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Preface

Recent advances in microbial genomics technologies, environmental genomics, 
molecular microbiology, and information and theoretical sciences have made it pos-
sible to show that horizontal transfer of genetic elements has been occurring during 
the evolution of archaea and bacteria and is ongoing in the environment, which 
could be a major driving force for the evolution of these prokaryotes. Evidence sug-
gests that they are acquiring abilities to carry out new actions through horizontal 
transfer of genetic elements, which may have both good and bad outcomes for 
human beings: for instance, bioremediation on the one hand and antibiotic resis-
tance on the other. Thus, we believe that the horizontal transfer of genetic elements 
will continue to be an important topic for agricultural, medical, microbial, and other 
sciences.

This book consists of ten chapters written by experts in the field, covering the 
recent progress of studies into multiple aspects of DNA traffic in the environment: 
DNA carriers (phages, plasmids, transposons, and vector particles, in Chaps. 4–8), 
effects of DNA transfer (antibiotic resistance and bioremediation, in Chaps. 9 and 
10), and regulation to support DNA transfer (gene silencing, in Chaps. 1 and 2). 
Also described are the exchange of DNA resources by horizontal transfer between 
archaea and bacteria (Chap. 2) and similarity of defense systems to restrict the inva-
sion of foreign DNA (Chap. 3)—for example, clustered, regularly interspaced, short 
palindromic repeats (CRISPR)—and how mobile DNA can overcome those barriers 
(Chap. 1). The chapters show how these organisms have used DNA resources in the 
environment and affected the environment itself.

We express our deep appreciation to all authors for providing their cooperation 
and contributions for the publication of this book.

Toyama, Japan Hiromi Nishida 
Toyama, Japan  Taku Oshima 



vii

 1  Xenogeneic Silencing and Horizontal Gene Transfer  . . . . . . . . . . . . . .   1
Chiho Suzuki-Minakuchi and William Wiley Navarre

 2  Functions of Archaeal Nucleoid Proteins: Archaeal Silencers  
are Still Missing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
Hugo Maruyama, Nicholas A. Kent, Hiromi Nishida,  
and Taku Oshima

 3  Acquired and Innate Immunity in Prokaryotes Define Their 
Evolutionary Story . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47
Toshihiro Ito, Masatoshi Okura, and Fumito Maruyama

 4  RNA-Mediated Crosstalk Between Bacterial Core Genome  
and Foreign Genetic Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77
Masatoshi Miyakoshi

 5  Bacteria–Virus Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95
Takashi Yoshida, Daichi Morimoto, and Shigeko Kimura

 6  Plasmids and Their Hosts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Masaki Shintani and Haruo Suzuki

 7  Overlooked Broad-Host-Range Vector Particles  
in the Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Hiroshi X. Chiura

 8  Bacterial Transposable Elements and IS-Excision Enhancer (IEE) . . . .197
Masahiro Kusumoto and Tetsuya Hayashi

 9  Mobile Genetic Elements Involved in the Evolution of Bacteria  
that Degrade Recalcitrant Xenobiotic Compounds . . . . . . . . . . . . . . . . 215
Yuji Nagata, Hiromi Kato, Yoshiyuki Ohtsubo, and Masataka Tsuda

 10  DNA Traffic in the Environment and Antimicrobial Resistance  . . . . . 245
Steven P. Hooton, Andrew D. Millard, Michelle Baker,  
Dov J. Stekel, and Jon L. Hobman

 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Contents



1© Springer Nature Singapore Pte Ltd. 2019
H. Nishida, T. Oshima (eds.), DNA Traffic in the Environment, 
https://doi.org/10.1007/978-981-13-3411-5_1

C. Suzuki-Minakuchi 
Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
e-mail: ucsmina@mail.ecc.u-tokyo.ac.jp 

W. W. Navarre (*) 
Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
e-mail: william.navarre@utoronto.ca

1Xenogeneic Silencing and Horizontal 
Gene Transfer

Chiho Suzuki-Minakuchi and William Wiley Navarre

Abstract
The genomes of free-living eubacteria and archaea are constantly shaped by 
recombination and genetic exchange; a fact that allows prokaryotes to evolve at 
rates far faster than if they had to evolve new traits via mutation. Microbes con-
tain many defenses against foreign DNA, and the competing forces of evolvabil-
ity and genomic security determine the extent to which a microbe can take 
advantage of genetic material obtained from other cells. Over the past decade, we 
have learned that many bacterial species employ silencing proteins to specifi-
cally regulate genes obtained via horizontal gene transfer, including many 
involved in virulence and drug resistance. The “xenogeneic silencing” paradigm 
implies that bacteria, by silencing expression of genes that have %GC-content 
lower than the genome average, are able to acquire genes that otherwise would 
be toxic if left unregulated. This paradigm also implies that bacteria maintain 
bias in their genomes to distinguish self-DNA from nonself-DNA and that the 
nonself-DNA is subject to different evolutionary and regulatory forces than the 
genes in the ancestral genome. In this chapter, we discuss the forces that shape 
bacterial genomes and how silencing enables the spread of genetic elements. We 
will discuss the properties of different silencers and speculate on the role of 
silencing proteins encoded on many mobile genetic elements including 
plasmids.

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3411-5_1&domain=pdf
mailto:ucsmina@mail.ecc.u-tokyo.ac.jp
mailto:william.navarre@utoronto.ca
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1.1  Prokaryotic Evolution: Harnessing Power of Mobile 
DNA

Prokaryotes (archaea and bacteria) and eukaryotes have adopted distinct modes of 
evolution. Eukaryotes prioritize genomic security and generally shun genetic 
exchange with organisms outside of their own species. To generate novelty and 
diversity, eukaryotes make extensive use of sexual reproduction, gene duplication, 
and domain swapping (modularity) to engineer and refine novel proteins from their 
preexisting complement of genes [1–5]. This is reflected in the structure of the 
eukaryotic proteins, which often comprise arrays of modular domain types (e.g., 
SH2, SH3, WW, and CARD) assembled in different arrangements [6, 7].

Prokaryotes, on the other hand, make extensive use of horizontal (lateral) gene 
transfer (HGT)—defined as the transfer of genes between strains, species, and even 
phyla [8–11] (see also Chap. 2). This is reflected in the structures of prokaryotic 
genomes which show remarkable differences in gene content even within members 
of the same species. Nowhere is the role of HGT more visible than in the evolution 
of new pathogens and in the rapid emergence and spread of antibiotic resistance (see 
also Chaps. 6 and 10). Comparisons of thousands of prokaryotic genomes reveal 
that most free-living (i.e., not obligately symbiotic) species have “open genomes” 
that are shaped both by canonical mutational forces and by the acquisition and loss 
of large segments of DNA [12].

Whole genome sequencing of thousands of prokaryotic genomes over the past 
two decades has dramatically improved our understanding of bacterial genome con-
tent, evolution, and structure. While the genomes of all cells encode a largely uni-
versal set of “informational” genes (e.g., factors essential for transcription, DNA 
replication, protein synthesis, cell wall synthesis, cell division, core metabolism, 
nutrient transport, etc.), bacteria also encode additional functions that are more or 
less unique to their clade. Comparisons of Escherichia coli genomes found that 
while a typical isolate will encode approximately 5000 genes, only slightly less than 
1500 of these are universally conserved among all strains of E. coli—and less that 
1000 genes if Shigella sp. are included in the analysis [13, 14]. That means 70–80% 
of the genome of any given E. coli isolate comprises the noncore accessory genes. 
A recent analysis of Salmonella, for which there are more than 100,000 genome 
sequences available, reveals that whether a gene is called “core” or “accessory” is a 
matter of how stringent different criteria are used. If relatively relaxed criteria (a 
so-called soft-core genome) are used, the Salmonellae share a common core of 3002 
genes. Here, the definition used was that a gene had to be present >98% or more, 
intact in >94%, and of “unexceptional diversity” in 3144 representative Salmonella 
genomes [15]. If an absolute presence/absence criteria is used, however, the number 
of core genes drops nearly tenfold to a mere 360 genes. This means that depending 
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on the criteria used, the Salmonella core genome comprises either half or less than 
8% of any given Salmonella isolate. It is likely, however, that the more relaxed 
inclusion criteria are ultimately more meaningful in terms of understanding the 
biology of the species as a whole.

The clade-specific core genes often give us clues as to the habitat and lifestyle of 
the species. One example, of many, is the Salmonella pathogenicity island 1 (or SPI- 
1), a cluster of several genes that encode a type 3 secretion system that is central to 
Salmonella’s pro-inflammatory lifestyle [16, 17]. All strains of Salmonella enterica 
and Salmonella bongori encode SPI-1, and the island is unique to the species 
Salmonella, although many bacteria encode similar type 3 secretion systems [15, 
18, 19]. In addition to the SPI-1 system, most Salmonellae also encode metabolic 
genes that enable them to take advantage of the metabolic by-products of inflamma-
tion including peroxide, tetrathionate, and nitrate/nitrite [16, 17].

For bacterial species like E. coli and Salmonella, the “pan-genome,” or the com-
plete set of genes found within the total membership of the species, is far larger than 
the core genome in bacteria. A recent study estimates that the Salmonella pan- 
genome comprises approximately 25,000 genes, while E. coli was estimated to have 
larger pan-genome of at least 38,000 genes despite fewer strains being included in 
the analysis [19, 20]. These observations tell us that the majority of bacterial genes 
are drawn from a vast pool of sequences that flow between members of a given 
bacterial species and, less often, across species. This pool of mobile genes have 
been termed the “accessory” or “flexible” genome. The impact that accessory genes 
have on the ability of bacteria to rapidly adapt to novel and challenging environ-
ments is enormous. However, while the functions of most core genes in bacterial 
genomes are largely understood or can be inferred, the accessory genome is replete 
with genes of unknown function [21]. Most of these enigmatic accessory genes have 
no measurable impact on cellular fitness during standard laboratory conditions but 
probably are critical to survival in a specific set of conditions. It is likely that many 
of these genes play a role in enhancing competitive fitness by promoting interspe-
cies cooperation or by protecting against an array of competing microbes, viruses, 
and potentially deleterious mobile genetic elements [22]. In such cases, the func-
tions of these genes cannot be understood when microbes are grown in 
monoculture.

There is of course a balance that must be struck between genomic flexibility (i.e., 
the ability to acquire new DNA from foreign sources) and genomic security. To 
lessen the deleterious effects of HGT, bacteria encode a diverse array of defense 
systems including restriction systems, CRISPR systems, BREX systems, abortive 
infection and T/A systems, and nucleases like RecBCD that destroy free ends of 
incoming DNA [23–27]. Bacterial cells also constantly alter their cell surfaces to 
prevent phage infection and limit their susceptibility to rampant conjugation [26, 
27] (see also Chap. 3).

Correspondingly, mobile genetic elements like transposons, temperate phages, 
and conjugal plasmids utilize complex, diverse, and mechanistically remarkable 
ways to ensure their survival and spread to new host genomes. Conjugal plasmids 
often encode factors that block restriction enzymes and blunt the induction of the 
host SOS response that is triggered when single-stranded plasmid DNA enters the 
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cell during the conjugation process. Plasmids and phages have been shown to 
encode both anti-restriction factors and anti-CRISPR proteins [28–30]. In spite of 
their activity to subvert host defenses, most evolutionarily successful (widespread) 
mobile genetic elements will balance their negative impact by encoding factors that 
improve the fitness of their hosts [22, 31–34]. These include resistance to antibiot-
ics, heavy metals, or by protecting the cell from other mobile elements [35]. For 
example, many temperate phages encode factors that prevent infection by other 
phages [23].

Therefore, there exists a complex interplay not only between a microbe and 
mobile genetic elements but also between different mobile genetic elements as they 
compete for territory in their varied microbial hosts [22, 31–34]. Our limited under-
standing of the varied forces that shape bacterial genomes is largely due to the fact 
that the majority of experimental research in this arena has focused on a few lab- 
adapted isolates of a small number of bacterial species.

For the rest of this chapter, we will focus on how some bacterial species employ 
gene silencing as a mechanism to both take advantage of and protect themselves 
from the potential dangers of HGT. Recent discoveries about bacterial gene silenc-
ing have given us tremendous insight into how many accessory genes are regulated 
and how bacterial regulatory networks can be resilient in the face of rampant gene 
exchange.

1.2  Bacterial Genomes Are Built to Prevent Parasitism

There are several sequence and structural features of bacterial genomes that 
allow it to distinguish its own DNA from foreign DNA. For example, most bac-
terial chromosomes are circular (i.e., no free ends), double stranded, negatively 
supercoiled, and methylated at specific sequences. In contrast, DNA entering a 
cell from phages, plasmids, and via competence usually enters the cell with a 
free end, relaxed, often single-stranded, and many times without the methyla-
tion patterns that would prevent it from being cleaved by restriction enzymes 
(see also Chap. 3). The free ends of newly introduced dsDNA are subject to 
degradation by exonucleases including the RecBCD complex, which not only 
can destroy foreign DNA directly but can also provide templates for CRISPR 
spacer acquisition [36].

This tells us that bacterial cells encode systems, like RecBCD/SOS, that con-
stantly surveil for signatures of “nonself” nucleic acid that can indicate whether the 
cell is being invaded by a phage or plasmid. It also tells us that many fundamental 
and intrinsic features of the bacterial chromosome actually arose as a means to pre-
vent genomic parasitism.

This brings up the question of what types of signatures can be used to tell self- 
DNA from nonself-DNA. Below, we will make the case that GC-content and codon 
bias are also features that bacteria use to discriminate genetic material that is foreign 
(see also Chap. 6).

C. Suzuki-Minakuchi and W. W. Navarre
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1.3  Characteristics of Core Genes vs. Accessory (Noncore) 
Genes in the Genome

In 1952, Erwin Chargaff first observed that the genomic DNA of three bacterial spe-
cies (Haemophilus, Mycobacterium, and Serratia) differed in the relative amount of 
their constituent nucleotides [37]. While Serratia and Mycobacterium were rela-
tively rich in guanine and cytosine, Haemophillus was shown to be rich in adenine 
and thymine. These analyses were subsequently expanded to other microbes, reveal-
ing that each had a characteristic nucleotide composition [38, 39]. Indeed, this 
rather simple metric has become a reliable characteristic to describe individual spe-
cies and is sometimes group different bacteria into particular phylogenetic clades. 
The Actinobacteria, for example, are often referred to as the “GC-rich Gram-positive 
bacteria,” while the Firmicutes are known as the “AT-rich Gram-positive bacteria.”

While bacterial GC-contents can range from less than 20% to slightly greater 
than 75%, the genomic GC-contents of any species tends to fall in a very narrow 
range. For example, almost every isolate of E. coli (10,680 out of 10,720 sequenced 
isolates) has a genomic %GC-content between 50 and 51.2. A scan of the NCBI 
Microbial Genomes Database (https://www.ncbi.nlm.nih.gov/genome/microbes/) 
reveals that similarly narrow ranges are also found among thousands of isolates of 
S. enterica (all between 51% and 52.5%), Staphylococcus aureus (32.4–33.5%), 
and Pseudomonas aeruginosa (65.1–66.8%).

The root causes and consequences of compositional bias are largely not under-
stood and are controversial [40–45]. It is often assumed, for example, that prokary-
otes with GC-rich genomes might be those that live at higher temperatures, but a 
careful analysis reveals that this is not universally true. The most GC-rich bacterial 
genome sequenced to date (%GC  =  76) is from Geodermatophilus telluris, an 
Actinobacteria with an optimal growth temperature of approximately 30 degrees 
[46]. This contrasts with the thermophiles Sulfolobus (%GC  =  35), Chloroflexus 
aurantiacus (%GC = 53), and Thermophilus %GC = 68. In fact, there is no clear 
extrinsic environmental factor (oxygen, temperature, pH, and salinity) that has been 
shown to directly dictate the genomic GC-content of a given microbe, although 
loose correlations have been identified [43, 47].

Another factor that influences GC-content may relate to the “social lifestyle” of 
the microbe. That is, microbes that live in complex communities that must compete 
with other microbes for limiting resources tend to have large genomes with higher 
%GC, although this correlation is not absolute [48, 49]. In the opposite direction, 
microbes that live in isolation or as symbionts of other microbes or animal hosts, 
such as endosymbionts, almost uniformly have small and functionally reduced 
genomes with very low GC-contents [50]. The most extreme example is the endo-
symbiont Candidatus Zinderia insecticola (%GC = 13) with a genome of only 200 
genes [50]. However, very few, if any, free-living microbes have GC-contents 
below 25%.

Regardless of cause, however, these observations tell us that bacterial genomes 
adhere to a biased set of compositional codes that are unique to their species. Simply 
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put, bacterial genomes have a “sense of self.” The flip side of this insight is that 
compositional biases can be used to distinguish whether a given gene in a genome 
is ancestral or whether it was acquired in the past from a different bacterial species. 
Indeed, with the sequencing of the first bacterial genomes it was immediately appar-
ent that the accessory and foreign genes often have different nucleotide composi-
tions than those of the core genome. Specifically, they frequently differ in their 
%GC and they employ codons in ratios that deviate from the species norm.

In Fig. 1.1, we show the nucleotide compositions of bacterial genes with respect 
to whether they are core or noncore (accessory) genes. Here, the %GC of genes 
from E. coli and S. aureus are displayed, grouped by whether they are common to 
all members of the species (core genes), or only found in a subset of species mem-
bers and hence either were acquired via horizontal gene transfer or were core genes 
that were discarded from a specific subset of genomes. Here, we make no distinc-
tion between the two possibilities and will simply call genes present in >97% of 
isolates “core” genes, and those that are present in fewer than 97% of species iso-
lates “noncore.” Using these criteria, we find that E. coli strains share approximately 
2700 genes—similar to the number of “soft-core” genes found in Salmonella.

From Fig. 1.1, a few facts are apparent:

First: The Core/Housekeeping Genes Display the Narrowest Distribution of 
%GC In contrast, the noncore genes display a wider range of nucleotide composi-
tions. This suggests that microbial core genes adopt a more uniform set of charac-
teristics that can distinguish them from the noncore genes. That is, the “core” genes 
are biased toward a particular set of characteristics, while the foreign genes are 
more random in their compositions.

Second: The Noncore Genes Are Generally More AT Rich than the Core Genes, 
Even in AT-Rich Bacteria Remarkably, despite its low %GC the accessory genes 
in S. aureus are generally even more AT rich. This suggests that AT-rich bacteria do 
not accumulate GC-rich genes. The staph genome also is smaller and more “closed” 
(has fewer noncore genes as a percentage of the total genome) than that of E. coli. 
What is particularly surprising is that even noncore genes that are “almost core” 
(e.g., appear in 65 out of 70 strains) are dissimilar to the core genes in their nucleo-
tide composition.

Third: Accessory Genes Do Not Necessarily Ameliorate to the GC-Contents 
of Their Host Some theories on genome evolution posit that horizontally 
acquired genes, that initially contain the biases of their previous host genome, will 
gradually acquire the compositional characteristics of their host genome over long 
periods of time because they become subject to the same mutational forces [51, 
52]. It is notable, however, that many noncore genes remain more AT rich even 
when they are widely distributed within the species, suggesting that many acces-
sory genes are under selective pressure to remain compositionally distinct from 
the core genome.

C. Suzuki-Minakuchi and W. W. Navarre



7

Gene distribution vs. 70 E. coli strains

Gene distribution vs. 70 S. aureus strains
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Fig. 1.1 A comparison of %GC-content of genes relative to their distributions in Escherichia coli 
and Staphylococcus aureus. The protein-coding genes of E. coli strain Xuhou21 (left panel) or S. 
aureus strain USA300 (right panel) were compared by GC-content relative to their distribution 
among 70 other diverse strain isolates from their species
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From the perspective of a researcher, these species-specific compositional signa-
tures can be useful to infer the origins and phylogeny of both bacteria and their 
individual genes. In addition to GC-contents, other subtle sequence characteristics 
are unique to different bacterial species. Different species will vary in their use of 
specific dinucleotide, trinucleotide, or higher-order “k-mer” motifs. The fingerprint 
of these motifs (often up to 18-mers), when calculated over a large area, is almost as 
robust as using 16S sequencing to identify a particular bacterial species. This is the 
basis of a new suite of epidemiological software tools including “Kmer Finder” [53] 
and “Kmer ID” [54] that identify species by comparing their k-mer fingerprint 
against a database of known isolates. Accordingly, finding sequences that deviate 
from the genome norm is a way to identify sequences that have been acquired by 
HGT, which is the basis of algorithms like “Alien Hunter” from the Wellcome Trust 
Sanger Institute [55–58].

From the perspective of the microbe, genomic compositional biases can serve 
as a way to distinguish self-DNA from nonself-DNA.  However, that means 
microbes must employ specific systems to “read” the compositional signatures of 
their DNA. For the remainder of the chapter, we will discuss how %GC-bias is 
exploited by many bacterial species to specifically silence the expression of DNA 
acquired by HGT.

1.4  Xenogeneic Silencing: Repressing Foreign DNA 
As a Balance Between Evolvability and Security

In 2006, four laboratories, taking advantage of advances in microarray technology, 
independently discovered that the H-NS (heat-stable nucleoid structuring) proteins 
of E. coli and Salmonella specifically bind to and repress expression from AT-rich 
sequences in the genome that show evidence of being acquired by HGT [59–62]. All 
four groups utilized chromatin immunoprecipitation assays to determine the spe-
cific localization of H-NS (or epitope-tagged versions of H-NS) and analyzed the 
global gene expression of hns mutants using cDNA microarrays. These studies 
demonstrated that the H-NS protein specifically binds and represses transcription 
from regions that are significantly more AT rich than the E. coli and Salmonella 
chromosome and, with rare exception, these AT-rich regions showed evidence of 
having been acquired by HGT.

The transcriptional repression of foreign DNA on the basis of its atypical 
GC-content was termed “xenogeneic silencing.” Xenogeneic silencers have since 
been identified in a diverse array of bacterial species where they regulate the major-
ity of xenogeneic sequences (i.e., sequences derived from a foreign source). These 
silencers are grouped into distinct families based on conserved sequence signatures 
within their DNA-binding domains: the H-NS-like proteins found in several Gram- 
negative proteobacteria, the MvaT-like proteins of Pseudomonas, and the Lsr2-like 
proteins of Actinobacteria [63]. Bacteria frequently encode multiple paralogs of 
these proteins that are often encoded on genomic islands and plasmids acquired via 
LGT [64]. All strains of E. coli and Salmonella encode two H-NS paralogs (H-NS 
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and StpA—53% identical to H-NS), but some strains encode homologues on islands 
or plasmids [65, 66]. The role of StpA remains mysterious as it has almost no phe-
notype when H-NS is present and it is largely ineffective as a silencer at most H-NS 
regulated genes even when expressed at similar levels in the cell [67]. This is despite 
the fact that chromatin immunoprecipitation studies find StpA binds virtually iden-
tical locations as H-NS [68]. Likewise, the plasmid-encoded H-NS-like Sfh protein 
appears to share some functional redundancy with H-NS [69]. In contrast, Ler, 
encoded on the LEE pathogenicity island of enteropathogenic E. coli, is an H-NS 
homologue that activates promoters within the LEE island by antagonizing H-NS 
[70, 71]. Therefore, we cannot assume that every H-NS, MvaT, or Lsr2 homologue 
identified bioinformatically is functionally similar. Another protein, Rok, from 
Bacillus subtilis may also serve as a xenogeneic silencer in that organism, but its 
role in silencing is less well studied. We will discuss the differences and similarities 
between these families in the sections below.

As a result of their activity, xenogeneic silencing proteins play a central role in 
the regulation of most virulence-associated genes in important pathogens including 
E. coli, Shigella, Salmonella, Klebsiella, Yersinia, Vibrio, Bordetella, Pseudomonas, 
and Mycobacteria [61, 72–77]. For this reason, there has been considerable interest 
toward understanding the role that xenogeneic silencing plays in the evolution and 
control of virulence. Over the past decade, we have gained a greater understanding 
of how silencers specifically target AT-rich DNA, how oligomerization is critical for 
silencing, how silencing impacts bacterial evolution and fitness, and how silencing 
can be alleviated via “countersilencing” to activate gene expression in response to 
specific environmental and physiological cues.

H-NS was first identified as a heat-stable factor that could stimulate E. coli 
in vitro transcription from phage templates at low concentrations but inhibit tran-
scription when added at high concentrations [78, 79]. H-NS was again found during 
biochemical screens for bacterial proteins isolated under conditions used to isolate 
eukaryotic histones [80, 81]. Its name (heat-stable nucleoid structuring protein or 
H-NS) was given during early studies of bacterial “histone-like” proteins [82–85]. 
Subsequently, H-NS was repeatedly identified as responsible for regulating a num-
ber of disparate biological processes. As such, H-NS and its corresponding gene, 
hns, have been at some point referred to as H1 [78], H1a [86], 16 K [87], B1 [81], 
bglY [88], osmZ [89], drdX [90], virR [91], cur [92], and pilG [93]. The fact that 
H-NS was identified to be involved in so many different pathways ranging from 
virulence, pili expression, osmotic defense, and metabolism is due to its role as a 
master regulator of AT-rich accessory genes in the E. coli chromosome.

The fact that H-NS was originally identified in screens looking for bacterial ana-
logs of eukaryotic histones has played a large part in how its function in the cell is 
viewed. The H-NS protein is typically considered a member of the “nucleoid- 
associated proteins” (NAPs), a poorly defined classification for a set of abundant 
DNA-binding proteins with loose sequence specificity believed to play roles in 
structuring the bacterial chromosome [94]. Other well-studied NAPs include Fis, 
IHF, and HU [95]. The NAP terminology, however, is fairly uninformative. It should 
be noted that the NAPs are not functionally equivalent, do not share a common 
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evolutionary origin, and are not spread similarly or uniformly across the bacterial 
phylogenetic tree. While HU-like proteins are found across the bacterial domain, 
H-NS is found only in a subset of proteobacteria and the Fis protein is only found in 
close relatives of E. coli. In addition, many studies of “the” bacterial chromosome 
are derived from studies on E. coli, which for a variety of parameters is not repre-
sentative of the majority of bacterial genomes. Therefore, it is not meaningful, and 
perhaps counterproductive, to place NAPs into the same descriptive category. There 
is no evidence that any NAPs, apart from those related to the known silencers 
(H-NS/StpA, MvaT, and Lsr2), play a role in defense against foreign DNA.

How can silencing of AT-rich DNA benefit both the bacterial host and the newly 
acquired gene? The impact of silencing on genome content is difficult to infer 
directly because we can only observe gene transfer events that are evolutionarily 
successful. HGT events that led to the demise of the recipient cell are erased from 
the evolutionary record and hence are invisible to us. However, as discussed below, 
there is evidence from both an analysis of sequenced genomes and experimental 
fitness studies that silencing protects cells from the unchecked expression of genes 
acquired by HGT. Simply put, silencing seems to improve the ability of AT-rich 
genes to be tolerated by their new host genome because they are not expressed at 
high levels. Indeed, studies of gene transfer using plasmids expressing recombinant 
proteins find that the most highly expressed genes are the ones that are most selected 
against [96]. This also suggests that the observation that AT-rich accessory genes 
have accumulated in the genomes of E. coli and Salmonella is because silencing by 
H-NS has lessened their negative impact on the fitness of the bacterial cell.

If this is true, we would expect to observe negative fitness consequences in the 
absence of silencing. While this is generally observed, the ablation of silencing 
reduces bacterial fitness to varying degrees in different species. For example, H-NS 
appears to be essential in Yersinia sp. [72, 97, 98], while it is largely dispensable in 
most strains of E. coli and at least one strain of Klebsiella pneumoniae [99]. S. 
enterica sv. Typhimurium strains lacking H-NS display strong fitness defects despite 
the fact that Salmonella is more closely related to E. coli than Klebsiella or Yersinia 
[60, 61]. The silencers MvaT and MvaU of Pseudomonas are also essential for the 
viability of P. aeruginosa strain PAO1 [100].

Several studies have explored the underlying causes of fitness defects in silenc-
ing deficient bacterial strains. The picture painted from these studies is that silenc-
ing can benefit the bacterial cell in both general and specific ways. For example, the 
essential role of MvaT and MvaU in P. aeruginosa strain PAO1 was explored by 
identifying single-gene deletion mutants for their ability to tolerate the loss of MvaT 
(via targeted degradation) in an MvaU-deficient background [100]. Strains harbor-
ing deletions in the Pf4 prophage and the Type-IV pilus that acts as its receptor 
remained viable in the absence of silencing, suggesting that silencing can be a ben-
eficial protection against some phages both by silencing phage expression and by 
limiting the expression of phage receptors.

In another study, experimental evolution was used to identify second-site sup-
pressor mutations that could restore fitness to Salmonella hns mutants [67]. Six 
independent hns mutant cultures were repeatedly passaged for ~300 generations, 
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during which time the growth rates of all six lineages improved to that of wild-type 
Salmonella by the end of the experiment. Genome sequencing revealed that five of 
the evolved lineages independently incurred large deletions in the SPI-1 pathoge-
nicity island—the first island acquired by Salmonella during its evolution, and cen-
tral to its inflammatory lifestyle. SPI-1 misregulation was found to account for 
~50% of fitness impact caused by the loss of H-NS.  Additional mutations were 
identified in the oligomerization domain of the poorly understood H-NS paralog 
StpA. These StpA variants formed complexes on DNA with mobility similar to that 
of H-NS in electrophoretic mobility shift assays, suggesting that subtle changes to 
the StpA oligomerization are sufficient to alter its activity to be more like that of 
H-NS.

Together, these studies show how silencing enabled both Pseudomonas and 
Salmonella to acquire genetic elements (a prophage or SPI-1) that otherwise would 
have been toxic. H-NS, in fact, enabled the genesis of Salmonellae by buffering the 
fitness impact of the seminal and defining genetic locus of the species. However, 
these studies also show that there is no single reason why silencing can be beneficial 
to the bacterial cell and that the essentiality of silencing will often depend on the 
specific and aggregate properties of the particular genes that are present in any given 
bacterial genome.

In addition to protecting bacterial cells from the unmitigated expression of par-
ticular genes, it’s also clear that silencing also prevents additional negative conse-
quences that can occur from the acquisition of AT-rich DNA in more general fashion. 
Specifically, AT-rich sequences are far more likely to contain accidental promoter- 
like sequences that can titrate away the fairly limited amounts of RNA polymerase 
in the cell [101]. Transcription from these spurious promoters can drain resources, 
make unwanted antisense RNAs, cause frequent and unregulated conflicts with both 
the replication machinery and the transcription of nearby genes, and perhaps form 
potentially toxic R-loops [102–104].

1.5  The Mechanistic Basis for Xenogeneic Silencing

The H-NS, MvaT, and Lsr2 silencers are dissimilar in primary sequence and struc-
ture, but they share two common features. First is the ability to selectively bind 
AT-rich DNA, without recognizing a specific sequence, via their C-terminal DNA- 
binding domain [105]. Second is the ability to self-assemble into oligomers on 
DNA via interactions within the N-terminal part of the protein. These proteins initi-
ate binding (nucleate) at higher-affinity sites on DNA before polymerizing coopera-
tively and laterally along AT-rich DNA [74, 106–109]. Remarkably, these unrelated 
proteins are able to functionally substitute for one another (e.g., Lsr2 from 
Mycobacteria can complement E. coli hns mutants, and vice versa), suggesting that 
they form fundamentally similar nucleoprotein complexes [110–113].

Studies of H-NS at several genes in E. coli and Salmonella indicate that silencing 
can occur by different mechanisms at different loci [114]. This mechanistic diver-
sity may reflect the fact that silencers must downregulate alien sequences the cell 
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has not previously encountered, and that they bind AT-rich DNA regardless of its 
location relative to the gene [59–61]. At some genes, H-NS simply prevents RNA 
polymerase (RNAP) from binding the promoter (occlusion). At others, H-NS bind-
ing appears to prevent RNAP from escaping the promoter after binding (promoter 
trapping). H-NS can also affect expression of some genes by binding downstream 
of promoters where it can trigger Rho-dependent termination [115]. Indeed, a large 
subset of transcripts terminated by Rho are in AT-rich genes bound by H-NS [116].

A number of studies have implicated Rho and H-NS as cooperative partners in 
preventing the transcription of foreign DNA. Rho is an essential hexameric ATPase/
helicase that mediates ~20% of all transcription termination events in E. coli [117]. 
Rho binds to nascent mRNA emerging from RNAP during transcription at C-rich 
“rut” sequences. Rho progressively translocates 5′ to 3′ along the mRNA molecule 
and terminates transcription if it catches up to a stalled RNAP-elongation complex. 
Translating ribosomes on the mRNA can block Rho from reaching a stalled RNAP 
(translational/transcriptional coupling). Rho terminates many noncoding (i.e., not 
translated) intragenic and antisense transcripts made from “accidental” promoters 
that occur by chance in AT-rich sequences [104, 117]. One study suggests that H-NS 
facilitates the Rho-dependent termination of these “accidental” transcripts by induc-
ing RNAP stalls while it transcribes through AT-rich regions [116].

Oligomerization is essential for function and mutations in the oligomerization 
domain, that have negligible effects on DNA binding both in vitro and in vivo, can 
have dramatic effects on silencing [118, 119]. In solution, H-NS dimers are held 
together by an N-terminal dimerization domain [120]. At high protein concentra-
tions, or when bound to DNA, homotypic interactions via the central dimerization 
domain enable elongated nucleoprotein filaments. The structure of the H-NS oligo-
merization domain (residues 1–80—without the DNA-binding domain) has been 
solved by X-ray crystallography—showing that H-NS polymers are formed by two 
independent dimerization domains: N-terminal (1–46) and central (65–80), that 
assemble “head-to-head/tail-to-tail” to generate a corkscrew-shaped filament [121]. 
In this arrangement, DNA-binding domains are predicted to project on both sides of 
the filament.

