher targeted income.
This means that his additional utility from an increase in m will be negative, that is,

4For a somewhat different position, see Hopkins (2008).
5The concavity assumption, whichwe havemade followingClark andOswald (1998), can definitely
be replaced by strict concavity and a similar analysis can be developed. See Remark 1 at the end of
this section.
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U is decreasing in m. Convexity means that his dissatisfaction from an increase in m
increases at a nondecreasing rate. Assume also that U (.) is differentiable.

The difference form comparison demands that the utility function should be of
the formU (x, x − m). The argument x−m can be thought of as capturing dis-utility
from comparison. That is, in this case the determinant of relative status depends on
difference x − m. Since x,m ∈ [0,∞) and x ≤ m, it is clear that x − m ∈ (−∞, 0].

We now propose the following axioms for a utility function U : [0,∞) ×
(−∞, 0] → R involving difference form comparison, where R is the set of real
numbers.

Linear Translatability (LIT): For any real c such that x + c ∈ [0,∞),
U (x + c, (x + c) − (m + c)) = U (x, x − m) + kc, where k > 0 is some scalar.

Linear Homogeneity (LIH): For any c ∈ (0,∞), U (cx, cx − cm) =
cU (x, x − m).

Since under equal increase of the absolute and reference incomes the relative status
(x − m) remains unchanged but the absolute income increases, individual utility
should increase. LIT is a simple way of specifying this increment. It demands that
when the absolute and reference incomes are changed by a given amount, then utility
changes by a constant time of the given amount. In other words, it shows how utility
changeswhen the absolute and reference incomes are diminishedor augmented by the
same amount. This axiom can be treated as an absolute counterpart to LIH, which
says that an equi-proportionate change in the absolute and the reference incomes
changes utility equi-proportionately. This postulate is weaker than the requirement
that U is increasing in x.

In the literature, on income inequality measurement, a social welfare function
that satisfies linear homogeneity and linear translatability simultaneously is called a
compromise welfare function. The Gini welfare function is an example of a welfare
function of this type (see Blackorby and Donaldson 1980). Such welfare functions
are helpful for measuring economic distance between income distributions, which
quantifies well-being of one population relative to that of another (see Chakravarty
and Dutta 1987).

Proposition 1 The only utility function that satisfies LIT and LIH is of the form

U (x, x − m) = (k − a)x + am, (1)

where k > 0 is same as in LIT and a < 0 is a constant.

Proof By LIT U (x − x, x − x − m + x) = U (x, x − m) − kx. We rewrite this equa-
tion as U (x, x − m) = U (0,−m + x) + kx. By LIH it follows that U (0,−m + x) =
(m − x)U (0,−1) = a(m − x), where a = U (0,−1). Hence U (x, x − m) =
(k − a)x + am. Decreasingness of U in m requires that a < 0. This establishes
the necessity part of the proposition. The sufficiency part can be checked easily. �

The weights (k − a) and a in (1) provide a simple way of capturing the mixture of
two effects. For a = 0 the preferences are private and self-interested. This becomes
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ensured under the mild condition that k > 0. The individual does not look at his
position in terms of the reference income. He does not care about what other indi-
viduals are doing. It also follows that U is concave in x and convex in m under the
restrictions (k − a) > 0 and a < 0. The utility function in (1) is a particular form of
the “additive comparisons model” suggested by Clark and Oswald (1998). However,
no characterization has been developed by them.

Let us now consider a situation in which an individual does not compare his/her
absolute income with the reference income because the reference income itself is
identical to the absolute income. If we denote this absolute income by z0, then from
(1)we have,U (z0, 0) = kz0. This absolute income can be taken as the current poverty
line. The utility corresponding to some arbitrary poverty line z1 and the reference
income m will then be given by U (z1, z1 − m) = (k − a)z1 + am. Let us now find
the income z1 which would guarantee the individual a level of utility identical to the
utility level U (z0, 0). That is, the level of happiness that the person had in the earlier
scenario when he was enjoying the poverty line income remains the same in the
present case characterized by a new poverty line and a reference income. Equality
of the two utility levels can be justified on the ground that in both circumstances
the individual’s income coincides with the poverty line income. We refer to this as
a utility-consistency condition. (See Blackorby and Donaldson 1987, and Kakwani
2011). To understand this further, suppose for a given time point the absolute poverty
line is well-defined at z0. Suppose now the distribution changes. Given a reference
income m, if we want to determine a poverty line z1 that will keep the utility of the
person at the old poverty line unchanged, we should readjust the poverty line. The
readjustment is done by equating the utility levels.

Equating the two expressions U (z0, 0) and U (z1, z1 − m), we get

z1 = qz0 + (1 − q)m, (2)

where q = k
(k−a) . Given that a < 0, we can say that the revised poverty line is a

convex mixture, a weighted average, of the existing poverty line and the specified
reference income. For a 1 unit increase in the living standard (m), (1 − q) represents
the increase in the threshold z1. Therefore, qmay be interpreted as a policy parameter
in the sense that it reflects the relative importance of the current poverty line in getting
its revised estimate. As the weight q increases from 0 to 1, more andmore importance
is assigned to the current poverty line in the averaging in (2). For q = 1, z1 coincides
with the existing poverty line z0, whereas for q = 0, z1 becomes the reference income
m. A compromise choice for q is q = 0.5.

As Clark and Oswald (1998) argued, an alternative specification can be a ‘ratio
comparisons model’. In this case the individual’s utility depends directly on the
absolute income x and also on the relative factor x

m . Thus, in this case the determi-
nant of the status is the ratio x

m . We consider a general form of the utility function
U

(
x, f

(
x
m

))
, where f is a positive valued and increasing transformation of the ratio x

m .
This is a fairly general version of a ratio comparisons model. As before, we maintain
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the assumptions that U is increasing, concave in x and decreasing, convex in m. By
our formulation, U is increasing in f

(
x
m

)
.

In order to characterize a particular form of the utility function which we wish to
use for determining a poverty line in the ratio comparisons framework, we consider
the following axioms for U : (0,∞) × (0,∞) → R++, where R++ is the strictly
positive part of R.

Linear Homogeneity (LIH): For any
(
x, f

(
x
m

)) ∈ (0,∞) × (0,∞),
U

(
cx, f

(
cx
cm

)) = cU
(
x, f

(
x
m

))
, where c > 0 is arbitrary.

Since f
(
x
m

)
remains unaltered under positive scale transformation of the absolute

income x and the reference income m, LIH shows how utility should be adjusted
under such transformation of the variables.

Normalization (NOM): If x = 1, then U
(
x, f

(
x
m

)) = f
(
1
m

)
.

Constancy of Marginal Utility of Reference Income (CMR):
∂U(x,f ( x

m ))
∂m = −θ <

0.
Continuity (CON): U is continuous in its arguments.
NOM is a cardinality principle which says that if the individual’s income is 1,

then corresponding utility value is given simply by the transformed value f
(
1
m

)
of

the ratio 1
m . Variants of this are certainly possible. But given that the income is fixed

at 1, the utility should be dependent on the ratio 1
m in a negative monotonic way and

NOMensures this. Continuity assures thatminor observational errors in incomeswill
not change utility abruptly. CMR reflects the view that with an increase in reference
income utility decreases at a nonincreasing rate, an assumption we have made at the
outset of this section. While alternative possibilities definitely exist, CMR is quite
simple and easy to understand.

Axioms LIH, NOM, CMR, and CON uniquely identify a specific functional form
of the utility function.

Proposition 2 The only utility function U : (0,∞) × (0,∞) → R++ that satisfies
LIH, NOM, CMR and CON is of the form

U
(
x, f

( x

m

))
= x

(
β − θm

x

)
, (3)

where β > θ > 0 are constants such that U
(
x, f

(
x
m

))
> 0.

Proof Let us denote the ratio x
m by A. LIH implies that

U (cx, f (A)) = cU (x, f (A)), (4)

where c > 0. This equality holds for all x > 0 and c > 0. Consequently, for any
c > 0 it holds for x = 1 also.

Now, given x = 1, using NOM in (4), we get
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U (c.1, f (A)) = cU (1, f (A)) = cf (A). (5)

From (5) it follows that

c = U (c, f (A))

f (A)
. (6)

Plugging the value of c from (6) into (4) we get

U (cx, f (A)) = cU (x, f (A)) = U (c, f (A))

f (A)
U (x, f (A)). (7)

Let

V (x, f (A)) = U (x, f (A))

f (A)
. (8)

From (7) and (8) it now follows that

V (cx, f (A)) = U (cx, f (A))

f (A)

= 1

f (A)

[
U (c, f (A))

f (A)
U (x, f (A))

]

=
[
U (c, f (A))

f (A)

][
U (x, f (A))

f (A)

]

= V (c, f (A))V (x, f (A)). (9)

Now, define gf (A)(x) = V (x, f (A)) so that we can rewrite (9) as

gf (A)(cx) = gf (A)(c)gf (A)(x). (10)

Given A, by non-constancy of U we rule out the trivial solutions gf (A)(t) = 0 and
gf (A)(t) = 1 of the functional Eq. (10). Since U (hence g) is positive valued, we can
take logarithmic transformation on both sides of (10) to get

log
(
gf (A)(cx)

) = log
(
gf (A)(c)

) + log
(
gf (A)(x)

)
. (11)

Substitution of c = eu and x = ev into (11) yields the functional equation

log
(
gf (A)

(
eu+v

)) = log
(
gf (A)

(
eu

)) + log
(
gf (A)

(
ev

))
. (12)

Define hf (A)(t) = log
(
gf (A)

(
et

))
, where t ∈ R. CON implies continuity of hf (A).

Then the functional Eq. (12) reduces to
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hf (A)(u + v) = hf (A)(u) + hf (A)(v), (13)

of which the only continuous solution is hf (A)(u) = δu, where δ is a nonzero constant
that depends on f (A) (Aczel 1966, p. 34). Using hf (A)(u) = δu, in the definition of
hf (A)(t), we get log

(
gf (A)(eu)

) = δu and with u = log t, it follows that gf (A)(t) = tδ .
From the definition of gf (A) it then follows that

V (x, f (A)) = xδ(f (A)). (14)

Using the definition of V (x, f (A)) in (14) we get

U (x, f (A)) = xδ(f (A))f (A). (15)

LIH ensures that δ(f (A)) = 1, which in turn shows that

U (x, f (A)) = xf (A) = xf
( x

m

)
. (16)

From (16), by CMR, it now follows that f ′( x
m

)
x2

m2 = −θ , which gives f
(
x
m

) =
β−θ m

x , where β is the constant of integration and f ′ is the derivative of f. Substituting
this form of f in (16) we get U

(
x, f

(
x
m

)) = x
(
β − θm

x

)
.

Now, when x = m, we haveU (m, f (1)) = m(β−θ)which becomes positive only
when β > θ (since m > 0). Since the functional form U

(
x, f

(
x
m

)) = x
(
β − θm

x

)

holds for all x ≤ m, we must choose β > θ > 0 such that U becomes positive
unambiguously. This establishes the necessity part of the proposition. The sufficiency
can be checked easily. �

Clark and Oswald (1998) specified, without characterization, a utility function
which is additively separable in the absolute income x and the relative income x

m .
However, the functional form we have characterized is of product type in its argu-
ments. The essential idea of dependence of the utility function on the relative as well
as absolute statuses is well-maintained in our characterized form also. Further, our
form becomes additively separable under the logarithmic transformation.

As in the additive case, we now wish to determine the value of z1 such that

U
(
z0, f

(
z0
z0

))
= U

(
z1,

z1
m

)
. For the characterised form of f

(
x
m

)
, in view of (3), this

equality becomes, z0(β − θ) = z1
(
β − θ m

z1

)
, from which we get

z1 = wz0 + (1 − w)m, (17)

where w = β−θ

β
. Since β > θ > 0, it follows that 0 < w < 1. Thus, as in (2), here

also the revised poverty line becomes a compound of the existing poverty line and
the reference income. The parameter w has the same policy interpretation as in (2).
Thus, irrespective of the form of the utility function, we have the same procedure
of generating a relative poverty line from an existing poverty line and a reference
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income. For an observed income distribution, β and θ can be taken as β = u
l +1 and

θ = 1, where l > 0 and u are, respectively, the lower and upper bounds on income.
The corresponding utility function turns out to be x

(
β − m

x

)
.

Since in general m > z0, and z1 is a weighted average of z0 and m, it follows
that z1 > z0. Therefore, in order to provide illustrations of our characterized poverty
line, we have to choose hybrid poverty lines greater than the absolute poverty line.
(See also the discussion below on the suggestions put forward by Atkinson and
Bourguignon 2001; EU and Foster 1998).6

The choice of theweightw is evidently related to that of the parameters. Assuming
that the function f may be written as f (x/m) = β − (m/x), we can express U as
U = xβ − m, from which we derive that dU = ∂U

∂x dx + ∂U
∂m dm = βdx − dm so that

for a given utility level, dm
dx = β.

There are very fewpapers in the literature on subjectivewelfare that have estimated
the simultaneous impact on happiness, ceteris paribus, of an increase in one’s own
income and in that of the reference group’s income. One of these papers is a very
recent study by Clark et al. (2013). In Table 4 of their paper the authors report the
results of a regressionwhere the dependent variable refers to satisfactionwith income.
It then appears that the coefficient of own income is about three times as high as that
of self-reported reference income, and of opposite sign. This would imply that the
value of β is around 3 and, as a consequence, the value of the weight w would be
equal to (2/3). We now show that some of the existing suggestions for treating the
poverty line as some fraction of the mean or median income can be accommodated in
our framework. The EU standard set poverty line as 60% of the median is equivalent
to choosing a particular weight for the reference income in our formulation. If we
take (1 − w) = 0.6m−z0

m−z0
in (17), where in m is the median, then we get the poverty

line set by the EU. Likewise, for (1 − w) = 0.37m−z0
m−z0

, where m now stands for the
mean, we get the Atkinson-Bourguignon (2001) relative poverty line.

It will now be worthwhile to compare our proposal with Foster’s (1998) recom-
mendation for a hybrid threshold. Ifm represents the median, then the threshold αm,
where 0 < α < 1, is a general relative cutoff (Citro and Michael 1995). If we denote
αm by zm, then Foster (1998) suggested the use of a weighted geometric mean of
the absolute threshold z0 and the relative threshold zm, namely, zρ

0 z
1−ρ
m as a threshold

limit, where 0 < ρ < 1 is a constant. A 1% increase in the living standardm increases
the poverty line by ρ% (see also Fisher 1995). Now, assume that the individual util-
ity function is of the form U

(
x, x

m

) = xρ
(
x
m

)1−ρ
, 0 < ρ < 1 is a constant. This

utility function is increasing, concave in absolute income but decreasing convex in
the reference level. Then our utility-consistency condition reveals that z1 = zρ

0 z
1−ρ
m ,

the hybrid cutoff advocated by Foster (1998). Thus, the Foster proposition can be
justified by our utility-consistency condition.

6However, in order to increase the flexibility of the choice of the poverty line, it may be worthwhile
to choose hybrid lines that are less than the absolute line. This would be fulfilled if m < z0 and
hence requires a different structure.
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Remark 1 The two forms ofU given byU (x,m) = (k − a)xδ +amδ andU (x,m) =
xδ

(
β − (

m
x

)δ
)
, where a < 0, k > 0, 0 < δ < 1 and β − (

m
x

)δ
> 0, are increasing

and strictly concave in absolute income but decreasing and strictly convex in refer-
ence income. For each of these two specifications of U, by the utility-consistency

condition, we have z1 = (
szδ

0 + (1 − s)mδ
) 1

δ , where 0 < s < 1. Thus, we have
examples of two different utility functions each of which leads to the same hybrid
poverty lines. For δ = 1, z1 coincides with (2), whereas as δ → 0, it becomes Foster’s
hybrid poverty line. This form of z1 is known as a quasilinear mean. Such a form
has been characterized by Chakravarty (2011) as a generalized human development
index using several dimensions of human well-being. A similar characterization can
be developed in the current context.

We now make a systematic comparison between utility-consistency (equating

U (z0, 0) with U (z1, z1 − m), and U
(
z0, f

(
z0
z0

))
with U

(
z1,

z1
m

)
) and the Blackor-

by–Donaldson (1987) formulation. In their framework, preferences are assumed to
be represented by a real valued utility function whose image is u = U (y, λ), where
U is the utility that each member of the family derives with the characteristic λ ∈ B
when the household consumption is y, whereB is the set of household characteristics.
The parameter λ ∈ B enables to take into account economies of consumption due
to household consumption. Household preferences remain unaltered if we consider
an increasing function U of U, that is, U = L(U (y, λ), λ), where L is increasing
in its first argument for all λ ∈ B. However, interpersonal comparison of utility
cannot be achieved only by household preferences. Some external value judgement
has to be imposed on a particular U that makes interpersonal comparisons possible.
As Blackorby and Donaldson (1987) pointed out, one such judgement is provided
by a set poverty consumption bundles {y(λ)|λ ∈ B }. This judgement requires that
ur = U (y(λ), λ), for all λ ∈ B, where ur is the poverty utility level corresponding
to U. This equation becomes meaningful if and only if L

(
ur, λ1

) = L
(
ur, λ2

)
for

all λ1, λ2 ∈ B. Given that two utility functions satisfy ur = U (y(λ), λ), if they also
satisfy L

(
ur, λ1

) = L
(
ur, λ2

)
, then they are said to fulfil informational invariance for

interpersonal comparisons with respect to reference utility indexed by ur . As Black-
orby and Donaldson (1987) argued, L must be independent of λ for interpersonal
comparisons to be meaningful.7

Thus, the essential idea of equating two utility levels is the same in both the cases.
While in our case two utility values are equated to determine a hybrid poverty line,
in the Blackorby–Donaldson structure this is done for a given poverty consumption
bundle in order to determine the necessary and sufficient condition for interpersonal
utility comparison.

7A taxonomy of information invariance and interpersonal comparisons can be found in Sen (1977)
and Blackorby et al. (1984).
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3 An Empirical Illustration

In this section, we present several measures of the extent of poverty in rural and urban
areas of the People’s Republic of China and India, when an “amalgam poverty line”,
a weighted average of an absolute poverty line and of the mean or median income,
is introduced. As absolute poverty line, we have used a monthly income of $38 (at
2005 PPP) which corresponds to $1.25 per day, as originally suggested by Ravallion
et al. (2009). We assumed various possible weights. More precisely, we supposed
that the weight w given to the absolute poverty line [the weight of the median or of
the mean being then (1 − w)], could be 1, 0.9, 0.66, and 0.5.

The database consisted of information on the income shares of ten deciles in the
rural and urban areas of the two countries mentioned previously. Two computation
methods were used. The first one is based on an algorithm originally proposed by
Kakwani and Podder (1973) allowing one to estimate the Lorenz curve for each
country and year on the basis of these 10 observations (income shares). On the basis
of this Lorenz curve, it was then easy to find out which percentage of the population
had an income (or expenditure level) smaller than that corresponding to some poverty
line. The second approach used an algorithm proposed by Shorrocks andWan (2009),
which allows to “ungroup” income distributions, that is, to derive, for example, the
share of each centile when the only data available originally are the income shares
of deciles.

In Table 1, we present the values of the headcount ratio (in percentage) in the rural
and urban areas in the People’s Republic of China and India, under several possible
scenarios. We give two sets of results: those based on the Shorrocks and Wan (2009)
algorithm (part A) and those derived from theKakwani and Podder approach (part B).
In parentheses, we give also bootstrap confidence intervals. As expected, for a given
weight, the headcount ratio is higher when the weight (1 − w) refers to the mean
rather than themedian. Needless to say, the headcount ratio increases with the weight
w. Looking at the bootstrap confidence intervals it appears that these differences are
always significant, except in the case of a weight of 90% given to the $38 poverty line
when the Kakwani and Podder approach is implemented. In this specific case, the
adjusted headcount ratio is the same whether a weight of 10% is given to the mean
or the median income. Table 1a, b show also that, whatever weights are selected,
the headcount ratio is higher in rural than in urban India. The percentage of poor is
also higher in rural than in urban China. These differences are clearly significant, as
can be checked by looking at the corresponding confidence intervals. Note also that
whereas with the regular $38 poverty line, there is almost no urban poverty in China,
when some weight is given to the mean or median income when defining the poverty
line, the headcount ratio becomes significant, being even higher than 30% when the
weight of the mean is equal to 50%. The differences between the urban and rural
sectors are much less striking in India, poverty being quite high in both areas.

We then combined the data on the headcounts given in Table 1 with the data on
the total population around 2010, to derive an estimate of the total number of poor
in the urban and rural areas of each of the two countries examined. These results are



52 S. R. Chakravarty et al.

Ta
bl
e
1

H
ea
dc
ou
nt

ra
tio

s
(i
n
pe
rc
en
ta
ge
s)
un
de
r
va
ri
ou
s
sc
en
ar
io
s

A
-
T
he

Sh
or
ro
ck
s
an
d
W
an

(2
00
9)

ap
pr
oa
ch

W
ei
gh
tin

g
sc
he
m
e
(w

ei
gh
tg

iv
en

to
th
e
ab
so
lu
te
po
ve
rt
y
lin

e)
Pe
op
le
’s
R
ep
ub
lic

of
C
hi
na
,r
ur
al

ar
ea
s
(2
00
9)

Sh
or
ro
ck
s
an
d
W
an

ap
pr
oa
ch

Pe
op
le
’s
R
ep
ub
lic

of
C
hi
na
,u

rb
an

ar
ea
s
(2
00
9)

Sh
or
ro
ck
s
an
d
W
an

ap
pr
oa
ch

In
di
a,
ru
ra
la
re
as

(2
01
0)

Sh
or
ro
ck
s

an
d
W
an

ap
pr
oa
ch

In
di
a,
ur
ba
n
ar
ea
s
(2
01
0)

Sh
or
ro
ck
s
an
d
W
an

ap
pr
oa
ch

A
bs
ol
ut
e
po
ve
rt
y
lin

e:
$3
8

It
is
w
ei
gh
te
d
w
ith

th
e
m
ed
ia
n

10
0%

20
.4
8

(1
9.
38
;2
1.
62
)

0.
26

(0
.1
2;
0.
42
)

34
.3
4

(3
3.
04
;3
5.
68
)

29
.1
8

(2
7.
94
;3
0.
46
)

90
%

23
.9
2

(2
2.
84
;2
4.
98
)

1.
42

(1
.1
0;
1.
74
)

36
.0
4

(3
4.
84
;3
7.
24
)

31
.2
2

(3
0.
08
;3
2.
38
)

66
%

31
.1
8

(3
0.
18
;3
2.
12
)

10
.7
0

(9
.8
6;
11
.5
4)

39
.8
8

(3
8.
82
;4
0.
82
)

36
.4
8

(3
5.
52
;3
7.
42
)

50
%

36
.3
0

(3
5.
36
;3
7.
14
)

20
.5
8

(1
9.
62
;2
1.
56
)

42
.4
6

(4
1.
64
;4
3.
22
)

40
.0
4

(3
9.
22
;4
0.
88
)

A
bs
ol
ut
e
po
ve
rt
y
lin

e:
$3
8

It
is
w
ei
gh
te
d
w
ith

th
e
m
ea
n

90
%

27
.0
4

(2
5.
82
;2
8.
30
)

2.
14

(1
.7
6;
2.
56
)

38
.2
0

(3
6.
86
;3
9.
56
)

34
.0
4

(3
2.
76
;3
5.
38
)

66
%

40
.6
0

(3
9.
28
;4
1.
96
)

17
.7
4

(1
6.
68
;1
8.
80
)

46
.7
0

(4
5.
34
;4
8.
14
)

45
.2
4

(4
3.
88
;4
6.
66
)

50
%

49
.4
0

(4
8.
02
;5
0.
82
)

30
.5
8

(2
9.
32
;3
1.
86
)

52
.1
6

(5
0.
78
;5
3.
56
)

52
.0
4

(5
0.
64
;5
3.
46
)

(c
on
tin

ue
d)



Reference Groups and the Poverty Line: An Axiomatic … 53

Ta
bl
e
1

(c
on
tin

ue
d)

B
-
T
he

K
ak
w
an
ia
nd

Po
dd
er

(1
97
3)

ap
pr
oa
ch

W
ei
gh
tin

g
sc
he
m
e
(w

ei
gh
tg

iv
en

to
th
e
ab
so
lu
te
po
ve
rt
y
lin

e)
Pe
op
le
’s
R
ep
ub
lic

of
C
hi
na
,r
ur
al

ar
ea
s
(2
00
9)

K
ak
w
an
ia
nd

Po
dd
er

ap
pr
oa
ch

Pe
op
le
’s
R
ep
ub
lic

of
C
hi
na
,u

rb
an

ar
ea
s
(2
00
9)

K
ak
w
an
ia
nd

Po
dd
er

ap
pr
oa
ch

In
di
a,
ru
ra
la
re
as

(2
01
0)

K
ak
w
an
i

an
d
Po

dd
er

ap
pr
oa
ch

In
di
a,
ur
ba
n
ar
ea
s
(2
01
0)

K
ak
w
an
i

an
d
Po

dd
er

ap
pr
oa
ch

A
bs
ol
ut
e
po
ve
rt
y
lin

e:
$3
8

It
is
w
ei
gh
te
d
w
ith

th
e
m
ed
ia
n

10
0%

21
.3
5

(2
0.
45
;2
2.
25
)

0.
15

(0
.1
5;
0.
15
)

33
.0
5

(3
2.
45
;3
3.
55
)

27
.8
5

(2
7.
05
;2
8.
45
)

90
%

25
.1
5

(2
4.
35
;2
5.
85
)

0.
15

(0
.1
5;
0.
15
)

34
.9
5

(3
4.
45
;3
5.
45
)

30
.5
5

(2
9.
85
;3
1.
05
)

66
%

33
.1
5

(3
2.
55
;3
3.
55
)

15
.8
5

(1
4.
95
;1
6.
55
)

39
.3
5

(3
8.
95
;3
9.
65
)

36
.4
5

(3
6.
05
;3
6.
85
)

50
%

37
.7
5

(3
7.
35
;3
8.
15
)

26
.2
5

(2
5.
65
;2
6.
75
)

42
.0
5

(4
1.
75
;4
2.
25
)

40
.0
5

(3
9.
75
;4
0.
35
)

A
bs
ol
ut
e
po
ve
rt
y
lin

e:
$3
8.

It
is
w
ei
gh
te
d
w
ith

th
e
m
ea
n.

90
%

26
.5
5

(2
5.
75
;2
7.
25
)

0.
15

(0
.1
5;
0.
15
)

35
.6
5

(3
5.
05
;3
6.
15
)

31
.6
5

(3
0.
95
;3
2.
25
)

66
%

37
.0
5

(3
6.
45
;3
7.
65
)

20
.3
5

(1
9.
45
;2
1.
15
)

41
.5
5

(4
1.
05
;4
1.
85
)

39
.8
5

(3
9.
35
;4
0.
25
)

50
%

42
.9
5

(4
2.
45
;4
3.
45
)

31
.7
5

(3
1.
05
;3
2.
35
)

45
.1
5

(4
4.
75
;4
5.
45
)

44
.6
5

(4
4.
25
;4
5.
05
)

N
ot
e
(T
he

Sh
or
ro
ck
s-
W
an

ap
pr
oa
ch
)
T
he

co
m
pl
et
e
in
co
m
e
di
st
ri
bu
tio

ns
w
er
e
de
ri
ve
d
on

th
e
ba
si
s
of

da
ta

on
th
e
sh
ar
es

of
th
e
de
ci
le
s
in

to
ta
l
in
co
m
e.

T
he

fir
st
co
lu
m
n
gi
ve
s
th
e
w
ei
gh
t
(i
n

pe
rc
en
ta
ge
)g

iv
en

to
th
e
ab
so
lu
te
po
ve
rt
y
lin

e
($
38
),
th
e
co
m
pl
em

en
t(
in
pe
rc
en
ta
ge
)g

iv
in
g
th
e
w
ei
gh
tg
iv
en

to
th
e
m
ed
ia
n
or

th
e
m
ea
n
of

th
e
in
co
m
e
di
st
ri
bu
tio

ns
.B

oo
ts
tr
ap

co
nfi

de
nc
e
in
te
rv
al
s

(2
.5
–9
7.
5%

)
ar
e
gi
ve
n
in

pa
re
nt
he
se
s.
T
he
se

bo
ot
st
ra
p
re
su
lts

ar
e
ba
se
d
on

40
00

ra
nd
om

sa
m
pl
es

of
th
e
un
gr
ou
pe
d
di
st
ri
bu
tio

n
w
ith

50
00

in
di
vi
du
al
s

N
ot
e
(T
he

K
ak
w
an
i-
Po

dd
er

ap
pr
oa
ch
)
T
he

co
m
pl
et
e
in
co
m
e
di
st
ri
bu
tio

ns
w
er
e
de
ri
ve
d
on

th
e
ba
si
s
of

da
ta

on
th
e
sh
ar
es

of
th
e
de
ci
le
s
in

to
ta
l
in
co
m
e.
T
he

fir
st
co
lu
m
n
gi
ve
s
th
e
w
ei
gh
t
(i
n

pe
rc
en
ta
ge
)g

iv
en

to
th
e
ab
so
lu
te
po
ve
rt
y
lin

e
($
38
),
th
e
co
m
pl
em

en
t(
in
pe
rc
en
ta
ge
)g

iv
in
g
th
e
w
ei
gh
tg
iv
en

to
th
e
m
ed
ia
n
or

th
e
m
ea
n
of

th
e
in
co
m
e
di
st
ri
bu
tio

ns
.B

oo
ts
tr
ap

co
nfi

de
nc
e
in
te
rv
al
s

(5
–9
5%

)
ar
e
gi
ve
n
in

pa
re
nt
he
se
s.
T
he
se

bo
ot
st
ra
p
re
su
lts

ar
e
ba
se
d
on

10
00

sa
m
pl
es

of
10
00

in
di
vi
du
al
s



54 S. R. Chakravarty et al.

given in Table 2, together with the corresponding confidence intervals. To simplify
the presentation, we give only results based on the Shorrocks and Wan algorithm.
It is then easy to compare the number of poor under various scenarios with those
obtained on the basis of a weight w equal to 1 (so that the “amalgam poverty line” is
also equal to $38). Here also we observe a very important increase in the number of
poor in urban areas in China, when the poverty line depends on the median or mean
income.

Finally, Table 3 gives the income gap ratios in the rural and urban areas of the
People’s Republic of China and India under the various scenarios, the results being
again based on the Shorrocks andWan algorithm. This index is an indicator of poverty
depths of different individuals. Here, also the income gap ratio increases with the
weight given to the median or mean income, whether in India or in the People’s
Republic of China. The income gap ratio is much smaller in urban than in rural areas
of the People’s Republic of China but this is not true for India since when the weight
given to the mean or median income becomes higher, the income gap ratio, becomes
higher in urban than in rural areas.

Note finally that when multiplied by the poverty line and the total number of
poor, this summary measure has a direct policy interpretation in the sense that the
multiplied formula determines the total amount of money required to put all the
poor persons at the poverty line. Now, for a given country and area, with a given
poverty line and the reference income, we determine the amalgam poverty line using
a specific weighting scheme. Given an amalgam poverty line, we can then directly
estimate the amount of money necessary to place the poor persons of a given area in
a given country at its poverty line, using the country’s area income gap ratio from
Table 3 and the number of poor from Table 2.

4 Conclusions

We have followed Clark and Oswald’s (1998) suggestion that an individual cares
about his absolute position (his own income) and his relative position (his own
income in comparisonwith a reference income, such as themean or themedian). Two
different forms of the utility function that depend on a person’s absolute and relative
statuses have been characterized. These two utility functions have been employed to
determine a relative poverty line endogenous to the income distribution. It turns out
that in either case, the relative poverty line becomes a combination, a weightedmean,
of a given poverty line and a reference income, where the weights add up to one. This
is similar in spirit to Foster’s (1998) hybrid poverty threshold, a weighted geometric
mean of a relative and an absolute cutoff point. This weight enables a policy maker to
express his preference for absolute or relative poverty. Interestingly enough, some of
the existing suggestions for the choice of the relative poverty line drop out as special
cases of our general approach. The empirical illustration has shown that no matter
how we define the “amalgam poverty line” the extent of poverty is generally smaller
in the People’s Republic of China than in India.
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Appendix 1: On Shorrocks and Wan’s (2009) “Ungrouping
Income Distributions”

Assume a Lorenz curve with (m + 1) coordinates (p∗
k ,L

∗
k) where p∗

k and L∗
k(k =

1, . . . ,m) (refer respectively to the cumulative shares in the total population and in
total income of income classes 1 to k, while p∗

0 = L∗
0 = 0. These Lorenz coordinates

can, for example, refer to decile shares published on a given country. Since often the
corresponding average income is not available, it will be assumed to be equal to 1
so that the mean income μ∗

k of class k will be expressed as

μ∗
k = L∗

k − L∗
k−1

p∗
k − p∗

k−1

k = 1 , 2 , . . . . .,m. (18)

The goal is to obtain a synthetic sample of n equally weighted observations whose
mean value is 1 and which are conform to the original data. These n observations
are therefore partitioned into m non-overlapping and ordered groups having each
mk = n

(
p∗
k − p∗

k−1

)
observations. Call xki the ith observation in class k, the sample

mean of this class being μk .
The algorithm proposed by Shorrocks and Wan (2009) includes two stages.
The first step consists of building an initial sample with unit mean which is

generated from a parametric form fitted to the grouped data [see, for example, Ryu
and Slottje (1999), for a survey of various parameterizations of the Lorenz curve].8

In the second stage the algorithm adjusts the observations generated in the initial
sample to the true values available from the grouped data. More precisely the initial
sample value xj, assumed to belong to class k, is transformed into an intermediate
value xj

∧

via the following rule:

xj

∧ − μ∗
k

μ∗
k+1 − μ∗

k

= xj − μk

μk+1 − μk
. (19)

For the first class we will write that

8Shorrocks and Wan chose to generate the initial sample on the basis of a lognormal distribution.
For more details, see, Shorrocks and Wan (2009).
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xj

∧

μ∗
1

= xj
μ1

for xj ≤ μ1, (20)

while for the last class we have

xj

∧

μ∗
m

= xj
μm

for xj ≥ μm. (21)

Obviously in the next iteration the intermediate values xj

∧

are themselves trans-
formed into new values until the algorithm produces an ordered samplewhich exactly
replicates the properties of the original grouped data. Convergence is in fact very
quickly obtained.

Appendix 2: The Kakwani and Podder (1973) Approach

Let L refer to the height of the Lorenz curve (cumulative income share) and z to the
corresponding abscissa (cumulative population share). Kakwani and Podder (1973)
proposed then the following equation for the Lorenz curve (and showed that such a
formulation satisfies all the desired properties of a Lorenz curve):

lnL = −h + lnz + hz. (22)

It is hence possible to derive the value of the parameter h by regressing lnL on lnz
and z.

From (22) we also derive that

L = elnz+h(z−1) = elnzeh(z−1) = zeh(z−1). (23)

Remembering that the slope along the Lorenz curve is equal to the ratio of the
income corresponding to this point of the Lorenz curve to the mean income, we can
apply (23) to the poverty line and write that

∂L

∂z
=

(
poverty line

mean

)
= eh(z−1) + zheh(z−1)

= eh(z−1)(1 + zh). (24)

We are therefore looking for the population share z for which the equation below
holds

ln

(
poverty line

mean

)
= h(z − 1) + ln(1 + zh), (25)

that is,
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ln(poverty line) = ln(mean) + h(z − 1) + ln(1 + zh). (26)

Given the poverty line selected, the mean income and the parameter h determined
previously, it is easy to derive the value of z forwhich (26) holds, that is, the headcount
ratio corresponding to the chosen poverty line.
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Abstract We examine the measurement of individual poverty in an intertemporal
context. Our aim is to capture the importance of persistence in a state of poverty
and we characterize a corresponding individual intertemporal poverty measure. Our
first axiom requires that intertemporal poverty is identical to static poverty in the
degenerate single-period case. The remaining two properties express decompos-
ability requirements within poverty spells and across spells in order to reflect the
persistence issue. In addition, we axiomatize an aggregation procedure to obtain an
intertemporal poverty measure for societies and we illustrate our new index with an
application to EU countries.
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1 Introduction

In a seminal contribution, Sen (1976) distinguished two fundamental issues in poverty
measurement, namely, (i) identifying the poor among the total population; and (ii)
constructing an index of poverty using the available information on the poor. The
first problem has been solved in the literature by setting a poverty line (which may or
may not depend on the income distribution under consideration) and identifying as
poor the individuals whose incomes fall below this threshold. To address the second
issue, the aggregation problem, many indices have been proposed capturing not only
the fraction of the population that is poor (the head-count ratio), that is, the incidence
of poverty, but also the extent of individual poverty and the inequality among those
who are poor.

The literature on poverty measurement has advanced to a high degree of sophis-
tication since Sen (1976). However, there remain substantial issues to be addressed.
One of these issues is concerned with the measurement of intertemporal poverty as
opposed to limiting attention to single-period considerations. For instance, consider
an observer comparing two individuals both of whom are poor today to the same
degree. Suppose that, while the first was not poor in any of the previous two periods,
the second individual experienced poverty in both previous periods in addition to the
present. Is the degree of intertemporal poverty of those two individuals the same?
This does not seem to be the case—the second individual is poorer as soon as the
entire intertemporal income distribution is taken into consideration. Now consider
again two individuals both of whom are poor today to the same degree but the first
was poor also last year, while the second was out of poverty last year but in poverty
the year before that. Is the intertemporal poverty of those two individuals the same?
Again, we believe not. Both individuals were poor twice (and we are assuming that
they were poor to the same degree) but the first individual experienced poverty in
two consecutive periods while the second did not.

The relative degree of overall poverty when comparing the two individuals over
time depends on the role and evaluation of persistence in a state of poverty. To us,
the negative effects of being in poverty are cumulative, hence a two-period poverty
spell is much harder to handle than two one-period spells that are interrupted by
one (or more) period(s) out of poverty. We believe that intertemporal information
should not be neglected in assessing individual poverty. Nowadays, the availability
of panel data for most of the countries in the world makes it possible for researchers
to expand the information set when evaluating poverty. In addition to poverty lines,
per-period poverty values and inequality among the poor, the lengths of individual
poverty spells can be incorporated. We propose a way to add this time dimension to
the information used in poverty measurement.

Temporal incidence and its consequences have also been analyzed in other con-
texts such as demography, marketing, and unemployment; see Arranz and Cantó
(2010) for some references on the first two areas. The Journal of Economic Inequal-
ity has published a mini-symposium on unemployment in 2009. We refer the reader
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to its introduction (Lambert 2009) for an exhaustive summary of the literature and
to the articles on the topic by Sengupta (2009) and Shorrocks (2009a, b) contained
in it.

There are several approaches to the measurement of chronic poverty (some of
which are discussed below). Without going into specifics at this stage, it may nev-
ertheless be useful to distinguish our notion of persistence of poverty from what we
think of as being in chronic poverty. Generally speaking, we think of chronic poverty
as a term to apply to situations in which an individual is in a state of poverty for a
“large” total proportion of the number of time periods under consideration. This, we
think, does not necessarilymean that attention is paid to the duration of poverty spells
given a total number of periods spent in poverty. Our notion of persistence explicitly
takes the duration of these spells into consideration by assigning, in a sense to be
made precise once our formal framework is introduced, higher weights to longer
spells. In other words, chronic poverty occurs when there is a frequent recurrence of
poverty states while persistent poverty requires in addition to frequency that poverty
manifests itself in periods that are consecutive.

This paper is similar in spirit to Hoy and Zheng (2006) but the individual intertem-
poral poverty measure we characterize differs from theirs due to the properties that
are deemed relevant to capture the role of time and persistence. Hoy and Zheng
(2006) demand that aggregating first across individuals and then across time periods
should be equivalent to aggregating in the reverse order—first across time periods for
each single individual and then across members of the society. This leads to a notion
of path independence. In contrast to Hoy and Zheng (2006), we consider the phe-
nomenon of persistence to be crucial in assessing individual intertemporal poverty.
Aggregating across individuals first means that this information is lost whenwe reach
the second stage of aggregation. Hence we characterize an index of intertemporal
poverty for each member of the society under analysis and then aggregate across
members of society.

Foster (2009) expresses a similar view in proposing chronic poverty indices by
aggregating first across time. In contrast to our contribution, persistence in the
state of poverty is not assigned any relevance. The measures Foster (2009) pro-
poses—generalizations of the Foster–Greer–Thorbecke (1984) class that allows for
time to matter—do satisfy a property of time anonymity under which the sequenc-
ing of incomes in individual intertemporal profiles does not affect poverty. Foster
(2009) defines an individual as chronically poor if his income is below the poverty
line for at least a given number of periods. Thus, in addition to a poverty line, there
is a second cut off point in defining the chronically poor—a point defined in terms
of the incidence of poverty over time. As is the case for our contribution, the order
of aggregation matters in Foster’s approach—to identify the chronically poor, the
first aggregation step has to be performed across periods for each individual. The
individual Foster indices are means over time of per-period Foster–Greer–Thorbecke
indices. The aggregate indices are obtained by calculating average poverty among
the chronically poor. Recall that, in Foster (2009), only individuals who are poor
for at least a given number of periods are considered. Thus, if an individual is poor,
but rarely so, it is treated in the analysis as one of the individuals who are never
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poor. This is not the case in the present contribution. We do not restrict our sample
to chronically poor individuals, hence we take into account spells of poverty of any
length.

The path-independence property mentioned above can be called into question
in other models of social evaluation as well. For example, in a framework where
well-being is to be aggregated across time and across individuals, aggregating across
individuals first means that, in the second step of the procedure, we do not have
information on the period of life of an individual—only aggregate per-period infor-
mation is available. Hence, a given per-period level of individual wellbeing has to be
treated in the same way, no matter in which period of life this level is achieved. This
seems to be rather counter-intuitive and restrictive, and the same reasoning applies to
the issue of intertemporal poverty measurement considered here. See, for instance,
Blackorby et al. (1996, 2005) for discussions.

Porter and Quinn (2008) and Calvo and Dercon (2009) consider intertemporal
measures of individual poverty as well. Porter and Quinn (2008, p. 27) propose one
class of measures with the property that “fluctuations in wellbeing have a greater
negative impact, the poorer the individual.” Calvo and Dercon (2009) suggest mea-
sures some of which allow for different treatment of different time periods by means
of discounting. They also address the persistence issue but the proposed measure is
very different from ours and deals only with poverty in the immediately preceding
period without allowing the entire history of individuals to matter.

It seems to us that the negative effects of being in poverty are cumulative. Empir-
ical evidence is in favor of this view. Individuals who have been persistently poor are
often discriminated against and “have little access to productive assets and low capa-
bilities in terms of health, education and social capital” (Chronic Poverty Research
Center 2004, p. 3). In addition, there is true state dependence in poverty status since
the chances of being poor in the future are higher for individuals who are already
poor, even after controlling for individual heterogeneity, observed and unobserved.
“For example, the experience of poverty itself might induce a loss of motivation,
lowering the chances that individuals with given attributes escape poverty in the
future” (Cappellari and Jenkins 2004, p. 598). Arranz and Cantó (2010), using lon-
gitudinal data for Spain, show that poverty spell accumulation and the duration of
past spells have negative effects on poverty exit rates. Bradbury et al. (2001) report
that children who have been poor for a long time are worse off than those who are
poor in a single period only. Walker (1995, p. 103) writes that “When poverty pre-
dominantly occurs in long spells(…)the poor have virtually no chance of escaping
from poverty and, therefore, little allegiance to the wider community.” Past poverty
spells are also found to affect the current evaluation of poverty, over and above the
individual current income status; see, among others, Castilla (2010).

The empirical and econometric literature on poverty measurement has long rec-
ognized the importance of being able to distinguish between chronic and transitory
poverty and proposes alternative methods for capturing the relevant phenomenon;
for surveys of this literature, see, among others, Rodgers and Rodgers (1993) and
Jenkins (2000). Numerous applied contributions provide a detailed description of
poverty persistence in various countries and help in shaping social policies but the
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measures used are established in an ad hoc fashion without much of a theoretical
foundation. Our paper contributes to this literature by filling this gap. Specifically,
some of the empirical literature involving persistence in poverty proceed by counting
the proportion of people being poor in each period. Alternatively, the percentage of
“long” poverty spells or the sequence of multiple spells is used as a crude measure
of intertemporal poverty. In order to try to include information on the intensity of
poverty, some authors capture the temporal aspect of individual poverty by using a
measure of permanent income and then applying standard (static) indices of poverty
such as members of the Foster–Greer–Thorbecke class to the resulting distribution
of permanent incomes. See, for instance, Rodgers and Rodgers (1993, p. 31) who
use as permanent income “the maximum sustainable annual consumption level that
the agent could achieve with his or her actual income stream over the same T years,
if the agent could save and borrow at prevailing interest rates.”

The main purpose of this paper is to provide an axiomatic foundation for the
measurement of intertemporal poverty that differs from earlier approaches such as
those of Hoy and Zheng (2006), Porter and Quinn (2008), Calvo and Dercon (2009)
and Foster (2009) in the way persistence is taken into consideration. Our measure
pays attention to the length of individual poverty spells by assigning a higher level
of poverty to situations where, ceteris paribus, poverty is experienced in consecutive
rather than separated periods. The length of breaks between spells is also accounted
for by associating longer breaks between spells with lower intertemporal poverty. In
the theoretical part of the paper, we provide a characterization of our new measure.
Furthermore, we characterize aggregate intertemporal poverty as the arithmeticmean
of the individual intertemporal poverty indices. We do not restrict attention to envi-
ronments with a fixed poverty line—we allow for any method to obtain individual
per-period poverty indicators; in particular, the commonly-used procedure of using
a percentage of average or median income as the poverty line is compatible with our
setup, and this is the procedure that is used in the applied part of this paper.

We use our new aggregate index as well as measures suggested in the earlier liter-
ature to illustrate the commonalities and the differences with alternative approaches.
The application pertains to poverty patterns among EU countries in the years from
1994 to 2001.

2 Individual Intertemporal Poverty Measures

This paper is concerned with the intertemporal aggregation of per-period individual
poverty indicators (such as relative poverty gaps or their square values) over time and
the across society aggregation of these individual measures into a social measure of
intertemporal poverty.Webeginwith a discussion of individual intertemporal poverty
and its link to what we refer to as persistence.

Suppose that individual poverty indicators are observed in each of a non-empty
and finite set of consecutive periods. A standard way of generating these per period
indicators consists of defining them, in each period, as the difference between a
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(constant or income-distribution-dependent) poverty line and the individual’s income
divided by the poverty line if the income is below this poverty line and as equal to zero
otherwise. We do not need to commit to a specific way of obtaining these indicators
and treat them, for simplicity, as the primary inputs for our analysis.

Our individual poverty index depends on the length of the spells in which a person
remains poor. Clearly, the definition of a poverty spell is context specific. The choice
of the reference period is important for defining apoverty spell and there is aminimum
length of time for which poverty should persist. In fact, it is quite similar to the issue
of unemployment duration of a person. As Shorrocks (2009a, b) points out, there can
be different approaches to the measurement of unemployment duration. In our case,
a person may be asked whether its income is currently below the poverty line and
whether it has been so for a specified length of time. If, for instance, the answer is
that the person’s income is indeed below the poverty line and has been for a year, the
poverty spell is one year. We may also consider a person as unemployed as well as
poor if during a time spell its income has been below a threshold level. In this case,
the duration of unemployment and poverty coincide. The analysis considered in our
paper applies to any well-defined poverty spell.

The novel feature we suggest in intertemporal poverty measurement is to take
into consideration the length of the poverty spells an individual is subjected to. For
example, suppose two per-period individual poverty profiles are compared, where
the first profile is given by (1/3,1/2,1/4,1/2,0) and the second by (1/3,0,1/2,1/4,1/2).
We claim that individual intertemporal poverty should be higher in the first than in
the second: in the second profile, the individual experiences a break from being in
poverty rather than being poor in four consecutive periods.

Moreover, the length of spells out of poverty matters in the sense that a longer
break between poverty spells is better than a shorter break if the lengthening of
the break by adding a period out of poverty is the only change when moving from
one profile to another. For instance, suppose we have two per-period individual
poverty profiles (1/2,0,1/3,1/4,0,1/2) and (1/2,0,0,1/3,1/4,0,1/2). According to our
hypothesis, the first of these profiles is associated with a higher value of individual
intertemporal poverty. The two profiles involve an identical triple of spells—namely,
a one-period spell with a per-period poverty of 1/2, a two-period spell with poverty
values of 1/3 and 1/4, and another one-period spell with poverty 1/2. However, there
is one zero-poverty period separating the spells in the first profile but a break of two
periods in the second and, thus, intertemporal poverty is lower in the second option.

The above two properties are not sufficient to narrow down the class of possible
measures to any significant degree; they are merely monotonicity conditions that are
satisfied by a large class of measures. For that reason, although we note that these are
properties of importance, they need to be supplemented by further restrictions with
some intuitive appeal. We employ notions of decomposability in our axioms, and
these properties represent a (we think, very plausible) way of formalizing a notion
of individual intertemporal poverty that conforms to the features illustrated in the
above examples. Of course, these are not the only possibilities of doing so but, given
that decomposability properties have a long and well-established standing in the
theory of social index numbers, they appear to constitute a well-motivated choice.
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As is apparent from the formal definition of our axioms, they accommodate the
features alluded to above by requiring different types of decompositions depending
on whether we decompose a profile across spells or within a single spell.

Comparisons of poverty profiles of different length (and profiles coming from
societies of possibly different populations and population sizes) are possible accord-
ing to our measure; this is essential in order to perform international comparisons
involving data sets with different sampling periods. These comparisons can be per-
formed because our index is invariant to replications of an individual poverty profile
with respect to time. For instance, if a two-period poverty profile of a person is repli-
cated twice, then our individual poverty index remains unchanged; see also the time
replication invariance principle suggested by Shorrocks (2009).

Let� = ∪T∈N RT+. For T ∈ N , an individual per-period individual poverty profile
of dimension T is a vector pi ∈ RT+, where pti is individual i’s poverty experienced
in period t ∈ {1, . . . , T }. An individual intertemporal poverty measure is a function
Pi : � → R+ where, for all pi ∈ �, Pi (pi ) is the intertemporal poverty experienced
by person i. We choose the domain consisting of the union of the entire spaces RT+
merely for expositional convenience. All of our arguments go through if this rich
space is replaced with a subset of RT+ containing the origin—for example, we can
deal with environments where per-period poverty can assume the values zero and one
only (one when the individual is below the per-period poverty line, zero otherwise).

The result of this section consists of a characterization of an individual intertem-
poral poverty measure that reflects the length-of-spell hypothesis mentioned above.
This basic idea also motivates a characterization in the context of deriving measures
of social exclusion from measures of individual deprivation (Bossert et al. 2007),
where similar considerations apply. However, the axioms we employ are different
and we obtain a different measure as a consequence.

According to the measure, we propose in this paper, individual intertemporal
poverty is calculated as the weighted average of the individual per-period poverty
values where, for each period, the weight is given by the length of the spell to which
this period belongs. An alternative weighting scheme is proposed by Roope (2010),
where the weight assigned to a period is equal to the number of periods of relative
affluence directly preceding it.

Consider any T ∈ N and pi ∈ RT+. For t ∈ {1, . . . , T } such that pti > 0, let Dt (pi )
be the maximal number of consecutive periods including t with positive per-period
poverty values. Fort t ∈ {1, . . . , T } such that pti = 0, let Dt (pi ) be the maximal
number of consecutive periods including t with zero per-period poverty. To illustrate
this definition, consider the profile pi = (1/2, 0, 0, 1/3, 1/4, 0, 1/2) ∈ R7+. The
length of the first poverty spell is one and, thus, D1(pi ) = 1. This is followed by
a non-poverty spell of length two, which implies D2(pi ) = D3(pi ) = 2. The next
two periods are periods in poverty and we obtain D4(pi ) = D5(pi ) = 2. Period 6 is
a single period out of poverty and, thus, D6(pi ) = 1. Finally, there is a one-period
poverty spell and we have D7(pi ) = 1.

Our individual intertemporal poverty measure is now defined as
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P∗
i (pi ) = 1
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for all T ∈ N and for all pi ∈ RT+. Returning to our earlier examples, the individual
intertemporal poverty associated with the relevant profiles is
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P∗
i treats persistence in the way we suggest in the introduction and at the begin-

ning of this section: ceteris paribus, longer breaks between spells reduce individual
intertemporal poverty and longer poverty spells increase individual intertemporal
poverty. As mentioned earlier, this measure represents one possible way of doing so,
and the reason we focus on it is that, in addition to these monotonicity properties,
P∗
i satisfies notions of decomposability that we consider to be very natural in this

setting.
The weight function Dτ has an interesting implication in terms of the severity

of poverty. As the number of consecutive periods in which a person remains in
poverty increases, Dτ increases which, in turn, implies an increase in the value
of the individual poverty index. This becomes evident from the first two examples
following Eq. 1.

