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Abstract Increasing environmental contamination with highly toxic chemicals is
warning us to find sustainable technologies to protect the environment and human
health, which is a key challenge of the current scenario. A variety of physicochem-
ical technologies are currently being applied presently to decontaminate the envi-
ronment to safeguard the environment and human health. However, these
technologies are costly and chemical-consuming, thus causing secondary pollution
and, hence, are not environmental-friendly. As an alternative approach, bioremedi-
ation technologies using microbes and plants and their enzymes are currently viewed
as eco-friendly and most sustainable technologies due to their self-sustainable and
low-cost nature. But sometimes bioremediation technologies are get limited by low
degradability/accumulability of microbes and plants, respectively. To overcome
these limitations, genetic engineering approaches are highly decisive to design the
transgenic microbes and plants for the enhanced biodegradation and
biodetoxification of environmental pollutants for sustainable development. Geneti-
cally modified organisms (GMOs) offer great potential for environmental remedia-
tion, and hence, in this chapter, we focused on the applications of GMOs in the
environmental management with risks involved, constraints, and challenges faced by
researchers in the release of GMOs for field applications.
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1 Introduction

In the last few decades, due to industrialization, increase in population, and daily life
requirements, harmful chemicals have been released into the earth’s air, soil, and
water (Goutam et al. 2018; Gautam et al. 2017; Bharagava et al. 2017a, b; Saxena
et al. 2016; Olugbenga 2017). Excessive mining, agriculture waste, and burning of
fossil fuels consequently release enormous amounts of toxic heavy metals like Hg,
Pb, U, Cd, Zn, Cr, Ni, Co, and Cu and metalloids (As) into the environment which
create mutagenic and carcinogenic effect (Wernick and Themelis 1998; Wijnhoven
et al. 2007). Several chemical industries use and produce wide varieties of hazardous
compounds like benzene, toluene, polychlorinated biphenyls (PCBs), polyaromatic
hydrocarbons (PAHs), dioxins, nitro-aromatics, dyes, polymers, pesticides, explo-
sives, chlorinated organic, and pharmaceuticals (Meagher 2000; Pilon-Smits 2005).

Moreover, many of these substances are non-biodegradable and persistent in
nature that stay long in our natural environment. Many of these substances are
toxic and cause a harmful effect on human health and damage the ecological balance.
However, there is an urgent need to remove these compounds for environmental and
public health safety. The remediation and restoration of sites contaminated with
highly toxic and hazardous pollutants requires eco-friendly and effective approach
for environmental sustainability and to safeguard the public health. Microbial
bioremediation is a waste management technology which uses microorganisms
like bacteria, algae, and fungi to degrade and transform hazardous compounds of
soil and water, while phytoremediation is cost-effective and environmental-friendly
technology that has a potential application to efficiently degrade and transform
organic and inorganic pollutants (Kishor et al. 2018; Saxena and Bharagava
2016; Bharagava et al. 2017c, 2019; Meagher 2000).

Eventually, naturally occurring microorganisms are incapable of degrading all
toxic compounds, especially xenobiotic. To overcome this, serious efforts have been
done to create genetically engineered microorganisms (GEMs) to enhance bioreme-
diation approaches besides degrading xenobiotic (Sayler and Ripp 2000). Thus,
biotechnology is a most important technique that has been applied in different
areas especially in remediation to neutralize various unfit complex environmental
pollutants into nontoxic or simple form and to completely remediate organic wastes
(Iwamoto and Nasu 2001). Recombinant DNA technology has been studied inten-
sively to improve the biodegradation of hazardous pollutants in lab conditions (Dua
et al. 2002). In the late 1970s and early 1980s, the cloning and characterization of
bacterial genes that code for catabolic enzymes for the biodegradation of recalcitrant
pollutants has started. The organism whose genetic material, i.e., DNA, has been
modified/altered in such a way so as to get the required traits is often called as
genetically modified organism (Shukla et al. 2010; Liu et al. 2011). This technology
is often called “gene technology,” or “recombinant DNA technology” (RDT), or
“genetic engineering,” and the resulting organism is said to be “genetically modi-
fied,” “genetically engineered,” or “transgenic.”
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In addition, the leakage and industrial discharge of petrol and their associated
chemicals like polycyclic aromatic hydrocarbons (PAH) pose a highly negative
impact on aquatic and terrestrial ecosystems. Genetically modified organisms
(GMOs) have a capability to clean up and remove industrial waste and pollutants
from the environment as well as reduce toxicity of elements (Liu et al. 2011).