H-NS:DNA complexes have been studied using atomic force microscopy, elec-
tron microscopy, and single-molecule approaches. These studies find that the H-NS 
nucleoprotein complex can adopt at least two different conformations; one termed 
“bridging” where H-NS facilitates compaction of DNA by crosslinking adjacent 
duplexes, and one called “stiffened” where the H-NS/DNA complex forms a rigid 
filament that is resistant to compaction or bending [122, 123]. The conformation 
that the protein:DNA complex adopts in  vitro critically depends on the specific 
ionic conditions used. A key parameter was found to be the concentration of diva-
lent ions like magnesium and calcium in the binding buffer [124]. Specifically, at 
concentrations of divalent cations above ~2 mM the H-NS:DNA complex condenses 
and shows bridging behavior, while at lower concentrations the complex adopts a 
stiffened state.

The underlying mechanism behind the stiffening/bridging transition remains 
unclear. Divalent cations could theoretically affect the nucleoprotein complex via 
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effects on H-NS, the DNA, or both. It is known that DNA flexibility increases in 
response to Mg2+ and other ions [125]. Also, in  vivo studies indicate that DNA 
inside of a cell is much more flexible than DNA in a low-ionic strength buffer, likely 
through a combination of cytoplasmic ions (potassium, magnesium, and spermi-
dine), and DNA-binding proteins [126]. Therefore, the low-ionic strength condi-
tions under which the stiffened H-NS nucleoprotein filaments form in vitro may not 
represent the physical state of the DNA polymer within the cell.

Whether the stiffened or bridged complexes of DNA are the biologically relevant 
modes for silencing has been addressed in a several recent studies. In one study, it 
was found that H-NS-mediated silencing could be alleviated by SsrB, an H-NS 
antagonist, under conditions that induced stiffening mode [127]. These findings that 
stiffening is the relevant mode of binding in vivo are also supported by recent work 
measuring the effects of various protein and magnesium concentrations of H-NS 
with specific targets in vitro [128]. A different study examined the effects of bridg-
ing or stiffening on the ability of H-NS to block progression of RNAP with respect 
to pause sites that trigger Rho-dependent termination [115]. This study found that 
conditions that favored bridging enabled longer pausing of RNA polymerase at a 
subset of pause sites. Moreover, it was the bridged complexes, and not stiffened, 
that promoted Rho-dependent termination. Previously, it has been shown that activ-
ity of RNAP can be stalled with the increase in DNA torque [129]. This suggests 
that bridged nucleoprotein structures can constrain DNA in plectonemes, causing 
accumulation of DNA torsional stress in front of the polymerase by preventing twist 
diffusion which, in turn, may lead to a stall that inhibits transcription [115, 130].

1.6  How Genes Are Regulated in the Face of Silencing

Xenogeneic silencing is a major revision to the “textbook” of bacterial gene regula-
tion. The first novel concept that arose from our understanding of silencing is that 
the bacterial cell can partition the regulation of genes into those that are “self” and 
those that are nonself. For the most part, the ancestral genes are regulated by classi-
cal repression and activation whereby RNAP, in complex with a sequence-specific 
sigma factor, will recognize a short promoter sequence. Binding to the promoter can 
be modulated by sequence-specific transcription factors that bind in close proximity 
to the promoter to either block or recruit the RNAP holoenzyme.

Expression of AT-rich xenogeneic genes, however, requires both RNAP recruit-
ment and the alleviation of silencing. Studies of several H-NS-regulated genes indi-
cate that, like silencing, countersilencing happens differently at different genes. 
Bacteria appear to integrate new genes into their regulatory networks ad hoc, often 
repurposing ancestral DNA-binding proteins as countersilencer proteins [114, 131]. 
The protein’s ancestral role does not correlate with its ability to countersilence—
activators, repressors, and even plasmid-partitioning proteins serve as CSPs at vari-
ous promoters. The transcription factor PhoP, common to most enteric bacteria, 
activates a few ancestral genes involved in Mg2+ transport by binding at the −35 
promoter sequence to recruit RNAP [132]. During Salmonella evolution, however, 
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PhoP’s role was expanded to regulate many virulence genes in response to Mg2+ 
limitation within the host environment [132]. The PhoP-binding sites in these 
AT-rich sequences map to a variety of locations and orientations relative to the pro-
moter, some within the downstream coding regions [132, 133]. Noncanonical bind-
ing locations have also been identified for other CSPs that antagonize H-NS [131, 
134–136].

It is unclear how proteins like PhoP, by binding a short 14-nucleotide DNA 
sequence tens or hundreds of bp upstream or downstream the promoter, counteract 
silencing by an H-NS/Hha nucleoprotein polymer that coats hundreds of bases. 
However, it is likely that it occurs not by direct interactions with RNAP but instead 
by disrupting the nucleoprotein structure to alleviate specific blocks to transcrip-
tion. For example, it is possible that binding sites far downstream of the transcrip-
tion start site serve to prevent RNAP stalling and Rho-dependent termination caused 
by H-NS rather than by allowing RNAP access to the promoter.

1.7  Diversity of Xenogeneic Silencing Proteins

H-NS was previously thought to exist only in enterobacteria and closely related 
bacteria [137]. The first functional homologue of H-NS found outside of this group 
is BpH3, which was isolated from Bordetella pertussis [75]. Since then, functional 
homologues of H-NS have been identified in many bacteria, and now xenogeneic 
silencing proteins are considered to be widely distributed in bacteria. In this section, 
we discuss what is known about the major families of non-H-NS silencers.

1.7.1  MvaT

MvaT was firstly found in Pseudomonas mevalonii as a transcriptional regulator of 
mvaAB operon, which encodes the enzymes that catalyze the initial reactions of 
mevalonate catabolism [138]. It was then identified as a functional homologue of 
H-NS due to the capability of complementing the serine susceptibility of the E. coli 
hns mutant, though they share less than 20% identity in amino acid sequence [112]. 
MvaT homologues are distributed only in gamma-Proteobacteria, mostly in pseudo-
monads, and all pseudomonads have at least one MvaT homologue [64, 139]. In P. 
aeruginosa, MvaT was found to be a global regulator which controls the expression 
of genes involved in quorum sensing, virulence, biofilm formation, and multidrug 
resistance [140–144]. Similar to H-NS and StpA in enterobacteria, P. aeruginosa 
also has an additional MvaT homologue named MvaU whose functions are majorly 
overlapped with MvaT [73, 100, 145].

Although MvaT homologues are known to form nucleoprotein complexes like 
those of H-NS [113, 123, 146], it had not been clarified whether they have the same 
mechanisms in oligomerization and DNA binding. Recently, the structures of the 
N-terminal and C-terminal regions of MvaT homologues were reported. The 
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N-terminal region, which is responsible for the dimerization and oligomerization 
ability, had been thought be similar to H-NS in structure [147]. The crystal structure 
of N-terminal region of TurB, which is an MvaT homologue in Pseudomonas putida 
KT2440 [148, 149], revealed that it has two dimerization sites: the central dimeriza-
tion site near the linker region and the terminal dimerization site at the N-terminus 
[150] (Fig. 1.2a). The central dimerization site actually has almost the same struc-
ture with the corresponding region of H-NS in S. enterica [7]; both of them are 
stabilized by a hydrophobic core and salt bridges. On the other hand, the terminal 
dimerization site of TurB has only one helix, whereas the corresponding region of 
H-NS consists of three helices which are interlocked and stabilized by a hydropho-
bic core and salt bridges ([121, 150]) (Fig. 1.2a).

The C-terminal region of MvaT in P. aeruginosa was used for solution NMR 
to solve its DNA-binding mechanism [153]. The overall structure is similar to the 
C-terminal domain of H-NS [154, 155], but DNA-binding mechanism is different. 
As for H-NS, docking models indicated that a loop containing the QGR motif 
(Q112-G113-R114) is inserted into the minor groove of DNA, where the side 
chains of glutamine and arginine extend in opposite directions [154] (Fig. 1.3a). 
The structure of the C-terminal domain of MvaT and DNA complex revealed that 
MvaT does not have the residue corresponding to the glutamine in the QGR motif 
of H-NS; instead, the side chain of arginine on another loop (R80) holds the DNA 
with the loop which contains glycine and asparagine (G99 and N100) correspond-
ing to “G” and “R” in the QGR motif [153] (Fig. 1.3b). This DNA-binding mode 

a

b

Fig. 1.2 Dimerization and oligomerization domains of the xenogeneic silencers. (a) Superimposed 
structure of the N-terminal dimerization and oligomerization domains of H-NS (two dimers are 
shown in orange and pink) and the MvaT homologue TurB (blue) [121, 151]. (b) Structure of the 
N-terminal region of Lsr2 [152]
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can cause the slight but clear difference between MvaT and H-NS in DNA-
sequence preferences, where MvaT much prefers flexible DNA sequences with 
multiple TpA steps [153].

1.7.2  Lsr2

Lsr2 is the only H-NS family protein in Gram-positive bacteria whose function 
was experimentally confirmed to be equivalent to H-NS; it can complement 
β-glucoside utilization, mucoidy, motility, and hemolytic activity in an E. coli hns 
mutant [111]. It was firstly identified as an immunoreactive protein in 
Mycobacterium leprae [156, 157]. The distribution of Lsr2 is limited to 
Actinobacteria, and most of them have only one Lsr2 protein [64, 139]. In 
Mycobacterium tuberculosis, lsr2 is an essential gene probably because Lsr2 phys-
ically protects DNA from degradation by reactive oxygen species [158]. It binds to 
AT-rich sequences, bridges DNA, and regulates transcription of many genes includ-
ing those related with antibiotic resistance, biofilm formation, and colony mor-
phology [110, 159, 160]. Both of the DNA-binding and oligomerization abilities 
are essential for the function of Lsr2 [110].

The N-terminal region of Lsr2 has a totally different structure from those of H-NS 
and MvaT. It is composed of an α-helix and β-sheets and forms a dimer to pack the 
helix and the sheets in an antiparallel manner [152] (Fig. 1.2b), whereas the corre-
sponding regions of H-NS and MvaT are composed of only α-helices [7, 150] 
(Fig.  1.2a). The C-terminal DNA-binding domain of Lsr2 also shares no overall 
structural homology with those of H-NS and MvaT [74]. Intriguingly, protein- 
binding microarray analyses revealed that Lsr2 exhibits similar DNA-binding speci-
ficity to H-NS [154]. This can be explained by the DNA recognition mechanism of 
Lsr2; it inserts a loop containing the RGR motif (R97-G98-R99), which corresponds 
to the QGR motif in H-NS, into the minor groove of DNA [154] (Fig. 1.3c). Despite 

a b c

Fig. 1.3 DNA-binding mode of the xenogeneic silencers. C-terminal DNA-binding domains of 
H-NS (a), MvaT (b), and Lsr2 (c) in complex with DNA [74, 153, 154]. The residues comprising 
the “AT-hook” and “AT-pincer” motifs are highlighted in magenta. Note that docking models are 
shown in panels a and c, while the structure of MvaT and DNA complex solved by NMR is shown 
in the panel b
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the low identity in amino acid sequences, both H-NS and Lsr2 use a “hook”-like 
structure to bind to the minor groove of DNA, while MvaT uses a “pincer”-like 
structure.

1.8  H-NS Family Proteins Encoded on Plasmids

Considering that the major role of H-NS family proteins is to suppress the expression 
of genes acquired through horizontal gene transfer, it is interesting that some of the 
H-NS family proteins are encoded on plasmids [64, 161, 162]. Since the newly acquired 
genetic elements often produce a fitness cost in the host cell [96], the expression of the 
genes on plasmids should be appropriately controlled. Shintani and colleagues reported 
that many bacterial hosts containing plasmids with H-NS family proteins also carry the 
same type of H-NS family proteins on their chromosomes, suggesting that the plasmid-
borne H-NS family proteins function cooperatively with their homologues encoded on 
the host chromosomes [64]. If that is the case, do they have the same function or plas-
mid-borne H-NS family proteins have a special function? Here, we focused on the 
H-NS family proteins encoded on the plasmids of enterobacteria (H-NS homologues) 
and that of the genus Pseudomonas (an MvaT homologue).

1.8.1  Sfh and H-NSR27

Sfh, which is encoded on the IncHI plasmid pSfR27 found in Shigella flexneri, is 
considered to have functions that reduce fitness cost in host cells after obtaining the 
plasmid [163]. When pSfR27 is transferred into a host cell, a large number of H-NS 
proteins expressed from the chromosome could bind to the plasmid DNA because it 
contains more than 100 DNA-binding sites for H-NS [69]. Expression of Sfh from 
pSfR27 can avoid a transient decline in the H-NS-to-DNA ratio and undesirable 
upregulation of the genes repressed by H-NS [163]. Indeed, Sfh was found to have 
similar functions with the chromosomally encoded H-NS proteins and it can form 
heteromeric complexes with them [164, 165]. The DNA-binding sites of Sfh are 
also overlapped with those of H-NS expressed from the chromosome, suggesting 
that Sfh functions as a molecular backup of H-NS in the hns mutant [69].

Similarly, H-NSR27 expressed from the plasmid R27 (whose nucleotide sequence 
is 99.7% identical to pSfR27 [166]) has a common function with the chromosom-
ally encoded H-NS; both of them affect thermoregulation of R27 transfer [167]. 
However, further studies revealed the different features between H-NSR27 and chro-
mosome-borne H-NS. Transcriptome analyses suggested that H-NSR27 selectively 
regulates genes on horizontally acquired DNA regions, while chromosomally 
encoded H-NS targets both core genomes and horizontally acquired DNA regions 
[168]. It is possible that the flexibilities in the linker region cause the differences in 
regulatory preferences between plasmid-encoded H-NS and chromosomally 
encoded H-NS proteins [65].
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1.8.2  Pmr

The IncP-7 catabolic plasmid pCAR1 [169] carries three genes encoding the fol-
lowing nucleoid-associated proteins: Pmr, an MvaT homologue, Pnd, an NdpA 
homologue, and Phu, an HU homologue [64, 162]. These proteins function syner-
gistically to affect pCAR1 replication, maintenance, transfer, and biofilm morphol-
ogy in a host P. putida KT2440, but these phenotypic changes clearly appeared only 
when pmr and pnd or pmr and phu were simultaneously disrupted [151, 170]. Pmr 
preferentially binds to the horizontally acquired DNA regions and forms homo- and 
hetero-oligomers with TurA and TurB, which are expressed from the chromosome 
of P. putida KT2440 [171–174]. Transcriptome analyses using the deletion mutants 
of pmr, turA, or turB showed that genes regulated by Pmr were less overlapped with 
those regulated by TurA or TurB [174]. This phenomenon can be partly explained 
by the different coupling ratio of the three proteins [171].

1.9  Summary

Xenogeneic silencers are essentially analogs of eukaryotic histones that assemble 
on DNA in a loosely specific manner to package DNA and protect the genome from 
parasites like viruses and transposons. Like histones form heterochromatin, silenc-
ers form a basic repressive nucleoprotein complex that sequence-specific transcrip-
tion factors modulate to turn select genes on or off. Unlike eukaryotic chromatin, 
however, we still lack a basic understanding of bacterial chromatin structure and 
how factors can modulate it to control xenogeneic gene expression. Future work in 
this area will reveal whether H-NS-like proteins are all similar in function and how 
the structure of the silencing nucleoprotein complex is modulated to license or 
block transcription of AT-rich genes. Studies mentioned here raise the possibility 
that plasmid-encoded H-NS family proteins are not just a backup of the chromo-
somally encoded H-NS family proteins but have unique mechanisms to maintain 
fitness in the host cells.
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2Functions of Archaeal Nucleoid Proteins: 
Archaeal Silencers are Still Missing
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Abstract
It is well known that horizontally transferred genes (HTGs) contribute to the 
adaptation of archaea to their living environment. Archaea have acquired HTGs 
not only from other archaea but also from bacteria. HTGs should be integrated 
into the host archaeal transcriptional networks to become functional. In bacteria, 
the nucleoid proteins, such as H-NS and Lsr2, are well known as the major fac-
tors to enhance horizontal transfer of foreign DNAs into the bacterial cells by 
silencing the expression of HTGs which permit bacteria to safely acquire the 
HTGs and give time to modify the regulatory elements and promoters of HTGs 
and to integrate the HTGs into host transcriptional networks. In archaea, although 
those factors have not been identified, the importance of silencers would be the 
same. Interestingly, there is a protein which has highly similar characteristics 
with H-NS in the hyperthermophilic archaeon Thermococcus kodakarensis. In 
this chapter, we summarize the known biological importance of the nucleoid 
proteins and histones in archaea and discuss the possible role of the archaeal 
nucleoid proteins in horizontal gene transfer in archaeal cells.
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2.1  Archaea Have Acquired Genes from Bacteria to Adapt 
to Their Living Environment

Archaea are single-cell microorganisms living in nearly all habitats on earth. They 
live not only in extreme circumstances, such as high temperature, low pH, and high 
salinity, but also more moderate mesophilic circumstances [1, 2]. Archaea live in 
various ecological niches and play a major role to drive the biological fluxes as a 
part of the biogeochemical cycles on earth with bacteria [3]. Major building blocks 
of life, such as hydrogen, carbon, nitrogen, sulfur, oxygen, and phosphorous are 
supplied from earth as inorganic compounds which are converted to the available 
forms for many organisms, and the resultant organic materials are degraded and 
recycled by archaea and bacteria [3, 4]. Thus, it is critical for many organisms to live 
that archaea and bacteria acquire the genes from other organisms to adapt to the 
highly variable habitats.

The horizontal gene transfer (HGT) has had major roles for archaea to adapt to 
different habitats [2]. Archaea transfer DNAs by various mechanisms similar to 
those in bacteria, natural competence, vesicle transport, virus transduction, conjuga-
tion, and cell fusions [2]. HGT of archaeal domain not only in intraspecies but also 
in interspecies has driven the archaeal evolution [5–8]. Furthermore, the metage-
nomics of the fosmid archaeal clones constructed from deep-Mediterranean sam-
ples followed by pangenome analysis of Thaumoarchaeota and Group II/III 
Euryarchaeota revealed that 23.9% of Thaumoarchaeota genes and 29.7% of Group 
II/III Euryarchaeota genes are horizontally transferred genes from bacteria [9]. The 
functions of these bacterial genes are related to metabolism and cell envelope bio-
genesis, suggesting that archaea which had lived in the higher thermophilic environ-
ment have acquired bacterial genes to adapt to cold and oligotrophic ocean 
environment [9]. These findings strongly suggest that horizontally transferred genes 
are currently active in archaeal cells. With much larger scale, comprehensive gene 
comparison analysis revealed that 2264 protein families were bacterial origin in 
which most frequent functions were metabolism [10].

The HGT from archaea is also important for bacteria living in extreme circum-
stances. Aquifex aeolicus and Thermotoga maritima had acquired genes from 
hyperthermophilic bacteria to adapt to high-temperature circumstances [1, 11–13]. 
Thus, these observations clearly suggested that archaea and bacteria use those inter-
species horizontally transferred genes (HTGs) to survive in new living 
environments.

2.2  The Difference of General Transcriptional Regulation 
Between Archaea and Bacteria

Archaea have the hybrid transcriptional regulatory system; the eukaryote-type basal 
transcription system works with the prokaryote-type transcriptional regulator [14, 
15]. While archaeal RNA polymerase is more similar to eukaryotic RNA-polymerase 
II than bacterial RNA polymerase, several subunits are homologous to the subunits 
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composed of bacterial RNA polymerase; for instance, bacterial α subunit is homolo-
gous to Rpo3 and 11 subunits of archaeal RNA polymerase [16].

Archaeal promoters are composed of AT-rich TATA-like elements (TATA box) 
and purine-rich factor B recognition elements (BRE). TATA-binding protein (TBP) 
and TFIIB-related transcriptional factor B (TFB) bind to the TATA-box and BRE 
[14, 15, 17–20]. Genome-wide identification of transcriptional start sites (TSSs) 
and the search of the conserved sequences upstream of TSSs indicated that TATA 
box and BRE are highly conserved (especially TATA box) in the genome of various 
archaeal species including Thermococcus kodakarensis and Sulfolobus solfataricus, 
and Haloferax volcanii [21–23]. Thus, the RNA polymerase and promoter architec-
ture in archaea are completely different from those in bacteria.

In contrast to the RNA polymerase and promoter architecture, a majority of 
transcriptional factors (TFs) in archaea are of the bacteria-like TFs containing 
helix- turn- helix (HTH), winged HTH, and ribbon-helix-helix (RHH) motifs and 
zinc ribbon [14, 15]. The eukaryotic homolog of transcriptional regulator was also 
found in the genomes of archaea, but rare [14, 15]. It was estimated that the origin 
of bacterial-like TFs in bacteria and archaea would be possessed by a common 
ancestor of them and vertically transmitted during the evolution of bacteria and 
archaea [24].

The regulatory mechanisms of archaeal TFs in transcription should be different 
from those of bacterial TFs, because in archaea pre-initiation complex is initially 
formed on TATA box and BRE to recruit RNA polymerase to promoters, while RNA 
polymerase directly binds with promoters in bacteria [16, 25]. In bacteria, the subunit 
of RNA polymerase can specifically recognize promoter sequence (−10 and −35 
sequences) [25]. In contrast, archaeal RNA polymerase cannot directly recognize the 
promoter, instead TBP initially binds to TATA box, and TFB then interacts with BRE 
and stabilizes TATA–TBP complex. This TFB–TBP–TATA–BRE complex is the pre-
initiation complex and recruits RNA polymerase to the promoter [14, 15].

The archaeal repressor-binding sites are overlapped with TATA box and/or BRE, 
or downstream of them. The binding of the repressor inhibits pre-initiation complex 
formation or recruitment of RNA polymerase. The archaeal activator binds upstream 
of or partially overlapped with BRE and stimulates to pre-initiation complex forma-
tion through the protein–protein interaction [14, 15]. Thus, the activator-binding 
sites have the optimal spacer length with the TATA box and BRE (15–17 bp) to bind 
to the same helical phase of the binding sites of TBP and BRE. In contrast to the 
archaeal TFs, many bacterial repressors bind to promoters and directly inhibit RNA 
polymerase–promoter interactions, while bacterial activators bind upstream of pro-
moters and directly interact with α and/or subunits and recruit RNA polymerase to 
promoters [25]. Thus, it is clear that the factors that interact with TFs and regulatory 
sequences of transcription are completely different between archaea and bacteria, 
although the principles of transcriptional regulation of prokaryotic TFs have been 
conserved in archaea and bacteria. These facts clearly suggest that the HTGs trans-
ferred from bacteria need to acquire the new transcriptional regulation to be 
expressed in archaeal cells, such as archaeal promoters and transcriptional regula-
tory elements.
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2.3  The Importance of Silencers for the Integration 
of Horizontally Transferred Genes in the Host 
Transcriptional Network in Bacteria

Inappropriate expression (basically a higher expression) of newly acquired genes is 
problematic for host cells [26]. Therefore, it is critical to regulate HTGs under the 
host transcriptional network and safely express HTGs whenever HTGs’ functions 
are required (see Chap. 1). To integrate HTGs into the host transcriptional network, 
there have been several steps: (1) HTGs were integrated into the host genome with 
lower expression than native host genes, (2) a host activator would be acquired to 
express HGTs (if needed), and (3) the expression of HGTs has been fine-tuned for 
the host cells to adapt to their living environments [27].

Even for bacteria, to acquire and use HTGs from other bacteria, acquisitions and 
adaptations of transcriptional regulatory elements for HTGs have been required, 
when HTGs are integrated in the host transcriptional regulatory network [27]. This 
process would have been needed for millions of years. Actually, the phylogenetic 
analysis revealed that recently transferred genes are not regulated by known TFs, 
while HTGs present in host bacteria for a long time after their transfers tend to be 
regulated by known TFs [27]. When transferred from bacteria to archaea, there are 
three possibilities to express HTGs under the host transcriptional regulatory net-
work: type 1, integrate at downstream of the archaeal active promoters; type 2, ini-
tially integrate at downstream of inactive archaeal promoter or the region which 
don’t have any relations to transcriptional regulatory regions and acquire promoter 
and TFs; type 3, integrate with bacterial promoters and regulatory elements which 
will be modified to be recognized with archaeal RNAP and TFs. Actually, HGT on 
type I mechanism was reported; L29 gene encoding a ribosomal protein of S. solfa-
taricus P2 is displaced with a HTG in the ribosomal protein operon. This type of 
HGT has been observed in operons encoding ribosomal proteins among bacteria 
[28]. In this case, because the functions of the ribosomal protein may be highly 
conserved and able to replace the same subunit in other organisms, the direct control 
of the expression of the HTG, the ribosomal protein gene, with existing promoter 
and significant expression of the HTGs may not be problematic for host archaea. 
However, if HTGs are transferred from bacteria which are lesser conserved in 
archaea and expressed with the existing archaeal promoter when those HTGs are 
integrated at downstream of active promoters, host archaeal cells would have high 
risk getting the fatal effects by the expression of the HTGs. In contrast, when HTGs 
from bacteria are integrated at downstream of lower expression promoters or pro-
moterless regions into archaeal genome; for instance, downstream of terminator, 
HTGs should have no or lower expression and have low risk for host archaea to have 
fatal expressions of HTGs. However, for the host archaeal strains to use those HTGs, 
the host strains should acquire and/or generate promoters and regulatory elements 
to express those HTGs. Then, the host archaea again have risks of inappropriate 
expression of HTGs during acquisition and modification of the promoters and regu-
latory elements to get the optimal expression of HTGs. It was indicated that the 
laterally transferred genes are regulated by the host TF, TrmB, in Halobacterium 
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salinarum NRC-1, which senses nutritional availability and maintains a balance of 
redox and energy [29]. Therefore, in archaea, the HTGs might really acquire the 
regulatory elements and promoters to be regulated by the host TF. Thus, it is obvi-
ous that the archaea requires the mechanisms to reduce risks during the integration 
of HTGs into their transcriptional networks.

In bacteria, to guard the host cells from the fatal expression of HTGs during the 
evolution of HTGs’ promoters or transcriptional regulators (in host cells or HTGs), 
several nucleoid proteins function as the transcriptional silencers [30–32]. In 
Escherichia coli and Salmonella, the H-NS protein preferentially binds to HTGs 
and represses expression of HTGs during the evolution, which would permit higher 
frequency of mutations in the regulatory regions [30, 31]. For archaea, the silencing 
system is also useful and may be more important than bacteria, because it requires 
a long time to acquire completely new promoters and/or regulatory elements. 
However, it was still unknown whether those types of nucleoid proteins exist in 
archaea. We will discuss the possible candidates for silencers for archaea to safely 
integrate HTGs, in the next section.

2.4  The Archaeal Nucleoid Proteins May Be Silencers 
Supporting the Integration of Horizontal Transfer 
Genes in Host Genomes

As described earlier in this chapter, archaea possess a mixture of bacterial and 
eukaryotic features. The DNA replication, transcription, and translation machiner-
ies of archaea are more similar to those of eukaryotes, while the genes involved in 
metabolic processes show more similarities to their bacterial counterparts [33]. This 
feature is also adaptable to the nucleoid proteins in archaea. Depending on species, 
archaea encode various nucleoid proteins, including histone, Alba, TrmBL2, HTa 
(archaeal homolog of bacterial HU), Cren7, CC1, and so on [34]. Among the two 
major phyla in Archaea, Euryarchaeota and Crenarchaeota, histone is encoded by 
almost all euryarchaea, while Alba is generally encoded in crenarchaea and a part of 
euryarchaea. Each archaeal species usually encode more than one nucleoid protein 
and these proteins are considered to organize nucleoid architecture and gene regula-
tion [34].

Apart from relatively well-studied nucleoid proteins such as histone and Alba, a 
novel class of archaeal nucleoid protein, TrmBL2 (TrmB-like 2) was discovered in 
Thermococcales (including genera Thermococcus, Pyrococcus, and Palaeococcus) 
[35]. TrmBL2 is a member of TrmB (transcriptional regulator of mal operon) family 
proteins that have helix-turn-helix (HTH) DNA-binding motif. TrmB is a transcrip-
tion factor that regulates the gene cluster containing the ATP-binding cassette (ABC) 
transport system for maltose and trehalose (TM operon) in Pyrococcus furiosus and 
Thermococcus litoralis [36, 37]. Other groups of proteins homologous to TrmB were 
found in Thermococcales and among these proteins, TrmBL1 (TrmB- like 1; also 
called Tgr for Thermococcales glycolytic regulator) is a transcription regulator that 
controls genes involved in sugar metabolism [38–40]. TrmB and TrmBL1/Tgr both 
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have a C-terminal sugar-binding domain and have a consensus binding sequence of 
DNA [38, 40]. These proteins dissociate from DNA when sugar is bound to this 
domain, resulting in gene activation or repression depending on the position of its 
binding site relative to the BRE-TATA box of the target gene [38].

Among the TrmB family proteins, TrmBL2  in Thermococcales has a striking 
difference compared to other TrmB or TrmB-like proteins and is considered a nucle-
oid protein rather than a simple transcription factor. The amount of this protein in 
the cell is extraordinarily abundant compared to other TrmB-like transcription fac-
tors [35]. It lacks the C-terminal sugar-binding domain, does not have a consensus 
binding sequence of DNA, and it binds to both intergenic and protein-coding 
sequences [35]. Furthermore, unlike TrmB or other TrmB-like proteins that are 
encoded only by a part of Thermococcales species, TrmBL2 is perfectly conserved 
among all Thermococcales species sequenced so far [41], suggesting its role other 
than a simple transcription factor. Structural studies suggest that the apparent non-
specific binding of TrmBL2 to DNA results from its unusual nonoptimal protein–
DNA contact made by its HTH domains [42].

TrmBL2 has a great similarity to bacterial silencer H-NS and its functional 
homologs present in various bacteria. TrmBL2 occupies both the promoter and cod-
ing sequences along the genome, and the distribution is not biased to either of them, 
compared to the composition of the genomic sequence [35], while H-NS and its 
functional homologs bind both to promoter and coding sequences with the prefer-
ence of the adenine and thymine (AT)-rich regions in the genome [30, 32, 43–47] 
and lower sequence specificity except nucleation sites [48, 49]. According to 
sequence analysis of TrmBL2-associated DNA in vivo, TrmBL2 does not have a 
specific binding sequence, although certain sites seem to exist where TrmBL2 pre-
fers to bind first with relatively high affinity [50]. Deletion of the gene encoding 
TrmBL2 in T. kodakarensis (TK0471) results in upregulation of nearly a hundred of 
genes and these upregulated genes have positive correlation with TrmBL2 binding 
to its promoter (Fig. 2.1a, c). Unlike TrmB or TrmBL1/Tgr that directly controls 
genes involved in sugar metabolism, TrmBL2 does not seem to regulate a specific 
pathway [35]. In E. coli, the double-deletion strain of H-NS and StpA, a homolog 
of H-NS, hundreds of genes are upregulated too [51], similar to the case of TrmBL2 
deletion in T. kodakarensis (Fig. 2.1b). The H-NS homolog, MvaT, in Pseudomonas 
aeruginosa makes higher-order oligomer, which forms a gene-silencing nucleopro-
tein filament [52, 53]. The mutations to inhibit the formation of higher-order oligo-
mer reduce the activity to repress the expression of at least cupA gene and to form 
chromatin nucleoprotein filaments. The similarity of TrmBL2 with H-NS homolog 
is also found in this feature. When TrmBL2 bound to DNA, TrmBL2 forms a thick 
nucleoprotein filament that increases the stiffness of the DNA molecule [50]. Those 
facts strongly support that TrmBL2 is a silencer.

How does TrmBL2 determine its binding sites without a specific binding 
sequence? Possibly, it binds to the region where there is less histone. Similar to 
eukaryotic histone, archaeal histone preferentially binds to nucleosome positioning 
sequence with alternating G (guanine)/C (cytosine)—and A/T-di- and trinucleotide 
tracts capable of periodic major and minor groove compaction [54]. ChIP-seq 
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Fig. 2.1 (a, c) Scatterplot of the RNA abundance of all ORFs in Thermococcus kodakarensis 
measured by microarray. The fluorescence intensity of each ORF is plotted in log scale. X-axis 
represents the fluorescence intensity of all ORFs in the parental strain of delta-TK0471 strain, 
KUW1. Y-axis represents the fluorescence intensity of all ORFs in delta-TK0471 strain with the 
deletion of the whole coding sequence of TrmBL2 (TK0471). In (c), the color code classifies the 
ORFs depending on whether TrmBL2 bind is bound near its start codon (red; −150 to +50 relative 
to the start codon), to its coding sequence (green), or no TrmBL2 binding detected (blue). TrmBL2- 
binding sites were judged by high-throughput sequencing of DNA co-enriched with TrmBL2 in 
sucrose gradient sedimentation of MNase-digested T. kodakarensis chromatin. (b) Scatterplot of 
the RNA abundance of all ORFs in Escherichia coli K-12 and hns/stpA double-deletion strains. 
The fluorescence intensity of each ORF is plotted in log scale. X-axis represents the fluorescence 
intensity of all ORFs in the parental strain, W3110. Y-axis represents the fluorescence intensity of 
all ORFs in hns and stpA double-deletion mutant (hns/stpA). In E. coli, H-NS cooperatively 
represses several hundreds of genes with an H-NS homolog, StpA. To completely repress about 
20% of those genes, H-NS and StpA require other H-NS homologs, Hha and YdgT. Gray dots 
represent the genes which require Hha and YdgT for their repression (reproduced from [51]) (d), 
TrmBL2 enrichment in the region containing TK0716 (Iron(II) transport protein A) and TK0717 
(ABC-type molybdate transport system, periplasmic component), genes possibly transferred from 
bacteria [98]. Positive TrmBL2 binding is detected near the 5′ end of these ORFs. The positive 
value in the top profile shows the enrichment of the genomic region in TrmBL2-rich fraction in 
sucrose density gradient sedimentation of MNase-digested T. kodakarensis chromatin in the log 
phase. Blue horizontal lines represent predicted ORFs. The histogram in the middle shows the 
DNA sequence enriched in TrmBL2-rich fraction, and the histogram at the bottom indicates the 
DNA sequences taken from the whole cell extract
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analysis shows that histone-binding sites in vivo perfectly match with the histone- 
binding sites when bare genomic DNA and recombinant histone is mixed [55]. 
Thus, histone has much more strict sequence requirement for its binding site, and 
TrmBL2 probably can locate to where there is less histone. Indeed, histone and 
TrmBL2 competes each other for DNA binding in vitro [50]. Supposedly, in histone 
encoding euryarchaeal species, TrmBL2 would bind to DNA sequences that do not 
have a histone-binding signal, most likely including the genes transferred from bac-
teria. Once such DNA is integrated into the genome, TrmBL2 would bind in a rela-
tively random manner to the bacterial sequence, resulting in suppression of the gene 
when bound to the promoter. This could be an effective way to suppress genes 
transferred from other species, at least in histone-coding euryarchaea. Figure 2.1d 
shows a genomic region in T. kodakarensis where such suppression possibly occurs.