The first property we impose on an individual intertemporal poverty measure
requires that, in degenerate cases where there is only one period, individual intertem-
poral poverty and individual per-period poverty coincide.

One-period equivalence For all pi ∈ R+,

Pi (pi ) = pi .

In agreement with many issues involving social index numbers (see, for instance,
Ebert and Moyes (2000), in the context of individual deprivation measurement),
we impose decomposability properties. As opposed to the standard single-period
approach, we are dealing with a richer domain and wish to distinguish features
across spells and within spells. Across spells, that is, in situations where two groups
of periods in poverty are separated by at least one period with zero poverty, we
require individual intertemporal poverty to be equal to a weighted average of poverty
experienced in each spell, where the weights are given by the proportional lengths
of the two spells. The scope of the axiom is restricted to separate spells due to one
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of the features we want to highlight—the importance of the lengths of poverty spells
and the lengths of spells out of poverty. This requirement captures the main novel
feature of our approach: the length of a spell emerges as an important criterion when
assessing intertemporal poverty.

Across-spells average decomposability. For all T ∈ N\{1}, for all pi ∈ RT+ and for
all t ∈ {1, 2, . . . , T − 1}, if pti = 0 or pt+1

i = 0, then

Pi (pi ) = t

T
Pi

(
p1i , . . . , p

t
i

) + T − 1

T
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(
pt+1
i , . . . , pTi

)
.

This axiom can be illustrated using poverty profile in the fourth example following
Eq. 1. For t = 2, the axiom demands that
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The second decomposability property applies to situations where there is but a
single poverty spell—that is, the individual is in poverty in all T periods. In partic-
ular, we impose an additive-decomposability axiom that focuses on total rather than
average poverty when the single spell is separated into two sets of periods.

Single-spell additive decomposability. For all T ∈ N\{1} for all pi ∈ RT++ and for
all t ∈ {1, 2, . . . , T − 1}

Pi (pi ) = Pi
(
p1i , . . . , p

t
i

) + Pi
(
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i , . . . , pTi

)
.

To illustrate this axiom suppose that the poverty profile is (1/2,1/3,1/4,1/2). Then
the axiom demands that
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Thenovelty in our approach is thatwedistinguish betweendecomposability across
and within spells: (i) averages matter across spells to take into consideration the
hypothesis that, ceteris paribus, longer breaks between spells are associated with
lower degrees of intertemporal poverty, and (ii) totals matter within spells so that,
ceteris paribus, longer poverty spells lead to higher intertemporal poverty. As usual,
these decomposability properties impose an additive structure on the measure.

The axioms introduced above characterize P∗
i . We obtain

Theorem 1 An individual intertemporal poverty measure P : � → R+ satisfies one
period equivalence, across-spells average decomposability and single-spell additive
decomposability if and only if Pi = P∗

i .

Proof ‘If.’ That P∗
i satisfies one-period equivalence is straightforward to verify.
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To prove across-spells average decomposability, let T ∈ N\{1}, pi ∈ RT+ and for
all t ∈ {1, 2, . . . , T − 1} be such that pti = 0 or pt+1

i = 0. By definition of P∗
i we

have
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{t + 1, . . . , T } such that pti > 0. Therefore, Eq. 2 implies.
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as was to be established.
Let T ∈ N\{1}, pi ∈ RT++ and t ∈ {1, . . . , T − 1}. By definition of P∗

i and
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and single-spell additive decomposability is proven.
‘Only if.’ Now suppose Pi satisfies the axioms of the theorem statement. Let T

∈ N and pi ∈ RT+.
If T = 1, Pi (pi ) = pi = P∗

i (pi ) follows immediately from one-period equiva-
lence.

Now consider the case T ≥ 2.
If pτ

i = 0 for all τ ∈ {1, 2, . . . , T }, repeated application of one-period equivalence
and across-spells average decomposability implies Pi (pi ) = 0 = P∗

i (pi ).
If pτ

i > 0 for all τ ∈ {1, 2, . . . , T }, we have Dτ (pi ) = T for all τ ∈ {1, 2, . . . , T }.
By repeated application of one-period equivalence and single-spell additive decom-
posability,
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...
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because Dτ (pi ) = T for all τ ∈ {1, . . . , T }.
Finally, suppose there exist τ, τ ′ ∈ {1, . . . , T } such that pτ

i > 0 and pτ ′
i = 0.

In this case, we can decompose pi into spells in and out of poverty. Without loss
of generality, suppose the first spell is associated with a positive level of per-period
poverty. Thus, there exist K ∈ N\{1}, and t1, . . . , t K ∈ {1, 2, . . . , T } such that∑K

k=1 t
k = T, p1i , . . . , p

t1
i > 0, pt

1+1
i = · · · = pt
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i = 0, etc. The t k are the
lengths of the spells in poverty for all odd k and the length of the spells out of
poverty for all even k. By applying across-spells average decomposability as many
times as necessary, we obtain
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Applying one-period equivalence and single-spell additive decomposability, we
obtain
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(4)

Analogously, using one-period equivalence and across-spells average decompos-
ability as many times as needed, it follows that

t k

T
Pi
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i , . . . pt

1+···+t k

i

)
= 0 for all even k. (5)

Recall that the t k are the lengths of the spells in and out of poverty and, thus,
substituting Eqs. 4 and 5 back into Eq. 3 yields Eq. 1. �

3 Aggregate Intertemporal Poverty Measures

Given the individual intertemporal povertymeasures P∗
i for each individual in a soci-

ety, we use an aggregate intertemporal poverty index to obtain an overall measure
of poverty that allows us to compare intertemporal poverty across societies, possi-
bly involving different sampling periods and different populations and population
sizes. Although it is possible to define an aggregate intertemporal measure from first
principles (that is, using individual per-period poverty indicators as the basic objects
to be aggregated into overall poverty), we proceed by implicitly assuming that the



74 W. Bossert et al.

intertemporal aggregation is performed first (see the discussion in the introduction)
and the second step consists of aggregating these indicators across individuals in
a society to arrive at an overall measure of intertemporal poverty. This choice is
motivated primarily by our desire to keep the exposition simple.

To describe the second part of the aggregation process, let � = ∪n∈N Rn+ and
consider a function P : � → R+, to be interpreted as a measure that assigns an
aggregate value of intertemporal poverty to each vector of individual intertemporal
poverty values.

The aggregate intertemporal poverty measure we propose is defined as average
individual intertemporal poverty, that is, we employ the index P∗ defined by

P∗(p) = 1

n

n∑

i=1

pi (6)

for all n ∈ N and for all p ∈ Rn+. We view aggregate poverty as an ordinal variable
and, thus, any increasing transformation of P∗ can equivalently be employed. Of
course, individual intertemporal poverty measures must contain more than ordinal
and interpersonally non-comparable information—clearly, the definition of P∗ is
incompatible with the assumption that the p carry ordinally measurable and inter-
personally non-comparable information only. We provide a characterization of P∗
that is based on results in population ethics due to Blackorby et al. (2002, 2005).
However, we provide a self-contained proof because the domain we consider here
is different from the one in these contributions. We note that, although we use the
indices P∗

i in the application discussed in the following section, our characterization
is valid for any way of defining the individual intertemporal poverty values pi .

The first axiom is a weak monotonicity property. It requires that, in situations
where the level of individual intertemporal poverty is equal across individuals, aggre-
gate intertemporal poverty is increasing in individual intertemporal poverty. The
scope of the axiom is restricted to comparisons involving a given population size.
For any n ∈ N, let 1n denote the vector consisting of n ones.

Minimal increasingness. For all n ∈ N and for all a, b ∈ R+, if a > b, then

P(a 1n) > P(b 1n).

Minimal increasingness is a very mild monotonicity requirement because it
applies to equal distributions of individual intertemporal poverty and to fixed-
population size comparisons only.

The second axiom we impose on P is an impartiality property with respect to
increases or decreases in individual poverty. If a single individual’s intertemporal
poverty level changes by a given amount, it does not matter whose poverty changes.
Let n ≥ 2. We use the notation 1 j

n for the vector w ∈ Rn+ such that w j = 1 and
wi = 0 for all i ∈ {1, . . . , n}\{ j}.
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Incremental equity. For all n ∈ N\{1} for all p ∈ Rn+, for all d ∈ Rn+ and for all

j, k ∈ {1, . . . , n} with j �= k, if
(
p + d1 j

n

)
∈ Rn+ and

(
p + d1kn

) ∈ Rn+, then

P
(
p + d1 j

n

) = P
(
p + d1kn

)
.

Incremental equity incorporates a notion of anonymity in terms of gains and
losses in individual poverty. If there is an increase or decrease of a given value in
individual intertemporal poverty, the measure is insensitive to the identity of the
person experiencing this gain or loss. Clearly, gains and losses of poverty values
have to be comparable across individuals in order for this axiom to be well-defined.
In particular, poverty has to employ translation-scale comparable values; see, for
instance, Blackorby et al. (1984) and Bossert and Weymark (1099) for a discussion.

Minimal increasingness and incremental equity together characterize ordinal
aggregate poverty measures based on average (or total) individual poverty for any
fixed population size; see Blackorby et al. (2002, 2005). However, further axioms are
needed to extend this characterization to the entire domain �, that is, to aggregate
poverty comparisons that may involve different population sizes. One possibility is
to require that average individual poverty is a critical level for any poverty vector
p ∈ �; see, again, Blackorby et al. (2005) for a detailed discussion. That is, aggre-
gate poverty is unaffected if an individual with average poverty is added to a given
distribution p ∈ �. This reflects the position that aggregate poverty is a per-capita
notion, a view that is shared in most of the literature on poverty measurement.

Average critical levels. For all n ∈ N and for all p ∈ Rn+

P

(
p,

1

n

n∑

i=1

pi

)
= P(p).

Recall that the arguments pi of P are themselves intertemporal aggregates of
individual per-period poverty values and, thus, all information concerning per-period
poverty lines has already been fully taken into consideration when arriving at the
individual intertemporal poverty indices. Thus, treating average poverty as a critical
level does not conflict in any way with whatever method is chosen to identify these
per-period poverty lines.

The three axioms defined above characterize the class of all aggregate poverty
measures that are ordinally equivalent to P∗. The axioms can be motivated further
by noting that they are implied by other properties with intuitive interpretations.
For instance, minimal increasingness is a consequence of standard increasingness,
incremental equity is implied by a fixed-population information-invariance property
and average critical levels are implied by increasingness, the existence of critical
levels and a variable-population information-invariance condition; see Blackorby
et al. (2005, Chaps. 4, 5 and 6) for a detailed discussion.
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Theorem 2 An aggregate intertemporal poverty measure P satisfies minimal
increasingness, incremental equity and average critical levels if and only if P is
an increasing transformation of P∗.

Proof That any increasing transformation of P∗ satisfies minimal increasingness,
incremental equity and average critical levels is straightforward to verify.

Conversely, suppose that P satisfies the three axioms.
If n = 1, minimal increasingness alone implies the result.
Now let n ≥ 2. Consider p ∈ Rn+ and j, k ∈ {1, . . . , n} with j �= k, and suppose

d ∈ R+ is such that p j ≥ d. By incremental equity.

P
(
p − d1 j

n + d1kn
) = P

(
p − d1 j

n + d1 j
n

) = P(p). (7)

Let p ∈ Rn+ and suppose, without loss of generality, that p1 ≥ p2 ≥ · · · ≥ pn .
By (repeated if necessary) application of Eq. 7, it follows that

P(p) = P

(
p1 −

(
p1 − 1

n

n∑

i=1

pi

)
, p2, . . . , pn +

(
p1 − 1

n

n∑

i=1

pi

))

= P

(
1

n

n∑

i=1

pi , p2, . . . , pn + p1 − 1

n

n∑

i=1

pi

)

...

= P

(
1

n

n∑

i=1

pi ,
1

n

n∑

i=1

pi , . . . ,
n∑

i=1

pi − n − 1

n

n∑

i=1

pi

)

= P

((
1

n

n∑

i=1

pi

)
1n

)
.

Together with minimal increasingness, this implies

P(p) ≥ P(q) ⇔ P

((
1

n

n∑

i=1

pi

)
1n

)
≥ P

((
1

n

n∑

i=1

qi

)
1n

)

⇔ 1

n

n∑

i=1

pi ≥ 1

n

n∑

i=1

qi

⇔ P∗(p) ≥ P∗(q) (8)

for all n ∈ N and for all p, p ∈ Rn+. Thus, all fixed-population-size comparisons
must be performed according to P∗.

Now consider n, m ∈ N such that n �= m, p ∈ Rn+ and q ∈ Rn+. Without loss of
generality, suppose n > m. By (repeated if necessary) application of average critical
levels, we obtain
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P(q) = P

(
q,

1

m

m∑

i=1

qi

)
= · · · = P

(
q,

(
1

m

m∑

i=1

qi

)
1n−m

)

and, therefore,

P(p) ≥ P(q) ⇔ P(p) ≥ P

(
q,

(
1

m

m∑

i=1

qi

)
1n−m

)
. (9)

Because p and
(
q,

(
(1/m)

∑m
i=1 qi

)
1n−m

)
have the same population size n, Eq. 8

implies

P(p) ≥ P

(
q,

(
1

m

m∑

i=1

qi

)
1n−m

)
⇔ 1

n

n∑

i=1

pi ≥ 1

n

(
m∑

i=1

qi + n − m

m

m∑

i=1

qi

)

⇔
n∑

i=1

pi ≥
m∑

i=1

qi + n − m

m

m∑

i=1

qi

which implies

P(p) ≥ P

(
q,

(
1

m

m∑

i=1

qi

)
1n−m

)
⇔ 1

n

n∑

i=1

pi ≥ 1

m

m∑

i=1

qi .

By Eq. 9, we obtain

P(p) ≥ P(q) ⇔ 1

n

n∑

i=1

pi ≥ 1

m

m∑

i=1

qi ⇔ P∗(p) ≥ P∗(q)

which completes the proof. �

4 An Application to European Countries

The purpose of this section is to illustrate the aggregate measure of poverty, P∗ as
defined in Eq. 6 with individual intertemporal poverty measures pi given by P∗

i (pi ),
using the European Community Household Panel (ECHP). We base our analysis on
all the waves available in ECHP, which cover the period from 1994 to 2001. The
surveys are conducted at a European national level. We do not aim at providing an
accurate analysis of poverty persistence in EU countries, hence we take the available
years as such without considering the presence of any measurement errors and the
possibility that poverty spells are censored at the beginning or at the end of the sample
we observe. For a discussion of these estimation techniques see, among others, Bane
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and Ellwood (1986) and Jenkins (2000). The ECHP is an ambitious effort at collect-
ing information on the living standards of the households of the EU member states
using common definitions, information collection methods, and editing procedures.
It contains detailed information on incomes, socio-economic characteristics, hous-
ing amenities, consumer durables, social relations, employment conditions, health
status, subjective evaluation of well-being, etc. Of the 15 EU member states, we
could not consider Sweden since the data for this country is cross-sectional only.
For Finland and Austria, data were not available for all the waves. While the former
joined from wave three onwards, the Austrian data are available beginning with the
second wave. The full ECHP data format for the UK, Germany, and Luxembourg
is available only for the years 1994–1996. We therefore use the ECHP data format
derived from national surveys instead. These data are available for the UK and Ger-
many for 1994–2001; for Luxembourg, on the other hand, they are available from
1995 onwards only. For this reason, Luxembourg, like Austria, was included from
the second wave onwards. The unit of our analysis is the individual. The calculation
uses required sample weights. Since we are interested in analyzing poverty spells
and the effect of persistence in the state of poverty, we consider only individuals
that were interviewed in all the waves for each country. The variable studied is net
yearly household income equivalized using the OECDmodified equivalence scale in
order to account for different household size and composition. For each country and
for each period in the sample, the poverty line is set to 60% of the national median.
Thus, for any given per-period income distribution yt , the poverty line in this period,
z′(y′), is given by 0.6 times the median of y′. An individual is classified as poor if
its income is strictly below the poverty line.

For the per-period individual poverty indicators, we choose three among those
most commonly used in empirical studies, namely, the normalized relative gaps
raised to the power α ∈ {0, 1, 2} so that, for any period t ∈ N ,

pti =
{

(zt(yt)−yti )
α

zt (yt ) if yti < zt
(
yt

)
,

0 if yti ≥ zt
(
yt

)
.

When α = 0, the individual poverty indicator captures only the number of periods
spent in poverty. In this case, pti assumes the value one for those in poverty and zero
for everybody else. This individual index is similar in spirit to the head-count ratio.
When α = 1 we consider not only the incidence of poverty but also its intensity since
we take into account how poor each poor individual is, expressed as a proportion of
the poverty line. In this case, the index resembles the normalized poverty gap. When
α = 2, the normalized gaps are squared. As a result, we give more importance to
poorer individuals as opposed to those poor whose income is less distant from the
poverty line.

We compare the values of the index we propose with those obtained with a weight
equal to one independently of thedurationof the spell. In this case persistencedoes not
play a role. This is the only case where aggregating first across time and then across
individuals produces exactly the same results as the reverse order of aggregation does,
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that is, aggregating first across individuals and then across time. The aggregate index
coincides with the average of per-period standard poverty indices. If, in addition,
α = 0, the aggregate index is the average of the per-period head-count ratios; if
α = 1, it is the average of the aggregate normalized poverty gap indices; and, lastly,
if α = 2, it is the average of the aggregate squared normalized poverty gaps.

The results are contained in Table 1, while in Table 2 we report the rankings of the
countries under alternative indices. In the first column, the names of the countries
are reported while the following pairs of columns present poverty indicators for
the three different values of α. The first column of each pair contains the values
of the index where persistence does not play any role. The values of the index we
propose in this paper are reported in the second column of each pair. The results
show that persistence in a state of poverty does play a role in poverty measurement.
It constitutes relevant information and its omission would not give a correct picture
of the phenomenon. The rankings of the countries change, particularly in the center
of the rankings. Portugal, followed by Greece, is indeed always the poorest country
among those under analysis. At the opposite end the Netherlands is always the least
poor when α = 0 while Denmark followed by Finland is the least poor for the other
values of the parameter α. The majority of rank changes are observed for α = 0. In
this case Denmark, Austria and particularly Spain improve their position by one, two
and three slots respectively, while Finland, Germany, Luxembourg and Ireland move
one position down. The UK sees its position worsen by two. For α = 1, no country
experiences amovement ofmore thanoneposition. In particular, Luxembourg and the
Netherlands, Germany and Austria, Italy and Spain switch places in the rankings.

Table 1 Aggregate intertemporal poverty in EUmember states, with (yes) andwithout (no)weights
for persistence (index values)

Country α = 0 α = 1 α = 2

No Yes No Yes No Yes

Denmark 0.096 0.327 0.017 0.060 0.006 0.018

Finland 0.094 0.356 0.018 0.069 0.006 0.022

Luxembourg 0.114 0.468 0.021 0.092 0.006 0.026

Netherlands 0.087 0.298 0.023 0.079 0.012 0.038

Ireland 0.187 0.768 0.035 0.148 0.011 0.046

Austria 0.116 0.422 0.028 0.111 0.012 0.049

Belgium 0.134 0.534 0.031 0.127 0.013 0.052

France 0.144 0.583 0.033 0.141 0.013 0.054

Germany 0.107 0.434 0.028 0.121 0.013 0.056

UK 0.176 0.750 0.048 0.217 0.022 0.100

Spain 0.190 0.702 0.058 0.233 0.029 0.0119

Italy 0.181 0.721 0.058 0.257 0.031 0.140

Greece 0.201 0.827 0.067 0.306 0.033 0.153

Portugal 0.220 1.005 0.071 0.357 0.037 0.188
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Table 2 Aggregate intertemporal poverty in EUmember states, with (yes) andwithout (no)weights
for persistence (ranking)

Country α = 0 α = 1 α = 2

No Yes No Yes No Yes

Denmark 3 2 1 1 1 1

Finland 2 3 2 2 2 2

Luxembourg 5 6 3 4 3 3

Netherlands 1 1 4 3 5 4

Ireland 11 12 9 9 4 5

Austria 6 4 6 5 6 6

Belgium 7 7 7 7 8 7

France 8 8 8 8 9 8

Germany 4 5 5 6 7 9

UK 9 11 10 10 10 10

Spain 12 9 12 11 11 11

Italy 10 10 11 12 12 12

Greece 13 13 13 13 13 13

Portugal 14 14 14 14 14 14

For α = 2, Ireland and the Netherlands switch positions while Germany moves
below both Belgium and France. From a social policy point of view, the discovery of
this temporal characteristic of poverty should lead to different recommendations: in a
country like Germany, for example, where poverty is more persistent, policies should
aim at helping individuals and households to escape frompoverty; in theNetherlands,
on the other hand, poverty is more transitory and a more effective policy would be
one preventing individuals from becoming poor.

5 Concluding Remarks

Time is an important aspect of individual lives. Experiences are accumulated over
lifetimes and the assessment of the impact a poverty spell has on a person’s situation
mayverywell differ according towhat happened to the individual in previous periods.
The index of intertemporal poverty that we propose aims at including experiences in
addition to the incidence of poverty and inequality among those who are poor when
measuring poverty. The results of our simple application to EU countries show that
a different picture can emerge when we value individual experiences.

Clearly, we do not claim that our index is the only plausible measure of intertem-
poral poverty, just as no one would, we believe, declare the Gini coefficient to be the
only possible choice as a tool to measure income inequality, to the exclusion of all
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other measures. However, we view our proposal as an attractive option and we think
the properties used in its characterization have some strong intuitive appeal.

We restrict attention to the intertemporal aggregation of per-period overall poverty
in this paper. Clearly, our approach can bemodified easily in order to obtainmeasures
of chronic poverty based on the idea underlying our new index. For instance, any
particular definition of chronic poverty can be accommodated by adding a duration
criterion and declaring an individual to be chronically poor if there is at least one
poverty spell of at least that duration and then perform the aggregation over indi-
viduals by calculating the arithmetic mean of the poverty values only of all those
satisfying this criterion.

Another possible extension that may be of interest is the inclusion of a component
capturing the psychological effects of gains and losses in income, in addition to the
features that are already accounted for in the individual per-period poverty values.

Further work could be done by performing statistical inference with the index
we propose and by considering the possibility that poverty spells are censored when
estimating intertemporal poverty.
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The Measurement of Multidimensional
Poverty

François Bourguignon and Satya R. Chakravarty

Abstract Many authors have insisted on the necessity of defining poverty as a mul-
tidimensional concept rather than relying on income or consumption expenditures
per capita. Yet, not much has actually been done to include the various dimensions
of deprivation into the practical definition and measurement of poverty. Existing
attempts along that direction consist of aggregating various attributes into a single
index through some arbitrary function and defining a poverty line and associated
poverty measures on the basis of that index. This is merely redefining more gen-
erally the concept of poverty, which then essentially remains a one-dimensional
concept. The present paper suggests that an alternative way to take into account the
multidimensionality of poverty is to specify a poverty line for each dimension of
poverty and to consider that a person is poor if he/she falls below at least one of
these various lines. The paper then explores how to combine these various poverty
lines and associated one-dimensional gaps into multidimensional poverty measures.
An application of these measures to the rural population in Brazil is also given with
poverty defined on income and education.

Keywords Multidimensional · Poverty measure

1 Introduction

Poverty has been in existence for many years and continues to exist in a large number
of countries. Therefore, targeting of poverty alleviation remains an important issue in
many countries. In order to understand the threat that the problem of poverty poses,
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it is necessary to know its dimension and the process through which it seems to be
deepened. A natural question that arises here is how to quantify the extent of poverty.
In an important contribution, Sen (1976) viewed the poverty measurement problem
as involving two exercises: (i) the identification of the poor, and (ii) aggregation
of the characteristics of the poor into an overall indicator. In the literature, the first
problem has been solved mostly by the income (or consumption) method, which
requires the specification of a subsistence income level, referred to as the poverty
line. A person is said to be poor if his/her income falls below the poverty line. On
the aggregation issue, Sen (1976) criticised two crude poverty measures, the head
count ratio (proportion of persons with incomes less than the poverty line) and the
income gap ratio (the gap between the poverty line and average income of the poor,
expressed as a proportion of the poverty line), because they are insensitive to the
redistribution of income among the poor and the former also remains unaltered if the
position of a poor worsens. He also suggested a more sophisticated index of poverty
using an axiomatic approach.1

However, the well-being of a population and, hence its poverty, which is a man-
ifestation of insufficient well-being, depend on both monetary and non-monetary
variables. It is certainly true that with a higher income or consumption budget a
person may be able to improve the position of some of his/her monetary and non-
monetary attributes. But at the same time, it may be the case that markets for some
non-monetary attributes do not exist, for example, with some public good. It may
also happen that markets are highly imperfect, for instance, in the case of rationing.
Therefore, income as the sole indicator of well-being is inappropriate and should be
supplemented by other attributes or variables, e.g., housing, literacy, life expectancy,
provision of public goods and so on. The need for such a multidimensional approach
to the measurement of inequality in well-being was already emphasised, among
others, by Kolm (1977), Atkinson and Bourguignon (1982), Maasoumi (1986) and
Tsui (1995). Concerning poverty, Ravallion (1996) argued in a recent paper that
four sets of indicators can be defended as ingredients for a sensible approach to
poverty measurement. These are: (i) real expenditure per single adult on market
goods, (ii) non-income indicators as access to non-market goods, (iii) indicators of
intra-household distribution such as child nutritional status and (iv) indicators of per-
sonal characteristics which impose constraints on the ability of an individual, such
as physical handicap. In other words, a genuine measure of poverty should depend
on income indicators as well as non-income indicators that may help in identifying
aspects of welfare not captured by incomes.

We can cite further rationales for viewing the problem of measurement of well-
being of a population from a multidimensional structure. For instance, the basic
needs approach advocated by development economists regards development as an
improvement in an array of human needs and not just as growth of income-see
Streeten (1981). There exists a debate about the importance of low incomes as a

1Alternatives and variations of the Sen index have been suggested, among others, by Takayama
(1979), Blackorby and Donaldson (1980), Kakwani (1980), Clark et al. (1981), Foster et al. (1984),
Chakravarty (1990), and Bourguignon and Fields (1997).
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determinant of under-nutrition-see Lipton and Ravallion (1995). Finally, well-being
is intrinsically multidimensional from the view point of ‘capabilities’ and ‘function-
ings’, where functionings deal with what a person can ultimately do and capabilities
indicate the freedom that a person enjoys in terms of functionings—Sen (1985, 1992).
In the capability approach functionings are closely approximated by attributes such
as literacy, life expectancy, etc. and not by income per se. An example of multidi-
mensional measure of well-being in terms of functioning achievements is the Human
Development Index suggested byUNDP (Streeten 1981). It aggregates at the country
level functioning achievements in terms of the attributes life expectancy, per capita
real GDP and educational attainment rate.

For reasons stated above, we deviate in the present paper from the single dimen-
sional income approach to the measurement of poverty and adopt an alternative
approach which is of multidimensional nature. In our multidimensional framework
instead of visualising poverty or deprivation using income or consumption as the sole
indicator of well-being, we formalise it in terms of functioning failures, or, more pre-
cisely, in terms of shortfalls from threshold levels of attributes themselves. We then
examine various aggregation rules which permit to quantify the overall magnitude
of poverty using these shortfalls. It may be important to note that the threshold levels
are determined independently of the attribute distributions. In this sense the concept
of poverty measurement we explore here is of ‘absolute’ type.

We begin the paper by discussing the problem of identifying the poor in Sect. 2.
Section 3 then suggests reasonable properties for a multidimensional poverty index.
Since we view poverty measurement from a multidimensional perspective, a very
important issue that needs to be discussed is the trade off among attributes. It is
shown that the possibility/impossibility of such trade offs drops out as an impli-
cation of different postulates for a multidimensional measure of poverty. This is
presented in Sect. 4 of the paper. Section 5 introduces some functional forms for a
multidimensional poverty measure whereas Sect. 6 shows how they may be prac-
tically implemented by considering the evolution of ‘income/education poverty’ in
rural Brazil. Section 7 concludes.

2 Identification of the Poor

The purpose of this section is to determine the set of poor persons. We begin with
notational definitions.With a population of size n, person i possesses anm-row vector
of attributes, xi ∈ Rm+, where Rm+ is the non-negative orthant of the Euclidean m-
space Rm . The vector xi is the ith row of a n × m matrix X ∈ Mn, where Mn is the
set of all n × m attribute matrices whose entries are non-negative reals. The (i, j)th
entry of X gives the quantity of attribute j possessed by person i. Therefore, the jth
column of X gives a distribution of attribute j among n persons. Let M = ∪n∈N Mn ,
where N is the set of positive integers. For any X ∈ M , we write n (X)—or, n—for
the corresponding population size. It should be noted that quantitative specifications
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of different attributes preclude the possibility that a variable can be of qualitative
type—for instance, of the type whether a person is ill or not.

A simple way of dealing with the multidimensionality of poverty is to assume that
the various attributes of an individual may be aggregated into a single cardinal index
of ‘well-being’ and that povertymay be defined in terms of that index. In other words,
an individual can be said poor if his/her index of aggregate well-being falls below
some poverty line. However, such an approach would be severely restrictive and
wouldmostly amount to consideringmultidimensional poverty as single dimensional
income poverty, with some appropriate generalisation of the concept of ‘income’.
Although there sometimes may be a good justification for such an approach,2 this
is the case that we do not want to consider here because it is conceptually strictly
equivalent to the case of income poverty. The fundamental point in all what follows
is that a multidimensional approach to poverty defines poverty as a shortfall from a
threshold on each dimension of an individual’s well-being. In other words, the issue
of the multidimensionality of poverty arises because individuals, social observers or
policy-makers want to define a poverty limit on each individual attribute: income,
health, education, etc. All the arguments presented in this paper are based on this
idea.3

In agreementwith this basic principle, a directmethod to checkwhether a person is
poor in themultidimensional frameworkwhere he/she is characterised bymattributes
is to see whether he/she has the subsistence or threshold level of each attribute. Let z
∈Z be a vector of thresholds, or ‘minimally acceptable levels’—Sen (1992), p. 139—
for different attributes,4 where Z is a subset of Rm+ .The problem is now to determine
whether a person, i, is poor or not on the basis of his/her, xi and the vector z.

One unambiguousway of counting the number of poor in this context is to identify
those for whom the levels of all attributes fall below the corresponding thresholds.
But this definition does not exhaust the entire set of poor persons. For example, an
old beggar certainly cannot be regarded as rich because of his longevity, though the
above notion excludes him from the set of poor. Therefore, this definition seems to
be inappropriate.

More generally, person imay be called poor with respect to attribute j if xi j < z j .
Person i is regarded as rich if xi j ≥ z j for all j. Analogously, attribute j for person
i is said to be meagre or non-meagre according as xi j < z j or xi j ≥ z j .For any X
∈ M, let Sj (X) (or Sj ) be the set of persons who are poor with respect to attribute
j. One may argue that the total number of poor persons can be obtained by adding
the number of people in Sj over j. But this procedure may lead to double counting.
To see this, suppose that there are two attributes, 1 and 2. The subsistence levels

2Tsui (2002) provides an axiomatic justification of such an approach. Note also that this approach
may go quite beyond aggregating a few goods or functionings through using appropriate prices or
weights. For instance Pradhan and Ravallion (2000) tried to integrate into the analysis unobserved
welfare determinants summarised by reported subjective perception of poverty.
3Note that poverty limits in all dimensions are defined independently of the quantity of other
attributes an individual may enjoy. For a more general statement see Duclos et al. (2001).
4Using the same attributes as UNDP (1990), empirical examples of these threshold quantities could
be an income of 1$ (ppp corrected) a day, primary education, and 50 year life expectancy.
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Fig. 1 Poverty regions

z1 and z2 are represented by the lines CD and AB respectively in Fig. 1. U1 and
U2 are upper bounds on the quantities of the attributes. Clearly the total number of
poor in this two-attribute case becomes the number of persons for whom the attribute
quantities lie inside the space (OABU1 + ODCU2). This shows that the number of
persons in OAED is counted twice in this calculation. The double counting may be
avoided if we subtract OAED from (OABU1 + ODCU2). But with an increase in
the number of attributes the number of sets on which double counting occurs will
increase. Consequently, given that we should avoid double counting, determination
of the total number of poor using S

′
j s will be very intricate.

A simpler way of defining poverty and counting the number of poor is to explicitly
account for the possibility of being poor in any poverty dimension. A straightforward
way of doing so is to define the poverty indicator variable:

ρ(xi ; z) = 1 if ∃ j ∈ (1, 2, . . . ,m) : xi j < z j and
ρ(xi ; z) = 0, otherwise.

(1)

Then the number of poor is simply given by:

n∑

i=1

ρ(xi ; z). (2)

For further reference and in linewith thepreceding arguments, itwill be convenient
to adopt the following definitions. The region OAED in Fig. 1, where person i is poor
with respect to both attributes, will be called the ‘two-dimensional poverty’ region
(PR2). In contrast, the spacesAECU2andDEBU1canbe called the ‘one-dimensional
poverty regions’ (PR1) because the quantity of only one of the attributes is above the
subsistence level in these spaces.
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3 Properties for a Multidimensional Poverty Index

In this section, we lay down the postulates for ameasure ofmultidimensional poverty.
A formal statement of all these postulates is given in the Appendix to this paper. The
following discussion is essentially verbal.

A multidimensional poverty index is a non-constant function P : M × Z → Rt .
For any X ∈ M, z ∈ Z , P (X : z) gives the extent of poverty associated with
the attribute matrix X and thresholds z. Thus, though we view the poverty measure-
ment problem from a multidimensional perspective, we indicate the magnitude of
overall poverty by a real number. The index P may be assumed to satisfy certain
postulates. A first set of postulates includes the following: STRONG FOCUS (SF),
WEAK FOCUS (WF), SYMMETRY (SM), MONOTONICITY (MN), CONTINU-
ITY (CN), PRINCIPLE OF POPULATION (PP), SCALE INVARIANCE (SI), and
SUBGROUP DECOMPOSABILITY (SD).

These postulates are straight generalisations of the desiderata suggested for a
single dimensional poverty index.5 As such, most of them are little debatable. SF
demands that for any two-attribute matrices X and Y, if Y is obtained from X by
changing some non-poor attainment quantities so that the set of poor persons as
well as their attribute levels below the relevant thresholds remain the same, then the
poverty levels associated with X and Y must be equal. In other words, we say that
the poverty index is independent of the non-poor attribute quantities. Therefore, SF
does not allow the possibility that a person can give up some amount of a non-meagre
attribute to improve the position of a meagre attribute. If one views poverty in terms
of deprivation from thresholds, then SF is quite reasonable. In contrast to SF, WF,
the weak version of the focus axiom, says that the poverty index is independent of
the attribute levels of the non-poor persons only. SM states that any characteristic of
persons other than the quantities of attributes used to define poverty is unimportant
for measuring poverty. According toMN if the position of person i who is poor with
respect to attribute j improves then overall poverty should not increase. It may be
noted that the improvement may make the beneficiary non-poor with respect to the
attribute under consideration. Continuity (CN) requires P to vary continuously with
x ;
i j s and is essentially a technical requirement. Continuity ensures in particular that
the poverty indexwill not be oversensitive tominor observational errors on quantities
of attributes. PP is necessary for cross population comparisons of poverty. SI says
that the poverty index should be invariant under scale transformation of attributes and
thresholds. In other words, what matters for poverty measurement is only the relative
distance at which the quantities of all attributes are from their poverty thresholds. SD
shows that if the population is partitioned into several subgroups with respect to some
homogeneous characteristic, say age, sex, race, region, etc., then the overall poverty
is the population share weighted average of subgroup poverty levels. Therefore,

5For discussion of properties for a single dimensional poverty index, see among others, Foster
(1984), Donaldson andWeymark (1986), Cowell (1988), Chakravarty (1990), Foster and Shorrocks
(1991) and Zheng (1997).
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SD enables us to calculate percentage contributions of different subgroups to total
poverty and hence to identify the subgroups that are most afflicted by poverty.6

We now consider postulates which may less easily be generalised to a multidi-
mensional framework or are specific to it. We first focus on redistribution criteria that
involve a transfer of a fixed amount of some attribute from one person to another.
We say that matrix X is obtained from Y by a Pigou–Dalton progressive transfer of
attribute j from one poor person to another if the two matrices X and Y are exactly
the same except that the richer poor i—with respect to attribute j—has θ units less of
attribute j in Y than in X whereas poorer poor t has θ units more. Equivalently, we say
that Y results from X through a regressive Pigou–Dalton transfer in attribute j. It is
quite reasonable to argue that under such a progressive (regressive) transfer poverty
should not increase (decrease). This is what is demanded by the one-dimensional
transfer principle (OTP).

A straightforward extension of that principle that generalises in a simple manner
the Pigou–Dalton transfer principle used in income povertymeasurement, is a variant
of the following multidimensional transfers principle introduced by Kolm (1977).
TheKolmproperty says that the distribution of a set of attributes summarised by some
matrix X is more equal than another matrix Y (whose rows are not identical) if and
only if X = BY, where B is some bistochastic matrix7 and X cannot be derived from
Y by permutation of the rows of Y. Intuitively, multiplication of Y by B makes the
resulting distribution less concentrated. In effect, this transformation is equivalent
to replacing the original bundles of attributes of any pair of individuals by some
convex combination of them. Following Tsui (2002), the analogous property applied
to the set of poor is the multidimensional transfer principle (MTP). There is no more
poverty with X than with Y if X is obtained from Y simply by redistributing the
attributes of the poor according to the bistochastic transformation.8

Instead of the single dimensional and multidimensional transfer principles OTP
and MTP, we now consider a redistributive criterion involving two attributes, but
without tying down the proportions in which they are exchanged as in MTP. For this,
suppose two persons, i and t, are in the two-dimensional poverty space associated
with attributes j and k, and i hasmore of k but less of j. Let us interchange the amounts
of attribute j between the two persons. As person i who had more of k has now more
of j too, there is an increase in the correlation of the attributes within the population.
It is reasonable to expect that such a switch will not decrease or increase poverty
according to the two attributes correspond to similar or different aspects of poverty.
The non-decreasing poverty under correlation increasing switch (NDCIS) postulate
says that poverty cannot decrease with such correlation increasing switches. The

6For further discussion, see Tsui (2002) and Chakravarty et al. (1998). Also it may be noted that
that SD is not the same as subgroup consistency discussed in Foster and Shorrocks (1991).
7A square matrix is called a bistochastic matrix if each of its entries is non-negative and each of
its rows and columns sums to one. Evidently, a permutation matrix is a bistochastic matrix but the
converse is not necessarily true.
8It is well-known that the one-dimensional Pigou–Dalton transfer principle is connected to Lorenz
dominance through the Hardy–Little wood–Polya theorem. No such theorem is available in the
multiattribute case.
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converse property will be denoted by NICIS. The exact meaning of both postulates
will be discussed more explicitly in the next section.

4 Implications of Properties

This section discusses some implications of the properties suggested in the previous
section.

In the rest of this paper, we will consider mostly subgroup decomposable mea-
sures. A trivial implication of SD is that a poverty index defined onMn can be written
as:

P(X; z) = 1

n

n∑

i=1

p(xi ; z),

In this expression p(xi ; z) may clearly be interpreted as the level of poverty
associatedwith a single person i possessing attribute vector xi .Most of our arguments
in this section are presented in terms of this ‘individual poverty function’.

Our first proposition, whose proof is easy, makes a simple but extremely important
observation about the shape of an isopoverty contour in a single dimensional poverty
region.

Proposition 1 Under SF, the isopoverty contours of an individual in a one-
dimensional poverty space are parallel to the axis that shows the quantities of the
attribute with respect to which he/she is poor.

This proposition is extremely important because it conveys the essence of mul-
tidimensional poverty measurement. If one insists on defining a poverty threshold
independently for each attribute, then at the same time one cannot suppose that the
poverty shortfall in a given attribute may be compensated and possibly eliminated by
increasing the quantity of another attribute indefinitely above its threshold level. If I
am poor because my income is below the poverty limit, a very long life expectancy
cannot make my poverty disappear. More precisely, Proposition 1 does not allow
trade off between meagre and non-meagre attribute quantities of a person.

Things are slightly different when using WF rather than SF. Since WF assumes
that the poverty index is independent of attribute levels of non-poor persons only, it
does not rule out the possibilities of trade offs. WF ignores information on attributes
of non-poor persons but, unlike SF, takes into account the non-poor attributes of a
poor person, that is, of a person who has at least one poor attribute. Therefore, we can
no longer have straight line isopoverty contours in one-dimensional poverty spaces
if we assume WF.
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Fig. 2 Convexity of isopoverty contour

In fact, if we assume convexity of isopoverty contours in single dimensional
poverty regions,9 then the following variant of Proposition 1 emerges.

Proposition 1* Under WF, the convex isopoverty contours in single dimensional
poverty regions have vertical and horizontal asymptotes.

The reasoning behind this proposition is as follows. Although trade off is allowed
under WF in one-dimensional poverty spaces, poverty is never eliminated. That is,
there is a positive lower bound of the poverty index along any vertical or horizontal
axis in the poverty space. This means that the contour becomes a horizontal or a
vertical line asymptotically. However, this property leads to analytically difficult
problems and we shall be working mostly with SF in what follows.

Proposition 2 (Convexity of isopoverty contours). Suppose that m = 2 and that the
poverty index satisfies MN, CN, SD, and OTP or MTP. Then the is poverty contours
in the two-dimensional poverty region are decreasing convex to the origin.

Proof That the is poverty contour is decreasing is guaranteed byMN. The convexity
makes use of OTP or MTP. Denote the two attributes for which contours are to be
examined by 1 and 2. Since we will restrict our attention to the two-dimensional
space only, let us suppose that xi j < z j for j = 1, 2 and for two persons 1 and 2.
Let their attributes (x11, x12) and (x21, x22) be represented by points A1 and A2 in
Fig. 2. Consider a transfer of attributes between these two persons which makes their
bundles identical. Under SD, the change in the overall poverty index is given by:

�P = 1

n

[
2.p

(
(x11 + x21)

/
2
)
, (x12 + x22)

/
2; z) − p(x11, x12; z) − p(x21, x22; z)

]
. (3)

9Convexity of the contours implicitly assumes that MTP holds throughout the entire poverty space.
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Both OTP andMTP imply that this expression is non-positive. If I is the midpoint
of the segment A1A2 in Fig. 2, CN andMN then imply that I lies above the isopoverty
contour going through the bundle A1 or A2, where individual poverty is maximum.
If A1 and A2 are on the same isopoverty contour it follows that all bundles on the
segment A1A2 lie on isopoverty contours with lower poverty. �

This proposition shows that non-increasingness of themarginal rate of substitution
between two attributes for a person in the two-dimensional poverty region is an
implication of OTP or MTP. The notion of substitutability between attributes in
something different and will be taken up below.

It should be clear that under SF, the poverty indifference curves in the one-
dimensional poverty regionswill be either horizontal or vertical straight lines depend-
ing on which axis of the graph represents quantities of which attribute. Given the
shapes of the curves in the respective poverty spaces, we can combine them to gen-
erate isopoverty contours for the entire domain. Continuity enables us to connect the
curves over the intervals [z1 − ε, z1] and [z2 − ε, z2], by continuous curves, where
ε > 0 is infinitesimally small. We show the combined graphs in Fig. 3. Q1, Q2, and
Q3 are three overall isopoverty curves. The poverty levels associated with Q1, is
higher than that corresponds to Q2, and Q2 represents more poverty than Q3.

In the preceding proposition, OTP and MTP have an identical role. It is clear,
however, that requiring validity of the transfers principle for all attributes is more
demanding than that for one attribute only. Therefore, the set of poverty indices satis-
fying OTP must be more restrictive than those satisfying MTP. Our next proposition
shows that indeed the former includes only those individual poverty functions that
are additive across components.

Proposition 3 (Additivity). Suppose that a subgroup decomposable poverty index
satisfying OTP possesses first-order partial derivatives. Then it is additive across
attributes, that is,

Fig. 3 Poverty indifference curves in different poverty regions
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P(X; z) = 1

n

n∑

i=1

m∑

j=1

p j (xi j ; z j ), (4)

where p j () is the individual poverty function associated with attribute j.

Proof For simplicity let us consider the two-person, two-attribute case. But one may
check that the result remains valid in the general case too.

Consider two individuals 1 and 2 with attribute levels (x11, x12) and (x21, x22)
respectively. Then for (x11 < x21) OTP implies the following:

p(x11 − ε, x12) + p(x21 + ε, x22) − p(x11, x12) − p(x21, x22) ≥ 0

for all (x12, x22, ε > 0).
Letting ε tend towards 0 and taking limits leads to:

p1(x21, x22) − p1(x11, x12) ≥ 0 for all (x12, x22, and x11 < x21), (5)

where p1() is the partial derivative of p ()with respect to its first argument. Define
now:

g(t) = Max p1(t, s) for s ∈ [0,∞] and

h(t) = Min p1(t, s) for s ∈ [0,∞). (6)

Then (5) implies,

h(x21) − g(x11) ≥ 0 for all x11 < x21. (7)

But, by definition of g () and h () in (6), we have

h(x11) − g(x11) ≤ 0 for all x11 and

h(x21) − g(x21) ≤ 0 for all x21. (8)

Allowing x11 to tend towards x21 from below shows a contradiction between (7)
and (8), unless h (t) = g(t) for all t.h(t) = g(t) implies that p1 (t, s) is independent
of s, which in turn shows that p (t, s) can be written as p1(t) + p2(s). �

Using (4) we can determine the shares of different attributes to total poverty. If a
poverty index exhibits additivity in conjunction with SD, then we have a two-way
poverty breakdown and can calculate the contributions of alternative subgroups to
aggregate poverty with respect to different attributes. Consequently, identification
of the subgroup-attribute combinations that are more susceptible to poverty can
be made. Isolation of such subgroup-attribute combinations becomes important in
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designing antipoverty policies when a society’s limited resource does not enable it to
eliminate poverty for an entire subgroup or for a specific attribute.10 We shall study
later the practical implications of this additivity property and see that they may not
always be convenient.

We finally consider the last transfer properties introduced in the preceding section,
non-decreasing (non-increasing) poverty under correlation increasing switch. To
understand this issue, define substitutability as proximity in the nature of attributes.
A correlation increasing switch means that a person who has higher amount of one
attribute gets higher amount of the other through a rank reversing transfer. If attributes
are close to each other—i.e. they are substitutes—such a transfer should not decrease
poverty. The poorer person cannot compensate the lower quantity of one attribute
by a higher quantity of the other. A similar argument can be provided for the com-
plementarity case. Atkinson and Bourguignon (1982) argued rigorously that welfare
should not increase under a correlation increasing switch if the attributes involved
in the switch are substitutes, where substitute attributes are such that the marginal
utility of one attribute decreases when the quantity of the other increases. The equiv-
alent definition in terms of the individual poverty function p(x; z)—assuming that
this function is twice differentiable—is that two attributes j and k are substitutes
whenever p jk(x; z) > 0 for all x. In other words, poverty decreases less with an
increase in attribute j for persons with larger quantities of k. For instance, the drop
in poverty due to a unit increase in income is less important for people who have
an educational level close to the education poverty threshold than for persons with
very low education, if income and education are considered as substitutes. On the
contrary, the drop in poverty is larger for persons with higher education if these two
attributes are supposed to be complements. Thus, the equivalent of the Atkinson and
Bourguignon property in the case of poverty is:

Proposition 4 Under SD, non-decreasing (non-increasing) poverty under increas-
ing correlation switch holds for attributes which are substitutes (complements) in
the individual poverty function.

Of course, we observe that with P() in (4), attributes are neither substitutes nor
complements. As expected OTP makes the properties NDCIS or NICIS irrelevant.
However, this is not the case with MTP. There will be indices satisfying MTP and
NICISandothers satisfyingMTPandNDCIS.Tsui (2002) argued that a poverty index
should be unambiguously non-decreasing under a correlation increasing switch. But
there is no a priori reason for a person to regard attributes as substitutes only. Some
of the attributes can as well be complements.

10For a numerical illustration of this two-way decomposability formula, see Chakravarty et al.
(1998).
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5 Some Functional Forms for Multidimensional Poverty
Indices

Assuming that we may require multidimensional poverty indices to satisfy MN, FC,
CN, and SD, the preceding section led us to distinguish poverty indices satisfying
OTP from those satisfying MTP. Further, among the latter, there are indices that
meet NDCIS (NICIS) but not NICIS (NDCIS). In this section, we consider simple
functional forms for poverty indices from these three sets, imposing in addition
scale invariance. We will start from the two-dimensional case and try to generalise
whenever this is possible.

The Set of Additive Multidimensional Poverty Indices

As seen above, poverty indices satisfying OTP are additive so that the general form
of the individual poverty function in the two-dimensional case is simply:

p(xi1, xi2; z1, z2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1
(
xi1
z1

)
if xi1 < z1 and xi2 ≥ z2,

f1
(
xi1
z1

)
+ f2

(
xi2
z2

)
if xi1 < z1 and xi2 < z2,

f2
(
xi2
z2

)
if xi1 < z1 and xi2 ≥ z2,

(9)

where f j () are continuous, decreasing and convex function such that f j (u) = 0 for
u ≥ 1. Note that homogeneity with respect to x and z results from the SI property.
Equation (9) may also written under a more compact form as:

p(xi1, xi2; z1, z2) = f1

(
xi1
z1

)
.Si1 + f2 f2

(
xi2
z2

)
.Si2, (10)

where Sij is the indicator function such that S
i
j = 1 if i ∈ Sj and Sij = 0, otherwise.

In the general case of m attributes and n individuals, the expression for the poverty
index P corresponding to Eq. (10) becomes:

P(X; z) = 1

n

m∑

j=1

∑

i∈Sj

f j

(
xi j
z j

)
, (11)

where X ∈ Mn, n ∈ N , z ∈ Z are arbitrary, f j : [0,∞[→ R1 is continuous,
non-increasing, convex and f j (t) = 0 for all t ≥ 1.

To illustrate the preceding formula let us choose:

f j (t) = a j (1 − t)θ j , 0 ≤ t < 1, (12)

where θ j > 1 and a j (> 0) may be interpreted as the ‘weight’ given to attribute j in
the overall poverty index. Then the resulting measure is:
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Pθ (X; z) = 1

n

m∑

j=1

∑

i∈Sj

a j

(
1 − xi j

z j

)θ j

, (13)

This is a simplemultidimensional extension of the Foster–Greer–Thorbecke (Fos-
ter et al. 1984) index. If θ j = 1 for all j, then Pθ becomes a weighted sum of poverty
gaps in all dimensions. On the other hand, if θ j = 2 for all j, then

P2(X; z) = 1

n

m∑

j=1

a j , Fj .[A2
j + (1 − A2

j ).V
2
j ), (14)

where Fj is the population size in Sj as a fraction of n, A j is the average rela-
tive poverty shortfall of persons in Sj and Vj is the coefficient of variation of the
distribution of attribute j among those in Sj .

It may be important to note that though the use of Sj sets for determining the
number of poor leads to double counting, their use in the construction of a poverty
index of the form (11) (excluding the headcount ratio) does not involve this problem.
The reason behind this is that we are not counting the number of poor but aggregating
their poverty shortfalls in the various dimensions. However, as mentioned earlier,
these measures are not sensitive to a correlation increasing switch.

Non-additive Poverty Indices Satisfying MTP

As seen above, a more general family of poverty indices is that satisfyingMTP rather
than OTP. It may be obtained in the two-dimensional case from isopoverty contours
which are convex to the origin. These poverty contours may be generated by taking
non-decreasing and quasi-concave transformations of the relative shortfalls of the
two attributes. The following functional form for the individual poverty function
p (x; z) is a compact way of representing the isopoverty contours shown in Fig. 3:

p(x; z) = I

[
Max

(
1 − x1

z1
, 0

)
,Max

(
1 − x2

z2
, 0

)]
, (15)

where I (u1, u2) is an increasing, continuous, quasi-concave function with I (0, 0) =
0. The corresponding poverty index becomes:

P(X; z) = 1

n

n∑

i=1

I

[
Max

(
1 − xi1

z1
, 0

)
,Max

(
1 − xi2

z2
, 0

)]
, (16)

Clearly, the additive case analysed above is a particular case of (16) where
I (u1, u2) = f1(u1) + f2(u2). Different forms of the poverty index may now be
generated from alternative specifications of I (). An appealing specification may be
derived from the CES form:

I (u1, u2) = f [(a1, uθ
1 + a2.u

θ
2)

1/ θ ], (17)
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where f () is an increasing and convex function such that f (0) = 0, a1 and a2
are positive weights attached to the two attributes and θ permits to parameterise
the elasticity of substitution between the shortfalls of the various attributes. Note,
however, that in order to generate isopoverty contours convex to the origin in the two-
dimensional region of the space of attributes, (17) must lead to isopoverty contours
that are concave to the origin in the space of shortfalls. This is what is shown in Fig. 3
when is poverty contours are looked at from the origin, O, or from the no-poverty
point, �. This concavity requirement imposes that θ > 1 in (17).