Genetic engineering is currently popular among researchers worldwide to
develop new microbes with required traits as compared to its wild type for the
degradation and detoxification of a wide range of xenobiotic compounds (Kumar
et al. 2013).

In 1970, the first GMOs called “superbug” were developed by genetic engineer-
ing through plasmid transfer that have ability to degrade a variety of petroleum
chemicals such as xylene, camphor, hexane, naphthalene, and toluene. GMOs are
capable for enhanced degradation and removal of a wide range of xenobiotic and
also have potential application for bioremediation of environmental pollutants
(Kulshreshtha 2013). Designing of GMOs primarily depend on the knowledge of
genetic basis of interaction between microbes and xenobiotic compounds, structure
of operon, molecular biology, biochemistry, and ecology (ref). Thus, GMOs can be
potential molecular tools to degrade and detoxify the environmental pollutants in
contaminated matrix to safeguard the environment and public health. Therefore, this
chapter has mainly focused on the role of GMOs in the bioremediation of organic
and inorganic pollutants, constraints in utilizing them in bioremediation, and limi-
tations in field applications.

2 Genetically Modified Organisms

Designing of suitable genetically modified organisms (GMOs) for enhanced bioreme-
diation of environmental pollutants from contaminated matrix requires creation of new
routes for metabolism, intensifying a range of existing degradation pathways, avoiding
substrate misrouting into unproductive routes or to toxic metabolite generation,
improving the substrate flux through degradation pathways to avoid the accumulation
of toxic intermediates, enhanced stability of catabolic potential, enhanced bioavail-
ability of hydrophobic pollutants, and enhanced catabolic potential of microbes
(Timmis and Pieper 1999; Pieper and Reineke 2000; Furukawa 2003).

Although an organism produced from genetic engineering techniques allows
the transfer of specific functional genes into a particular organism genome (Tozzini
2000). A US definition of GMO, “genetically modified organisms,” refers to micro-
organism, plants, and animals containing distinctive genes transferred from other
species to produce unique characteristics to completely clean up and mineralize
hazardous waste material. Many bacterial strains such as Bacillus idriensis,
Ralstonia eutropha, Sphingomonas desiccabilis, Pseudomonas putida, Escherichia
coli,Mycobacterium marinum, etc. have been used to design genetically engineered
microbes with insertion of a functional gene into other species which capable for the
bioremediation of heavy metals and non-biodegradable compounds of contaminated
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environment (Valls et al. 2000; Ackerley et al. 2004; Kube et al. 2005; Parnell et al.
2006; Schue et al. 2009; Liu et al. 2011).

Moreover, the genetic engineering of plants also performed to enhance the
accumulation and tolerance capacity as well as detoxification potential for heavy
metal pollutants and to increase the biomass and growth of plants in metal contam-
inated sites (Hassani 2014). Metallothioneins (MTs) are the unique cysteine-rich
peptides that are relevant to higher metal-binding capacity in hyperaccumulating
plants and have been cloned to develop the genetically engineered plants for
phytoremediation of organic and inorganic pollutants. Tobacco plant was the first
genetically engineered plant for the phytoremediation of explosives and halogenated
organic pollutants (Doty et al. 2000). Many reports have been published on the
genetic engineering of plants and their role in the phytoremediation of contaminated
soil and water environment (Cherian and Oliveira 2005; Pilon-Smits 2005; Eapen
et al. 2007; Doty 2008; Macek et al. 2008; James and Strand 2009; Kawahigashi
2009; Van 2009). Recently, James and Strand (2009) reported the dehalogenation of
tetrachloroethylene (PCE) by hybrid poplar trees under controlled field conditions.
Genetically modified organisms can be also used as biosensors for related mixures of
agrochemicals, petroleum products, metals, and toxins that are found in the envi-
ronment, but cannot be directly in soil or water (Ozcan et al. 2011).