Is it possible for a histone-coding euryarchaea to suppress genes transferred from 
other histone-coding archaea? As described later in this chapter, GC content of 
archaeal genomic sequences correlates with the pI of its histone protein [56]. Thus, 
genes transferred from distant euryarchaea are expected to have lower histone bind-
ing in a host species with different GC content and pI of its histone. Besides, it has 
been shown that archaeal histone binds to intergenic or promoter region with rela-
tively lower frequency [55, 57]. Thus, genes horizontally transferred from other 
archaea could also be suppressed by binding of protein such as TrmBL2 to the 
intergenic region.

Since there is not a single nucleoid protein that is encoded by all species in 
archaea, they seem to utilize different combinations of nucleoid proteins to mark its 
own genome and to suppress HTGs. Although the above hypothesis only explains 
suppression of HTGs in the combination of histone and TrmBL2, other nucleoid 
proteins may serve the same function. Outside of Thermococcales, TrmB family 
protein is found in other archaea such as Halobacterium and methanogenic archaea, 
and in some bacteria [29, 41, 58]. Although it needs to be clarified which of these 
proteins are simple transcription factors and which could be a nucleoid protein, sup-
pression of HTGs by such nucleoid-associated TrmB family protein can be a general 
mechanism. In the case of T. kodakarensis, TrmBL2 was first found by its extraordi-
nary abundance in the cell [35]. Abundance in the cell and nonspecific DNA binding 
could be a key to search for proteins that are involved in regulation of HTGs.

Most species in the phylum Crenarchaeota encode a protein called Alba (acetyla-
tion lowers binding affinity). Alba can constitute up to ~4% of the total cellular pro-
teins in Sulfolobus [59]. The affinity of Alba to DNA increases upon deacetylation by 
the silencing protein Sir2 [60]. It has been proposed that its dynamic association to 
and dissociation from DNA is involved in transcriptional regulation and modulation 
of chromatin structure [60]. Although Alba was initially considered as a DNA-
binding protein, recent studies have revealed the association of Alba with RNA spe-
cies, ribonucleo-protein complexes, and RNA-binding proteins [61–63]. Alba is also 
encoded in the genome of some euryarchaeal species, although the protein is less 
abundant in these cells. Although it needs to be studied, it is possible that Alba plays 
a role in the regulation of HTGs in a way similar either to histone to mark its own 
genome or similar to TrmBL2 to suppress transcription of transferred genes.
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In 1990, a protein homologous to eukaryotic histones was reported in the metha-
nogen, Methanothermus fervidus [64]. This was the first example of a histone 
homolog in prokaryotes. Searches in genomic sequences as well as biochemical 
studies revealed that almost all euryarchaeal species encode histone proteins. Rare 
exceptions include the species in the order Thermoplasmatales, which encode the 
bacterial HU homolog (HTa) but not histones. This could be a result of horizontal 
gene transfer of HU from bacteria and subsequent loss of histone gene [65]. 
Although the structure of the histone fold motif is quite similar between eukaryotic 
and archaeal histones, there are several differences between the two (see below, 
Sect. 2.5). The archaeal hailstones consist solely of the histone-fold motif [66] and 
lack the N- and C-terminal tails. Eukaryotic histone forms an octamer, where two 
H2A/H2B dimers are attached on both sides of H3/H4 tetramer. Unlike eukaryotic 
histones, archaeal histones were shown to form a tetramer [67]. Approximately, 
120 bp of DNA can wrap around an archaeal histone tetramer in vitro [68], which is 
shorter than that in the eukaryotic nucleosome.

Although many studies have supported the conclusion that archaeal histones and 
genomic DNA form nucleosome structures in vivo [67, 69], it was recently pro-
posed that archaeal histone is not a static structure fixed to a tetramer but is rather 
flexible and can form multimers determined by the DNA sequence, based on 
sequencing of histone-bound DNA and mapping on T. kodakarensis genome [34, 
57]. In this model, histone dimer binds to 30 bp DNA and this unit can pile up to 
form tetramer, hexamer, etc. that binds multiples of 30 bp DNA [57]. This could be 
explained by the existence of unrestricted 4-helix bundle (4HD) domain that con-
nects each histone dimer. In contrast to the eukaryotic histone that is strongly 
restricted to the fixed octameric structure of H3/H4 tetramer and two H2A/H2B 
dimers determined by the combination of “handshake” of 4HD domains, unre-
stricted 4HD domain in archaeal histone allows the dimers to pile up to form a 
multimer [57].

The existence of such histone multimer was experimentally supported by the 
result of crystal structure. Substitution of a conserved glycine that lies on the histone 
dimer–dimer interface results in destabilization of histone multimer formation, 
reduced growth rate, and impairs transcription regulation in vivo [70]. This multi-
meric histone structure could also be a way to mark its own genomic DNA and 
selectively suppress HTGs from bacteria. If there is a difference in how histone 
forms multimer on the genome between archaeal species, it could also selectively 
suppress other archaeal sequences acquired horizontally. In next section, we will 
discuss this possibility.

2.5  Archaeal Histones Adapt to the GC Content 
of the Genome

Genomic DNA is packaged with histones to form chromatin in eukaryotes [71, 72]. 
The most fundamental repeating unit of chromatin is the nucleosome consisting of 
an octamer of histones (2 copies of each histone: H2A, H2B, H3, and H4) and the 
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genomic DNA wrapped around the octamer [73]. DNA sequence preference exists 
for nucleosome occupancy and positioning [74–84]. Posttranslational modification 
of the histones have an important role in the interaction between histones and DNA 
[85, 86]. Thus, histone has a structural variation, which depends on not amino acid 
sequence but the posttranscriptional modification. It may induce a high conserva-
tion of amino acid sequence of histones. The distribution of DNA base composition 
(GC content) of eukaryotic genomes is similar to a normal (Gaussian) distribution 
with a peak of approximately 40% of GC, which is completely different from those 
of bacterial and archaeal genomes [78].

As described earlier in this section, H-NS and its homologs recognize AT-rich 
DNA regions and inhibit the expression from the regions [45–47, 87–90]. 
Considering that the percentage of AT in the horizontally transferred elements is 
greater than that in the host DNA [91, 92], gene expression from the horizontally 
transferred elements is selectively repressed by H-NS and its functional homologs 
in a base composition-dependent manner. The distribution of GC content of bacte-
rial (and archaeal) genomes is rather distinct from a Gaussian distribution [93].

As mentioned in the previous Sect. 2.4, a subpopulation of archaea (in particular, 
phylum euryarchaeota) possesses histones, which are similar to and smaller than the 
eukaryotic histones H3 and H4 [34]. Archaeal histones lack amino- and carboxy- 
terminal tails that are modified in eukaryotic H3 or H4 [34]. Among the histone- 
possessing archaeal species, most (62%, 33 of 53 species) of them have a single 
histone gene, and archaeal histones are not posttranslationally modified [56, 94]. 
Phylogenetic analysis revealed that the distribution of archaeal histones is associ-
ated not with their species-evolutionary relationship, but with their genomic DNA 
base composition [56].

Eukaryotic histones have high isoelectric points (pI) due to high contents of 
basic amino acid residues arginine and lysine, indicating the involvement of ionic 
bonds in nucleosome formation [95]. The distribution of theoretical pIs of archaeal 
histones is completely different from that of fungal (eukaryotic) histones (Fig. 2.2). 
The arginine and lysine contents of archaeal histones differ from those of eukaryotic 
histones [56]. If archaeal histones have also the same functional constraint to bind 
DNA as well as eukaryotic histones, they should have high pIs. If archaea do not 
have such a functional constraint, arginine and lysine contents tend to be higher and 
lower, respectively, as the GC content of genomic DNA increases [96]. These biases 
are influenced by the genetic code (codon table). The correlation coefficient between 
the arginine content of archaeal histones and GC content of archaeal histone genes 
is 0.51 and that between the lysine content and GC content is −0.73 (Fig.  2.3), 
showing that archaeal histones do not have functional constraint to increase arginine 
and lysine contents of histones.

These results showed that archaeal histones have an amino acid sequence varia-
tion, which is associated with the genomic DNA base composition. Based on the 
phylogenetic analysis of the archaeal histones, some histone genes had been hori-
zontally transferred [56]. Thus, archaea may have obtained histones as the genomic 
DNA changed its base composition. It is important that all eukaryotes have his-
tones, but a part of archaea have histones. For the subpopulation of archaea, 
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histones may be an important protein, gene of which was sometimes obtained by 
horizontal transfer in the course of archaeal evolution. On the other hand, eukary-
otes have maintained histones by vertical gene transfer from the parents. In the 
past, an ancestor of eukaryotes (which is thought to be close to archaea) might have 
a histone modification system, which is a diverging point between archaea and 
eukaryotes. Although the present archaeal histones are not posttranslationally 
modified [94], archaea have a posttranslational protein modification system [97]. 
Interestingly, the archaeal chromatin protein, Alba, is regulated by acetylation in 
Sulfolobus [60].

The GC adaptation of archaeal histones raises the interesting hypothesis that the 
core host genome distinguished by the histone binding and histone-nucleoid protein 
competition leads to the preferential binding of archaeal silencer of nucleoid pro-
teins. In addition, the DNA base composition preferences of nucleoid-associated 
proteins (including histones) play a crucial role in global regulations of genes 
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among archaea as well as bacteria and eukaryotes. Further analyses of molecular 
mechanisms and genomic analyses of the binding mode of nucleoid proteins and 
histones are required for the understanding of how HTGs are silenced in archaea.
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Abstract
Prokaryotes have various defense systems, such as clustered regularly interspaced 
short palindromic repeats (CRISPR)-CRISPR associated (Cas) adaptive immune 
systems, to protect themselves from invading foreign DNA, in particular mobile 
genetic elements (MGEs). In prokaryotic genomes, various classes of the genes 
encoding prokaryotic defense systems often cluster in specific genomic regions, 
referred to as defense islands, which are involved in the evolution and diversifi-
cation of prokaryotic defense systems. In this chapter, we review the functions of 
prokaryotic defense systems, their evolutionary dynamics, and their co-evolu-
tionary arms race with invading foreign DNA. We also introduce our previous 
works related to the comparative genomic analyses of Streptococcus species and 
oral bacterial species, in particular focusing on restriction- modification (R-M) 
systems and CRISPR-Cas adaptive immune systems.
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3.1  The Roles of Mobile Genetic Elements in Prokaryotic 
Genome Evolution

Prokaryotes (bacteria and archaea) are ubiquitous in the natural environment, and 
encounter invading foreign DNA, in particular mobile genetic elements (MGEs), 
such as plasmids, DNA transposons, and bacteriophages (or simply phages) 
(Figs. 3.1a–c) [1, 2]. Plasmids are self-replicating extrachromosomal DNA mole-
cules, which can be transmitted horizontally (referred to as horizontal gene transfer) 
between prokaryotic cells by direct cell-to-cell contact, referred to as conjugative 
transfer [3, 4]. The conjugative transfer of transmissible plasmids, such as F plas-
mids (Fig. 3.1a; the F plasmids enable prokaryotes to transfer DNA from the donor 
cells harboring the F plasmids (referred to as F+ strains) to the recipient cells 
(referred to as F− strains)) [5, 6], is thought to be one of the most important path-
ways for the transmission of virulence genes and antibiotic resistance genes in 
prokaryotes [7, 8]. Several studies have reported that virulence genes and antibiotic 
resistance genes of Enterobacteriaceae, including Escherichia coli, Enterococcus 
faecalis, and Enterococcus faecium, could be transferred through plasmids [8–10].

DNA transposons, which are self-transmissible DNA elements that excise them-
selves and transfer into another genomic location, also mediate the horizontal gene 
transfer of antibiotic resistance genes in prokaryotes through the mating of prokary-
otic cells [11, 12] (see also Chap. 8). The mobilization of DNA transposons is 
typically facilitated by transposable elements composed of a transposase-encoding 
gene and two terminal inverted repeats (TIRs) flanked by target site duplications 
(TSDs) (Fig. 3.1b) [13]. A transposase-encoding gene in transposable elements is 
first transcribed and translated to a transposase, which recognizes and binds to TIRs 
of the transposable elements and then catalyzes the excision of the transposable ele-
ments from the donor site flanked by TSDs [13]. The transposable elements bound 
to the transposase integrate themselves into another genomic location, and finally 
are flanked by other TSDs [13]. Transposons can be divided into two major classes 
(Class I and Class II) [14] and other distinct classes, including self-synthesizing 
DNA transposons [15], based on the nature of the transposition intermediate. Class 
I transposons, known as retrotransposons, move through an RNA intermediate and 
are reverse transcribed by a transposable element-encoded reverse transcriptase 
(RT) before their integration at another genomic location by a “copy and paste” 
mechanism [14]. Class II DNA transposons encode a transposase as described 
above, and simply move as DNA segments into another genomic location by a “cut 
and paste” mechanism [14]. Self-synthesizing DNA transposons (alternatively, 
called Polintons [15, 16] or Mavericks [17]), first discovered in eukaryotic genome 
sequences [15], encode a protein-primed family B DNA polymerase and a retroviral- 
like integrase, and are more likely involved in transposon replication [18, 19]. DNA 
transposons in bacteria, particularly in Gram-negative bacteria, often contain inte-
grons, which were first characterized in 1989 [20] and are currently classified into 
five classes, class 1, class 2, class 3, class 4, and class 5, according to their integrase 
(intI) gene sequences [21, 22]. Among the five classes of integrons, the class 1 inte-
grons are common in Gram-negative bacteria, and are captured by a Tn402 
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Fig. 3.1 Schematic description of the horizontal gene transfer by mobile gene elements (MGEs); 
(a) the F plasmid-mediated conjugation between F+ and F− prokaryotic cells; (b) typical Class II 
DNA transposons by a “cut and paste” mechanism (site-specific transposition is shown); (c) lytic 
and lysogenic phage life cycles (solid bold arrows indicate general lytic and lysogenic phage life 
cycles and dotted arrows indicate prophage induction under specific conditions, such as environ-
mental stimulation or stress)
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transposon to generate a transposon/integron hybrid carrying an antibiotic and anti-
septic resistance-encoding cassette [22]; hence, the integrons are thought to be one 
of the key players in the dissemination of antibiotic resistance genes within a bacte-
rial community [23]. Domingues et al. [24] have experimentally demonstrated that 
exposure of Acinetobacter baylyi to integron-containing Salmonella DNA led to the 
horizontal gene transfer of the integron by natural genetic transformation facilitated 
by the transposition of a Tn21-like transposon that contains the integron [24]. In 
Domingues et al. [24], exposure of A. baylyi to integron-containing Acinetobacter 
baumannii DNA also led to the horizontal gene transfer of the integron by natural 
genetic transformation, indicating that the interspecies transfer of transposons and 
integrons is not limited by the genetic relatedness of donor and recipient cells [24]. 
These findings strongly support that natural genetic transformation provides the 
widespread of MGEs, including transposons, in divergent species of bacteria [24].

Phages, which are obligate intracellular parasites of prokaryotes, present a seri-
ous threat to the life cycles of prokaryotes, and invade their host cells and propagate 
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themselves in several ways, through lytic, lysogenic, pseudolysogenic, and chronic 
infection (Fig. 3.1c; only lytic and lysogenic life cycles are shown) [25, 26]. Lytic 
phages (alternatively, called virulent phages) use their host cell’s translational 
machinery to synthesize their own proteins, and can kill the host cells to release 
their progenies by cell lysis [27]. Lysogenic phages (alternatively, called temperate 
phages) integrate their DNA into their host chromosomes and replicate passively 
along with the hosts [28]. In general, the infection of lysogenic phages does not 
initially cause cell lysis and remains in a dormant state in their host genomes 
(referred to as prophages) [26, 28]. However, in response to specific environmental 
stimulation or stress, the prophages are excised from the host genomes and can start 
reproducing progeny phages (referred to as prophage induction) [28, 29]. Very 
recently, Erez et  al. [30] have experimentally demonstrated that Bacillus subtilis 
phage phi3T encodes various communication peptides, denoted as the arbitrium 
system, for a lysis-lysogeny switch [30]. In the arbitrium system, the probability 
that B. subtilis phage phi3T enters into a lysogenic cycle is proportional to the 
increase in the concentration of arbitrium peptides produced during its lytic cycle as 
host cell disruption, and is then inversely proportional to the number of living host 
cells [30]. The findings indicate that the arbitrium system enables the progenies of 
B. subtilis phage phi3T to prevent the overkill of their host cells. Pseudolysogeny 
(alternatively, called a phage carrier state) may be another survival strategy of 
phages in starved prokaryotic cells, in which, unlike the lysogenic infection, lytic 
phages postpone their lytic life cycles, until the infected host cells are exposed to 
nutrient-rich environment [26, 31]. Most of the pseudolysogeny remains unclear, 
yet may be important to better understand the complexity of phage life cycles and 
their roles in the natural environment. In chronic infection, rod-shaped single- 
stranded DNA phages, such as filamentous bacteriophage M13, can replicate and 
release their progenies for a long period without killing their host cells [25, 32]. 
Their ability to chronically replicate the progenies without host cell disruption has 
been used for laboratory experiments, such as M13 cloning [33] and phage display 
technology [34].

Among the phage life cycles described above, the horizontal gene transfer 
between prokaryotic cells typically occurs via their lysogenic cycles [27, 35] (see 
also Chap. 5). During the lysogenic cycles, the prophages occasionally package 
various pieces of the donor genomes, and allow the recipients to acquire new func-
tions in a process, referred to as lysogenic conversion [28, 35, 36]. In the early 
1950s, Freeman [37] has experimentally demonstrated that non-virulent strains of 
Corynebacterium diphtheriae infected with specific phages could be converted to 
virulent strains [37]. Other researchers discovered phage-inducible chromosomal 
islands (PICIs) in Gram-positive bacteria, in particular Staphylococcus aureus [35, 
38–40]. S. aureus pathogenicity islands (SaPIs), which are known as the prototypi-
cal members of PICI family, are widely spread among staphylococcal species [41] 
and their mobility has been experimentally demonstrated [38, 42]. Recently, the 
PICIs are defined as a family of MGEs that might be responsible for the horizontal 
gene transfer of antibiotic resistance, and phage resistance, and in particular viru-
lence genes [35, 40, 41]. Hence, phage-mediated transduction is considered as one 
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of the important contributors to the widespread of virulence genes, antibiotic resis-
tance genes, and phage resistance genes in the environment [43, 44].

Since the integration of foreign DNA into prokaryotic genomes makes an impact 
on prokaryotic life cycles, prokaryotes have several defense systems to protect 
themselves from invasion by foreign DNA. For instance, restriction-modification 
(R-M) systems, DNA phosphorothioate (PT) modification, toxin-antitoxin (TA) 
systems, phage abortive infection (Abi) systems, Argonaute proteins, bacteriophage 
exclusion (BREX) systems, and clustered regularly interspaced short palindromic 
repeats (CRISPR)-CRISPR associated (Cas) adaptive immune systems (henceforth 
called CRISPR-Cas systems) have been identified in the genomes of many prokary-
otes (Figs. 3.2a–f and 3.3) [46]. These defense systems are roughly divided into 
relatively non-specific innate immune systems (R-M systems, DNA PT modifica-
tion, TA systems, Abi systems, pAgo proteins, and BREX systems) and highly spe-
cific adaptive immune systems (CRISPR-Cas systems) [46]. This chapter introduces 
a brief overview of the principle of the innate immune systems in prokaryotes, fol-
lowed by CRISPR-Cas systems, their evolutionary dynamics, and finally our inves-
tigation of CRISPR-Cas systems in Streptococcus species and oral bacterial 
species.

3.2  Prokaryotic Innate Immune Systems Against Foreign 
DNA Invasion

R-M systems (Fig. 3.2a), first discovered in the early 1950s [47, 48], are one of the 
best-characterized prokaryotic defense systems. The defense mechanism of R-M 
systems allows prokaryotes to distinguish between their own DNA (methylated DNA) 
and invading foreign DNA (non-methylated DNA) by a pair of enzymes, a restric-
tion endonuclease (REase) and a DNA methyltransferase (MTase) [49, 50]. An 
REase recognizes methylated bases (5-methylcytosine (m5C), N4-methylcytosine 
(m4C), and N6-methyladenine (m6A)) in host DNA, and cleaves non-methylated 
DNA as non-self DNA at specific sites [51]. Meanwhile, a DNA MTase acts as a 
host DNA methylation enzyme, which transfers a methyl group (CH3) from methyl 
donating compounds, such as S-adenosylmethionine (SAM), into the potential 
REase target sites in the host DNA for the prevention of self DNA cleavage [52–54]. 
R-M systems are classified into four types, Type I, Type II, Type III, and Type IV, 
based on their enzyme composition, sequence recognition, cleavage position, 
co- factor requirements, and substrate specificity [53]. Among the four types of R-M 
systems, Type II R-M systems are the most typical and most studied R-M systems 
[46]. The Type II R-M enzymes, such as EcoRI isolated from E. coli species [55], 
have been commonly used for laboratory experiments, such as restriction fragment 
length polymorphisms (RFLPs) and DNA cloning [56], because of its highly spe-
cific DNA cleavage ability. Meanwhile, Type IV R-M systems are composed of only 
an REase (referred to as a Type IV restriction enzyme), which can recognize and 
cleave only methylated DNA, unlike other Type R-M systems [57, 58].
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DNA PT modification (Fig. 3.2b) is a sulfur modification of self DNA, in which 
a non-bridging oxygen atom in self DNA is substituted with a sulfur atom, and 
unmodified non-self DNA is cleaved [59]. The defense mechanism of DNA PT 
modification is based on self/non-self DNA discrimination, like R-M systems. The 
DNA degradation (Dnd) phenomenon of DNA PT modification was initially 
observed during electrophoresis of DNA from the Gram-positive bacterium 
Streptomyces lividans [60], and is typically associated with a family of proteins 
(DndA-E) encoded by a five-gene dnd cluster (dndA-E) [59]. DndA (cysteine desul-
furase), DndC (phosphoadenosine phosphosulfate reductase), DndD (ATPase), and 
DndE (DNA-binding protein with a distinct fold) proteins form a complex to replace 
an oxygen atom with sulfur, whereas a DndB protein acts as a negative transcriptional 
regulator for PT-modifying genes, and is not essential for DNA PT modification 
[46, 59, 61, 62]. A DndD protein acts as an ATPase possibly associated with DNA 
structure alteration or DNA nicking during sulfur incorporation [63–65]. Xu et al. 
[66] have reported that Salmonella enterica serovar Cerro 87 possesses a four- gene 
cluster homologous to dndB-E genes, termed dptB-E, and its cognate three- gene 
dnd cluster (dndF-H) (alternatively, called dptF-H genes) [59, 66]. The DndF-H 

Phage
DNA 

Protospacer adjacent
motif (PAM) 

Acquisition of new spacer by Cas1-
Cas2 protein complex

Leader
CRISPR arrays

Transcription of CRISPR arrays into pre-crRNA

Trimming into multiple short segments of crRNAs

Cas2Cas1
Multi-protein effector

complex

� Class1 CRISPR-Cas systems

Cas2Cas1
Single and long protein

effector 

� Class2 CRISPR-Cas systems

Cas1 Cas2
CRISPR

interference

New
repeat

Fig. 3.3 Schematic description of clustered regularly interspaced short palindromic repeats 
(CRISPR)-CRISPR associated (Cas) adaptive immune systems (referring to Barrangou and 
Horvath [45] with slight modification)

T. Ito et al.



55

proteins encoded by dndF-H genes make double-stranded DNA damage as a trigger 
for SOS response, cell filamentation, and prophage induction [59]. The combination 
of the DNA PT modification-related genes found in the S. enterica serovar Cerro 
87 has been proposed as DNA PT modification-dependent R-M systems [67], 
which are composed of modification-related genes (dndB-E) and restriction- 
related genes (dndF-H) [67], and have been experimentally demonstrated as 
temperature-dependent defense systems [59].

TA systems (Fig.  3.2c) are also one of the most studied prokaryotic defense 
systems, as well as R-M systems, and are closely linked to dormancy induction or 
programmed cell death (PCD) [68]. The genetic modules of TA systems are com-
posed of stable toxin genes and unstable antitoxin genes in multiple copies, and 
activated when prokaryotic cells possessing the genetic modules are exposed to 
stress, such as antibiotic treatment and phage infection [68, 69]. TA system-related 
genes, known as post-segregational killing (PSK) systems, were first discovered in 
the 1980s [70–72], such as a hok/sok system composed of hok (host killing), sok 
(suppression of killing), and mok (modulation of killing) in plasmid R1 of E. coli 
[70]. In the hok/sok system (Fig. 3.2c), the activity of hok as stable toxin-encoding 
mRNA is suppressed by being bound to sok as non-coding unstable neutralize anti-
sense RNA that is complementary to hok, resulting in the formation of an RNA 
duplex that is degraded by RNase III [73, 74]. However, when the plasmids encod-
ing TA systems are not transmitted to daughter cells, the sok is rapidly degraded and 
highly toxic Hok proteins are synthesized from the hok, ultimately leading to cell 
death by depolarization of the cell membrane [73, 74]. TA systems are classified 
into six types, Type I, Type II, Type III, Type IV, Type V, and Type VI, based on the 
nature and the mechanism of antitoxins [75]. Among the six types, Type II TA 
systems are well-characterized TA systems, in which protein antitoxins neutralize 
the toxin activity of TA systems by directly binding to their cognate toxins [76]. In 
most Type II TA systems, the Type II toxins are a potent endoribonuclease and 
cleave cellular mRNA at specific sequences to inhibit translation in response to 
stress [75]. For instance, drug-tolerant Mycobacterium tuberculosis, which pos-
sesses a large number of TA systems [77], shows antibiotic tolerance by a remark-
able downregulation of genes associated with growth, metabolism, and lipid 
synthesis, and an upregulation of stress-associated sigma factors, transcription fac-
tors, drug efflux pumps, and toxin-antitoxin genes during a prolonged antibiotic 
exposure [78]. Another example of toxin-antitoxin genes in Type II TA systems is 
higher eukaryotes and prokaryotes nucleotide-binding (HEPN)-minimal nucleotid-
yltransferase (MNT) genetic modules, which are the most abundant genes in 
hyperthermophilic archaea [79–81]. The HEPN-MNT genetic modules are com-
posed of HEPN as RNA-cleaving toxins and MNT as predicted antitoxins, and are 
predicted as antibiotic resistance systems [80]. These TA systems are widely present 
in chromosomes or plasmids of prokaryotes as TA loci, and are stably maintained in 
the populations of viable cells [68, 74, 76].

Abi systems (Fig. 3.2d) lead to the death of infected cells (referred to as altruistic 
suicide), to terminate the production of progeny phages, and then protect clonal 
cells in the prokaryotic populations [82, 83]. Many of Abi phenotypes, denoted by 
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“Abi” and capital alphabet letters (e.g., AbiA), have been found in the plasmids of 
Lactococcus lactis [84], which is one of the model microorganisms for Abi system 
studies. Although Abi systems are thought to be distinct from TA systems, many of 
Abi systems share the genetic modules with TA systems, such as HEPN domains 
described above [46, 85]. A recent study has shown that Type III TA systems, 
ToxINpa composed of ToxN as endoribonuclease toxins and ToxIpa as RNA antitox-
ins, are employed by the phytopathogenic bacterium Pectobacterium atrosepticum 
for anti-phage activity [82, 86]. On the other hand, the Rex system found in 
λ-lysogenic E. coli strains [83, 87] is a well-studied Abi system that has the different 
mechanism from ToxINpa system. The Rex system is composed of two proteins, 
RexA protein as an intracellular sensor and RexB protein as an ion channel [83, 88]. 
When phage infection occurs, RexA protein is first activated by recognizing a phage 
protein-DNA complex, followed by RexB protein activation [88, 89]. The activated 
RexB protein induces a drop in the cellular ATP level, thereby stopping cell multi-
plication and aborting the lytic growth of the infecting phages [88, 89].

Prokaryotic Argonaute (pAgo) proteins (Fig.  3.2e) are nucleic acid-guided 
proteins, which use RNA or DNA guides and provide specific cleavage of comple-
mentary nucleic acid targets as a host defense mechanism [90]. Argonaute proteins, 
first discovered in eukaryotes [91], are essential components of an RNA-induced 
silencing complex (RISC) responsible for RNA interference (RNAi) (alternatively, 
called RNA silencing) [92–94]. Small non-coding RNA, such as microRNA 
(miRNA), small interfering RNA (siRNA), and P-element induced wimpy testis 
(PIWI)-interacting RNA (piRNA), guides Argonaute proteins to complementary 
RNA targets in RNAi [92, 95, 96], leading to translational inhibition, mRNA desta-
bilization, or RNA target cleavage [97]. In contrast to eukaryotic Argonaute (eAgo) 
proteins, some pAgo proteins are key players in specific DNA target cleavage, 
referred to as DNA interference (DNAi) [98, 99]. Based on the domain structure, 
pAgo proteins are roughly divided into two groups, long and short pAgo proteins 
[100]. Among the two groups of pAgo proteins, the domain structure of long pAgo 
proteins is structurally similar to that of eAgo proteins [101]. Both eAgo proteins 
and long pAgo proteins are composed of a PIWI endonuclease domain, a PIWI-
Argonaute- Zwille (PAZ) domain, a middle (MID) domain, and an amino-terminal 
(N-terminal) domain, along with two domain linkers (L1 and L2) [46, 100]. 
Meanwhile, short pAgo proteins are composed of only a PIWI domain and a MID 
domain [100]. Instead of a PAZ domain and a N-terminal domain, short pAgo pro-
teins are associated with the genes encoding an analogue of PAZ (APAZ) domain, 
which is fused to a putative nuclease domain, such as Sir2, Mrr, or TIR proteins [90, 
101]. It is assumed that short pAgo proteins are responsible for nucleic acid-guided 
target recognition, and their associated nuclease-APAZ domain is responsible for 
guide generation and/or target degradation, respectively [101]. Recent bioinfor-
matic analysis has revealed that pAgo proteins are encoded in ~32% and ~9% of the 
sequenced archaeal and bacterial genomes, respectively [100], and the phylogenetic 
tree of pAgo-encoding genes does not follow the prokaryotic phylogeny based on 
ribosomal RNA and other universal genes [100]. These indicated that horizontal 
gene transfer results in the widespread of the pAgo protein-encoding genes in 
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prokaryotes. Other recent studies have demonstrated that most of the characterized 
long pAgo proteins, including Thermus thermophilus (TtAgo) [99] and Pyrococcus 
furiosus (PfAgo) [102], can target DNA using either DNA or RNA guides [101], 
and can act as prokaryotic defense systems against invading foreign DNA as well as 
RNAi in eukaryotes. Moreover, it has been proposed that the features of long pAgo 
proteins described above can be used as genome-editing tools, because they can 
selectively cleave double-stranded DNA targets [101].

BREX systems (Fig.  3.2f) are a relatively novel defense mechanism against 
phage infection, and are composed of a combination of six genes among 15 BREX- 
related genes [103]. The BREX-related genes include five pgl genes (pglW, pglX, 
pglXI, pglY, and pglZ) and ten brx genes (brxA, brxB, brxC, brxD, brxE, brxF, 
brxHI, brxHII, brxL, and brxP) [103]. Each of these genes encodes a serine/threo-
nine kinase (pglW), an adenine-specific DNA methyltransferase (pglX, pglXI), an 
ATP-binding P-loop protein posessing ATPase activity (pglY), an alkaline phospha-
tase (pglZ), an NusB-like RNA-binding anti-termination protein (brxA), a protein of 
unknown function (brxB, brxE, brxF), an ATP-binding protein (brxC, brxD), an 
Lhr-like helicase (brxHI), a DNA/RNA helicase (brxHII), a Lon-like protease 
(brxL), and a phosphoadenosine phosphosulfate (PAPS) reductase (brxP), respec-
tively [103–105]. In the early 1980s, BREX-like systems have been already discov-
ered in Streptomyces coelicolor A3(2), denoted as “phage growth limitation (Pgl) 
systems” [106], which are composed of pglWXYZ genes [107]. Moreover, two of 
the five pgl genes in BREX systems, pglXZ genes, show sequence homology to 
genes in Pgl systems [103]. The phage resistance mechanism of BREX systems is 
based on self/non-self DNA discrimination, like R-M systems [103]. Prokaryotes 
possessing BREX systems methylate their own genomes, typically at the fifth posi-
tion of a non-palindromic 5′-TAGGAG-3′ hexameric sequence, and can prevent 
phage DNA replication, but they do not cleave phage DNA, unlike R-M systems 
[103]. BREX systems are currently classified into six types, Type 1, Type 2, Type 3, 
Type 4, Type 5, and Type 6, based on the six-gene combination and the order of the 
six genes, all of which contain a pglZ gene [103]. Goldfarb et al. [103] analyzed the 
genomes of approximately 1500 bacteria and archaea and revealed that pglZ genes 
as a putative member of an alkaline phosphatase superfamily are present in approxi-
mately 10% of these microbial genomes [103], suggesting that BREX systems are 
widely distributed as phage resistance systems.