The full specification of poverty indices based on the individual poverty function
(17) is obtained by combining (16) and (17).

P(X; z) = 1

n

n∑

i=1

f

[{
a1

[
Max.

(
1 − xi1

z1
, 0

) ]θ

+ a2

[
Max.

(
1 − xi2

z2
, 0

)]θ
}1/ θ

⎤

⎦. (18)

This index seems a rather flexible functional form consistent with MTP. Note,
however, that it is not clear a priori whether it satisfies NDCIS or NICIS. It is easy
to see that MTP implies that θ > 1, which in turn implies that the cross second
derivative of I () is negative. However, the two shortfalls may still be complement in
determining poverty depending on the shape of the function f ().11

Three particular cases of (18) are worth stressing. The first case is when θ tends
towards infinity so that the substitutability between the two shortfalls or equivalently
the two attributes in the definition of poverty tends towards zero. In that case, the
isopoverty contours become rectangular curves even within the two-dimensional
poverty space. This is the shape shown in Fig. 4. It is interesting to note that in this
case the two attributes must necessarily combine within the two-dimensional poverty
space in the same proportions as the threshold levels z1 and z2.12 The expression for
the poverty index then becomes:

P(X; z) = 1

n
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(
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)
, (19)

11To see this, note that the cross second derivative of the individual poverty function p(x1, x2; z1, z2)
writes with obvious notation: p12 = f ′.I12 + f ′′.I1.I2. The condition θ > 1 implies that I12 is
negative, but p12 may still be positive because of the second term on the RHS.
12If this were note the case, a point like B in Fig. 4 could be the summit of a rectangular isopoverty
contour, which is obviously contradictory since poverty is zero for high values of an attribute on
the vertical branch and non-zero on the horizontal branch.
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Fig. 4 Rectangular isopoverty contours

where

I1 =
{
i : xi1

z1
≤ Min

[
xi2
z2

, 1

]}
, I2 =

{
i : xi2

z2
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[
xi1
z2

, 1

]}
.

These two sets may be called ‘exclusive poverty sets’ where two-dimensional
poverty is transformed into one-dimensional poverty with respect to the attribute
that is the farthest away from its poverty line. Expression (19) is analogous to that
for additive poverty indices except that the poverty sets Sj are replaced by the sets
I j , and the poverty functions are the same for the various attributes. The extreme
parsimony of this family of poverty indices is to be noted. It actually requires no
more than the knowledge of the threshold levels and a conventional one-dimensional
poverty index f (), for instance, the well-known Foster–Greer–Thorbecke Pa index.
Of course, these poverty indices satisfy MTP and NICIS.

The second particular case is at the other extreme when the two-attributes are
perfect substitutes in the two-dimensional poverty space. The isopoverty contour is
then a straight line in that space which connects the horizontal and vertical straight
lines in one-dimensional poverty spaces, as in Fig. 5. The general expression of the
corresponding poverty indices is:

P(X; z) = 1

n

n∑

i=1

f

[
a1Max

(
1 − xi1

z1
, 0

)
+ a2Max

(
1 − xi2

z2
, 0

)]
, (20)

where, again, f () may be any one-dimensional poverty index, like the Foster—
Greer–Thorbecke Pa index, and, as before, the positive coefficients a j represent the
weight given to the attributes and determine the slope of the isopoverty contour in
the two-dimensional poverty space. Poverty indices of type (20) satisfy MTP and
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Fig. 5 Isopoverty contours for perfect substitutes

NDCIS or NICIS depending on whether the one-dimensional poverty function f ()
is concave or convex.

A third particular case of (18) is obtained by using the Foster–Greer–Thorbecke
Pa index for the function f (). One then obtains:

Pθ
a (X; z) = 1

n

n∑

i=1

[
a1

[
Max

(
1 − xi1

z1
, 0

)]θ

+ a2

[
Max

(
1 − xi2

z2
, 0

)]θ
]a/ θ

, (21)

where α is a positive parameter. The interpretation of that measure is straightforward.
The poverty shortfalls in the two dimensions are first aggregated into some ‘average’
shortfall through function I () with a particular value of θ and the coefficients a j .
Multidimensional poverty is then defined as the average of that aggregate shortfall,
raised to the power α, over the whole population. This seems to be the measure the
closest to one-dimensional poverty measurement concepts and the simplest general-
isation of these concepts. With α = 0, (21) yields the multidimensional headcount.
With α = 1, Pθ

a becomes a multidimensional poverty gap obtained by some partic-
ular averaging of the poverty gaps in the two dimensions. Higher values for α may
be interpreted, as in the one-dimensional case, as higher aversion towards extreme
poverty. An interesting property of that Pθ

a measure is that it satisfies NDCIS or
NICIS depending on whether α is greater or less than θ.

These three families of poverty indices may easily be generalised to any number
of attributes. However, doing so implies assuming the same elasticity of substitution
between attributes, and therefore the resulting poverty indices are NDCIS or NICIS
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for all pairs of attributes. This may not be very satisfactory and other more complex
specifications have to be designed to avoid this.

Another interesting generalisation of the precedingmeasures consists of assuming
that the substitutability between the poverty shortfalls in the two attributes changes
with the extent of poverty. When some one is very poor in one of the two dimensions,
one may be willing to assume that the elasticity of substitution between the two
dimensions of poverty is of minor importance. For instance, if a person is 50%
below the poverty line in terms of food, it is probably immaterial whether he/she is
10 or 20% below the poverty line for educational attainment for evaluating his/her
overall poverty. On the contrary, if the food poverty gap is only 10%, then the extent
of the poverty gap in education becomes a more important determinant of overall
poverty. The corresponding shape of the isopoverty contours is shown in Fig. 6.

But onemay also bewilling to assume the opposite, namely that the substitutability
between the two attributes decreaseswith the extent of poverty. Analytically, a simple
way of allowing for this dependency between the substitutability of attributes and the
extent of poverty consists of making the θ parameter in (18) a function of the level
of poverty. Within a Pa framework, individual poverty is then defined implicitly by
the following equation:

[[
Max

(
1 − xi1

z1
, 0

)]a(p)

+
[
Max

(
1 − xi2

z2
, 0

)]a(p)
]a/a(p)

= P(xi1, xi2, z1, z2). (22)

where a (p) is a function that describes how attribute substitutability changes with
the extent of poverty. Obvious candidates for this function are a (p) = 1/p and
a (p) = 1/(1 − p), assuming p is normalised so as to lie between 0 and 1. With

Fig. 6 Variability of substitutability and isopoverty contours
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Fig. 7 Isopoverty contours under the weak focus axiom

these functions, solving numerically Eq. (22) is not difficult. It leads to poverty func-
tions with the same properties as (21), except for the fact that correlation increasing
switches may now increase or decrease overall poverty depending on whether they
are performed among very poor or moderately poor persons. We shall refer to these
indices respectively as P1/p

a and P1/(1−p)
a .

It is worth stressing that all preceding multidimensional poverty indices actually
rely on the SF postulate. In effect, it may be shown that the weak focus postulate
(WF) rules out functional forms of poverty indices that are additive as well as the
CES-like Pθ

a measures, or even their varying substitutability generalisations, P1/p
a

and P1/(1−p)
a . As a matter of fact we have not been able to find relatively simple

functions leading to isopoverty contours consistent withWF as shown in Fig. 7, and
the other properties of the individual poverty function p ().

6 An Example of Application

To illustrate the use of the preceding measures as well as the concepts behind them,
we analye here the evolution of multidimensional poverty in rural Brazil during the
1980s. Poverty includes two dimensions: income on the one hand and educational
attainment on the other. The analysis is performed on the rural population only,
because this is where Brazilian poverty tends to concentrate. It is also restricted to
the adult population, so as to avoid the problem of imputing some final educational
level to children who are still going to school. Samples from the PNAD household
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surveys for the years 1981 and 1987 are being used.13 The reason for choosing these
years is that they happen to correspond to an increase in income poverty in the rural
population. So, we felt it could be interesting to use the measures presented in the
previous section to see whether this increase in income poverty had possibly been
compensated by a drop in educational poverty. But, of course, this issue of the trade
off between these two particular dimensions of poverty would also arise in very
different contexts. For instance, designing antipoverty policies may require deciding
whether it is better to reduce more income or education poverty.

Poverty is measured at the individual level. Each individual is given the income
per capita within the household he/she belongs to. The income poverty threshold is
2$ a day, at1985 ppp corrected prices. The educational poverty threshold is defined
as the end of primary school, that is, 4 years of schooling. The educational poverty
shortfall is defined as the number of years of schooling short of that level. It may
thus take only 4 values. Yet, we treat it as a continuous variable.

The first two columns of Table 1 show the level of poverty as measured by the
conventional Pa measures separately for income and education. It may be seen that
income poverty increased from 1981 to 1987, whereas education poverty fell. The
“alpha = 0” rows show that there were 40.5% of rural adults below the poverty
line in 1981 whereas 74.4% had not completed primary school. Six years later these
proportionswere 42.1 and 68% respectively, indicating an increase in income poverty
and a fall in education poverty. The poverty gap (“alpha = 1”) and higher levels of
the Pa measures show the same evolution.

Wenowconsidermultidimensional povertymeasures of the Pθ
a type,withα taking

the same values as for the one-dimensional poverty measures that we just reviewed
and θ taking the values 1, which corresponds to perfect substitutability as in (20)
above, 2 and 5.We also use the varying substitutability measures, P1/p

a and P1/(1−p)
a .

The evaluation of multidimensional poverty for 1981 and 1987 according to these
various measures are reported in Table 1 for two sets of weights for the income and
education attributes. The first set gives equal weights to the two dimensions whereas
the second gives more weight to income.

Consider first the first two rowswhich correspond to headcount poverty measures.
In the multidimensional case, the headcount corresponds to individuals who are poor
either in terms of income or in terms of education. Accordingly, there were 79.7%
poor in 1981 versus 75.6% in 1987. From these figures and the headcounts in one
dimension, it is easy to derive the proportion of people who were poor in both
dimensions. They were 35.2% in 1981 and 34.4% in 1987.

Reading down the other rows, one may check that the multidimensional Pθ
a mea-

sures—as well as the measures with variable substitutability—are commensurate
with the one-dimensional Pa measures for income and education. There is nothing
surprising here. As noted above, the multidimensional Pθ

a measures are designed in
such a way that they may be interpreted as some particular mean of one-dimensional
measures. This mean depends on the weighing coefficients, a1 and a2, but also on the

13Irrespectively of the fact that rural incomes are known to be imperfectly observed in PNAD–see for
instance Elbers et al. (2001). The calculations below must therefore be taken as mostly illustrative.
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substitutability parameter, θ . So, multidimensional measures is higher when more
weight is given to education because one-dimensional poverty is higher for educa-
tion, as shown in the first two columns of Table 1. But multidimensional poverty also
tends to increase when the substitutability of the two attributes fall, or equivalently
the θ parameter increases. As suggested by the argument leading to (19) above, this
is because low substitutability between the two attributes give more weight for each
observation to the attribute with the largest shortfall.

Bold figures in Table 1 correspond to situations where poverty measures indicate
more poverty in 1987 than in 1981. We see that this occurrence is more frequent
when the weight given to the income dimension is higher. There is nothing really
surprising here since we have seen that there was more poverty, in a one dimension
sense, with income than with education. It is more interesting to notice that poverty
appears to be higher in 1987 than in 1981 when the poverty aversion parameter, α,
is high enough, although the value of that parameter for which this happens is not
systematically shown in the table. This is true for each value of the substitutability
parameter, θ, as well as for both systems of weights. This is true also with the variable
substitutability measure, P1/(1−p)

a . A possible explanation for this pattern would be
that theworsening of the bi-dimensional income/education distribution in rural Brazil
may have its roots at the very bottomof the distribution,where poverty ismore severe.
In other words, income losses may have been more serious predominantly for people
with low income and low education.

Regarding the correlation between the two dimensions of poverty, still a more
interesting feature in Table 1 is the fact that poverty tends to be higher in 1987 in
cases where the NICIS property holds. It was seen in the previous section that the Pθ

a
measure was such that poverty would increase with increasing correlation switches
when a < θ . It happens in Table 1 that cases where poverty is higher in 1987 than
in 1981 occur only when the opposite is true. This suggests that the increase in
one-dimensional income poverty was accompanied by a drop in the correlation with
educational levels.

The varying substitutability measures give still another information. First, it may
be seen that 1987 never exhibits more poverty than 1981 with the P1/p

a measure.
It does however with the P1/(1−p)

a measure for high values of α when both dimen-
sions have equal weight and much sooner when more weight is put on the income
dimension. This evolution is consistent with the idea that income losses were more
pronounced for poorer people with a larger income than education shortfall. With
the P1/(1−p)

a there is limited substitutability for them and the drop in income could
not be compensated by a possible increase in the educational level.

This interpretation of the figures reported in Table 1 would need to be confirmed
by amore careful analysis of the bi-dimensional distribution of education and income
in rural Brazil. Within the present framework, what matters is that measures directly
inspired from the familiar one-dimensional Pa poverty indices and enlarged through
a reduced set of parameters—2 parameters in the case of Pθ

a and a single one in the
case of P1/p

a or P1/(1−p)
a —permit to describe adequately the extent of poverty in a

multidimensional perspective.
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7 Conclusion

We have explicitly argued in this paper why poverty should be regarded as the fail-
ure to reach ‘minimally acceptable’ levels of different monetary and non-monetary
attributes necessary for a subsistence standard of living. That is, poverty is essentially
a multidimensional phenomenon. The problems of counting the number of poor in
this framework and then combining the information available on them into a statistic
that summarises the extent of overall poverty have been discussed rigorously. Using
different postulates for a measure of poverty, shapes of isopoverty contours of a per-
son have been derived in alternative dimensions. This in turn establishes a person’s
nature of trade off between attributes in different poverty spaces.

We make a distinction between additive and non-additive poverty measures satis-
fying the strong version of the ‘Focus Axiom’, which demands independence from
non-poor attribute quantities in poverty measurement. One problem with additive
measures is that they are insensitive to a correlation increasing switch. A correla-
tion increasing switch requires giving more of one attribute to a person who has
already more of another. A finer subdivision among non-additive measures is pos-
sible depending on whether a measure decreases or increases under such a switch.
Specific functional forms have been proposed that fit these various properties depend-
ing on the value of a small number of key parameters and generalizing in an easy
way the familiar Pa family. As an illustration, the resulting measures have been used
to evaluate the evolution of income/education poverty in rural Brazil in the 1980s.

Appendix: Formal Statement of the Axioms Used
in the Paper

Strong Focus (SF). For any n ∈ N , (X,Y ) ∈ Mn, z ∈ Z , j ∈ {1, 2, · · · ,m}, if (i)
for any i such that xi j ≥ z j , yi j = xi j + δ, where δ > 0, (ii) yt j = xt j for all t 
= i ,
and (iii) yis = xis , for all s 
= j and for all i, then P (Y ; z) = P (X; z).

Weak Focus (WF). For any n ∈ N , (X,Y ) ∈ Mn, z ∈ Z , if for some i, xik ≥ zk,
for all k and (i) for any j ∈ {1, 2, . . . ,m}, yi j = xi j + δ, where δ > 0, (ii) yit = xit
for all t 
= j and (iii) yrs = xrs for all r 
= i and s then P(Y ; z) = P(X; z).

Symmetry (SM): For any (X; z) ∈ M × Z , P(X; z) = P(	 X; z), where 	 is
any permutation matrix of appropriate order.

Monotonicity (MN). For any n ∈ N , (X,Y ) ∈ Mn, z ∈ Z , j ∈ {1, 2, · · · ,m}, if
(i) for any i yi j = xi j + δ, where xi j < z j , δ > 0, (ii) yt j = xt j for all t 
= i , and (iii)
yis = xis , for all s 
= j and for all i, then P(Y ; z) ≤ P(X; z).

Continuity (CN): For any z ∈ Z , P() is continuous onM.
Principle of Population (PP). For any (X; z) ∈ M × Z , k ∈ N , P(Xk; z) =

P(X; z), where Xk is the k-fold replication of X.
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Scale Invariance (SI). For any (X; z) ∈ M × Z , k ∈ N , P(X; z) = P(X ′; z′)
where X ′ = X
, z′ = z
, 
 being the diagonal matrix diag (λ1, · · · , λm), λi > 0
for all i.

Subgroup Decomposability (SD). For any X1, X2, . . . , XK ∈ M and z ∈ Z :

Pn(X; z) =
∑K

i=1

ni
n

Pni (Xi ; z),

where X ∈ M is the attribute matrix

⎡

⎢⎢⎢⎢⎢⎣

X1

X2

Xk

⎤

⎥⎥⎥⎥⎥⎦
witn n rows and m columns, ni is the

population size corresponding to Xi and n = ∑K
i=1 ni .

Definition of a Pigou–Dalton Progressive Transfer. MatrixX is said to be obtained
from Y ∈ Mn by a Pigou–Dalton progressive transfer of attribute j from one poor
person to another if for some persons i, t: (i) yt j < yi j < z j , (ii) xi j −yi j = yi j −xi j >

0, xi j ≥ xt j , (iii) xr j = yr j for all r 
= i, t and (iv) xrk = yrk for all k 
= j and all r.
One-dimensional Transfer Principle (OTP). For all n ∈ N and Y ∈ Mn , if X is

obtained from Y by a Pigou–Dalton progressive transfer of some attribute between
two poor, then P (X; z) ≤ P (Y ; z), where z ∈ Z is arbitrary.

Multidimensional Transfer Principle (MTP). For any (Y ; z) ∈ M × Z ,if X is
obtained form Y by multiplying Yp by a bistochastic matrix B and BYp is not a
permutation of the rows of Yp, then P (X; z) ≤ P (Y ; z), given that the attributes of
the non-poor remain unchanged, where Yp is the bundle of attributes possessed by
the poor as defined with the attribute matrix Y.

Definition of a Correlation Increasing Switch. For any X ∈ Mn, n ≥ 2, (j, k)
∈{1,2,…,m}, suppose that for some i, t, xi j < xt j < z j and xtk < xik < zk . Y is
then said to be obtained from X by a ‘correlation increasing switch’ between two
poor if: (i) yi j = xt j , (ii) yt j = xi j ; (iii) yr j = xr j for all r 
= i, t , and (iv) yrs = xrs
for all s 
= j and for all r.

Non-decreasing Poverty Under Correlation Increasing Switch (NDCIS). For any
n ∈ N and n ≥ 2, X ∈ Mn , z ∈ Z, if Y is obtained from X by a correlation increasing
switch, then P(Y ; z) ≥ P(X; z).

The converse property is denoted by NICIS.
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Multidimensional Poverty Indices

Satya R. Chakravarty and Conchita D’Ambrosio

Abstract This paper characterizes a family of subgroup decomposable unit consis-
tent multidimensional poverty indices. Unit consistency requires that poverty rank-
ings should remain unaltered when dimensions are expressed in different measure-
ment units. The characterized family is a simple generalization of a family of unit
consistent incomepoverty index suggested byZheng (EconomicTheory 31:113–142,
2007b). The paper also illustrates the index numerically using Turkish data. Journal
of Economic Literature Classification No.: D63.
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1 Introduction

Removal of poverty is still one of the primary aims of economic policy in many
countries of the world. In order to judge the efficacy of a targeted poverty alleviation
policy, it becomes necessary to know the dimension of poverty, that is, how much
poverty is there and changes in level of poverty over time. The policy formulator also
needs to identify the causal factors of poverty. All these require the quantification of
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the extent of poverty. More precisely, we need an indicator of poverty that becomes
helpful in analyzing these issues.

In his pioneering contribution, Sen (1976) regarded the poverty measurement
problem as involving two distinct but unrelated exercises: (i) the identification of
the poor and (ii) the aggregation of the characteristics of the poor into an overall
indicator that will specify the extent of poverty. In the literature, the first problem
is generally solved by the income method, which requires the specification of an
income poverty line, the level of income required for subsistence standard of living.
A person is regarded as poor if his income falls below the poverty line. Sen (1976)
criticized two crude indicators of poverty, the head-count ratio (proportion of persons
in poverty) and the income gap ratio (the shortfall of the ratio between the average
income of the poor and the poverty line from unity), because of their insensitivity to
a transfer of income between two poor persons and the former also does not change
under a reduction in the income of a poor. Sen (1976) also developed an axiomatic
characterization of a more sophisticated index of poverty.1

However, Sen (1992) argued that the proper space for social evaluation is that of
functionings, the various things, such as literacy, housing, health, provision of public
goods, adequate nourishment, essential services, communing with friends, a person
cares about. Capability set of a person provides information on the set of functionings
that a person could achieve. This shows that well-being is intrinsically multidimen-
sional from the capability-functioning perspective. Consequently, poverty being a
manifestation of insufficient well-being, is a multidimensional phenomenon as well.
In this context, poverty is regarded as a problem of capability failure.

In the basic needs approach, which regards development as an improvement in the
array of human needs (Streeten 1981), poverty is a consequence of lack of human
needs. The social exclusion approach also regards poverty as a multidimensional
issue. It refers to exclusion of individuals “from ordinary living patterns, customs
and activities” (Townsend 1979, p. 31). The implicit process is generally regarded as
a dynamic process whose end product is the exclusion of the concerned individuals
from full participation. It is a relative concept in the sense that it is defined relative
to the standard of the given society (Atkinson 1998). Social exclusion incorporates
the process aspect of capability failure (Sen 2002).2

In view of the above discussion, we assume that each person is characterized by
a vector of attributes that correspond to different dimensions of human life and a
direct identification method of the poor checks whether the person has “minimally
acceptable levels” (Sen 1992, p. 139) or threshold levels of this set of attributes.
Thus, the direct method looks at poverty from a multidimensional perspective, more
precisely, in terms of shortfalls of attribute quantities from respective threshold levels.
These threshold levels are determined independently of the attribute distributions.

1Alternatives and variations of the Sen index have been suggested, among others, by Takayama
(1979), Blackorby andDonaldson (1980), Kakwani (1980), Clark et al. (1981), Chakravarty (1983a,
b, 1997), Thon (1983), Foster et al. (1984), Hagenaars (1987) and Shorrocks (1995).
2See Sen (1981, 1985), Ravallion (1996), Tsui (2002) and Bourguignon and Chakravarty (2003)
for further discussion on multidimensionality of poverty.
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The objective of this paper is to characterize axiomatically a family of unit con-
sistent multidimensional poverty indices. According to unit consistency, poverty
rankings remain unaffected when all the attribute quantities and threshold levels are
expressed in differing measuring units. For instance, suppose that income and life
expectancy are two dimensions of human life. Then unit consistency demands that
the ranking of two attribute distributions when income is measured in dollars and
life expectancy in years should be the same when income is measured in euros and
life expectancy in months. Unit consistency is a reasonable property and demands
invariance of poverty rankings when units of measurement of dimensions change.
To understand this, assume, for simplicity, that there are two dimensions of well-
being, income, and life expectancy. Now, consider the problem of poverty rankings
between two countries. Suppose income is measured in the currency of country I
and life expectancy is measured in years. It turns out that country I is regarded as
more poverty stricken than country II. Next, suppose we decide to measure income
in the currency of country II and life expectancy in months. Unit consistency then
demands that the poverty ranking of the two countries remains unaltered because
of these changes in the units of measurement. Clearly, ratio scale invariance, which
demands invariance of poverty under ratio scale transformations of attribute quanti-
ties and threshold levels, implies unit consistency. But the converse is not true. That
is, there are poverty indices that satisfy unit consistency but not ratio scale invariance.
Thus, without unit consistency the problem of inconsistency in ranking may arise if
we consider indices that are not ratio scale invariant. It is also important to note the
difference between ratio scale invariance and unit consistency: while the former is a
cardinal property, the latter is an ordinal requirement (see Zheng 2007a, b).

Zheng (2007a) characterized a family of income distribution-based unit consistent
poverty indices. This family is a two-parameter generalization of the Clark et al.
(1981) and Chakravarty (1983a) indices. Our unit consistent multidimensional index
is a generalization of the Zheng index to the multivariate set up.

Section 2 of the paper lays down the postulates for an index of multidimensional
poverty. In Sect. 3 we characterize the family of unit consistent indices. Section 4
contains an application of the index to Turkish data. Finally Sect. 5 concludes.

2 Postulates for an Index of Multidimensional Poverty

In this section we set out the properties for a multidimensional poverty index. Let
�m++ be the positive orthant of them-dimensional Euclidean space�m . For a set of n-
persons, person i possesses a vector (xi1, xi2, . . . , xim) = xi ∈ �m++ of m attributes.
The vector xi is the i th row of an n × m distribution matrix X ∈ Mn , where Mn

is the set of all n × m matrices whose entries are positive real numbers. The j th
column x . j of X ∈ Mn represents the distribution of attribute j ( j = 1, 2, . . . ,m)

among the n persons. Let M = ∪n∈N Mn , where N is the set of all positive integers.
For any n ∈ N , X ∈ Mn , we write n(X) (or n) for the corresponding population
size. We restrict our attention to �m++ in order to avoid the problem that the welfare
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function
∏m

j=1 x
c j
i j of person i based on different consumption levels becomes zero if

consumption of one attribute is zero. This happens irrespective of how large or small
the consumption levels of the other attributes are.

In this multivariate set up, a threshold or cut off is defined for each attribute.
These thresholds represent the minimal quantities of the m attributes required for
maintaining a subsistence standard of living. Let z = (z1, . . . , zm) ∈ Z be the
vector of given thresholds, where Z is a nonempty subset of �m++. The quantitative
specification of different attributes exclude the possibility that a dimension can be
of qualitative type, for instance, whether a person is ill or not.

In this structure, the i th person is regarded as poor or non-poor with respect to
attribute j, or equivalently, attribute j is meager or non-meager for him, according
as xi j < z j or xi j ≥ z j and he is called non-poor if xi j ≥ z j for all j. For any
X ∈ Mn , let Sj (X) (or Sj ) be the set of persons who are poor or deprived with
respect to attribute j, where n ∈ N is arbitrary. As Bourguignon and Chakravarty
(2003) argued, in order to count the number of poor in a simple way, it is convenient
to define a poverty indicator variable as follows:

ρ (xi ; z) = 1 if ∃ j ∈ {1, 2, . . . ,m} : xi j < z j ,
= 0, otherwise.

(1)

Then the number of poor in the multidimensional framework is given by:

np(X) =
n∑

i=1

ρ (xi ; z). (2)

The identification method defined in (1) is known as the union method of iden-
tification. This contrasts with the intersection method which identifies a person as
poor if he is deprived in all dimensions (see Bourguignon and Chakravarty 2003,
2008). Alkire and Foster (2007) considered an intermediate identification method
which regards a person as poor if he is deprived in at least k dimensions, where
1 ≤ k ≤ m. This method includes the union and intersection methods as special
cases when k = 1 and k = m.

Amultidimensional poverty indexP is a non-constant real valued function defined
on M × Z . For any X ∈ M, z ∈ Z , the functional value P(X; z) determines the
extent of poverty associated with the distribution matrix X and the cut off vector z.

Most of the properties we consider below, following Chakravarty et al. (1998),
Tsui (2002), Bourguignon and Chakravarty (2003, 2008), Chakravarty (2009) and
Chakravarty and Silber (2008), are immediate generalizations of different postulates
proposed for an income poverty index.3 All properties apply for any arbitrary P and
any positive integer n.

3For discussion on properties of an income poverty index, see Sen (1976), Foster et al. (1984),
Donaldson and Weymark (1986), Cowell (1988), Seidl (1988), Chakravarty (1990, 2009), Foster
and Shorrocks (1991), Bourguignon and Fields (1997) and Zheng (1997).
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Focus (FOC): For any (X; z) ∈ M × Z and for any person i and attribute j such
that xi j ≥ z j , an increase in xi j , given that all other attribute levels in X remain
fixed, does not change the poverty value P(X; z).4

Normalization (NOM): For any (X; z) ∈ M × Z if xi j ≥ z j for all i and j, then
P(X; z) = 0.

Monotonicity (MON): For any (X; z) ∈ M × Z , any person i and attribute j
such that xi j < z j , an increase in xi j , given that other attribute levels in X remain
fixed, does not increase the poverty value P(X; z).

Principle of Population (POP):For any (X; z) ∈ M×Z , P(X; z) = P
(
X (l); z),

where X (l) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

X1

X2

Xl

⎤

⎥
⎥
⎥
⎥
⎥
⎦

with each Xi = X and l ≥ 2 is any integer.

Symmetry (SYM): For any (X; z) ∈ M × Z , P(X; z) = P(πX; z), where π is
any n × n permutation matrix.5

Continuity (CON): P(X; z) is continuous in (X; z).
Subgroup Decomposability (SUD): For any X1, X2, . . . , Xl ∈ M and z ∈ Z ,

P(X; z) = ∑l
i=1

ni
n P

(
Xi ; z), where X (l) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

X1

X2

Xl

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ M, ni is the population size

associated with Xi
∑l

i=1 ni = n.
Non-decreasingness in Subsistence Levels of Attributes (NDS): For any X ∈

M , P(X; z) is non-decreasing in z j for all j.
Non-poverty Growth (NPG): For any (X; z) ∈ M × Z , if Y is obtained from X

by adding a rich person to the society, then P(Y ; z) ≤ P(X; z).
Ratio Scale Invariance (SCI): For all (X1; z1) ∈ M × Z , P

(
X1; z1) =

P
(
X2; z2), where X2 = X1�, z2 = z1� and � = diag(ω1, ω2, . . . ωm), ωi > 0 for

all i.
According to FOC if a person is not deprived in an attribute, then giving him

more of this attribute does not change the level of poverty, even if he is deprived
in the other attributes. Thus, FOC rules out trade off between two attributes of a
person who is deprived in one but non-deprived in the other. Thus, if life expectancy
and a composite good are two attributes, more life expectancy above the threshold
is of no use if the composite good is below its threshold. This, however, does not
exclude the possibility of a trade off if a person is deprived in both the attributes.

4One may consider a weaker version of this axiom where the condition xi j ≥ z j applies simulta-
neously to all j. See Bourguignon and Chakravarty (2003).
5A n × n matrix with entries 0 and 1 is called a permutation matrix if each of its rows and columns
sums to one.
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NOM says that if all the persons in a society are non-poor, then the value of the index
is zero. MON states that poverty does not increase if a person becomes less deprived
in a dimension. This axiom implies Dimensional Monotonicity of Alkire and Foster
(2007), which says that if deprivation in a dimension is completely eliminated, then
poverty should not increase. Under POP, poverty remains unaltered if an attribute
matrix is replicated several times. Since replication enables us to transform two
different sized matrices into the same size, POP becomes helpful for inter-temporal
and interregional poverty comparisons. SYM says that any characteristic other than
the attribute quantities, for instance, the names of the individuals, is immaterial for
poverty measurement. CON ensures that minor observational errors in attribute and
threshold quantities will not generate an abrupt jump in the value of the poverty
index. Therefore, a continuous poverty index will not be oversensitive to errors in
observation on basic needs and threshold quantities. According to SUD for any
partitioning of the population into several subgroups, say l, defined along ethnic,
geographical or other lines, the overall poverty is the population share weighted
average of subgroup poverty levels. The contribution of subgroup i to overall poverty
is ni P(Xi ; z)/n and the overall poverty will precisely reduce by this amount if
poverty in subgroup i is eliminated. (ni P(Xi ; Z)/nP(X; Z))100 is the percentage
contribution of subgroup i to total poverty. Each of these statistics is regarded as
useful to policymakers because they become helpful for identifying subgroups of the
population that are more affected by poverty (see Anand 1997; Chakravarty 1983a,
b, 2009; Foster et al. 1984; Foster and Shorrocks 1991). By repeated application of
SUD we can write the poverty index as

P(X; z) = 1

n

n∑

i=1

p (xi ; z). (3)

Since p (xi ; z) depends only on person i’s attributes, we call it, ‘individual poverty
function’. Evidently, P in (3) is symmetric and population replication invariant.

Between two identical communities, the one with higher threshold levels of one
or more attributes should not have a lower poverty because of higher deprivation of
the poor resulting from increased subsistence quantities. This is what is demanded
by NDS. According to NPG, poverty should not increase if a rich person migrates
to the society. SCI means that the poverty index should remain invariant under
scale transformations of attribute quantities and threshold levels. In other words,
deprivation resulting from poverty is viewed in terms of proportionate shortfalls of
attribute quantities from respective cut offs.

The next postulate is concerned with the redistribution of attributes. For X,Y ∈
M , with X �= Y , X is said to uniformly majorize Y if X = BY for some n × n
bistochastic matrix which is not a permutationmatrix.6 This means that we transform
the distribution matrix Y into the matrix X by some equalizing transfers. (See Kolm
1977; Tsui 2002; Savaglio 2006; Weymark 2006; Chakravarty 2009.)

6An n × n matrix with nonnegative entries is called a bistochastic matrix if each of its rows and
columns sums to unity.
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Transfers Principle (TRP): For any z ∈ Z , X,Y ∈ M if X uniformly majorizes
Y then P(X; z) ≤ P(Y ; z), given that the transfers are among the poor.

TRP shows that ifwe transform the distributionmatrixY into thematrixX by some
equalizing operation among the poor, then poverty under X will not be higher than
that under Y. It may be worthwhile to mention that this transfer axiom is not the only
of generalizing the single dimensional transfers principle to the multidimensional
set up (see Duclos et al. 2006).

We will now consider a property which deals with the essence of multidimen-
sional poverty measurement through correlation between attributes. By taking into
account the association of attributes, as captured by the degree of correlation between
them, this postulate also underlines the difference between single and multidimen-
sional poverty measurements. To illustrate the property, consider the two-person
two-attribute case, where the two persons are deprived in both the dimensions. Sup-
pose that x11 > x21 and x12 < x22. Now, let us consider a switch of attribute 2 between
the two persons. This switch increases the correlation between the attributes because
person 1 who had more of attribute 1 has now more of attribute 2 as well and that is
why we refer to it as a correlation increasing switch between two poor persons. Next,
suppose that attributes 1 and 2 are substitutes, that is, one attribute may compensate
the lack of another in the definition of individual poverty. Then increasing the corre-
lation between the attributes should increase poverty. Indeed, the switch just defined
does not modify the mean of each attribute but reduces the extent to which the lack
of one attribute may be compensated by the availability of the other. An analogous
argument will establish that poverty should decrease under a correlation increasing
switch if the two attributes are complements. If a poverty index does not change
under a correlation increasing switch, then it treats the attributes as ‘independents’.
In the general case, the rearrangement of attributes are made in a way such that one
of persons receives at least as much of every attribute as the other and more of at
least one attribute(see Weymark 2006; Chakravarty 2009).

We state this principle formally as:
Increasing Poverty Under Correlation Increasing Switch (IPC):Under SUD,

for any (X; z) ∈ M × Z , if Y ∈ M is obtained from X by a correlation increasing
switch between two poor persons, then P(X; z) < P(Y ; z) if the two attributes are
substitutes.

The corresponding propertywhich demands decreasingness of poverty under such
switch, when the attributes are complements, is denoted by DPC.7 We say that a
poverty index is sensitive to a correlation increasing switch if it satisfies either IPC
or DPC.

7For additional discussions on this issue, see Atkinson and Bourguignon (1982), Bourguignon and
Chakravarty (1999, 2003) and Chakravarty (2009). Bourguignon and Chakravarty (1999) employed
this property to examine the elasticity of substitution between proportional shortfalls of attributes
from respective thresholds.
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Finally, we consider the unit consitency axiom. It allows poverty values to vary
when dimensional units change, provided that poverty orderings are not affected.

Formally,
Unit Consistency (UCO): For any X1, X2 ∈ M and two given threshold vectors

z1, z2 ∈ Z , if P
(
X1; z1) < P

(
X2; z2) then P

(
X1�; z1�)

< P
(
X2�; z2�)

for all
� = diag(ω1, ω2, . . . ωm), ωi > 0 for all i.

Clearly, all ratio scale invariant multidimensional poverty indices are unit consis-
tent. However, as we will see in the next section, there exist unit consistent indices
that are not ratio scale invariant.

3 The Characterization Theorem

For an income poverty index, Chakravarty (1983a) and Hagenaars (1987) interpreted
poverty as the fraction of welfare losses due to the existence of poverty using the
utilitarian and Gini type social welfare functions. In contrast, Chakravarty (1983b),
Zheng (1993) and Chakravarty and Silber (2008) regarded it as the absolute amount
of welfare loss. Here we take a similar approach.

Definition 1
For any arbitrary n ∈ N , (X ; z) ∈ Mn × Z, a poverty index is defined as

P(X; z) = W (Zn×m) − W (X̂), (4)

where X̂ is the censored attribute matrix corresponding to X, that is, x̂i j =
min

{
xi j , z j

}
, Zn×m is the n × m matrix each of whose rows is z and W is any

non-decreasing real valued social welfare function defined on the set of all censored
attribute matrices.

Thus, P is the size of the welfare loss that results from shortfall of the attribute
quantities of poor persons from the respective thresholds. At this stage, we do not
impose any restriction on W. Note that by definition P satisfies FOC and NOM.

We can now present the following theorem.

Theorem 1
Assume that the poverty index P is of the form (4). Then P satisfies CON, SUD,
MON, and UCO and is sensitive to a correlation increasing switch if and only if it
is of the form

P(X; z) = ρ

n
m∏

j=1
z
c j−δ

j

n∑

i=1

⎡

⎣
m∏

j=1

z
c j
j −

m∏

j=1

x̂
c j
i j

⎤

⎦, (5)
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where δ is a real number and the parameters ρ and c j have to be chosen such
that ρc j > 0 for all 1 ≤ j ≤ m. Furthermore, DPC (IPC) holds if and only if
ρci c j > 0

(
ρci c j < 0

)
, where i �= j = 1, 2, . . . ,m.

Proof For any X ∈ Mn , Ω = diag(ω1, ω2, . . . ωm), let Q(X; z) = P(X�, z�).
UCO along with CON implies that if P

(
X1; z1) = P

(
X2; z2) then P

(
X1�; z1�) =

P
(
X2�; z2�)

, that is, Q
(
X1; z1) = Q

(
X2; z2). Furthermore, P

(
X1; z1) <

P
(
X2; z2) implies that Q

(
X1; z1) < Q

(
X2; z2). This shows that Q(X; z) is an

increasing function of P(X; z). Hence there exists an increasing function gω1,...,ωm :
�1 → �1 such that Q(X; z) = gω1,...,ωm (P(X; z)). Define g : �m++ × �1 → �1 by
g(ω1, . . . ωm; .) = gω1,...,ωm (.). It then follows that

P(X�; z�) = Q(X; z) = g(ω1, . . . ωm; P(X; z)). (6)

Since by CON, minor changes in ωi ’s generate minor changes in P(X�; z�),
it follows that g is continuous in its first m arguments. It is also increasing in the
(m + 1)th argument. (See also Propositions 1 and 3 of Zheng 2007a and Proposition
1 of Diez et al. 2008.)

Following the structure of proof of Proposition 3 of Zheng (2007b) it can be shown

that P(X�; z�) =
(∏m

j=1 ω j

)δ

P(X; z). Define G(X; z) = P(X; z)/∏m
j=1 z

δ
j .

Subgroup decomposability of P implies that G is subgroup decomposable.
Aswe have noted in (3), by repeated application of SUD, we canwrite any poverty

index P(X; z) as 1
n

∑n
i=1 p (xi ; z), where X ∈ Mn and p is the individual poverty

function. This in turn shows that the poverty index given by (4) must be of the form

P (X; z) = 1

n

n∑

i=1

[
h(z) − h(x̂i )

]
, (7)

where h : �m++ → �1. By CON, h is continuous and MON demands that h is
non-decreasing.

Applying now Lemma 1, Theorems 3 and 4 of Tsui (1999) (see also Diez et al.
2008) to G(X; z), when P(X; z) is given by (7), we get the following form of the
poverty index:

P(X; z) = G(X; z)
m∏

j=1

zδ
j = ρ

n
m∏

j=1
z
c j−δ

j

n∑

i=1

⎡

⎣
m∏

j=1

z
c j
j −

m∏

j=1

x̂
c j
i j

⎤

⎦. (8)

It is easy to see that for MON to hold we require ρc j > 0 for all j = 1, 2, . . . ,m.
Next, we can check easily that for DPC (IPC) to hold it is necessary that ρci c j >

0
(
ρci c j < 0

)
, where i �= j = 1, 2, . . . ,m. This establishes the necessity part of the

theorem. The sufficiency is easy to check. �
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In the general case the restrictions on the parameters ρ and c j for TRP to be
fulfilled are quite complicated. However, it may be worthwhile to discuss the case
for m = 2. The parametric restrictions that are required for fulfillment of all the
postulates in this case are specified in the following corollary, which is easy to
demonstrate.

Corollary 1
Assume that the poverty index P is of the form (4). Then for m = 2, P satisfies CON,
SUD, MON and UCO if and only if it is of the following form

P(X; z) = ρ

n
2∏

j=1
z
c j−δ

j

n∑

i=1

⎡

⎣
2∏

j=1

z
c j
j −

2∏

j=1

x̂
c j
i j

⎤

⎦, (9)

where ρc j > 0 for j = 1, 2. Furthermore, DPC (IPC) holds if and only if ρci c j >

0
(
ρci c j < 0

)
, where i �= j = 1, 2. Finally, for TRP to hold it is necessary and

sufficient that ρc1(c1 − 1) < 0 and c1c2(1 − c1 − c2) < 0.
When the two attributes are complements, without loss of generality we may

choose ρ = 1. Then for any choice of c1, c2 ∈ (0.5, 1) all the conditions stipulated
in Corollary 1 are satisfied. In contrast, if the two attributes are substitutes, we can set
ρ = −1. Then for any choice of c1, c2 ∈ (−1,−0.5), all of our required conditions
are fulfilled. To understand this, observe that when ρ = −1, for IPC to hold we need
c1c2 > 0. The two TRP conditions are now c1(c1 − 1) > 0 (since ρ = −1) and
c1c2(1 − c1 − c2) < 0. These three inequalities are satisfied simultaneously for any
choice of c1, c2 ∈ (−1,−0.5). Note that for negative values of c1 and c2, the third
bracketed term in (9) becomes non-positive.

Evidently, for any arbitrary number of dimensions the index satisfies NDS if and
only if δ ≥ 0. NPG is obviously satisfied in the general case. Given c j , P in (8)
satisfies SCI if δ = 0. However, unit consistency is satisfied for all real values of
δ. Therefore, (8) gives us a large class of unit consistent multidimensional poverty
indices. However, the family given by (5) does not satisfy translation invariance for
any appropriate choice of δ and c j , 1 ≤ j ≤ m, that is, it does not remain invariant if
the attribute quantity in any dimension and the threshold limit in the corresponding
dimension change by an absolute amount. Given ρ > 0, even in the simple case
when δ = c j = 1, where 1 ≤ j ≤ m, its failure to satisfy translation invariance can
be checked easily. (This particular case is not appealing because it does not meet
TRP.) The reason behind this is that in the functional representation given by (5)
the products of threshold limits and consumption levels of different attributes appear
separately.

The index given by (8) has close similarity with an index suggested by Diez et al.
(2008) (their Eq. (9)). However, they assumed only IPC, which in turn means that
the scale parameter ρ is negative. As we have noted in our framework ρ is positive
or negative depending on whether DPC or IPC holds. Another important difference
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is that while our index determines the size of welfare loss under a specific structure,
they do not look at their index from such a perspective.

For m = 1, P in (8) becomes the first member of the Dalton-Hagenaars class of
unit consistent income poverty indices characterized by Zheng (2007b). Therefore,
our index is a generalization of a single dimensional unit consistent poverty index
suggested by Zheng (2007b) to the multi-attribute set up. The Zheng index itself is a
two-parameter generalization of the Chakravarty (1983a) and the Clark et al. (1981)
indices.

4 An Empirical Illustration

The purpose of this section is to illustrate the poverty index P(X; z), as defined in
(9), using the Household Income and Consumption Expenditure survey on Turkey.

We base our analysis on three years of available data: 2003, 2004 and 2005. The
survey is collected by the State Institute of Statistics (SIS) of Turkey to provide
information on household income, socio-economic status and consumption patterns
of the population.

Only a few of the survey’s variables on individual well-being are quantitative in
nature. This situation is common tomanyother surveys, see for example theEuropean
Community Household Panel for EU countries or the more recent EU Statistics on
Income and Living Conditions, where most of the variables that could be used to
measure multidimensional poverty are of qualitative type.

We decided to focus on income and number of rooms in the house. The income
variable we analyze is total disposable household income equivalized using the
OECD equivalence scale. In the other dimension all individuals without at least
one room in the dwellings were regarded as poor. As far as income in concerned, the
poverty threshold level was set equal to $4.3 in purchasing power parities per day,
the threshold considered by theWorld Bank for medium-income countries. Purchas-
ing power parities are from the OECD (http://www.oecd.org/std/ppp/). We subdivide
the population by the geographic areas of residence, namely, rural and urban areas.
Given complementarity between the attributes, we choose ρ = 1. Further, in order
to assign equal weight to the two dimensions we assume that c1 = c2 = .6. Finally,
values of δ chosen to provide the estimates are: δ = 0, 0.5, 1, 1.5, 2. Sample weights
were used in the computation of the indices.

Results for the entire country are contained in Table 1. Multidimensional poverty,
as measured by the index we propose in this paper, decreased continuously over time.
We note monotonicity of the index value with respect to the parameter δ. Contribu-
tions of the rural and urban areas to total poverty, which are given as percentages of
total poverty, are reported in Table 2. Complete elimination of poverty within an area
will lower global poverty exactly by the percentage by which it contributes to total
poverty. The picture is quite dismal for the rural area, for all values of δ, more than
57% contribution comes from this area. In Tables 3 and 4 area-wise poverty values
are presented and, as expected, the rural area turns out to be more poverty stricken

http://www.oecd.org/std/ppp/
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Table 1 Multidimensional poverty, as measured by P(X; z), for different values of δ: results for
Turkey

Year P(X; z) with
δ = 0

P(X; z) with
δ = 0.5

P(X; z) with
δ = 1

P(X; z) with
δ = 1.5

P(X; z) with
δ = 2

2003 0.019 0.040 0.082 0.170 0.353

2004 0.016 0.034 0.070 0.146 0.303

2005 0.015 0.032 0.066 0.136 0.283

Table 2 Percentage contributions to multidimensional poverty by geographic area groups

Year % Contribution of
rural areas

% Contribution of
urban areas

% Population of
rural areas

% Population of
urban areas

2003 61.303 38.697 39.24 60.76

2004 66.972 33.028 38.62 61.38

2005 57.031 42.987 38.12 61.88

Table 3 Multidimensional poverty, as measured by P(X; z), for different values of δ: results for
the Rural Area

Year P(X; z) with
δ = 0

P(X; z) with
δ = 0.5

P(X; z) with
δ = 1

P(X; z) with
δ = 1.5

P(X; z) with
δ = 2

2003 0.012 0.024 0.050 0.104 0.216

2004 0.011 0.023 0.047 0.098 0.203

2005 0.009 0.018 0.038 0.078 0.161

Table 4 Multidimensional poverty, as measured by P(X; z), for different values of δ: results for
the Urban Area

Year P(X; z) with
δ = 0

P(X; z) with
δ = 0.5

P(X; z) with
δ = 1

P(X; z) with
δ = 1.5

P(X; z) with
δ = 2

2003 0.007 0.015 0.032 0.066 0.136

2004 0.005 0.011 0.023 0.048 0.100

2005 0.007 0.014 0.028 0.059 0.122

than the urban area. Thus, from the poverty reduction policy point of view the rural
area deserves more attention than the urban area.

5 Conclusions

We have argued explicitly why poverty should be regarded as the failure to reach
‘minimally acceptable’ levels of functionings of well-being. That is, poverty should
be measured in a multidimensional framework in terms of individual deprivations
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for different functionings from respective threshold levels. We then discussed certain
desirable postulates for an indicator of poverty in such a framework.

Unit consistency is an important property of multidimensional inequality and
poverty indices in the sense that use of different measurement units should not lead
to inconsistent conclusions. We have made an attempt to characterize a class of
unit consistent multidimensional poverty index under a specific structure. It is a
generalization of one of theZheng (2007b) single dimensional unit consistent poverty
indices. An empirical illustration of the index using Turkish data was also provided.
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An Axiomatic Approach
to Multidimensional Poverty
Measurement via Fuzzy Sets

Satya R. Chakravarty

Abstract Often it may be difficult to judge the poverty/deprivation status of a person
in a dimension of human wellbeing. An appropriate technique to evaluate poverty
in such a situation is fuzzy set theory. This paper develops an axiomatic approach
to the measurement of multidimensional poverty in a fuzzy set up. Rigorous dis-
cussion on a fuzzy membership function that determines the poverty position of a
person in a dimension is presented. Fuzzy translations of multidimensional poverty
axioms are formulated and analyzed with perfections. Fuzzy counterparts of several
multidimensional poverty indices are suggested.

Keywords Multidimensional poverty · Fuzzy set approach · Membership
function · Axioms · Indices · Characterization

1 Introduction

Poverty has been in existence for many years and continues to exist in a large num-
ber of countries of the World. Therefore, targeting of poverty alleviation remains an
important policy issue in many countries. To understand the threat that the problem
of poverty poses it is necessary to know the dimension of poverty and the process
through which it seems to be deepened. In this context, an important question is: how
to measure the poverty level of a society and its changes. In a pioneering contribu-
tion, Sen (1976) conceptualized the poverty measurement problem as involving two
exercises: (i) the identification of the poor and (ii) aggregation of the characteristics
of the poor into an overall indicator that quantifies the extent of poverty. In the liter-
ature, the income method has been used mostly to solve the first problem. It requires
specification of a poverty line representing the income necessary for a subsistence
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standard of living. A person is said to be poor if his income falls below the poverty
line. On the aggregation issue, Sen (1976) criticized two crude indicators of poverty,
the head-count ratio (the proportion of persons with incomes below the poverty line)
and the income gap ratio (the difference between the poverty line and the average
income of the poor, expressed as a proportion of the poverty line), because they
remain unaltered under a redistribution of income between two poor persons and the
former also does not change if a poor person becomes poorer due to a reduction in
his income. Sen (1976) also characterized axiomatically a more sophisticated index
of poverty.1

However, the well-being of a population, and hence its poverty, which is a man-
ifestation of insufficient well-being, is a multidimensional phenomenon and should
therefore depend on both monetary and non-monetary attributes or components. It
is certainly true that with a higher income or consumption budget a person may be
able to improve the position of some of his non-monetary attributes of well-being.
But it may happen that markets for certain non-monetary attributes do not exist. One
such example is a public good like flood control or malaria prevention program in
an underdeveloped country. Therefore, it has often been argued that income as the
sole attribute of well-being is inappropriate and should be supplemented by other
attributes, e.g., housing, literacy, life expectancy at birth, nutritional status, provision
of public goods, etc.

We can provide further justifications for viewing the poverty measurement prob-
lem from a multidimensional perspective. In the basic needs approach, advocated
by development economists, development is regarded as an improvement in the
array of human needs, not just as growth of income alone (Streeten 1981). There
is a debate about the importance of low income as a determinant of under-nutrition
(Lipton and Ravallion 1995) and often it is argued to regard the population’s failure
to achieve a desirable nutritional status as an indicator of poverty (Osmani 1992). In
the capability-functioning approach, where a functioning is what a person “succeeds
in doing with the commodities and characteristics at his or her command” (Sen 1985,
p. 10) and capabilities indicate a person’s freedom with respect to functionings (Sen
1985, 1992), poverty is regarded as a problem of functioning failure. Functionings
here are closely approximated by attributes like literacy, life expectancy, clothing,
attending social activities, etc. The living standard is then viewed in terms of the
set of available capabilities of the person to function. An example of a multidimen-
sional index of poverty in terms of functioning failure is the human poverty index
suggested by the UNDP (1997). It aggregates the country level deprivations in the
living standard of a population for three basic dimensions of life, namely, decent
living standard, educational attainment rate and life expectancy at birth. Chakravarty
andMajumder (2005) axiomatized a generalized version of the human poverty index
using failures in an arbitrary number of dimensions of life.