3 Environmental Bioremediation Technologies

Environmental bioremediation technologies broadly can be classified into two major
categories: bioremediation and phytoremediation.

3.1 Bioremediation

Bioremediation is the eco-friendly technique wherein biological agents (microbes
and plants or their enzymes) are used to degrade and detoxify the organic and
inorganic pollutants to safeguard the environment and public health in low-cost
and efficient manner (Azubuike et al. 2016; Bharagava et al. 2018; Kishor et al.
2018). A range of bioremediation techniques have been developed by researchers to
date; but due to diverse characteristics of pollutants and merits and demerits, no
single bioremediation technique can provide full-scale solution to contaminated
environment (Verma and Jaiswal 2016). Microbes that are involved in the degrada-
tion and detoxification of organic and inorganic pollutants are Mycobacterium,
Acinetobacter, Flavobacterium, Actinobacteria, Alcaligenes, Beijerinckia,
Arthrobacter, Methylosinus, Bacillus, Micrococcus, Serratia, Nitrosomonas, Rhi-
zoctonia, Pseudomonas, Nocardia, Phanerochaete, Penicillium, Xanthobacter, and
Trametes. Bioremediation involves three main processes: biotransformation (con-
version of organic and inorganic pollutants into less or nonhazardous molecules),
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biodegradation (breakdown of complex organic pollutants into simple and smaller
unit molecules), and mineralization (complete biodegradation of organic matter into
inorganic constituents such as CO2 or H2O) (Saxena and Bharagava 2017; Saxena
and Bharagava 2015; Pilon-Smits 2005).

On the basis of application potential, bioremediation can be applied as ex situ and
in situ. In situ bioremediation technologies involve treatment of pollutants at the site
of pollution, do not require any excavation means, do not pose any disturbance to
soil environment, and require continuous oxygen supply for proper aeration to
support the microbial growth for degradation of contaminants (Vidali 2001). In
situ bioremediation technologies are cost-effective as these uses microbes for pol-
lutant removal from contaminated matrix and for the degradation and detoxification
of polyaromatic hydrocarbons, azo dyes, chlorinated solvents, and heavy metals
(Kumar et al. 2011; Folch et al. 2013; Kim et al. 2014; Frascari et al. 2015; Roy et al.
2015). In situ bioremediation technologies are biosparging, bioventing, and
phytoremediation.

Ex situ bioremediation technologies involve the treatment of pollutants at any place
other than the site of pollution and require excavation of contaminated soil or pumping
of groundwater to enhance the microbial degradation process. These remediation
approaches are costly, and their applicability depends on the pollutants type, pollution
strength and depth, and geographic conditions of contaminated sites (Philp and Atlas
2005). These approaches are classified into two methods: solid phase system (includ-
ing land treatment and soil piles) and slurry phase systems (including solid liquid
suspensions in bioreactors) (Kumar et al. 2013).