3.3  CRISPR-Cas Adaptive Immune Systems

CRISPR-Cas is protein-encoding genes located in hypervariable genetic loci 
(referred to as CRISPR-cas loci), which are composed of multiple repeat-spacer 
arrays and the CRISPR-associated (cas) genes encoding CRISPR-associated (Cas) 
proteins located in close-proximity to the repeat-spacer arrays [45]. CRISPR-cas 
loci in prokaryotes memorize past encounters with invading foreign DNA as 
CRISPR spacers and act as prokaryotic adaptive immune systems [45]. The repeat- 
spacer arrays, later referred to as CRISPR arrays [108, 109], were first discovered 
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in the 3′-end flanking region of alkaline phosphatase isozyme (iap) genes in E. coli 
[110]. Soon after, similar repeats were discovered in the genome sequences of many 
prokaryotes [111]. In 2000, the prokaryotic repeat-spacer arrays were named as 
short regularly spaced repeats (SRSR) [112]; in 2002, the arrays were renamed as 
spacers interspersed direct repeats (SPIDR) [108, 109], and finally as clustered 
regularly interspaced short palindromic repeats (CRISPR) on the basis of the struc-
tural feature [108, 109]. At the same time, four cas genes (cas1, cas2, cas3, and 
cas4 genes encoding Cas1, Cas2, Cas3, and Cas4 proteins, respectively) were also 
identified nearby CRISPR arrays, and the structural coherence of the CRISPR 
arrays and the cas genes was characterized as CRISPR-cas loci [108, 109]. In 2005, 
the involvement of CRISPR-cas loci in adaptive immune systems against invading 
foreign DNA began to be speculated on the basis of some scientific evidence; (1) 
CRISPR spacers derive from the genomic fragments of invading foreign DNA 
including MGEs (later referred to as protospacers) [113–116], (2) phages and 
plasmids harboring the protospacers fail to infect their hosts yielding antisense RNA 
(later referred to as CRISPR RNA (crRNA)) [114, 115, 117]. The experimental dem-
onstration of CRISPR-Cas systems against phage infection was carried out by 
Barrangou et al. [118], in which phage-sensitive Streptococcus thermophilus strains 
became resistant to Streptococcal phages after acquiring new CRISPR spacers identi-
cal to the protospacer sequences in the phage DNA [118]. Soon after, the adaptive 
immune activity of CRISPR-Cas systems against plasmid transfer was experimen-
tally demonstrated by Marraffini and Sontheimer [119], in which the CRISPR-cas 
loci in Staphylococcus epidermidis strains acted as DNAi machinery, and prevented 
the transfer of staphylococcal conjugative plasmids, as well as RNAi in 
eukaryotes [119].

CRISPR-Cas systems act as DNA-encoded, RNA-guided, and nucleic acid- 
targeting interference (CRISPR interference) in prokaryotes (Fig.  3.3) [45]. The 
first step of CRISPR-Cas systems is to detect the motifs associated with protospac-
ers of invading foreign DNA, referred to as protospacer adjacent motifs (PAMs) 
[120], and cut the protospacers at the site a few base pairs upstream or downstream 
from the PAMs by nuclease and integrase activity of Cas proteins, such as a Cas1–
Cas2 protein complex or Cas9 proteins, respectively [121–123]. The shortly cut 
protospacers as new CRISPR spacers are integrated between multiple repeats of 
CRISPR arrays adjacent to a leader sequence in CRISPR-cas loci, and the CRISPR 
arrays are transcribed into a long precursor, referred to as precursor CRISPR RNA 
(pre-crRNA) [121]. The pre-crRNA is further trimmed into multiple short segments 
of crRNA by the endonuclease activity of Cas proteins, such as Cas6 proteins [122, 
124]. The crRNA binds to the complementary nucleic acid sequences, and the 
crRNA-guided CRISPR interference is then carried out by the crRNA-guided nucle-
ase activity of Cas proteins (referred to as an effector), such as Cas9 proteins [125], 
which cleave the crRNA-guided nucleic acid targets.

To date, CRISPR-cas loci are present in approximately 50% of bacterial genomes 
and approximately 90% of archaeal genomes [122]. CRISPR-Cas systems are cur-
rently classified into two classes (class 1 and class 2), including six major types 
(Type I, Type II, Type III, Type IV, Type V, and Type VI) and 28 subtypes 
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(e.g., Type I-A), based on the CRISPR-Cas machinery, in particular the combina-
tion of Cas proteins, and its mode of action (Table 3.1) [126]. A recent report has 
described that approximately 90% of all identified CRISPR-cas loci belong to class 
1 CRISPR- Cas systems, and the remaining 10% belong to class 2 CRISPR-Cas 
systems [128]. Class 1 CRISPR-Cas systems with multi-protein effector complexes 
include Type I, Type III, and Type IV CRISPR-Cas systems [126]. Among the three 
types in class 1 CRISPR-Cas systems, Type I and Type III CRISPR-Cas systems are 

Table 3.1 Current classification of CRISPR-Cas systems (referring to [126, 127])

Major type Subtype Combination of Cas protein-encoding genes and other genes Target
Type I I-A cas1, cas2, cas3′, cas3″, cas4 (×2), cas5, cas6, cas7, 

cas8a1, cas11
DNA

I-B cas1, cas2, cas3, cas4, cas5, cas6, cas7, cas8b1 DNA
I-C cas1, cas2, cas3, cas4, cas5, cas7, cas8c DNA
I-D cas1, cas2, cas3′, cas3″, cas4, cas5, cas6, cas7, cas10d DNA

I-E cas1, cas2, cas3, cas5, cas6, cas7, cas8e, cas11 DNA
I-F cas1, cas2, cas3, cas5, cas6f, cas7, cas8f DNA
I-U cas1, cas2, cas3, cas4, cas5, cas6, cas7, cas8u2 DNA

Type II II-A cas1, cas2, cas9, csn2, tracrRNA DNA
II-B cas1, cas2, cas4, cas9, tracrRNA DNA
II-C cas1, cas2, cas9, tracrRNA DNA
II-C variant cas1, cas2, cas4, cas9, tracrRNA DNA

Type III III-A cas1, cas2, cas5, cas6, cas7 family (csm3, csm5), cas10, 
cas11, csm6

DNA, 
RNA

III-B cas5, cas6, cas7 family (cmr1, cmr4, cmr6), cas10, cas11 DNA?, 
RNA?

III-B 
variant

cas1, cas2, cas5, cas6, cas7 family (cmr1, cmr4, cmr6), 
cas10, cas11, reverse transcriptase, PD-DExK nuclease

DNA, 
RNA

III-C cas5, cas7 family (cmr1, cmr4, cmr6), cas10, cas11 –
III-D cas5, cas7 family (csm3, csm5), cas10, cas11, all1473 DNA?, 

RNA?
Type IV IV cas5, cas6-like, cas7, cas8-like, dinG DNA?

IV variant cas5, cas7, cas8-like, cas11 DNA?
Type V V-A cas1, cas2, cas4, cas12a DNA

V-B cas1, cas2, cas4, cas12b, tracrRNA DNA
V-C cas1, cas12c DNA
V-D cas1, cas12d (casY) DNA
V-E cas1, cas2, cas4, cas12e (casX), tracrRNA DNA
V-U 
(tentative)

– –

Type VI VI-A cas1, cas2, cas13a RNA
VI-B1 cas13b, csx28 RNA?
VI-B2 cas13b, csx27 RNA?
VI-C cas13c RNA?

Class 1 CRISPR-Cas systems include Type I, Type III, and Type IV CRISPR-Cas systems, and 
Class 2 CRISPR-Cas systems include Type II, Type V, and Type VI CRISPR-Cas systems
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the most common CRISPR-Cas systems and are distributed in many archaea and a 
few bacteria, whereas Type IV CRISPR-Cas systems are a relatively rare [127, 129]. 
The multi-protein effector complexes of class 1 CRISPR-Cas systems are composed 
of multiple Cas proteins, such as CRISPR-associated complex for antiviral defense 
(Cascade) in Type I CRISPR-Cas systems [117, 130] and a CRISPR-Cas subtype 
Mtube (Csm)-CRISPR RAMP module (Cmr) complex in Type III CRISPR-Cas 
systems [131, 132]. Both of the multiple Cas proteins, such as Cas5, Cas6, Cas7, 
and Cmr proteins, include paralogous repeat-associated mysterious proteins 
(RAMPs) responsible for RNA binding and/or ribonuclease activity [133]. Several 
structural analyses have revealed that RAMPs contain single- or multi-domains of 
RNA recognition motif (RRM), known as a ferredoxin-like fold, which is a com-
mon protein fold often found in the structure of nucleic acid-binding proteins [133–
135]. Recently, RT-associated CRISPR-cas loci encoding an RT-Cas1 fusion protein 
have been found by several bioinformatic analyses [136–138], and were classified 
as Type III CRISPR-Cas systems [139]. Soon after, it was experimentally demon-
strated that RT-associated Type III CRISPR-Cas systems can acquire CRISPR 
spacers directly from RNA [140], implying that the Type III CRISPR-Cas multi-
protein effector modules with an RT-Cas1 fusion protein may have the ability to 
adapt to invaders with both DNA and RNA [141].

Class 2 CRISPR-Cas systems with single and long protein effector modules 
include Type II, Type V, and Type VI CRISPR-Cas systems [126, 128]. Among the 
three types in class 2 CRISPR-Cas systems, Type II CRISPR-Cas systems with 
Cas9 proteins as a multi-domain effector are one of the best-characterized 
CRISPR- Cas systems [142], and are widely used for genome editing [143–146]. 
In Type II CRISPR-Cas systems, pre-crRNA is bound to trans-acting CRISPR 
RNA (tracrRNA), which is complementary to the repeat sequence in the pre-
crRNA, and the pre-crRNA-tracrRNA duplex is processed into a crRNA-tracrRNA 
duplex by a double-stranded RNA-specific ribonuclease RNase III [147–149]. 
The crRNA- tracrRNA duplex forms a complex with Cas9 proteins, and the Cas9-
crRNA-tracrRNA complex finally introduces site-specific double-stranded DNA 
cleavage at the specific target site [148, 150]. Cas9 proteins contain two nuclease 
domains, RuvC and HNH, to generate paired double nicks [151], which can be 
re-programmed by single-guide RNA (sgRNA) to cleave its specific DNA target 
[145, 146, 148]. In Type V and Type VI CRISPR-Cas systems, Cas12 and Cas13 
proteins are predicted as multi-domain protein effector, respectively [126, 128]. 
All Cas12 proteins contain RuvC-like endonuclease domains, and in some cases 
a putative novel nuclease (Nuc) domain [152]. Very recently, new CRISPR-Cas 
systems, referred to as CRISPR-CasX and CRISPR-CasY, were discovered from 
uncultivated bacteria [153], and were putatively classified as new subtypes of 
Type V CRISPR-Cas systems, because both CasX and CasY proteins contain 
RuvC-like domains (renamed as Cas12e (CasX) and Cas12d (CasY) proteins, 
respectively) [127]. All Cas13 proteins contain two HEPN domains, which may 
possess RNase activity, as well as HEPN toxins in Type II TA systems (see Sect. 
3.2) [80, 81], suggesting that Cas13 proteins would have evolved from HEPN 
toxins [127].
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The CRISPR-Cas systems described above show a remarkable diversity in terms 
of the combination of Cas proteins and its mode of action [126]. Meanwhile, recent 
comparative genomic and structural analyses have revealed that Cas1 and Cas2 pro-
teins, in particular Cas1 proteins, are universally conserved, and are thought to play 
key roles in almost all CRISPR-Cas systems [19, 127]. Krupovic et al. [19] discov-
ered “genomic islands” in the genome sequences of many archaea and some bacte-
ria, in which some cas1 genes encoding homologous Cas1 proteins are not associated 
with CRISPR-cas loci, referred to as cas1-solo genes [19]. The cas1-solo genes are 
classified into two groups, group 1 and group 2, based on cas1 gene phylogeny [19]. 
Among the two groups, group 2 cas1-solo genes are co-localized with protein- 
primed family B DNA polymerase-encoding genes (henceforth called polB genes) 
in genomic islands [19], as well as self-synthesizing DNA transposons in eukary-
otes [15]. The MGEs composed of cas1-solo genes, polB genes, TIRs, and TSDs 
(see Sect. 3.1) were denoted as “casposons,” [19] which employ Cas1-solo proteins 
as an integrase (alternatively, called a casposase) [154]. Casposons are currently 
classified into four families, family 1, family 2, family 3, and family 4, based on the 
gene composition and phylogeny of Cas1 proteins [155]. The experimental demon-
stration of casposon mobilization has not been performed yet, but comparative 
genomic analysis of various strains of Methanosarcina mazei has shown the recent 
mobility of casposons as potentially active MGEs [155]. Béguin et al. [156] have 
revealed the close similarities between the insertion mechanisms of casposons and 
CRISPR spacers facilitated by a casposase and a Cas1–Cas2 protein complex, 
respectively [156]. These findings strongly support the evolutionary relationship 
between the adaptive modules of CRISPR-Cas systems and casposons [156].

The evolution and diversification of CRISPR-Cas systems appear to be driven by 
the co-evolutionary arms race between prokaryotes and phages. Phages possess the 
genes encoding anti-CRISPR proteins, referred to as Acr genes, which encode anti- 
CRISPR proteins that show the ability to inhibit the functions of diverse effector 
complexes in CRISPR-Cas systems [157]. As described above, lysogenic phages 
integrate their own genomes into their host chromosomes, and then form prophage 
regions [27], and might express the anti-CRISPR genes to maintain the prophage 
regions during lysogeny [158]. To date, more than 20 families of Acr genes have 
been identified in previously published reports, and can inhibit the anti-phage activ-
ity in some subtypes of Type I and Type II CRISPR-Cas systems [157]. Bondy- 
Denomy et  al. [159] have experimentally demonstrated the two mechanisms of 
anti-CRISPR activity by AcrF1, AcrF2, and AcrF3 proteins, which specifically 
inhibit the activity of Type I-F CRISPR-Cas system [159]. AcrF1 and AcrF2 pro-
teins could inhibit the DNA-binding activity of the multi-protein effector complex 
in Type I-F CRISPR-Cas system, whereas AcrF3 proteins directly bind to Cas3 
proteins and prevent their recruitment to the DNA-bound multi-protein effector 
complex [159]. It has also been known that phages adapt and evolve against some 
prokaryotic innate immune systems, in particular R-M systems [160]. Several 
phages possess MTase-encoding genes, and modify their own genomes by the 
MTase activity to protect themselves from the REase activity of R-M systems [161]. 
Another mechanism is that the phages possessing overcome classical restriction (ocr) 
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genes produce Ocr proteins, which directly bind to both MTase and REase of Type I 
R-M systems, and then inhibit the endonuclease activity of the R-M systems [160, 
161]. The co-evolution by the prokaryotic host-phage arms race remains unclear, but 
it could be the result of a diversification of prokaryotic defense systems [162].

3.4  Effect of the Evolutionary Dynamics of Defense Systems 
on Prokaryotic Genome Evolution

Makarova et al. [163] have performed the comparative genomic analysis of 1055 
completely sequenced prokaryotic genomes focused on defense systems, and have 
indicated the involvement of transposable elements in the gain, loss, and exchange 
of the defense system-encoding genes (henceforth called defense genes) [163]. The 
results suggested that many species have intraspecific variation in defense systems 
through the horizontal gene transfer of defense genes. The authors also discovered 
specific genomic locations in prokaryotic genomes, referred to as defense islands 
[163], which are enriched in not only the genes encoding deferent classes of defense 
systems, in particular R-M systems, T-A systems, and BREX systems, but also 
uncharacterized genes as candidates for new types of defense systems [103, 163]. 
After that, the comparative analysis of 35 groups of closely related bacterial genomes 
and one group of archaeal genomes has demonstrated that the defense genes in more 
than half of the analyzed genomes tend to be co-localized in defense islands [164]. 
In some species, MGEs in defense islands are frequently involved in the evolution 
and diversification of defense systems, suggesting that defense islands are responsi-
ble for the enhanced dynamics of the evolution in prokaryotic defense systems [164].

Very recently, Ofir et al. [165] have reported new defense systems, denoted as 
defense island system associated with restriction modification (DISARM), as multi- 
gene R-M systems [165]. DISARM systems are composed of five genes: four genes 
encode a DNA MTase, a helicase domain, a phospholipase D (PLD) domain, a 
domain of unknown function (DUF) 1998 (a helicase-associated domain), and one 
remaining gene has an unknown function [165]. Among the five genes, at least the 
four genes encoding a DNA MTase, a helicase domain, a DUF1998, and a gene of 
unknown function are essential for the anti-phage activity of DISARM systems. 
Meanwhile, the genes encoding a PLD domain are not always essential, but are 
required for the anti-phage activity against myophage SPO1 and podophages Nf. 
Among the five genes, a DUF1998 is enriched in defense islands, and is then thought 
to be a part of anti-phage defense systems [163], also indicating that DISARM 
systems are widely spread prokaryotic defense systems in defense islands.

Alternative DNA methylation levels have been shown to cause changes in gene 
expression in bacteria [166], because bacteria use a DNA MTase as a switch to sys-
tematically change their transcriptome [167, 168]. It is conceivable that the varia-
tion in R-M systems may affect the DNA methylation patterns and also may 
ultimately split clonal populations into epigenetic lineages [169]. In fact, clustering 
based on the presence/absence of R-M systems in genomes accurately reproduced 
the core genome phylogenetic structure in Neisseria meningitidis, and each 
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phylogenetic clade harbored a unique repertoire of R-M systems [170]. A genomic 
clade- distinctive combination of the R-M system enzymes was also observed in 
Burkholderia pseudomallei, which is the causative agent for melioidosis [171]. 
Furthermore, clade-specific DNA methylation patterns in B. pseudomallei were 
observed, suggesting that R-M systems contribute to the limiting intraspecific 
exchange of genetic material, and the genomic clades may represent functional 
units of genetic isolation in this species [171]. In Streptococcus pneumoniae, a 
genomic region, where different lineages code for variable R-M systems, was found 
[172]. This locus has been proposed to play a role in the fine-tuning of the extent of 
genomic plasticity [172]. Therefore, these findings suggested that the intraspecific 
variation in R-M systems plays a key role in the genome diversification. Prokaryotic 
defense systems other than R-M systems also appear to have additional functions 
besides the limitation/prevention against invasion by foreign DNA. A role in stabi-
lizing genomic islands was proposed for TA systems [76, 166]. CRISPR-Cas sys-
tems are also able to control transcription endogenously, and regulate important 
lifestyle-based bacterial phenotypes, such as pathogenicity [173].

To analyze the intraspecific diversification of bacterial populations associated 
with prokaryotic defense systems, we have investigated 47 genome sequences of 
Streptococcus suis, an important swine pathogen and an emerging zoonotic agent, 
with a focus on the defense genes [174]. Our comparative genome analysis of S. suis 
indicated similar or identical profiles of the defense genes related to R-M systems, 
TA systems, Abi systems, and CRISPR-Cas systems in the same genomic clusters 
and several cassette-like defense system loci [174]. Among the defense system loci, 
one locus found in S. suis was a variable region. In the region, not only genetic ele-
ments in R-M systems but also those in Abi systems and CRISPR-Cas systems, 
prophages, and/or other genes were replaced with each other [174]. In addition, the 
shift of prokaryotic defense systems at the locus was coincident with the branching 
of the genomic clusters in many cases [174]. Taken together with our investigation 
and previously published researches, it is possible to hypothesize that some pro-
karyotic defense systems, in particular R-M systems, affect the extent of genomic 
plasticity and the intraspecific diversification of bacterial populations in certain spe-
cies, and in some cases deferent classes of defense genes are located on the same 
locus. However, it remains unclear to what extent such prokaryotic defense systems 
are involved in the intraspecific speciation. Future investigation is needed to evalu-
ate the authenticity of this hypothesis.

3.5  Functions of CRISPR-Cas Adaptive Immune Systems 
in Streptococcus Species and Oral Bacterial Species

We have investigated how CRISPR-Cas systems act in prokaryotic cells by the use 
of Streptococcus species and oral bacterial species, and are suspecting that 
CRISPR- Cas systems play key roles in the genomic evolution of the bacterial spe-
cies investigated. Streptococcus pyogenes, also known as group A beta-hemolytic 
Streptococci (GAS), is one of the most virulent pathogens causing a broad spectrum 
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of infectious diseases, such as pharyngitis as the most common bacterial disease in 
children and streptococcal toxic shock syndrome (STSS) as life-threatening illness 
[175]. Our investigation found numerous prophage regions in the genome sequences 
of S. pyogenes, although their genome size is a relatively small (approximately 1.9 
mega base pairs) [176]. In addition, the streptococcal virulence genes encoding 
superantigens, a hyaluronidase, and a streptodornase were also found in the pro-
phage regions of the S. pyogenes genome sequences investigated [176]. These 
results suggested that S. pyogenes takes advantage of prophages within its genome 
for survival. Subsequently, we have investigated the association between the num-
ber of prophages and CRISPR-cas loci in the genomic sequences of 13 S. pyogenes 
strains available in a public nucleotide database [177]. As a result, CRISPR-cas loci 
were found in 10 of the 13 strains investigated, and interestingly the number of 
CRISPR spacers was inversely proportional to the number of prophages in the ten 
strains [177], suggesting that S. pyogenes is able to control the acquisition of pro-
phages based on the contents of CRISPR-cas loci, and also contribute to strain-
specific pathogenesis of streptococcal phages (Fig. 3.4a).

As for other Streptococcus species, we have analyzed the complete genome 
sequences of several Streptococcus mutans serotype c strains, which are known as a 
major cause of dental caries (tooth decay) [178, 179]. As a result, CRISPR-cas loci 
were found in almost all of the analyzed S. mutans serotype c strains, where no 
prophage regions were found in all the S. mutans serotype c strains [178, 179]. In 
addition, the CRISPR spacer sequences in the analyzed S. mutans serotype c strains 
exhibited high similarity to the genome sequences from several streptococcal 
phages, including S. mutans phage M102 [179]. Our investigation suggested that 
Streptococcus species possess species-specific survival strategy; S. mutans may be 
attacked by streptococcal phages and then protected by CRISPR-Cas systems 
(Fig.  3.4b), whereas S. pyogenes acquires virulence-encoding genes by phage- 
mediated transduction.

We have also investigated the functions of CRISPR-Cas systems in three oral 
bacterial species referred to as “red complex,” Porphyromonas gingivalis, 
Tannerella forsythia, and Treponema denticola [180–183]; they have been fre-
quently detected in human periodontal pockets [184]. We have first sequenced the 
complete genome of P. gingivalis strain TDC60 isolated from a severe periodontal 
lesion in a Japanese patient for subsequent comparative genome analysis [181]. In 
the comparative genome analysis of the 3 P. gingivalis complete genome sequences 
including the complete genome of P. gingivalis strain TDC60, multiple CRISPR-
Cas subtypes were identified in each of their genome sequences, although the 
potential targets were not determined for the CRISPR-Cas subtypes identified 
[181]. To identify the targets, our further investigation of CRISPR-Cas systems in 
P. gingivalis was carried out [182, 183]. In Watanabe et al. [182], 60 P. gingivalis 
isolates were used for genetic typing and intraspecific diversity analysis [182]. As 
a result, a total of 2150 CRISPR spacers were identified in the 60 P. gingivalis 
isolates, and only 29 of the 2150 CRISPR spacers exhibited high sequence similar-
ity to the genome sequences available in public nucleotide databases [182]. Of the 
29 CRISPR spacers analyzed, 19 CRISPR spacers exhibited high sequence 
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similarity to the three P. gingivalis genome sequences available in the databases; 
hence, we hypothesized that genetic recombination and rearrangement within P. 
gingivalis strains might be regulated by CRISPR-Cas systems [182]. The compara-
tive genome analysis was then performed in Watanabe et al. [183] using the draft 
genome sequences of 51 P. gingivalis isolates, and the publicly available genome 
sequences of 13 P. gingivalis and 46 other Porphyromonas species [183]. As a 
result, the CRISPR spacers (identified from the 41 P. gingivalis isolates) with 
potential targets in the genus Porphyromonas were approximately 23 times more 
abundant than those with potential targets in other genus taxa (1720/6896 CRISPR 
spacers vs. 74/6896 CRISPR spacers) [183]. These results strongly suggested that 
CRISPR-Cas systems in P. gingivalis are able to limit genetic recombination and 
rearrangement by acquiring the genome fragments of other P. gingivalis strains as 
self-targeting CRISPR spacers.

As for other red complex species, T. forsythia and T. denticola, we have ana-
lyzed the draft genome sequences of 19 T. forsythia strains and 14 T. denticola 
strains for comparison [180]. In the comparative genome analysis of the 19 T. for-
sythia strains and the 14 T. denticola strains, 106/1631 and 7/78 CRISPR spacers 
exhibited high sequence similarity to the genome sequences available in public 
nucleotide databases, respectively [180]. In the 19 T. forsythia strains, 16/106 and 
3/106 CRISPR spacers exhibited significant sequence similarity to the genome 
sequences of P. gingivalis and T. denticola, respectively [180]. In addition, the 
CRISPR spacers found in four of the 19 T. forsythia strains exhibited high sequence 
similarity to the MTase-encoding genes in P. gingivalis [180]. These results sug-
gested that CRISPR- Cas systems in T. forsythia may attack MGEs including the 
genes encoding defense systems in other red complex species [180]. Meanwhile, 
6/7 CRISPR spacers found in the 14 T. denticola strains exhibited significant 
sequence similarity to hypothetical genes in the genome sequences of T. denticola, 
suggesting that T. denticola limits genetic recombination and rearrangement within 
T. denticola strains [180].

Further comparative genome analysis was performed to reveal the association 
between the three red complex species [180]. As a result, gene deficiencies were 
mutually compensated in metabolic pathways when the genes of all the three red 
complex species were taken into account, suggesting that there is cooperative rela-
tionship among the three red complex species (Fig.  3.4c) [180]. Meanwhile, the 
three red complex species may have competitive interaction via CRISPR-Cas sys-
tems as described above (Fig. 3.4c) [180]. The association between the three red 
complex species may allow them to have different genomic evolutionary strategy to 
survive in the dental environment.

3.6  Future Perspectives

In this chapter, the functions of prokaryotic defense systems and their co- evolutionary 
arms race with invading foreign DNA were discussed. The prokaryote-phage co- 
evolution is thought to be one of the drivers of phenotypic and genotypic 

T. Ito et al.



67

diversification [162]. A recent study has described that, on average, the origins of 
approximately 7% of the CRISPR spacers found in prokaryotic genome sequences 
were identifiable, whereas the remaining 93% have not yet been unidentifiable, 
termed “CRISPR dark matter” [185]. It is noteworthy that identifying the CRISPR 
dark matter would provide blueprints for better understanding of microbial com-
plexity and robustness in the biosphere. Moreover, it has also been discussed that 
several phages may be able to control the community structure in the prokaryotic 
populations. For instance, CRISPR-cas loci have been found in two prophage 
regions in Clostridium difficile genome sequences [186], suggesting that the phages 
possessing CRISPR-cas loci enable their hosts to prevent the infection of other 
phage types for their interspecific competition.

In our previous investigation, the time-course metagenomic analysis of microbes 
in artificially polluted soils with four harmful aromatic compounds, 3- chlorobenzoate 
(3CB), phenanthrene, biphenyl, and carbazole, showed another potential capability 
of CRISPR-Cas systems (unpublished data). The time-course metagenomic analy-
sis showed that the number of identified CRISPR repeats rapidly and proportionally 
changed according to those of bacteria in the polluted soil bacterial community. 
Meanwhile, the number of identified CRISPR spacers in the polluted soil bacterial 
community was stable throughout the analysis period. The time-course metage-
nomic analysis also showed that the species diversity and functions of the bacterial 
community were resilient against the chemical disturbance, whereas the contents of 
CRISPR arrays were altered and did not return to their original states. These results 
strongly suggested that the bacteria exposed to the chemicals newly inserted uniden-
tifiable CRISPR spacers between the identifiable repeats for recording the environ-
mental fluctuation; hence, we may call the phenomenon associated with the CRISPR 
arrays in the bacterial community as “memory of bacterial communities.” From all 
the information presented in this chapter, we conclude that studying the prokaryotic 
defense systems allows us not only to understand the co-evolutionary arms race 
between prokaryotes and invading foreign DNA but also to predict microbial com-
plexity and robustness.
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Abstract
Gene expression is regulated at both transcriptional and posttranscriptional lev-
els. Foreign genetic elements have evolved to integrate their expression systems 
into the host regulatory network. Transcription of AT-rich foreign genes is glob-
ally silenced by chromosomal nucleoid proteins such as H-NS.  Similarly, a 
global posttranscriptional regulator Hfq tends to bind AU-rich transcripts and 
plays an important role to optimize expression of foreign genes as well as its core 
genome. The RNA chaperone Hfq also facilitates base-pairing between RNA 
molecules in trans and thus contributes to the crosstalk between chromosomal 
and foreign genes. Moreover, other classes of RNA chaperones are also involved 
in the crosstalk. Taking the model pathogen Salmonella Typhimurium as an 
example, this chapter focuses on the RNA-mediated crosstalk between chromo-
some and foreign genetic elements.

Keywords
Posttranscriptional regulation · Small RNA · RNA-binding protein · Salmonella

4.1  General Mechanisms of Posttranscriptional Regulation 
in Bacteria

Genetic information encoded on DNA is first transcribed into RNA, most of which 
functions in translation (rRNA and tRNA) or is in turn translated into proteins 
(mRNA). Therefore, gene expression seems primarily regulated at the 
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transcriptional level but can also be controlled at the posttranscriptional level. 
Transcription is regulated on the basis of interaction between DNA and DNA-
binding proteins. Transcription initiation is triggered by RNA polymerase (RNAP) 
holoenzyme binding at a promoter sequence, and its regulation largely relies on 
transcriptional factors (TFs) with a range of affinity and location of their binding 
sequences relative to the promoter. Before identification of the repressor of lac 
operon as the LacI protein, RNA was first conceived as the regulatory molecule 
which binds to the operator DNA because of its complementarity [1]. RNA has been 
thought suitable for regulatory functions since it adopts a variety of secondary and 
tertiary structures intramolecularly and also has a capability of intermolecular 
interactions.

RNA is subject to posttranscriptional regulation in its stability and, in case of 
mRNA, translation efficiency. RNA is turned over through degradation by numer-
ous ribonucleases (RNase) [2, 3]. RNA decay rate is determined by accessibility of 
RNases, which is modulated by both accessory proteins and antisense RNAs. 
Moreover, translation efficiency of mRNA affects its half-life since translating ribo-
somes prevent mRNA degradation [4]. In bacteria, translation is initiated by base- 
pairing between Shine–Dalgarno (SD) sequence of mRNA and 3′-terminal anti-SD 
sequence of 16S rRNA [5]. Importantly, translation is coupled with transcription in 
bacteria, i.e., translating ribosome directly interacts with transcribing RNAP [6]. 
Therefore, translation is often regulated at the 5′ untranslated region (UTR) and 
early coding sequence (CDS), but rarely at the 3′ part in contrast to eukaryotic regu-
latory mechanism. Similar to transcriptional regulation, posttranscriptional regula-
tion turns out to be both negative and positive, depending on the secondary structures 
of RNA molecules and location of target sequences relative to the translation initia-
tion region of mRNA [7–10].

Antisense RNAs can be divided into two types, trans-acting or cis-acting, accord-
ing to their genetic loci [11, 12]. cis-Acting antisense RNA is encoded in the same 
locus as its target RNA and thus holds complete complementarity. trans-Acting 
antisense RNA is expressed from a physically unlinked locus from the loci encoding 
target RNAs. By virtue of its only partial and incomplete complementarity, trans- 
acting antisense RNA can regulate multiple targets with the help of RNA chaper-
ones. One of the most extensively studied class of trans-acting antisense RNAs is 
Hfq-dependent small RNAs (sRNAs) with the length from 40 to hundreds of nucle-
otides (nt) [13–15]. Some of them are not actually noncoding; they encode small 
peptides and thus associate with ribosomes [16, 17]. Moreover, a number of Hfq-
dependent sRNAs are processed from mRNAs or share genetic loci with relatively 
large protein- coding genes [13, 18–20].

4.2  Discovery of Antisense RNAs and Their Chaperones

Historically, since the first discovery of antisense RNA in 1981 [21], findings on 
RNA-mediated regulation were largely obtained from studies on plasmids. Not sur-
prisingly, plasmids encode regulatory RNAs to control themselves mostly in cis 
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[11, 12, 22]. Although the combination of cis-acting antisense RNA and its binding 
protein is specific for each plasmid, its activity is regulated by several housekeeping 
RNases through processing and subsequent degradation [23]. Recently, homologs 
of plasmid-encoded RBPs have been discovered in chromosomes, and more novel 
bacterial RBPs will be discovered through a nonbiased method [24].

This section will not cover the type I toxin–antitoxin (TA) systems, which are 
involved in plasmid maintenance, abortive bacteriophage infection, and bacterial 
persistence [25–27] (see Chap. 3). Antitoxin is basically specific for its toxin mRNA 
and independent of RBPs, but exceptionally an antitoxin sRNA RalA acts on toxin- 
encoding ralR mRNA in trans in an Hfq-dependent fashion [28].

4.2.1  ColE1 Plasmid Replication

ColE1 plasmid of Escherichia coli encodes colicin E1, and its backbone has 
frequently been utilized as a cloning vector. Replication of ColE1 initiates from 
an RNA primer whose precursor (RNA II) is transcribed from 555-nt upstream 
of the origin and is processed at the origin by RNase H. The primer formation is 
inhibited by RNA I, a ~108-nt-long cis-encoded antisense RNA which hybrid-
izes with 5′ region of the nascent primer transcript [21]. RNA I interacts with 
RNA II via a loop–loop kissing interaction which is specifically stabilized by 
Rom, the ColE1 plasmid-encoded 63-aa protein [29]. Therefore, deletion of rom 
results in a high-copy-number plasmid, which is very well known as pUC clon-
ing vectors [30].

4.2.2  F Plasmid Conjugation

F plasmid of E. coli has been extensively studied as a model for bacterial conjuga-
tion [31]. Expression of tra operon encoding the transfer apparatus is controlled by 
a transcriptional cascade composed of the primary activator TraJ and autoregulators 
TraM and TraY [32, 33]. Translation of TraJ is repressed by ~80-nt cis-encoded 
antisense RNA FinP, whose sequence is specific for each F-like plasmids [34]. 
Though disrupted in the natural F plasmid [35, 36], FinO protein protects FinP from 
degradation by RNase E [37, 38] and facilitates interaction between FinP and the 
5′UTR of traJ mRNA [39–41]. The FinP-traJ double-stranded RNA is rapidly 
degraded by RNase III [37], repressing the TraJ expression irreversibly.