1Several contributions suggested alternatives and variations of the Sen index. See, for example,
Takayama (1979), Blackorby and Donaldson (1980), Kakwani (1980a, 1980b), Clark et al. (1981),
Chakravarty (1983a, b, c, 1997), Thon (1983), Foster et al. (1984), Haagenars (1987) and Shorrocks
(1995).
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In view of the above, in contrast to the income method, it has often been assumed
in the literature that each person is characterized by a vector of basic need attributes
(see, for example, Sen 1987, 1992; Ravallion 1996; Bourguignon and Chakravarty
1999, 2003; Atkinson 2003), and a direct method of identification of poor checks if
the person has “minimally acceptable levels” (Sen 1992, p. 139) of different basic
needs. Therefore, the direct method views poverty from a multidimensional per-
spective, more precisely, in terms of shortfalls of attribute quantities from respective
threshold levels. These threshold levels are determined independently of the attribute
distributions. A person is said to be poor with respect to an attribute if his consump-
tion of the attribute falls below its minimally acceptable level. “In an obvious sense
the direct method is superior to the income method, since the former is not based
on particular assumptions of consumer behavior which may or may not be accurate”
(Sen 1981, p. 26). If direct information on different attributes are not available, one
can adopt the income method, “so that the income method is at most a second best”
(Sen 1981, p. 26).

While the direct and income methods differ substantially in certain respects, they
have one feature in common: each individual in the population must be counted as
either poor or non-poor. The prospect of an intermediate situation is not considered
by them. However, it is often impossible to acquire sufficiently detailed information
on income and consumption of different basic needs and hence the poverty status
of a person is not always clear cut. For instance, the respondents may be unwilling
to provide exact information on income and consumption levels. There can be a
wide range of threshold limits for basic needs which co-exist in reasonable harmony.
The likelihood that relevant information is missing suggests that there is a degree of
ambiguity in the concept of poverty. Now, if there is some ambiguity in a concept,
“then a precise representation of that ambiguous concept must preserve that ambi-
guity” (Sen 1997, p. 121). Zadeh (1965) introduced the notion of fuzzy set with a
view to tackling problems in which indefiniteness arising from a sort of ambiguity
plays a fundamental role. Thus, given that the concept of poverty itself is vague, the
poverty status of a person is intrinsically fuzzy. This shows that a fuzzy set approach
to poverty measurement is sufficiently justifiable.

Fuzzy set theory-based approaches to the measurement of poverty has gained
considerable popularity recently (see, for example, Cerioli andZani 1990;Blaszczak-
Przybycinska 1992; Dagum et al. 1992; Pannuzi and Quaranta 1995; Shorrocks and
Subramanian 1994; Cheli and Lemmi 1995; Balestrino 1998; Betti and Verma 1998;
Qizilbash 2002).2

However, a rigorous discussion on desirable axioms for a multidimensional
poverty index in a fuzzy environment has not beenmade in the literature. The purpose
of this paper is to fill in this gap. We also investigate how a variety of multidimen-
sional poverty indices suggested recently (see, for example, Chakravarty et al. 1998;

2For applications of fuzzy set to inequality measurement, see Basu (1987) and Ok (1995). Fuzzy set
theory is also helpful in analyzing the valuations of functioning vectors and capability sets (see, for
example, Balestrino 1994; Balestrino and Chiappero Martinetti 1994; Chiappero Martinetti 1994,
1996, 2004; Casini and Bernetti 1996; Baliamoune 2003; Alkire 2005).
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Bourguignon and Chakravarty 1999, 2003; Tsui 2002) can be reformulated in a fuzzy
structure. These are referred to as fuzzy multidimensional poverty indices.

The paper is organized as follows. The next section begins by defining a fuzzy
membership function that determines a person’s poverty status in a dimension. A
characterization of a particular membership function is also presented in this section
Sect. 3 offers appropriate fuzzy reformulations of the axioms for a multidimensional
poverty index. Section 4 shows how the conventional multidimensional poverty
indices can be extended in a fuzzy framework. Finally, Sect. 5 concludes.

2 Fuzzy Membership Function

We begin by assuming that for a set of n-persons, the i th person possesses a k-vector
xi = (xi1, xi2, . . . , xik) ∈ Rk+ of attributes, where Rk+ is the non-negative orthant of
the k-dimensional Euclidean space Rk . The j th coordinate of the vector xi specifies
the quantity of attribute j possessed by person i . The vector xi is the i th row of a
n × k matrix X ∈ Mn , where Mn is the set of all n × k attribute matrices whose
entries matrices whose entries are non-negative real numbers. The j th column of
X ∈ Mn gives the distribution of attribute j( j = 1, 2, . . . , k) among the n persons.
Let M = ∪n ∈N Mn , where N is the set of positive integers. For any X ∈ M , we write
n (X) (or, n ) for the associated population size.

In the conventional set up, the poverty status of person i for attribute j may be
represented by a dichotomous function μ∗

j

(
xi j
)
, which maps xi j into either zero or

one, depending on whether he is non-poor or poor in the attribute, that is, whether
xi j ≥ z j or, xi j < z j , where z j is the minimally acceptable or threshold level of
attribute j . To allow for fuzziness in the poverty status, we consider a more general
membership function μ j : R1+ → [0, 1] for attribute j where μ j

(
xi j
)
indicates the

degree of confidence in the statement that person i with consumption level xi j of
attribute j is possibly poor with respect to the attribute. Thus, μ j is a generalized
characteristic function, that is, one which varies uniformly between zero and one,
rather than assuming just two values of zero and one (Zadeh 1965; Chakravarty and
Roy 1985). We assume here that μ j depends on xi j only. One can also consider a
more general formulation where μ j depends on the entire distribution (Cheli and
Lemmi 1995). Since μ∗

j declares the poverty status of a person in dimension j
unambiguously, we refer to it as a crisp membership function.

Now, let m j > 0 be the quantity of attribute j at or above which a person is
regarded as non-poor with certainty with respect to the attribute, that is, if, xi j ≥ m j

then person i is certainly non-poor in dimension j . (See Cerioli and Zani 1990 and
Shorrocks and Subramanian 1994 for a similar assumption in the context of income
based fuzzy poverty measurement). For instance, for life expectancym j can be taken
as the age level 60. Likewise, for the income dimension, it can be the level of mean
per capita income. We assume here that m j coincides with one of the xi j values.
For example, if a person with the mean level of attribute j , η j , is considered as
certainly non-poor in the attribute, then m j can be taken as the minimum value of
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xi j which is at least as large as η j . That is, m j = min
{
xi j
}
, where i ∈ {1, 2, . . . , n}

and xi j − η j ≥ 0 Thus, we can say that the poverty extent of xi j , as measured by
μ j , is zero if xi j ≥ m j , that is, μ j

(
xi j
) = 0 if xi j ≥ m j . Similarly if xi j = 0, then

the poverty level associated with xi j is maximal, and henceμ j (0) = 1. Furthermore,
a reasonable presumption is that a rise in xi j decreases the possibility of person i’s
being poor in attribute j . Hence μ j is assumed to be decreasing over

(
0,m j

)
. It is

also assumed to be continuous. The above properties of μ j can now be summarized
as follows:

μ j
(
xi j
) =

{
1 if xi j = 0,
0 if xi j ≥ m j .

(1)

It is decreasing over the interval
(
0,m j

)
and continuous everywhere. We write μ

for the vector (μ1, μ2, . . . , μk). Let A be the set of vectors of membership functions
of the form μ.

An example of a suitable fuzzy membership function for attribute j is:

μ j
(
xi j
) =

⎧
⎪⎨

⎪⎩

1 if xi j = 0,(
m j−xi j
m j

)θ j

if xi j ∈ (0,m j
)
,

0 if xi j ≥ m j .

(2)

where θj is a parameter.
It satisfies all the conditions laid down in (1). It is an individualistic function in

the sense that it depends only on xi j and treats m j as a parameter.
Given μ j , let Sμ j (X) (or, simply Sμ j ) be the set of persons who are possibly poor

in dimension j in X ∈ Mn , where n ∈ N is arbitrary, that is:

Sμ j (X) = {i ∈ {1, 2, . . . , n}∣∣μ j
(
xi j
)

> 0
}
. (3)

Attribute j will be called possibly meager or certainly non-meager for person i
according as i ∈ Sμ j (X) or i /∈ Sμ j (X). Person i is referred to as certainly non-poor
if xi j ≥ m j for all j = 1, 2, . . . , k, that is, if i /∈ Sμ j (X) for all j .

It will now be worthwhile to characterize a fuzzy membership function. Such a
characterization exercise will enable us to understand the membership function in a
more elaborate way through the axioms used in the exercise. The following axioms
are proposed for a general membership function μ j : R1+ → [0, 1] for attribute j .

(A1) Homogeneity of Degree Zero: μ j is homogeneous of degree zero.
(A2) Linear Decreasingness: For any xi j ∈ [0,m j

)
and ci j ∈ [0,m j − xi j

)
,

μ j
(
xi j
)− μ j

(
xi j + ci j

) = ci j
m j

.

(A3) Continuity: μ j is continuous on its domain.
(A4) Maximality: μ j (0) = 1.



128 S. R. Chakravarty

(A5) Independence of Non-meager Attribute Quantities: For all xi j ≥ m j ,μ j
(
xi j
) =

k, where k is a constant.

(A1) ensures that μ j remains unaltered under equi-proportionate variations in quan-
tities of attribute j. (A2) makes a specific assumption about decreasingness of the
membership function. It says that the extent of reduction in the membership function
resulting from an increase in xi j by ci j is the fraction

ci j
m j
. It is weaker than decreasing-

ness assumption of the membership function over
(
0,m j

]
. A membership function

may as well decrease non-linearly. For instance, if θ j > 1, μ j in (2) decreases at an
increasing rate. (A3) means that μ j should vary in a continuous manner with respect
to variations in attribute quantities. (A4) specifies thatμ j should achieve its maximal
value 1 when the level of the attribute is zero. Finally, (A5) shows insensitivity of μ j

to the attribute quantities of the persons who are certainly non-poor in the attribute
through the assumption that the value of the membership function on

[
m j ,∞

)
is a

constant. Thus, instead of assuming that the membership function takes on the value
zero on

[
m j ,∞

)
, we derive it as an implication of more primitive axioms.

Proposition 1 The only membership function that satisfies axioms (A1)–(A5) is:

μ j
(
xi j
) =

⎧
⎪⎨

⎪⎩

1 if xi j = 0,(
m j−xi j
m j

)
if xi j ∈ (0,m j

)
,

0 if xi j ≥ m j .

Proof In view of (A1), μ j
(
xi j
) = μ j

(
xi j
m j

)
. Hence (A2) becomes

μ j

(
xi j
m j

)
− μ j

(
xi j + ci j

m j

)
= ci j

m j
.

Since in the above equation xi j ∈ [0,m j
)
, is arbitrary, we can interchange the

roles of xi j and ci j in it and derive that:

μ j

(
ci j
m j

)
− μ j

(
ci j + xi j

m j

)
= xi j

m j
.

These two equations imply that

μ j

(
xi j
m j

)
− μ j

(
ci j
m j

)
= ci j

m j
− xi j

m j
.

Letting ci j = 0 in the above expression, we get:

μ j

(
xi j
m j

)
= μ j (0) − xi j

m j
,
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from which in view of (A4) it follows that:

μ j

(
xi j
m j

)
= m j − xi j

m j
.

Applying (A1) to the above form ofμ j and using (A3), we note thatμ j
(
m j
) = 0.

This along with (A5) reveals that k = 0. Hence μ j
(
xi j
) = 0 for all xi j ≥ m j . This

establishes the necessity part of the proposition. The sufficiency is easy to check. �
Proposition 1 thus characterizes axiomatically the linear sub-case of the member-

ship function in (2).

3 Properties for a Fuzzy Multidimensional Poverty Index

In this section, we lay down the postulates for a fuzzy multidimensional poverty
index P : M × A → R1. For all n ∈ N , the restriction of P on Mn × A → R1

is denoted by Pn . For any X ∈ Mn , Pn(X;μ) gives the extent of possible poverty
(poverty, for short) level associated with X .

Sen (1976) suggested two basic postulates for an income poverty index. These
are: (i) the monotonicity axiom, which requires poverty to increase under a reduction
in the income of a poor, and (ii) the transfer axiom, which demands that poverty
should increase if there is a transfer of income from a poor to anyone who is richer.
FollowingSen (1976) several other axiomshave been suggested in the literature. (See,
for example, Sen 1979; Foster 1984; Foster et al. 1984; Donaldson and Weymark
1986; Seidl 1988; Chakravarty 1990; Foster and Shorrocks 1991; Zheng 1997).
Multidimensional generalizations of different postulates proposed for an income
poverty index have been introduced, among others, by Chakravarty et al. (1998),
Bourguignon and Chakravarty (1999, 2003) and Tsui (2002).

The axioms we suggest below for an arbitrary P are fuzzy variants of the axioms
presented in Chakravarty et al. (1998), Bourguignon and Chakravarty (1999, 2003)
and Tsui (2002).

Focus (FOC): For all n ∈ N ; X, X̂ ∈ Mn; μ ∈ A; if Sμ j (X) = Sμ j

(
X̂
)
,

1 ≤ j ≤ k and xi j = x̂i j for all i ∈ Sμ j (X), 1 ≤ j ≤ k, then:

Pn(X;μ) = Pn
(
X̂;μ

)
.

Normalization (NOM): For all n ∈ N ; X ∈ Mn; μ ∈ A ; j ∈ {1, 2, . . . , k} , if
Sμ j (X) = ϕ, the empty set, then Pn(X;μ) = 0.

Monotonicity (MON): For all n ∈ N ; X, X̂ ∈ Mn; μ ∈ A; if xrl = x̂rl for all
r ∈ {1, 2, . . . , n}\{i}, l ∈ {1, 2, . . . , k}, xil = x̂ll for all l ∈ {1, 2, . . . , k}\{ j} and
xi j > x̂i j , where

i ∈ Sμ j

(
X̂
)
, then Pn(X;μ) < Pn

(
X̂;μ

)
.
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Transfers Principle (TRP): For all n ∈ N ; X, X̂ ∈ Mn; μ ∈ A; if X is obtained
from X̂ by pre-multiplying X̂ p by a bistochastic matrix B and B X̂ p is not a permu-

tation of the rows of X̂ p, then Pn(X;μ) < Pn
(
X̂;μ

)
, where X̂ p is the matrix of

attribute quantities of possibly poor in X̂ , given that the bundles of attributes of the
rich remain unaffected.3

Principle of Population (POP): For all n ∈ N ; X ∈ Mn; μ ∈ A ;Pn(X;μ) =
Pn
(
X̂;μ

)
, where X̂ is the h− fold replication of X , h ≥ 2 being an integer.

Symmetry (SYM): For all n ∈ N , X ∈ Mn ;μ ∈ A : Pn(X;μ) = Pn(ΠX;μ) ,

where Π is an n × n permutation matrix.
Subgroup Decomposability (SUD): For X1, X2, . . . , Xh ∈ M and μ ∈ A,

Pn(X;μ) =
h∑

i=1

ni
n
Pni
(
Xi ;μ

)
,

whereX is the attributematrix

⎡

⎢⎢⎢⎢⎢
⎣

X1

X2

Xh

⎤

⎥⎥⎥⎥⎥
⎦
with n rows and k columns, ni is the population

size corresponding to Xi and n =
h∑

i=1
ni .

Continuity (CON): For all n ∈ N , X ∈ Mn ;μ ∈ A ;Pn(X;μ) is continuous on
Mn .

Increasingness in Membership Functions (IMF): For all n ∈ N , X ∈
Mn ;μ,μ′ ∈ A if μh = μ′

h for all h ∈ {1, 2, . . . , k}\{ j}, Sμ j (X) = Sμ′
j
(X) and

μ j
(
xi j
)

> μ′
j

(
xi j
)
for all i ∈ Sμ j (X), then Pn

(
X;μ′) < Pn(X;μ) ,

Non-poverty Growth (NPG): For all n ∈ N ; X ∈ Mn; μ ∈ A if X̂ is obtained

from X by adding a certainly non-poor person to the society, then Pn+1
(
X̂;μ

)
<

Pn(X;μ) .

Scale Invariance (SCI): For all n ∈ N , X ∈ Mn ;μ ∈ A : Pn(X;μ) =
Pn(XΩ;μ) , where Ω is the diagonal matrix: diag (ω1, ω2, . . . , ωk), ωi > 0 for
all i = 1, 2, . . . , k.

FOC, which has similar spirit as (A5), states that, given the population size, the
poverty index depends only on the attribute quantities of the personswho are possibly
poor in different dimensions. Thus, if a person is certainly non-poor with respect to
an attribute, then giving him more of this attribute does not change the intensity of
poverty, even if he is possibly poor in the other attributes. Clearly, FOC rules out
trade off between the two attributes of a person who is possibly poor with respect

3A square matrix of order n is called a bistochastic matrix if its entries are non-negative and each
of its rows and columns sums to one. A bistochastic matrix is called a permutation matrix if there
is exactly one positive entry in each row and column.
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to one but certainly non-poor with respect to the other. Thus, if life expectancy and
composite good are the two attributes, more life expectancy in the domain in which
it is certainly non-meager is of no use if the composite good is possibly meager.
This, however, does not exclude the possibility of a trade off if both the attributes are
possibly meager for a person. NOM is a cardinality property of the poverty index.
It says that if all persons in a society are certainly non-poor, then the index value
is zero. According to MON, poverty decreases if the condition of a poor improves.
MON includes the possibility that the beneficiary may become certainly non-poor
in the dimension concerned.

To understandTRP, let us recall a result from the literature on inequalitymeasure-
ment. Of two income distributions u and v of a given total over a given population
size n, where u is not a permutation of v, the former can be obtained from the latter
through a sequence of rank preserving progressive transfers transferring incomes
from the better off persons to those who are worse off if and only if u = vB for some
bistochastic matrix B of order n (Kolm 1969; Dasgupta et al. 1973). In the multi-
dimensional context, Kolm (1977) showed that the distribution of a set of attributes
summarized by some matrix X is more equal than another matrix X̂ (whose rows are
not identical) if and only if X = E X̂ , where E is some bistochastic matrix and X
cannot be derived from X̂ by permutation of the rows of X̂ . Intuitively, multiplica-
tion of X̂ by a bistochastic matrix makes the resulting distribution less concentrated.
Following Kolm (1977), the analogous property applied to the set of possibly poor
persons is TRP. It simply says that there is less possible poverty under X than under
X̂ , if the former is obtained from the latter by redistributing the attributes of the
possibly poor using some bistochastic transformation.

Under POP, if an attributematrix is replicated several times, then poverty remains
unchanged. Since by replication we can transform two different sized matrices into
the same size, POP is helpful for inter-temporal and interregional poverty com-
parisons. SYM demands anonymity. Any characteristic other than the quantities in
different dimensions under consideration, for instance, the names of the individuals,
is immaterial to the measurement of poverty.CON, which is similar to (A3), ensures
that minor changes in attribute quantities will not give rise to an abrupt jump in
the value of the poverty index. Therefore, a continuous poverty index will not be
oversensitive to minor observational errors on basic need quantities.

SUD says that if a population is divided into several subgroups, say h, defined
along ethnic, geographical or other lines, then the overall poverty is the population
share weighted average of subgroup poverty levels. The contribution of subgroup
i to overall poverty is ni

n P
ni
(
Xi ;μ

)
and overall poverty will precisely fall by this

amount if poverty in subgroup i is eliminated.
ni Pni (Xi ;μ)
nPn(X;μ)

100 is the percentage contribution of subgroup i to total poverty. Each
of these statistics is useful to policy-makers because they become helpful for isolating
subgroups of the population that are more susceptible to poverty (see Anand 1997;
Chakravarty 1983a, b, c; Foster et al. 1984; Foster and Shorrocks 1991).

Between two identical communities, the one with higher membership function of
an attribute should have a higher poverty because of higher possibility of individuals’
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being poor in that dimension. This is what IMF demands. A poverty index will be
called μ-monotonic if it satisfies IMF. According to NPG poverty should decrease
if a person who is certainly rich joins the society. Thus, under FOC, NPG says
that the poverty index is a decreasing function of the population size (see Kundu
and Smith 1983; Subramanian 2002; Chakravarty et al. 2006). Finally, SCI, which
parallels (A1), means that the poverty index is invariant under scale transformations
of attribute quantities, that is, it is homogeneous of degree zero. Hence it should be
independent of the units of measurement of attributes. Thus, if life expectancy is
measured in months instead of in years, level of poverty remains unchanged.

We will now consider a property which takes care of the essence of multidimen-
sional measurement through correlation between attributes. By taking into account
the association of attributes, as captured by the degree of correlation between them,
this property also underlines the difference between single and multidimensional
poverty measurements. To illustrate the property, consider the two-person two-
attribute case, where both the attributes are possibly meager for these persons. Sup-
pose that x11 > x21 and x12 < x22. Now, consider a switch of attribute 2 between
the two persons. This switch increases the correlation between the attributes because
person 1 who had more of attribute 1 has now more of attribute 2 too and that is why
we refer to it as a correlation increasing switch between two possibly poor persons.
Formally, we have:

Definition 1 For any n ≥ 2; X ∈ Mn ;μ ∈ A ; j, h ∈ {1, 2, . . . , k}, suppose that for
some i, t ∈ Sμ j (X)

⋂
Sμh (X), xi j < xt j and xth < xih . X̂ is then said to be obtained

from X by a correlation increasing switch between two possibly poor persons if
(i) x̂i j = xt j , (ii) x̂t j = xi j , (iii) x̂r j = xr j for all r 
= i, t and (iv) x̂rs = xrs for all
s 
= j and for all r .

If the two attributes are substitutes, that is, if one attribute may compensate for
the lack of another for a person who is possibly poor in both dimensions, then
the switch should increase poverty. This is because the richer of the possibly poor
is getting even better in the attributes which correspond to the similar aspect of
poverty after the rearrangement. After the switch the poorer person is more unable to
compensate the lower quantity of one attribute by the quantity of the other. Indeed,
the switch just defined does not modify the marginal distribution of each attribute
but reduces the extent to which the lack of one attribute may be compensated by the
availability of the other. An analogous argument will establish that poverty should
decrease under a correlation increasing switch if the two attributes are complements.
(For more detailed arguments along this line, see Atkinson and Bourguignon 1982;
Bourguignon and Chakravarty 2003). We state this principle formally for substitutes
as:

IncreasingPovertyUnderCorrelation IncreasingSwitch (IPC): For alln ∈ N ;
X ∈ Mn; μ ∈ A if X̂ is obtained from X by a correlation increasing switch between

two possibly poor persons, then Pn(X;μ) < Pn
(
X̂;μ

)
if the two attributes are

substitutes.
The corresponding property which demands poverty to decrease under such a

switch when the attributes are complements is denoted by DPC. If a poverty index
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does not change under a correlation increasing switch, then it treats the attributes as
‘independents’.

4 The Subgroup Decomposable Fuzzy Multidimensional
Poverty Indices

The objective of this section is to discuss the subgroup decomposable family of fuzzy
multidimensional poverty indices. The necessity for a subgroup decomposable index
arose from practical considerations. The use of such an index allows policy-makers
to design effective, consistent national and regional antipoverty policies.

Repeated application of SUD shows that we can write a subgroup decomposable
index as:

Pn(X;μ) = 1

n

n∑

i=1

p(xi ;μ), (4)

where n ∈ N ; X ∈ Mn and μ ∈ A are arbitrary. Since p(xi ;μ) depends only on
person i ′s consumption of the attributes, we call it ‘individual poverty function’. If
we define p(xi ;μ) as the weighted average of grades of membership of individual
i across dimensions, that is, if, p(xi ;μ) = ∑k

j=1 δ jμ j
(
xi j
)
, where 0 < δ j < 1 and

∑k
j=1 δ j = 1, then Pn(X;μ) in (4) becomes:

Pn(xi ;μ) =
k∑

j=1

δ j

∑

i∈Sμ j

μ
(
xi j
)
. (5)

The weight δ j may be assumed to reflect the importance that we attach in our
aggregation to dimension j . It may also be assumed to reflect the importance that the
government assigns for alleviating poverty for that dimension. Since

∑
i∈Sμ j

μ j
(
xi j
)

gives the cardinality of the fuzzy set of the poor in the j th attribute (Dubois and
Prade 1980, p. 30), Pn in (5) is a weighted average of the proportions of possibly
poor persons across dimensions. If μ j coincides with the crisp membership function
μ∗

j , then the index in (5) becomes a weighted average of the proportions of persons
who are poor in different dimensions.

We may interpret the formula alternatively as follows. μ j
(
xi j
)
can be regarded

as the extent of deprivation felt by person i for being included in the set of persons
who are possibly poor in attribute j . As his quantity of consumption of the attribute
increases, deprivation decreases and μ j

(
m j
) = 0 shows the absence of this feeling

at the level m j . Therefore, Pn is the population average of the weighted average of
dimension—wise individual deprivations.
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Defining 1
n

∑
i∈Sμ j

μ j
(
xi j
)
as the possible poverty level associated with attribute

j and denoting it by Pn
(
x. j ;μ j

)
, we can rewrite Pn in (5) in a more compact way

as:

Pn(X;μ) =
k∑

j=1

δ j P
n
(
x. j ;μ j

)
. (6)

This shows that Pn(X;μ) can also be viewed as a weighted average of attribute-
wise (possible) poverty values.We refer to this property as ‘FactorDecomposability’.

The percentage contribution of dimension j to total fuzzy poverty is
δ j Pn(x. j ;μ j)

Pn(X;μ)
100..

The elimination of poverty for the j th dimension will lower community poverty by
the amount δ j Pn

(
x. j ;μ j

)
.

We can use the two decomposability postulates to construct a two-way poverty
profile and to calculate each attribute’s poverty within each subgroup. This type of
micro breakdown will help us to identify simultaneously the population subgroup(s)
as well as attribute(s) for which poverty levels are severe and formulate appropriate
antipoverty policies.

It will now be worthwhile to examine the behavior of Pn given by (5) with respect
to the axioms stated in Sect. 3. These axioms conveniently translate into constraints
on the form ofμ j Evidently, Pn in (5) is focused, normalized,monotonic, symmetric,
population replication invariant, μ-monotonic, continuous and correctly responsive
to non-poverty growth. It satisfies SCI if and only if for each j , μ j is homogeneous
of degree zero, a condition fulfilled by the form given in (2). It is transfer preferring,
that is, TRP holds if and only if μ j is strictly convex over

(
0;m j

)
(see Marshall

and Olkin 1979, p. 433). This means that the decline in the possibility of poverty
with increase in quantities of attributes is the greatest at the lowest levels of the
attribute. The membership function defined in (2) satisfies the convexity condition if
θ j ≥ 2. Finally, because of additivity across attributes it remains unchanged under a
correlation increasing switch. We summarize these observations on the behavior of
Pn as follows:

Proposition 2
The subgroup decomposable fuzzy multidimensional poverty index given by (5) satis-
fies theFocus,Normalization,Monotonicity,Principle of Population,Symmetry,
Continuity, Increasingness inMembership Functions, and Non-PovertyGrowth
axioms. It fulfills the Scale Invariance axiom if and only if the membership func-
tions for different attributes are homogeneous of degree zero. It meets the Transfers
Principle axiom if and only if for each j , μ j is strictly convex on the relevant part
of the domain. Finally, it remains unchanged under a correlation increasing switch
between two possibly poor persons.

To illustrate the general formula in (5), suppose that the membership function is
of the form (2). In this case, the index is:
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Pn
θ (X;μ) = 1

n

k∑

j=1

δ j

∑

i∈Sμ j

(
m j − xi j

m j

)θ j

. (7)

where θ = (θ1, θ2, . . . , θk)which reflect different perceptions of poverty. This is a
fuzzy counterpart to the multidimensional generalization of the Foster–Greer–Thor-
becke (FGT) (1984) index considered by Chakravarty et al. (1998) and Bourguignon
and Chakravarty (2003). For a given X , Pn

θ increases as θ j increases, 1 ≤ j ≤ k. For
θ j = 1 for all j , Pn

θ becomes

Pn
θ (X;μ) =

k∑

j=1

δ j Hj I j , (8)

where I j is the average of the grades of membership of the persons in Sμ j (X), that

is, I j = 1
q j

∑
i∈Sμ j

(
m j−xi j
m j

)
with q j being the cardinality of Sμ j (X) and Hj = q j

n is

the fuzzy head-count ratio in dimension j . Thus, for a given Hj , an increase in I j ,
say, due to a reduction of xi j , increases the index.

If θ j = 2 for all j , Pn
θ can be written as:

Pn
θ (X;μ) =

k∑

j=1

δ j Hj

[
I 2j + (1 − I j

)2
C2

j

]
, (9)

where C2
j = 1

q j

∑
i∈Sμ j

(
xi j−ρ j

ρ j

)2
is the squared coefficient of variation of the

distribution of attribute j among those for whom it is possibly meager, with
ρ j = 1

q j

∑
i∈Sμ j

xi j being the mean of the distribution. Now, the squared coeffi-

cient of variation is an index of inequality of the concerned distribution. Clearly,
given I j and Hj , Pn

θ in (9) reduces as C j reduces, say through a transfer from a less
possibly poor to a more possibly poor. Thus, the decomposition in (9) shows that the
poverty index is related in a positive monotonic way with the inequality levels of the
possibly poor in different dimensions.

Analternative of interest arises from the following specificationof themembership
function:

μ j
(
xi j
) = 1 −

(
xi j
m j

)c j

, (10)

where for all j , 1 ≤ j ≤ k, c j ∈ (0, 1). It satisfies all the conditions laid down in (1)
along with homogeneity of degree zero and strict convexity. The associated poverty
index is:

Pn
c (X;μ) = 1

n

k∑

j=1

δ j

∑

i∈Sμ j

[
1 −

(
xi j
m j

)c j]
(11)



136 S. R. Chakravarty

where c = (c1, c2, . . . , ck). This index is a fuzzy version of the multidimensional
extension of the subgroup decomposable single dimensional Chakravarty (1983a)
index suggested by Chakravarty et al. (1998). Given X , Pn

c is increasing in c j for all
j . For, c j = 1, the index coincides with the particular case of the index in (9) when
θ j = 1, 1 ≤ j ≤ k. On the other hand as c j → 0 for all j , Pn

c → 0. As c j decreases
over the interval (0, 1), Pn

c becomes more sensitive to transfers lower down the scale
of distribution along dimension j .

We may also consider a logarithmic formulation of the membership function that
fulfils all conditions stated in (1):

μ j
(
xi j
) =

log

(
1 + e

λ j

(
m j−xi j

m j

))
− log 2

log
(
1 + eλ j

)− log 2
, (12)

where λ j > 0 is a parameter. The corresponding additive poverty index turns out to
be:

Pn
λ (X;μ) = 1

n

k∑

j=1

δ j

∑

i∈Sμ j

log

(
1 + e

λ j

(
m j−xi j

m j

))
− log 2

log
(
1 + eλ j

)− log 2
, (13)

where λ is the parameter vector (λ1, λ2, . . . , λk). Pn
λ can be regarded as a fuzzy

sister of the multidimensional generalization of theWatts (1968) poverty index char-
acterized by Tsui (2002). The parameter λ j determines the curvature of the poverty
contour. An increase in λ j for any j makes the fuzzy poverty contour more convex to
the origin. If λ j → 0 for all j , then Pn

λ → 0. In the particular case when θ j = λ j = 1
for all j , the ranking of two attribute matrices X, X̂ ∈ Mn by Pn

θ will be same as
that generated by Pn

λ . Since Pn
λ is transfer preferring for all λ j > 0, it satisfies TRP

even in this case. But Pn
θ does not fulfill TRP here.

There can be simple non-additive formulations of fuzzy multidimensional exten-
sions of single dimensional subgroup decomposable indices. They satisfy SUD but
not factor decomposability. Assuming that θ j in (2) is constant across attributes, say
equal to β, one such index can be:

Pn
α,β(X;μ) = 1

n

n∑

i=1

⎡

⎣
k∑

j=1

a jμ j
(
x̄i j
)
⎤

⎦

α
β

= 1

n

n∑

i=1

⎡

⎣
k∑

j=1

a j

(
m j − x̄i j

m j

)β

⎤

⎦

α
β

(14)

where x̄i j = min
(
xi j ,m j

)
, a j > 0 for all j and α > 0 is a positive parameter. Pn

α,β

is the fuzzy counterpart to the multidimensional version of the FGT index suggested
by Bourguignon and Chakravarty (2003). The interpretation of this index is quite
straightforward.Themembership functions in various dimensions arefirst aggregated
into a composite membership using a particular value of β and the coefficients a j .
Multidimensional fuzzy poverty is then defined as the average of that composite



An Axiomatic Approach to Multidimensional Poverty Measurement … 137

membership value, raised to the power α, over the whole population. Pn
α,β satisfies

IPC or DPC depending on whether α is greater or less than β. For α = 1, it becomes
the weighted sum of order β of the membership grades and for a given X , it is
increasing in β.

We may suggest an alternative to (14) using the membership function in (11).
This form is defined by:

T n
c (X;μ) = 1

n

n∑

i=1

⎛

⎝1 −
k∏

j=1

(
1 − μ j

(
x̄i j
))
⎞

⎠ = 1

n

n∑

i=1

⎛

⎝1 −
k∏

j=1

(
x̄i j
m j

)c j
⎞

⎠, (15)

This is a fuzzy translation of the multidimensional generalization of the
Chakravarty (1983a) index developed by Tsui (2002). In (15) for each person com-
plements from unity of the grades of membership along various dimensions are
subjected to a product transformation which is then averaged over persons after sub-
tracting from its maximum value, that is, 1. Since T n

c is unambiguously decreasing
under a correlation increasing switch between two possibly poor persons, it treats
the concerned attributes unambiguously as complements, that is, it satisfies DPC.

Given a membership functionμ j , there will be a corresponding multidimensional
fuzzy poverty index that meets all the postulates considered in Sect. 2. These indices
will differ only in the manner in which we use μ j to aggregate membership grades
of different persons along different dimensions into an overall indicator.

5 Conclusions

This paper has explored the problem of replacing the traditional crisp view of poverty
status with a fuzzy structure which allows membership of poverty set or the possibil-
ity of poverty in different dimensions of life to take any value in the interval [0, 1].
Attempt wasmade to establish how standardmultidimensional poverty indicesmight
be translated into the fuzzy framework. Suggestions were made for suitable fuzzy
analogues of axioms for a multidimensional poverty index, such as Focus, Mono-
tonicity, Transfers Principle, and Continuity. We have also added a condition
which requires poverty to increase if the possibility of poverty shifts upward along
any dimension.

We will nowmake a comparison of our index with some existing indices. Assum-
ing that the individual well-being depends only on income, Cerioli and Zani (1990)
suggested the use of the arithmetic average of grades of membership of different
individuals as a fuzzy poverty index. It ‘represents the proportions of individuals
“belonging” in a fuzzy sense to the poor subset’ (Cerioli and Zani 1990, p. 282).
Clearly, this index is similar in nature to Pn given by (5). In a multidimensional
framework, Cerioli and Zani (1990) introduced a transition zone for attribute j over
which the membership function declines from 1 to 0 linearly:

They then defined the membership function for person i as
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μ j
(
xi j
) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if xi j ≤ x L
j ,(

xH
j −xi j

x H
j −x L

j

)
if xi j ∈

(
x L
j , x

H
j

)
,

0 if xi j ≥ xH
j .

(16)

They then defined the membership function for person i as
∑k

j=1 μ j(xi j)wj
∑k

j=1 wj

where (w1,w2, . . . ,wk) represents a system of weights.
In what has been called the “Totally Fuzzy and Relative” approach, Cheli and

Lemmi (1995) defined the membership function for attribute j as the distribution
function, normalized (linearly transformed) so as to equal 1 for the poorest and 0 for
the richest person in the population:

μ j
(
xi j
) =

⎧
⎪⎪⎪⎨
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1 if xi j = x (s)
j ,

μ j

(
x (l−1)
j

)
+ F

(
x (l)
j

)
−F
(
x (l−1)
j

)

1−F
(
x (l)
j

) if xi j = x (l)
j

0 if xi j = x (1)
j .

. (17)

where x (1)
j , x (2)

j ,…, x (s)
j are modalities of dimension j in increasing order with

respect to the risk of poverty connected to them.
An alternative specification of the membership function for person i arises if we

replace μ j in (16) by μ j in (17). In either case, as Cerioli and Zani (1990) and Cheli
and Lemmi (1995) suggested, under appropriate specification of weights, we can
take:

Cn =
n∑

i=1

∑k
j=1 μ j

(
xi j
)
wj

n
∑k

j=1 wj

, (18)

as an indicator of poverty. Cerioli and Zani (1990) chose wj = log
(

1
p j

)
, where p j is

the proportion of persons with j th poverty symptoms, and Cheli and Lemmi (1995)

preferred to use wj = log
(

n∑n
i=1 μ j (xi j )

)
. Cn indicates the cardinality of the fuzzy

subset of the poor as a proportion of the population size.
An important difference between Pn in (5) and Cn is that while Pn is subgroup

decomposable, Cn is not. This is because Cn depends on different kinds of rank
orders. Precisely, because of this a poverty index based on a Gini type inequality
index or welfare function is not subgroup decomposable. Examples are the Sen
(1976), Kakwani (1980a) and Thon (1983) indices.

A rank preserving transfer of some quantity of an attribute from a possibly poor
to a worse off person will not change the rank orders of the modalities in the con-
cerned dimension. Therefore, satisfaction of the Transfers Principle by the general
index Cn will depend on the assumption about the weight system. Likewise, a rank
preserving reduction in the quantity of an attribute will not change the rank orders
of the modalities. Hence a similar argument holds concerning fulfillment of Mono-
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tonicity. However, Cn is normalized, symmetric, scale invariant (under appropriate
choices of modalities) and responds correctly to non-poverty growth. It is continuous
for the membership function in (16). Continuity for the membership function in (17)
will hold if F is continuous. To check whether it is population replication invariant,
concrete specification of the weight sequence is necessary.
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Abstract This paper generalizes the poverty ordering criteria available for single
dimensional income poverty to the case of multidimensional welfare attributes. A set
of properties to be satisfied by multidimensional poverty measures is first discussed.
Then general classes of poverty measures based on these properties are defined.
Finally, dominance criteria are derived such that a distribution of multidimensional
attributes exhibits less poverty than another for all multidimensional poverty indices
belonging to a given class. These criteria may be seen as a generalization of the
single dimensional poverty-line criterion. However, it turns out that the way this
generalization ismade depends onwhether attributes are complements or substitutes.
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1 Introduction

Removal of poverty is one of the major aims of economic policy in many countries.
In order to evaluate the efficacy of an antipoverty policy, it is necessary to observe the
changes in the level of poverty over time. Therefore, the way level of poverty is mea-
sured is important both for an understanding of poverty and for policy applications.
Since the publication of Sen’s (1976) pioneering paper on poverty measurement, a
great deal has been written on this subject. Over the last quarter century, research
on poverty measurement has taken two close but distinct branches: construction of
measures of poverty and poverty orderings. In both branches, income or consumption
expenditures has been regarded as the only attribute of well-being. The first branch,
following Sen (1976), is an attempt to develop alternative measures of poverty. A
povertymeasure aggregates the income shortfalls of the poor persons, persons,whose
incomes fall below the poverty line representing the income necessary to maintain a
subsistence standard of living. Several measures of poverty, including the one sug-
gested by Sen (1976), are now available in the literature. They have been surveyed by
various researchers (see, for example, Foster 1984; Seidl 1988; Chakravarty 1990;
Foster and Sen 1997 and Zheng 1997).

The second branch of literature is concernedwith rankings of income distributions
based on multiple desiderata on poverty measurement. Since quite often the choice
of a particular measure of poverty can be arbitrary, so can be the conclusions based
on that measure. However, it may be possible to reduce the degree of arbitrariness
by choosing all poverty measures that fulfill a set of reasonable postulates. That is,
instead of choosing individual poverty measures we are choosing a set of criteria for
poverty measures which in turn implicitly determines a class of measures. We can
then check whether it is possible to rank two income distributions unambiguously by
all members of this class. In a sense, this kind of research has grown out of presence
of toomany poverty measures. However, the use of a class of measures may not make
all income distributions comparable, that is, there may be no unanimous agreement
among these measures about the ranking of some income distributions. Thus, while
a single measure of poverty completely orders all income distributions, the ordering
generated by a family of measures is partial. For some distributions, it is not possible
to say whether one has lower or higher poverty than another by all members of
the family. Thus, we are forced to withhold our judgments on poverty comparison
for some pairs of distributions. Following Zheng (1999) we refer to this notion
of ordering as poverty-measure ordering. In an important contribution, Atkinson
(1987) derived conditions on poverty-measure orderings for subgroup decomposable
poverty measures with a common poverty line. Zheng (1999) extended Atkinson’s
results to amore restrictive class of poverty measures with the objective of increasing
the completeness of poverty orderings. Atkinson (1992) and Jenkins and Lambert
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(1993) considered poverty-measure orderings when the poverty line is adjusted for
differences in family composition.1

Both for poverty measures and poverty orderings, the definition of a poverty
line is crucial. The determination of such an income or consumption threshold that
would define poverty has been an issue of debate for a long time. Quite often a
significant degree of arbitrariness is involved in the construction of a poverty line.
A poverty measure may rank two income distributions differently for two distinct
poverty lines. Therefore, it becomes useful to see if two income distributions can
be ranked unanimously by a given measure for all poverty lines in some reasonable
interval. This establishes the second goal of research on partial poverty orderings
which arises from uncertainty about the poverty line. This notion of ordering of
distributions by a given povertymeasure for a range of poverty lines is called poverty-
lineordering (Zheng1999). Foster andShorrocks (1988a, b) andFoster and Jin (1996)
characterized partial poverty-line orderings for several classes of poverty measures.

All these contributions regard income or consumption expenditures as the sole
indicator ofwell-being. But poverty of a person also arises due to his/her insufficiency
of different other attributes of well-being that are necessary to maintain a subsistence
level of living. The basic needs approach considers development as an improvement
in an array of human needs, not just growth of income. Wellbeing is intrinsically
multidimensional from the capability–functionings perspective, where functionings
refer to the various things a person may value doing (or being) and capability deals
with the freedom to choose a particular set of functionings (Sen 1985, 1992). The
valued functionings may vary from such elementary ones like health status or life
expectancy, literacy, adequate nourishment, the availability of certain public goods
and personal income to very complex activities or personal characteristics such as
participation in the community life and having self-respect. This, in turn, means
that poverty is essentially a multidimensional phenomenon and income is just one
of its dimensions. It is certainly true that with a sufficiently high income, a person
will be able to improve the position of some of his/her nonincome attributes. But
income cannot buy everything. On the one hand, there may not be a market for some
goods—for instance, flood control program in an underdeveloped economy. On the
other hand, even if markets are available, pricesmay be too high for a person to afford
consumption of different attributes above the corresponding thresholds representing
subsistence level. Therefore, poverty should be viewed multidimensionally as the
inability to achieve minimally acceptable or subsistence levels of income as well
as nonincome indicators of welfare. Ravallion (1996) identified four sets of such
indicators as ingredients for a sensible approach to poverty measurement (see also
Bourguignon and Chakravarty 1999, 2003).2

1Spencer and Fisher (1992), Jenkins and Lambert (1997, 1998a, b) and Shorrocks (1998) charac-
terized poverty dominance criteria involving poverty incidence, poverty intensity and inequality
among the poor.
2An example of a multidimensional poverty indicator is the human poverty index suggested by the
UNDP (1997). It aggregates country level deprivations in literacy, life expectancy and decent living
standard.
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While the literature on income poverty is already quite rich, research on
multidimensional poverty measurement has just begun. Tsui (2002), Chakravarty
et al. (1998), Bourguignon and Chakravarty (1999, 2003), Chakravarty (2006) and
Chakravarty and Silber (2007) suggested several functional forms for multidimen-
sional poverty indices. Bourguignon and Chakravarty (2003) also examined the
shapes of isopoverty contours taking into account the idea of substitutability or com-
plementarity between attributes, an important issue for multivariate poverty mea-
sures. However, partial poverty orderings in multidimensional context still remains
an important area to be explored. This paper is a contribution to this area. More
precisely, for given poverty threshold levels of attributes of well-being this paper
provides multidimensional poverty-measure orderings corresponding to a class of
multidimensional poverty measures satisfying a set of intuitively reasonable axioms.

The criteria obtained generalize, in a sensible way, single dimensional poverty-
line orderings. A simple ordering criterion for two distributions defined in a single
dimension is that the proportion of poor is not higher in the first than in the second
distribution for all poverty lines below the actual threshold level. This property does
extend to more than one dimension by considering all combinations of individual
attributes’ poverty lines below actual threshold levels.

Atkinson and Bourguignon (1982) argued explicitly how utility should change
under a correlation increasing switch of attributes between two individuals. Using
this as a postulate and applying theAtkinson–Bourguignon (1982) dominance results
to the comparison of two-dimensional headcount ratios, we show that if the two
attributes are substitutes, then the comparison should be made only in the region
in which individuals lack both the attributes, that is, in the intersection of the sets
in which the attribute quantities remain below the corresponding thresholds. On the
other hand, if they are complements, the comparison should be in the union of the sets.
That is, the definition of who is poor is then shown to depend on whether the various
attributes that define multidimensional poverty may be considered as substitutes or
complements. Interestingly enough, our study of multidimensional poverty ordering
leads to a new view on the definition of multidimensional poverty itself.

It may be important to note that since the poverty limits of different attributes are
given exogenously, the notion of poverty we are considering here is of absolute type
and departs from the relative concept of poverty in which the limits are determined
using consumption levels of those attributes in the whole population-typically the
median or themean. For instance, in the case of income poverty, a familywith income
less the half the median income may be regarded as relatively poor. However, the
concept of absolute poverty is deemed to be more appropriate in a multidimensional
context, even in the income dimension.3

In an interesting contribution, Atkinson (2003) brought out key differences
between our approach and the ‘counting approach’, where the latter concentrates
on the number of dimensions in which people suffer deprivation. He also explained
how the counting approach can be put in an analytical framework like ours. Duclos

3Note than using median definition poverty thresholds become essentially ambiguous in a multidi-
mensional setting. Things are less problematic with the means.
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et al. (2002) considered bivariate poverty orderings under a different set of assump-
tions. They regarded the attributes only as substitutes. Their framework differs from
ours because they assume dependence of the poverty line of one attribute on the other
and viceversa, thus implicitly postulating some substitutability among the various
dimensions of poverty and, in effect, getting closer to a single dimensional approach
combining the two wellbeing attributes.

The present paper is organized as follows.Thenext section discusses the properties
of amultidimensional povertymeasure. Section 3 developsmultidimensional poverty
orderings for classes of poverty measures satisfying some subset of these properties.
A graphical illustration of these orderings and their implications are provided in
Sect. 4 for a simple stylized case. Finally, Sect. 5 concludes.

2 Properties for a Measure of Multidimensional Poverty

In this section, which relies on some of our previous work, we lay down the postu-
lates for a multidimensional poverty index. As Sen (1976) suggested, two steps are
involved in framing a poverty index. The first step is the identification of the poor,
that is, the problem of counting the number of poor persons. Once the poor persons
have been identified, the next step is to aggregate the income deviations of the poor
from the poverty line into an overall device.

Since in this paper we are viewing poverty from a multivariate perspective, the
identification problem will also be of multivariate type. For expositional ease we
assume that there are only two attributes, 1 and 2. They are both supposed to be
continuous. For example, attribute 1 can be the level of literacy or schooling and
attribute 2 can be a composite good constituting all other basic needs of human life.
Our analysis in this section easily generalizes to more than two attributes.

Let R2+ stand for the nonnegative orthant of the 2-dimensional Euclidean space
R2. For a set of n-persons, the ith person possesses a 2-vector (xi1, xi2) = xi ∈ R2+
of attributes. The vector xi is the ith row of the n × 2 matrix X ∈ M n, where M n

is the set of all n × 2 matrices whose entries are nonnegative real numbers. The
jth column xj of X ∈ M n gives the distribution of attribute j (j = 1, 2) among the
n persons. Let M = ∪n∈N M n, where N is the set of all positive integers. For any
X ∈ M , we write n (X ) (or n) for the associated population size.

In thismultivariate structure, a threshold is defined for each attribute. These thresh-
olds represent the minimal quantities of the two attributes necessary for maintaining
a subsistence level of living. Let z = (z1, z2) ∈ Z be the vector of thresholds, where
Z is a nonempty subset of R2++, the strictly positive subset of R2+.

In this framework, person i will be called poor with respect to attribute j if xij < zj

and he/she is called nonpoor if xij ≥ zj for all j. The subset of R2+ corresponding to
the set of persons who are poor with respect to attribute j is denoted by gj, which we
call a single dimensional poverty space, SDPS(zj), where j = 1, 2. Adding together
the numbers of poor in g1 and g2 will clearly overestimate the total number of poor.
This is because people who are poor simultaneously in the two dimensions will
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be counted twice. This subset of R2+ in which each person’s quantities of the two
attributes remain below the corresponding threshold values, i.e. xij < zj, for j = 1, 2,
will be called the two dimensional poverty space, TDPS (z1, z2). Figure 1 illustrates
these concepts.

People in TDPS (z1, z2) are certainly not rich. Hence, being poor along all dimen-
sions might be a definition of multidimensional poverty. But it is also possible that
a person has one attribute, say education, above its threshold; but the other attribute,
the composite good, lies below the corresponding threshold. Such a person may not
be called rich because of his/her high education. If we do not allow trade off between
the two attributes, one of which has its quantities below the threshold and for the
other the quantities are above the threshold, then another, possibly more satisfactory
definition of poverty is that person i is poor if xij < zj holds for at least one j. In fact,
one of our axioms, Focus, rules out this type of trade off. As a practical example
of this, we note that an old beggar cannot be regarded as rich because of his high
longevity.

In terms of the SDPS(zj), the first definition is equivalent to considering all people
in the intersection of the SDPS(z1) and SDPS(z2), which is TDPS (z1, z2), as poor.
With the second definition, poverty is defined by the union of the two SDPS regions.
The next section will show that this distinction becomes crucial when considering
multidimensional poverty orderings.

x2

x1z1

z2
Single Dimensional 
Poverty Space: SDPS(z1)

Two Dimensional Poverty 
Space: TDPS(z1, z2)

Single Dimensional 
Poverty Space: SDPS(z2)

Fig. 1 Alternative definitions of poverty in the two dimensional case
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A multidimensional poverty measure Pn is a nonconstant real-valued function
defined on M n ⊗ Z . For any X ∈ M n, z ∈ Z , the functional value Pn(X ; z)
gives the extent of poverty associated with the attribute matrix X and the threshold
vector z.

Sen (1976) suggested two basic postulates for an income or a consumption poverty
measure. They are: (i) the monotonicity axiom, which demands poverty not to
decrease under a reduction in the income of a poor, and (ii) the transfer axiom,
which requires that poverty should not decrease if there is a transfer of income from
a poor person to anyone who has a higher income. Following Sen, variants of these
two axioms and several other axioms have been suggested in the literature (see,
for example, Foster et al. 1984; Donaldson and Weymark 1986; Chakravarty 1990;
Foster and Shorrocks 1991 and Bourguignon and Fields 1997).

Following Tsui (2002) and Bourguignon and Chakravarty (1999, 2003), we now
suggest some properties for an arbitrary measure Pn which are immediate general-
izations of an income/consumption poverty measure. All properties apply for any
strictly positive n.

Focus (FOC): For any (X ; z) ∈ M n ⊗ Z and for any person i and attribute j such
that xij ≥ zj, an increases in xij, given that all other attribute levels in X remain fixed,
does not changes the poverty value Pn(X ; z).4

Normalization (NOM): For any (X ; z) ∈ M n ⊗ Z if xij ≥ zj for all i and j, then
Pn(X ; z) = 0.
Monotonicity (MON): For any (X ; z) ∈ M n ⊗ Z , any person i and attribute j such
that xij < zj, an increase in xij, given that other attribute levels in X remain fixed,
does not increase the poverty value Pn(X ; z).
Principle of Population (POP): For any (X ; z) ∈ M n ⊗ Z , Pn(X ; z) =
Pnm

[
X (m), z

]
, where X (m) is the m-fold replication of X and m ≥ 2 is arbitrary.