3.2 Phytoremediation

Phytoremediation is an eco-friendly phytotechnology that involves the use of plants/
trees for the treatment and restoration of contaminated sites/wastewaters/groundwa-
ter (Saxena et al. 2019; Chandra et al. 2015). By using green plants, the pollutants
such as metals, pesticides, herbicides, explosives, oil, solvents, and their derivatives
can be removed and cleaned up from polluted and contaminated soil, streams, and
groundwater (Meagher 2000; Pilon-Smits 2005). Phytoremediation technologies
may be inexpensive and harmless process than traditional ones and offer easy
plant control and re-use of valuable metals. Exudates released by roots in the
rhizosphere of plants also support the growth of soil beneficial microbes that
participate in the degradation and detoxification of pollutants (rhizoremediation),
and chelating agents help to convert non-available elements into bioavailable forms
for plant uptake for growth (Suresh and Ravishankar 2004; Abhilash et al. 2009).

The genetically engineered plants have been developed through transgenic engi-
neering to degrade and detoxify the organic and inorganic pollutants (Zhu et al.
1999; Abhilash et al. 2009). The increased accumulation of pollutants (in case of
heavy metals) facilitates their removal from contaminated matrix and, thus, prevents
their migration to other environments where these can create pollution and health
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hazards to living beings. However, phytoremediation has some disadvantages such
as limitation to the surface area and depth occupied by the roots, slow plant growth,
low biomass production, and contamination possibility of food chain by accumu-
lated contaminants (Macek et al. 2008). Phytoremediation covers several different
strategies such as phytoextraction, rhizofiltration, phytostabilization, phytovolatilization,
etc. (Eapen and D’Souza 2005; Cherian and Oliveira 2005; Doty 2008; Macek et al.
2008).

4 Genetically Engineered Bacteria in Bioremediation
of Heavy Metals and Organic Pollutants

Water and soil are essential components of all living things on earth. But unfortu-
nately these are contaminated by geogenic and anthropogenic activities like mining,
volcanic eruption, heavy rainfall, industrializations, urbanization, and agriculture
waste, which are liable for the pollution of our natural environment and toxicity in
the living beings. Therefore, it is urgent need to adequately treat the contaminated
water and soil to protect the environment and public health. There are several reports
available on the bioremediation of heavy metals and organic pollutants by different
microorganisms (Strong et al. 2000; Barac et al. 2004). Genetically engineered
bacteria reported in the degradation and detoxification of organic and inorganic
pollutants are listed in Table 1.1.

A variety of potential strains of bacteria such as Bacillus idriensis, Ralstonia
eutropha, Sphingomonas desiccabilis, Pseudomonas putida, Escherichia coli,
Mycobacterium marinum, etc. have been genetically engineered for the enhanced
bioremediation of toxic heavy metals in the contaminated matrix (Valls et al. 2000;
Deng et al. 2003; Ackerley et al. 2004; Deng et al. 2005; Kube et al. 2005; Parnell
et al. 2006; Singh et al. 2008; Schue et al. 2009; Liu et al. 2011). Bioremediation of
Hg is mainly facilitated by transgene that confers arsenic resistance to microbes such
as mer operon genes (Jan et al. 2009), mercuric ion transporter gene merC in
Acidithiobacillus ferrooxidans (Sasaki et al. 2005), and mercuric ion transporter
gene merH in Mycobacterium marinum (Schue et al. 2009). The genetically
engineered radiation-resistant bacterium, Deinococcus radiodurans, also showed a
great potential for the bioremediation of radioactive waste containing mercury ion
(Brim et al. 2000). The genetically engineered mercury-resistant bacterium,
Escherichia coli (merT-merP and MT genes), also showed a huge potential for the
removal of Hg2+ from electrolytic wastewater (Deng and Wilson 2001). It has been
also reported that the accumulation of Cd2+ was enhanced into Mesorhizobium
huakuiiwhen transformed with a gene that code for phytochelatins from Arabidopsis
thaliana (Sriprang et al. 2003).