4.2.3  Host Factor for Qβ RNA Phage

Hfq is originally identified as a host factor for Qβ RNA phage in E. coli [42]. As Qβ 
phage can overcome the requirement of Hfq by at least four point mutations in its 
3′-terminal nucleotides [43], the role of Hfq is likely to facilitate the secondary 
structure formation of 3′ end where Qβ synthesis initiates.
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Hfq is now known to be the RNA chaperone for vast majority of small RNAs 
which act in trans. Hfq is conserved in α-, β-, and γ-Proteobacteria and also in 
Firmicutes. Though not essential for viability, deletion of hfq causes pleiotropic 
effects on various bacterial species, such as attenuated virulence [44, 45].

Hfq comprises a conserved N-terminal Sm domain and a less conserved and 
unstructured C-terminal domain. The Sm domain adopts a homohexameric toroidal 
structure with three RNA-binding faces, i.e., proximal, distal, and rim (lateral) 
faces. The proximal face specifically recognizes U-rich stretches at the 3′ end, 
which is often generated by Rho-independent transcription termination [46, 47]. 
The distal face binds AAN motifs with a high affinity [48–50]. The conserved argi-
nine residues on the Hfq rim have an affinity for internal UA-rich sequences [51].

Co-immunoprecipitation of Hfq followed by microarray analyses [52, 53] or 
RNA immunoprecipitation followed by RNA-seq analyses (RIP-seq) [54–56] has 
comprehensively identified the in  vivo ligands of Hfq both in E. coli and in 
Salmonella. More precisely, in vivo UV crosslinking immunoprecipitation followed 
by RNA-seq (CLIP-seq) in E. coli [57] and in Salmonella [58] has determined Hfq- 
binding sites on the transcripts in vivo. Importantly, the latter study has revealed that 
among the 640 binding sites in Salmonella, Hfq preferentially contacts with RNA 
molecules transcribed from pathogenicity islands, SPI1 and SPI2 [58].

The major function of Hfq is thought to facilitate RNA–RNA interactions in 
trans through relatively short and incomplete base-pairing. An Hfq-dependent 
sRNA generally contains at least one “seed” sequence that is complementary to 
target mRNAs [59] and the Rho-independent terminator at 3′end which binds the 
proximal face of Hfq [60, 61]. In addition, Hfq binds to the sRNA elsewhere with 
either rim or distal face [52]. The Hfq-mediated base-pairing between mRNA and 
sRNA has been extensively studied [62], and RNA interaction by ligation and 
sequencing (RIL-seq) analysis in E. coli has identified ~2800 chimeric RNAs gen-
erated via Hfq-mediated base-pairing in trans [63]. The binding partners are domi-
nated by canonical sRNA–mRNA pairs but also included pairs of sRNA–sRNA and 
sRNA–tRNA precursors [64, 65].

4.2.4  CsrA

CsrA/RsmA (carbon storage regulator/regulator of secondary metabolism) is 
another class of posttranscriptional regulators [66]. CsrA/RsmA binds single- 
stranded GGA motifs mostly in the loop of RNA hairpin structure, which are 
likely found in SD sequence. Therefore, CsrA primarily functions as a negative 
regulator by modulating translation initiation and/or RNA stability. There are a 
few exceptions; in E. coli, CsrA activates flhDC mRNA by preventing 5′-end-
dependent degradation by RNase E [67] or binds 5′UTR of pgaABCD operon 
mRNA to remodel its secondary structure and induce Rho-dependent premature 
termination [68].

Positive regulation is also achieved by sequestration of CsrA/RsmA by sRNAs 
containing multiple RBP-binding sites such as CsrB and CsrC of E. coli [69, 70]. By 
forming a globular complex with 18 CsrA proteins, CsrB sRNA sequesters CsrA to 

M. Miyakoshi



81

antagonize CsrA-mediated regulation. CLIP-seq analyses identified multiple direct 
CsrA-binding sites, 467 sites in Salmonella [58] and 457 sites in E. coli [71]. These 
studies revealed that in addition to CsrB and CsrC, CsrA binds multiple sRNAs 
including those bound with Hfq.

The CsrA system is conserved in γ-Proteobacteria but is absent in α- and 
β-Proteobacteria. In Firmicutes, Spirochaete, and Thermotogae, the csrA gene is 
located in a flagellum gene cluster, and the activity of CsrA is modulated by the 
flagellar assembly protein FliW [72]. In an ε-Proteobacterium Campylobacter jejuni 
that lacks CsrA-titrating sRNAs, the flaA mRNA encoding the major flagellin pri-
marily binds CsrA and inhibits CsrA-mediated regulation of flagellar genes [73].

4.2.5  ProQ/FinO-Domain RNA-Binding Proteins

Genes encoding FinO-like proteins are distributed in prokaryotic chromosomes of at 
least β- and γ-Proteobacteria, emerging as another class of RNA chaperone [74, 75]. 
proQ was found by E. coli genetic screening for increased resistance to 3,4-dehy-
droproline [76, 77], which turned out to be an indirect effect on the osmoregulatory 
glycine betaine transporter ProP [78]. Biochemical study revealed that ProQ is 
indeed an RBP which efficiently associates with FinP RNA fragment as well as 
FinO [79].

Separately, proQ was found in Legionella pneumophila to regulate natural trans-
formation [80], an important system for HGT as well as conjugative transfer and 
transduction. RIP-seq analysis of ProQ (renamed as RocC in L. pneumophila) 
revealed that a trans-acting regulatory sRNA RocR is the primary ligand of RocC 
[81]. RocR is folded into three stem loops and base-pairs with ribosome-binding 
sequences of multiple competence genes such as comEA via its first loop sequence 
to repress translation.

In Salmonella, a gradient profiling of RNA–RBP complexes by sequencing 
(Grad-seq) revealed ProQ as a global RBP [24]. One of the ProQ-dependent sRNAs 
RaiZ is derived from 3′ region of raiA mRNA encoding a cold-shock-inducible 
ribosome-inactivating protein through processing by RNase E [82]. ProQ stabilizes 
RaiZ and facilitates base-pairing in trans with a single target hupA mRNA to repress 
translation of the histone-like protein HU. Interestingly, RaiZ is also associated with 
Hfq, which has no effect on the stability and function of RaiZ.

While FinO and RocC are highly specialized with only single sRNA ligands, 
ProQ binds with multiple sRNAs and mRNAs in vivo. CLIP-seq analysis revealed 
that ProQ binds 467 sites in Salmonella, of which 21 and 5 transcripts are expressed 
from pCol1B9 and pSLT plasmids [83]. The common feature of RNA ligands for 
this class of RBPs is relatively long double-stranded stem-loop structures [75] and 
the absence of common sequence motifs [83]. Although the structures of ProQ-/
FinO-like RNA-binding domains have been determined [84–86], it is so far unclear 
what determines the specificity for their RNA ligands. ProQ is able to bind with 
FinP-derived dsRNA fragment in vitro and can rescue the finO deficiency in F plas-
mid conjugation in E. coli [79, 84], but in Salmonella ProQ does not bind FinP of 
pSLT plasmid in vivo [83].
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4.3  Crosstalk Between Chromosome and Foreign Genetic 
Elements

Salmonella enterica serovar Typhimurium (S. Typhimurium) has been a good 
example of interplay between the core and foreign genetic elements in the regu-
lation of gene expression. The genome exhibits a mosaic structure consisting of 
five large Salmonella pathogenicity islands in addition to several small pathoge-
nicity islets (collectively SPI regions), Gifsy-1, Gifsy −2, Fels-1, and Fels −2 
prophages and an extrachromosomal F-like plasmid pSLT [87–89]. 
S. Typhimurium causes gastroenteritis in humans and systemic disease in mice. 
The critical virulence factors of this facultative intracellular pathogen are effec-
tor proteins which are delivered by type 3 secretion systems (T3SS). S. 
Typhimurium harbors two major SPIs, which encode distinct T3SSs and thus are 
critical for its virulence. During the course of infection, SPI1 is expressed in 
invasion into host epithelial cells and subsequently SPI2 is expressed in intracel-
lular replication and survival, and thus these two clusters of genes are regulated 
temporally and spatially.

In a representative S. Typhimurium strain 4/74, 86% of the whole genome 
has been transcribed under 22 growth conditions, and a total of 3838 promoters 
have been identified [90]. The number of sRNAs has been raised to 280 in the 
single strain, which is comparable to that of transcriptional regulators. Moreover, 
during infection in macrophage, the strain expresses 3583 promoters and 246 
sRNAs [91].

The SPI1 master regulator HilD activates HilC and RtsA, and a complex feed- 
forward loop of these three AraC/XylS family transcriptional regulators activates 
the OmpR/ToxR family regulator HilA, which directly activates prg/org, inv/spa, 
and sic/sip operons encoding SPI1 T3SS and downstream transcriptional regulators 
such as InvF [92]. All of these components are encoded on SPI1 except RtsA.

SPI-2 is regulated by interplay of multiple two-component transcription regula-
tors, SPI2-encoded SsrA/SsrB and core genome-encoded PhoP/PhoQ and OmpR/
EnvZ systems [93]. In addition, the SPI-1 regulator HilD is shown to activate tran-
scription of ssrA–ssrB operon, suggesting a temporal regulation from SPI1 to SPI2 
induction at the transcriptional level [94].

Transcription of AT-rich foreign genes in SPI1 and SPI2 regions is pervasively 
silenced by chromosomal nucleoid-associated proteins (NAPs) such as H-NS [95, 
96] (see Chap. 1). Transcriptional silencing by NAPs is relieved by specific tran-
scriptional regulators that are specified by these islands as described above [97]. 
Like H-NS, global posttranscriptional regulators Hfq and CsrA extensively bind 
RNA molecules transcribed from SPI regions [58]. Since Hfq also functions as a 
translational repressor by binding directly on mRNAs in several cases in E. coli 
[98–102], it is tempting to speculate that Hfq globally silences the AU-rich foreign 
transcripts at the posttranscriptional level and is relieved by specific sRNAs or RBPs 
in response to relevant signals.

The following sections focus on crosstalk between chromosome and foreign 
genetic elements with relevance to RNA-mediated regulation in Salmonella.
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4.3.1  sRNAs Specified by Salmonella Pathogenicity Islands

The Hfq-dependent sRNA InvR is encoded on SPI1 (Fig. 4.1a) and induced under 
the control of HilD (Fig. 4.1b) and therefore is expected to be an important sRNA 
particularly relevant to the posttranscriptional regulation of Salmonella pathogenic-
ity. So far, the only known target of InvR is the outer membrane protein OmpD, 
whose expression is directly repressed through extensive base-pairing [103]. 
Expression of OmpD is repressed in macrophages, and downregulation of OmpD 
supports Salmonella proliferation inside macrophages [104]. Although InvR does 
not seem to alter the expression pattern of secreted SPI1 effector proteins [103], 
more targets of InvR other than ompD will be discovered with high-resolution 
RNA-seq technologies.

In addition, SPI1 encodes the other three sRNAs, STnc1410, STnc3020, and STnc 
4240, and SPI2 specifies one sRNA STnc1220 (Fig. 4.1a) [90], whose functions are 
still unknown. The 17-kb SPI3 expresses a trans-acting sRNA derived from 5′ leader 
mRNA of mgtCBR operon, which is required for intramacrophage survival and growth 
in low-Mg2+ media [105]. The leader RNA base-pairs with fljBA phase 2 flagellin 
operon mRNA to degrade in an Hfq- and RNase E-dependent manner (Fig.  4.1b). 
Since the mgtCBR operon is induced inside macrophages under the control of PhoP/
PhoQ two-component system, the RNA-mediated regulation results in repression of 
Salmonella flagellin synthesis to escape from the host innate immune system.

There are also several island-encoded sRNAs (designated as Isr) outside of the 
major SPIs (Fig. 4.1a). Gifsy-1 prophage encodes IsrK and IsrJ [106]. IsrK is tran-
scribed as the 77-nt short form of IsrK and the 910-nt-long IsrK-orf45-anrP-IsrJ 
transcript [107]. IsrK activates coupled translation of Orf45 and AnrP on the longer 
transcript in trans, and AnrP activates transcription of bacteriophage Q-like anti- 
terminator protein AntQ, which is encoded divergently upstream of IsrK. AntQ affects 
transcription termination globally. The role of the downstream sRNA IsrJ is unknown.

Salmonella contains two copies of RyhB, i.e., RyhB-1 and RyhB-2 (IsrE), both 
of which respond to iron limitation under the control of Fur transcriptional regula-
tor but are differentially regulated depending on growth phases [106]. Both 
RyhB-1 and RyhB-2 are involved in oxidative and nitrosative stress responses 
[108, 109]. Microarray analysis suggested that RyhB-2 specifically regulates 
motility and chemotaxis genes in trans [110], but it is unknown whether these 
mRNAs are directly regulated by base-pairing mechanism. RyhB-2 also acts on 
its overlapping gene STM1273.1n in cis, which results in downregulation of 
downstream yeaQ gene [111].

IsrM, which is conserved in S. Typhimurium but absent in S. enterica serovar 
Typhi and Salmonella bongori, directly hybridizes with translation initiation regions 
of hilE and sopA mRNAs to repress expression of a global transcriptional regulator 
of SPI1 and one of the SPI1 effector proteins, respectively (Fig.  4.1b) [112]. 
Importantly, deletion of isrM resulted in deficiencies in invasion into epithelial cells 
and intracellular survival, which are restored by ectopic expression of IsrM in trans.

RaoN encoded on SPI11 was identified by random transposon mutagenesis in the 
intergenic region between cspH and envE genes in the same direction [113]. 
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Expression of RaoN was impaired in an hfq mutant. In the raoN deletion mutant, 
lactate dehydrogenase gene ldhA and phase 2 flagellin gene fljB were upregulated 
(Fig. 4.1b), but direct regulation of these mRNAs by RaoN has not been clarified.

4.3.2  sRNAs Regulated by SPI-Encoded Transcriptional 
Regulators

From transcriptome profiling of S. Typhimurium grown under 22 conditions [90] and 
in macrophages [91], two sRNAs (InvR and STnc520) and eleven sRNAs (IsrH_1_2, 
STnc3730, STnc3090, STnc470, STnc3020, STnc3180, STnc440 (PinT), STnc1480, 
STnc3050, sRNA10, and STnc3170) are expressed under the conditions relevant for 
SPI1 and SPI2 transcriptional networks, respectively. STnc520 was originally identi-
fied in Hfq co-IP [56] and later shown to exhibit similar expression pattern with InvR 
through positive regulation by SPI-1-encoded transcriptional regulator SprB [114]. 
The targets of STnc520 have not been identified so far. Surprisingly, none of the lat-
ter 11 sRNAs are encoded on the SPI2 island, and only six of them are specific for 
S. enterica but are absent in S. bongori [115].

DapZ sRNA, which is embedded in the 3′UTR of dapB gene, is expressed 
through the direct regulation by RtsA and HilC in the HilD transcriptional network 
in Salmonella [55, 114]. DapZ regulon overlaps with GcvB regulon containing 
amino acid and peptide transporters, such as oppA and dppA (Fig. 4.1b) [116, 117]. 
Expression profile of DapZ is clearly different from that of GcvB; GcvB is induced 
by glycine under the control of GcvA/GcvR transcriptional regulators, and the 
decay rate of GcvB is controlled by SroC sRNA, which is derived from the 3′UTR 
of gltI mRNA [65]. The stability of DapZ is not affected by SroC (Miyakoshi et al. 
unpublished data). Transient downregulation of amino acid/peptide transporters by 
DapZ during the SPI-1 condition might be beneficial for efficient host invasion.

PinT (STnc440) is an 80-nt sRNA encoded in a 15-kb Salmonella-specific islet 
that encodes an AraC/XylS transcriptional activator RtsA and is strongly induced in 
SPI2-inducing medium and during infection under the control of PhoP/PhoQ tran-
scriptional regulator [118]. Through direct base-pairing mechanism, PinT nega-
tively regulates sopE and sopE2 mRNAs encoding SPI1 effector, grxA mRNA 
encoding glutathione/glutaredoxin 1, and crp mRNA encoding the cAMP receptor 
protein (Fig. 4.1b). Time-course expression profile suggests that PinT temporally 
regulates the transition from SPI-1 to SPI-2 virulence stages [118].

4.3.3  Chromosomal sRNA Regulates Horizontally Acquired 
Genes

The SPI-1 master regulator of Salmonella invasion HilD is posttranscriptionally 
regulated by multiple factors. At SD sequence, the hilD mRNA is directly bound 
with CsrA [83], which represses translation and induces mRNA decay [119]. Hfq 
also binds the CDS of hilD mRNA [83], and overexpression of hilD rescued the 
reduced expression of SPI-1 effector proteins in Salmonella Δhfq mutant [56]. The 
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310-nt-long 3′UTR of hilD mRNA is attacked by a degradosome complex contain-
ing RNase E and polynucleotide phosphorylase [120]. The Hfq-dependent sRNA 
Spot42 activates the expression of hilD probably by direct base-pairing with its 
3′UTR to protect the mRNA from the degradosome [121]. Since the expression of 
Spot42 is repressed by CRP-cAMP, this regulation in part accounts for the CRP- 
mediated repression of SPI-1. Moreover, CRP is repressed by PinT under SPI-2 
condition [118], suggesting CRP as a key factor for the temporal expression between 
the two pathogenicity islands of Salmonella.

In Salmonella, SgrS sRNA induced by glucose–phosphate stress specifically 
represses sopD mRNA encoding an effector protein which can be secreted by both 
SPI1 and SPI2 T3SSs (Fig. 4.1b), but not its duplicated gene sopD2 [122]. It is 
concluded that the chromosomal sRNA is involved in the regulation of Salmonella 
virulence, but more studies are awaited to answer what is the physiological conse-
quence of this differential regulation of SopD and SopD2.

IS200 is present in the S. Typhimurium genome with the copy number of 5–12, 
while S. Typhi genome harbors 26 copies. IS200 expresses two transcripts, the 
transposase tnpA mRNA and its antisense RNA art200 (STnc490). art200 regulates 
tnpA mRNA by binding at its overlapping 5′ region in cis [123]. Although art200 
binds both Hfq [56] and ProQ [24], contribution of these RBPs remains obscure. 
The 5′ region of tnpA mRNA processes regulatory RNAs, tnpA-110 and tnpA-90, 
which represses invF mRNA [124]. The SPI1 transcriptional regulator InvF acti-
vates the transcription of sicAsipBC operon encoding translocon/effector proteins 
(Fig. 4.1b). This might account for the propagation of this dormant transposon in 
pathogenic Salmonella genomes.

pSLT is the ~95-kb virulence plasmid of S. Typhimurium belonging to IncFIB 
incompatibility group. In addition to FinP, pSLT encodes an sRNA IesR-1, which is 
strongly induced in a nongrowing dormant state in host cells and acts on PSLT047 
gene in cis [125]. Transfer of pSLT is regulated at the transcriptional level; ArcAB 
directly activates the traY promoter in response to microaerobiosis [126] and Lrp acti-
vates the traJ promoter which is methylated by Dam [127, 128]. At the posttranscrip-
tional level, FinO is the cis-acting posttranscriptional regulator of traJ and is also 
methylated by Dam [129]. The pSLT conjugation is indirectly regulated by a chromo-
somal Hfq-dependent sRNA RprA, which is one of the three activator sRNAs for rpoS 
regulation and is induced by host-produced bile salts [130]. By relieving translational 
inhibitory stem-loop structure of mRNA 5′UTR, RprA activates a conserved 
Salmonella-specific gene STM4242 (designated ricI), whose product interacts with 
the pSLT conjugation apparatus TraV to inhibit pSLT conjugation.

pSLT harbors a fimbriae operon pefACDEF which is only expressed when CsrA 
is available. The plasmid-specified fimbriae are normally repressed by the 5′UTR of 
chromosomal fimAICDHF mRNA encoding the major type I fimbriae, which con-
tains multiple CsrA-binding sites and titrates CsrA [131]. Therefore, CsrA mediates 
crossregulation at the posttranscriptional level between chromosome- and plasmid- 
encoded fimbriae.
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4.4  Perspectives

As represented by the regulation of Salmonella virulence, regulatory RNAs mediate 
crosstalk between core and foreign genetic elements as well as transcriptional regu-
lators (Fig. 4.1b). While horizontally acquired sRNAs manipulate the core genome 
probably to optimize the expression level and timing, chromosomal sRNAs often 
utilize highly conserved seed regions to regulate horizontally acquired genes, which 
are likely to be integrated into the host regulatory network. Other pathogens such as 
E. coli, Shigella, Yersinia, Vibrio, and Pseudomonas are also armed with virulence 
islands and plasmids and have already been evolved to control their expression via 
regulatory RNAs [132, 133].

By analogy with the global transcriptional regulator H-NS, which silences 
expression of foreign genetic elements but is counteracted by plasmid-encoded 
H-NS homologs [134], there are a few reports of RBPs encoded on mobile genetic 
elements that are likely to have multiple ligands and modify chromosomal gene 
expression. The virulence plasmid pXO1 of Bacillus anthracis encodes an Hfq 
homolog [135], whose overexpression exerts toxicity specifically on the strain but 
not on Bacillus subtilis [136]. L. pneumophila harbors a CsrA homolog encoded on 
an integrative conjugative element (ICE), designated as CsrT, in addition to two 
chromosomal homologs CsrA and CsrR [137]. Ectopic expression of CsrT caused 
pleiotropic effects, such as reduced transfer efficiency of ICE-βox, resistance to 
hydrogen peroxide, infection in macrophage, reduced motility, and flagellar 
assembly.

Hfq has been intensively studied in chromosomal RNA networks, but the host 
factor for Qβ bacteriophage should directly play an important role in the function of 
other mobile genetic elements. Hfq is implicated in ColE1 plasmid replication in 
addition to Rom [138]. Moreover, Hfq regulates F plasmid transfer through destabi-
lization of the traY and traM mRNAs [139]. It still needs to study in detail how Hfq 
regulates these crucial events of the two model plasmids.

Bacterial regulatory RNAs encoded on mobile genetic elements need to be tran-
scribed in the new recipient cells, but they might take a shortcut by direct transfer 
even across the kingdom. Bacterial membrane vesicles (MVs) are known to contain 
proteins, DNA, and RNA [140]. MVs released from E. coli, Vibrio cholerae, and 
Porphyromonas gingivalis cells contain a variety of RNAs and can be internalized 
into human epithelial cells [141–144]. Moreover, a particular tRNA fragment pack-
aged into Pseudomonas aeruginosa MVs functions to suppress immune response in 
human epithelial cells [145]. Further studies are necessary to clarify how the directly 
transferred RNAs actually function in the new recipient cells.
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Abstract
Viruses that infect bacteria (bacteriophages) are ubiquitous and abundant in the 
environment. In marine ecosystems, viruses may infect as much as 20–40% of 
the bacterial population. Therefore, viruses play important roles in global bio-
geochemical cycle. Viruses also affect the genome evolution and fitness of their 
host microorganisms through horizontal gene transfer. On the other hand, viruses 
may also acquire metabolic genes from their hosts and temporally manipulate 
host metabolism during infection through the expression of specialized “auxil-
iary metabolic genes.” In addition, host-selective viral infection is believed to 
maintain bacterial diversity via frequency-dependent selection, whereby virus 
infection reduces bacterial species that have become relatively abundant in a 
population and thereby allows coexistence of multiple host–virus combinations. 
Further, continual bacteria–virus interactions drive reciprocal evolution of bacte-
rial defense and viral counterdefense mechanisms (coevolution), resulting in 
increased diversity. Thus, examination of bacteria–virus interactions is essential 
for understanding microbial evolution and diversity.
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5.1  Introduction

Viruses that infect microorganisms are ubiquitous and abundant in almost all envi-
ronments [1]. They inject their genomes into their host microorganisms for their 
propagation, ultimately resulting in host cell lysis (lytic cycle). Therefore, viruses 
play important roles in the movement of nutrients and organic carbon from host 
cells to dissolved and particulate organic matter pools (“viral shunt”). Thus, virus- 
mediated microbial lysis is widely recognized as affecting marine biogeochemical 
cycles [1–3]. Although bacteriophage (or phage) is the name commonly used to 
describe viruses that infect and propagate within bacteria (and sometimes includes 
archaeal tailed viruses), we will refer to bacteriophages (or phages) as viruses in this 
chapter according to their description by the International Committee on Taxonomy 
of Viruses (ICTV) of the Bacterial and Archaeal Viruses Subcommittee [4].

Viruses affect the genome evolution and fitness of their host microorganisms 
through horizontal gene transfer (HGT). They may also acquire metabolic genes 
from their hosts and can temporally manipulate host metabolism during infection 
through the expression of specialized viral genes called “auxiliary metabolic genes” 
(AMGs) [5–7]. In addition to a lytic cycle, temperate viruses undergo a lysogenic 
cycle that results in vertical propagation within host lineages through integration 
into the bacterial genome as proviruses or plasmids. These proviruses often cause 
phenotypic changes in their hosts (lysogenic conversion) [8, 9] and transfer a neigh-
boring segment of the host genome to other hosts during the excision process (spe-
cialized transduction; process 4 in Fig. 5.1) [9–12]. Partial host genome segments 
can also be incorrectly packaged into the capsid and subsequently transferred to 
other hosts (generalized transduction; process 1 in Fig. 5.1) [9, 13].

In addition to mediating HGT, viruses affect the diversity and dynamics of host 
populations and communities. Selective viral infection prevents exponential 
increases in dominant microbial species (populations), which enables the coexis-
tence of multiple competing species (“kill-the-winner” model) [14, 15]. At the same 
time, continual host–virus interactions promote the emergence of host antiviral 
defense systems, as well as counterdefense systems in viruses (coevolution), which 
also generates genetic diversity [16–18].

Thus, studying bacteria–virus interactions is essential for understanding micro-
bial evolution and diversity. Here, we review the effects of viruses on microbial 
evolution and diversity and examine coevolutionary dynamics arising through bac-
teria–virus interactions.

5.2  Temperate Virus–Host Interactions

During the lysogenic cycle of temperate viruses (proviruses), most viral genes are 
repressed to maintain normal cell viability [19]. Proviruses and their hosts have a 
shared evolutionary history because viral DNA replication is completely synchro-
nized with host DNA replication, which results in increases in both provirus and 
host populations [20]. Accordingly, proviruses protect the host from various 
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opponents to ensure the lysogenic state, often by inducing phenotypic changes in 
their hosts in a process known as lysogenic conversion [19, 21] (process 3  in 
Fig.  5.1). Of these, changes that protect against “superinfection,” during which 
infected cells are also invaded by other viruses, are most intensively studied. This 
“superinfection exclusion” can be achieved via a wide variety of mechanisms [22–
26]. Most cases involve alterations to the cell surface or other cell envelope compo-
nents. For example, provirus-encoded proteins block the adsorption of superinfecting 
viruses to the cell surface, which is the first step in the infection cycle [25, 26]. 
Similarly, the viral genome injection step is a common target for provirus-mediated 
superinfection exclusion [22–24]. A number of provirus-encoded proteins also 
affect bacterial pathogenicity. Among these, outer membrane protein Lom and lipo-
protein Bor increase the ability of lysogens to adhere to human epithelial cells or 
improve the survival rate of the lysogens in animal serum [27–29]. In Neisseria 
meningitidis, provirus-encoded protein TspB, which is present on the bacterial cell 
surface and binds human IgG, leads to the formation of large host cell aggregates in 
a biofilm. Thus, proviruses can protect bacteria from host immune responses [30].

Proviruses are also a source of virulence genes and many pathogenic bacteria 
depend on provirus-encoded proteins for their toxin production. Virus-borne toxin 
genes (one gene in some cases) can turn harmless bacteria into dangerous pathogens 
and facilitate the emergence of novel pathogens [31–33]. Famously, Escherichia 
coli O157:H7 acquired the ability to produce a Shiga-like toxin after being lysoge-
nized by several viruses [32]. Similarly, Vibrio cholerae was converted from a 
harmless water-dwelling bacterium into a significant human pathogen upon the 
acquisition of virus VPIΦ, which encodes the toxin co-regulated pilus [31, 33].

Temperate viruses are also known to encode accessory genes that increase host 
bacterial fitness under certain conditions. For example, P1, P2, or Mu lysogenic E. 
coli strains can proliferate more rapidly than nonlysogenic strains during aerobic 
growth under glucose-limited conditions. The increased fitness of the lysogens cor-
relates with higher metabolic activity compared with nonlysogens under glucose 
exhaustion [34]. Thus, these proviruses confer an evolutionarily significant repro-
ductive growth advantage to their host E. coli strains [34]. In Shewanella oneidensis 
MR-1, which is capable of forming highly structured surface-attached communi-
ties, extracellular DNA serves as a structural component in all stages of biofilm 
formation under static and hydrodynamic conditions [35]. Extracellular DNA, like 
many other crucial biofilm-promoting factors, is released during provirus 
LambdaSo-, MuSo1-, and MuSo2-mediated cell lysis [35]. Proviruses also assist 
with antibiotic tolerance. E. coli K-12 contains nine cryptic proviruses, CP4-6, 
DLP12, e14, rac, Qin, CP4-44, CPS-53, CPZ-55, and CP4-57, which have lost the 
ability to produce infective phage particles [36]. These cryptic proviruses contribute 
to increased resistance to sublethal concentrations of quinolone and β-lactam anti-
biotics, primarily through the production of proteins that inhibit cell division [36]. 
In addition, these proviruses help their host to withstand osmotic, oxidative, and 
acid stresses, as well as increasing growth and influencing biofilm formation [36]. 
Similarly, a Listeria monocytogenes provirus provides its host with regulatory 
switches for escaping from macrophage phagosomes. In the DNA uptake 
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competence (Com) system of L. monocytogenes, the Com master activator gene, 
comK, is interrupted by a provirus [37]. The Com system is regulated by the forma-
tion of a functional comK gene via provirus excision. The provirus is specifically 
excised during intracellular growth, primarily within phagosomes, yet, in contrast to 
this classical induction, progeny virions are not produced. Thus, the provirus serves 
as a genetic switch to modulate the virulence of its bacterial host during the course 
of infection [37].

The induction of proviruses can counteract or delay the colonization of nonlyso-
gens. Cocultures of Salmonella strains with and without proviruses undergo rapid 
bacterial composition changes as a result of virus-mediated killing of sensitive bac-
teria and lysogenic conversion of survivors [38]. Thus, spontaneous provirus induc-
tion in a few lysogenic cells enhances the competitive fitness of the lysogenic 
population as a whole, setting up a selection regime that forces maintenance and 
spread of viral DNA [38].

Although proviruses possess various mechanisms for superinfection exclusion, 
as described above, the chimeric nature of viruses may suggest that superinfec-
tions have rarely occurred in lysogens, and that proviruses also serve as a genetic 
pool for viruses. For example, the genome of Staphylococcus pasteuri virus 
SpaA1 consists of three genomic regions derived from apparently different ori-
gins that form a mosaic pattern. The three genomic regions consist of partial pro-
virus sequences from Bacillus thuringiensis kurstaki str. T03a001 (genes involved 
in DNA replication/transcription, and cell entry and exit), Bacillus cereus AH676 
(additional regulatory and recombination genes), and the majority of the MZTP02 
virus genome [39]. One possible mechanism for the mosaicism of viral genomes 
is virus-encoded homologous recombination enzymes (recombinases). A previous 
study showed that compared with RecA, viral Rad52-like recombinases have 
relaxed fidelity for nucleotide recognition sites in vivo, leading to gene exchanges 
among proviruses [40].

5.3  Domestication of Proviruses by Hosts

A study by Bobay et al. pointed out the strong selection for mutations leading to 
provirus inactivation because intact proviruses are likely to kill the host upon induc-
tion of the lytic cycle [20]. Comparative genomics using E. coli and Salmonella 
enterica proviruses revealed that the size distribution of provirus elements is 
bimodal, with small elements, which are rapidly inactivated proviruses (“domesti-
cation”; process 5 in Fig. 5.1), and large elements, which are intact proviruses [20, 
41]. Accordingly, a pervasive pattern of systematic counterselection for nonsynony-
mous mutations in provirus genes is observed. Importantly, such patterns of purify-
ing selection are observed not only in accessory regions but also in core viral genes, 
such as those encoding structural and lysis components [20]. This suggests that 
bacterial hosts utilize these components as functional units [20]. In this context, 
partly degraded prophage elements are assumed to have adaptive functions in the 
host, as outlined below.
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R-type and F-type bacteriocins are typically composed of domesticated tail and 
lysis genes from myoviruses and siphoviruses, respectively, and kill surrounding 
bacterial cells lacking the appropriate cognate immunity genes [20]. Notably, the 
largest orthologous provirus family, which is related to P2-like viruses (Myoviridae), 
seems to have been stabilized in many Salmonella strains because they lack inte-
grases for viral DNA packaging. The putative domestication of this provirus might 
even predate the split between Escherichia and Salmonella, because a very similar 
small Salmonella provirus also lacks an integrase at the same position in two E. coli 
strains. Although most provirus families do not so easily fit the description of R-type 
or F-type bacteriocins, they do act as killer virus particles. Thus, defective viruses 
can easily give rise to killer virus particles [20]. Similarly, S. enterica serovar 
Typhimurium produces pore-forming bacteriocins, known as group A and B coli-
cins, which are released in the gut environment to kill its competitors. Typically, 
colicins are co-expressed with cognate lysis genes in only a fraction of cells, which 
results in bacterial lysis and colicin release into the environment [42].

Gene transfer agents (GTAs) are also derived from defective viruses [43]. GTAs 
contain a random piece of the host cell genome but contain insufficient DNA to 
encode the protein components required to generate viral particles themselves. 
Therefore, GTAs cannot transfer a complete set of structural genes to a recipient 
cell. It is important to note that these agents are distinct from generalized transduc-
ing viruses [43]. All known GTAs have tailed-virus structures and are presumably 
released into the environment by lysis of the producing cell. Released GTA particles 
may transfer DNA from the producing cell to a recipient cell. In contrast, transduc-
ing viral particles are produced during the replication of a virus inside a host cell, 
and only the occasional viral particle contains host DNA in place of viral DNA. The 
amount of host DNA in the transducing particles is equivalent to the normal viral 
genome size [43].