Symmetry (SYM): For any (X ; z) ∈ M n ⊗ Z , Pn(X ; z) = Pn(π X ; z), where π

is any permutation matrix of order n.5

Subgroup Decomposability (SUD): For X i ∈ M ni , i = 1, 2, . . . , k; z ∈ Z ,

Pn(X ; z) = ∑k
i=1

ni
n Pni (X i; z), where X ∈ M is the attribute matrix

⎡

⎢
⎢⎢⎢⎢
⎣

X 1

X 2

X k

⎤

⎥
⎥⎥⎥⎥
⎦

with n

rows and 2 columns and
∑k

i=1 ni = n.
Continuity (CON): For any z ∈ Z, Pn is continuous on M n.
Transfers Principle (TRP): For any z ∈ Z , and X , Y ∈ M n if X P = BY P and BY P

is not a permutation of the rows of Y P , where X P(Y P) is the attribute matrix of the

4One may think of a stronger version of this axiom where the condition xij ≥ zj would apply
simultaneously to all j. See Bourguignon and Chakravarty (2003).
5A square matrix with entries 0 and 1 is called a permutation matrix if each of its rows and columns
sums to one.
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poor corresponding to X (Y ) and B = (bij) is some bistochastic matrix of appropriate
order (bij ≥ 0,

∑
i bij = ∑

j bij = 1), then Pn(X ; z) ≤ Pn(Y ; z).

FOC states that if a person is not poor with respect to an attribute, then giving
him more of this attribute does not change the intensity of poverty, even if he/ she is
poor in the other attribute. Thus, FOC rules out trade off between the two attributes
in an SDPS. In other words, more education above the threshold is of no use if the
composite good is below its threshold. This, however, does not exclude the possibility
of a trade off in TDPS. NOM is a cardinality property of the poverty index. It says
that if all persons in a society are nonpoor in both the dimensions, then the index
value is zero. According toMON, poverty does not increase if the condition of a poor
improves in any dimension. According to POP, if an attribute matrix is replicated
several times, then poverty remains unchanged. Since by replicationwe can transform
two different sized matrices into the same size, POP enables us to make for inter-
temporal and interregional poverty comparisons. SYM demands anonymity. Any
characteristic other than the attributes under consideration, for instance, the names
of the individuals, is immaterial for the measurement of poverty. CON ensures that
minor changes in attribute quantities will not give rise to an abrupt jump in the value
of the poverty index. Therefore, a continuous poverty index will not be oversensitive
to minor observational errors on basic need quantities.

According to SUD, if a population is partitioned into several subgroups, say k,
defined along ethnic, geographical or other lines, then the overall poverty is the
population share weighted average of subgroup poverty levels. The contribution of
subgroup i to overall poverty is niP(X i; z)/n and overall povertywill exactly decrease
by this amount if poverty in subgroup i is eliminated. Thus, SUD is quite appealing
from a policy point of view in the sense that it enables us to identify the subgroups
that contribute most to overall poverty and hence to implement effective antipoverty
policies. Using SUD we can write the poverty index as

Pn (X ; z) = 1

n

n∑

i=1

P1(xi; z) = 1

n

n∑

i=1

p (xi; z).

Since p (xi; z) depends only on person i′s attributes, we call it ‘individual poverty
function’. Finally, TRP shows that if we transform the attribute matrix Y P of the
poor in Y to the corresponding matrix X P in X by some equalizing operation, then
poverty in X will not be higher than that poverty in Y. Under SUD, TRP holds if and
only if the individual poverty function is convex (Kolm 1977).

Let us now consider a property which takes care of the essence of multidimen-
sional measurement through correlation between attributes. By taking into account
the association of attributes, as captured by the degree of correlation between them,
this property also brings out the distinguishing features between single and multidi-
mensional poverty measurements. To illustrate the property, consider the two-person
two-attribute case in Fig. 2. Suppose that x11 > x21 and x12 < x22. Now consider a
switch of attribute 2 between the two persons. This switch increases the correlation
between the attributes because person 1 who had more of attribute 1 has now more
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x2

x1z1

z2

x22

x12

x21 x11

A1

A2

A'2

A'1

Fig. 2 Correlation increasing switch: (A1,A2) → (
A′
1,A

′
2

)

of attribute 2 too. Now, suppose that attributes 1 and 2 are substitutes, or, in other
words, that one attribute may compensate for the lack of another in the definition of
individual poverty. Then, increasing the correlation between the two attributes must
not decrease poverty. Indeed, the switch just defined does not modify the marginal
distribution of each attribute but decreases the extent towhich the lack of one attribute
may be compensated by the availability of the other. A parallel argument will estab-
lish that poverty should not increase under a correlation increasing switch if the two
attributes are complements.6

We state this principle formally for substitutes as:
Nondecreasing Poverty Under Correlation Increasing Switch (NDP): For any
(X , z) ∈ M n ⊗ Z , if Y ∈ M n is obtained from X by a correlation increasing
switch of an attribute between two persons who are poor in both attributes, then
Pn(X ; z) ≤ Pn(Y ; z) if the two attributes are substitutes.

The analogous property which demands poverty not to increase under such a
switch when the attributes are complements is denoted by NIP. Note that NDP and
NIP hold in TDPS only and the implicit trade off never allows a person to cross the
poverty limit of an attribute.

It may be worthwhile to give an example of a measure that satisfies all the above
postulates. The following general form of a multidimensional poverty index which

6For further discussions on this issue, see Atkinson and Bourguignon (1982) and Bourguignon and
Chakravarty (1999, 2003). Bourguignon and Chakravarty (1999) employed this property to examine
the elasticity of substitution between proportional shortfalls of attributes from respective thresholds.
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meets these properties has been suggested by Bourguignon and Chakravarty (1999):

Pn
α,β,b (X ; z) = 1

n

∑

i

[

I (xi1 < z1)

(
1 − xi1

z1

)
+ b

β

α I (xi2 < z2)

(
1 − xi2

z2

)β
] β

α

,

(1)

where α ≥ 1, β ≥ 1 and b > 0, and I() is an indicator function that takes on
the value one or zero according as xij < zj or xij ≥ zj. The condition α ≥ 1
ensure that TRP is satisfied in an SDPS. Given α ≥ 1, β ≥ 1 guarantees that
TRP holds in TDPS (z1, z2). An increase in the value of β makes the contours of
the individual poverty function more convex to the origin. Since in (1) the shortfalls
(z1−xi1) and (z2−xi2) have been expressed in relative terms (as fractions of z1 and z2
respectively), the index satisfies a scale invariance condition—when all quantities
of an attribute as well as its thresholds are multiplied by a positive scalar, poverty
remains unchanged. The elasticity of substitution between the two relative shortfalls
(1 − xi1/z1) and (1 − xi2/z2) is 1

(β −1) . The parameter b (> 0) shows the importance
attached to poverty associated with attribute 2 relative to that attached to attribute 1.

The poverty index (1) is identical to the familiar Foster–Greer–Thorbecke (FGT),
or “Pα”, index in the two SDPSs. In that sense, it is a straight generalization of that
single dimensional povertymeasure to the two dimensional case, with β representing
the substitutability between the two dimensions in TDPS(z1, z2). For 1 ≤ β ≤ α,
the two attributes are substitutes and the measure (1) satisfiesNDP. For β = 1, there
is a perfectly elastic trade off between the attributes in TDPS(z1, z2). For β > α, the
measure satisfies NIP since the two attributes are then complements.7 As β → ∞,
the resulting index becomes

Pn
α, ∞(X ; z) = 1

n

∑

i

[
1 − min

(
1,

xi1

z1
,

xi2

z2

)]α

. (2)

In this case, the isopoverty contours are of rectangular shape—the two attributes
are perfect complements. Note that the index in (2) requires information only on
relative shortfalls of different persons and a poverty aversion parameter.

An alternative of interest arises from the specification

Pn(X ; z) =
2∑

j=1

n∑

i=1

fj

(
xij

zj

)
, (3)

where the real-valued function fj defined on [0, ∞) is nonincreasing, convex and
fj(t) = 0 for all t ≥ 1. As an illustration, we may choose fj(t) = −αj log t, where
α j > 0 is a constant and t ∈ (0, 1]. We may interpret α j as the weight given to

7Under SUD, attributes are substitutes or complements depending on whether the cross derivative
of the individual poverty function p (x1, x2; z1, z2) with respect to x1 and x2 is positive or negative.
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attribute j in the overall poverty index. Then the resulting index is

Pn (x; z) =
2∑

j=1

n∑

i=1

αj log

(
zj

x̂ij

)
, (4)

where x̂ij = min(xij, zj) > 0. This is a simple multidimensional extension of the
well-known Watts index.8 Note that because of additivity the index in (3) [hence in
(4)] is not sensitive to correlation increasing switch.

3 Multidimensional Poverty Orderings

The concern of this section is the ranking of attribute matrices by a chosen set of
poverty measures assuming that the threshold limits are common. It is assumed at
the outset that the poverty index satisfies the following set (S) of properties among
the ones listed above: FOC, SYM, POP, SUD and twice differentiability. The last
property replaces CON. Also, the exposition will be simplified by consideration
of a continuous representation of the bivariate distribution, rather than the discrete
formulation used until now. The analysis that follows relies on stochastic dominance
results originally established by Hadar and Russel (1974) and Levy and Paroush
(1974), and extended to multidimensional inequality by Atkinson and Bourguignon
(1982). 9

As this section is formulated in terms of a continuum of population, the suffix i in
the vector xi is dropped, and the distribution of attributes x = (x1, x2) in the population
is represented by the cumulative distribution function H (x1, x2), defined on the
[0, a1] × [0, a2] range. The objective is to compare two distributions represented
by the distribution functions H and H ∗, the difference of which will be denoted by
�H (x1, x2) (= H (x1, x2) − H ∗(x1, x2)).

In view of the SUD property, poverty associated to distribution H, may be written
as:

P (H , z) =
a1∫

0

a2∫

0

p (x1, x2; z1, z2) dH ,

wherep (x1, x2; z1, z2) is the level of poverty associatedwith a personwhose attributes
are (x1, x2). To simplify notation, the individual poverty functions p(x1, x2; z1, z2)

8A characterization of this index was developed by Chakravarty and Silber (2007).
9Kosvevoy (1998) demonstrated equivalence between cone Lorenz majorization and cone direc-
tional majorization, where a distribution is said to be cone directional majorized by another if at
any set of prices in a cone the expenditure distribution in the former is less dispersed than that in the
latter (see also Koshevoy 1995 and Koshevoy and Mosler 1996). This is equivalent to using linear
poverty functions. In contrast, we use all possible functions satisfying the desirable axioms.
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will be written as πz(x1, x2) in what follows. The difference in poverty between
distributions H and H ∗ is then defined as:

� P(z) =
a2∫

0

a2∫

0

πz(x1, x2) d�H . (5)

The distribution H is then said to (weakly) dominate H ∗ in the sense of Pc

when � P(z) is (nonpositive) negative for all individual poverty functions πz(x1, x2)
belonging to the class Pc.

Note that FOC, NOM, and MON imply the following properties (T) for the
function πz(x1, x2):

πz(x1, x2) = 0 for x1 ≥ z1 and x2 ≥ z2;
πz1(x1, x2) ≤ 0 and πz2(x1, x2) ≤ 0 for x1 < z1 and x2 < z2;
πz12(x1, x2) = 0 for x1 ≥ z1 or x2 ≥ z2;

where πzi(x1, x2) is the derivative of πz(x1, x2) with respect to xi and πz12(x1, x2) is
the second cross derivative. As stated in footnote 7, NDP requires πz12(x1, x2) ≥ 0
in the TDPS (z1, z2), whereas NIP requires πz12(x1, x2) ≤ 0.

Following the discussion on the importance of the NIP/NDP properties in the
preceding section, three classes of poverty indiceswill be considered inwhat follows:

Class P+: Properties (S), MON and NDP,
Class P−: Properties (S), MON and NIP,
Class P0: Properties (S),MON and πz12(x1, x2) = 0 in TDPS,

Clearly, P0, which corresponds to additive individual poverty function, may be
considered as an intermediate case between classes P+ and P−.

Following the stochastic dominance literature, integrating (5) by parts and taking
into account properties (T) above, we get the following decomposition formula—see
Appendix:

�P(H , H ∗, z) = −
z1∫

0

πz1(x1, z2)�H1(x1)dx1 −
z2∫

0

πz2(x1, z2)�H2(x2)dx2

+
z1∫

0

z2∫

0

πz12(x1, x2)�H (x1, x2)dx1dx2, (6)

where � H1(x1) stands for the difference in the marginal distribution of attribute 1,
i.e., � H (x1, a2) and � H2(x2) is the analogous notation for attribute 2.

On the basis of (6), the following proposition follows—see Appendix for proof.
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Proposition 1
Let H and H ∗ be two bivariate distribution functions on the same range [0, a1] ×
[0, a2]. Then the following conditions are equivalent:

(i) � P (H , H ∗, z) ≤ 0 for all poverty indices belonging to P+.
(ii) (a) � Hi(xi) ≤ 0 for all xi < zi and for i = 1, 2; (b) � H (x1, x2) ≤ 0 for all

x1 < z1 and x2 < z2.

In other words, poverty dominance under properties (S),MON andNDP requires:
(a) the poverty headcount to be lower in each dimension for all poverty thresholds
below the thresholds zi, that is, one dimensional dominance in the sense of Atkinson
(1987) and Foster and Shorrocks (1988a, b), the poverty headcount to be lower in the
TDPS (x1, x2) defined by any combination of poverty lines below the thresholds zi.
Overall dominance thus requires single dimensional dominance in each dimension
plus two-dimensional dominance over the set of personswho are poor simultaneously
in all dimensions.

It is also shown in the Appendix that:

� P(H , H ∗, z) = −
z1∫

0

πz1(x1, 0)�H1(x1)dx1

−
z2∫

0

πz2(0, x1)�H2(x2)dx2

+
z1∫

0

z2∫

0

πz12(x1, x2)[�H (x1, x2) − �H1(x1) − �H2(x2)]dx1dx2.

(7)

The decomposition formula (7) leads to a slightly different proposition—see
Appendix for proof.

Proposition 2
Let H and H ∗ be two bivariate distribution functions on the same range [0, a1] ×
[0, a2]. Then the following conditions are equivalent:

(i) � P (H , H ∗, z) ≤ 0 for all poverty indices belonging to P−.
(ii) � H1(x1) + � H2(x2) − � H (x1, x2) ≤ 0 for all x1 < z1 and/or x2 < z2.

Note that condition (ii) implies single dimensional poverty dominance, as in
Proposition 1 (ii.a), when the condition is evaluated at x1 = 0 or x2 = 0. Domi-
nance in two dimensions thus requires single dimensional dominance, irrespective
of whether NDP or NIP holds. The two-dimensional dominance condition for NIP
differs from the one obtained under NDP. In the NIP case, dominance requires
the poverty headcount not to be higher in the union, rather than in the intersection
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of SDPS defined by all possible combinations of poverty lines below the original
thresholds.

The difference between the two dominance criteria obtained under NDP and NIP
is illustrated in Fig. 3. Consider any point A in the original TDPS (z1, z2). NDP
dominance requires the poverty headcount corresponding to the area (II) South-West
of A not to be greater with distribution H. Clearly, (II) is the TDPS corresponding to
A, that is, corresponding to poverty lines x1 and x2. This region may thus be denoted
by TDPS (x1, x2). Thus, with NDP, the poverty headcount must not higher with H
than withH ∗ for all possible TDPS (x1, x2) defined within the original TDPS (z1, z2).
With NIP, the headcount must not be greater in the region consisting of the three
areas (I), (II), and (III). This rectangular region actually corresponds to the union
of SDPS (x1) and SDPS (x2)—I + (II) and (II) + (III). Interestingly enough, NDP
thus appears to be associated with the TDPS definition of poverty, whereas NIP is
associated with a definition of poverty based on the union on SDPS.

The intuition behind the preceding proposition is as follows. Consider the two
alternative definitions of poverty shown in Fig. 1 and an increasing correlation switch
as in Fig. 2. Then consider all combinations of poverty lines x1 and x2 below the
original threshold levels z1 and z2. In Fig. 4, these combinations are represented by
a point like B. The NDP property requires that poverty should not be decreasing
with a correlation increasing switch. If the poverty headcount is required not to
decrease for all possible combinations of x1 and x2, then the headcount ratio must be
defined on the area TDPS (x1, x2), which lies South-West of point B. In fact, it can

x2

x1z1

z2

x1

x2
A

(I)(II)

(III)

Fig. 3 Dominance criterion: poverty headcount must not be higher in the TDPS (II) under (NDP)
and not higher in the union of the SDPS (I + II + III) under (NIP)
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(I)(II)

(III)

A1

A2

A'2

A'1

Fig. 4 A correlation increasing switch does not reduce the poverty headcount in the TDPS regions
(II) but does not increase it in the union of the SDPS regions

be seen in Fig. 4 that the correlation increasing switch does not modify the poverty
headcount in TDPS (x1, x2) as long as point B is outside the rectangle A2A′

2A1A′
1

and it necessarily increases it if it lies inside that rectangle. (To see this, consider a
leftward horizontal movement of the point B so that it lies on the left-hand side of
the line A2A′

2. Given that the poverty thresholds are set at (x1, x2), the correlation
increasing switch changes the positions of the persons in the sense that person 2 who
was rich at B becomes poor and the reverse happens for person 1. The switch thus
keeps the headcount index unaltered. The other cases can be proven similarly.) The
opposite occurs when we take the union of SDPS (x1) and SDPS (x2). The headcount
would not change for all B outside the rectangle but the headcount in the region (I)
+ (II) + (III) goes down if B is inside the rectangle. The latter result violates the
NDP property, but fulfills NIP.

Coming back to the issue of the definition of two-dimensional poverty discussed
earlier, the preceding propositions would seem to imply that overall poverty should
be measured over TDPS (z1, z2) if the two attributes are taken as substitutes and
over the union of SDPS (z1) and SDPS (z2) if they are complements. This would
be pushing the argument too far, however. The distinction between defining poverty
on the TDPS or the union of the two SDPS arises when considering dominance
conditions of one distribution over another. Consideration of headcount ratios in the
union or the intersection of areas SDPS (x1) and SDPS (x2) arises only within the
basic rectangle [0, z1]×[0, z2]. Outside that rectangle only one dimension of poverty
matters and dominance is taken care of there by the marginal dominance conditions
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on � H1(x1) and � H2(x2), as shown in the preceding propositions. This point is
further strengthened and analyzed by Atkinson (2003).

The relevance of the two one dimensional dominance conditions appears still
more clearly in the limit case where the two attributes are neither complements nor
substitutes. In that case, the second cross derivative of the individual poverty function
πz(x1, x2) is nil, so that the function is additive:

πz (x1, x2) = p(x1, x2; z1, z2) = f1(x1; z1) + f2(x2; z2). (8)

One such example is the poverty gap function, which corresponds to the case
b = 1, α = 1 and β = 1 in Eq. (1).

The following proposition is then proved in the Appendix.

Proposition 3
Let H and H ∗ be two bivariate distribution functions on the same range [0, a1] ×
[0, a2]. Then the following conditions are equivalent:

(i) � P (H , H ∗, z) ≤ 0 for all poverty indices belonging to P0.
(ii) � H1(x1) ≤ 0 for all x1 < z1 and � H2(x2) ≤ 0 for all x2 < z2.

The preceding propositions give a neat interpretation of themultivariate first order
stochastic dominance results when applied to multidimensional poverty ordering. It
is not clear whether second-order stochastic dominance can be employed analo-
gously. The reason behind this is that the second order dominance criterion involves
restrictions on the signs of third and fourth order derivatives of the poverty function.
The interpretation of these restrictions is not obvious in poverty context. However,
if π z(x1, x2) is additive across components, then we have an unambiguous compa-
rability result. Note that under additivity the attributes are treated independently and
our result reduces to single dimensional ordering.

Proposition 4
Let H and H ∗ be two bivariate distributions on the common domain [0, a1] ×
[0, a2]. Then the following conditions are equivalent:

(i) � P (H , H ∗, z) ≤ 0 for all poverty indices belonging to P0 and satisfying TRP.
(ii)

∫ x1
0 � H1(u) du ≤ 0 for all x1 < z1 and

∫ x2
0 � H2(u) du ≤ 0 for all x2 < z2.

Note that this proposition makes use of the transfer principle. Given additivity
of the poverty index P, TRP simply means that f ′′

1 ≥ 0 and f ′′
2 ≥ 0, that is, each

pii ≥ 0. A well-known equivalent condition of the criteria, stated in the second part
of proposition 4, is that poverty gaps must not be higher under distribution H than
under H ∗ for all poverty lines xi below the threshold level zi, where i = 1, 2.
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4 A Numerical Illustration

To illustrate the preceding propositions and see how they can be applied, consider
the very simple example portrayed in Figs. 5, 6, 7 and 8. The two dimensions of
poverty are income and education. The income poverty line is set at $ 35 per month
whereas education poor are those people with less than 6 years of schooling. To
simplify, these two dimensions are further ‘discretized’ into two categories of equal
magnitude: from $0 to $17.5 and from $17.5 to $35 on the one hand, and below
3 years of education and from 3 to 5 on the other hand. Differences in education and
income within these categories are simply ignored, but it would be a simple matter
to generalize this example to a finer grid.

The initial distribution of a population of 12 individuals is represented by squares.
The new distribution is represented by diamonds. Except for one or two cases, dia-
monds are close to squares and should be considered essentially as identical obser-
vations.

The application of the dominance criteria consists of counting the number of
observations in the intersection or union of the SDPS areas at the vertices of the grid
(A1, A2, B1, B2) within the overall poverty rectangle [0, 35] × [0, 6]. The bottom
pair of numbers corresponds to the TDPS headcounts in the initial and in the new
distribution. The top pair corresponds to the headcounts in the union of the SDPS .

Figure 5 depicts the effects of a dominant single shift. The solid arrow shows a
drop in income poverty for one individual in the population. Poverty unambiguously
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Fig. 8 Non-dominant double shift

declines as can be seen from the headcount pairs at A1, A2. Note that all dominance
criteria are satisfied, whether one considers the intersection or the union of the two
SDPS . The same result would be obtained with the dotted arrow and also if the shift
originated above one of the two poverty lines.

Figure 6 shows the effect of a ‘correlation decreasing’ switch. The income of one
individual goes up whereas that of another, more educated goes down. In agreement
with the NDP property, there is dominance at A1 when we consider the TDPS area,
but the dominance criterion is violated at the same point when considering the union
of SDPS criterion. Figure 7 shows the opposite case of a correlation increasing
switch that violates the former dominance condition and satisfies the latter.

Finally, Fig. 8 shows the same type of double andopposite shift but at very different
levels of income, with an individual moving from above to below the income poverty
line. There cannot be dominance in that case since marginal dominance does not
hold in the income dimension. One can check that the pairs of headcounts in the
grid confirm this result. There is an improvement in the bottom pair at A1 and A2,
but there is a worsening at B2. Likewise, there is no change in the top pair except a
worsening at B1.

This simple example is useful in showing how the dominance criteria derived in
this paper can be practically applied. It is indeed a simple matter to extend it to more
complex case, more numerous populations and a finer grid of sub-poverty lines.
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5 Conclusion

In income-based poverty measurement it is assumed that individuals in a society are
distinguished only by income. But in many cases in addition to low income a person
may have insufficient levels of other attributes of well-being e.g., literacy, health
care, etc. Therefore, a genuine measure of poverty should be based on monetary
as well as nonmonetary attributes of well-being. A particular measure of poverty
will completely rank alternative distributions of attributes of well-being. But two
different measures satisfying the same set of postulates may order two distributions
in different directions. Therefore, it seems worthwhile to investigate whether one
distribution can be unambiguously regarded as displaying not more poverty than
another for certain class of poverty indices. This paper may be regarded as a step
toward this direction.

A simple generalization of the existing results for first order income poverty
dominance has been provided. First, two-dimensional dominance of a distribution
over another requires one-dimensional dominance for the marginal distribution of
each attribute. Second, it requires the multidimensional poverty headcount not to be
higher with the first distribution than with the second for all combinations of poverty
lines below the original threshold levels. However, the sets on which the headcount is
evaluated differs depending on whether the two attributes may be taken as substitutes
or complements. This second requirement is irrelevant in the case where the two
attributes are neither complements nor substitutes. In this case, two-dimensional
poverty dominance is simply equivalent to one-dimensional poverty dominance for
each attribute. It may be noted that our results can be generalized to the n-dimensional
case, but for expositional ease we have considered the two-attribute case only.

Appendix

Derivation of formula (6). Integrate by parts the definition of the dominance con-
dition (5) with respect to x2. This yields:

�P
(
H , H ∗, z

) =
a1∫

0

a2∫

0

πz(x1, x2)d�H

=
a1∫

0

⎡

⎣πz(x1, x2)

x2∫

0

d�H (x1, u2)

⎤

⎦

x2=a2

x2=0

−
a1∫

0

a2∫

0

πz2(x1, x2)

⎡

⎣
x2∫

0

d�H (x1, u2)

⎤

⎦dx2. (9)
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After evaluating the first square bracketed term, we get:

�P(H , H ∗, z) =
a1∫

0

πz(x1, a2)d�H (x1, a2)

−
a1∫

0

a2∫

0

πz2(x1, x2)

⎡

⎣
x2∫

0

d�H (x1, u2)

⎤

⎦dx2. (10)

Integrating the first term by parts yields:

a1∫

0

πz(x1, a2)d�H (x1, a2) = [πz(x1, a2)�H1(x1)]
x1=a1
x1=0

−
a1∫

0

πz1(x1, a2)�H1(x1)dx1, (11)

where H1(x1) = H (x1, a2) is the marginal distribution of x1 and we have the sym-
metric notion for x2.

Integration of the second term of (10) by parts with respect to x1 leads to:

a1∫

0

a2∫

0

πz2(x1, x2)

⎡

⎣
x2∫

0

d�H (x1, u2)

⎤

⎦dx2

=
a2∫

0

⎡

⎣πz2(x1, x2)

x1∫

0

x2∫

0

d�H (u1, u2)

⎤

⎦

x1=a1

x1=0

dx2

−
a1∫

0

a2∫

0

πz12(x1, x2)�H (x1, x2)dx1dx2. (12)

Finally putting together (11) and (12), and after evaluating the various functions
at the bounds of integration intervals, we get:

�P (H , H ∗, z) =
a1∫

0

πz1(x1, a2)�H1(x1)

−
a2∫

0

πz2(a1, x2)�H2(x2)
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+
∫ a1

0

∫ a2

0
πz12(x1, x2)�H (x1, x2)dx1dx2. (13)

Let us now take into account the following properties implied by (T):

πzi(x1, x2) = 0 for i = 1, 2, x1 ∈ [z1, a1] and x2 ∈ [z2, a2]
πz12(x1, x2) = 0 for x ∈ [z1, a1] or x2 ∈ [z2, a2].

These conditions are sufficient to replace the bounds a1 and a2 in (13) by the
poverty thresholds z1 and z2. This leads to decomposition (6) of the text:

�P (H , H ∗, z) = −
z1∫

0

πz1(x1, z2)�H1(x1)dx1 −
z2∫

0

πz2(x1, z2)�H2(x2)dx2

+
z1∫

0

z2∫

0

πz12(x1, x2)�H (x1, x2)dx1dx2.

Proof of Proposition 1
The sufficiency part of Proposition 1 is obtained by the following argument. Since
the sign of the first derivatives of πz(x1, x2) is implied by properties T and the sign
of the second cross derivative is implied by NDP, the conditions � H1(x1) ≤ 0 ,
� H2(x2) ≤ 0,� H (x1, x2) ≤ 0 for all (x1, x2) ∈ [0, z1]×[0, z2]make� P(H , H ∗, z)
nonpositive. Necessity is obtained by exhibiting a particular function πz(x1, x2) sat-
isfying properties (S) and NDP and leading to � P(H , H ∗, z) > 0 whenever one of
the three conditions �H1(x1) ≤ 0, �H2(x2) ≤ 0, �H (x1, x2) ≤ 0 is not satisfied on
some subset of [0, z1] × [0, z2]. The proof of this is not given here.10

Derivation of formula (7): Some modification must be made in the preceding
argument. Note first that

πz1(x1, z2) = πz1(x1, 0) +
z2∫

πz12(x1, x2)dx2,

and, symmetrically:

πz2(z1, x2) = πz2(0, x2) +
z1∫

0

πz12(x1, x2)dx1.

Substituting these two expressions into (6) we get (7) of the text:

10See Atkinson and Bourguignon (1982) for a similar proof.
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�P
(
H , H ∗, z

) = −
z1∫

0

πz1(x1, 0)�H1(x1)dx1 −
z2∫

0

πz2(0, x2)�H2(x2)dx2

+
z1∫

0

z2∫

0

πz12(x1, x2)[�H (x1, x2) − �H1(x1) − �H2(x2)]dx1dx2.

Proposition 2 then follows from the same arguments as employed for Proposition
1.

Proposition 3 Whether one chooses decomposition (6) or (7), additivity of the indi-
vidual poverty function implies that πz12(x1, x2) = 0. Then, Proposition 3 follows
from the negative sign of the derivatives of the poverty function with respect to its
arguments.
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The Measurement of Social Exclusion

Satya R. Chakravarty and Conchita D’Ambrosio

Abstract This paper develops an axiomatic approach to the measurement of social
exclusion. At the individual level, social exclusion is viewed in terms of deprivation
of the person concerned with respect to different functionings in the society. At the
aggregate level we treat social exclusion as a function of individual exclusions. The
class of subgroup decomposable social exclusion measures using a set of indepen-
dent axioms is identified. We then look at the problem of ranking exclusion profiles
by the exclusion dominance principle under certain restrictions. Finally, applica-
tions of decomposable and nondecomposable measures suggested in the paper using
European Union and Italian data are also considered.

1 Introduction

The subject of this paper is the measurement of social exclusion. The broad ques-
tions that we try to address in this paper are: (i) When do we say that an individual
is socially excluded? (ii) What is the level of social exclusion in a country? (iii) Can
we say that social exclusion in country A is less than that in country B? (iv) Given
the level of social exclusion in a society, which subgroups of the population, parti-
tioned according to ethnic, geographic, or any other socioeconomic characteristic,
contribute more to aggregate social exclusion? (v) When can we say that one society
dominates another with respect to social exclusion and what are the consequences
of such a dominance relationship?
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Broadly speaking, a person is said to be socially excluded if he is unable to “par-
ticipate in the basic economic and social activities of the society in which he lives.” In
the European Commission’s Programme specification for “targeted socioeconomic
research,” social exclusion is described as “disintegration and fragmentation of social
relations and hence a loss of social cohesion. For individuals in particular groups,
social exclusion represents a progressive process of marginalization leading to eco-
nomic deprivation and various forms of social and cultural disadvantage.”

As Atkinson (1998) said, social exclusion is not just a consequence of unem-
ployment. It is true that an unemployed person may not have income to maintain
a subsistence standard of living and hence becomes socially excluded. But many
employed persons may not be integrated fully in the society they live in. Expan-
sion of employment may increase the income gap between low-paid and high-paid
workers and hence it may not reduce or end social exclusion. Social exclusion may
arise from the operations of the market and supplies of key goods and services.
For instance, people may not be able to participate in the customary consumption
activities because profit maximizing prices may exclude them from the markets. A
person may not be allowed to have an account in a bank if he does not fulfill certain
constraints. It can as well emanate from operations of the State if the State’s social
security benefit programmes are targeted towards some particular groups or persons.

As social exclusion includes economic, social and political aspects of life, it is
a multidimensional phenomenon. Since fundamental to achieving human choices is
building human capabilities, we can also interpret the issue in terms of (i) function-
ings, the various things a person value doing or being and (ii) capability, the ability
to achieve (Sen 1985). The valued functionings may vary from such elementary
ones as adequate nourishment and literacy, to complex activities like participation in
social gatherings and having self-respect. The standard of living in this framework
is determined by the opportunity set of basic capabilities to function. The freedom
of choice, that is, the extent of opportunities available rather than merely the point
chosen becomes an important component of living standard. Now, if social exclusion
is viewed as the inability to meet needs valuable to the individual, then regarding it
as capability failure makes considerable sense. We regard the concept of capability
failure as a notion of deprivation because people feel deprived when they lack such
opportunities.1 Hence social exclusion implies deprivation in a wide range of indi-
cators or functionings of living standards, which can be of quantitative or qualitative
type.2

Social exclusion is related to both inequality andpoverty, but should not be equated
with either of them (Atkinson 1998). According to Sen (1998), social exclusion is
wider than poverty. Multidimensional inequality is a measure of the dispersion of
the multidimensional distribution of quantities of consumption of the functionings
for different individuals (Tsui 1999). Multidimensional poverty measurement, on the
other hand, specifies a poverty threshold for each functioning, looks at the shortfalls

1See Runciman (1966) for a general treatment of deprivation.
2See Atkinson et al. (2002) for a list of functionings that can be used for the measurement of social
exclusion.
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of the functioning quantities of different individuals from the threshold levels, and
aggregates these shortfalls into an overall magnitude of poverty (Bourguignon and
Chakravarty 2003). Thus, both multidimensional poverty and social exclusion deal
with capability failures, while in the former we view it in terms of the shortfalls from
thresholds in a given point in time, in the latter the problem is one of inability to
participate.3 Note further that in the case of both multidimensional inequality and
poverty the functionings have to be of quantitative type, whereas social exclusion
considers qualitative type functionings as well. Social exclusion can be regarded
as a state and as a process leading to deprivation in the form of non-participation.
More explicit differences may be noted. A country with low deprivation (in terms
of non-participation) but high degree of dispersion among attribute quantities and
high levels of shortfalls of meagre attribute sizes from respective thresholds will be
characterized with high inequality and high poverty but low exclusion. Similarly,
there may be situations with high exclusion but low inequality and poverty.

Atkinson (1998) argued further that it is a relative concept, we cannot say whether
a person is socially excluded or not by looking at his position alone. The positions of
the others in the society have to be taken into account for a proper implementation
of any criterion for exclusion. It has, furthermore, a dynamic character because an
individual is socially excluded if his deprivation continues or worsens over time.

Three types of implicit conceptualization of social exclusion is currently available
in the literature. In the first, it is interpreted as the lack of participation in social
institutions (Duffy 1995;RowntreeFoundation 1998;U.K.House ofCommons 1999;
Paugam and Russell 2000); whereas the second regards the problem as the denial or
non-realization of rights of citizenship (Room 1995; Klasen 2002). Finally, the third
views social exclusion in terms of increase in distance among population groups
(Akerlof 1997; Bossert, D’Ambrosio and Peragine (BDP) 2004). Some researchers
attempted to suggest measures of social exclusion building on these approaches (see,
among others, Bradshaw et al. 2000; Tsakloglou and Papadopoulos 2002). However,
the theoretical foundations of these measures are often unclear.

In this paper, we adopt an axiomatic approach to the measurement of social
exclusion. An alternative approach has been proposed by BDP. To the best of our
knowledge, theirs is the only other axiom-based paper. The two contributions exhibit
substantial differences in how different aspects of social exclusion are taken into con-
sideration (see Sect. 2 for details).

Since in order to be socially integrated a person needs to have access to some
social functionings, we first look at the capability failure, that is, the number of
functionings from which the person is excluded over time. This number may be
regarded as the deprivation score of the person under consideration. However, some

3Tsakloglou and Papadopoulos (2002) proposed an index of social exclusion based on the distribu-
tion of an individual welfare indicator. Imposing a threshold, they identified a person at high risk
of deprivation if his indicator falls below the threshold. The dynamic aspect of social exclusion is
included by considering the number of years during which the deprivation takes place. Evidently,
specification of such a threshold involves some degree of arbitrariness. Since our approach does not
rely on a threshold of this type, it has an advantage over that of Tsakloglou and Papadodopoulos
(2002).
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of the functionings may be more important than others. Therefore, a more general
way is to assign an integer weight to each failure depending on the importance of
the functioning and the deprivation score of a person is the sum of these integers.

The social exclusion measure that we propose is a real-valued function of the
deprivation scores of different individuals in the society. In a sense our approach is
similar to the view that considers social exclusion as lack of participation in social
institutions, where lack of participation is treated as capability failures. We first
characterize the family of exclusionmeasures whosemembers satisfy normalization,
monotonicity, subgroup decomposability, and have non-decreasing marginals.

Normalization means that social exclusion is zero if nobody is socially excluded.
Monotonicity requires the measure to increase if the deprivation score of a person
increases. According to subgroup decomposability, for any partitioning of the popu-
lation with respect to some socioeconomic or demographic characteristic, the overall
social exclusion is the population share weighted average of subgroup exclusion lev-
els. This property enables us to calculate a particular subgroup’s contribution to
aggregate exclusion and hence to identify the subgroups that are more afflicted by
exclusion and to implement anti-exclusion policy. Clearly, according to this notion
of policy recommendation, an assessment of overall exclusion becomes contingent
on the implicit valuation of the exclusion measure. However, an exercise of this
type may be useful for two reasons. First, following Sen (1985), the non-welfarist
approach to policy analysis is becoming quite popular. Second, in many situations
policy is evaluated using specific forms of measures. So it seems worthwhile to see
what type of policy would be implied by the use of a specific exclusion measure.

Marginal social exclusion is defined as the change in social exclusion when we
increase the deprivation score of a person by one. Non-decreasingness of marginal
social exclusion ensures that in aggregating individual deprivation scores into an
overall indicator of exclusion, a higher deprivation score does not get a lower weight
than a lower score.

The characterized family of measures is shown to possess some additional inter-
esting properties. It is also shown that the properties employed in the characterization
exercise are independent, that is, none of these properties implies or is implied by
another.

In subgroup decomposability we calculate each subgroup’s exclusion indepen-
dently of exclusions of other subgroups. Thus, one subgroup’s exclusion does not
affect exclusions of other subgroups. We, therefore, have to use weights for different
functionings that do not violate this condition. Hence the weights should be inde-
pendent of the overall population size. However, an alternative assumption, which
appears to be quite realistic, is dependence of weights on the population size (see
Sect. 5 for one such approach). Consequently, it may also be worthwhile to study
non-subgroup decomposable measures. We therefore consider two measures of this
type, the symmetric mean exclusion of order ν > 1 and the Gini exclusion measure,
and use population size dependent weights to calculate them. These measures satisfy
all the axioms except subgroup decomposability.

Next, we consider the problem of ranking two societies by the social exclusion
dominance criterion. We demonstrate that for two societies with a common popu-
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lation size and the same total deprivation score, if one dominates the other by the
exclusion dominance criterion, then the former becomes at least as socially excluded
as the latter by all additive social exclusion measures that satisfy anonymity and
have non-decreasing marginals. This result parallels the if part of the well-known
Atkinson (1970) result on Lorenz Domination which says that if u and v are two
income distributions of a given total over a fixed population size, and if u Lorenz
dominates v, then all symmetric utilitarian social welfare functions regard u at least
as good as v, where the identical individual utility function is concave.

Finally, we apply different measures to the EU member states and to the Italian
regions in the 1990s and consider some policy implications.

The paper is organized as follows. The next section introduces the formal frame-
work for measuring social exclusion and presents the properties for an exclusion
measure. In Sect. 3, we characterize the family of exclusion measures and discuss its
properties. Section 4 deals with social exclusion dominance relation. The application
is contained in Sect. 5. Section 6 concludes.

2 Properties for a Measure of Social Exclusion

Let N (N0) be the set of all positive (nonnegative) integers and R be the set of real
numbers. For all n ∈ N , Dn is the n-fold Cartesian product of N0 and 1n is the n-
coordinated vector of ones. For any society with a population of size n ∈ N , there
is a finite nonempty set of functionings F relevant for social integration. Throughout
this paper, we assume that F is fixed so that cross-population comparisons of social
exclusion can be made in terms of elements of F.4 An individual in an n-person
society can be excluded from any subset ofF, where n ∈ N , is arbitrary. The degree of
exclusion or deprivation of a person can be captured using the number of functionings
from which he is excluded. For each functioning, we define a characteristic function
which takes on the value 1 or 0 according as the person is excluded or not from
the functioning. Since some functionings may be more important than others, the
characteristic function of each functioning is weighted by an integer, where the
integer weights are determined in terms of importance of the functionings.5 The
deprivation score of the person concerned is then given by the sumof integerweighted
characteristic functions. More precisely, let Fi ⊆ F be the set of functionings from
which person i is excluded. Denote the weight attached to attribute j by wj, then xi =∑

j∈Fi
wj. Note that this particular method of calculating deprivation is applicable to

both qualitative and quantitative attributes.
This procedure of calculating the individual deprivation scores is quite similar to

the Basu and Foster (1998) way of determining a household literacy profile. They
assumed that individual literacy is a 0–1 variable and an adult member of a household
is identified by the number 0 or 1 according to whether he is illiterate or literate. The

4See Atkinson et al. (2002) for common elements of F for the EU as a whole.
5See Sect. 5 for one approach to the calculation of weights.
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total number of literates in the household is then simply the sum of the 1’s in the
household. This procedure can also be extended to the situation when literacy is
assumed to be multidimensional.

We assume that the calculation of the deprivation score of person i, xi, involves a
dynamic or longitudinal aspect and depends on the rest of the society.6 If xi is positive,
a trade-off between excluded and non-excluded functionings is not allowed. For
instance, a person’s high income cannot compensate the dissatisfaction associated
with his job.

An exclusion profile in a society of n persons is a vector x = (x1, . . . , xn), where
xi ∈ N0 is the deprivation score of person i. The set of exclusion profiles for an
n-person population is Dn, n ≥ 1. Thus, x ∈ Dn for some xi ∈ N . The set of all
possible exclusion profiles is D = Un∈N Dn.

A measure of social exclusion is a function E : D → R. For any x ∈ N , the
restriction of E on Dn is given by En. For any x ∈ N , x ∈ Dn, En (x) is a measure
of the extent to which different individuals are excluded from the activities taking
place in the society, that is, the degree of exclusion suffered by all individuals in the
society as a whole. For all x ∈ N , x ∈ Dn, let S(x) be the set of persons with
positive deprivation scores, that is S(x) = {i, 1 ≤ i ≤ n|xi > 0 }. For any x ∈ N ,
x ∈ Dn, let q be the cardinality of S(x), that is the number of persons in S(x). For
any x ∈ N , x ∈ Dn, we write x̄ for non increasingly ordered permutation of x, that
is x̄1 ≥ x̄2 ≥ · · · ≥ x̄n.

We assume that an arbitrary exclusion measure E : D → R should satisfy the
following postulates.

Axiom 1: Normalization (NOM). For all n ∈ N , En (0.1n) = 0.
Axiom 2: Monotonicity (MON). For any x ∈ N , x ∈ Dn and for any i, 1 ≤ i ≤ n.

En(x) < En(x1, . . . , xi−1, xi + c, xi+1, . . . , xn),

where c ∈ N .
Axiom 3: Nondecreasingness of Marginal Social Exclusion (NMS). For any x ∈ N ,
x ∈ Dn, and for any i, j, 1 ≤ i, j ≤ n, if xi ≥ xj then:

En
(
x1, . . . , xt−1, xi + 1, xi+1, . . . , xj−1, xj, xj+1, . . . , xn

) − En(x) ≥
En

(
x1, . . . , xi, xi+1, . . . , xj−1, xj + 1, xj+1, . . . , xn

) − En(x).

Axiom 4: Subgroup Decomposability (SUD). For any xi ∈ Dn, i = 1, . . . , k, En(x) =∑k
i=1

ni
n E

n(x′), where x = (x1, x2, . . . , xk).
Axiom 5: Anonymity (ANY). For all x ∈ N , x ∈ Dn, En(x) = En(x.P), where P is
any n × n permutation matrix.7

6See Sect. 5 for one example of the inclusion of dynamic considerations.
7An n × n matrix is a permutation matrix if each of its entries is either zero or one, and each of its
rows and columns sums to one.
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Normalization is a miniminality principle. It says that if nobody is excluded from
any functioning in the society, then the value of the social exclusion measure is
zero. NOM has a relative flavor because it is based on an identical position of all
persons in the society.Monotonicity says that if the deprivation score of an individual
increases, then social exclusion should increase. This axiom has a flavor similar to
Sen’s (1976) monotonicity axiom, which requires poverty to increase if the income
deprivation of a poor person goes up (see Bourguignon and Chakravarty 2003, for
a multidimensional analogue to Sen’s axiom). Now, in terms of capability failure
curtailment of freedom of choice or opportunity of some persons can certainly make
them worse off given that the positions of all other persons remain unaffected. For
instance, the lack of proper medical care for some persons and for all persons are
possibly two situations of exclusion, the latter beingmore severe than the former (see
Sen 1985; Xu 2002). The axiom MON tries to capture this idea. Evidently, social
exclusion is a multifaceted phenomenon and we try to look at the problem as one
of capability failure. But there can also be other views concerning its measurement
and in such cases MONmay not be a relevant postulate (see, for example, BDP). If a
social exclusion measure satisfies NOM and MON, then it will take a positive value
if at least one individual has a positive deprivation score.

Sen (1976) argued that in income poverty measurement the poverty line can be
taken as the reference point for all poor persons and the poverty gap of a poor person,
his income shortfall from the poverty line, is a measure of deprivation suffered by
him. In order to attach higher weight to higher deprivation, Sen assumed that the
weight on individual i’s poverty gap is equal to his rank in the income distribution
of the poor. This guarantees that an increase in poverty due to a reduction in the
income (increase in deprivation) of the poor will be higher the lower (higher) is the
income (deprivation) of the poor. Conversely, in order that an increase in poverty due
to reduction in the income of the poor is higher the lower the income of the poor is,
a necessary condition is to attach higher weight lower down the income scale. Our
NMS postulate has a similar spirit. We consider two persons where the deprivation
score of the first is not lower than that of the second. Then the change in social
exclusion, if the deprivation score of the former increases by one, is at least as large
as the corresponding change when the deprivation score of the latter increases by the
same amount. Since NMS affects deprivations of two persons directly, it also reflects
that social exclusion is a relative phenomenon.

SUD, which expresses aggregate exclusion in a society as a weighted average
of subgroup exclusion levels, where the weights are population shares of the sub-
groups, is very important from policy point of view. ni

n E
ni (xi) is the contribution of

subgroup i to total exclusion, i.e. the amount by which social exclusion will decrease

if exclusion in subgroup i is eliminated.
(
niEni(xi)
nEn(x)

)
100 is the percentage contribu-

tion of subgroup i to total exclusion. Each of these figures is useful to planners and
analysts to formulate anti-exclusion policies. It may be important to note that if x′

is
are dependent on the population size, SUD may be violated. Finally, ANY means
that the exclusion measure is symmetric, i.e. any reordering of the deprivation scores
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leaves the exclusion level unchanged. ANY is unavoidable as long as the individuals
are not distinguished by anything other than deprivation scores.

An interesting implication of SUD and ANY is the principle of population, which
requires social exclusion to remain unaltered under any m (≥ 2)-fold replication of
population (see Chakravarty and Majumder 2006). This principle allows us to make
cross-population comparisons of social exclusion.

Since to the best of our knowledge, the only other axiom-based paper in this area is
by BDP, it seems worthwhile to compare our approach with the alternative approach
of BDPwho argued that social exclusion can be interpreted as persistence in the state
of deprivation. At the outset BDP characterized measures of individual deprivation,
which have been sequentially transformed into measures of social exclusion. While
in the present paper it is assumed that minimal level of social exclusion is achieved
when nobody is excluded fromany functioning, in theBDP frameworkminimal value
of individual deprivation is reached if everybody has the same number of capability
failures, however small or large it may be. Further, their measures are homogeneous
of degree one and satisfy translation invariance, where translation invariance of a
measure requires it to remain unchanged under equal absolute changes in all failures.
Two “proportionality properties” defined in terms of replications of the population, a
conditional “anonymity” principle, which is different from ours, and a “focus axiom”
which says that a person’s deprivation depends on his capability failures and on those
of individuals who have fewer failures, have also been used in the characterization
exercise. Their measures of social exclusion are not subgroup decomposable. In view
of this discussion, it is clear that the two approaches are quite different.

3 The Family of Subgroup Decomposable Social Exclusion
Measures

In this section we derive the class of social exclusion measures whose members
satisfy NOM, MON, NMS, in addition to SUD. Let � be the class of all functions
f : N0 → R such that f (0) = 0, f is increasing, and f has a non-decreasingmarginal,
that is:

f (xi + 1) − f (xi) ≥ f
(
xj + 1

) − f
(
xj

)
, (1)

where xi ≥ xj.
For Theorems 1 and 2 of this section we assume that the weights attached to

different functionings are independent of the population size.
We then have:

Theorem 1 A social exclusion measure E: D → R satisfies NOM, MON, NMS, and
SUD if and only if for all n ∈ N , x ∈ Dn,
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En (x) = 1

n

∑

i∈S(x)

f (xi), (2)

where f is a member of �.

Proof Let n ∈ N and x ∈ Dn be arbitrary. Then by repeated applications of SUD:

En (x) = 1

n

n∑

i=1

E1(xi). (3)

We can rewrite En in (3) as:

En (x) = 1

n

n∑

i=1

f (xi), (4)

where f = E1. Clearly, f : N0 → R. MON demands increasingness of f. Now,
suppose xi ≥ xj. The inequality:

En
(
x1, . . . , xt−1, xi, xi + 1, xi+1, . . . , xj−1, xj, xj+1, . . . , xn

) − En(x) ≥
En

(
x1, . . . , xt−1, xi, xi+1, . . . , xj−1, xj + 1, xj+1, . . . , xn

) − En(x).
,

on simplification, reduce to:

f (xi + 1) − f (xi) ≥ f
(
xj + 1

) − f
(
xj

)
,

which is nondecreasingness of marginal of f. Clearly, if xi = 0 for all i, then NOM
requires that f (0) = 0.

Obviously, f (0) = 0 enables us to rewrite 1
n

∑n
i=1 f (xi) as

1
n

∑
i ∈ S(xi)

f (xi). This
establishes the necessity part of the theorem on Dn for a given n ∈ N .

The sufficiency is easy to verify. Since n ∈ N was chosen arbitrarily, our result
holds for all n ∈ N . �

Note that the general measure in (2) satisfies ANY although we did not use
this property in its derivation. We can interpret f in (2) as the individual exclusion
function. An alternative way of writing the formula (2) is:

En (x) = H

q

∑

i∈S(x)

f (xi), (5)

whereH = q
n is the head-countmeasure of social exclusion, the proportion of persons

that is socially excluded in the population. For a fixed n, on social exclusion profiles
with a given q,H is a constant function. ThusH is violator ofMON although it meets
NOM, SUD, ANY, and NMS.
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The head-count measure of social exclusion is quite analogous to the multidimen-
sional poverty head-count ratio. Multidimensional poverty measurement considers
for each person a poverty indicator variable that takes on the value of 1 if his con-
sumption of some attribute(s) falls below the corresponding threshold(s). Otherwise
the indicator variable assumes the value zero. The total number of multidimensional
poor is then given by the sum of indicator variables across persons (see Bourguignon
and Chakravarty 2003).

In order to illustrate the general formula in (2), let f ∈ � be of the form f (t) =
tδ, δ ≥ 1. Then the corresponding measure is:

En
δ (x) = H

q

∑

i∈S(x)

xδ
i . (6)

For any δ ≥ 1,En
δ satisfies all the postulates. For 0 < δ < 1,En

δ is a violator of
NMS but not of others. As δ → 0,En

δ → H . The single parameter in (6) is a value
judgement parameter. En

δ becomes more sensitive to the higher deprivation scores as
δ increases from 1 to plus infinity. For a given x ∈ Dn, an increase in the value of
δ does not decrease En

δ . For δ = 1, En
δ becomes the average deprivation score of the

society, that is, A = 1
n

∑
i∈S(x) xi. For δ = 2, we can rewrite En

δ as:

En
δ (x) = σ 2(x) + A2(x), (7)

where σ 2 is the variance of the society deprivation scores. Given A, a reduction in σ 2

reduces the measure in (7). Such a situation may arise if a higher deprivation score
decreases and a lower deprivation score increases by the same amount. Over social
exclusion profiles with the same population size and the same average deprivation
score, the ranking of the profiles generated by En

δ (for δ = 2) is the same as that
generated by σ 2.

An alternative of interest arises from the specification f (t) = eα x − 1, where
α > 0. The resulting measure is:

En
α(x) = H

q

∑

i∈S(x)

(
eαxi − 1

)
. (8)

For a given x ∈ Dn,En
a is nondecreasing in α. En

α satisfies all the properties for
all positive α. As α increases, the underlying evaluation attaches more weight to the
higher deprivation scores.

We will now show that the postulates NOM, MON, NMS, and SUD are indepen-
dent. Independencemeans that none of the postulates implies or is implied by another,
that is, none of them is redundant. It is thus a minimal condition. Therefore, if one
of the postulates is dropped, there will be measures that will satisfy the remaining
postulates but not the dropped one.