Kang et al. (2007) reported that the recombinant E. coli can accumulate Cd up to
25-fold more than control strain. Wu et al. (2006, 2010) studied the alleviation of Cd
toxicity using a metal-binding peptide (EC20) expressing rhizobacterium,
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Pseudomonas putida 06909. Patel et al. (2010) studied that a recombinant bacterial
strain, Caulobacter crescentus JS4022/p723-6H, expressing RsaA-6His fusion pro-
tein can remove up to 99.9% of the Cd as compared to control bacterium which can
remove up to 37% of Cd. Arsenic removal from contaminated matrix has been also
studied using recombinant microbes by several workers (Valls and de Lorenzo 2002;
Qin et al. 2006; Yuan et al. 2008). A recombinant bacterium, E. coli (containing
arsM gene from Rhodopseudomonas palustris), can transform highly toxic inorganic
As into less toxic volatile trimethylarsine (Qin et al. 2006; Yuan et al. 2008). Further,

Table 1.1 Genetically modified bacteria (GMBs) for enhanced bioremediation of organic and
inorganic pollutants

GMBs Introduced gene(s) Pollutants References

Pseudomonas putida
PaW340(pDH5)

pDH5 plasmid 4-chlorobenzoic acid Massa
et al.
(2009)

Escherichia coli JM109
(pGEX-AZR)

Azoreductase gene Azo dyes, C.I. Direct
Blue 71

Jin et al.
(2009)

Pseudomonas putida
pnrA

Nitroreductase TNT Van
Dillewijn
et al.
(2008)

Pseudomonas putida
PaW85

pWW0 plasmid Petroleum Jussila
et al.
(2007)

Rhodococcus
rhodochrous XplA,
XplB

Cytochrome P450
monooxygenase

RDX Jackson
et al.
(2007)

Enterobacter cloacae
NfsI

Nitroreductase TNT Hannink
et al.
(2007)

E. coli NfsA Nitroreductase TNT Kurumata
et al.
(2005)

B. subtilis BR151
(pTOO24 )

Luminescent Cd sensors Cd (Naturally polluted
soils)

Ivask et al.
(2011)

Sphingomonas
desiccabilis and Bacil-
lus Idriensis strains

Over expression of arsM
gene

As (Laboratory
conditions)

Liu et al.
(2011)

Methylococcus
capsulatus (Bath)

CrR genes for Cr
(VI) reductase activity

Cr (VI) (Cell-associated
Cr removal in laboratory
conditions)

Hasin et al.
(2010)

Pseudomonas strain
K-62

MerE protein encoded by
transposon Tn21 (broad Hg
transporter)

Hg (Across the bacterial
membrane)

Kiyono
et al.
(2009)

Bacillus megaterium
strain MB1

mercuric ion binding pro-
tein (MerP)

Hg Hsieh et al.
(2009)
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a recombinant bacterium, E. coli SE5000 strain (containing nixA gene), can also
accumulate Ni2+ from aqueous solution (Fulkerson et al. 1998).

Further, it has been reported that the Ni resistance was enhanced in the recom-
binant E. coli when introduced with the serine acetyltransferase gene from Ni
hyperaccumulating plant, Thlaspi goesingense (Freeman et al. 2005). Recently,
Hasin et al. (2010) have characterized a methanotrophic bacterium,Methylococcus
capsulatus, which can successfully bioremediate Cr6+ in a wide range of concen-
trations (1.4–1000 mgL�1 of Cr6+). However, a recombinant Cd-resistant rhizo-
sphere bacterial strain, Pseudomonas putida 06909, could detoxify Cd due to its
ability to produce metal-binding peptide (MBP)-EC20 that has high affinity for Cd
(Lee et al. 2001).