Type VI secretion systems (T6SSs) are the most widespread of all bacterial 
secretion systems [44]. T6SSs are structurally related to the cell-puncturing device 
of tailed viruses and are predicted to function as contractile injection machineries 
that perforate eukaryotic and prokaryotic target membranes for effector delivery. 
The activity of T6SSs can play an important role in virulence by modifying the 
eukaryotic host cytoskeleton through actin crosslinking [45]. As such, they are con-
sidered efficient weaponry in interbacterial warfare and provide a fitness advantage 
by hydrolyzing the cell walls of opponent bacteria. Therefore, T6SSs might enable 
pathogens to outcompete commensal bacteria and aid in host colonization [45]. 
Indeed, in V. cholerae, protein secretion by the T6SS requires the action of a dynamic 
intracellular tubular component that is structurally and functionally homologous to 
contractile viral tail sheath protein [46].

5.4  Lytic Virus–Host Interactions

To date, most of the cultured marine microbial viruses display lytic traits, both 
physiologically and genetically. These viruses often contain multiple “host-like 
genes,” which have more recently been termed “auxiliary metabolic genes” (AMGs) 
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[5, 6]. AMGs involved in photosynthesis and the pentose phosphate pathway were 
discovered in cyanobacterial viruses over a decade ago [47–50], while recent large- 
scale marine metagenomic studies have revealed a wide variety of AMGs involved 
in many different cellular functions, including amino acid and carbohydrate metab-
olism, energy production, and iron–sulfur cluster assembly and modification, in 
addition to photosynthesis [6, 51, 52]. AMGs can largely be divided into two classes 
based on their function: (1) Class I AMGs, which encode proteins whose metabolic 
functions are assigned in the pathway database of the Kyoto Encyclopedia of Genes 
and Genomes database (KEGG PATHWAY), and (2) Class II AMGs, which encode 
proteins that are not listed in KEGG PATHWAY but have a supplemental role in 
metabolism through membrane transport or iron-cluster assembly [6, 52, 53]. Genes 
involved in DNA replication, repair, and nucleotide synthesis are commonly present 
in viral genomes but are not considered AMGs [54].

AMGs are acquired from the bacterial host through partial transduction events 
and play critical roles in augmenting biochemical processes related to viral propa-
gation in host metabolisms [5, 6]. For example, photosynthetic organisms possess 
multiple mechanisms to avoid damage to photosynthetic machinery from excessive 
light energy (photoinhibition) [55]. D1, encoded by psbA, is a subunit of a heterodi-
mer in the reaction center of photosystem II (PSII) [56]. Damaged D1 is rapidly 
removed and replaced with newly synthesized protein, thereby preventing photoin-
hibition [57]. psbA is an AMG in marine cyanobacterial viruses and is expressed 
during infection because photosynthetic activity is sustained even after the decline 
of the host’s photosynthesis gene expression [58]. In contrast, freshwater cyanobac-
terial viruses often possess an AMG-like nblA gene, encoding NblA, which plays a 
central role in the degradation of phycobilisomes, the major light-harvesting com-
plexes of PSII in cyanobacteria [7, 59, 60]. Cyanobacteria that inhabit the surface of 
a freshwater lake might benefit from phycobilisome degradation rather than PSII 
repair; thus, the presence of viruses carrying these AMGs would increase bacterial 
fitness [7]. A metagenomics analysis also revealed that viruses in different environ-
ments harbor niche-specific AMGs (e.g., photic zone AMGs for iron–sulfur cluster 
modulation for virus production, and aphotic zone AMGs for high-pressure deep- 
sea survival) [54].

Another study showed that increases in the NADPH/NADP ratio in marine 
Synechococcus species are accompanied during viral infection by a decrease in 
Calvin cycle activity and increases in pentose phosphate pathway and light reaction 
activity [61]. In this way, cyanobacterial viruses maintain host photosynthesis activ-
ity and redirect carbon flux from the Calvin cycle to the pentose phosphate pathway 
using AMGs. This relationship is another example of the ecological importance of 
virus–host interactions. As described above, up to 40% of microorganisms are lysed 
by viral infection every day in marine environments, thereby contributing to the 
marine geochemical cycle [1]. However, marine viruses may further contribute to 
this cycle via AMG-mediated manipulation of host metabolism during infection [5].

Marine viruses can also serve as a potential genetic pool while shaping the evolu-
tion of their hosts. For example, phylogenetic analyses provide evidence that viruses 
drive the exchange and reshuffling of psbA genes between Synechococcus and 
Prochlorococcus strains [62, 63]. In addition, a recent study shows that lytic viruses 
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can promote HGT via plasmid transformation [64] (process 2  in Fig.  5.1). 
Prokaryotes often carry plasmids that confer physiological benefits (e.g., antibiotic 
resistance) (see Chaps. 1 and 6). Two lytic E. coli viruses, referred to as “super-
spreaders,” can increase the transformation efficiency of evolutionally distinct plas-
mids from host cells after viral lysis. These viruses lack hydrolytic endonucleases, 
which would usually be involved in the degradation of host chromosomal DNA 
during infection, and are therefore hypothesized to use this simple mechanism for 
the superspreader phenotype [64].

5.5  Ecological Advantages of Natural Host–Virus 
Interactions

We have so far described various HGT events mediated by lysogenic and lytic 
viruses that are advantageous to their bacterial hosts (Processes 1–5  in Fig. 5.1). 
Finally, we will discuss the contribution of host–virus interactions to the ecological 
dynamics of both viral and host populations and the advantages of these interac-
tions. One ecological model for the population dynamics of bacteria–virus interac-
tions is “kill-the-winner” dynamics, which is analogous to the classical 
Lotka–Volterra model used to explain predator–prey population dynamics [14, 15]. 
In this model, viruses infect host species that have become relatively abundant (the 
winner) as a result of differences in substrate affinity between the coexisting bacte-
rial species, which results in the maintenance of competing bacterial species by 
oscillation of bacterial host species over time [14].

Meanwhile, metagenomic approaches have shown that several genomic regions 
(identified by sequence alignment analysis) will be underrepresented in all of the 
genomes of one bacterial species represented in a metagenome [18, 65–70]. These 
regions are referred to as metagenomic islands (MGIs) [69]. These MGI regions can 
show diversity even within a single bacterial species (closely related lineages), lead-
ing to the question of whether this diversity is important for the ecology and envi-
ronmental adaptation of the closely related lineages. The concept of a pan-genome 
is used to describe increasing gene pool diversity ascribed to one bacterial species 
as the number of sequenced strains increases [69, 71]. Pan-genomes include shared 
genes, called core genes, and noncore genes, called accessory genes, among strains. 
Diversification of MGIs indicates increases in the number of accessory genes in the 
pan-genome. To date, several studies indicate that genes encoding the O-chain of 
lipopolysaccharide [72], exopolysaccharide biosynthesis pathway proteins, proteins 
involved in sugar modification of extracellular structures, pili, and flagellar compo-
nents [18], and giant proteins [73] that are possibly MGIs encoding extracellular 
proteins are potential viral recognition sites [69]. Additionally, restriction- 
modification and CRISPR systems that are involved in viral resistance are also 
found in MGIs [74, 75] (see Chap. 3). These findings show that genes found in 
MGIs play a role in avoidance of viral infection, suggesting that viral selection sig-
nificantly contributes to the diversification of MGIs through the extension of pan- 
genomes. Also, these similar genomic arrangements were found between closely 
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related bacterial strains like staphylococcal pathogenicity islands, containing supe-
rantigen genes, and other mobile elements [76].

Continual interactions between bacteria and viruses drive the evolution of bacte-
rial defense mechanisms as well as viral counterdefense mechanisms, thereby gen-
erating diversity in both (coevolution) [17]. Based on the diversity of MGIs among 
closely related lineages and metagenomes, the constant-diversity (CD) dynamics 
model was proposed to explain microbial diversity among closely related microbial 
lineages in similar environments [18]. In the CD dynamics model, bacteria compete 
with each other and lytic viruses have an equal chance of infecting any cell within a 
population of a single prokaryotic species in an idealized natural environment with 
dissolved organic nutrients. A large amount of diversity in host viral sensitivity 
types is required to avoid catastrophic lysis by each virus. Host receptor or sensitiv-
ity types are each recognized by a different virus type. The number of viruses that 
target the receptor of fitter host lineages would increase, meaning that the targeted 
lineage would eventually be replaced by other host lineages. In this way, a constant 
high level of diversity among closely related lineages would be maintained [18]. For 
example, we analyzed the leader-end of the subtype I-D CRISPR system in 
Microcystis isolates [77, 78] along with the tail sheath gene (g91) of a Microcystis 
Ma-LMM01-type virus [79] in natural populations and found that the generation 
and maintenance of diversity in both the Microcystis and viral populations is partly 
driven by CD dynamics.

In addition to the models of bacteria–virus interactions based on lytic viruses 
described above, a model has recently been proposed to describe the contribution 
of temperate viruses to population dynamics [80]. Basically, bacterial viruses are 
believed to control host abundance in a frequency-dependent manner, as described 
above, and viral abundance is typically tenfold higher than that of prokaryotes 
[80]. However, two viral metagenomics studies have shown that viral particles 
are relatively less abundant at high microbial densities (>106  colony-forming 
units/mL) in the environment [80, 81]. However, a coral reef viral metagenomics 
analysis showed that the relative frequency of genes corresponding to temperate 
viral genomes increased with microbial density [81]. These observations can be 
explained by a theory known as the Piggyback-the-Winner model [81], which 
assumes that lysogeny is favored at high cell densities because lysogenized 
viruses can replicate quickly in a fast-growing hosts. Meanwhile, this model 
appears to be contradicted by laboratory experiments that show that lysogeny is 
often favored under poor growth conditions. However, a mechanism called the 
“arbitrium system” was recently described for the coordination of lysis-lysogeny 
decisions in SPβ-group Bacillus viruses [82]. These viruses produce a six-resi-
due peptide during infection of the host cell and then release the peptide into the 
surrounding environment. During subsequent infections, progeny viruses mea-
sure the concentration of this peptide and lysogenize if the concentration is suf-
ficiently high [82].

It is possible that many viral-mediated HGT events are yet to be uncovered. Most 
of the known HGT events have been observed in cultured viral–host systems. 
Therefore, metagenomic approaches will be a useful for the detection of HGT 
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events in natural populations. At the same time, theoretical models describing viral–
host interactions (e.g., a merged model of CD dynamics and the Piggyback-the- 
Winner model) are needed to understand where and when virus-mediated HGT 
events occur at high frequencies and how the results of these HGT events contribute 
to the evolution of viruses and their hosts.
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6Plasmids and Their Hosts

Masaki Shintani and Haruo Suzuki

Abstract
Plasmids have a key role in the rapid evolution and adaptation of their hosts by 
conferring new phenotypes upon them. It is therefore important to understand the 
relationships between plasmids and their host organisms and “who can carry 
which.” Here, factors that determine and affect the host ranges of plasmids are 
reviewed, including features of replication, maintenance, conjugative transfer, 
and the effects on host fitness caused by plasmid carriage. Recent trials to iden-
tify the unknown hosts of plasmids found in natural environments are also 
discussed.

Abbreviations

FACS Fluorescence activated cell sorter
FP Fluorescence protein
GC Guanine and cytosine
H-NS Histone-like nucleoid-structuring
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MDA Multiple displacement amplification
MOB Mobility
MPF Mating pair formation
NAP Nucleoid-associated protein
oriT Origin of transfer
oriV Origin of vegetative replication
PBRT PCR-based replicon typing systems
pMLST Plasmid multilocus sequence typing
RCR Rolling-circle replication
T4CP Type IV coupling protein
T4SS Type IV secretion system
TA Toxin-antitoxin

6.1  Introduction

Plasmids are circular- or linear-extrachromosomal replicons found in the microor-
ganisms of Bacteria, Archaea, and Eukaryota [1]. Plasmids are not only vertically 
inherited from parent cells to daughter cells but can also be horizontally transferred 
between cells by conjugation and natural transformation [2]. Conjugation is one of 
the most effective mechanisms to spread genetic elements among bacteria, and plas-
mids are thus important “vehicles” for facilitating rapid evolution without mutations 
in the host genome and for adapting to new environments. While plasmids are 
important genetic tools for microbial engineering, as cloning vectors for biotechnol-
ogy, some plasmids can mediate horizontal gene transfer (HGT), which spreads 
antibiotic resistance, virulence, and other traits among different bacteria in micro-
bial communities. The World Health Organization (WHO) has stated that “antibi-
otic resistance is one of the biggest threats to global health, food security, and 
development today” [3].

One of the most important aspects of plasmids is “host range,” i.e., which plas-
mid can be hosted by which microbe. The host range of plasmids can be defined by 
either plasmid replication or conjugation. The so-called broad-host-range (BHR) 
plasmids can be hosted (replicated and transferred) by phylogenetically distant 
organisms, while narrow-host-range (NHR) plasmids can be hosted by closely 
related organisms (e.g., those belonging to the same species), although the defini-
tion of broadness or narrowness is still controversial. For example, BHR plasmid 
pB10 can be replicated in, and transferred to, bacteria belonging to different classes 
of Proteobacteria. Other examples of BHR plasmids and their host ranges are 
recently summarized in [4]. Various factors have been found to determine or affect 
the host range of a plasmid, including factors affecting the replication, maintenance, 
and/or conjugation of the plasmid, as well as factors affecting the host chromosome. 
Recently, several other factors have been reported to regulate host fitness during 
plasmid maintenance in the host cells. In this chapter, we focus on bacterial plas-
mids and features that could affect the fate of plasmids in the host candidates.
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6.2  Plasmid Function

In this section, we summarize factors that determine plasmid host ranges, including 
plasmid genes for replication, maintenance, and conjugative transfer, and nucleoid- 
associated proteins (NAPs).

6.2.1  Replication and Maintenance

In plasmids, DNA replication initiates at a specific site known as the origin of veg-
etative replication (oriV). The well-known replication systems of circular plasmids 
include theta-type replication, strand displacement-type replication, and rolling- 
circle replication. Many theta-type replicating plasmids, whose lagging strand is 
synthesized discontinuously producing replication intermediates that look like the 
Greek letter “theta,” contain repeated DNA sequences, or iterons, to which the rep-
lication initiation protein binds [reviewed in [5]]. The protein bound to the iteron 
sequences opens the double-stranded DNA with host factors (DnaA or PriA) and 
recruits the DNA polymerase of the host cell [6, 7]. ColE1-family plasmids also use 
theta-type replication systems strictly controlled by an antisense RNA [8, 9]. 
Representative plasmids with strand displacement-type replication are incompati-
bility (discussed later) group Q (IncQ) plasmids, which encode a helicase RepA, a 
specific primase RepB, and replication initiation protein RepC [10]. Plasmids with 
this system can be continuously replicated, including the lagging strand [10]. This 
system is independent of host factors for its replication initiation, enabling the host 
range of the plasmid to be broad [10]. The other major plasmid replication system 
is the rolling-circle replication (RCR) mechanism, present in many small multi- 
copy plasmids [11, 12]. In any system, the replication of plasmids is dependent on 
several molecules in the host cell including DnaA, DNA polymerase, RNA poly-
merase, RNase, ribosomes, helicase, nucleotides, and ATP. Because the chromo-
some and plasmid(s) in the same host share the host’s replication system, plasmids 
with similar replication initiation systems should have similar host ranges.

Two major maintenance systems of plasmids in the host cells are partition (par) 
systems and toxin-antitoxin (TA) systems. The former involves actively delivering 
low-copy-number plasmids from parental cells to daughter cells [recently reviewed 
in [13]]. In brief, the par system is composed of two proteins, ATPase or GTPase 
and DNA-binding protein, which requires one cis site for its binding. For the TA 
systems encoded on the plasmid, one of the two gene products (stable toxin) can kill 
or stop growth of cells without the other gene product (unstable antitoxin) [14] (see 
Chap. 3). These systems contribute to the fate of plasmids in the host cells.

Incompatibility (Inc) is one of the classical methods of plasmid classification, 
based on the Inc test, to assess whether two different plasmids can be propagated 
stably in the same host cell line. If the two plasmids share similar replication and/or 
par systems, either of the plasmids will be unstable in the host cell line [15]. Inc 
groups have been independently classified in hosts of three different taxonomic 
groups; there are 27 Inc groups in the family Enterobacteriaceae, 14 Inc groups in 
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the genus Pseudomonas, and approximately 18 Inc groups in the genus 
Staphylococcus (Table 6.1) [73, 75–77, 82, 83]. Several Inc groups of Pseudomonas 
are identical to those in Enterobacteriaceae, such as IncP-1 (equivalent to IncP), 
IncP-3 (equivalent to IncA and/or IncC) [84], IncP-4 (equivalent to IncQ) [85], and 
IncP-6 (equivalent to IncG/U) [86] (Table 6.1). Recently, it was reported that par-
MRC partitioning systems in plasmids of Clostridium perfringens determined their 
compatibility, even though they had almost identical replication initiation protein 
genes [87, 88]. The Inc test can yield biologically relevant information, but recent 
classification of Inc groups is usually based on their similarity to genes involved in 
replication and/or partition. Rozwandowicz et al. showed that IncK plasmids formed 
two distinct subclusters, IncK1 and IncK2, based on the presence or absence of 
accessory genes, and that the plasmids were incompatible with each other within the 
subcluster, but were compatible between subclusters, using a traditional Inc test 
[89]. It was shown that IncA and IncC plasmids are compatible and thus they pro-
posed that they should not be referred to as “IncA/C” [90]. These findings showed 
that even plasmids with homologous replication initiation proteins could be com-
patible in Inc tests. In-depth comparisons of similar plasmids based on their nucleo-
tide sequences and experimental Inc tests will provide more information about 
co-occurrence of two different plasmids in the same cell and their host ranges.

6.2.2  Conjugation

Conjugation is an important mechanism for horizontally transferring plasmid DNA 
between different organisms. Below, we focus on the conjugative transfer of plas-
mids found in both Gram-negative and Gram-positive bacteria.

Self-transmissible plasmids in Gram-negative bacteria generally carry complete 
sets of the genes required for transfer, i.e., the origin of transfer (oriT), relaxase 
protein, type IV coupling protein (T4CP), and type IV secretion system (T4SS). 
Garcillán-Barcia et al. [91, 92] and Smillie et al. [78] classified the self- transmissible, 
or mobilizable, plasmids in the GenBank database into six mobility (MOB) types 
(MOBC, MOBF, MOBH, MOBP, MOBQ, and MOBV) and four classes of mating pair 
formation (MPF; MPFF, MPFG, MPFI, and MPFT) based on all-against-all BLASTP 
analysis followed by Markov clustering (MCL), to identify and classify homolo-
gous proteins of relaxases (for MOB), T4CPs, and T4SSs (for MPF). Mobilizable 
plasmids are non-self-transmissible because they have only MOB, or MOB and 
T4SS, but could be transferred by other self-transmissible plasmids, such as helper 
plasmids with T4SS and MPF. Conjugation is also affected by the type of sex pili, 
one of the features of MPF (rigid or flexible), and whether the preference in mating 
conditions (solid surface or liquid environment) between donor and recipient cells 
is different [93, 94]. It should be noted that the combination of Inc groups, MOB 
types, and MPF classes could be important for the host range of plasmids (Table 6.1).

Gram-positive bacteria transfer plasmids by two methods. First, a single strand 
of plasmid DNA is transported via a T4SS-like plasmid in Gram-negative bacteria, 
which seems to be widely used as means for transferring plasmids in Gram-positive 
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bacteria [95]. pIP501 (found in Streptococcus agalactiae), the broadest transfer host 
range plasmid in Gram-positive bacteria, contains 15 genes for T4SS [96, 97]. 
Second, plasmids found in the order Actinomycetales have conjugative systems that 
function in a similar manner to the segregation of chromosomal DNA during bacte-
rial cell division and sporulation [reviewed in [98]]. The translocation of double- 
stranded DNA to the recipient cell is mediated by an FtsK-homologous protein, 
which is known as ATP-dependent DNA translocase [95, 98, 99].

Multiple regulation systems for conjugation have been found both on plasmids 
and host chromosomes [reviewed in [100]]. Several plasmids including F, R100, 
R27, and RA3 encode their own transcriptional regulators (repressors) [75, 101–
106], probably because conjugation is an energetically costly process. Several ele-
ments encoded on host chromosomes also participate in the conjugation of 
plasmids, for example, the transfer of Rhizobium leguminosarum plasmid pSym is 
induced by homoserine lactone [107]; plasmid F is influenced by the extracellular 
response element CpxA [108]; and plasmid R100 is regulated by host-encoded 
regulators, such as Dam methylase and Lrp protein [109, 110].

All conjugative plasmids contain at least one entry exclusion systems; when the 
cells already contain conjugative plasmids, they become inefficient recipients. This 
system could limit an excess transfer of plasmids, which can kill the recipients in a 
process known as lethal zygosis, and is almost essential for conjugative plasmids, 
though the physiological importance of this is still unclear [reviewed in detail by 
[111]]. These systems are negative factors for conjugations, at least in laboratory 
conditions, and are important for the host range of plasmids.

Plasmids have been classified based on the similarity between the nucleotide 
sequences of genes (or the amino-acid sequences of proteins) involved in replica-
tion and conjugation, including PCR-based replicon typing systems (PBRT) [112] 
and MOB typing [113–115]. Plasmids of IncA and/or IncC, IncHI1, IncHI2, IncI, 
and IncN groups have been subtyped by plasmid multilocus sequence typing 
(pMLST) using specific genes in plasmids as targets for PCR [116]. These classifi-
cations are effective but not sufficient in predicting their host ranges. This is because 
plasmid conjugation and its efficiency can vary, depending on many other factors 
including cell density, growth rate, nutrient availability, temperature, and high-salt 
stress [93, 94, 117–119]. Recently, divalent cations (Ca2+ and Mg2+) have been 
found to increase the conjugation efficiency of several Inc plasmids, especially the 
IncP-7 plasmid, pCAR1 [120, 121]. It is also affected by combinations of donor and 
recipient strains [122]. Sakuda et al. [120] found that conjugation frequencies of 
plasmids pCAR1 and NAH7 were similar in mating with one donor strain 
(Pseudomonas putida) and one of the two recipient strains (P. putida and 
Pseudomonas resinovorans) (mating with one donor and one recipient). In contrast, 
these plasmids were transferred more frequently to P. putida than to P. resinovorans 
when the two recipient strains were mixed (mating with one donor and two recipi-
ents, Sakuda et al., unpublished). The results suggest that a host-specific factor(s) 
could affect the host range of plasmids. There are several systems to prevent conju-
gation of plasmids. Restriction-modification and CRISPR-Cas systems inhibit the 
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conjugation of plasmids by cleaving DNA sequences [123] (see Chap. 3). These 
physiological or environmental conditions of hosts and/or recipients could also 
affect the host range of plasmids.

6.2.3  Nucleoid-Associated Protein (NAP)

Nucleoid-associated proteins (NAPs) are DNA-binding proteins encoded on 
plasmids, as well as on chromosomes, and can function as transcriptional regula-
tors by binding to several regions of the DNA.  NAPs aid chromosomal DNA 
compaction in bacterial cells [124] (see Chap. 1). One member of the NAPs, a 
histone-like nucleoid- structuring (H-NS) protein, can bind to horizontally 
acquired elements and repress their transcription (silencing), which can reduce 
the deleterious effects of harboring foreign DNAs [125]. The NAP genes are also 
found in plasmids, which are proposed to have “stealth” effects that minimize the 
fitness reduction caused by carriage of plasmids [126], because deletion (or dis-
ruption) of the NAP genes in plasmids had greater effects on the host transcrip-
tome than did the plasmid carriage [127, 128]. Therefore, NAPs encoded both on 
host chromosome and plasmids can affect host fitness. Because the numbers and 
combinations of NAPs alter in different plasmids and host chromosomes [129], 
they are important to determine the host range of plasmids. In fact, NAPs could 
affect the stability and conjugation of plasmids. For example, the IncHI1 plasmid 
R27 has a gene encoding H-NS, involved in the modulation of R27 transfer by 
interacting with a Hha/Ymo family protein [130]. Another example is the IncP-7 
plasmid pCAR1, which has three NAP genes, pmr, phu, and pnd [131]. Double 
deletion mutants of pmr and phu or pnd reduced its stability and lost transfer-
ability [132]. Since the binding sites for Pmr, both on pCAR1 and its host (P. 
putida) chromosome, were found to be similar to those of chromosomally 
encoded H-NS-like proteins, TurA and TurB [133], it could be cooperatively 
regulated by the H-NS proteins encoded by both the plasmid and host chromo-
some, though their detailed molecular mechanisms are unclear. Similarly, another 
H-NS-like protein, Acr2, encoded on the IncA and/or IncC plasmid, was found 
to negatively regulate its conjugative transfer [134, 135]. Therefore, NAPs 
encoded on plasmids are important factors to determine their maintenance and 
conjugation in different hosts.

6.3  Fitness Cost

A plasmid can bring its host potential benefits through its accessory genes, but 
sometimes a burden (fitness cost), reducing the host growth rate and competitive-
ness under no selective pressure (e.g., that exerted by antibiotics). One of the experi-
mental approaches to investigate the molecular mechanisms of how plasmid carriage 
affects the host fitness is to obtain a compensated mutant from the parental 

6 Plasmids and Their Hosts



118

plasmid- bearing host [reviewed in [136]]. San Millan et al. showed that compensat-
ing mutations on chromosomal genes encoding helicase, kinase, or the global regu-
lator GacA could reduce the fitness cost of plasmid carriage [137, 138]. Sota et al. 
[139] showed that mutation to the trfA1 gene encoding the replication initiation 
protein TrfA1 (TrfA1 variant) could reduce the fitness cost of the IncP-1 plasmid in 
an “inappropriate” or naïve host, Shewanella oneidensis. This reduction was not 
observed in Escherichia coli or Cupriavidus pinatubonensis, but in P. putida [140]. 
The tight binding of the wild-type TrfA to the host helicase DnaB caused fitness 
cost of host, and the TrfA1 variant had a lower affinity to the DnaB resulting in the 
reduction of fitness cost [140]. Stalder et al. [141] reported that three distinct pat-
terns of evolution exist to reduce the fitness cost of plasmids: (1) mutations in trfA1 
gene, (2) acquisition of a putative toxin-antitoxin system on a transposon from a 
co-existing plasmid, and (3) a mutation in the fur gene encoding one of the global 
regulators in its host. These facts indicate that the co-evolution of plasmid and host 
increases the persistence of plasmids in their hosts.

Effects on three different host Pseudomonas (P. putida, P. aeruginosa, and P. 
fluorescens) by carriage of the IncP-7 plasmid pCAR1 were compared based on 
their phenotypes and transcriptomes [142–144]. Changes in fitness varied between 
different hosts [144], although detailed molecular mechanisms have not yet been 
elucidated. One of the most striking responses in two of the three hosts was the 
induction of genes on prophages by pCAR1 carriage [143, 144]. Notably, 
Martinez- Garcia et  al. [145, 146] showed that deletions of the four prophages 
from P. putida, which harbored no plasmids, increased the growth rate, transfor-
mation efficiency, and protein expression from the plasmid vector, suggesting that 
prophages themselves affect host fitness. Recently, Shintani et al. (unpublished) 
found that the deletion of these prophages of P. putida could affect the fitness of 
hosts with the IncP-1 and IncP-7 plasmids (Shintani et  al. unpublished). Thus, 
there could be cross talk between the two mobile genetic elements, prophages 
(which integrate into the host chromosome) and plasmid, although their mecha-
nisms remain unclear.

pCAR1 is the plasmid endowing carbazole-degrading ability (converting carba-
zole to catechol) to its host, but the growth rates of different hosts can change in 
minimal medium with carbazole as the sole carbon source. The growth of P. fluore-
scens Pf0-1 with pCAR1 was significantly slower than that of P. aeruginosa PAO1, 
or P. putida KT2440 [48]. This is because of the toxicity of accumulated catechol, 
an intermediate compound of carbazole degradation, and of differences in catechol 
metabolism in these hosts, whose catabolism is mediated by enzymes encoded on 
the host chromosomes [48, 147]. Notably, DNA rearrangements were found on 
pCAR1 and the chromosome of its host Pf0-1 cultured in a minimal medium with 
carbazole as the sole carbon source, which could allow the host to avoid the accu-
mulation of catechol [48, 147]. This indicates that fitness could vary between differ-
ent host bacteria or growth conditions. The differences in fitness costs in different 
host cells could influence the stability of plasmids in the host cells and their host 
ranges.
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6.4  Prediction of Plasmid Host Range

6.4.1  Prediction of Host Range Based on Bioinformatics

Novel plasmids have been found in host genomes and metagenomes, thanks to the 
recent revolution in nucleotide sequencing technology and in bioinformatic tools. 
There are now 12,015 complete sequences of plasmids in the NCBI database: 11,710 
are from Bacteria, 192 are from Archaea, and the remaining 113 are from Eukaryota 
(based on the NCBI database, ftp://ftp.ncbi.nlm.nih.gov/genomes/GENOME_
REPORTS/plasmids.txt, downloaded on Mar. 2018). As more than 10,000 complete 
sequences of plasmids are available in public databases, we can now use bioinfor-
matic approaches for predicting plasmid host ranges based on sequence features, 
including plasmid size, nucleotide composition (G+C content, oligonucleotide fre-
quencies, and codon usage), and replication strand asymmetry (asymmetric nucleo-
tide compositions and gene proportion between leading and lagging strands of DNA 
replication). Intragenomic variation in nucleotide composition has been used to detect 
putative alien genes acquired by horizontal transfer [148, 149].

Plasmid sizes (Kb) varied widely among sequenced plasmids, ranging from 
0.537 (Xanthomonas campestris pv. campestris str. CN14) to 5836.680 
(Pseudomonas monteilii). There are clear differences in sizes between non- 
transmissible and conjugative plasmids (including mobilizable- and self- 
transmissible plasmids) [78, 83]. Notably, larger plasmids and conjugative plasmids 
frequently carried multiple NAP genes [129]. Similar NAP genes were found on 
both plasmids and host chromosomes and thus, their combinations might be impor-
tant for the stable maintenance of plasmids within their hosts.

The relative frequency of guanine and cytosine (G+C content), calculated by the 
formula (G+C)/(A+T+G+C), varies widely among bacterial genomes, especially at 
synonymously variable third positions within codons [150, 151]. G+C content is 
correlated with a number of variables including genome size, aerobiosis, lifestyle, 
and environments [152], and can be shaped by mutation and selection [153]. The 
G+C content variability reflects differences in the DNA polymerase III alpha sub-
unit [154, 155]. G+C contents also varied widely among different plasmids, ranging 
from 19.3% (Eukaryota Moniliophthora roreri plasmid pMR2) to 87.5% 
(Actinobacteria Streptomyces autolyticus plasmid). Previous studies revealed that 
G+C content is lower in plasmids than in hosts [156, 157], and that there is a strong 
correlation between the G+C content of plasmids and host chromosomes [158]. For 
a correlation of G+C contents between 2296 plasmids and their corresponding hosts 
analyzed here, the Pearson correlation coefficient was 0.97, and in 1704 (74.2%) 
cases, the plasmids had lower G+C contents than their hosts (Fig. 6.1). Therefore, 
the G+C content of plasmids could be an important indicator for predicting their 
host ranges.

Karlin et al. proposed that each genome has a characteristic “signature,” consist-
ing of the relative abundance of vectors of oligonucleotides such as di-, tri-, and 
tetra-nucleotides (i.e., k-mers) [159, 160]. The oligonucleotide compositions of 
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DNA sequence segments are relatively constant along the genome, and those from 
closely related taxa tend to be more similar than those from distantly related taxa. 
The oligonucleotide compositions of plasmids tend to be more similar to those of 
their known host chromosomes than to those of other bacterial chromosomes [161, 
162]. Thus, bacteria with the most similar oligonucleotide compositions may be the 
most probable hosts in which plasmids have evolved [163, 164].

Most amino acids can be encoded by more than one codon, with codons encod-
ing the same amino acid called synonymous codons. Synonymous codon usage var-
ies among genes, between different organisms, and even within a single genome. 
The codon usage of genes can reflect a balance between translational selection, 
mutational biases, and other factors [165, 166]. For example, the strength of trans-
lational selection for synonymous codon usage varies among the three replicons of 
Sinorhizobium meliloti (the class Alphaproteobacteria), i.e., it is much weaker in 
the plasmid pSymA, than in the plasmid pSymB and the chromosome [167]. In 
Agrobacterium tumefaciens (the class Alphaproteobacteria), the differences in 
codon usage between chromosomes (circular and linear) and plasmids (pAt and 
pTi) are larger than the differences between two chromosomes or two plasmids 
[168]. In Borrelia burgdorferi (the class Spirochaetes), there is a high similarity in 
codon usage among the cp32 family plasmids, and between the chromosomal lead-
ing strand and linear plasmid lp38 [168], as well as a significant difference in codon 
usage between the leading and lagging strands due to strand-specific mutational 
biases [169, 170]. The codon usage of genes in the largest plasmid, as well as the 
chromosome of Lawsonia intracellularis (the class Deltaproteobacteria), can be 
affected by strand-specific mutational biases [171]. Codon usage of any replicon 
(plasmids and chromosomes) can reflect a complex balance between host-specific 
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Fig. 6.1 Plot of G+C 
contents (GC%) between 
2296 plasmids and their 
corresponding hosts. Each 
point represents a plasmid-
host pair from 920 taxa. The 
y-axis indicates the G+C 
content of plasmids (plasmid 
GC%) and the x-axis 
indicates the G+C content of 
hosts (host GC%), retrieved 
from the National Center for 
Biotechnology Information 
(NCBI) genome list (ftp://ftp.
ncbi.nlm.nih.gov/genomes/
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mutational biases and selective pressures, resulting in varying degrees of codon- 
usage similarity between replicons.