Theorem 2 The properties NOM, MON, NMS, and SUD are independent.
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Proof

(a) Evidently the measure
�

E
n
(x) = 1

n

∑
i∈S(s) e

xi is not normalized, but it will fulfil
the other properties.

(b) Since the measure
�

E
n
(x) = − 1

n

∑
i∈S(s)

xi
1+xi

is decreasing in xi, it is a violator
of MON, but not of the remaining postulates.

(c) The measure Ẽn(x) = 1
n

∑
i∈S(s) x

θ
i , 0 < θ < 1, has a decreasing marginal and

hence it fails to satisfy NMS, but it verifies the other properties.

(d) Since the measures Ēn(x) = (
1
n

∑
i ∈ S (s) x

ν
i

) 1
ν , ν > 1, and Ên(x) =

1
n

∑
i∈S(s) x̄i(2(n − i) + 1)) are not additive across components, they are not

subgroup decomposable. However, they are normalized, monotonic, and have
increasing marginals. �

The measure Ēn(x) is the symmetric mean exclusion of order ν(> 1). We can
refer to Ên(x) as the Gini exclusion measure since it involves a Gini type averaging.8

One of our main objectives is certainly to calculate the additive measures, which
demandweights to be independent of the overall population size. Alternatively, when
dependence of weights on the population size is preferred, the two measures, Ēn(x)
and Ên(x), which satisfy all properties except SUD, could be used. In the empirical
applications we will, therefore, show results for En

δ (x) in (6), Ē
n(x), and Ên(x).

It is clear that for every individual exclusion function f ∈ �, there corresponds a
different social exclusionmeasure of the form (2). Theywill differ only in themanner
how a person’s individual exclusion is specified as a function of his deprivation
score. However, there is no guarantee that these social exclusion measures will rank
exclusion profiles in the same way. We consider the problem of ranking exclusion
profiles in the next section.

4 The Social Exclusion Dominance Relation

We begin this section by defining the social exclusion dominance criterion and look
at its implications for exclusion profiles with a fixed total over a given population
size.

For x, y ∈ Dn, we say that x dominates y by the social exclusion relation, which
we write x ≥SE y, if:

k∑

j=1

x̄j ≥
k∑

j=1

ȳj (9)

for all k = 1, 2, . . . , n.

8Strictly speaking, when incomes are arranged in non-increasing order, the Gini index of inequality
can be written as a linear function with weights being the odd natural numbers in increasing order.
Since the averaging in Ên is quite similar in nature, we call it the Gini social exclusion measure.
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Given that the exclusion profiles x̄ and ȳ are ranked in nonincreasing order of capa-
bility failures of the individuals, x ≥SE y demands that the cumulative deprivation
score of the first k persons in x̄ is at least as large as that in ȳ, where k = 1, 2, . . . , n.

In order to study implications of the relation x ≥SE in terms of exclusionmeasures,
we now have the following:

Definition 1 For any x ∈ Dn we say that ȳ is obtained from x̄ by a favorable com-
posite change (FCC) if:

ȳi = x̄i − 1

ȳj = x̄j + 1

ȳk = x̄k for all k �= i, j, (10)

where x̄i > x̄j.

In FCC the degree of exclusion of a more deprived person (i) is reduced by 1,
whereas that of a less deprived person (j) is increased by 1, so that the total scores
in the two profiles are the same. However, the variance of the new profile (ȳ) is less
than that of the original one (x̄). Note that the rank preserving transformation in
(10) does not alter the relative positions of the affected individuals and it reduces the
deprivation score of the worse off person (i). This is the reason why we call it an
FCC.

Marshall and Olkin (1979) defined a special kind of linear transformation, called
a T-transformation, of a vector that leaves all but two components of the vec-
tor unchanged, and replaces these two components by averages. An FCC is a T-
transformation, which is used extensively for studying dominance conditions, since:

ȳi = λx̄i + (1 − λ)x̄j
ȳj = (1 − λ)x̄i + λx̄j
ȳk = x̄k for all k �= i, j, (11)

where λ = (x̄i−x̄j−1)
(x̄i−x̄j)

.
The following theorem gives an interesting consequence of the relation ≥SE

for additive exclusion measures that satisfy anonymity and have non decreasing
marginals.

Theorem 3 Let x, y ∈ Dn, where
∑n

l=1 xl = ∑n
l=1 yl . Then x ≥SE y implies that∑n

l=1 h(xl) ≥ ∑n
l=1 h(yl) for all individual exclusion measures h : N0 → R whose

marginals are nondecreasing.

Proof Muirhead (1903) showed that given x, y ∈ Dn along with
∑n

l=1 xl = ∑n
l=1 yl ,

if x ≥SE y holds, then ȳ can be derived from x̄ by successive applications of a finite
number of FCCs. Assume, without loss of generality, that only one FCC affecting
individuals i and j, where x̄i > x̄j, takes us from x̄ to ȳ.

Given x̄i > x̄j, let θ = x̄i − x̄j − 1. Note that θ ∈ N0. Since the marginal of the
individual exclusion function h is nondecreasing, we have:
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h
(
x̄j + 1

) − h
(
x̄j

) ≤ h
(
x̄j + θ + 1

) − h
(
x̄j + θ

)
, (12)

which we can rewrite as

h
(
x̄j + 1

) − h
(
x̄j

) ≤ h(x̄i) − h(x̄i − 1). (13)

Inequality (13) on rearrangement gives:

h(x̄j + 1) + h(x̄i − 1) ≤ h(x̄i) + h(x̄j). (14)

Substituting the value of x̄j + 1 and x̄i − 1 in (14), we get

h
(
ȳj

) + h(ȳi) ≤ h(x̄i) + h
(
x̄j

)
. (15)

Inequality (15) along with the information that ȳk = x̄k for all k �= i, j gives us:

n∑

l=1

h(ȳl) ≤
n∑

l=1

h(x̄l), (16)

Since the social exclusion measure�h(·) satisfies anonymity, we can rewrite (16)
as

n∑

l=1

h(yl) ≤
n∑

l=1

h(xl), (17)

which is the desired result. �

Theorem 3 is very valuable. It shows how an FCC becomes helpful in ranking
two exclusion profiles. It also provides a justification for using NMS as a postulate
for a social exclusion measure.

In an FCC the deprivation scores of the two affected persons change in opposite
directions. But often unidirectional changes in the scores of the two or more persons
may take place. The following result, whose proof can be found in Fulkerson and
Ryser (1962), states that under certain conditions the relation x ≥SE y, where the
total scores in x and y are the same, is preserved.

Theorem 4 Let x, y ∈ Dn, where
∑n

l=1 xl = ∑n
l=1 yl be arbitrary. Then x ≥SE y

implies that (x̄ − ej) ≥SE (ȳ − ei), where i ≤ j and ek is the n-coordinated vector
with 1 in the kth position and zeros elsewhere.

The intuitive appeal of Theorem 4 is quite clear. Given that x dominates y if we
reduce the degree of exclusion of one person in x̄ and one person in ȳ, where the latter
is relatively worse off than the former, the exclusion dominance remains preserved.

The following result, whose formal proof can be found in Fulkerson and Ryser
(1962), is a generalization of Theorem 4.
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Theorem 5 Let x, y ∈ Dn, where
∑n

l=1 xl = ∑n
l=1 yl be arbitrary. Let u be obtained

from x̄ be reducing deprivation scores of persons in position i1, i2, . . . , ik by 1.
Similarly, suppose v is obtained from ȳ by reducing deprivation scores of persons in
positions j1, j2, . . . , jk . If i1 ≤ j1, i2 ≤ j2, . . . , ik ≤ jk and x ≤SE y, then u ≤SE v.

5 An Empirical Illustration

The purpose of this section is to illustrate the social exclusion measures proposed
in this paper, namely: Eδ in (6), Ē, the symmetric mean exclusion of order ν, and
Ê, the Gini exclusion measure using the European Community Household Panel
(ECHP) data.9 Note that the 14 non-monetary indicators defined below are based
on subjective evaluations. Therefore, any definitional change or a change in the
composition of a group will affect the analysis. Since this section can be regarded
as an example of application of our indices, we take for granted the variables that
Eurostat (2000) deemed appropriate to measure social exclusion. Since Ē and Ê
are calculated to illustrate non-subgroup decomposability, we calculate them using
population size dependent weights for different functionings. We base our analysis
on the first six waves of ECHP, which cover the period from 1994 to 1999. The
surveys are conducted nationally. The ECHP is an ambitious effort at collecting
information on the living standards of the households of the EU member-states
using common definitions, information collection methods and editing procedures.
It contains detailed information on incomes, socio-economic characteristics, housing
amenities, consumer durables, social relations, employment conditions, health status,
subjective evaluation of well-being, etc. Of the 15 EU member-states, we could not
considerAustria, Finland,Luxembourg, andSweden since the data for these countries
were not available for all the waves. For similar reasons we had to exclude Germany
and the U.K. In particular, the ECHP surveys of these countries were substituted by
national surveys, SOEP and BHPS respectively, that did not collect information on
all the variables considered in our application.

Information were collected at the individual or the household level depending
on the variable, but the unit of our analysis is the individual. The calculation uses
required sample weights. In ECHP a person’s quality of life has beenmeasured along
the following domains: financial difficulties, basic needs and consumption, housing
conditions, durables, health, social contacts and participation, and life satisfaction.
The 14 non-monetary indicators10 suggested by Eurostat (2000) as best candidates to
meet the following requirements are included in the analysis: (1) reflecting a negative

9Since our illustration involves cross-population comparisons, we drop the superscript n from Eδ ,
Ēn and Ên.
10In fact, the non-monetary indicators recommended in Eurostat (2000) are 15. We decided to
drop the one belonging to the health domain, namely the proportion of people that were severely
hampered in their daily activity by long-lasting health problems, since there was a considerable
discontinuity between the ECHP waves for this indicator.
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aspect of a life pattern common to amajority of the population in the EU; (2) allowing
international and intertemporal comparisons; and (3) expressing a link with income
poverty. These are the following:

• Financial difficulties: (1) Persons living in households that have great difficulties
in making ends meet. (2) Persons living in households that are in arrears with
(re)payment of housing and/or utility bills.

• Basic necessities: (3) Persons living in households which cannot afford meat, fish
or chicken every second day. (4) Persons living in households which cannot afford
to buy new clothes. (5) Persons living in households which cannot afford a week’s
holiday away from home.

• Housing conditions: (6) Persons living in the accommodation without a bath or
shower. (7) Persons living in dwellings with damp walls, floors, foundations, etc.
(8) Persons living in households which have a shortage of space.

• Durables: (9) Persons not having access to a car due to lack of financial resources
in the household. (10) Persons not having access to a telephone due to lack of
financial resources in the household. (11) Persons not having access to a color TV
due to lack of financial resources in the household.

• Health: (12) Persons (over 16) reporting bad or very bad health.
• Social contact: (13) Persons (over 16) whomeet their friends or relatives less often
than once a month (or never).

• Dissatisfaction: (14) Persons (over 16) being dissatisfied with their work or main
activity.

While it is true that with a high income a person may be able to increase his
purchasing power in several dimensions of well-being, low income should not be
mixed up with falling short of minimum standards unambiguously in all dimensions.
For instance, there is a debate about the importance of low income as a determinant
of undernutrition (Lipton and Ravallion 1995). In their illustration of the generalized
human poverty index, Chakravarty and Majumder (2005) used the deprivations in
three basic dimensions of life considered by UNDP (namely, failures in longevity,
knowledge and decent living standard) and the anthropometric indicators, for exam-
ple, “children with low birth weight,” “undernourished people” and “children with
low height for age.” These dimensions of human life may not be mutually exclu-
sive. Therefore, they carried a principal component analysis and the leading eigen
value (which explains 69% of the total variance) puts weights ranging between 0.56
and 0.93 to the variables, thus justifying inclusion of all the variables in measuring
the underlying latent construction of poverty. This parallels UNDP’s arguments for
including “adult literacy rate,” “per capita real GDP” and “life expectancy at birth”
in the construction of the human development index. That is why in this paper we
include both financial difficulties and failures in other dimensions.

We first calculate Eδ for δ = 0, 1, and 2 separately for two sets of indicators
V1 and V2, where V1 includes the indicators in the domains of financial difficulties,
basic necessities, housing conditions, and durables, and V2 includes the remaining
indicators. The reason for separate calculations is that for indicators covered under V1

we have household level information, whereas for the indicators in V2 the available
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information is at the individual level, with the additional constraint that the minimum
age of the reporter is 16. We prefer to keep the analysis separate and not to restrict
the sample to V2 since we do not want to exclude children from our data, who are
considered in V1 but not in V2.

We call a person socially excluded with respect to a variable in a given domain if
he has been deprived of the variable for at least four years out of the six years that
we observe. In addition, exclusion for a functioning occurs if the person concerned
is deprived for the last three years. Thus, our calculation of the individual exclu-
sion score explicitly takes into account the dynamic or longitudinal aspect of social
exclusion. A person’s exclusion in a given domain has been obtained by adding up
his exclusions over the concerned variables, that is, here the deprivation score is
calculated under the assumption that wj = 1 for all j.

Since in this calculation xi is independent of the population size, SUD holds.
Calculation of non-additive measures Ē and Ê involving x′

is which are dependent on
the population size is presented later in the section. As an example of the construction
of the individual exclusion scores, let’s consider the variables in V2: we assign value
0 to the individuals who had access to all the functionings in the relevant time period,
1 to those who had failure only in one dimension over the period, for instance, to
those who met their friends or relatives less often than once a month (or never) or to
those who were never satisfied with their main work or activity, and so on.

Numerical estimates of social exclusion for the EU member states are reported in
Table 1. The upper part of the table presents the estimates for V1 while its lower part
gives the analogous values for V2. The first column of the table gives the names of
the countries for which required information were available. In column 2 we report
the population shares of different countries in the total of EU sample population
considered for our analysis. In columns 3–5wepresent, for each country, the values of
Eδ for δ = 0, 1 and 2 respectively.11 The country-wise social exclusion levels are then
weighted by the corresponding population shares to determine the contributions of
different countries to total exclusion,which are given as percentages of total exclusion
in columns 6–8. From a policy perspective, complete elimination of exclusion within
a country would lower aggregate exclusion precisely by the percentage by which it
contributes to total exclusion.

Several interesting features emerge from Table 1. We note that the values of
measures as well as percentage contributions are sensitive to the values of δ. We first
analyze the upper part of the table. Portugal turns out to be the countrywith the highest
level of social exclusion, followed by Greece. But there is no unanimous agreement
about the country with minimum exclusion. The Netherlands is the country with
minimumH, whereas E1 and E2 regard Denmark as the country with the lowest level
of social exclusion.

The maximum percentage contribution to total exclusion comes from Italy due
to high exclusion scores and high population share, whereas Denmark is the least
contributing country. Ireland and Belgium occupy respectively the second and third

11Recall that for δ = 0 and 1, Eδ becomes respectively the head-count ratio, H, and the average
deprivation score of the society, A.
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Table 1 Social Exclusion in EU Member States (1993–1998)

Values of Eδ Percentage contributions based
on:

Population
shares

E0 (head-
count
ratio, H)

E1
(average
depriva-
tion score,
A)

E2 E0 (head-
count
ratio, H)

E1
(average
depriva-
tion score,
A)

E2

V1

Belgium 4.86 0.224 0.375 0.985 2.76 2.45 2.27

Denmark 2.54 0.195 0.273 0.495 1.26 0.93 0.60

Greece 4.98 0.952 1.605 6.235 7.47 10.75 14.71

Spain 18.91 0.510 0.897 2.202 24.45 22.83 19.74

France 27.35 0.332 0.549 1.317 23.00 20.21 17.08

Ireland 1.72 0.359 0.749 2.336 1.56 1.73 1.90

Italy 27.46 0.397 0.668 1.627 27.65 24.69 21.18

Netherlands 7.35 0.177 0.301 0.734 3.29 2.98 2.56

Portugal 4.82 0.700 2.067 8.731 8.56 13.42 19.97

Total 100 0.394 0.743 2.110 100 100 100

V2

Belgium 4.82 0.061 0.063 0.068 2.90 2.67 2.31

Denmark 2.56 0.034 0.035 0.037 0.85 0.78 0.67

Greece 5.09 0.074 0.078 0.087 3.72 3.48 3.10

Spain 18.70 0.087 0.088 0.091 15.95 14.38 11.90

France 26.84 0.082 0.092 0.115 21.55 21.58 21.51

Ireland 1.55 0.022 0.023 0.025 0.34 0.31 0.27

Italy 28.25 0.146 0.172 0.23 40.52 42.33 45.51

Netherlands 7.42 0.032 0.034 0.039 2.31 2.21 2.04

Portugal 4.76 0.254 0.295 0.381 11.86 12.25 12.69

Total 100 0.102 0.115 0.143 100 100 100

Notes V1 considers jointly the variables included in the domains of financial difficulties, basic
necessities, housing conditions, durables; V2 considers jointly the variables included in the domains
of health, social contact and dissatisfaction
Estimates derived using distributions of persons, with the additional constraint of age being at least
16 for V2
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position in terms of low percentage contributions. The sixth column of this part
of the table shows that Portugal, Italy, Spain, and Greece, the Southern European
countries, report 68.13% of social exclusion as judged by the headcount index. Their
contribution to overall exclusion rises to 71.69% (75.60%) if one uses A(E2).

The higher contributions of these four countries is partly due to their almost
average or more than average social exclusions. Spain and France come next after
Italy in the ranking by percentage contributions. A comparison between Italy and
Ireland is worth noting here. Although the latter has a better position than the former
with respect to H and A, for the other measure it becomes worse off. The reason is
that the variance of the deprivation scores is much higher in Ireland than in Italy.
By percentage contributions, Ireland shows a much better picture than Italy. This is
because the country has a very low population share among the member states.

In V2 as well, Portugal is the member state with the highest level of social exclu-
sion and Italy by percentage contribution. Ireland performs the best by showing the
lowest values with respect to both the factors. Belgium, Denmark, and the Nether-
lands also show low values for both factors. But Denmark has a better position than
the other two countries by percentage contributions, and Denmark and the Nether-
lands perform better than Belgium by the other factor. France and Spain do not have
unambiguous ranking between themselves with respect to index values, but by per-
centage contributions France is regarded as worse than Spain. These two countries
perform worse than Greece by both the factors. Portugal, Italy, Spain and France
jointly contribute more than 87% to total exclusion by any measure. Finally, except
for Portugal, the ranking of countries by any measure in V2 is different from that in
V1.

From a policy point of view, the breakdown of the variables into two subgroups
enables us to identify the countries separately in each subset that are most susceptible
to exclusion.

In Table 2 we carry out a similar analysis for Italy. The country has been divided
into 11 geographic areas.12 In V1, the South is the area with the highest level of social
exclusion by E1 and E2, while Sardegna occupies this position forH. Similarly, there
is no unanimous agreement about the area with the lowest level of social exclusion.
It is worth noting that South is only a part of the south of the country. If we add
to South the remaining southern area, namely Campania, we can conclude that the
southern areas contribute between 33 and 46% to total exclusion observed in Italy,
depending on the measure. We note the difference with the northern regions, namely
North–West, North–East, Lombardia, and Emilia–Romagna, whose total percentage
contribution ranges between 14 and 25%. The other two areas with high levels of
exclusion are the two islands, Sicilia and Sardegna, while only the former presents
high percentage contributions. In the same way in V2, South is the geographic area
with the highest level of social exclusion and unanimous agreement about the area
with minimum exclusion is not reached. However, the northern areas occupy low

12The information on the geographic areas of the Italian households are available in ECHP at the
Nuts 1 level.
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Table 2 Social exclusion in Italy by geographic areas(1993–98)

Values of Eδ Percentage contributions based
on:

Population
shares

E0 (head-
count
ratio, H)

E1
(average
depriva-
tion score,
A)

E2 E0 (head-
count
ratio, H)

E1
(average
depriva-
tion score,
A)

E2

V1

North
West

10.65 0.210 0.318 0.626 5.64 5.07 4.10

Lombardia 15.39 0.236 0.317 0.551 9.13 7.31 5.21

North
East

11.33 0.227 0.313 0.543 6.48 5.30 3.78

Emilia-
Romagna

7.06 0.223 0.249 0.317 3.96 2.63 1.38

Centre 10.39 0.402 0.591 1.192 10.51 9.19 7.61

Lazio 9.02 0.390 0.620 1.409 8.85 8.37 7.80

Abruzzo-
Molise

2.84 0.434 0.580 0.961 3.10 2.47 1.68

Campania 9.88 0.541 0.947 2.347 13.45 14.00 14.24

South 11.84 0.666 1.460 4.454 19.86 25.86 32.40

Sicilia 8.68 0.644 1.108 3.054 14.08 14.40 16.30

Sardegna 2.92 0.670 1.239 3.071 4.93 5.42 5.51

Total 100 0.397 0.668 1.627 100 100 100

V2

North
West

11.06 0.105 0.125 0.178 7.96 8.06 8.56

Lombardia 15.75 0.090 0.107 0.150 9.65 9.85 10.24

North
East

11.38 0.098 0.112 0.143 7.65 7.44 7.07

Emilia-
Romagna

7.29 0.122 0.130 0.146 6.05 5.50 4.63

Centre 10.46 0.164 0.188 0.241 11.70 11.42 10.95

Lazio 8.76 0.139 0.166 0.227 8.31 8.48 8.63

Abruzzo-
Molise

2.79 0.140 0.167 0.220 2.68 2.71 2.67

Campania 9.31 0.212 0.248 0.329 13.49 13.44 13.28

South 11.60 0.242 0.293 0.407 19.22 19.78 20.50

(continued)
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Table 2 (continued)

Values of Eδ Percentage contributions based
on:

Population
shares

E0 (head-
count
ratio, H)

E1
(average
depriva-
tion score,
A)

E2 E0 (head-
count
ratio, H)

E1
(average
depriva-
tion score,
A)

E2

Sicilia 8.56 0.155 0.187 0.263 9.07 9.32 9.78

Sardegna 3.03 0.204 0.227 0.280 4.22 4.00 3.68

Total 100 0.146 0.172 0.230 100 100 100

Notes V1 considers jointly the variables included in the domains of financial difficulties, basic neces-
sities, housing conditions, durables; V2D considers jointly the variables included in the domains of
health, social contact and dissatisfaction
Estimates derived using distributions of persons, with the additional constraint of age being at least
16 for V2

exclusion positions without showing unambiguous ranking among themselves.More
generally, ranking of areas by any measure is different in V1 from that in V2.

The high contributing areas require attention from a policy perspective for reduc-
tion of their contributions so that a higher living standard can be achieved.

In Table 3we present results of deprivation scores using population size dependent
weights.

The measures that we apply are Ē, the symmetric mean exclusion of order v, and
Ê, the Gini exclusion measure. Here we take into account the local dimension of the
concept, i.e. people compare themselves with their reference society, and following
Runciman (1966), we define the degree of deprivation inherent in not having access to
an item as an increasing function of the proportion of persons in the society who have
access to the item. Hence the weight attached to attribute j,wj, reflects the percentage
of the population in the country of residence of the individual that is not deprived
from that specific attribute. More precisely, we assume that, if the percentage of the
population not deprived of functioning j lies in the interval (10 (i − 1), 10 i], where
i = 1, 2, . . . , 10, then wj = i. If nobody is excluded from j, then the definition of the
characteristic function ensures that deprivation with respect to j is zero.

The upper part of the table presents the estimates for V1 while its lower part gives
the analogous values for V2. In columns 2–4 we present, for each country, the values
of Ē, for υ = 0.5, 1 and 2 respectively. The parameter υ is the sensitivity parameter;
the more positive it is, the more sensitive the index will be to the capability failures
of the more deprived. In column 5 the values of the Gini exclusion measure, Ê, are
reported.

The results are strikingly different from the analysis of Table 1 in the case of both
V1 and V2. The reason behind this is that in the case of Table 1 for all countries we
use constant weights in order to calculate deprivation scores of a person, whatever
the proportions of population that are better off than him in the relevant dimensions.
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Table 3 Social Exclusion in EU Member States (1993–1998)

Values of Eδ

Ē(v = 0.5) Ē(v = 1) Ē(v = 2) Ê

V1

Belgium 14.072 15.598 19.826 34.283

Denmark 12.460 13.192 15.155 19.056

Greece 17.486 19.829 24.607 36.615

Spain 12.000 13.519 13.936 27.222

France 13.485 14.780 18.199 25.966

Ireland 16.907 19.059 23.830 61.128

Italy 11.266 16.295 12.677 35.034

Netherlands 15.729 17.050 20.386 43.573

Portugal 17.084 19.834 25.327 74.395

V2

Belgium 10.293 10.361 10.568 13.333

Denmark 10.282 10.338 10.495 12.488

Greece 10.435 10.530 10.809 12.449

Spain 9.261 9.293 9.391 11.777

France 11.056 11.267 11.833 13.398

Ireland 10.295 10.353 10.516 16.781

Italy 10.471 10.758 11.526 18.312

Netherlands 10.623 10.756 11.136 14.098

Portugal 9.734 10.015 10.724 28.515

Notes V1 considers jointly the variables included in the domains of financial difficulties, basic neces-
sities, housing conditions, durables; V2D considers jointly the variables included in the domains of
health, social contact and dissatisfaction
Estimates derived using distributions of persons, with the additional constraint of age being at least
16 for V2

In contrast, Table 3 is based on Runciman-type weights for deprivation scores that
explicitly take into account the population size of a country, that is, the weights
are country-wise population size-specific. South European countries are split into
two groups located at the opposite side of the ranking with respect to Ê, due to
the weighting scheme reflecting on an average higher percentage of the population
deprived in Portugal andGreece than in Spain and Italy.On the one hand, Portugal and
Greece are still themost deprived countries, while Spain and Italy nowwithDenmark
are the countries where social exclusion is lowest. The latter is also the country with
minimum exclusion according to the Gini measure. When we consider relatively
high exclusion values (more than 35), starting with Italy the ranking of countries
from low to high exclusion by the Gini measure is Italy, Greece, the Netherlands,
Ireland and Portugal. Another notable difference with the previous unweighted case
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is that of the Netherlands. It is now a member state with a relatively high level of
social exclusion according to all the measures. In the Netherlands the percentage of
the population deprived in all dimensions is low, reflecting high weights assigned to
those who are deprived; in addition there is more cumulation of disadvantage since
the excluded individuals are more likely to be so in more dimensions at the same
time.

For V2, the domains of health, social contact, and dissatisfaction, the values of
Ē are quite similar among all the countries, while we observe more variance for Ê.
The lowest excluded country by Ē is always Spain, followed by Portugal when v =
0.5 and 1, and Denmark when v = 2. On the contrary, Portugal is the most excluded
country when disadvantage is evaluated with the Gini measure, while France is the
country with the highest level of exclusion by Ē.

6 Conclusions

Social exclusion refers to inability of a person to participate in basic day to day
economic and social activities of life.

In this paper, we have developed an axiomatic approach to the measurement of
social exclusion and characterized the class of subgroup decomposable measures of
exclusion.We have also proposed non-decomposable measures that could be applied
to take into account the local dimension of the concept. A dominance criterion for
ranking two societies by symmetric additive exclusion measures under constancy
of population size and total deprivation score was suggested. An application of the-
decomposable and nondecomposable measures considered in the paper has been
made using European Union data.

Several extensions of our analysis are possible. First, a characterization of some
class of measures, for example of Eδ , will be quite interesting. Second, extension
of our dominance criterion to the cases of non-additive measures, variable total and
variable population size, and a rigorous discussion on the converse of Theorems 3
and 4 will be worthwhile. Finally, we have considered only decomposability accord-
ing to population subgroups. We can as well consider decomposition of population
exclusion by attributes and study the impact of each of them on the aggregate exclu-
sion. This will enable us to identify the attributes that are more/less susceptible to
social exclusion.
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Abstract We propose a characterization of a popular index of multidimensional
poverty which, as a special case, generates a measure of material deprivation. This
index is the weighted sum of the functioning failures. The important feature of the
variables that may be relevant for poverty assessments is that they are discrete in
nature. Thus, poverty measures based on continuous variables are not suitable in this
setting and the assumption of a discrete domain is mandatory. We apply the measure
to European Union member states where the concept of material deprivation was
initiated and illustrate how its recommendations differ from those obtained from
poverty measures based exclusively on income considerations.
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1 Introduction

An important development in the study of inequality and poverty in the recent past is
the shift of emphasis from a single dimension, such as income, to a multidimensional
framework. There are several reasons for this phenomenon.

First, contributions such as those of Townsend (1979), Streeten (1981), and Sen
(1992) highlighted that the well-being of an individual, and hence the inequality
and poverty in a population, is dependent on many dimensions of human life such
as housing, education, and life expectancy; income is but one of these dimensions.
Thus, poverty may be better defined as a situation that reflects failures in different
dimensions of human well-being. The multidimensionality of an individual’s well-
beinghas alsobeen emphasizedby theCommissionon theMeasurement ofEconomic
Performance and Social Progress (see Stiglitz et al. 2009, p. 14).

Second, in the income distribution literature, income is not important per se but
is supposed to be an indicator of an individual’s command over economic resources.
But incomemay not always be suitable for this purpose because it neglects command
over resources out of wealth, non-cash transfers from the government, and support
from family and friends (see also, for instance, Ringen 1988). Thus, to measure
command over economic resources, aspects other than income should be included.
In doing so, it is necessary to distinguish the absence of consumption due to individual
preferences from the absence of consumption due to inability to afford. Obviously,
the former should not be considered in measuring poverty. In addition, for policy
purposes, it is necessary to identify the fragment of the population who is currently
poor. In a typical dataset, the information on income received refers to the previous
calendar year (and is more likely to be misreported—particularly, underreported)
while items of consumption are reported contemporaneously.

The third reason is of great importance for the European Union, where a shift in
policy focus from pure income poverty toward a wider multidimensional framework
has been particularly pronounced. Changes in public policies implemented by the
member states were initiated at the March 2000 Lisbon European Council. At this
Council, the member states agreed to adopt the OpenMethod of Coordination, which
involves the definition of a set of common objectives on poverty and social exclusion
for theEUas awhole. The successor of theLisbonAgenda is theEurope 2020 strategy
of growth: the EU has set five objectives—on employment, innovation, education,
social inclusion, and climate/energy—to be reached by 2020. The EU distinguishes
itself from other political entities in that it clearly endorses the use of relative poverty
lines. Themeasures of income poverty adopted are based onmember-specific poverty
lines, that is, for each member state, the income threshold depends on the income
distribution of the specific country and does not take into account inequality between
member states. This practice has become more problematic with the enlargement of
the Union and the substantial differences that can be observed between the income
distributions of old and newmembers. Someone poor in one of the old member states
is likely to be located well above average in the income distribution of a newmember
state. Should the poor member states be taxed and the rich countries receive a transfer
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in response? This clearly would be an absurd recommendation. It appears evident
that the development of other indicators of an individual’s command over economic
resources is desirable. For a discussion of this point in the EU context, see, among
others, Fahey (2007) and Whelan et al. (2008).

The distinction between multidimensional poverty and material deprivation we
use is that endorsed by the EU. In particular, a multidimensional poverty measure
takes into consideration all dimensions ofwell-being thatmaybeof relevance (includ-
ing non-material attributes such as health status and political participation), whereas
an index of material deprivation restricts attention to functioning failures regarding
material living conditions (see, among others, Guio 2005). According to EU pol-
icy, indices of material deprivation are to be combined with income-based poverty
measures and indicators of low employment. This paper constitutes an attempt to
contribute to this objective.

The purpose of this paper is to characterize a popularmeasure ofmultidimensional
poverty and use it to evaluate material deprivation in the EU. This index is the
weighted sum of the functioning failures. An important feature of the variables that
may be relevant for poverty assessments is that they are discrete in nature, that is, what
is considered relevant for a person (and what appears in the data) is whether or not a
functioning failure with respect to the dimension under consideration obtains. Thus,
poverty measures based on continuous variables are not suitable in this setting and
the assumption of a discrete domain is mandatory. This distinction is usually referred
to as qualitative/ordinal versus quantitative/cardinal variables; however, because we
identify a functioning failure with a value of one and the absence of a functioning
failure with a value of zero for the requisite variable, we prefer to use the terms
discrete and continuous instead.

The importance of the ability to deal with discrete data is that, usually, only very
few of a survey’s variables on individual well-being are continuous in nature. This
situation is common to many surveys; see, for example, the European Community
Household Panel or the more recent EU Statistics on Income and Living Conditions
(EU-SILC) for EU countries, and the United States’ Current Population Survey,
where most of the variables that may be used to measure multidimensional poverty
are discrete. Hence, most of the indices proposed in the literature dealing with con-
tinuous variables cannot be applied. An alternative is what Atkinson (2003) refers
to as the counting approach. The counting measure of individual poverty consists of
the number of dimensions in which a person is poor, that is, the number of individ-
ual functioning failures. But this measure treats all dimensions symmetrically in the
sense that in the aggregation of an individual’s functioning failures, the same weight
is assigned to each dimension. Since some of the dimensions may be more important
than others, amore appropriate countingmeasure can be obtained by assigning differ-
ent weights to different dimensions and then adding these weights for the dimensions
inwhich functioning failure is observed. Theseweightsmay be assumed to reflect the
importance a policy-maker attaches to alternative dimensions in a poverty-alleviation
proposal. For instance, for evaluating multidimensional poverty in Mexico, Foster
(2007) assumed aweight structurewhichfirst splitsweights between incomeandnon-
income dimensions equally and then uses equal weights for non-income dimensions.
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Alternatively, the weights may reflect views of the society under analysis, which is
the approach followed in the present contribution. This weighting scheme is known
in the EU political debate as consensus weighting. As opposed to the prevalence or
frequency-based weighting, it has the advantage of better reflecting the minimum
acceptable standard of living, which is what material deprivation indicators aim to
capture. For a discussion of weighting schemes in EU indicators, see Guio et al.
(2009). A survey on the use of weights in multidimensional indices of well-being
can be found in Decancq and Lugo (2012).

The shift of emphasis toward multidimensionality has raised many challenges
for social scientists interested in measuring poverty in well-being. The two-stage
procedure suggested by Sen (1976)—consisting of first identifying the poor and
then aggregating the information available on this segment of the population into an
index of poverty for the entire society—has to be extended.

In the multidimensional framework, each person is assigned a vector of several
attributes that represent different dimensions of well-being. For measuring multidi-
mensional poverty, it then becomes necessary to check whether a person has “mini-
mally acceptable levels” of these attributes (see Sen 1992, p. 139). These minimally
acceptable quantities of the attributes represent their threshold limits or cut-offs that
are necessary for an adequate standard of living. Therefore, a person is treated as
deprived or poor in a dimension if the requisite observed level falls below this cut-off.
In this case, we say that the individual is experiencing a functioning failure. Poverty
at the individual level is an increasing function of these failures.

The first stage, consisting of the identification of the poor in a multivariate frame-
work, is still an issue subject to debate. One possible way of regarding a person
as poor is if the individual experiences a functioning failure in every dimension,
which identifies the poor as those who are poor in all dimensions. This is known as
the intersection method of identification of the poor. But if a person is poor in one
dimension and non-poor in another, then trading off between the two dimensions
may not be possible. Lack of access to essential durables, say, cannot be compen-
sated by housing. In view of this, a person may be treated as poor if she is poor in
at least one dimension. This is the union method of identifying the poor (see Tsui
2002; Bourguignon and Chakravarty 2003). In between these two extremes lies the
intermediate identification method which regards a person as poor if she is deprived
in at least m ∈ {1, . . . ,K} dimensions, where K is the number of dimensions on
which human well-being depends (see Mack and Lindsay 1985; Gordon et al. 2003;
Alkire and Foster 2011). Evidently, the intermediate method contains the union and
the intersection methods as special cases for m = 1 and m = K, respectively. Our
approach to identification follows the union method: a person is considered poor if
she is poor in at least one dimension.

The axiomatic literature on the subject has proposed some measures of multidi-
mensional poverty and explored the properties that are at the basis of these indices
(see, for example, Chakravarty et al. 1998; Tsui 2002; Bourguignon and Chakravarty
2003;Diez et al. 2008;Alkire andFoster 2011).However,with the exceptionofAlkire
and Foster (2011), the functionings considered in these contributions are expressed
by means of continuous variables. Alkire and Foster’s (2011) index is for discrete
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data but no characterization has been provided by the authors. Hence, to the best of
our knowledge, our approach is novel in this respect. Another important contribu-
tion on multidimensional poverty with discrete variables is that of Lasso de la Vega
(2010), where counting poverty orderings and deprivation curves are proposed.

The remainder of the paper proceeds as follows. We characterize the index of
multidimensional poverty that allows for the assignment of different weights to the
considered dimensions in Sect. 2, and we apply this measure to illustrate its use in
assessing material deprivation in the European Union using the EU-SILC dataset in
Sect. 3. Section 4 provides some brief concluding remarks.

2 The Index of Multidimensional Poverty

Suppose there are K ∈ �\{1} dimensions that may be relevant for the degree of
well-being of an individual, such as housing conditions, where� is the set of positive
integers. These dimensions are the same across societies and they are represented
by binary variables: a value of one indicates that the individual is poor with respect
to this dimension; a value of zero identifies an attribute with respect to which the
individual is not poor. Throughout, the number of relevant dimensions is assumed
to be fixed. We adopt the union method of identifying the poor in the sense that a
person is considered poor if she is poor in at least one of the relevant dimensions.

In order to be applied to different societies or to different time periods, a suitable
measure of poverty must be capable of accommodating different population sizes.
Thus, we consider all possible population sizes N ∈ � when defining a measure
of multidimensional poverty. Let N ∈ � and K ∈ �\{1}. A dichotomous N × K
matrix is a matrix

M = (
mk

n

)
n ∈ {1, . . . ,N }
k ∈ {1, . . . ,K}

such that mk
n ∈ {0, 1} for all n ∈ {1, . . . ,N } and for all k ∈ {1, . . . ,K}. The rows

of M correspond to the members of society, the columns represent the attributes
considered relevant for poverty measurement. If mk

n = 1, individual n ∈ {1, . . . ,N }
is poor with respect to attribute k ∈ {1, . . . ,K} and if mk

n = 0, the person is not
poor with respect to this dimension. For N ∈ �, letMN be the set of all dichotomous
N × K matrices. The number of attributesK is suppressed in this definition because
it is assumed to be fixed. For N ∈ �, n ∈ {1, . . . ,N } and k ∈ {1, . . . ,K}, we write
mn for the 1 × K matrix consisting of the nth row and mk for the N × 1 matrix
consisting of the kth column ofM ∈ MN .

Define M = ∪N∈�MN . An anonymous multidimensional poverty measure is a
function P : M → R such that, for all M ∈ M, P is invariant with respect to row
permutations of M—that is, P is anonymous in the sense that P treats individuals
symmetrically, paying no attention to the labels that we may assign to them.



196 W. Bossert et al.

We now formulate the properties that we require P to possess. To do so, we
introduce some more notation. ForN ∈ �, let 0N be theN × K matrix, all of whose
entries are equal to zero. For k ∈ {1, . . . ,K}, let 1k be the 1×K matrix with mk

1 = 1
and mj

1 = 0 for all j ∈ {1, . . . ,K}\{k}. In order to keep our exposition simple, we
adopt the convention

∑

k∈φ

αk = 0.

The first two axioms are limited in scope because they apply to one-person soci-
eties only.
Zero normalization. For all M ∈ M1\{01},

P (M ) > P (01) = 0

This normalization assumption is standard: if the individual in a one-person soci-
ety is not poor in any attribute, we require the value of the index to be zero and if she
is poor in at least one dimension, the index assumes a positive value. Note that this
property is based on a union identification of the poor.
Additive decomposability in attributes. For allM ,M ′ ∈ M1 such that (M +M ′) ∈
M1,

P(M + M ′) = P(M ) + P(M ′)

Additive decomposability in attributes is straightforward as well and has been
employed in numerous contributions in the field of social index numbers. Some-
times a non-additive formulation may generate problems which do not arise with
additively decomposable measures. For instance, in the (non-additive) human devel-
opment index, if attainment in one of the dimensions approaches its minimum value,
this index approaches zero no matter what values are assumed in the other dimen-
sions. This problem can be avoided under an additively decomposable structure (see
Ravallion 2011, 2012).

Additive decomposability in attributes entails a separability property: the con-
tribution of any variable to the overall index value can be examined in isolation,
without having to know the values of the other variables. Thus, additive decompos-
ability properties are often linked to independence conditions of various forms. Note
that, because of the discrete domain considered here, an independence condition is
not sufficient unless there are at most four dimensions to poverty; this can be seen
by adapting the corresponding result in Kraft et al. (1959) to our setting. Because
we work with a general number of poverty attributes and, moreover, the dataset
used in our application covers more than four attributes, the full force of additive
decomposability in attributes is required in our characterization.

We are well aware that additive decomposability is a strong property and that it is
no surprise that the resulting index is additive. However, given that our objective is
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the characterization of a known additive measure, an additivity property cannot but
appear in the list of requisite axioms.Given the prominent role played by thismeasure
and the absence of a characterization on a discrete domain in the existing literature,
it seems to us that this is an appropriate way to proceed. It may be worthwhile to note
that variants of the continuous counterpart to the additive decomposability postulate
were used earlier in the literature. Chakravarty et al. (1998) used one form of this
axiom along with subgroup decomposability to characterize the multidimensional
poverty indices that are both factor and subgroup decomposable. Alkire and Foster
(2011) noted that given the identification step, total poverty according to their index
can be regarded as a weighted average of dimensional values. For a characterization
of an additive measure of social exclusion on a discrete domain, see Chakravarty and
D’Ambrosio (2006). Jayaraj and Subramanian (2010) apply this index to measure
deprivation in India.

As a preliminary result, we identify the class of measures that satisfy the above
axioms. Clearly, due to the restriction to one-person societies in these properties, all
that can be deduced at this stage is the structure ofP on the subdomain of dichotomous
matrices with a single row only.

Lemma 1 If an anonymous multidimensional poverty measure P satisfies zero nor-
malization and additive decomposability in attributes, then there exists a vector of
parameters α = (α1, . . . , αK ) ∈ RK++, such that, for all M ∈ M1.

P(M ) =
∑

k ∈ {1, 2, ..,K} :
mk

1 = 1

αk .

Proof Suppose P satisfies zero normalization and additive decomposability in
attributes. That P (01) = 0 follows immediately from the equality in zero normal-
ization. Now suppose M ∈ M1\{01}. Define, for all k ∈ {1, . . . ,K}, αk = P(1k).
By the inequality in the definition of zero normalization, it follows that αk > 0 for
all k ∈ {1, . . . ,K}. WritingM as

M =
∑

k ∈ {1, 2, ..,K} :
mk

1 = 1

1k ,

additive decomposability in attributes requires

P(M ) =
∑

k ∈ {1, 2, ..,K} :
mk

1 = 1

P(1k) =
∑

k ∈ {1, 2, . . . ,K} :
mk

1 = 1

αk ,
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which completes the proof. �

The real number αj is an indicator of the importance that we assign to dimension j
when a person is found to be deprived in this dimension. It can as well be interpreted
as the priority assigned by the government to remove deprivation in dimension j. The
index P(M) is simply the total of such indicators across dimensions.

The last axiom used in our characterization parallels the above additive decom-
posability property with respect to attributes. We require that P be additively decom-
posable in individuals as well, with suitable weights applied so as to take proper
account of population size. Clearly, as is the case for unidimensional poverty mea-
sures, the total number of individuals matters. Consider a society A in which one
hundred out of a thousand people are poor. Furthermore, suppose a society B is such
that, again, one hundred people are poor (to the same degree as the poor in A) but
total population size is one million in B. All poverty measures usually employed
assign a higher level of poverty to A than to B, which reflects the view that poverty
is a per-capita notion. Thus, we formulate our third axiom as follows.
Population-weighted additive decomposability in individuals. For all N ∈ �,
for all M ′ ∈ MN , for all M ′′ ∈ M1 and for all M ∈ MN+1, if mn = m′

n for all
n ∈ {1, . . . ,N } and mN+1 = m′′

1, then

P (M ) = N

N + 1
P(M ′) + 1

N + 1
P(M ′′)

Seeour earlier discussion of additive decomposability in attributes for amotivation
of this decomposability property. Again, a property of this nature is required given
that we aim at characterizing a measure with an additive structure on a discrete
domain.
We obtain:

Theorem 1 An anonymous multidimensional poverty measure P satisfies zero nor-
malization, additive decomposability in attributes and population-weighted additive
decomposability in individuals if and only if there exists a vector of parameters
α = (α1, . . . , αK ) ∈ RK++ such that, for all N ∈ N and for all M ∈ MN ,

P(M ) = 1

N

N∑

n=1

∑

k ∈ {1, 2, ..,K} :
mk

1 = 1

αk . (1)

Proof The “if”’ part of the theorem statement is straightforward to verify. To prove
the “only if” part, we proceed by induction on the population size. Suppose that P
satisfies the required axioms. Lemma1establishes the claim for all M ∈ M1. Now
suppose (1) is true for all population sizes from one to N ∈ �. Let

M ∈ MN+1
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M ′ = (
mk

n

)
n ∈ {1, . . . ,N }
k ∈ {1, . . . ,K}

M ′′ = mN+1,

By population-weighted additive decomposability in individuals and our induc-
tion hypothesis, it follows that

P(M ) = N

N + 1
P(M ′) + 1

N + 1
P(M ′′)

=
(

N

N + 1

)
1

N

N∑

n=1

∑

k ∈ {1, 2, . . . ,K} :
mk

1 = 1

αk + 1

N + 1

∑

k ∈ {1, 2, ..,K} :
mk

1 = 1

αk

= 1

N + 1

N+1∑

n=1

∑

k ∈ {1, 2, ..,K} :
mk

1 = 1

αk

where we used the anonymity assumption on P to deduce that the parameters αk do
not depend on the labels of the individuals under consideration. �

It may be noted that while Bourguignon and Chakravarty (2003) used the depriva-
tion count, the number of dimensions ofwell-being fromwhich a person is deprived in
the union/intersection framework for identification of the poor, the Alkire and Foster
(2011) identification method relies on the counting formula using unequal weighting
for dimensions in the intermediate set-up. Lasso de la Vega (2010) examined dom-
inance conditions for poverty orderings using the counting approach based on this
identification method. Aaberge and Peluso (2011) compared deprivation counts of
distributions using rank dependent social evaluation criteria. This clearly indicates
that Theorem 1 has different objectives than the counting based results reported in
the above papers.

Note that we do not employ a focus axiom analogous to that familiar from uni-
dimensional povertymeasurement. This is the case because our (union) identification
of the poor is implicit in our axioms—the poor are thosewho experience a functioning
failure in at least one dimension, and the characteristics of the non-poor (those who
do not experience any functioning failure) do not influence the value of the index.
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3 Material Deprivation Within the EU

In this section, we illustrate the index defined in (1) by employing it to the problem of
measuring material deprivation in the EU. Recall that, in assessing material depriva-
tion as opposed to multidimensional poverty in general, we focus on dimensions that
represent access to material economic resources. The dataset we use is EU-SILC,
which is employed by European Union member states and the Commission to mon-
itor national and EU progress toward key objectives for the social inclusion process
and Europe 2020 growth strategy. Our analysis covers the years from 2005 to 2008.
The variables that may be used in the measurement of material deprivation are avail-
able mainly at the household level. We follow a conservative approach in the sense
that we treat the households reporting a missing value like those reporting not to
experience the functioning failure. As a result, we may be underestimating material
deprivation since we are attributing a functioning failure exclusively to households
who explicitly claim to have the failure. We also perform a sensitivity analysis by
excluding the missing values from the sample. The results do not change, hence they
are omitted but are available upon request. The unit of our analysis is the individual,
that is, the household failure is attributed to each household member and we analyze
the distribution of functioning failures among individuals.

In line with the Europe 2020 framework, the variables we consider are the fol-
lowing:

1. The household has been in arrears at any time in the last 12 months on mortgage
or rent payments.

2. The household has been in arrears at any time in the last 12 months on utility
bills.

3. The household lacks the ability to keep the home adequately warm.
4. The household lacks the capacity to face unexpected required expenses.
5. The household cannot afford a meal with meat, chicken, fish (or a vegetarian

protein equivalent) every second day.
6. The household cannot afford to pay for a one-week annual holiday away from

home.
7. The household cannot afford to have a car.
8. The household cannot afford a washing machine.
9. The household cannot afford a color TV.
10. The household cannot afford a telephone.

The weights are constructed from the views of EU citizens as surveyed in 2007
in the special Eurobarometer 279 on poverty and social exclusion (see TNS Opinion
& Social 2007). This weighting method was first proposed by Guio et al. (2009).
For each variable, we use as weight the percentage of the EU27 citizens answering
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“absolutely necessary, no one should have to do without” to the requisite question
as expressed by these instructions: “In the following questions, we would like to
understand better what, in your view, is necessary for people to have what can be
considered as an acceptable or decent standard of living in [OUR COUNTRY]. For a
person to have a decent standard of living in [OUR COUNTRY], please tell me how
necessary do you think it is…(if one wants to).” The possible answers also included
“necessary,” “desirable but not necessary” and “not at all necessary.” The answers
given by citizens living inEU27 are reported inTable 1. Theweightswe use constitute
the entries in column 2. They range from 68% for the absolutely necessity of not
being in arrears on utility bills to 17% for the absolutely necessity of affordability
of a car. We compare our results (using the ten discrete variables introduced above)
with those obtained by weighting all functioning failures equally, and with those
according to the (solely income-based) headcount ratio with the 60-percent-of-the-
median-equivalent income country-specific poverty lines.

The results of our analysis are summarized in Table 2. The first column lists the
official abbreviation of country names, whereas the second set of columns contains
the rankings for the four years obtained according to the headcount ratio on household
equivalent income. The remaining two sets of columns include the values of the
material deprivation index defined in (1) for the various years, the first four with the
Eurobarometer weights, the other four when equal weight is given to each dimension.
The performance of the countries over time is more stable for material deprivation
than for income poverty as measured by the headcount ratio. The results are sensitive
to the choice of theweights for someof the countries such asAustria, Estonia, Iceland,
and Spain. Iceland’s position improves by five when equal weighting is given to all
dimensions in 2005, three in the next two years, and two positions in 2008. Estonia
moves down in the rankings by four positions in 2005 and 2008 and by three in the
two other years.

In Figs. 1and 2 we plot, for each year, the rankings of material deprivation with
respect to the headcount ratio. A very different picture emerges when comparing
the performance of the countries depending on whether we look at income poverty
(measured by the headcount ratio) or at material deprivation, confirming that these
two phenomena differ considerably among European countries. For similar findings,
see, among others, Guio et al. (2009) and Whelan and Maître (2009). We observe
a decrease in the rankings of old EU member states, where a substantial level of
material living conditions has been reached, and a worsening of the position of new
member states, with few exceptions. Ireland, Luxembourg, the UK, and Spain are
the countries which considerably improve their position in all of the years, whereas
for the Republic of Cyprus, the Czech Republic, Hungary, and Slovakia, we observe
the reverse phenomenon. Slovenia belongs to the latter group only for the first three
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Table 1 Answers in percentances to “in the following questions, we would like to understand
better what, in your view, in necessary for people to have what can be considered as an acceptable
or decent standard of living in [our country]. For a person to have a decent standard of living in [our
country], please tell me how necessary do you think it is … (if one wants to)”

EU 27 Absolutely
necessary no one
should have to
do without (%)

Necessary (%) Desirable but not
necessary (%)

Not at all
necessary (%)

A place to live
without a leaking
roof, damp
walls, floors,
foundation

68 28 3 1

To be able to
keep one’s home
adequately warm

62 35 3 0

A place to live
with its own bath
or shower

63 31 6 0

An indoor
flushing toilet
for sole use of
the household

69 27 4 0

To be able to pay
rent or mortgage
payments on
time

62 34 3 0

To be able to pay
utility bills
(electricity,
water, gas, etc.,)
on time

68 30 2 0

To be able to
repay loans
(such as loans to
buy electrical
appliances,
furniture, a car
or student loan
etc.,) on time

48 40 9 2

Paying for one
week annual
holiday away
from home

15 29 43 13

A meal with
meat, chicken, or
fish at least once
every two days

43 37 17 3

(continued)
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Table 1 (continued)

EU 27 Absolutely
necessary no one
should have to
do without (%)

Necessary (%) Desirable but not
necessary (%)

Not at all
necessary (%)

To be able to
cope with an
unexpected
financial expense
of X (national
currency)

32 43 21 2

A fixed
telephone,
landline

18 37 32 13

A mobile phone 12 26 37 25

A color TV 19 36 35 10

A computer 9 21 41 28

A washing
machine

48 41 10 1

A car 17 34 36 13

A place to live
without too
much noise from
neighbors or
noise from the
street (traffic,
businesses,
factories, etc.)