In 1970, the first GEMs called “superbug” were constructed to degrade oil by
the transfer of plasmids which could utilize a number of toxic organic chemicals
like octane, hexane, xylene, toluene, camphor, and naphthalene. Microorganisms
that are well adapted to survive in the soil environment may not be able to survive
in aquatic environment and hence cannot be used successfully. Therefore, aquatic
microbes can be used to develop GEBs for bioremediation of aquatic sources. The
use of such organisms would avoid the supplementation of nutrients to the inoc-
ulated environment, thereby reducing the costs incurred and maintenance required
(Kulshreshtha 2013). Scientists have developed Anabaena sp. and Nostoc
ellipsosporum by the insertion of linA (from P. paucimobilis) and fcbABC (from
Arthrobacter globiformis), respectively. The gene linA responsible for the biodeg-
radation of lindane (γ-hexachlorocyclohexane), and fcbABC confers the ability to
biodegrade halobenzoates and can be used to remediate these pollutants from water
sources. GEBs have been developed by hybrid gene clusters which alter their
enzymatic activity and substrate specificities (Kulshreshtha 2013). These gene
clusters encode the enzyme possessing improved transforming capability. E. coli
strain is genetically modified to express a hybrid gene cluster for the degradation of
trichloroethylene (TCE) (Kulshreshtha 2013). GEMs possess chemical sensors that
allow the monitoring of contaminant bioavailability rather than just contaminant
presence (Kumar et al. 2013). Bioluminescence-producing GEMs also help us to
understand the spread of microbes in the polluted area and end point of the
bioremediation (Kulshreshtha 2013).

The genetically engineered Pseudomonas strains were the first microbe devel-
oped by Indian-born American scientist Dr. Anand Mohan Chakrabarty, with high
catalytic potential to the subject of intellectual property right [US Patent #425944],
which could degrade a variety of petroleum hydrocarbons such as naphthalene,
camphor, xylene, octane, and salicylate. Following the seminal work of
Chakrabarty and his colleagues on the degradation of petroleum and
chloroaromatic compounds (Harvey et al. 1990; Haugland et al. 1990), the possi-
bilities of using genetic engineering technique in biodegradation of organic pol-
lutants had received a breakthrough with many papers published by the Timmis
Laboratory in the mid- and late 1980s (Ramos et al. 1987; Rojo et al. 1987). Thus,
genetic engineering techniques have been proved to be an efficient molecular
approach for the microbial bioremediation of pollutants.
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5 Genetically Engineered Plants in Phytoremediation
of Heavy Metals and Organic Pollutants

Phytoremediation is the engineered use of green plants/trees with associated
microbiota for the degradation and detoxification of organic and inorganic pollutants
from the contaminated matrix (soil/water) to safeguard the environment and public
health. Genetically engineered plants were first developed for the phytoremediation
of heavy metals (Misra and Gedamu 1989; Rugh et al. 1996). However, the tobacco
plants were the first genetically engineered plants for the phytoremediation of
organic pollutants (explosives and halogenated organic compounds) (Doty et al.
2000). Genetically engineered plants are developed by introducing the transgene of
interest that are responsible for the metabolism of xenobiotic compounds and offer
increased resistance to pollutants (Abhilash et al. 2009). Due to the increased
capacity to accumulate toxic metals from contaminated matrix, plants are chiefly
preferred for the phytoremediation of heavy metals-contaminated sites. After
phytoremediation, the aboveground harvestable plant biomass is safely disposed of
or utilized to recover the valuable metals for future use (Salt et al. 1998). Genetically
engineered plants used for the phytoremediation of environmental contaminants are
listed in Table 1.2.

Phytoremediation has several advantages over microbial bioremediation approaches
such as high biomass of the remediating plants with less nutrient requirements, which
prevent migration of pollutants from one place to another and greater acceptance
among public (Alkorta et al. 2004). The best known metal hyperaccumulating plant
is alpine pennycress, Thlaspi caerulescens, which hyperaccumulates Zn2+, Cd2+, and
Ni2+ from contaminated matrix (Milner and Kochian 2008; Baker et al. 2000). Mem-
bers of Brassicaceae, Alyssum sp. (a serpentine-endemic shrub), Astragalus racemosus,
Leguminosae milkvetch, and Indian mustard Brassica juncea, are known to accumulate
high concentration of heavy metals from contaminated environment (Reeves and Baker
2000). Recently, Asian stonecrop, Sedum alfredii of Crassulaceae, has gained more
attention to researchers as it hyperaccumulates Pb2+ and Cd2+ and Zn2+ with more than
2% of shoot weight (Yang et al. 2003; Lu et al. 2008; Deng et al. 2008).