Another important feature of bacterial genomes is replication strand asymmetry. 
In bacterial genomes, essential and highly expressed genes are preferentially located 
on the leading strands of DNA replication [172–175]. GC skew, defined as (C−G)/
(C+G), has been used for measuring strand compositional asymmetry and for pre-
dicting the origin and terminus of replication on bacterial chromosomes and plas-
mids [171, 176, 177]. A measure of the strength of GC skew, quantified by the GC 
skew index (GCSI), detected a difference in GCSI between replicons with different 
types of replication machinery (e.g., GCSI between eubacteria and archaea chromo-
somes, and GCSI between RCR and non-RCR plasmids), and a correlation between 
GCSI of plasmids and their host chromosomes [178], suggesting that any replicon 
(plasmids and chromosomes) replicated and repaired in the same cell, has been 
subject to host-specific mutational biases and selective pressures, resulting in simi-
lar degrees of GC skew.

There is evidence of plasmid-mediated horizontal gene transfer, and some plas-
mid genes integrate into host chromosomes [179]. For example, IncP (IncP-1) plas-
mid sequences were detected in the chromosomes of bacteria such as Pseudomonas 
[180] and Brucella [181], and genes encoding the replication initiator protein TrfA 
were also found in bacterial chromosomes [182]. Fondi et al. [183] identified genes 
shared between plasmids and chromosomes as possible indications of gene transfer 
between them in the genus Acinetobacter. Network analyses of homologous DNA 
families shared among chromosomes and mobile elements showed that betweenness 
centralities are higher in plasmids than in phages, indicating that plasmids (e.g., pro-
miscuous IncP-1 plasmid pB10), rather than viruses, are key vectors of DNA 
exchange between bacterial chromosomes [184]. The presence of DNA sequences 
shared between plasmids and chromosomes suggests that these replicons co-resided 
in the same hosts at some point in their history, although we cannot rule out the pos-
sibility of natural transformation, i.e., the uptake of extracellular plasmid DNA.

Bioinformatic tools have been developed to find novel plasmids in genomic and 
metagenomic data, which can be divided into two categories: those that reconstruct 
plasmids via assembly of sequencing reads (PLACNET, PlasmidSPAdes, and 
Recycler) [185–187], and those to identify plasmids in assembled contigs 
(PlasmidFinder, cBar, and PlasFlow) [188–190]. Arredondo-Alonso et al. compared 
the performance of four tools (PlasmidSPAdes, Recycler, cBar, and PlasmidFinder) 
for detecting plasmids from short read sequencing data [191]. Krawczyk et al. dem-
onstrated that PlasFlow outperformed cBar on test data [189]. These bioinformatic 
tools allow us to update the range of hosts in which plasmids are found.

6.4.2  Prediction of Host Range Based on Experiments

There have been several reports for experimental detection and separation of 
unknown hosts of plasmids from environmental samples. Since most bacteria in 
natural environments have not been isolated yet [192, 193], there must be a large 
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number of unidentified hosts of plasmids. To obtain these (potential) hosts from 
environmental samples, cultivation-independent methods have been developed and 
adopted. One of the most efficient ways is to use fluorescent protein (FP) to visual-
ize and detect plasmid-bearing cells, as part of a method developed by Molin et al. 
[194–196]. They use a lac-like promoter, whose expression is repressed in the pres-
ence of the LacI repressor, upstream of the FP gene. The lacI gene is then intro-
duced into the donor chromosome. If the plasmid is transferred from the donor cell 
to a recipient cell without lacI, then FP can be expressed, and the transconjugant cell 
can be observed by fluorescence microscopy. This system could be used with fluo-
rescence microcopy and/or a fluorescence activated cell sorter (FACS) to obtain the 
transconjugant cells [197, 198]. After sorting a single transconjugant cell, multiple 
displacement amplification (MDA) can be used to amplify genomic DNA from a 
single bacterial cell without cultivation processes [199]. Shintani and Klümper dis-
covered previously unknown transconjugants using these systems, FACS or MDA, 
and sequencing of the 16S rRNA genes of sorted transconjugants [200, 201]. These 
systems could be used for the detection of unidentified plasmid hosts, but still show 
bias in the transconjugants detected and separated from environmental samples. The 
biases can be caused by two major factors: (1) the fluorescence intensity of FP could 
be drastically different from host to host [201], probably because the expression 
levels of FP vary between different hosts due to its promoter or codon usage; (2) 
MDA may not necessarily amplify all the genomic DNA from a single cell.

Another potential method for overcoming the bias of GFP expression in different 
hosts in environmental samples might be the use of fluorescence in situ hybridiza-
tion (FISH) for detecting plasmid DNA [201, 202], although it is still difficult to 
apply this method as bacterial cells are so small and also contaminated with debris 
and particles in environmental samples. Comparisons by Raman spectrum of cells 
might be efficient in detecting hosts with catabolic genes obtained via plasmids, as 
the host cells could incorporate a specific substrate (the target of the catabolic gene 
products) labeled with a stable isotope. Indeed, Huang et al. reported that they suc-
cessfully identified hosts of a naphthalene-degradative plasmid by Raman micros-
copy [203]. Introduction of new methods to detect differences between plasmid-free 
and plasmid-bearing cells will enable us to identify transconjugants in natural envi-
ronments and expand our knowledge of plasmid host range.

6.5  Conclusions and Remarks

The determinants for a plasmid’s hosts are diverse and it is still challenging to 
clearly understand which can possess the plasmid. Bioinformatics will be instru-
mental in predicting the candidate hosts of plasmids, based on their nucleotide 
sequence features, with experimental data showing the prerequisite conditions 
required for the host cell to acquire the plasmid. Recent studies at the single-cell 
level have identified plasmid hosts in different environments that have the potential 
to provide us with important information on how plasmids spread between different 
bacteria in nature, including “transient” hosts that can be mediators and reservoirs 
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of accessory genes. Nevertheless, experimental data, including from these recent 
studies, are still insufficient as predictors, and additional data will be required. The 
analyses will shed light on the mechanisms of plasmid spreading in natural environ-
ments, as well as bacterial adaptation and evolution.
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Abstract
Horizontal gene transfer (HGT) has been proven to have a much stronger impact 
than mutation in the microbial world. Evidence of HGT is currently expressed as 
comparative sequence homology, whereas a substance with residing transfer ini-
tiative remains ambiguous. The simultaneous transfer of multiple genes could 
have more profound impacts than single-gene exchange on the evolutionary pro-
cesses, but such data are still insufficient. Although three novel modes of HGT 
mechanisms have come to light—gene transfer agents (GTAs), membrane vesi-
cles (MVs), and intercellular nanotubes (Ins)—the classic concepts of transfor-
mation, transduction, and conjugation must not be ignored.

In addition to the previously mentioned HGT phenomena, the author pro-
poses another brand-new concept: broad-host-range vector particles (VPs) in the 
natural virus-like particle (VLP) assemblage. VPs are capable of transferring 
chromosomal genes, plasmids, and cytoplasmic material toward recipients with 
broad phylogenetic ranges, although the VP-production responsible gene(s) are 
unidentified to date. VPs exhibit similar morphological characteristics to double 
bilayered MVs and tailless virions. Accordingly, confidently discriminating 
between VPs, bona fide tailless virions, and MVs is impossible, even with elec-
tron microscopy; hence, the environmental VLP fraction should be inevitably 
reconsidered as a “continuous vector variety” composed of virus–VP–MV.

VPs can be characterized explicitly by the following: (1) low recipient lethal-
ity of ~10% irrespective of particle ultraviolet treatment; (2) transfer of the host 
chromosomal fragments (dsDNA, ~400 kb) toward broad phylogenic recipient 
range (Archaea-Bacteria-Eukarya), accompanied by a high generalized trans-

Expertise: Molecular microbial genetics and microbial ecology of HGT media.
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duction frequency up to 1.16 × 10–2 CFU/VP; (3) progeny VP production from 
the VP-mediated transductant, in a phenomenon referred to as “serial transduc-
tion”; (4) spontaneous budding production that starts when the host attains the 
stationary phase without host cell lysis; (5) various discrete size distribution of 
progeny particles; (6) VPs that can only be revealed by electron microscopy by 
its budding from the regenerated VP-mediated transductant. The yield of a VP is 
strictly regulated by 3 ± 2 particles per cell, whereas introduction of the rel muta-
tion would induce overproduction to bring forward a period of production to the 
host log-phase, which implies that a VP is an attribute of the host cell. VPs can 
transfer cytosolic substances, such as plasmid and protein, along with host chro-
mosomal fragments; furthermore, both single genes and multiple genes for the 
host’s thermo- and psychro-tolerance enhance the host’s environmental 
adaptation.

Keywords
Broad-host range transfer · Vector particle (VP) · Serial transduction · Virus-like 
particle or vesicle (VLP or VLV) · Outer membrane vesicle (OMV) · Membrane 
vesicle (MV)

7.1  Why Do We Need to Propose New Concepts of HGT 
Mediators?

The currently recognized horizontal gene transfer (HGT) vectors are summarized in 
Table 7.1. Gene transfer agents (GTAs) [17], DNA transfer by membrane vesicles 
(MVs) [30, 34], and intercellular nanotubes [19] have come to light as novel modes 
of HGT in bacteria (http://biobabel.wordpress.com/2012/01/24/novel-modes-of-
lateral-gene-transfer-in-bacteria/) in addition to the three classic mechanisms: (1) 
transformation (in which naked DNA is taken up from the environment), (2) trans-
duction (by which bacteriophages facilitate gene transfer by packaging host DNA as 
well as their own), and (3) conjugation (when plasmids encode a pilus by which 
they can be transferred from cell to cell) [49].

Some transduction-like unique mechanisms to mediate HGT between individual 
cells of the same bacterial population, termed GTAs (the specific names for indi-
vidual GTAs are given by the abbreviation of genera and species of the original host 
as the prefix in principle), that are accomplished by a phage-like particle have 
already been reported for the α-proteobacteria Bartonella bacilliformis, Bartonella 
grahamii, Bartonella henselae, Bartonella vinsonii, Rhodobacter capsulatus 
(RcGTA), the δ-proteobacterium Desulfovibrio desulfuricans (Dd1), the spirochete 
Brachyspira hyodysenteriae (VSH-1), and the archaeon Methanococcus voltae 
(VTA) [50–54]. None of the packages have more than 14 kb of DNA, ranging in size 
from 4.4 to 13.6 kb; all of them take the form of small bacteriophages, although no 
commitment of a virus-like gene to the transportation of host DNA has been reported 
[50, 55]. Four known GTAs resemble “constitutive” generalized transducing phages 
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[43]. All four GTA package double-stranded DNA (dsDNA) resemble “constitu-
tive” generalized transducing phages, with a tailed phage structure and package of 
less DNA than would be expected to represent a complete tailed phage genome 
(except for Dd1). None of these agents appear to be particles with lytic activity. 
GTAs seem most likely to have been derived from bacteriophages that lost their 
ability to self-propagate [55]. Unfortunately, genetic information about the produc-
tion of these particles is currently available only for RcGTA [55]. For a release of 
the RcGTA, cell lysis requires the genes rcc00555 and rcc00556, an endolysin and 
holin, respectively [56]. The production of RcGTA is regulated by host systems, 
including a putative histidine kinase (CckA) that is required for maximal expression 
of the holin gene (rcc00555) and for maturation of RcGTA to yield gene transduc-
tion-functional particles. VPs were observed to be distinct from GTAs and related 
entities from their susceptible recipient phylogenic range, cargo size, and budding 
production.

Although it has been recognized that MV production is a ubiquitous phenome-
non found in many bacteria, the existence of a universal MV formation mechanism 
to explain it has not been clarified. The MV should not be collectively dealt with as 
one of the HGT mediators because it has several different functional aspects irrele-
vant to gene transfer. The MV is a universal cellular feature, common to the three 
domains of life [57]; however, the dimensions, morphology, and molecular compo-
sition of MVs in the environment are very comparable to those of some virions [58]. 
Despite this, molecular ecologists have not paid much attention to environmental 
MVs because their origin is ambiguous. Hence, the presence of MVs in natural 
environments has been mostly ignored; however, recent findings [59] demonstrating 
the abundance of bacterial MVs, comparable to that of VLPs, in marine ecosystems 
could change the situation. Biller et al. [59] observed an only negligible number of 
apparent tailed phages (or GTAs) in vesicle-rich ocean samples ranging from ~105 
to ~106 MVs/mL, for which the MV isolating method was the same as that employed 
traditionally for the isolation of viruses. Hence, the isolation methods for viruses 
also result in the enrichment of MVs, so estimates of viral abundance might have 
been merged with MV abundance [60]. Therefore, complexity could be added to 
estimations of the environmental impact of either group of DNA contained in 
derived vesicles. Consequently, it is necessary to elucidate the releasing mecha-
nisms of molecular contents to the environment for an understanding of the ecologi-
cal impacts of MVs [61].

MV research has been performed mainly on functions and formation mecha-
nisms. A cell under stress accumulates material, which is worsened upon damage 
of the regular housekeeping and stress-responsive mechanisms. The production of 
bacterial outer membrane vesicles (OMVs) that occurs under stress is an entirely 
independent, general envelope stress response that allows selective elimination of 
unwanted material cell by the preferential packaging of a misfolded protein. It has 
unknown how the released MV adheres to the cell and further fuses and transfers 
its contents [25]. Regarding the function of MVs, their involvement in pathogenic-
ity has been studied; however, considering the presence of endogenous plant 
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bacteria and intestinal bacteria, among others, the coordinated action of MVs on 
the host should also be considered sufficiently. Furthermore, little is known about 
the role of MVs in the environment. Considering that many MVs have been identi-
fied from biofilms, it is predicted that MVs are produced throughout the 
environment.

The MV induction mechanism differs depending on the environment; hence, 
MVs have different properties and functions depending on the environment being 
produced. Comprehensively identifying proteins contained in the MVs of P. aerugi-
nosa revealed that MVs from free-living organisms contained toxins, whereas ones 
originating from biofilm contained a large number of siderophore proteins instead 
of toxins, distinct from free-living MVs. Although the role of MVs against infected 
hosts has been drawing attention because MVs produced by P. aeruginosa contain 
toxins such as protease, newly elucidated characteristics from the biofilm- originating 
MVs indicate an expanded role for environmental MVs [62].

DNA carrying MVs [38] represents only a small proportion (0.01–1%) of vesi-
cles [22, 63], although some vesicles contain sufficient DNA to be visible after 
staining with SYBR fluorescent DNA dyes that are typically used to enumerate 
viruses. Thus, DNA is packaged heterogeneously within vesicle populations, and it 
appears that vesicles are likely to be a minor component of SYBR-visible particles 
in natural seawater compared with viruses [61]. Considering the content of the 
marine virus fraction that is mainly composed of bona fide viruses would be depend-
able, whereas employing an appropriate method to classify viruses from MVs, such 
as buoyant density, would be indispensable. Therefore, an argument concerning the 
environmental gene transfer frequency would be plausible to construct on reported 
VLP assemblages in the environment because the study of MV-mediated HGT is 
currently underway. Whether the adhesion of MVs to cells is selective or equally 
attached is of great interest to researchers. By elucidating this, the whole picture of 
MV formation, diffusion, and adhesion/fusion—that is, the whole bacterial mem-
brane traffic—can be clarified and further application developments would be 
expected [37, 64].

Dubey and Ben-Yehuda [19] demonstrated the existence of tubular conduits 
forming between Bacillus subtilis cells. These nanotubes were shown to be able to 
mediate the exchange of proteins and non-conjugative plasmids. Nanotubes were 
also formed between both gram-positive B. subtilis and Staphylococcus aureus, and 
a thinner variety was formed between either of the gram-positive species and gram- 
negative E. coli. The plasmid transfer does not require any intrinsic plasmid ele-
ments, and a given cell can be either donor or recipient. Dubey and Ben-Yehuda 
suggested that the formation of “syncytium-like synergistic consortia” mediated by 
nanotube connections underlies many of the traits displayed by biofilms. How cargo 
is transported through the nanotubes remains unanswered. Whether the transport is 
active and requires energy or is passive and prompted by diffusion is also unknown. 
Both mechanisms possibly coexist, and utilization would depend on the delivered 
cargo. In eukaryotic cells, nanotubes are frequently associated with cytoskeletal and 
motor proteins, implying a role for active transport [65].
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“Trans-kingdom gene transfer” has been reported [66–69], although the Ti plas-
mid is the sole molecular device found to be practically acting in situ to date [70, 
71]. Bacterial cells generally restrict their acceptance of foreign genetic materials 
[72] by the restriction-modification systems, which interfere with flexible gene 
transfer between species of different genera [72–77]. Gene transfer is costly to the 
bacterium; the benefits provided by the acquisition of advantageous genes also act 
as a repair mechanism [78]. Studies of the genetic structure of bacterial populations 
have clearly revealed that accessory element (phages, plasmids, transposons, and 
insertion sequences) transfer has occurred during their recent evolutionary history 
[75, 79–81] and further conferred that some accessory elements have been trans-
ferred across much greater phylogenic differences [82].

Recently discovered Clustered Regularly Interspaced Short Palindromic Repeats 
(CRISPR) found in 40% of eubacterial and 90% of archaeal sequences prokaryotes 
[83] act as a kind of acquired immune system for plasmids and phages [84, 85]. A 
CRISPR-Cas system being considered to limit HGT [48]. Bacteria can acquire an 
entire chromosomal CRISPR-Cas system through transduction [48, 86, 87], whereas 
the protective effect from phage infection increases the HGT of phage-sensitive 
members of mixed populations [88]. Consequently, the overall ability of CRISPR- 
Cas promotes HGT through transduction with broader implications for microbial 
evolution [48, 88]; it is also involved in virus budding [89] in eukaryotes and 
archaea.

The host range of an HGT mediator is defined as the breadth of organisms capa-
ble of infecting and expressing its function, with limits on the host cell ascribed to 
the mediator, host, or environmental characteristics. Reflective of the mediator’s 
discipline, there is no unified definition for a “broad-host-range” mediator because 
the host of the mediator regulates the physicochemical interaction with the mediator 
to infect, replicate, and maintain [90]. Therefore, the author empirically defines the 
a broad-host-range VP as one capable of infecting, transferring, and budding repro-
duction in the recipient cell in excess of the phylogenetic family level from the 
original host.

In addition to the HGT phenomena, the author has proposed another brand-new 
concept of broad-host-range VPs, which are composed in part of natural virus 
assemblages. Viruses have been considered as the most abundant biological entities 
in the living world and the reservoir of most genetic diversity in the sea, which 
amounts to ~105 to ~109 virus-like particles/mL [91]. The barrier hindering the 
acceptance of virus-mediated gene transfer resides in the concept that most viruses 
have a narrow host-range [92–94], which reduces the likelihood of extensive gene 
transfer within a mixed bacterial population. It is also believed that the host range of 
bacterial viruses (bacteriophages) is restricted to specific bacterial strains or closely 
related species [95, 96]. A given type of virus usually has a restricted range of 
hosts—often a single species; however, some viruses infect only certain subspecies, 
whereas others may infect more than one related species or even genus [92]. Such 
viruses with extended host range exceeding one genus are called “broad-host-range 
viruses”, which likely comprise <0.5% of the total virus population [92].
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Furthermore, viruses may exhibit a broader host range in deep waters than in 
surface waters [97]. The supposed host specificity of viruses, the mostly unknown 
species diversity and composition of marine microbial assemblages [98], and the 
quantitative evaluation of contact between marine viruses and hosts still involve 
much guesswork [99]. Hence, the contribution of virus-mediated gene transfer 
(transduction) has been considered a factor of minor importance for genetic diver-
sity and evolution in the natural microbial community. Furthermore, transduction is 
a reductive process, in that the genetic donor is killed (lysis) in the process of pro-
ducing a transducing phage particle [100]. However, because viruses are released in 
a free form and do not necessarily require cell contact to survive, transduction may 
represent an ideal method for dispersing genes in the environment [101].

HGT among organisms in natural environments is already a fact, not a “theory” 
as Koonin expressed [102]. Much like evolution itself, extensive HGT in the micro-
bial world is not doubted anymore, as HGT is a dominant process in microbial 
evolution that generally occurs at a high rate. Rapid advancements in genome 
sequencing technology have provided evidence of HGT.  The determination and 
analysis of complete genome sequences have led to the suggestion that HGT domi-
nates microbial evolution, with the rate of gene gain and loss being comparable to 
the rate of spontaneous point mutations and much greater than the duplication rate 
[103]. Moreover, the relevance of “horizontal” as applied to gene flow is validated 
by strong evidence of the existence of a central vertical, tree-like trend in genome 
evolution. Thus, the focus of research has shifted toward the how and why of HGT, 
although much more remains to be done than has been accomplished already in 
these directions. The tree of life may be unresolvable because of the extent of HGT 
[104, 105], and that which we consider phylogeny may be defined in large part by 
HGT [106]. Many of these studies, however, rely on evidence that could be gener-
ated by forces other than gene transfer, including selection, variable evolutionary 
rates, and biased sampling [107].

Additionally, little information on the probable donor lineage and the likely time 
of evolution has been provided in most proposed cases. Even when donors and 
recipients have been proposed, there is rarely supporting evidence regarding the 
absence of the genes from relatives of the recipient lineage that diverged before the 
transfer. For a complete picture of any proposed case of HGT, it will be essential to 
have information regarding the vectors, what (if any) selective forces were involved 
in the transfer, and the extent of amelioration [107]. It is necessary to integrally 
consider these HGT phenomena as one of the elements constituting the mobilome, 
although there are only a few examples of the findings on the HGT for these ele-
ments. However, other than VP, the evidence for HGT has been studied primarily by 
using amplicon sequencings of plasmid, which would be transferred. To the author’s 
knowledge, no other system intensively accumulates findings by examining HGT in 
cooperation with the culture system other than VP. First, the author recognized the 
VP as a part of the lysogenic virus and studied it as a kind of transducing particle; 
hence, the following argument is mainly based upon a comparison with the virus- 
mediated transduction.
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Biological features of the entity the author incidentally discovered are undoubt-
edly involved with such VLP-MV conflated assemblages with morphological simi-
larity and residing DNA; however, they are entirely distinct from what has been 
reported. Hence, this novel concept is proposed for consideration as an overlooked 
biological information-transfer medium.

7.2  Curiosity as an Incentive to Thinking Led to Novel 
Findings

An attempt to screen restriction enzymes from marine isolates was offered by Prof 
U. Simidu, Ocean Research Institute, the University of Tokyo. Three type 2 restric-
tion enzymes—FspI1604, FspI1611, and AspMD1—were consequently obtained 
from Flavobacterium sp. I 1604, F. sp. I 1611, and Alcaligenes sp. MD1, amongst 
approximately 150 species of marine bacteria [108, 109]. These Gram-negative 
strains were collected at approximately 2000 m deep in the central part of the Indian 
Ocean. They showed stiff resistance to streptomycin, harboring plasmid-like DNA, 
ultraviolet light, and/or mitomycin-inducible phages. The spontaneous release of 
phage- like particles (PLPs) into the culture medium without artificial induction 
attracted curiosity because no host-vector system had been developed for marine 
lysogenic phages. For microbial genetics to establish a host-vector system to eluci-
date somatic gene transfer mediated by transduction, the development of auxotro-
phic mutants is inevitable [110].

Unfortunately, the minimal medium essential for the marine bacterial genetics 
study has not been available since 1991 [111]. Therefore, an ability of dichlorophen-
oxyacetic acid (2,4-D) utilization was used as a marker for the gene transfer of the 
marine bacteria instead of the somatic gene mutant. 2,4-D is an anthropogenic per-
sistent organic compound that did not originally have a natural origin; therefore, to 
be useful for the gene transfer index, previous studies used a decomposition of 2,4-D 
[112–114]. The bacterial 2,4-D biodegradation is plasmid-dependent, with proper-
ties that have been studied as a model of gene transfer in nature [115–122].

Contrary to prediction, 18 strains out of 25 ubiquinone-10 possessing marine 
isolates belonging to α-proteobacteria exhibited strong 2,4-D degradation that was 
superior to Escherichia coli JMP397. E. coli JMP397 is a transformant [123] har-
boring 2,4-D degradation pJP4 (80 kb); it exhibited higher 2,4-D degradation ability 
than the plasmid originating from Alcaligenes eutrophus JMP134 [118]. Currently, 
A. eutrophus has been reclassified as Ralstonia eutropha JMP 134 [124].

Extraction of plasmid-like elements (PLEs) from those high 2,4-D utilization 
marine strains (Alc 096, 233, 252, Agrobacterium kieliense IAM12618 [125]: baso-
nym Ahrensia kielensis: [126]) and F. sp. I1604 was somewhat fastidious [127] by 
requiring repeated phenol treatment, with traits ascribed to tight coupling of DNA 
content with proteinaceous material to be encapsulated into the particle, as described 
in Fig. 7.2. The extracted PLEs were successfully generated transformants in the 
minimal medium supplemented with 2,4-D as a sole carbon and energy source from 
the recipient E. coli AB1157 (F−; thr-1 leuB6 thi-1 lacY1 galK2 ara-14 xyl-5 mtl-1 
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proA2 hisG4 argE3 rpsL31 tsx-33 supE44), with a higher frequency than authentic 
pJP4 (PLEs: 1.5~13.1 × 106 CFU/μg DNA; pJP4: 5.7 × 105 CFU/μg DNA); the 
amino acid requirements of prototrophic revertants were also generated [1]. Hence, 
PLE is considered to combine a 2,4-D degrading ability and somatic genes to com-
plement the auxotroph. However, the conjugative transfer of 2,4-D assimilability 
from those marine strains to E. coli was not achieved (Chiura, Unpublished data). A 
report indicated the physiological situation of marine donor bacteria would become 
the essential key to the conjugative transfer to terrestrial bacteria because the accom-
plishment of the conjugation is severely affected by the ionic strength and type of 
ion required [140–143]. Conjugative transfer of pJP4 has reported toward strains 
belonging to a variety of genera of the α-, β-, γβ- and γ-classes of the Proteobacteria; 
however, only Pseudomonas putida and Delftia sp. strains were able to grow on 
2,4-D as the sole carbon source [144]. The broad- host- range (BHR) plasmids were 
defined as those plasmids that can self-transfer themselves and can stably replicate 
and maintain in bacterial species from at least two subgroups within the 
Proteobacteria (e.g., between α- and β- Proteobacteria) [145, 146]. Accordingly, the 
definition of BHR is not uniform with the overall HGT mediators. The BHR plas-
mids typically have mosaic genomes that include two distinct regions [147]. The 
“plasmid backbone” genes encode proteins involved in the replication, mainte-
nance, control, and conjugative transfer of the BHR plasmid. In the marine environ-
ment, the directly determined rates of HGT in the marine bacterial community were 
reported to be high, ranging from 2.3 × 10−6 to 2.2 × 10−4 transconjugants per recipi-
ent [148, 149]. The HGT performance of the above PLE is comparable.

Despite PLEs being susceptible to DNase I, attempts to draw restriction maps for 
those extracted PLEs was a wasted effort because restriction enzymes had been 
incapable of producing restriction fragments. As an avoidable attempt, the electron 
microscopic observation of the PLE samples showed an apparent existence of par-
ticles instead of free DNA strings. Those PLEs must have been intracellularly 
maturing virus particles extracted from the cell [1]. Accordingly, the PLE must have 
been an intracellular form of that spontaneously released VLP to the culture medium, 
which was capable of encapsulating a piece of a chromosomal gene to achieve pro-
totrophic reversion of recipient auxotrophy as the plasmid responsible for 2,4-D 
degradation [150]. Hence, the object of attention changed to the spontaneously 
released VLPs to the culture medium.

The release of VLPs to the culture medium started when the host cells entered to 
the stationary phase, and after that without accompanying any reduction of the host 
cell abundance. Yields of the VLP at 100 h culture at 30 °C attained 6–70% of the 
host cell abundance, depending upon the strain [1]. An attempt to examine the capa-
bility of the broad-host-range HGT exceeding at least the family level using the 
above VLPs demonstrated successful gene transfer exceeding the difference of the 
family level [1].

Here, VLPs can potentially accomplish transduction-like gene transfer exceed-
ing the family level (see Table 7.4), referred to as VP. A generated VP-mediated 
transductant is named by combining the VP donor initial, the recipient genus initial, 
and “trans.” Therefore, an A. kielensis originating VP is referred to as AkVP and a 
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generated E. coli transductant is named AkEtrans. The transduction frequency is 
defined as the fraction of the generated colony number in each selected marker plate 
in the total applied particles. An overall average frequency of VLP-mediated gene 
transfer at a multiplicity of infection (MOI) of 0.1 was estimated to be between 
2.62 × 10−3 and 3.58 × 10−5 per VP [2].

AkEtrans acquired VLP production also may transfer genes; namely, AKEVP 
was produced. 2,4-D transduction frequency/μg DNA was estimated as 
2.1 × 106 CFU for AkVP and 2.1 × 106 CFU for AkEVP. At 6.4 × 106 CFU for 
FsI1604VP, it is four orders of magnitude more efficient than MVs derived from 
Acinetobacter baylyi demonstrated for drug resistance transfer [63].

The VPs of A. kielensis (AkVP: ρ25 = 1.4157 g/cm3; size ± SD, nm = 123 ± 2.6, 
n = 106) are especially characterized for their enveloped structure (see Fig. 7.2) with 
varying lengths (0.8–1.5 μm in diameter) being encapsulated one to several spheri-
cal particles (5.1  ±  2.8 particles/envelope; n  =  60) [1]. This phenomenon is an 
uncommon feature for prokaryotic viruses, although some eukaryotic viruses, such 
as the influenza virus, have envelopes. RNA phage Ø6 of Pseudomonas is a particu-
lar example of an encapsulated prokaryotic virus whose particle is incorporated into 
the recipient cell during infection [151]. Remarkably, the generated transductants 
acquired VLP production other than prototrophic reversion of the amino acid 
requirement and 2,4-D utilization.

Transduction is a process of abortive infection. No progenies from infected 
viruses’ transducing particles are expected, as shown in the schematic diagram in 
Fig.  7.1, whereas the VLPs from the above marine bacteria were not the case. 
Therefore, new terms should be given to express this unusual phenomenon: the 
“serial transduction” and “serial transducing particle” as the broad-host-range VP.

E. coli transductant (AkEtrans) generated by AkVP acquired comparable VLP 
production (AkEtransVP: ρ25 = 1.4159 g/cm3; size ± SD, nm = 106 ± 4.3, n = 54). 
This again made it possible to transfer 2,4-D utilization and prototrophic reversion 
of amino acid auxotrophy to the recipient E. coli, which exhibited a comparable 
overall transduction frequency of 5.25 ± 2.85 × 10−4 CFU/particle, comparable to 
that of AkVP (2.31 ± 1.50 × 10−4 CFU/particle). The transducing frequencies of 
these VPs were found to be higher by 4–7 orders of magnitude than those reported 
for naturally isolated transducing phages [42, 45, 47].

The distribution of particle abundance in the sedimentation profile exhibited a 
similar continual increase with size—an apparent difference from findings con-
cerning the size distribution of particles showing discrete bands, which were com-
posed of several subpopulations. The trend curve showing the relationship 
between the distance of the ultracentrifuge tube from the bottom and buoyant 
density is given as:

 
f d d RBouyant density ( ) 0.0004d = d- + - + =3 2 20 0087 0 0978 1 5605 0. . . ( .9999)  

Here, d is the distance from the bottom in cm. As an extension, particle diameter (in 
nm) and content as dsDNA (kbp) could be expressed as the following functions of 
buoyant density (ρ):
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f RParticle diameter ( ) , ( .r r r r= - + - =14027 53695 67125 27 197 0 993 2 2 99)  

 
fParticleDNAcontent ( ) , ,r r r r= - + - +571110 2394972 3347855 1 5603 2 4453 0 9992( ).R =  

According to the empirical formula [6] above, AkVP could encapsulate 416 kb 
as the transfer cargo capacity, whereas the result of a nucleic acid type analysis 
for the encapsulated DNA species estimated by an in-situ lysis technique [152]
and pulse field gel electrophoresis (PFGE) [153] was 198 kb. Hence, a single 
AkVP might have carried two segments of the 198  kb DNA cargo inside. 
AkEtrans produced particles without an envelope or vesicle structure (see 
Fig. 7.2), with a cargo capacity of 266 kb as dsDNA showed two types of DNA 
species estimated to be 174 and 195 kb [5]. It is unknown how and why the 
AKEVP was produced from E. coli transductant as a free single particle but not 
collectively packed in the envelope or vesicle. High coordinated marker trans-
fer (i.e. linkage) was recorded to exceed 70% between every selected and 
unselected marker for both AKVP and AkEVP mediated transduction, even 
using low MOI.