28 43 27 2

A place to live
without too
much pollution
or other
environmental
problems (such
as air pollution,
grime, or
rubbish)

42 44 13 1

A place to live
without crime,
violence, or
vandalism in the
area

49 38 12 1
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Fig. 1 Changes in the ranks in material deprivation (MD) with respect to income poverty (H)
among EU Member States in 2005 and 2006, with Eurobarometer weights (EU) and with Unitary
(EQ) weights

years of the analysis. The highest material deprivation rates are exhibited by the new
EUmember states, where income poverty is low due to a narrow income distribution.

These basic findings suggest that European social policy aiming at assisting cit-
izens with low well-being may be better performed by combining information on
income poverty and material deprivation: indicators based solely on income poverty
do not appear to be sufficient to capture living conditions adequately. Since the EU
endorses the use of relative poverty lines, the absolute component of well-being is
considered with measures of material deprivation.
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Fig. 2 Changes in the ranks in material deprivation (MD) with respect to income poverty (H)
among EU Member States in 2007 and 2007, with Eurobarometer weights (EU) and with Unitary
(EQ) weights

4 Concluding Remarks

In this paper, we provide an axiomatic characterization of a popular index of mul-
tidimensional poverty, the weighted sum of the functioning failures, and apply it
to assess material deprivation in the EU. The novelty of the theoretical approach
is that the characterization applies to a discrete domain where standard techniques
used on a continuum cannot be applied. The measure resembles Bourguignon and
Chakravarty’s (2003) index for measuring multidimensional poverty in the case of
continuous variables. An interesting possibility for future research is to provide a
characterization of an index based on both continuous and discrete data. This index
may also consider the degree of dependence between attributes, an issue that has
attracted increasing attention in the study of multidimensional well-being.
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Abstract The objective of this paper is to derive some integer-majorization results
for variable-sum comparisons. We use an axiomatic framework to establish equiv-
alence between several intuitively reasonable conditions. © 2011 Elsevier Inc. All
rights reserved.
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1 Introduction

Stochastic dominance analysis is frequently employed for ranking alternative social
states: see, for instance, the surveys by Levy (2006) and Shaked and Shanthikumar
(2006). Traditionally, the variables of interest are defined on the continuum.However,
in many applications, variables can only take non-negative integer values. Consider,
for instance, the problem of comparing social exclusion, health conditions, or literacy
levels across different countries or over time. In the evaluation of social exclusion
we may measure the exclusion or deprivation score of a person by the number of
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functionings or dimensions of well-being from which he is excluded.1 Equivalently,
the functioning score of an individual can be defined as the number of dimensions
of well-being possessed by the person. Self-reported health status data typically
consider five health categories (‘poor’, ‘fair’, ‘good’, ‘very good’ and ‘excellent’),
to which positive integer values are assigned in increasing order (see Allison and
Foster 2004). Levels of literacy are usually measured in a similar way.

In all of these applications, the objects to be compared are vectors of non-negative
integers. A few papers have used the stochastic dominance approach to compare vec-
tors of integer-valued variables. Fishburn and Lavalle (1995) considered stochastic
dominance analysis for probability distributions on a finite grid. By a grid, we mean
a finite set of evenly spaced points. Their first and second order stochastic dominance
results can be regarded as unidimensional grid counterparts to the traditional ones.
The central idea underlying the Fishburn–Lavalle analysis goes back to theMuirhead
(1903) integer-majorization result with a constant total.

In a recent contribution, Savaglio and Vannucci (2007) considered a finite set of
basic alternatives/opportunities with a minimum opportunity threshold and devel-
oped a preordering of opportunity profiles involving the height function of an oppor-
tunity set. The height of an opportunity set is the number of opportunity sets which
stand below it according to the preorder. Savaglio and Vannucci refer to this result,
which holds for a fixed sum of heights, as ‘an opportunity-profile counterpart’ to the
Hardy–Littewood–Pólya (1934) theorem in the measurement of inequality.

In each of the above contributions, the vectors under comparison have a fixed
sum. Moreover, Fishburn and Lavalle (1995) compared probability distributions so
that the sums are always equal to one. Milne and Neave (1994) considered stochas-
tic dominance relations between discrete random variables on a common integer
domain and showed that the dominated variable equals, in distribution, the dominat-
ing variable plus perturbation terms. While for first order dominance, perturbations
are downward shift terms, for second-order dominance, all but two of such terms are
disturbance terms with zero mean (See also Aboudi and Thon 1995).

In the applications mentioned above, and in many others, the sum of the scores
need not be constant. The objective of this paper is to extend the integer-majorization
analysis to the case of variable-sum vectors. For concreteness, the dominance rela-
tions are interpreted in terms of ranking of profiles of functioning scores. Our the-
orem can be interpreted as an integer-majorization counterpart to the Shorrocks
(1983)–Marshall and Olkin (1979 A.2. Proposition, p. 108) result on generalized
Lorenz ordering.

Themost innovative feature of our article is the demonstration that if one profile of
functioning scores integer-generalizedLorenzdominates another, then the former can
be obtained from the latter by a sequence of transformations satisfying monotonicity
and non-increasingness ofmarginal social evaluations, wheremonotonicity demands
that if the functioning score of a person increases by one, then the resulting profile of
scores cannot have a lower social evaluation than the original one. On the other hand,

1See Akerlof (1997), Atkinson (1998) and Chakravarty and D’Ambrosio (2006), among others, for
alternative approaches to the measurement of social exclusion.
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non-increasingness of marginal social evaluations indicates that an increase in the
functioning score of a person by one has higher impact on the social evaluation the
lower is the person’s functioning score. Another innovative aspect of our result is that
we determine theminimal number of transformations that are necessary tomove from
one distribution to another, where the latter integer-generalized Lorenz dominates the
former. In order to derive this result, wemake use of a restricted set of transformations
satisfying monotonicity and non-increasingness of marginal social evaluations that
are rank-preserving and ‘distance-minimizing’, where distance-minimization means
that the transformations do not increase the gap between achievements of individuals
with the same position in the initial and final distribution. Milne and Neave (1994)
did not develop any result of this type. For a fixed total, our theorem is similar to
Theorem 2 in Savaglio and Vannucci (2007),with the exception that our result is
obtained by applying rank-preserving and ‘distance-minimizing’ transformations,
and gives an integer version of the demonstration that of two income distributions
with a given total, if one Lorenz dominates the other, then the former can be obtained
from the latter by a sequence of progressive transfers and vice versa (see Atkinson
1970; Dasgupta et al. 1973; Kolm 1969; Rothschild and Stiglitz 1970, 1973).

2 Preliminaries and Notation

For any society with a given population size of n ≥ 2, there is a finite non-empty set
of m ∈ N [where N denotes the set of natural numbers] attributes or functionings
of well-being, where m ≥ 1 is given exogenously. Let xi be the functioning score of
person i, that is, the number of functionings in which person i is able to participate
(see Chakravarty and D’Ambrosio 2006). Thus, xi takes on integer values from 0 to
m. The whole population score profile is the vector x = (x1, x2, . . . , xi, . . . , xn). Let
Dn = ⊗n

i=1{0, 1, . . . ,m} be the set of attainment profiles for this n-person society.2

A measure of functioning evaluation is a function En : Dn → R, where R repre-
sents the real line. For any x ∈ Dn,En(x) is an indicator of the degree of functioning
attainment enjoyed by the persons in the society.

We write x̂ to denote the non-decreasingly ordered permutation of x, that is,
x̂1 ≤ x̂2 ≤ . . . ≤ x̂i ≤ . . . ≤ x̂n−1 ≤ x̂n.

The following properties specify the behavior of the functioning evaluation indi-
cators En(·).
Axiom 1 (Anonymity [ANY ]). For all n ∈ N , x ∈ Dn,,En(x) = En(xP), where P is
an x × n permutation matrix.

Axiom 2 (Monotonicity [MON]). For all n ∈ N , x ∈ Dn,, all i ∈ {1, 2, . . . , n} such
that xi < m

2For simplicity, we restrict attention to a fixed population set up. But our results can be extended
easily to the variable population case under the assumption of replication invariance of the evaluation
function in the spirit of Dasgupta et al. (1973).
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En(x1, x2, . . . , xi + 1, . . . , xn) ≥ En(x1, x2, . . . , xi, . . . , xn).

Axiom 3 (Non-increasingness of marginal evaluations [NIME]). For all n ∈ N , x ∈
Dn,, all i, j ∈ {1, 2, …, n}, if m > xi > xj then

En(x1, x2, . . . , xj + 1, . . . , xi, . . . , xn) ≥ En(x1, x2, . . . , xj, . . . , xi + 1, . . . , xn).

This set of axioms identifies the impact on the functioning evaluation of some
transformations of the vectors x. We now make these transformations explicit.

Axiom ANY requires that the social evaluation does not depend on the identities
of the individuals but only on their attainment profiles. Therefore, permuting the
identities of the individuals does not affect the functioning evaluation. We introduce
first the following transformation.

Definition 1 (TA transformation). For all x, y ∈ Dn,, x is obtained from y through
a “TA transformation”, denoted x = TA(y), if and only if there exists a permutation
function π : {1, 2, …, n} → {1, 2, …, n} such that xπ(i) = yi for all i ∈ {1, 2, . . . , n}.

Let � denote the set of all TA transformations associated with all permutation
functionsπ . Therefore, ANY is equivalent to stating that for allTA ∈ �, if x = TA(y),
then En(x) = En(y).

The following transformation is associated with the MON axiom, it requires that
x is obtained from y through a unit increase in functioning score of one individual.

Definition 2 (TM transformation). For all x, y ∈ Dn,, x is obtained from y through a
“TM transformation”, denoted x = TM (y), if and only if there exists i ∈ {1, 2, . . . , n}
such that xπ = yi + 1 ≤ m and xh = yh for all i ∈ {1, 2, . . . , n}\{i}.

MON says that under a TM transformation, the final distribution cannot exhibit a
lower level of functioning evaluation than the original one. Let � denote the set of
all TM transformations. Then, MON is equivalent to stating that for all TM ∈ �, if
x = TM (y), then En(x) ≥ En(y).

The next transformation is associated with the NIME axiom, which says that an
increase in an individual’s functioning attainment score has a higher impact on the
social evaluation the lower is the individual’s functioning score.

Definition 3 (TNIME transformation). For all x, y ∈ Dn,, x is obtained from y through
a “TNIME transformation”, denoted x = TNIIME(y), if and only if there exists i ∈
{1, 2, . . . , n} such that m > yi − 1 > yj, xh = yh for all h �= i. j, xi = yi − 1 and
xi = yj + 1.

Let � denote the set of all TNIME transformations. Axiom NIME is, therefore,
equivalent to stating that for all TNIME ∈ �, if x = TNIME(y), then En(x) ≥ En(y).3

3This implication can be obtained as follows: note that the NIME axiom posits that

En(x1, . . . , xj + 1, . . . , xi, . . . , xn) − En(x1, . . . , xj, . . . , xi, . . . , xn)

≥ En(x1, . . . , xj, . . . , xi + 1, . . . , xn) − En(x1, . . . , xj, . . . , xi, . . . xn)
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In order to investigate the minimal number of TM and TNIME transformations link-
ing two ordered distributions ẑ and ŷ such that ẑ can be obtained from ŷ through a
finite sequence ofTM andTNIME transformations, wewill introduce the following two
sets of transformations that are respectively included in� and�. Both definitions are
based on ranked distributions and require that the transformations are rank-preserving
and do not increase the absolute distance

∣
∣ẑi − x̂i

∣
∣ between ẑ and x̂ evaluated at each

position i ∈ {1, 2, . . . , n}. Here we have restricted attention to ordered distributions
to strengthen the normative requirement of the TM and TNIME transformations and
formalize the notion of distance-minimizing transformation that is based on compar-
isons between the attainments of individuals at the same rank in ẑ, ŷ and x̂. Because
of the rank-preserving nature of the transformations, these comparisons involve only
individuals whose attainments are affected by the transformations.

Definition 4 (TM |Ẑ transformation). For all x, y ∈ Dn,, x is obtained from y
through a “TM |Ẑ transformation”, denoted x = TM |ẑ(y), if and only if there exists
i ∈ {1, 2, . . . , n} such that x̂i = ŷi +1 ≤ m, and x̂h = ŷh for all h ∈ {1, 2, . . . , n}\{i},
where (a) ŷi < ŷ1+1 [with ŷ1+1 := m] and (b) ŷi < ẑi.

Condition (a) in the previous definition requires that the transformation is rank-
preserving while condition (b) requires that

∣
∣ẑi − ŷi

∣
∣ >

∣
∣ẑi − x̂i

∣
∣.

Definition 5 (TNIME|Ẑ transformation). For all x, y ∈ Dn,, x is obtained from y
through a “TNIME|Ẑ transformation”, denoted x = TNIME|ẑ(y), if and only if there
exists i ∈ {1, 2, . . . , n} such that m > ŷi − 1 > ŷj, x̂h = ŷh for all h �= i, j, x̂i =
ŷi − 1, x̂j = ŷj + 1 (a.1) ŷi > ŷi−1, (a.2) ŷj < ŷj+1 and (b.1) ŷi > ẑi (b.2) ŷj < ẑj.

Conditions (a.1) and (a.2) in the previous definition impose the restriction that
the transformation is rank preserving, while conditions (b.1) and (b.2) require that
∣
∣ẑk − ŷk

∣
∣ >

∣
∣ẑk − x̂k

∣
∣ for k ∈ {i, j}.

3 The Results

The following theorem identifies the set of partial orderings defined over distributions
inDn consistent with the measures satisfying the previous axioms. A rank-dependent
class of linear social evaluation indices is also presented (see Weymark 1981; Yaari
1987). It can be considered equivalent to the generalized Gini social evaluation func-
tion for profiles of opportunity sets characterized in Weymark (2003) for a domain
analogous to Dn.

Theorem 1 Let x, y ∈ Dn,. The following statements are equivalent:

while if x = TMIME(y), then the conditions En(x) ≥ En(y) is

En(y1, . . . , yj + 1, . . . , yi−1, . . . , yn) ≥ En(y1, . . . , yj, . . . , yi, . . . , yn)

SubtractingEn(y1, . . . , yj, . . . , yi−1 . . . , yn) from both sides of the second inequality, we obtain
the NIME axiom requirement if yi − 1 = xi and yk = xk for all k �= i.
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(1)
∑n

i=1 υn
i · x̂i ≥ ∑n

i=1 υn
i · ŷi for all υn

i ≥ υn
i+1 ≥ 0

(2)
∑k

i=1 x̂i ≥ ∑k
i=1 ŷi for all k = 1, 2, . . . , n.

(3) Either x̂ = ŷ or x̂ can be obtained from ŷ through a finite sequence of TT |x̂ and
TNIME|x̂ transformation.

(4) x can be obtained from y through a finite sequence of TA,TM and TNIME trans-
formations.

(5) En(x) ≥ En(y) for all indices En(·) satisfying ANY, MON and NIME.

According to condition (1) of Theorem 1, the weighted sum of individual func-
tionings levels in profile x̂ is at least as high as that in the profile ŷ, where the
non-negative weights are arranged non-increasingly. Given that x̂ and ŷ are arranged
in non-decreasing order, condition (2) says that the cumulative sum of the function-
ing scores of the first k persons in x̂ is at least as large as that in ŷ, where k = 1, 2,
…, n, that is, x integer-generalized Lorenz dominates y. Condition (5) of the theorem
shows that these two conditions are equivalent to the requirement that y does not
have a larger social functioning evaluation than x for all social evaluation indices
that fulfill ANY, MON and NIME. Condition (4) identifies the corresponding set of
transformations leading from y to x. More interestingly, condition (3) shows that it is
possible to move from ŷ to x̂ through a finite set of TM |x̂ and TNIME|x̂ transformations.
Because of their construction, these sequences will also be minimal in terms of the
number of steps leading from ŷ to x̂.

Proof of Theorem 1 If x̂ = ŷ the implications are immediate. We consider the case
x̂ �= ŷ.

(1) ⇒ (2): Le δi := x̂i − ŷi. We prove that
∑n

i=1 υn
i · δi ≥ 0 for all υn

i ≥ υn
i+1 ≥ 0

implies
∑k

i=1 δi ≥ 0 for all k = 1, 2, . . . , n. Without loss of generality, we define
υn
i = ∑n

k=i α
n
k . If αn

k ≥ 0 for all k = 1, 2, . . . , n then υn
i ≥ υn

i+1 ≥ 0. As a result, we
can rewrite

n
∑

i=1

υn
i · δi =

n
∑

i=1

n
∑

k=i

αn
k · δi =

n
∑

k=1

αn
k

k
∑

i=1

δi

Condition (1) is, therefore, equivalent to
∑n

k=1 αk
n

∑k
i=1(x̂i − ŷi) ≥ 0 for all αn

k ≥
0. Condition (2) follows by letting αn

k∗ = 0 for all k∗ �= k and αn
k > 0.

(2) ⇒ (3): We show that if (2) is satisfied, then it is possible to decompose
the vector of elements δi into a finite sequence of changes associated with TM |x̂
and/or TNIME|x̂ transformations. The decomposition process is divided into two parts.
The first part only applies if

∑n
i=1 x̂i �= ∑n

i=1 ŷi. (A) First, we identify the TM |x̂
transformations δ∗

i such that
∑n

i=1 x̂i = ∑n
i=1

(

ŷi + δ∗
i

)

, that is, starting from ŷ we
get a distribution with the same total functioning score as x̂. (B) Then we compare
the two distributions x̂ and ŷ+δ∗ with same total scores identifying the set of TNIME|x̂
transformations leading to x̂ starting from ŷ + δ∗, where δ* is the vector of δ∗

i ’s.

Part (A)
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Let δi : x̂i − ŷi and 	i := ŷt+1 − ŷi ≥ 0 for i ∈ {1, 2, . . . , n}, where ŷn+1 : m. Let
Xk = ∑k

i=1 x̂i and X = ∑n
i=1 x̂i with analogous notation Yk and Y for distribution y.

Suppose that X > Y. Because X > Y, there must be some k ∈ {1, …, n} such
that yk < m. Because yn+1 = m, it then follows that there is some i ∈ {1, …, n}for
which 	i > 0. Let i∗ := max{i : δi > 0,	i > 0}. Then we identify the sequence
of TM |x̂ transformations making use of a sequence of increases δ

(t)
i ∈ {1, . . . ,m},

where t denotes the index of the element in the sequence and i is the position of the
individual experiencing the increase in the functioning score. Each of these increases
corresponds to δ

(t)
i many TM |x̂-type transformations and will lead to a sequence of

distributions ŷ(t) starting from ŷ(0) : ŷ.
Let δ

(1)
i∗ := min{δi∗ ,	i∗ ,X − Y } be the first element of the sequence. By con-

struction, the new distribution ŷ(1) is obtained by letting ŷ(1) : ŷ for all i �= i∗ and
ŷ(1)
i∗ : ŷi∗ + δ

(1)
i∗ . According to the definition of δ

(1)
i∗ , the ranking in ŷ(1) is preserved

(because	i∗ > 0 is considered in the definition of δ(1)
i∗ ). Furthermore, ŷi∗ < ŷ(1)

i∗ ≤ x̂i∗

(given that δi∗ > 0 is considered in the definition of δ(1)
i∗ ) and X ≥ Y (1) > Y (because

X − Y > 0 is considered in the definition of δ
(1)
i∗ .

We prove that:

Claim (i) If x̂ �= ŷ then i∗ exists.

Claim (ii)
∑k

i=1 x̂i ≥ ∑k
i=1 ŷ

(1)
i ≥ ∑k

i=1 ŷi for all k ∈= {1, 2, . . . , n}.
Proof of Claim (i) Consider x̂ �= ŷ and suppose that i∗ does not exist. Then, recalling
that, by dentition, 	i ≥ 0, it follows that for any i ∈ {1, 2, . . . , n} either δi ≤ 0 or
	i = 0.Recalling again that

∑k
i=1 δi ≥ 0 for all i and x̂ �= ŷ, it follows that there exists

some position i0 such that δi0 = x̂i0 − ŷi0 > 0. Thus, we necessarily have 	i0 = 0,
implying ŷi0 = ŷi0+1. Suppose that i0 �= n, then, since the vector x̂ is ranked in
non-decreasing order, we also have x̂i0+1 ≥ x̂i0 leading to x̂i0+1 ≥ x̂i0 > ŷi0 = ŷi0+1.
Therefore, x̂i0+1 − ŷi0+1 > 0, thereby contradicting our initial assumption unless
	i0+1 = 0. By repeating the same argument, we get to the case where i0 + 1 = n. In
view of the initial assumption, then x̂n − ŷn > 0 and 	n = 0 have to hold. However,
by construction 	n = 0 ↔ m = ŷn+1 = ŷn . Thus, since ŷn = m is the maximum
functioning score, it is impossible that δn = x̂n − ŷn > 0. This final consideration
contradicts the initial hypothesis that i* does not exist, thereby, proving Claim (i).

Proof of Claim (ii) By construction
∑k

i=1 ŷ
(1)
i ≥ ∑k

i=1 ŷi for all k. We need to prove
that Xk = ∑k

i=1 x̂i ≥ ∑k
i=1 ŷ

(1)
i = Y (1)

k for all k ∈ {1, 2, . . . , n}.
Condition Xk ≥ Y (1)

k holds by construction for k ∈ {1, 2, . . . , i∗} because Y (1)
k =

Yk for k ∈ {1, 2, . . . , i∗ − 1} and consequently, since δi∗ ≥ δ
(1)
i∗ > 0 we have also

Xi∗ −Y (1)
i∗ = Xi∗−1−Y (1)

i∗−1+(δi∗ − δ
(1)
i∗ ). Recalling thatXi∗−1−Y (1)

i∗−1 = Xi∗−1−Yi∗−1≥
0 and that δi∗ − δ

(1)
i∗ ≥ 0, we obtain X∗ ≥ Y (1)

i∗ .
We now consider the case where k ∈ {i∗+1, . . . n}. Let� := argmin{Xk −Yk :k ∈

{i∗ + 1, . . . , n}}. The condition Xk ≥ Y (1)
k does not hold if there exist k0 ∈ � (not

necessarily unique) such that Xk0 − Yk0 < δ
(1)
i∗ .
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If n /∈ �, then for any k0 ∈ �, there exists an i′ > k0 such that δi′ > 0. If 	i′ > 0,
let i0 = i′. If	i′ = 0, reasoning as in the proof of Claim (i), theremust exist an i0 > i′
such that both δi0 > 0 and 	i0 > 0. Because i0 > k0 > i∗, we have a contradiction
with the definition of i∗.

If n ∈ �, then Xn −Yn = X −Y > 0. In this case, by construction we have argued
that X −Y ≥ δ

(1)
i∗ , thereby, establishing the final contradiction that proves Claim (ii).

Having derived the first stage of the algorithm, we can move to its general spec-
ification. The decomposition algorithm can be constructed letting ŷ(t)

i := ŷ(t−1)
i for

all i �= i∗ and ŷ(t)
i∗ := ŷ(t−1)

i∗ + δ
(t)
i∗ , where ŷ

(0) := ŷ. We then let δi,t := x̂i − ŷ(t−1)
i and

	i,t := ŷ(t−1)
i+1 − ŷ(t−1)

i for i ∈ {1, 2, . . . , n}, where ŷn+1,t := m and Y (t) = ∑n
i=1 ŷ

(t)
i .

The algorithm is obtained by identifying at each stage t

i∗ := max{i : δi,t > 0,	i,t > 0} (1)

and

δ
(t)
i∗ := min{δi∗,t;	i∗,t;X − Y (t−1)} (2)

The procedure followed by the algorithm stops after T stages when δ
(T )
i∗ = X −

Y (T−1). Given that the difference X − Y (T−1) is reduced by at least one unit after
each stage, T equals at most X − Y, which is finite. As a result, the final distribution
ŷ(T ) is obtained as ŷ + δ

∗
, where the vector δ

∗
is such that δ

∗
i = ∑T

t=1 δ
(t)
i for all i

associated with at least one positive δ
(i)
i and 0 for all the other elements of δ

∗
.

Part (B)

We consider now the case X = Y, where the distribution ŷ can also be considered as
obtained through the set of transformations in Part (A). We then apply a sequence
of TNIME|x̂ transformations to ŷ in order to obtain x̂. Recall that by construction ŷ(t)

is obtained from ŷ(t−1) through a TNIME|x̂ transformation if ŷ(t)
j − ŷ(t−1)

j = 1 and

ŷ(t)
i − ŷ(t−1)

i = −1, where j < i and ŷ(t)
h − ŷ(t−1)

h = 0 for all h �= i, j, where these
transformations do not affect the ranking of the agents involved. Moreover, it is
required that x̂j − ŷ(t−1)

j > 0 and x̂i − ŷ(t−1)
j < 0.

We now introduce the algorithm that decomposes the transition from ŷ to x̂ apply-
ing TNIME|x̂ transformation. We define δi,t and 	i,t as in Part (A). Let

i− := max{i : δi,t < 0,	i−1,t > 0} (3)

and letting

i+ := max{i : δi,t > 0,	i,t > 0} (4)

The algorithm is constructed by letting ŷ(t)
i := ŷ(t−1)

i for all i �= i−, i+, ŷ(t)
h :=

ŷ(t−1)
h + δ

(t)
h for h = i− and h = i+, where ŷ(0) : ŷ.
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Claim (iii) If x̂ �= ŷ, then i− and i+ exist. Moreover, i− > i+.

Proof of Claim (iii) For expositional purposes, without loss of generality, we let
t = 1 and suppress the subscript t in the notation of this proof. The claim of existence
of i+ is thus analogous to Claim (i) in Part (A) concerning i∗.

In order to prove that i− exists and i− > i+, we note that Xk ≥ Yk for all k with
X = Y, or equivalently,

∑k
i=1 δi ≥ 0 for all k and

∑n
i=1 δi = 0, which imply that

∑n
i=k δi ≤ 0 for all k ∈ {1, 2, . . . , n− 1}. Thus, the last δi element which is different

from 0 is negative. Because x̂ �= ŷ, such an element exists. Suppose that i− does
not exist. Then there exists j such that δj < 0 and δi = 0 for i ∈ {j + 1, 2, . . . , n}
with 	j−1 = 0. Note that δj < 0 ↔ x̂j < ŷj and 	j−1 = 0 ↔ ŷj = ŷj−1. Recalling
that x̂j−1 ≤ x̂j, it follows that, x̂j−1 ≤ x̂j < ŷj = ŷj−1, and thus, δj−1 < 0. Then if
	j−2 > 0 it follows that i− exists and i− > i+. Otherwise, if 	j−2 = 0, we can repeat
the previous argument. However, notice that in order to guarantee that Xk ≥ Yk for
all k, because x̂ �= ŷ, there must exist i such that δi > 0 and, therefore, there is at
least one 
 > n such that δ
 ≥ 0 while δ
+1 < 0. Hence, it is necessarily true that
	
 > 0, otherwise, if 	
 = 0, we obtain x̂
 ≥ ŷ
 = ŷ
+1 > x̂
+1, which contradicts
x̂
 ≤ x̂
+1. Combining 	
 > 0 with δ
+1 < 0, we obtain that i− = 
 + 1. Moreover,
i+ ≤ 
 and thus i− > i+, which completes the proof of Claim (iii).

We now let

−δ
(t)
i− = δ

(t)
i+ := min{δi+,t − δi−,t;	i+,t;	i−−1,t},

which completes the algorithm for deriving the set of TNIME|x̂ transformations. Note
that the transformations −δ

(t)
i− = δ

(t)
i+ > 0, where i+ < i−, coincides with δ

(t)
i+ many

TNIME|x̂ transformations. Furthermore, these transformations are rank-preserving
given that by construction δ

(t)
i+ ≤ 	i+,t and δ

(t)
i− ≥ 	i−−1,t . They are also distance-

minimizing since δ
(t)
i+ > 0 and δ

(t)
i− < 0.

Note also that, by construction, after each transformation we reduce
∑n

i=1 |δi| by
2 units. Thus, T = ∑n

i=1 |δi|/2 is the (finite) number of TNIME|x̂ transformations
implementing x̂ from ŷ.

In order to complete the proof we show that:

Claim (iv)
∑k

i=1 x̂i ≥ ∑k
i=1 ŷ

(t)
i ≥ ∑k

i=1 ŷ
(t−1)
i ≥ ∑k

i=1 ŷi for all k ∈ {1, 2, …, n}, t
∈ {1, 2, …, T}.

Proof of Claim (iv) Each TNIME|x̂ transformation implies that
∑k

i=1 ŷ
(t)
i ≥

∑k
i=1 ŷ

(t−1)
i for all k ∈ {1, 2, . . . , n}, where t ∈ {1, 2, . . . ,T }. For t = 1 we have

∑k
i=1 ŷ

(1)
i ≥ ∑k

i=1 ŷ
(0)
i = ∑k

i=1 ŷi, while for t = T we have
∑k

i=1 x̂i = ∑k
i=1 ŷ

(T )
i ≥

∑k
i=1 ŷ

(T−1)
i . Because of transitivity of the dominance relation, it is always guaran-

teed that
∑k

i=1 x̂i ≥ ∑k
i=1 ŷ

(t)
i for t ∈ {1, 2, …, T − 1}.Thus, dominance holds at

each stage of the algorithm.
(3) ⇒ (4): Note that the sets of TM |x̂ and TNIME|x̂ transformations are respec-

tively subsets of the sets of TM and TNIME transformations. Moreover, because of TA
transformations we can move attention from x̂ and ŷ to x and y.
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(4) ⇒ (5): By definition.
(5) ⇒ (1): We prove that the class of social evaluation measures in (1) is a

special case of those in (5). Let En
v (x) := ∑n

i=1 υn
i · x̂i. The index En

υ satisfies ANY
since it is defined in terms of ranked vectors x̂. En

v satisfies MON if and only if
En

υ(x′) − En
υ(x) = ∑n

j=1 υn
j · (x̂′

j − x̂j) ≥ 0 if x′ = TM (x). Letting x̂j − x̂′
j = 0 for

all j �= i and x̂′
i − x̂′

i = 1, then En
υ(x′) − En

υ(x) ≥ 0 implies that υn
i ≥ 0. Given that

we can choose any i ∈ {1, 2, …, n}, it follows that a necessary condition for En
υ to

satisfy MON is υn
i ≥ 0 for all i. This condition is also sufficient.

En
υ satisfiesNIME if and only ifEn

υ(x′)−En
υ(x) ≥ 0, where x′ = TNIME(x). Suppose

that x is obtained from x′ through a TNIME transformation involving individuals in
positions i and i+1 for i ≤ n−1. Then En

υ(x′)−En
υ(x) = υn

i −υn
i+1. Thus, υ

n
i ≥ υn

i+1
for all i ∈ {1, 2, . . . , n − 1} is necessary for En

υ to satisfy NIME. It is also sufficient.
Of interest is the algorithm adopted for the decomposition of the integer-

generalized Lorenz dominance condition into two sequences of TM and TNIME trans-
formations. Both sequences of transformations TM |x̂ and TNIME|x̂ are rank-preserving
and distance-minimizing. In this respect, the algorithm in Part (B) of our proof differs
from the one used to prove integer majorization in Muirhead (1903) (and also the
one in Marshall and Olkin 1979, Lemma B.B.1, p. 21). It also differs from those
in Bossert and Fleurbaey (2002) and Aboudi and Thon (2006) that are defined for
real variables which are distance-minimizing but not rank-preserving. Moreover, our
algorithm in Part (A) differs from the one adopted in Shorrocks (1983) for the same
purposes because the latter does not necessarily guarantee that ŷ(t)

i ≤ x̂i at each stage
t if individual i is affected by a TM transformation.

Our algorithm and the integer nature of the variables considered allows us to derive
the minimal TM and TTIME transformations leading from ŷ to x̂ (see also Deineko
et al. 2009). The following remark is a direct consequence of the fact that condition
(2) implies condition (3) in Theorem 1.

Remark 1 For any x, y ∈ Dn such that
∑k

i=1 x̂i ≥ ∑k
i=1 ŷ for all k = 1, 2, …, n,

the minimal numbers of TM and TTIME transformations leading from ŷ to x̂, denoted
respectively by #Tn

M (y, x) and #Tn
NIME(y, x) are

#Tn
M (y, x) = X − Y ; #Tn

NIME(y, x) =
∑n

i=1

∣
∣x̂i − ŷi

∣
∣ − (X − Y )

2
; (5)

These indices can be considered as bidimensionalmeasures of “distance” between
the two distributions ranked according to integer-generalized Lorenz dominance.

When X > Y the algorithm in Part (A) of the proof of Theorem 1, that makes
use of TM |x̂ transformations, allows us to obtain a distribution which is “as close as
possible” to x̂ in the metric of the number of TTIME transformations as illustrated in
the following example.

Example 1 Let x̂ = (2, 2), ŷ = (1, 2), and ẑ = (0, 3) with m = 4. Note
∑k

i=1 x̂i ≥ ∑k
i=1 ŷi ≥ ∑k

i=1 ẑ for all k ∈ {1, 2}, and X − Y = X − Z = 1.
Moreover, x̂ rank dominates ŷ, that is, x̂i ≥ ŷi for i ∈ {1, 2} . If we modify ŷ, with a
TM transformation that increases the higher functioning score leading to ŷ′ = (1, 3),
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the integer-generalized Lorenz dominance condition for x̂ over ŷ′ is satisfied. How-
ever, one more TNIME transformation is then necessary to lead to x̂ starting from ŷ′.
If instead we use the unique TM |x̂ admissible transformation that increases the lower
functioning score in ŷ, we obtain immediately x̂. Similar considerations apply in
moving from ẑ to x̂. If we use a TM transformation that is not distance-minimizing
from ẑ to obtain ẑ′ = (0, 4), then two more TNIME transformations are necessary to
lead to x̂ starting from ẑ′. If instead we apply the unique TM |x̂ admissible transfor-
mation to ẑ′, we obtain ẑ′′ = (1, 3) that requires only one TNIME transformation to
lead to x̂.

If x̂ rank dominates ŷ, only TM |x̂ transformations are necessary to move from
ŷ to x̂. In general, if x̂ integer-generalized Lorenz dominates ŷ, then by using TM
transformations that are not distance-minimizing with respect to x̂, we increase the
minimal number of TNIME transformations that are required to lead to x̂.

4 Conclusion

Often it becomes necessary to rank social states where each component of a state is
represented by an integer. In this paper, we have developed somemajorization results
for ranking states of this type under the quite general assumption of variability of the
total. Our characterizations can be treated as generalizations of the existing results
in the literature.
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Multidimensional Indicators
of Inequality and Poverty

Satya R. Chakravarty and Maria Ana Lugo

Abstract This chapter reviews the main features of multidimensional indices of
inequality and poverty. For each of these cases, the discussion is divided into two
approaches: a direct approach, where desirable properties are specified and ameasure
of inequality or poverty obtained; and the inclusive measure of well-being approach,
where an index of individual well-being is defined in a first step, and the measure
of inequality or poverty obtained in a second step. The emphasis will be on the
properties that different measures satisfy and on the main justifications put forward
when properties disagree.

Keywords Multidimensional indicators · Inequality · Poverty · Well-being

Prepared for Handbook on Well-Being and Public Policy, edited by Matthew Adler
and Marc Fleurbaey, Oxford University Press (OUP), Oxford.

1 Introduction

The traditional focus for the assessment of the well-being or destitution of individu-
als has been on the income distribution. It is indeed true that a person’s income often
determines howmuchof different goods he or she can consume; higher income allows
a person to consume more of some of the goods and/or shift consumption to higher
quality variants. But income as the only attribute of well-being is often inappropriate.
A sub-optimal supply of a public good in a community might not be sufficient for
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the residents. For example, many people in developing countries suffer or even die
frommalaria because themalaria prevention program, a local public good, is not well
organized or available at any price. Thus, it may not be possible to trade-off income
for a better position in a non-income attributewhich is non-tradable in amarket. Like-
wise, a healthy porter who just earns hand-to-mouth daily by loading and unloading
of cargos in a dockyard cannot tradeoff his good health for any additional income.
These illustrations indicate that non-income dimensions of well-being contribute sig-
nificantly to quality of life. Examples of such dimensions are literacy, housing, life
expectancy, public goods, social cohesion, human security and so on. This supports
the view that traditional economic indices of well-being should be supplemented
with alternative indicators that capture non-economic or non-material dimensions
of human life. In fact, it is now commonly accepted that human well-being should
be regarded as a multidimensional phenomenon along the lines advocated by Rawls
(1971), Kolm (1977), Townsend (1979), Streeten (1981), Atkinson and Bourguignon
(1982), Sen (1985, 1993), Stewart (1985), Doyal and Gough (1991), Ramsay (1992),
Cummins (1996), Ravallion (1996), Nussbaum (2000) and Thorbecke (2008).1

Consequently, in recent years a very important development in the research on the
measurement ofwell-being of a population is the shift of emphasis froma singlemon-
etary dimension to a multidimensional framework that incorporates non-monetary
aspects as well. One of the most influential formalization of this is the capability
approach—discussed in more detail in Alkire chapter 21, the OUP Handbook. For
nearly two decades now, Sen (1985, 1993) has emphasized the need to move away
from the space of incomes or resources for assessing individuals’ well-being in favor
of a focus on the spaces of functionings and capabilities. Functionings are “parts
of the state of a person in particular the things that he or she manages to do or be
in leading a life” (Sen 1993, 31) (e.g., being healthy, riding a bicycle), whereas the
capability set is the set of potential functionings vectors available to the person. The
key idea behind the capabilities approach is that individuals differ in their ability to
transform resources into well-being or “flourishing”. Even for those goods for which
markets exist, there is no reason to believe that relative market prices between the
particular goods included as proxies for certain functionings is an appropriate approx-
imation for the well-being trade-off between the functionings themselves since the
rate of transformation of goods into functionings may differ and also vary across
individuals.

The recognition that well-being and deprivation are multi-faceted does not neces-
sarily lead to a multidimensional indicator—a single number summarizing society’s
overall condition, the degree of inequality, or the degree of poverty as a function of

1The World Development Report 2000–2001 stressed the view that traditional view of poverty
should be supplemented with low achievements in health and education. The multidimensional
nature of well-being is implicitly recognized by the set of dimensions considered by the European
Union to judge the performance of its member countries (Atkinson et al. 2002). European Union
policy recommends that for measuring failure in material living conditions income-based poverty
should be combined with low employment and material deprivation (Bossert et al. 2013). The
Commission on the Measurement of Economic Performance and Social Progress has also insisted
on looking at well-being of a population from a multidimensional perspective (Stiglitz et al. 2009).
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the pattern of individuals’ achievements along the multiple well-being dimensions.
Some have argued that a portfolio of indicators (Atkinson et al. 2002; Ravallion
2011), whereby each dimension is assessed separately, is to be preferred so that the
efforts are focused on the “best possible distinct measures of the various dimensions
of poverty […] rather than a single ‘multidimensional index’” (Ravallion 2011, 13).
This approach also avoids requiring agreement on the relative importance of each
dimension. On the other hand, the often called ‘dashboard approach’, while looking
at the distribution of each of the components, will overlook the dependency struc-
ture in the joint distribution of these achievements, whichmay represent an important
aspect in the comparison of distributions (Tsui 1999; Pogge 2002; Stiglitz et al. 2009).
Others have favoured an intermediate approach which combines a dimension-wise
assessment with a description of the dependency structure (Atkinson et al. 2010;
Decancq 2014; Ferreira and Lugo 2013). A third and influential approach is through
the use of a multivariate version of stochastic dominance (for instance, Atkinson
and Bourguignon 1982, 1987; Duclos et al. 2006; Muller and Trannoy 2011, 2012).
The multivariate stochastic dominance approach is more readily applied when the
number of dimensions is limited; for a discussion, see Duclos and Tiberti, chapter 23,
the OUP Handbook.

However, multidimensional indicators of social welfare (overall social condition),
inequality and deprivation have been embraced by both among academics and policy
makers. Since 1990 the United Nations Development Program has been using the
HumanDevelopment Index,which combines incomewith life expectancy at birth and
educational achievement, instead of the per capita GDP, to rank countries.2 Recently,
theMultidimensional Poverty IndexdevelopedbyAlkire andSantos (2010)3 has been
incorporated into the UNDP’s core indicators. The OECD launched the Better Life
Index website where the user can build her own index assigning weights to eleven
dimensions of well-being that have been found to be essential in many countries
and cultures (OECD 2011). Countries are also proposing their own measures of
multidimensional poverty.4 The National Council for the Evaluation of Social Policy
(CONEVAL) inMexico adopted amultidimensional index of poverty as the country’s
official poverty measure (CONEVAL 2010). A similar multidimensional measure is
used in Colombia and Bhutan and various other countries (such as El Salvador,
Pakistan, and Malaysia) are considering following these examples.

Undoubtedly, multidimensional indices are appealing in that they provide unique
rankings, and thus are seen as useful tools for governments and analysts to readily
obtain a picture of the distribution of well-being of a society.

2Alkire and Foster (2010) consider an inequality adjusted HDI, which uses an Atkinson-type aggre-
gation for each dimension.
3See Alkire, chapter 21, the OUP Handbook, for a discussion of the Multidimensional Poverty
Index.
4While the interest in developing a multidimensional poverty measure in Latin America and Europe
has gained force in recent years, there is a long tradition of using the counting approach to consider
the existence of multiple deprivations at the same time—for instance, the Basic Needs Approach
widely used in Latin American countries since the 1980s and still relevant nowadays. See Atkinson
(2003).
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Several normative issues are involved in the selection of a multidimensional indi-
cator—of overall social condition, poverty or inequality. Of critical importance, one
must decide on a functional form to aggregate attributes and on the relative weights
to be assigned to each of these attributes.5 The rest of the chapter will concentrate
on alternative functional forms proposed for measuring multidimensional inequality
and poverty.6 But weights also play a crucial role in determining the set of dimen-
sions to be included in the analysis (a dimension with zero weight is excluded) and
the trade-offs between the selected dimensions. See Decancq and Lugo (2013).

The literature suggests a variety of approaches for specifying multidimensional
indices of inequality and poverty. These include the axiomatic approach, which starts
with desirable properties of the indicator and derives a family of indices that satis-
fies these principles; the fuzzy set approach; information theory; and the statistical
approach. Often there may be insufficient information concerning achievements of
different attributes. In a situation of this type where indefiniteness arises from ambi-
guity, the fuzzy set approach is quite sensible (Chakravarty 2006). The statistical
approach relies on multivariate statistical techniques such as principal components
or latent variable models to aggregate dimensions (Klasen 2000; Krishnakumar and
Nadar 2008). In the information theory-based approach aggregation of achievements
relies on the Shannon entropy formula (Maasoumi 1986;Maasoumi and Lugo 2008).
In this chapter, our focus will be on the axiomatic approach. For ease of exposition,
the emphasis will be on the properties that different measures satisfy (rather than on
the set of axioms that characterize them) and on the main justifications put forward
when properties disagree.

The next section introduces the notation and framework that will be used through-
out the chapter. Sections 3 and 4 discuss the properties and provide some examples
of indicators of multidimensional inequality and poverty, respectively. Functional
forms of indicators when dimensions are measured on different scales, e.g. ratio or
ordinal, are discussed. Section 5 concludes.

2 Preliminaries

For simplicity of expositionwe refer to thepopulationunder consideration as a society
and the unit of analysis in the society as a person (see Chiappori, chapter 27, the OUP
Handbook, for inferring individual achievements from household data). Since some

5Other key decisions include: choosing the (set of) indicators for each dimension and the transfor-
mation function where the variables are not measured in the same measurement units and made
comparable. On transformation functions see Jacobs et al. (2004) and Nardo et al. (2005).
6Weymark (2006) discusses indicators of overall social condition defined directly on multidimen-
sional matrices. Of course, a traditional social welfare function (SWF) is also such an indicator.
SWFs are discussed in Weymark, chapter 5, the OUP Handbook, and in this chapter with refer-
ence to the inclusive-measure of well-being approach (IMWB) to multidimensional inequality and
poverty metrics.
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concepts relevant to our exposition, such as inequality, become meaningless for a
single-person society, it is assumed that each society contains at least two persons.

We denote the number of persons in the society by n (with n ∈ N ), where N is
the set of positive integers. Let d be the number of such dimensions, where d ≥ 2 is
an integer. We assume that the number of dimensions d is fixed—and exogenously
given—in order to make meaningful comparisons of well-being across populations.

Let xi j ≥ 0 be the achievement of person i in attribute or dimension j, where
achievement indicates the performance of a person in a given dimension such as
incomeor education. Person i’s achievements in different dimensions are summarized
in a d-dimensional vector xi. = (xi1, xi2, . . . , xid). The row vector xi. is the ith row
of an n × d distribution matrix X. The column vector x. j , which summarizes the
distribution of achievements in dimension j ( j = 1, 2, . . . , d) among n persons, is
the jth column of X and we denote the mean of this vector by μ

(
x. j

)
.

In a four-person society with three dimensions of well-being (say, years of edu-
cation, a six-point health score, and income), an example of a distribution matrix X
is

X =

⎡

⎢⎢
⎣

9 5 1200
6 3 900
8 6 1000
1 4 400

⎤

⎥⎥
⎦.

The entry in the third row and first column of the above matrix show that persons
3’s achievement in dimension 1 (education) is 8. Other entries of the matrix can
be similarly explained. If the set all n × d matrices with non-negative entries is
represented by M, then X ∈ M.

Finally, we define a d-dimensional vector z = (z1, z2, . . . , zd), where each ele-
ment zj is the poverty threshold for dimension d. An individual i is considered
deprived (or poor) in dimension d if her achievement xid < zd . For instance, a
relevant poverty lines vector for the matrix X above could be,

z = [
9 5 500

]
.

In this example, person 1 will be rich in all three dimensions, since her achieve-
ments lie always above or at the respective threshold, whereas person 2 is deprived
in education and health but his income level (900) is above the minimum required to
be considered deprived.

3 Multidimensional Inequality

We divide our discussion into two subsections. Section 3.1 describes the direct
approach, whereby axioms and indicators are specified directly in terms of distri-
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bution matrices. Section 3.2 describes the derivation of multidimensional inequality
metrics from an inclusive measure of well-being (IWMB).

3.1 The Direct Approach

The distribution of well-being has been the concern of social scientists since at least
Smith’s (1776) An Inquiry into the Nature and Causes of the Wealth of Nations.7

In the last 50 years, as household data became more easily available, economists
attempted to define ways of measuring the extent to which the observed distributions
differ from some ideal one. In the beginning of the 1970s, almost simultaneously,
Atkinson (1970), Kolm (1969), and Sen (1973) proposed a normative view to mea-
suring inequality as the loss in social welfare due to the fact that income (seen here as
themeasure of each individual’s well-being) is not distributed equally among all indi-
viduals. This approach is univariate (unidimensional) because d = 1; no dimension
of individual achievement other than income is included.

At this point several important families of univariate inequality indices have been
characterized using Aktinson–Kolm–Sen’s normative approach. Among the relative
inequality indices, these include the Gini coefficient, Atkinson index, Theil 0 and
Theil 1 (belonging to the General Entropy class of measures), and the Dalton Index.
Within the absolute measures, the Kolm index, the variance, and the absolute Gini
coefficient are the most widely used ones. All of these measures have been character-
ized axiomatically, from a set of desirable properties that either the underlying social
welfare function or the inequality index itself is required to satisfy (Ebert 1988). By
setting the desiderata upfront, all values are made explicit. The family of measures
derived is the one that satisfies these postulates simultaneously. (Detailed discussions
along this line are available in Cowell’s chapter of the OUP Handbook.)

In the last 20 years, various authors have presented generalizations of the most
salient univariate inequality measures along with their extensions in the multidimen-
sional context. In this chapter, the focus will be on the discussion on the postulates
behind multidimensional indicators where the extension is less straightforward.8 In
particular, we will discuss invariance, distributional, and decomposability properties
(formal definitions of axioms are relegated to the appendix). We will also present a
selection of multidimensional indices to illustrate how these properties are applied.

A multidimensional inequality indicator I is a real-valued continuous function
defined on set of well-being matrices M. More precisely, I : M → �1, where �1

is the set of real numbers. For any X ∈ M , I(X) determines the extent of inequality
that exists in the distribution matrix X.

We divide this subsection in three parts, based on the nature of the properties.

7See also Rousseau’s (1754) Discourse on the Origin and Basis of Inequality Among Men.
8We do not discuss here Normalization, Symmetry, Population Replication Invariance, and Conti-
nuity which are presented in the appendix with formal notation.
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3.1.1 Invariance Properties

Relative inequality indices are those that satisfy a property knownas ratio scale invari-
ance. In the unidimensional context, this property ensures that the measurement of
inequality does not vary when each person’s achievement is multiplied by the same
positive constant, such as when incomes are expressed in a different currency unit or
when everyone’s incomes are increased by the same proportion. The extension to the
multidimensional context requires more careful attention, since often the achieve-
ments in different dimensions are measured in different units of measurement.

• Ratio Scale Invariance (RSI) says that inequality is invariant to proportional
changes in the achievements in different dimensions. If, for instance, the duration
of education is measured in months instead of years, the evaluation of inequality
should not change. The RSI property allows for the rescaling factor to differ across
the different dimensions. This is particularly attractive when the variables are
expressed in different measurement units, such as income in dollars and schooling
in years. Importantly, this property permits the standardization of each vector by
an entry-specific rescaling such as division by their respective mean or range. For
instance, if distributionX* expressed each attribute as a proportion of its respective
median, a multidimensional inequality index satisfying RSI will consider that,

I (X) = I (X∗), where X =

⎡

⎢⎢
⎣

9 5 1200
6 3 900
8 6 1000
1 4 400

⎤

⎥⎥
⎦ and X∗ =

⎡

⎢⎢
⎣

1.3 1.1 1.3
0.9 0.7 0.9
1.1 1.3 1.1
0.1 0.9 0.4

⎤

⎥⎥
⎦

Note that X* is obtained by dividing each of the elements in matrix X by the
median of each of the attributes (columns).9 For instance, the median of the first
attribute (years of education) equals 7, thus the first element in matrix X* = 9/7
= 1.3. Similar calculation holds for other entries in X*.
An inequality indicator satisfying RSI is called relative.
On the other hand, RSI can be disputed because it implies that proportional changes
in one dimension (say, doubling of incomes) have no impact on overall inequal-
ity, ignoring possible interactions across dimensions. A stronger version of this
property (strong RSI) requires instead that the inequality index should remain
constant only when all attributes are rescaled by the same factor. That is, when
all attributes are doubled, then the measurement of multidimensional inequality
should not change. This property is particularly appealing when all attributes are
measured in the same scale.

• UnitConsistency (UCO) is aweaker formof ratio scale invariancewhichdemands
that the inequality ordering10 of two distribution matrices should remain unaltered

9Themedian of an odd number of observations that are non-decreasingly ordered is themiddle-most
observation. For the first column of X, the non-decreasingly ordered rearrangement is (1, 6, 8, 9)
and the median of these numbers is 7, the average of the two middle numbers.
10By inequality ordering, we mean the ranking of matrices by the inequality index.
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under changes in the scales of dimensions (Zheng 2007a, b; Diez et al. 2008;
Chakravarty and D’Ambrosio 2012). To illustrate this, suppose of two countries,
I and II, country I has lower multidimensional inequality than country II. Assume
that in both the countries incomes are expressed in the currency of country I and the
unit of educational attainment is one year. Now, let incomes in the two countries be
converted into the currency of country II and educational attainments be measured
in months, while the units of measurement of all other dimensions are assumed to
remain unaltered. Unit consistency demands that the ranking of the two countries
by the multidimensional inequality index should remain unchanged under this
alteration of units of measurement of two dimensions. As we will observe, all
ratio scale invariant multidimensional inequality indices are unit consistent, but
there exist unit consistent indices which do not satisfy ratio scale invariance.

• Translation Scale Invariance (TSI), suggested by Kolm (1976), requires that the
addition of a constant to the quantities of different attributes does not alter the
level of inequality. If everyone’s health scores move up two points, then overall
inequality will not change. The implication is that from a normative perspective,
it does not matter where the zero is set. An inequality indicator satisfying this
property is called absolute.

Ratio scale invariance and translation scale invariance represent two different
value judgments concerning inequality invariance. These two axioms cannot be sat-
isfied simultaneously by amultidimensional inequality indicator—except for a trivial
indicator that assigns the same number to all distribution matrices.