Further, the genetically engineered, fast-growing, and high-biomass-producing
metal hyperaccumulators with required genetic traits have been proved to be the
suitable candidates for the phytoremediation of contaminants and include shrub
tobacco Nicotiana glaucum, B. juncea, yellow poplar Liriodendron tulipifera, and
sunflower Helianthus annuus (Eapen and D’Souza 2005). Several publications have
reported the potential of phytoremediation to restore the polychlorophenol-
contaminated soil/water (Newman and Reynolds 2004). Different plant-based reme-
diation approaches are known including the rhizosphere biodegradation of
chlorophenols inside the plant tissues (Van 2009). de Araujo et al. (2002) showed
that Agrobacterium rhizogenes-transformed roots removed up to 90% phenolics,
including phenol, 2-chlorophenol (2-CP), 2,6-dichlorophenol (2,6-DCP), and 2,4,6-
TCP, from culture medium within 120 h. Sandermann (1994) studied the plant
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metabolism of 2,4-D, including hydroxylation of the aromatic ring (Phase I),
conjugation with O-manolyl-glucoside (Phase II), and deposition into the vacuole
(Phase III). Burken and Schnoor (1998) also studied the degradation of [14C]-
atrazine into less toxic metabolites inside hybrid poplar trees. Cytochrome P-450s
have been reported to oxidize many chlorinated pesticides, including chlorotoluron,
linuron, atrazine, and isoproturon (Kawahigashi et al. 2007).

Table 1.2 Genetically engineered plants (GEPs) for enhanced phytoremediation of organic and
inorganic pollutants

Gene Origin Target plant Pollutants References

AtACR2 A. thaliana L. Nicotiana
tabacum

As Nahar et al. (2017)

StGCS-GS Streptococcus
thermophilus

Beta vulgaris L. Cd, Zn and Cu Liu et al. (2015)

MerE E.coli
XL1-Blue

Arabidopsis
thaliana L.

Methyl-Hg and
Hg

Sone et al. (2013)

CYP2E1 and
GST

Homo sapiens Homo sapiens
Alfalfa (Medicago
sativa)

Hg and
Trichloroethane

Zhan et al. (2013)

ScYCF1 S. cerevisiae Populus alba X P. Cd, Zn and Pb Shim et al. (2013)

YCF1 S. cerevisiae Brassica juncea L. Cd and Pb Bhuiyan et al.
(2011)

tcu1 Neurospora
crassa

Nicotiana
tabacum L.

Cu and Zn Singh et al. (2011)

tzn1 Neurospora
crassa

Nicotiana
tabacum L.

Cd, Fe, Ni, Cu,
Mn and Pb

Dixit et al. (2010)

PsMTA1 Pisum sativum
L.

Populus alba L. Cu Balestrazzi et al.
(2009)

TnMERI1 Bacillus
megaterium

A. thaliana Hg Hsieh et al. (2009)

GSH1 S. cerevisiae A. thaliana L. Cd and As Guo et al. (2008)

GSH1 and
AsPCS1

S. cerevisiae
and A. sativum

A. thaliana L. Cd and As Guo et al. (2008)

AtPCS1 A. thaliana L. B. juncea L Cd and As Gasic and Korban
(2007)

CYP1A1,
CYP2B6,
CYP2C19

Homo sapiens Oryza sativa Herbicide (atra-
zine,
metolachlor)

Kawahigashi et al.
(2008)

GstI-6His Zea mays N. tabacum Alachlor Karavangeli et al.
(2005)