3.1.2 Distributional Properties

Distributional axioms specify when a redistribution of achievements between indi-
viduals increases or decreases inequality. In the unidimensional framework, distri-
butional concerns are generally introduced through the Pigou–Dalton transfers prin-
ciple (Pigou 1912; Dalton 1920). This postulate demands that a progressive transfer,
a transfer of income from a person to a poorer one, should decrease inequality, pro-
vided that the donor does not become poorer than the recipient as a result of the
transfer and all other incomes remain unaffected. There are a number of ways in
which this principle has been extended to the multivariate framework. In the present
review, we will include three of the most widely used ones.

Formally, a Pigou–Dalton transfer can be expressed in terms of aT-transformation.
The formulation can bemotivated by an example. Let y = (3, 6, 7) and x = (4, 5, 7) be
two income distributions so that x is obtained from y by a Pigou–Dalton transfer of
1 unit of income from the second person to the first person. This transfer can also be

expressed in the following way: (4, 5, 7) = (3, 6, 7)

⎛

⎝ 2
3

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ + 1
3

⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠

⎞

⎠.

The firstmatrixwithin the first bracketed term on the right-hand side is a 3×3 identity
matrix each of whose diagonal elements is one and off-diagonal elements is zero. The
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second matrix is a 3× 3 permutation matrix, a matrix with entries 0 and 1, and each
of whose rows and columns sums to one. This matrix is obtained by exchanging the
first two rows of the identity matrix. The remaining row corresponds to the person
unaffected by the transfer. A weighted average of these two 3 × 3 matrices, where
the weights are respectively 2

3 and
1
3 , after matrix-multiplication with (3, 6, 7), gives

us the distribution (4, 5, 7). The weighted average

⎛

⎝ 2
3

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ + 1
3

⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠

⎞

⎠ is

known as a T -transformation (for more on this, see Marshall et al. 2011; Weymark
2006; Chakravarty 2009).

The unidimensional Pigou–Dalton transfer principle can be extended straight-
forwardly to the multidimensional case by applying the same sequence of T-
transformations to all the dimensions, as per the following postulate:

• Uniform Pigou–Dalton Transfers Principle (UPD) says that for any two distri-
bution matrices X and Y if X is obtained from Y by multiplying by a finite number
of T-transformations, then X has less inequality than Y.

However, the justifiability of UPD can be disputed. The complexity of extending
the Pigou–Dalton principle to multiple dimensions arises because of, precisely, the
existence of the other dimensions. Consider a case in which a Pigou–Dalton transfer
is implemented for each dimension between two individuals. If the donor has more
achievements than the recipient in some dimension (say, income) but less in others
(say, health and education), then it is not clear whether an income transfer from the
donor to the recipient reduces multidimensional inequality. Fleurbaey and Trannoy
(2003) offer a restricted version of the above, confining the relevant transfers to be
among individuals where the giver is at least as well-off as the recipient in every
dimension:

• Pigou–Dalton Bundle Transfers Principle (PBT) represents the idea that if,
between two individuals, one has at least as much achievement in every dimen-
sion as the other and strictly more in at last one dimension, then dimension-wise
Pigou–Dalton transfers from the former to the latter in one or more dimensions
reduces multidimensional inequality, given that achievements of all other individ-
uals remain unaffected.

Unfortunately PBT comes into conflict with efficiency. Fleurbaey and Trannoy
(2003) formally demonstrated that under certain verymild conditions a social ranking
of distribution matrices cannot simultaneously satisfy PBT and the Weak Pareto
Principle, which demands that if each individual prefers her vector of achievements
in ne matrix to a second, then the first is socially better than the latter.11 See also
Fleurbaey andManiquet (2011),Weymark (2013) and Bourguignon andChakravarty
(2003) for a variant of PBT, referred to as Multidimensional Transfer Principle.

11It may be worthwhile to mention that, following the literature, our formulation in this chapter uses
directly individual achievements. Therefore, our presentation has ignored individual preferences.
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A third alternative for extending the unidimensional Pigou–Dalton transfer prin-
ciple to the multidimensional context is presented by Kolm (1976)—for discussions,
see also Marshall et al. (2011), Duclos et al. (2006, 2007), Weymark (2006) and
Chakravarty (2009). In this case, the series of transfers are the same (in percentage
terms) in all dimensions. Specifically, the following is noteworthy.

• UniformMajorization Principle (UM) requires that if there is a similar smooth-
ing of achievements in all the dimensions, multidimensional inequality should
decrease. For example, consider a matrix Y which is obtained from X after a
sequence of (mean-preserving) equalizing transfers across individuals for each
dimension.12

X =

⎡

⎢⎢
⎣

9 5 1200
6 3 900
8 6 1000
1 4 400

⎤

⎥⎥
⎦ and Y =

⎡

⎢⎢
⎣

6.2 4.5 890
6.7 3.9 970
7.6 5.5 1000
3.5 4.1 640

⎤

⎥⎥
⎦.

Wenote that the sumof all entries in each columnof the twomatricesX andY is the
same. Under this operation there is a smoothing of the distribution of achievements
in each dimension and all the dimensions are considered simultaneously. UM says
that Y should have lower inequality than X .

Lasso de la Vega et al. (2010) made a systematic comparison between PBT and
UM. Under UM one distribution matrix is obtained from another by transferring
achievements in all dimensions in the same proportions. This notion of transfer is not
valid if some of dimensions are ordinally measurable (see Sect. 4.3 for a discussion
on ordinal measurability of dimensions). In addition, and crucially, if transfers are
made between two persons in all dimensions where one is not unambiguously richer
than the other, then there is ambiguity regarding treatment of the new distributions
as more equitable. PBT takes care of all these difficulties. By definition, the transfer
is performed between two persons, one richer than the other. Also, the transfers in
different dimensions need not be made in the same proportions, or even at all in some
dimensions. The distinction between these two principles is particularly important
since, as Lasso de la Vega et al. (2010) noted, not all inequality indices, including
those satisfying UM, will satisfy PBT.

While the different versions of the Pigou–Dalton principle focus on the redistri-
bution of attributes among the persons, there is a second important form of inequality
that arises only in the multidimensional context. Atkinson and Bourguignon (1982)

12Formally, uniform mean-preserving averaging (smoothing) can be obtained by multiplying the
distribution matrix X by a bistochastic matrix, which is a square nonnegative matrix of appropriate
order where all the rows and columns add up to 1. UM says that B X should have lower inequality
than X . The B matrix in this case is

B =

⎡

⎢
⎢
⎣

0.2 0.3 0.3 0.2
0.4 0.5 0 0.1
0.3 0 0.6 0.1
0.1 0.2 0.1 0.6

⎤

⎥
⎥
⎦.
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Fig. 1 Example:
Distribution matrix X of
health and education in a
four-person society

argued that a multidimensional inequality indicator should capture the association
(more precisely, rank correlation) between distributions of achievements. Following
Epstein and Tanny (1980) and Tchen (1980), the authors introduced the concept of
a correlation increasing switch between two individuals, whereby one individual
receives at least as much of every attribute as the other and more of at least one
attribute (see also Boland and Prochan 1988; Decancq 2012). To understand this,
suppose that in the original distribution X presented above x11 > x21 but x22 > x12.
That is, the second person (person B) has six years of education (while person D has
only one), and scores three points in health (whereas person D scores 4). This situa-
tion is represented in Fig. 1, with diamond-shaped dots—for simplicity of exposition
income is ignored in this figure.

If we make a switch of the second attribute, say health, between the two individ-
uals, then their achievements after the switch are given by y11 = x11, y12 = x22,
y21 = x21 and y22 = x12 (positions B* and D* in Fig. 2 for persons B and D, respec-
tively). Person B, who had higher achievement in education, has higher achievement
in health as well after the switch. Consequently, the correlation between the attributes
has gone up.Note that a correlation increasing switch keeps themean of each attribute
constant, like UPD, PBT and UM.

Tsui (1999) formally introduced this idea to the literature on multidimensional
inequality indices via an axiom know as Correlation Increasing Majorization:

• Correlation Increasing Majorization (CIM) states that if a distribution Y is
obtained from another distribution X by a switch in attributes such that the corre-
lation across these attributes is increased, then Y is more unequal than X.
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Fig. 2 Example:
Distribution matrix X of
health and education after a
correlation increasing switch

In the example, consider the distributions X =

⎡

⎢⎢
⎣

9 5 1200
6 3 900
8 6 1000
1 4 400

⎤

⎥⎥
⎦ and Y =

⎡

⎢⎢
⎣

9 5 1200
6 4 900
8 6 1000
1 3 400

⎤

⎥⎥
⎦.

In all of the dimensions, except in dimension 2 (say, health), the achievements
of the second person (B) in the distribution X are more than the corresponding
achievements of the fourth person (D). The distribution matrix Y obtained from X
by a switch in achievements in health between these two individuals is such that
the second person has now higher achievements than the fourth one in all three
dimensions. This transfer has increased the correlation between dimensions which
implies that the situation of the person who was better off in some dimensions is now
also better off in the other dimension. CIM will assess this new distribution as being
less equal (not preferable) to the original one.

Tsui (1999) showed that UM andCIM are independent axioms. That is, there exist
indicators that satisfy bothUMandCIM; and also there are indicators that satisfyUM
but are violators of CIM and vice versa. Weymark (2006) and Chakravarty (2009)
provide further discussion along this line.

A weaker version of CIM has been proposed by Dardanoni (1996) as follows:

• UnfairRearrangementPrinciple (UR) requires that the initial distributionmatrix
is preferred to one in which the distributional profiles in all dimensions are unal-
tered but where the dimensions are perfectly rank-correlated.

To understand this property, let us assume a new distribution Z where one person
is ranked first in all dimensions, another one is ranked second in all dimensions and
so on. For instance, consider



Multidimensional Indicators of Inequality and Poverty 235

Fig. 3 Example:
Distribution matrix X̄ of
health and education after a
switch that makes
dimensions perfectly
correlated

Z =

⎡

⎢⎢
⎣

9 6 1200
6 4 900
8 5 1000
1 3 400

⎤

⎥⎥
⎦, depicted in Fig. 3 [once again, for clarity of exposition the

figure only depicts education and health, but income also follows the same rule]. UR
implies that distributions X and Y will be preferred to distribution Z, but does not
determine the ranking of X versus Y. Thus, UR is indeed a weak property and can be
seen as a minimum requirement to be imposed when correlation across dimension
is deemed undesirable.

3.1.3 Decomposability Properties

Since the mid-1980s, many multidimensional inequality indicators have been pro-
posed in the literature that can be seen as extensions of themostwidely usedmeasures
on inequality in the unidimensional framework, including Gini, Atkinson, General-
ized Entropy (Theils), and Kolm indices. Table 1 presents a selection of extension
of these indices, and the properties that they satisfy. Only for exposition purposes,
we consider at least one measure for each family of unidimensional indices, but rec-
ognize that the literature contains many more measures that are not discussed here.

Tsui developed a characterization of the multidimensional Atkinson inequality
indicator (Tsui 1995), as well as an extension of the Generalized Entropy inequality
index (Tsui 1999). These indices have the advantage of being able to satisfy a con-
venient property related to the decomposability of the measures. One such property
is the following:

• Subgroup Decomposability (SDE): For any partitioning of the population into
subgroups such as race, religion, sex, ethnic groups, age etc., overall inequality
can be expressed in terms of inequality levels of subgroups, vectors of means
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of attributes corresponding to different subgroups and population sizes of the
subgroups.

Such decompositions become particularly useful for policy makers interested in
determining the significance of variations of attributes corresponding to these various
characteristics.

A second well-known family of measures is associated with the widely used Gini
inequality index. This index has several multivariate extensions (see for example,
Koshevoy and Mosler 1996; List 1999; Gajdos and Weymark 2005; Banerjee 2010;
Decancq and Lugo 2012). In this chapter, we consider two that are explicitly nor-
mative, as characterized by Gajdos and Weymark (2005) and by Decancq and Lugo
(2012), respectively. The two indices differ mainly in the order of aggregation of
dimensions and individuals; the former aggregates first across individuals and then
across dimensions whereas the latter does the reverse. As in the univariate case, these
multidimensional extensions of the Gini index are not subgroup decomposable. Yet,
the measure proposed by Gajdos and Weymark is separable across dimensions of
well-being (that is, overall inequality can be calculated as a function of the inequality
in each of the separate dimensions). Formally, this measure satisfies a restricted form
of attribute separability proposed by Shorrocks (1982).

• Factor Decomposability (FDE): Overall inequality is the sum of attribute-wise
indicators. FDE becomes helpful for assessment of inequality contribution of dif-
ferent dimensions of well-being.

The Gajdos and Weymark generalized Gini index satisfies FD for α = θ = 1
(see Table 1). Nonetheless, the cost of satisfying FDE is that Gajdos and Weymark’s
measure (as any two-step measure that first aggregate across dimensions and then
across attributes) is insensitive to changes in the correlation across the different
attributes. Instead,Decancq andLugo’sGinimeasure is able to satisfyUR for specific
choices of parameter values at the expense of a weaker separability axiom, that is,
the axiom of rank-dependent separability which states that the comparison of two
distributions is not affected by the magnitude of the common attributes as long as
the initial ranking is maintained (formal definition in the appendix).

3.2 The Inclusive—Measure-of Well-Being Approach

This section considers the inclusive measure of well-being approach (IMWB), which
assigns a well-being number to each person i as a function of the person’s achieve-
ments in all d dimensions. These indices of individual well-being can be then
aggregated across persons to arrive at an evaluation of “social welfare” (overall
social condition), inequality or poverty. Formally, person i’s IMWB is denoted by
U (xi.) = U (xi1, xi2, . . . , xid), where U : Q → �1 is the individual well-being
function, Q ⊂ �d being the set of all achievements that individuals can pos-
sess in the d dimensions. A social policy evaluation metric W ranks outcomes
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by incorporating the associated well-being numbers. In other words, the distri-
bution of achievements (x1.., x2., . . . , x.n.)

′ is at least as good as the distribution
(y1.., y2.., . . . , yn..)

′ if and only if W ranks (U (x1..), U (x2...), . . . , U (xn..)) at least as
good as (U (y1..), U (y2...), . . . , U (yn..)).

There are two distinct ways in which the IMWB approach can be used to derive
a multidimensional inequality indicator. In the first variation, W is a social wel-
fare function (SWF), which is then used to construct a multidimensional inequality
indicator. In the second variation, W is a unidimensional inequality index, which is
applied directly to the vector of individual well-being levels (as in Maasoumi 1986).

In the first alternative, a SWF ranks vectors of individual well-being numbers, or
“utilities.” See Weymark, chapter 5, the OUP Handbook. In the literature on income
inequality, individual income is often seen as a proxy for individual welfare, and
thus a SWF is used to rank vectors of individual incomes. See Cowell, chapter 4,
the OUP Handbook. The Atkinson-Kolm-Sen (AKS) approach, used to deriving
an income inequality metric from an SWF applied to incomes, is as follows. The
AKS representative income xe corresponding to the distribution x is the level of
income which, if enjoyed by everybody, would make the distribution x ethically
indifferent, that is, W (xe., xe, . . . , xe) = W (x). The AKS relative inequality index
IAKS is thus defined as the proportionate gap between xe and the mean income μ(x).
When efficiency considerations are absent, that is, when the mean income is fixed,
an increase in social welfare is equivalent to a reduction in inequality and vice versa.
From a policy perspective, this inequality index determines the fraction of total
income that could be saved if the society distributed incomes equally without any
loss of social welfare or, in other words, the fractional social welfare loss resulting
from the existence of inequality.

We can now describe the first variation of the IMWB approach. Kolm (1977)
extends the AKS approach to the multidimensional context—showing how to derive
a multidimensional inequality indicator from a social ranking of matrices, such as
the ranking defined by an SWF.

Let us define Xλ as the distributionmatrix inwhich each person enjoys the average
level of achievements in each dimension μ

(
x. j

)
so that Xμ represents the perfectly

equal situation. Now, define �(X) implicitly by W
(
Xμ�(X)

) = W (X), that is, as a
positive scalar which, whenmultiplied by the ideal distributionmatrix Xμ, is socially
or ethically indifferent to the existing distributionmatrixX (according toW ).�(X) is
the multidimensional counterpart to the Atkinson-Kolm-Sen representative income.
Given appropriate assumptions about W, �(X) is well-defined and 0 < Xμ < 1 if
X �= Xμ and takes on the maximal value 1 when each attribute is equally distributed
among the individuals (Weymark 2006).

ThemultidimensionalKolm (1977) inequality indicator IKM : M → �1 is defined
as IKM(X) = 1 − �(X), where X ∈ M is arbitrary. IKM determines the fraction of
welfare loss incurred by moving from the ideal distribution Xμ to the actual dis-
tribution X. If there is only one dimension, say income, IKM coincides with the
Atkinson–Kolm–Sen inequality index. Assume that the W fulfils the strong Pareto
principle, is continuous and increasing under a smoothing of the distribution of
achievements. Given these assumptions, the continuous indicator IKM satisfies sym-
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metry (SYM) and UM.13 For an unequal distribution matrix X , IKM is positive and
bounded above by one. IKM takes on the minimum value zero if X = Xμ. The
behaviour of IKM under a correlation increasing switch depends on the form of the
utility function.

The procedure may be illustrated using some examples. Tsui’s (1995) charac-
terization of the multidimensional Atkinson inequality index can be accommodated
within the IMWB approach. Tsui characterized the symmetric utilitarian social wel-
fare function W (X) = ∑n

i=1 U
(
xi. .

)
, where the identical individual multi-attribute

utility function is either of the product type or of the logarithmic type.14 For this
form of the utility function, the resulting Kolm (1977) inequality index becomes
the multidimensional Atkinson inequality index. If there is only one dimension, the
formula coincides with the single dimensional Atkinson (1970) index.

Another example of the first variation of the IMWB-based approach is the double-
CES multi-attribute inequality indicator suggested by Bosmans et al. (2013). The
individual utility function aggregates individual achievements (assumed to be always
positive) using a CES-type aggregator. Next, the social welfare function uses a CES
function to aggregate utilities at the social level. The corresponding Kolm (1977)
multi-attribute inequality indicator is the Bosmans–Decancq–Ooghe (2013) multi-
dimensional inequality index. This symmetric index satisfies UM for all permissible
values of the parameters. It is unambiguously increasing under a correlation increas-
ing switch if the parameter associated with the CES utility function is higher than
the corresponding parameter in the welfare function.15

These two examples clearly demonstrate that there are multi-attribute inequality
indices that relate to social welfare functions applied to some measure of individual
well-being. They show that the two-stage approach can be justified by a solid theo-
retical background within the normative framework. But there also exists inequality
indices that cannot be supported by the IMWB structure. The Gajdos–Weymark
generalized Gini index is an example of an inequality indicator that cannot be sup-
ported by the IMWB structure because in this case aggregation is first done across
individuals and then the obtained values are aggregated across dimensions. It is in
fact the Kolm index IKM where the underlying multidimensional generalized Gini
social evaluation function is defined directly on the set of distributionmatrices, rather
than being a social welfare function operating on vectors of individual utilities. The
social evaluation function is assumed to satisfy continuity, strong Pareto principle and
increasingness under a smoothing of the distribution of achievements (see Weymark
2006).

13SYM demands that any reordering of the individuals does not change inequality. That is, any
characteristic other than the achievement levels, for example, the names of the individuals, is
irrelevant to the measurement of inequality.
14Formally, the individual utility function is defined as a strictly increasing concave function assum-
ing the forms: a + b

∏d
j=1 x

c j
i j or a + b

∑d
j=1 c j log xi j , where a is an arbitrary constant, and the

parameters b and c j should be appropriately restricted to ensure that U(.) is increasing and strictly
concave.
15For a characterization of a multidimensional social welfare function where the individual well-
being function is linear, see Bosmans et al. (2009).
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The second variation of the IMWB approach is suggested by Maasoumi (1986).
The author developed the first extension of the Generalized Entropy index to themul-
tidimensional set up using a CES-type utility function in the first step to aggregate
dimensional achievements of an individual, and a Generalized Entropy-type aggre-
gation of individual utilities in the second step. In other words, Maasoumi employs
a uni-dimensional inequality metric, instead of a welfare function, to aggregate indi-
vidual well-beings. Unfortunately, Maasoumi’s index has the weakness that it may
not satisfy UM or other multivariate formulations of the Pigou–Dalton principle.
The Pigou–Dalton principle is satisfied, however, in the (unidimensional) well-being
space.16

4 Multidimensional Poverty

Even in the early twenty-first century, poverty alleviation remains one of the major
economic policies in many countries of the world. In order to understand the depth
and threat of poverty, it is helpful to quantify poverty and measure its change over
time. The objective of this section is to briefly outline different poverty measurement
methodologies that have been suggested in the literature and that adopt an explicitly
multidimensional structure, as adopted, among others, by Tsui (2002), Bourguignon
and Chakravarty (2003) and Alkire and Foster (2011). As in Sect. 3, we first dis-
cuss the direct approach—the main approach in the literature—whereby axioms and
poverty measures are defined directly onmultidimensional matrices. See also Duclos
and Tiberti’s chapter 23 in the OUP Handbook for a similar discussion. We then turn
to the IMWB perspective on poverty measurement.

4.1 The Direct Approach

We divide the discussion in this subsection into several parts.

4.1.1 Properties

Since well-being of a population is a multidimensional phenomenon, poverty, which
arises because of insufficiency of achievements in one or more dimensions, is as well
a multidimensional aspect of human life. As Sen (1976) argued, in income poverty
measurement two exercises are involved: (i) the identification of the poor and (ii)

16Tsui (1999) also proposes a multidimensional extension of the Generalized Entropy index but he
does it in one stage, and thus it is not directly based on individual well-being levels—i.e. is based
on a direct approach. The literature contains many more indices that do not use such a two-step
aggregation method (for further discussion see Chakravarty 2009, Chap. 5).
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aggregation of the characteristics of the poor into an overall indicator of poverty in
society. The former problem requires the specification of a poverty line, the income
necessary for a subsistence standard of living. A person is regarded as income poor
if his income falls below the poverty line. The second problem requires aggregation
of income shortfalls of the poor from the poverty line. See Cowell, chapter 4, the
OUP Handbook, discussing univariate (income) poverty measures.

Following Sen (1976), various authors have suggested extensions of the standard
properties associated with each of these two steps for the multivariate setting and
derived multidimensional poverty measures. The introduction of multiple dimen-
sions requires an additional step in the derivation of the poverty measure, which is
the aggregation across dimensions. The dimension-wise aggregation is done before
the aggregation across individuals (step ii above) but can be done either before or
after the specification of the poverty threshold (step i). The decision on the sequence
of these steps will have implications in terms of the substitutability assumed across
dimensions. In fact,most of the proposals in the literature opt to set the poverty thresh-
olds for each dimension and then aggregate each individual’s dimension-specific
achievements into a single indicator of each individual’s poverty.17 The argument is
that each attribute is considered essential so no substitution across dimension should
be permitted above and below the “minimum acceptable levels” (Sen 1992, 139).
See, for instance, Tsui (2002), Bourguignon and Chakravarty (2003), Chakravarty
and Silber (2008) andAlkire and Foster (2011). These exogenously given “minimally
acceptable levels” are the threshold limits for different dimensions for a person to be
non-deprived in the dimensions.

Formally, we can define a vector of poverty thresholds z = (z1, . . . , zd) ∈ Z ⊂
�d++, where �d++ is the strictly positive part of the d-dimensional Euclidean space.
Person i is said to be deprived or non-deprived in dimension j according as xi j <

z j or xi j ≥ z j and he is called non-deprived if xi j ≥ z j for all j. A multidimensional
poverty index P is a non-constant real-valued continuous function defined on M × Z ,
that is, P : M × Z → �1. For any n ∈ N , X ∈ M and z ∈ Z , P(X; z) gives the
level of poverty associated with X and the threshold limit vector z.

When thresholds are imposed before the aggregation across dimensions, the iden-
tification ofwho is to be considered poor presents the additional challenge of defining
the number of dimensions in which a person needs to be deprived in order to consider
her multidimensionally poor. One extreme is known as the union method of identifi-
cation which says that a person is poor if she is deprived in at least one dimension. On
the other hand, the intersection criterion identifies a person as poor if she is deprived
in all d dimensions (see Tsui 2002; Atkinson 2003; Bourguignon and Chakravarty
2003). The Alkire–Foster (2011)’s counting approach, in turn, propose an interme-
diate option that contains these two extremes as special cases. According to these

17The alternativemethod, of aggregatingfirst across dimensions and then setting a poverty threshold,
will be discussed in Sect. 4.1 below.
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authors a person is identified as multidimensionally poor if she is deprived in at least
k dimensions, where 1 ≤ k ≤ d, whenever dimensions are weighted equally.18

To illustrate the concepts better, suppose threshold vector is z = (9, 5, 500) and
consider the matrix X presented above, which we repeat here for ease of exposition.

X =

⎡

⎢⎢
⎣

9 5 1200
6 3 900
8 6 1000
1 4 400

⎤

⎥⎥
⎦

According to the union rule the second, third, and fourth persons are multidi-
mensionally poor since each of them is deprived in at least one attribute. Person
two is deprived in dimensions 1 and 2, person three is only deprived in dimension
1, whereas person four is deprived in all the dimensions. The intersection approach
instead would only identify the fourth person as poor. Finally, if a person is con-
sidered multidimensionally poor if she is deprived in at least two dimensions (k =
2), then the intermediate approach will identify persons two and four as poor, while
person three will be considered non-poor.

As in the case of inequality indices presented in Sect. 3, multidimensional poverty
measures can be obtained by defining a set of desirable properties (axioms) that
the index should satisfy. Most of the postulates we consider below are immediate
generalizations of different axioms proposed for an income poverty index.19 Unless
stated otherwise, all the axioms and indicators presented in this section follow the
union rule of identification.20

One of the most important postulates in poverty measurement is the requirement
of focus on the poor, that is, those whose well-being fall below the poverty threshold.
Extending this principle to the multivariate setting has two main variations:

• Weak Focus (WFC): Poverty does not change under an improvement in the
achievement of a non-poor person (Bourguignon and Chakravarty 2003).

In the example presented above, since person 1 in distributionX is non-deprived in
all three attributes, an increase in this person’s achievement in any dimension should
not affect poverty. A stronger version of this axiom has also been put forward.

• Strong Focus (SFC): If a person is non-deprived in a dimension, then an increase
in his/her achievement in the dimension does not change poverty. This holds irre-
spective of whether the person is deprived or not in any other dimension. Strong
Focus rules out the possibility of reducing poverty by subsidizing a poor per-

18When dimensions are not weighted equally, the condition for a person to be considered multidi-
mensionally poor is when the minimum dimension weight ≤ k ≤ d.
19For discussion on properties of an income poverty index, see Sen (1976), Foster et al. (1984),
Donaldson and Weymark (1986), Chakravarty (1983, 2009), Foster and Shorrocks (1991), and
Zheng (1997).
20We can as well state these axioms for other rules of identifying the poor.
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son in a non-deprived dimension but leaving unaffected her achievements in the
dimensions where she is deprived.21

For example, if the achievement in dimension 3 (income) of the second person
reduces to 750, then the distribution matrix becomes

Y =

⎡

⎢⎢
⎣

9 5 1200
6 3 750
8 6 1000
1 4 400

⎤

⎥⎥
⎦. SFC demands that poverty remains unchanged because this

person, while deprived in dimensions 1 and 2, is not deprived in dimension 3.
If instead of affecting the attainments of dimensions for which the person is not

deprived, one modifies the achievement in the deprived dimension, poverty mea-
surement should be impacted. For instance, if we reduce achievement in second
dimension of person 4 from 4 to 3, poverty should increase. This is required by
monotonicity.

• Monotonicity (MON): A reduction in the achievement of a deprived dimension
of a poor person increases poverty.

A second type of monotonicity, relevant for the multidimensional setting, has
been introduced by Alkire and Foster (2011).

• Dimensional Monotonicity (DIM): Poverty should not decrease if a poor person
who is non-deprived in a dimension becomes deprived in the dimension.

For instance, if person 3 who is not deprived in dimension 2 in X sees her attain-

ment reduced from 6 to 4, and the distribution becomes Y =

⎡

⎢⎢
⎣

9 5 1200
6 3 900
8 4 1000
1 4 400

⎤

⎥⎥
⎦, then

DIM requires that P(X; z) ≤ P(Y ; z). While this property is consistent with both
the union and intersection approaches, it is particularly important for the intermedi-
ate option proposed by Alkire and Foster, where the number of deprivations suffered
by individuals plays a crucial role in the measurement of poverty.

As in the case of inequality indices reviewed in Sect. 3, multidimensional poverty
indicators are desired to satisfy three postulates related to decomposition, distribu-
tion sensitivity within dimensions and correlation sensitivity across dimensions, in
addition to invariance and normalization axioms stated in the Appendix.

Two decomposability postulates are used in the poverty measurement context; the
first relates to decomposing the measure across population groups and the second
across attributes.

• SubgroupDecomposability (SUD) says that for any partitioning of the population
into subgroups with respect to individuals’ exogenous characteristic, like age, sex,

21Alkire andFoster (2011) refer to strong focus axiomaspoverty focus andweak focus as deprivation
focus.
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region etc., the overall poverty becomes the population share weighted average of
poverty levels of individual subgroups.

SUD shows that the percentage contribution made by subgroup i to the overall

poverty is
ni P(Xi ;z)
n P(X;z) ∗100,whereni is the population size of group i. Such contributions

become helpful in isolating subgroups of the population that are more affected by
poverty and hence to formulate anti-poverty policy (see Anand 1997; Chakravarty
1983, 2009; Foster et al. 1984; Foster and Shorrocks 1991). Assuming that P(X; z)
satisfies SUD, repeated application of the axiom shows that we can write the poverty
indicator as

P(X; z) = 1

n

n∑

i=1

P(xi.; z).

Given that P(xi.; z) depends only on person i’s achievements,we call it ‘individual
poverty function’. Thus, under SUD, the overall poverty is a simple average of
individual poverty levels.

• FactorDecomposability (FAD) says that the overall poverty is aweighted average
of dimensional poverty levels, such that P(X; z) = ∑d

j=1 b j P
(
x. j , z j

)
, where

b j ≥ 0 is the weight assigned to the poverty in dimension j and
∑d

j=1 b j = 1.

The contribution of dimension j to overall poverty is given by
b j P(x. j ;z j)

P(X;z) . FADwas
introduced by Chakravarty et al. (1998) and adopted by Alkire and Foster (2011),
and is stated under the assumption that only the deprivations of the poor are taken
into account and the deprivations of the non-poor are ignored. The coefficient b j may
be interpreted as the importance that a policy maker assigns to eliminating poverty
from dimension j. Being able to decompose poverty into the different dimensions
is particularly attractive in structuring government policy to reduce poverty—by
indicating the attributes where deprivations are the largest. But, as in the case of
FDE for inequality measures, the cost of imposing this property is that it makes the
measure insensitive to changes in the degree of dependence across attributes.

Regarding distributional properties, we consider the poverty counterpart to UM.
Discussions for other variants are similar.

• Multidimensional Transfers Principle (MT) requires that if a new distribution
is obtained by an averaging of achievements among the deprived dimensions of
the poor, then poverty should decrease.

In addition, it is often thought to be appropriate that poverty indicators reflect
the dependency structure across dimensions. Formally, we consider the following,
which is the stronger version of a Bourguignon and Chakravarty (2003) axiom:

• Increasing Poverty under Correlation Increasing Switch (IPC) requires that
poverty should go up after a switch such that the correlation across dimensions is
increased. This property is the equivalent of CIMpresented above, where attributes
are seen as substitutes.
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The intuitive reasoning of this property is that among dimensions that fall below
their respective poverty thresholds, one can compensate the insufficiency in one
attribute (say, education) with additional quantities of another attribute (say, income).
If a switch in the quantities of oneof the dimensions is performedacross twopoor indi-
viduals such that the person who is more deprived on a second dimension (income)
becomes worse off in the first (education) after the switch and poor person who
was richer in income has now higher education, poverty should increase. The cor-
responding property when the attributes are seen as complements requires poverty
to decrease under such a switch (DPC). If a poverty indicator remains insensitive to
a correlation—increasing switch, then the attributes are regarded as ‘independents’.
It is evident that a poverty indicator satisfying FAD cannot satisfy at the same time
IPC or DPC. In other words, multidimensional poverty measures that are required
to be able to be decomposable by dimension, need to assume that deficiencies in
one attribute cannot be compensated or complemented with additions of the other
attributes.

4.1.2 Indicators

Table 2 presents some examples of multidimensional poverty measures presented
in the literature. Chakravarty et al. (1998) (CMR) were among the first to suggest
axiomatic multidimensional poverty indicators. One of themost attractive features of
this measure is that the function f (.) can be defined such that it becomes generaliza-
tions of three well-known one-dimensional poverty indices: the Foster–Greer–Thor-
becke (1984), the Chakravarty (1983), and the Watts (1968) unidimensional poverty
indices. Tsui (2002) presented a slightly different version of this index that has as
special cases both the Charkravarty and the Watts indices.

The CMR indicator satisfies the axioms introduced above, as well as ratio-scale
invariance (RSI), except for being sensitive to changes in correlation across attributes.
As explained, this is due to the fact that the indicator satisfies FAD which is incom-
patible with IPC/DPC. In contrast, Tsui’s measure is a violator of FAD but satisfies
all other axioms including IPC. Tsui also presented a translation invariant poverty
index that includes a generalization of the Zheng (2000) single dimensional index
and the multidimensional extension of the absolute poverty gap, as special cases.

A highly influential paper in this literature is by Bourguignon and Chakravarty
(2003). The measure proposed aggregates a weighted average of individual depri-
vations across dimensions by taking a power function type transformation over the
set of poor persons. The dimension weight a j may be interpreted as the importance
that a policy maker assigns to dimension j. The measure Pα,θ is a single-parameter
generalization of the Foster–Greer–Thorbecke (1984) single dimensional index.22

Since Pα,θ is, in general, not additive across dimensions it does not satisfy FAD;
however it fulfills all other axioms for all positive values of parameters and MT for a

22Bourguignon and Chakravarty (2003) suggested an alternative generalization of this family using
the transformation f (t) = tα j , where α j > 1 is a parameter, in CMR indicator.
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subset of these. Pα,θ satisfies IPC or DPC (and even independence) under alternative
assumptions about the parameters.

Alkire and Foster (2011) adopted an intermediate identification method, where
people are identified as multidimensionally poor if they are deprived in at least k
dimensions, where 1 ≤ k ≤ d, when dimensions are equally weighted or in at
least minimum weight dimensions, where this is ≤ k ≤ d. PAFM is the sum of αth
powers of the normalized achievement gaps of the poor divided by the maximal
value that this sum can assume. This measure is subgroup decomposable, and meets
MTP for values of the parameter α > 1. However, the Alkire–Foster measure is non-
decreasing under a correlation increasing switch for allα > 0, even if transformations
of such measure can permit IPC to be satisfied (see Silber and Yalonetzky 2013, for
a recent discussion).

Diez et al. (2008) and Chakravarty and D’Ambrosio (2012) axiomatically charac-
terized the family of unit consistent multidimensional poverty indicator. This family
of indices satisfies IPC/DPC under certain conditions, allowing for attributes to be
considered substitutes or complement, but does not comply with FAD. In addition,
if there are only two dimensions MTP holds for a subset of parameter values.

4.2 IMWB-Based Approach to Poverty

In this subsection we briefly analyze the possibility of accommodating multidimen-
sional poverty indices within the IMWB-based approach to poverty measurement.
First, we ask whether standard multidimensional poverty indicators, which use a
series of dimension-specific poverty thresholds, correspond to a univariate poverty
metric applied to a vector of individual well-being numbers.

The issue can be illustrated using some examples. The first example we consider
is Tsui’s (2002) generalization of the Chakravarty index. From the formulation (in
Table 2) it appears that at the first stage for each individual, a product-type well-being
function is used to aggregate allocation of the d dimensions into ameasure of personal
well-being and then at the second stage a simple averaging is applied to aggregate a
transformation of these well-being levels. (All achievement quantities are assumed
to be positive.) But this well-being function is implausible in the sense that it is not
uniformly sensitive to the given person’s achievements below and above poverty
thresholds for different dimensions. All achievements above any threshold, however
small or large they may be, are replaced by the threshold itself. Therefore, the Tsui
(2002) index cannot be regarded as an IMWB-based index. The same remark applies
to the Chakravarty–Mukherjee–Ranade (1998), Bourguignon–Chakravarty (2003),
and Alkire–Foster (2011) indices.

Different from all these previous proposals, Maasoumi and Lugo (2008) (ML)
suggested an indicator of multidimensional poverty that inverts the sequence of steps
to derive the measure. Relying on an information theory-based approach, the authors
in a first stage aggregate attributes of well-being—as done in Maasoumi (1986)—to
obtain an individual well-being function. Dimension-specific poverty thresholds are
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aggregated using the same criterion defining a poverty frontier. Thus, in the second
stage, a person’s poverty levels are obtained as the shortfall of the ratio between
the aggregated achievements and the aggregated poverty thresholds. The third step
involves applying a Foster–Greer–Thorbecke (1984) type transformation over the
individual poverty functions across persons to arrive at the overall poverty indicator.
By construction, the indicator allows for some degree of substitution across attributes
even between those that fall above the dimension-specific poverty threshold. This
implies, for instance, that if a person does not have the “minimum acceptable level”
of one dimension, say education, but she is, say, extremely income rich, she might be
considered non poor. Essentiality of attributes is relaxed, at least to a certain degree,
depending on the parameter defining the degree of substitution allowed. Therefore, in
terms of postulates, theMLmeasure satisfies theweak version of the focus axiom, but
not the strong one—SFC. In addition, the measure meets MT unambiguously and is
subgroup decomposable. However, it satisfies only IPC, that is, all the dimensions are
implicitly assumed to be substitutes and compensation across dimensions is allowed.

By construction an IMWB-based index is a violator of the strong focus axioms.
One way to resolve this issue is to adopt Decancq et al. (2013) suggestion to look
to individual preferences in order to identify the poor and aggregate dimensional
achievements. Under these authors’ approach, the strong Pareto principle is satisfied
among the poor. Furthermore, the assessment of complementarity or substitutability
betweendimensions is left to the individuals themselves.This contrastswith the direct
approach where the complementarity-substitutability issue is resolved by imposing
parameter restrictions in the form of composite indicator, which may or may not
respect individual preferences.

Specifically, Decancq et al. (2013) have characterized a poverty indicator based
on the idea that there is a single poverty threshold vector z and a person is treated as
poor if and only if he/she prefers z over his/her current consumption bundle. Thus,
this contribution offers a two-fold suggestion: endogenizing the poverty thresholds
and using individual preferences in the context of identification of the poor.

4.3 Measurement of Multidimensional Poverty for Ordinally
Measurable Dimensions

While some of the typical dimensions of well-being and deprivation correspond to
ratio scale variables (for instance, income and wealth), others such as health and
literacy are generally represented by ordinal variables. (See Alkire’s chapter 21 in
the OUP Handbook for a similar discussion.) Ordinal variables like gender, eth-
nicity, and religion have one or more categories or types and their categories have
a well-defined ordering rule. For instance, self-reported health is often presented
in the following six categories ‘very poor’, ‘poor’, ‘fair’, ‘good’, ‘very good’ and
‘excellent’. To each of these categories, one can assign positive integral values in
an increasing order. This assignment of integral values is arbitrary; the only restric-
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tion is that to preserve the ordering a higher number should be assigned to a better
category—so that ‘very good’ should get a higher number than ‘good’ (see Allison
and Foster 2004). A second example can be ordering of educational achievement
levels of individuals in a society starting from illiteracy to university education by
assigning numbers in an increasing way (see Chakravarty and Zoli 2012). Several
indicators of multidimensional poverty have been proposed in the literature to incor-
porate ordinal characteristic of the dimensions. Ordinal measurability information
invariance for a multidimensional poverty indicator requires that the poverty level
based on xi j and z j values should be same as that based on any arbitrary increasing
transformation applied to these values, where the transformations need not be the
same across dimensions.

The headcount ratio, while a violator of DIM, is an appropriate indicator of mul-
tidimensional poverty if some of the dimensions are measurable on ordinal scale and
the other dimensions have ratio scale significance. The Alkire–Foster (2011) dimen-
sion adjusted headcount ratio also survives this requirement. It is defined as the ratio
between the deprivation score of the poor in the Alkire–Foster (intermediate) sense
and nd, which is the society deprivation count when all the persons become deprived
in all the dimensions.23 (This is a limiting case of PAFM as α → 0 and it satisfies
DIM (see Table 2)).

Chakravarty and D’Ambrosio (2006) suggested an indicator of multidimensional
social exclusion when the dimensions have ordinal significance. This normalized
indicator verifies SFC, SUD, DIM but not FAD. It is non-decreasing under a correla-
tion increasing switch, but not increasing.24 A related indicator is proposed byBossert
et al. (2013) who characterize a multidimensional indicator where the dimensions
are discrete in nature and used it for evaluating material deprivation in the European
Union. They have defined a person as materially deprived if his deprivation score is
at least one. The measure satisfies similar properties as the previous index.

5 Conclusions

The increasing interest among both academics and policy makers in alternative con-
ceptualizations of well-being and deprivation that take into account multiple dimen-
sions has spawned the development of a wide range of measures of multidimensional
inequality and poverty. The present chapter attempted to summarize, in a structured
way, the main relevant considerations in developing these measures. Within both
inequality and poverty, the discussion has been divided into two lines: the direct
approach—where a set of desirable properties or postulates in terms of multidi-
mensional matrices are first identified and then measures satisfying these properties

23For a recent discussion on the counting approach to multidimensioned deprivation, see Dutta and
Yalonetzky (2014).
24Jayaraj and Subramanian (2009) employed this indicator to determine multidimensional poverty
in India.
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are obtained; and the inclusive measure of well-being approach, where a multidi-
mensional indicator of inequality or poverty is derived by applying a social welfare
function, univariate inequality measure, or univariate poverty measure to a vector of
individual well-being numbers that take account of each individual’s multidimen-
sional achievements.

Irrespective of the approach and set of properties chosen, selecting any scalar indi-
cator to summarize the complete distribution of well-being or deprivation attributes
across individuals involves imposing important value judgments. There is no escape
from that, and thus, there will be always grounds to object to any given multidimen-
sional indicator. However, it is vitally important that policy makers be aware of the
full range of normatively plausible options. It may beworthwhile tomention that, fol-
lowing the literature, our formulation in this chapter uses directly individual achieve-
ments. Therefore, our presentation has ignored individual preferences. Research on
multidimensional poverty and inequality metrics continues to be extremely fertile;
alternative new postulates and indicators are proposed on a regular basis. Although
there has been tremendous progress in this area, reviewed in this chapter, there is
much still to learn.
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many helpful suggestions.

Appendix

Let xi j ≥ 0 be the achievement of person i in attribute or dimension j. An achieve-
ment indicates the performance of a person in a dimension, for instance, howmuch is
his or her income. Person i’s achievements in different dimensions are summarized
by a d-dimensional vector xi. = (xi1, xi2, . . . , xid). The row vector xi. is the ith row
of an n × d distribution matrix X . The column vector x. j , which summarizes the
distribution of achievements in dimension j ( j = 1, 2, . . . , d) among n persons, is
the jth column of X and we denote the mean of this vector by μ

(
x. j

)
. If we denote

the set all n × d matrices whose entries are non-negative real numbers by Mn
1 , then

X ∈ Mn
1 . Similarly, Mn

2 stands for the set of all distributionmatrices such that xi j ≥ 0
for all pairs (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , d} and μ

(
x. j

)
> 0 for all 1 ≤ j ≤ d.

Finally, Mn
3 denotes the set of all distribution matrices such that xi j > 0 for all pairs

(i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , d}. Thus, for matrices in the sets Mn
2 and Mn

3 the
mean of each attribute is positive. Since our analysis will often involve different-sized
populations, it will be necessary to consider the set M1 = ∪n∈N Mn

1 of all distribution
matrices with d columns. Let M2 and M3 be the corresponding sets associated with
Mn

2 and Mn
3 and M = {M1, M2, M3}. We denote an arbitrary element of the set M

by M , that is, the set M can be anyone of the three Mi sets.
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An n × n matrix B with non-negative entries is called a bistochastic matrix of
order n if each of its columns and rows sums to unity. Any permutation matrix is a
bistochastic matrix, but the converse is not true.

An n × n matrix is called a diagonal matrix of order n if its off-diagonal elements
are equal to zero, but diagonal elements may or may not be equal to zero. Throughout
this chapter we will consider diagonal matrices with positive diagonal entries. We
will denote a diagonal matrix � of order n by � = diag(ω1, ω2, . . . , ωd), where
ωi > 0 for all i .

For any n ∈ N , X, Y ∈ Mn , X is said to be obtained from Y by a simple increment
if xi j = yi j + δ for some pair (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , d}, where δ > 0
is a scalar and xlk = ylk for all pairs (l, k) ∈ {1, 2, . . . , n} × {1, 2, . . . , d} such that
(l, k) �=(i, j).

Axioms for multidimensional inequality indices

• Ratio Scale Invariance (RSI): An inequality indicator I : M → �1 is a ratio
scale invariant or relative indicator if for all n ∈ N , X ∈ Mn ,

I (X�) = I (X), (1)

where � = diag(ω1, ω2, . . . , ωd), ωi > 0 for all i .

• Unit Consistency (UCO): For any n ∈ N , X1, X2∈ Mn , I
(
X1

)
< I

(
X2

)
implies

that I
(
X1�

)
< I

(
X2�

)
for all � = diag(ω1, ω2, . . . ωd), ωi > 0 for all i.

• Translation Scale Invariance (TSI): An inequality indicator I : M → �1 is a
translation scale invariant or an absolute indicator if for all n ∈ N , X ∈ Mn ,

I (X + A) = I (X), (2)

where A is any n × d matrix with identical rows such that X + A ∈ M .

• Symmetry (SYM): For all n ∈ N , X ∈ Mn , I (�X) = I (X), where � is any
n × n permutation matrix.

• Population Replication Invariance (PRI): For all n ∈ N , X ∈ Mn , I (X) =

I
(
X (l)

)
, where X (l) is the l-fold replication X, that is, X(l) =

⎛

⎜⎜⎜
⎝

X1

X2

...

Xl

⎞

⎟⎟⎟
⎠

with each

Xi = X , and l ≥ 2 is any integer.
• Normalization (NOM): For all n ∈ N , X ∈ Mn , if X has identical rows, then

I (X) = 0.
• Continuity (CON): For all n ∈ N , I(X) is a continuous function.
• Uniform Pigou–Dalton Transfers Principle (UPD): For all n ∈ N , X, Y ∈ Mn

if X is obtained by pre-multiplying Y by a T-transformation, then I (X) < I (Y ),



254 S. R. Chakravarty and M. A. Lugo

where a T-transformation is a linear transformation defined by an n × n matrix
T of the form T = t I Mn + (1 − t)�i j , for some t ∈ (0, 1), I Mn is the n × n
identity matrix, and �i j is the n × n permutation matrix that interchanges the i
and j coordinates for some i, j ∈ {1, 2, . . . , n}.
Definition: Let X, Y ∈ Mn . Distribution Y is derived from X by a PDB transfer

if there exist two individuals p, q such that: (i) xq > x p; (ii) ym = xm∀m �= p, q;
(iii) yq = xq − δ and yp = x p + δ where δ = (δ1, . . . , δd) ∈ �d+ with at least one
δ j > 0; (iv) yq ≥ yp.

• Pigou–Dalton Bundle Transfer Principle (PBT): For all n ∈ N , X, Y ∈ Mn if
Y is obtained from X by a finite sequence of PBD transfers, then I(Y ) ≤ I(X).

• Uniform Majorization Principle (UM): For all n ∈ N , X, Y ∈ Mn , if X = BY
for some n×n bistochastic matrix B that is not a permutation matrix, then I (X) <

I (Y ).

Definition: For a, b ∈ Rd , define a ∨ b = (max{a1, b1}, . . . ,max{ad , bd}) and
a ∧ b = (min{a1, b1}, . . . ,min{ad , bd}). For X, Y ∈ Mn , we say that X is obtained
from Y by a correlation increasing switch if X �= Y and there exist 1 ≤ i, l ≤ n
such that (i) xi. = yi. ∧ yl., (ii) xl. = yi. ∨ yl., (iii) xi1. = yi1. for all i1 /∈ {i, l}. That
is, a correlation increasing switch between two individuals means a rearrangement
of their achievements such that one of them (l) receives at least as much of every
attribute as the other (i) and more of at least one attribute.

• Correlation Increasing Majorization (CIM): For all n ∈ N , X, Y ∈ Mn , if Y is
obtained from X by a correlation increasing switch, then I (X) < I (Y ).

• Unfair Rearrangement (UR): For all n ∈ N , X, Y ∈ Mn , if Y is obtained from
X by a sequence of dimension-wise permutations which make one individual in Y
top-ranked in all dimensions, another individual second-ranked in all dimensions
as so forth, and Y �= X, then I (X) < I (Y ).

• Subgroup Decomposability (SDE): For all n1, n2 ∈ N , X ∈ Mn1 , Y ∈ Mn2 ,

I (X, Y )/ = A
(

I (X), I (Y );μ(X), μ(Y ); n1, n2

)
, where the aggregative function

A is continuous and increasing in first two arguments, μ(X) and μ(Y ) are the
vectors of means of attributes corresponding to the distribution matrices X and Y
respectively and / denotes transpose.

• Factor Decomposability (FDE): For all n ∈ N , X ∈ Mn , I (X) = ∑d
j=1 I

(
x . j

)
.

Axioms for multidimensional poverty indices

• Normalization (NOM): For any (X; z) ∈ Mn × Z if xi j ≥ z j for all i and j , then
P(X; z) = 0.

• Symmetry (SYM): For any (X; z) ∈ Mn × Z , P(X; z) = P(�X; z), where �

is any n × n permutation matrix.
• Population Replication Principle (PRI): For any (X; z) ∈ Mn × Z , P(X; z) =

P
(
X (l); z

)
, where X (l) is the l-fold replication of X .

• Ratio Scale Invariance (RSI): For all (X; z) ∈ Mn × Z , P(X; z) = P(X�; z�),
where � = diag(ω1, ω2, . . . ωd), ωi > 0 for all i.
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• Weak Focus (WFC): For X, Y ∈ Mn if for some i , xi j ≥ z j for all j and for
some j ∈ {1, 2, . . . , d}, yi j = xi j + η, where η > 0, and xhk = yhk for all
(h, k) �= (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , d}, then P(Y ; z) = P(X; z).

• Strong Focus (SFC): Suppose Y ∈ Mn is obtained from X ∈ Mn such that for
some pair (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , d}, yi j = xi j + η, where xi j ≥ z j ,
η > 0, and xhk = yhk for all (h, k) �= (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , d}. Then
P(Y ; z) = P(X; z).

• Monotonicity (MON): Suppose Y ∈ Mn is obtained from X ∈ Mn such that
for some pair (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , d}, yi j = xi j − c, where i ∈
π(X), xi j < z j , c > 0, and xhk = yhk for all (h, k) �= (i, j) ∈ {1, 2, . . . , n} ×
{1, 2, . . . , d}. Then, P(Y ; z) > P(X; z).

• Dimensional Monotonicity (DIM): Suppose Y ∈ Mn is obtained from X ∈ Mn

such that for some pair (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , d}, yi j = xi j − c < z j ,
where i ∈ π(X), where π(X) is the set of poor persons in X, xi j ≥ z j , c > 0,
and xhk = yhk for all (h, k) �= (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , d}. Then,
P(Y ; z) > P(X; z).

• Subgroup Decomposability (SUD): For any X1, X2, . . . , Xl ∈ M and z ∈ Z ,
P(X; z) = ∑l

i=1
ni
n P

(
Xi ; z

)
, where X = (X1, . . . , Xl)/ ∈ Mn , / denotes trans-

pose, ni is the population size associated with Xi and
∑l

i=1 ni = n.
• Factor Decomposability (FAD): For any (X; z) ∈ Mn × Z , P(X; z) =∑d

j=1 b j P
(
x. j , z j

)
, where b j ≥ 0 is the weight assigned to the poverty in dimen-

sion j and
∑d

j=1 b j = 1.
• Multidimensional Transfers Principle (MT): For any X, Y ∈ Mn if X is
obtained from Y by an averaging of achievements among the deprived dimen-
sions of the poor, then P(X; z) < P(Y ; z).

• Increasing Poverty under Correlation Increasing Switch (IPC): Under SUD,
for any X ∈ Mn , if Y ∈ Mn is obtained from X by a correlation-increasing switch
between two poor persons, then P(X; z) < P(Y ; z), given that the two attributes
are substitutes.
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