TaPCS1 T. aestivum N. glauca Pb and Cd Gisbert et al.
(2003); Martinez
et al. (2006)

P1A1, CYP2B6,
CYP2C9,
CYP2C19

Homo sapiens Solanum
tuberosum, Oryza
sativa

Sulfonylurea
and other
herbicides

Inui and Ohkawa
(2005)

atzA Bacteria Medicago sativa,
N. tabacum

Atrazine Wang et al. (2005)
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Banerjee et al. (2002) reported that the transgenic hairy root cultures of Atropa
belladonna (developed by introducing rabbit cytochrome P-450 2E1) can metabo-
lize trichloroethane at very fast rate as compared to its wild type. Doty et al. (2007)
successfully performed the transgenic engineering of poplar plants (Populus
deltoides � Populus alba) overexpressing mammalian cytochrome P450 2E1
(CYP2E1) for the enhanced degradation of trichloroethane, carbon tetrachloride
benzene, and chloroform.

6 Constraints, Risks, and Challenges in the Release
of Genetically Modified Organisms for Field Applications

Genetically modified organisms (GMOs) can be produced by introducing the gene of
interest into other organisms to accelerate their performance. A variety of GMOs
have been developed through genetic engineering and utilized in the degradation and
detoxification of organic and inorganic pollutants in lab conditions (Pieper and
Reineke 2000; Furukawa 2003; Lovely 2003; Paul et al. 2005).

The introduction of GMOs in field applications may interbreed with the wild type
or sexually compatible relatives (Barac et al. 2004). The novel trait may disappear in
wild types unless it confers a selective advantage to the recipient. However, toler-
ance abilities of wild types may also develop, thus altering the native species’
ecological relationship and behavior. Faster growth of GMOs can enable them to
have a competitive advantage over the native organisms. This may allow them to
become invasive, spread into new habitats, and cause ecological and economic
damage. Pressure may increase on target and nontarget species to adapt to the
introduced changes as if to a geological change or a natural selection pressure
causing them to evolve distinct resistant populations. The effects of changes in a
single species may extend well beyond to the ecosystem. Single impacts are always
joined by the risk of ecosystem damage and destruction. Once the GMOs have been
introduced into the environment and some problems arise, it is impossible to
eliminate those (Prakash et al. 2011).

One risk of particular concern relating to GMOs is the risk of horizontal gene
transfer (HGT). HGT is the acquisition of foreign genes (via transformation, trans-
duction, and conjugation) by organisms in a variety of environmental situations. It
occurs especially in response to changing environments and provides organisms,
especially prokaryotes, with access to genes other than those that can be inherited
(Martin 1999; Ochman et al. 2000; Prakash et al. 2011).

However, to overcome the associated constraint, researchers from around the
globe have made several efforts to delimit the uncontrolled proliferations and
survival of genetically engineered microbes (GEMs) and stop the horizontal gene
transfer (HGT) to the native microbes (Kolata 1985; Atlas 1992; Paul et al. 2005). In
addition, many of these risks are identical to those incurred with regard to the
introduction of naturally or conventionally bred species (Sayler and Ripp 2000).
But still the GMOs are neither safe nor they should be less scrutinized.
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7 Conclusion and Future Outlook

Environmental contamination from around the globe has forced the scientific commu-
nity to think about the environmental sustainability. Environmental sustainability and
safety is a major issue in the world due to rapidly increasing pollution that create health
hazards and toxicity in the environment. Environmental pollutants (organic and inor-
ganic in nature) can be hazardous to living beings upon exposure and need to be
remediated/detoxified using an array of microbes. Being of highly toxic nature, pollut-
ants sometime can inhibit the growth of remediating microbes and, thus, halt the
bioremediation processes. Therefore, genetic engineering can be a potential molecular
technique to engineer the intended microbes to enhance their catalytic potential for
bioremediation of environmental pollutants. However, the potential risks should also be
considered before applying genetically engineered microbes in field.
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