Adsorption &
DNA injection Curing

Induction

Lysogenisation

Transducing
particle

Ordinary Transduction Serial Transduction

Propagation

Cell lysis

Cell lysis

Provirus
state

No progeny virus production
from the transductant

Continuous progeny VP production
from the transductant

“Provirus state”

“Provirus state”

VP release
to infect
another
recipient

VP production
w/o cell lysis

Induction

Induction

Adsorption &
DNA injection

VP production
w/o cell lysis

Fig. 7.1 A schematic representation of “ordinary” transduction and “serial transduction”. 
The left panel shows the life cycle of lysogens and the production of transducing particles. Note 
that transducing particles would not be capable of producing progeny from the transductant. 
The right panel shows the serial transduction with the aid of broad-host-range vector particle (VP) 
discussed in this article. Transductants generated with the VP acquire VP production without 
accompanying cell lysis, whose reproduced VP can carry out successive transduction as the serial 
transducing particle
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Fig. 7.2 Electron micrography (EM) images of VPs. Kiel Bay originating Ahrensia kielensis 
produced VPs are characterized for their envelope structures, which range from single to several 
particles. A. kielensis VP-mediated Escherichia coli transductants acquire production of VPs with-
out the envelope, whose size is slightly smaller than that of A. kielensis VP. FspI1604 VP from 
Flavobacterium sp. I1604 originating from the Indian Ocean. Size scale, 100 nm, is placed above. 
Upper right: A bacterium is bearing five electron-dense bodies (EDBs) in the cell corresponding to 
the yields of “virus” as five particles per cell. A proportion of such cells having an intracellular 
mature “virus” in the population stands for the frequency of visibly infected cells (FVIC [128]). In 
the case of the VP lysogens, FVIC should be read as the VP induction frequency because VP pro-
duction takes budding from the host without accompanying lysis. Center: A lengthy sausage- 
shaped Aquifex sp. is under VP production; EDBs are seen in the left end of the cell. Superimposed 
panels indicate the process of the budding production of VP, referred to as STVP, released to the 
milieu. STVP exhibited trans-Domain HGT via the serial transduction of VP-mediated transduc-
tants towards Archaea and Eukarya. Another example of the trans-Domain HGT is given by the VP 
originating from a hyperthermophilic archaeon, Thermococcus kodakaraensis B41, to transfer 
thermo-resistance towards a mesophile enterobacterium, E. coli, to generate TkBEtrans. For 
details of VP budding transductants, see Tables 7.2 and 7.3
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As the mode of gene transfer, the generalized transduction was carried out 
because preferential marker transfer was not observed. In the case of AkVP, multi-
ple particle infections might have occurred for its architecture; however, AkEVP did 
not organize a multi-particle assembly in an envelope. The distance between mark-
ers deduced from the co-transfer frequency [154] was given as E. coli markers: 
his- arg, 203.2 kb and pro-arg, 232.2 kb; however, based upon the genome sequence 
data of E. coli AB1157 (Chiura, 2016, Unpublished data), it was given as his-arg, 
139.1 kb and pro-arg, 322.2 kb. Although the results of coordinated marker transfer 
are not always represented as the distance of respective markers in the recipient and 
carried DNA species molecular mass, it is plausible that significant genetic traits are 
transferred to the recipient beyond generations in a phenomenon termed “serial 
transduction” [4, 7]. Concerning the cargo content of the vehicle, Hageman and col-
leagues [155] reported that MVs produced by A. kielensis DSM No. 5890 Strain B, 
whose outer membrane vesicle’s encapsulated genome size was 30.1 kb, encoded a 
prokaryotic sequence without a virus. Both strains used in these experiments are the 
same strain according to NCBI. Although a considerable discrepancy was found 
between the sizes carried in the AkVP and the MV derived from A. kielensis DSM, 
the contents of these vehicles’ cargo would consistently host chromosomal genes. 
Furthermore, A. kielensis encodes GTA in the genome (NCBI Reference Sequence: 
NZ_ARFW00000000.1 https://www.ncbi.nlm.nih.gov/genome/15060), which 
might have been contributing to MV biogenesis, although the MV genome would be 
exceeding the GTA capacity reported thus far [156].

7.2.1  Looking for the Environmental Broad-Host-Range Serial 
Transducing Particles: VPs

Some marine isolates may possibly produce VPs to carry out broad-host-range 
serial transduction [1, 2, 6, 7, 157, 158]. Hence, “virus” fractions collected from 
normal and thermal [8, 9, 130] environments were examined for the broad-host- 
range serial transducing particles: VPs. The phylogenic position of the recipient and 
the original VLP host bacteria are differently classified at the family level (see 
Table 7.4). These findings are not explained by the general concept of lytic or lyso-
genic cycles of viruses infectious to bacterial cells, suggesting that some VLPs do 
not fit the conventional molecular view of viral genetics.

Although it would be a herculean task to set up a protocol in the laboratory to 
reproduce transduction consistent with the environmental situation, the procedure 
was done according to the empirically studied method for phage-mediated transduc-
tion. Criteria for the VP judgement are achieved for a VLP or VLP producer to 
accomplish the serial transduction with the acquisition of budding particle produc-
tion from the generated transductant belonging to at least the family level. The bud-
ding prokaryotic virus is quite scarce, with a strictly restricted host range. Budding 
is suggested as the mode of exit for pleomorphic archaeal and bacterial viruses 
[159]: pleolipovirus, plasmavirus, and the mycoplasma phage L2 and L172 [160–
163]. Practically, prokaryotic virus budding has not been established because of the 
current lack of knowledge concerning the exit mechanism [159]; it relies on eukary-
otic virus research, which is beyond the scope of this chapter.
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To ensure their purity prior to running the transduction experiment, the recovered 
VLPs as a fraction of 0.2 μm > specimen > 30 kDa were treated with DNase I and 
RNase A to avoid the possibility of transformation. This was followed by equilib-
rium CsCl-density-gradient ultracentrifugation [164] at 175000  ×  g overnight at 
15 °C. The bands formed were separately recovered and examined for the abun-
dance, shape, and size of VLPs using electron microscopy (EM) [2], whereas the 
SYBR-epifluorescence microscopy method [165] was used on board the research 
cruise. The purified VLP was suspended in TBT (100 mM Tris-HCl, 100 mM NaCl, 
and 10  mM MgCl2, pH  7.4) buffer to make an appropriate dilution after CsCl 
removal.

For the recipient preparation, the physiological condition of the recipient should 
be reproducible to ensure the application of different VLP specimens from different 
origins. The recipient strains were grown to the mid-log phase. Then, the culture 
broth was substituted to 7% glycerine containing TBT buffer, dispensed to aliquots, 
frozen in liquid nitrogen, and kept in the deep freezer until use to endorse such 
requirement.

As the standardized protocol for transduction, 1 mL of thawed recipient sus-
pension was mixed with the VLPs to obtain an appropriate MOI, and the mixture 
was left undisturbed at 30 °C for 15~30 min. Cells were washed with buffer and 
suspended in 1 mL of the same solution. Inactivation of the VLPs was attained by 
ultraviolet (UV) irradiation as previously described [2]. The four controls were as 
follows: (1) recipient cells tested with TBT buffer instead of the VLPs to deter-
mine the spontaneous revertant rate; (2) UV-inactivated VLPs and recipient cells; 
(3 and 4) VLPs with/without UV inactivation without the addition of recipient 
cells. For the transduction experiment, the recipients were incubated with or with-
out VLPs, inoculated in LB medium, and kept at 30 °C for 2 days. In the transduc-
tion experiment, a portion of the sample was fixed with 2.5% glutaraldehyde; free 
particles and bacteria were enumerated by electron microscopy [166] to determine 
the practical MOI.

The growth profiles of generated transductants were examined, with specific ref-
erence to the particle budding production, the proportion of the particle producing 
population (VPIF; see below), the amount of the produced particle per cell, and the 
second VP-mediated transduction (see Fig. 7.1). Using this method, verification of 
the lethal effect on “VP infection,” the period of VP production, and the yields of 
VPs per cell can be obtained. The lethal effect caused by the virus is the mature 
virion release through the host cell rupture, with infection from cell death-inducing 
MVs as the microbial cellular response being equivocal. In addition, if the recipient 
fails to make an appropriate membrane fusion with VP at the VP-mediated trans-
duction, plausible cytosol leakage of the recipient cell would occur and cause death 
(see Fig. 7.2).

The results obtained to date are summarized in Tables 7.2 and 7.3. The frequency 
of the marker transfer with the aid of VP-mediated generalized transduction depends 
upon the combination of donor and recipient, varying between 3.23  ×  10−2 and 
3.24 × 10−9, with a mean value of 1.14 × 10−3 and a median value of 9.22 × 10−6 CFU/
VP. These values are considered to be high frequency among the values accounting 
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for HGT [42, 44, 167]. A summary of the VP-mediated HGT occurrence between 
phylogenetically different organisms is given in Table 7.4, which shows that VPs are 
susceptible to a broad range of recipients. This fact implies that VPs should be quite 
prevalent on the planet (see Fig. 7.1 and 7.2).

7.2.2  VPs in the Environment

Cells undergoing viral induction can be recognized with transmission electron 
microscopy (TEM) [3, 168] in whole-cell TEM images of the induction; the pro-
portion of the population with such intracellular particles is given as the frequency 
of visibly infected cells (FVIC) [128]. The method was first developed using thin- 
sectioning of picoplankton cells, which makes it possible to enumerate the fraction 
of cells infected within aquatic microbial consortia. This approach has demon-
strated infection of several planktonic microorganisms in an environmental situa-
tion (in situ) and has been used to estimate the virioplankton production rate. 
Proctor and Fuhrman [169] demonstrated that intracellular viruses could be 
detected in cyanobacteria and heterotrophic bacteria collected from several marine 
environments, ranging from mesotrophic coastal sites to the oligotrophic ocean. 
The incidence of cells containing viruses [101] ranged from 0.9 to 4.3% of hetero-
trophic bacteria and 0.8 to 2.8% of cyanobacteria. In another study examining 
bacterial populations associated with sinking particles, a similar FVIC (0.7–3.7%) 
was recorded. Bacterial populations within this unique marine niche may also be 
controlled by viral lysis [170].

The FVIC within bacterioplankton was also determined by merely examining 
whole bacterial cells at a high accelerating voltage (80 kV) using TEM [171]. This 
method requires much less effort than the thin sectioning of bacterioplankton, but 
concern has been expressed over its accuracy [76]. Weinbauer [128] and colleagues 
found that whole-cell estimates of FVIC were on average 79% of the value of esti-
mates based on thin sections [101]. Hence, whole-cell estimation consistently 
underestimates the level of virus-mediated mortality. FVIC values are inevitably 
converted to a proportion of the entire bacterioplankton community, estimating the 
overall level of virus-mediated lysis in situ; however, cells bearing mature viral 
particles would be ruptured according to the current concept. Proctor [172] and col-
leagues hypothesized that infected heterotrophic marine bacteria exhibit mature 
phages after 73% to 86% of the latent period has passed. Therefore, the total abun-
dance of infected cells is expected to exceed the number of visibly infected cells by 
between 3.7- and 7.14-folds [101]. Based on FVIC data, a phages infecting average 
of 17% of the bacteria comprising bacterioplankton communities from a variety of 
aquatic environments [101].

Although VPs are distinct from common lytic viruses, this method can be applied 
for determining the extent of VP induction because the time of the particle produc-
tion does not accompany the host cell disruption. Hence, the timing of the start of 
VP production can be judged from the time of the intracellular formation of electron- 
dense bodies (EDBs). Furthermore, GTA behaves the same as a virus, whereas the 
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majority of MVs are considered to be “outer membrane vesicles,” with the relation-
ship between EDBs and MVs still being uncertain. In the author’s experience, FVIC 
accounted for 6.02 ± 3.45% (n = 3591) in the marine environment (Pacific Ocean, 
Mediterranean Sea) and 6.92 ± 3.93% (n = 3925) in the thermal environment (geo-
thermal vent, hydrothermal vent). Indeed, FVIC represents the total cell proportion 
engaging in virus and VP production. Estimates of VLP and cell abundance are 
2.3 × 107 VLP/mL and 1.8 × 106 cells/mL in marine environments and 1.9 × 107 
VLP/mL and 3.6 × 106 cells/mL in thermal environments, respectively. The somatic 
gene transfer frequency of VPs has been roughly estimated as ~4 × 10−4 CFU/VP 
for the marine environment and ~3.6 × 10−3 CFU/VP for the thermal environment 
(Chiura, Unpublished data). Based upon this frequency and VP yields per cell of 3, 
the number of cells being committed to VP production would be 3.0 × 103 cells/mL 
in the marine environment and 2.3  ×  104 cells/mL in the thermal environment. 
Consequently, VP lysogens in the environmental microbial assemblage would be 
estimated as 0.2% and 0.6% of the population.

The term FVIC is not appropriate to express the extent of VP induction in VP 
lysogens, so the term “VP-induction frequency” (VPIF)” is used hereafter. Both 
natural and VP transductant strains generally start particle production by host cells 
becoming stationary. Furthermore, the yields of VPs per cell are in the range of 
three and five particles, whose period and productivity per cell appear to be strictly 
controlled to fit the cell phase. In most cases, the abundance of free (extracellular) 
VPs do not exceed the host cell abundance, although this was not the case for VP 
production from Vibrionaceae (Aliivibrio fischeri NCIMB1281T  =  ORI No.194: 
basonym, Vibrio fischeri, and Vibrio sp. FK01073). The number of free particles 
appeared to be associated with the number of VP-producing cells in the popula-
tion—that is, the extent of the VPIF would determine the number of extracellular 
particles. Therefore, Vibrionaceae exhibited a higher frequency of VPIF. A. fischeri 
entered a logarithmic phase of growth for up to 12 h immediately after the initiation 
of culture, showing a generation time of approximately 1.84 h, and then entered a 
stationary phase to attain a stabilized cell abundance at approximately 1.2 × 109 
cells/mL until the end of the culture. Initiation of the production of particles, referred 
to as AfVPs, by budding was determined from the particle per cell ratio and particle 
induction frequency to occur at approximately 15 h after initiation. The number of 
free particles continued to increase up to approximately 50 h after initiation, then 
stabilized at 1.20 × 1010 AfVP/mL. Three sharp peaks of induction (VPIF, period, 
%: 24 h = 15.8; 100 h = 19.1; 200 h = 23.8) were recorded, whereas no marked 
change in the cell population was observed to the end of culture. The average num-
ber of mature AfVPs per cell was approximately 3 (median ± SD, 3.0 ± 0.9, n = 475). 
Mucoidal substances heavily surrounded cells with budding particles and other par-
ticles. Budding particles from the cells showed a clear boundary of electron-dense 
bodies [6].

The oligotrophic West Mediterranean seawater (Calvi, Corsica, France; 
VFIC = 4.2 ± 2.5, n = 1800) originating VLP fraction exhibited ρ25 = 1.2684 − 1.4055 g/
cm3, with a diameter ranging between 38 and 132  nm (diameter 
median ± SD = 67.6 ± 35.4 nm, n = 317). A portion (ρ25 = 1.3135 − 1.3304 g/cm3) 
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of 118.3–126.7 nm VLPs were infected with E. coli AB1157 at MOI from 0.1 to 200 
to examine the efficiency of plating (EOP) and the transduction frequency; this 
resulted in an EOP from 100 to 17.2% regardless of the VLP UV-irradiation. 
Transduction frequencies from 3.5 × 10−6 to 9.8 × 10−3 CFU/VP were observed. The 
generated transductants (CEtrans-F1) acquired budding particle production (pro-
duced particles per cell of approximately 3). A correlation between MOI and trans-
duction frequency was observed, and the highest performance was recorded between 
MOI values of 5 and 20. Produced particles from CEtrans-F1 showed varied diam-
eters ranging from 37.4 to 185.4  nm. Subsequently, the purified portion 
(ρ25=1.3285 −  1.3057  g/cm3) of 119.2–130.7  nm in diameter was infected at an 
MOI of 5.5 to E. coli AB1157. Consequently, a comparable EOP to the first experi-
ment was observed, while the transduction frequency was reduced by approximately 
one order of magnitude from the first transduction. The generated second transduc-
tants (CEtrans-F2) acquired consistent particle production with CEtrans-F1. For the 
particle production from transductants, VPIF was between 15% and 20% during the 
stationary phase.

P. filamentus ATCC700397T, which was isolated from Arctic ice and cultured in 
1/2 ZoBell at 10 °C, showed budding particle production. The produced particle 
size was distributed between 86 and 346 nm in diameter and contained approxi-
mately 150 kb as dsDNA (P. filamentus: 5 × 108 cells/mL, 2 × 109 VLP/mL, VP 
yields: 1.1 VP/cell). However, during the stationary phase, VPIF maintained an 
approximately 14% higher yield of free particles when approximately 120% of the 
cell population was given. The particles were purified in two bands by equilibrium 
CsCl density gradient ultracentrifugation to give 1.2893  ±  0.0102  g/cm3 as the 
buoyant density. The upper particles were infected with E. coli. Consequently, the 
recipient lethality was not observed. As for gene transfer, three transductants with 
complete marker reversion exhibiting a frequency at 5.0  ±  1.6  ×  10−5  CFU/VP, 
referred to as PfEtrans, were obtained [138]. A generated E. coli transductant, 
PfEtrans, exhibited enhanced growth in 1/2 ZoBell at 10 °C, exceeding parental P. 
filamentus by attaining ~2 × 109 cells/mL. VP yields per cell were consistent with 
the parental strain at 1.1 and VPIF during the stationary phase kept recording as 
high as approximately 30%, while yields of free particles were suppressed to 
approximately 20% of the cell population. Therefore, the continual reincorporation 
of produced particles to the surrounding cells must have occurred.

Fluctuating particle abundance, like AfVP, was as well observed for a VP 
transductant, TYEtrans, which was generated with the aid of VPs collected at the 
Toyoha [173] mine (42°48’N, 141°2’E, Hokkaido, Japan). The parental recipi-
ent, E. coli AB1157, reached a stationary phase at approximately 9 h after initia-
tion (1.7 × 109 cells/mL) at 30 °C, whereas TYEtrans entered the stationary phase 
at approximately 48 h (6.0 × 108 cells/mL, approximately 35% of the parental 
recipient population); the same level of population was observed until the end of 
culture (195 h). The minimum number of free particles (TYEVP) was recorded 
just after starting the culture (particle number: 1.13  ×  104 particles/mL). The 
highest particle population was observed at approximately 48 h, amounting to 
5.68 × 109 TYEVP/mL (VP/Cell = 9.50) when the transductant cells reached a 
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stationary phase. Approaching 70 h, the free particle number decreased by three 
orders of magnitude and remained at the similar level, between 1  ×  106 and 
1 × 107 TYEVP/mL, up to 144 h. A second substantial increase of TYVP was 
observed at 170 h, which amounted to approximately 9.4 × 108 TYEVP/mL, fol-
lowed by a decrease in the free particle number again to 1 × 106 TYEVP/mL at 
195  h, exhibiting a similar trend as observed between 70  h and 144  h (VP/
Cell = 0.01 and 0.05) [130].

A decrease of the free particle population without a change in cell numbers might 
have caused the reincorporation of free particles into the cells. The oscillating 
behavior of free particle abundance might reflect occasional repetition of the release 
from and reincorporation of VPs to the cell. Such reincorporated free particles must 
have been providing a template strand eligible for chromosomal mismatch repair 
[174], having the highest performance of the repair system.

An extraordinarily broad range of susceptible recipients was shown by a 
thermophile- originating particle collected from a hot spring called “Nakanoyu” 
(36°12’N, 137°36’E) in Nagano prefecture, Japan [8]. Sampling was occasionally 
done from 1993 to 1997, with 1997 having the highest water temperature during the 
period. The characteristic large sausage-shaped bacteria (see Fig.  7.2 [8]) of the 
sulfur-turf mats have been uncultivable to date. 16S rDNA cloning and sequencing 
studies have shown them to be members of the order Aquificales, which is the deep-
est-branching lineage of the domain Bacteria [175]. The cell population (2~6 × 105 
cells/mL) was kept at the same order of magnitude, while VLP abundance was 
shown to be two orders of magnitude higher in the 1997 sampling (1.4 × 107 cells/
mL, Aquificales cell No. ± SD, 95.7 ± 15.6%, n = 7) compared with other times 
(1~7 × 105 cells/mL, Aquificales ca. 6.4%). The thermophiles might have provided 
HGT with a relaxed broad-host-range. However, VLPs originating from the marine 
isolates of the most recent lineage of the domain Bacteria were incapable of trans-
ferring genes across the border of phyla [8], which could not have been accom-
plished by AKVP.

Both intra- and extra-cellular particles collected from the sulfur-turf cells exhib-
ited comparable physicochemical parameters [8]. The second band of equilibrium 
CsCl density ultracentrifugation with the highest proportion (STVLP: ρ25, 
1.2892 ± 0.0188; amount, 2.23 × 1011; particle size, 104.4 ± 9.2 nm in diameter; 
proportion, 40.1%; protein/nucleic acid ratio, 23.93) was applied to gene transfer 
experiments toward recipients of E. coli AB1157 and Bacillus subtilis PS9 (hisA 
metB5 thr-5 leuA8 trpCll lys21 purA non A-1/B-1 rfmR spβ−). Results indicated that 
STVLPs had a lethal effect on both recipients regardless of UV treatment, as well as 
a gene transfer capability [9] that resembled the case of those of marine origin [1, 2, 
157, 158]. Consequently, VLPs originating from the “oldest” thermophile were 
capable of transferring genes across the borders of phyla. Hence, the existence of 
broad-host-range gene transporters among VLPs originating from thermophiles was 
confirmed.

It is notable that B. subtilis and E. coli transductants generated with the aid of 
STVLPs acquired the ability to produce particles [9]. The production of particles 
started from the host attaining the stationary phase, like that in the original host 
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Aquifex strain, whose yield also was 3–5 particles per cell [8, 9]. Nucleic acid cargo 
in STVLP is susceptible to DNase, whose size as linear dsDNA was approximately 
406.4 kb and RNA was not detected [8]. When the particles (STEVP) reproduced 
from E. coli transductants (STEtrans) were again infected with a B. subtilis auxotro-
phic mutant, they showed a lethal effect regardless of UV treatment of the particles, 
together with a gene transfer frequency between 2 × 10−8 and ×10−7 transductants/
particle. The transduction frequency was slightly low and incomparable to that of 
the original particles from Aquificales used directly towards B. subtilis and E. coli.

Gene transfer from gram-positive to gram-negative bacteria does not take place 
because of the differences in applicable systems in the respective bacteria [94], with 
a few exceptions among artificial plasmid vectors with the natural transposon Tn916 
[176]. Therefore, the finding is the first real evidence that VPs have the potential to 
enhance biodiversity among the bacterial community.

Furthermore, applications of STEVP to recipients of Archaeon—Sulfolobus 
acidocaldarius MR87 (his ura) [177, 178], Eukarya: Saccharomyces cerevisiae 
SEY499, SEY6120, YPH500, W303 (lys trp his leu) (provided by Takeuchi M, 
NAIST, 1999)—and the transductants were obtained with a frequency of 
1 × 10−8~1 × 10−3 CFU/particle together with particle production from these trans-
ductants. S. acidocaldarius MR87 transductant produced particles ranging between 
40 and 145 nm, whose productivity was reduced by approximately 22% of parental 
STEtrans. The S. cerevisiae SEY 6210 lys+ transductant, ScEtrans_Sc, produced 
two types of particles (ScEtrans VP, ρ25  =  1.2415 and 1.2968) that were again 
infected with E. coli AB1157 to produce transductants with particle production. The 
yield of particles per cell was estimated as 3 ± 2 (Fig. 7.2 [132]). The particles are 
likely to “infect” recipients belonging to different domains, which implies that at 
least some environmental VLPs share similar characteristics—a phenomenon that is 
not explained by the general features of viruses that infect microorganisms. A 
greater extent of recipient chromosomal marker transfer was recorded by several 
orders of magnitude compared with that reported for the marine environment [41, 
73, 140].

Another example of trans-domain gene transfer was demonstrated by an 
archaeon-originating particle and the recipient E. coli. The survey area was extended 
to hydrothermal vents at Suiyo seamount located in Izu-Ogasawara arc. It showed 
the existence of a microbial population, even in the hyper-thermal fluid [3], with 
~5 × 104 cells and ~3 × 104 VLPs/mL. A hyperthermophilic archaeon, Thermococcus 
kodakaraensis, was successfully obtained from an APSK06 (28°34.313’N, 
140°38.617’E, 1386  m deep) boring core. The permissive growth temperature 
ranged between 70 °C and 90 °C and was recorded for an 80 °C culture with ele-
mental sulfur, with 80% of particle abundance to the cell. A 70  °C culture with 
elemental sulfur gave the highest cell yields and 132% of particle abundance to the 
cell. Therefore, the strain was cultivated in the sulfur-supplemented medium at 
70 °C. VLP production started when the stationary phase attained T. kodakaraensis, 
whose cell and particle abundances at 480 h of culture were 1.8 × 108 and 4.2 × 109, 
respectively [131, 179]. The median particle size was 125.19 ± 36.45 nm (n = 351) 
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and yield per cell was approximately 1.5, with VPFI of approximately 19% during 
the stationary phase.

Gene transfer frequencies of particles from APSK07 fluid and T. kodakaraensis 
were between 2.6 × 10−4 CFU/particle and 3.0 × 10−6 CFU/particle. The production 
of particles from generated transductants was observed under TEM, with the parti-
cle yield per cell resembling that of the previously described marine strains and 
Aquifex sp. at 3–5 [131]. The size of the particles produced from the transductant, 
TkBEtrans, became larger (median ± SD = 132.55 ± 23.6, n = 272). Hence, a hyper-
thermophilic archaeon produced VP-transferred genetic traits towards mesophilic 
E. coli across the Domain border.

7.3  How Do VPs Produced in the Cell Release from the Host 
and Infect a New Host?

Electron microscopy observations suggest that membrane fusion occurs between 
the recipient cell and VPs (Fig. 7.3) at the initial stage of infection [6] because mem-
brane fusion between the VP “capsid” and recipient cell was observed upon “infec-
tion.” Before membrane fusion, the VP pierces the recipient cell wall to create a 
place for membrane fusion [182]. Therefore, a membrane-fusion error upon the 
VP’s “infection” would cause cytoplasmic content efflux [183, 184]. VPs have 
shown an extraordinarily relaxed susceptible recipient range (Table 7.4). An interac-
tion between the particle and recipient cell might determine the orientation for the 
recipient’s survival. As shown in Table 7.2, some VPs had a lethal effect on the 
recipients regardless of the strength of the UV treatment, reducing the EOP by up to 
one order of magnitude. VP infection of the recipient could be accomplished by the 
membrane fusion [6]. The lethal effect would be a consequence of a failure to form 
complete membrane fusion between the recipient cell and the particle, which must 
have lethally leaked the cytoplasmic content.

The contents of nucleic acid, carbohydrate, proteinase/peptidase, and glycanase 
activities were examined for particles and vesicles derived from STEtrans and 
DHlactrans (see Tables 7.2 and 7.3). The VP was predicted to have lipids as its sur-
face component (Fig. 7.3), although an insufficient amount of samples prevented 
the lipid component from being analyzed. VPs are supposed to carry cellular cyto-
plasmic material as proteinaceous material and DNA; however, an RNA component 
has not been detected to date. A specific and strictly controlled VP cargo sorting and 
intracellular trafficking mechanism is expected to exist. However, it is currently dif-
ficult to infer an appropriate expression feasible for the strict control mechanism 
that produces 3 VPs/cell per generation. The results are given in Table 7.5. The 
surface structure of VPs must be composed of the multifunctional domain to accom-
plish infection of a variety of organisms.

The VP assemblage seems to carry all host genomic information almost exclu-
sively, whereas the yields per cell are controlled strictly to be small unless a host 
control disorder is introduced, such as a rel mutation. Prior to the budding release 
of VPs, condensation of DNA cargo, which is likely a part of the host 
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Fig. 7.3 VP treatment of organic solvent, membrane vesicle (MV) production from  
DHlactrans, membrane fusion and translocation of DNA cargo to the recipient at VP infec-
tion, and pleomorphic size distribution of VPs after being experienced serial transduc-
tion. Electron micrography (EM) image of an organic solvent treated VP shows in (a). Purified 
VPs were dialysed against an up series of ethanol and chloroform and a descending series of etha-
nol and then treated VPs were placed on the EM grid [166] to observe. VP must have been con-
tained in the lipid component for its coat because the content was extruded from the particle. In (b), 
extruding DNA is shown together with bead-like structure from a membrane vesicle from relA1 
bearing transductant, DHlactrans, whose shape was not a string like Coliphage T4 but a tangled 
structure like a nucleosome observed for an archaeon [180]. (c, d) Membrane fusion and transloca-
tion of DNA cargo to the recipient at VP infection, DNA strand looks like an archaeon nucleosome 
structure [180, 181]. In (d), a schematic representation of (c) is shown. In (e), a relA1-bearing 
transductant produced MV together with VP, whose proportion was about 1/10 of the real VPs. In 
(f), the pleomorphic size distribution of VPs is shown after serial transduction. VPs showed pro-
duction of several discretely different particle sizes, even a selected size VP employed for the 
transduction. Although the host strictly controls the VP yields per cell, an introduction of relA1 
resulted in the turbulence of cellular control to produce many different sized empty MVs. Generally, 
the proportion of DNA bearing MVs is quite small; the DNA cargo size is also as small as 10 kb 
[22, 61, 63]. MVs produced by the relA1-bearing transductant must have been produced to encap-
sulate DNA cargo as intracellularly produced EDB
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chromosome, makes EDS followed by intracellular trafficking in proximity of the 
cell membrane (Fig. 7.5). In general, transducing particles are formed when the 
phage packaging mechanism seizes upon host DNA, instead of concatemeric 
phage DNA, as a packaging substrate [191, 192]. The association of transducing 
host chromosomal DNA with a protease-sensitive component is estimated as 
500  kDa of protein [46], with a substantial fraction (>75%) of the transduced 
DNA appearing to adopt a circular conformation maintained by an attached pro-
tein. Unfortunately, this protein has not been studied further, although the protein 
has been suggested to be a packaging enzyme that remains associated with the 
transducing DNA after completing cleavage [193]; this, however, remains to be 
established. There are two plausible hypotheses on how the DNA packaging 
mechanism makes transducing particles: one is a sequence-specific manner from 
DNA ends, whereas the other is a consequence of nonspecific cutting by packag-
ing enzymes. The accumulated evidence clearly favors a pac site mechanism for 
P22 transducing particle formation, but a non- sequence- specific mechanism for 
the formation of P1 transducing phages [194, 195]. The findings would also apply 
to the case of VPs, as VP-encapsulated DNA seems to be heavily associated with 
a proteinaceous material (Figs. 7.3, 7.4, and 7.5).

Table 7.5 Chemical constituents, proteinase/peptidase, and glycanase activities

Amount per particle STEVP DHlacVP DHlacMV
Protein/nucleic acid ratio 16.7 21.4 3862.9

Nucleic acid, ×10−18 g 8.12 13.9 0.102

Proteinaceous material, ×10−15 g 13.6 29.8 39.4

Total carbohydrate, ×10−15 g 42.6 1.89 4.22

Proteinase/peptidase, ×10−15 unit 1100 27,500 13.7

Glycanase as mannase, ×10−15 unit 51.1 207.2 23.7

Leu equivalent free NH-, ×10−15 g 0.254 35.1 2.58

Glc equivalent reducing power, ×10−15 g 23.8 1.89 5.01

Uronic acid, ×10−16 g 0.38 – –

Amount of nucleic acid and the proteinaceous materials was determined using nomograph accord-
ing to Adams [185] by reading the absorbance at 260 nm and 280 nm. The protein content was 
determined using the Bio-Rad Protein Microassay kit according to the manufacturer’s specification 
with BSA as the standard by reading the absorbance at 595 nm. The total sugar content of the sub- 
samples was determined by the phenol-sulphuric acid method [186] by reading the absorbance at 
480 nm for hexose and 490 nm for uronic acid, with glucose as the standard. Free amino acid was 
determined by the ninhydrin method [187] with leucine as the standard by reading the absorbance 
at 570 nm. Glucose equivalent reducing power was measured using the Somogyi-Nelson method 
according to Somogyi [188] with a modification by Chiura and Kita-Tsukamoto [189] with glu-
cose standard read at 500 nm absorbance. A Shimadzu Type UV260 spectrophotometer (Shimadzu 
Co., Kyoto, Japan) was employed for photometric analysis. The substrate for the enzyme activity, 
E. coli AB1157, was grown to the mid-log phase, then diethylpyrocarbonate was added to make 
0.1% v/v to stop the cell growth, washed with 100 mM phosphate buffer saline (PBS), and centri-
fuged. Fixed cells were dialyzed against PBS until no nucleic acid, carbohydrate and/or protein 
was detected in the dialysate, and finally lyophilized. The dried cell was suspended in an appropri-
ate liquid at the time of enzyme assay [190]
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b

c
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e

f

g

h
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j

k

l

Fig. 7.5 Transductant cells in the process of budding. In (a) to (d), STE-trans was used as a 
reference; in (e) to (l), CEtrans-F1 has used a reference. (a) STEtrans under particle budding. (b) 
Before the budding, the electron-dense body (EDB) shifted to the vicinity of the cell wall, and then 
the EDB attached to the cell wall (c). Following this step, the phase change of membrane from 
bi- to monolayer was observed (d). CEtrans-F1 is shown around the budding particle (e). Another 
three EBDs can be seen in the cell. Thin sections of CEtrans-F1 demonstrated EDBs. (f) Different 
stages of EDB formation in the cells. (g) Particle under budding. A change of membrane phase is 
seen at the budding position. (h) The final stage of budding. Note “capsid” structure is different 
from the cell membrane. Epon-etched thin sections of the CEtrans-F1: (i–k) sections with central 
EDB and a dense cluster of gold-labelled DNA-antibodies. (l) Control: thin-section without EDB 
with sparse gold-labelled DNA antibodies. All sections belong to the same assay. Scale bars: a, d, 
100 nm; b–d, f–l, 200 nm
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Some MVs are known to inhabit a variety of enzymes [196]. The hydrolytic 
enzyme activities of VPs reside in an association of phage endolysins, which recalls 
the production process of some MVs [197]. Endolysin is a well-conserved enzyme 
that is typically involved in the release of dsDNA phages [198]. Endolysin opens 
holes in the cell wall, through which MVs are formed presumably due to turgor 
pressure and eventually released [28, 29]. Toyofuku et al. indicated that the simul-
taneous release of abundant MVs and the matrix in P. aeruginosa biofilm would 
occur by endolysin-induced explosive cell lysis in a subpopulation of the cells to 
supply public goods for the remaining cells [62]. Furthermore, endolysin was 
recently shown to induce MVs in Gram-positive bacteria through a distinct mecha-
nism of explosive cell lysis [28, 29]. Hence, endolysin is a universal trigger for MV 
formation. Cell death is involved in MV formation, which renews the concept of cell 
death in microbial communities [199]; however, MVs were produced only from 
growing cells but not from lysing cells. From this standpoint, MV formation is con-
sidered to be a consequence of cell lysis that is distinct from the case of VPs.

MVs from a variety of organisms form the whole Domain of life and are called 
by several names, including membrane vesicles, outer membrane vesicles [OMVs], 
exosomes, and shedding microvesicles [57]. Bitto et al. demonstrated that chromo-
somal DNA is packaged into OMVs shed by bacteria during the exponential phase. 
Most of this DNA was present on the external surfaces of OMVs [35], with smaller 
amounts located internally. The DNA within the internal compartments of P. aeru-
ginosa OMVs were consistently enriched in specific regions of the bacterial chro-
mosome, encoding proteins involved in virulence, stress response, antibiotic 
resistance, and metabolism [200]. Roier et  al. proposed a novel and highly con-
served bacterial OMV biogenesis mechanism for Gram-negative bacteria based on 
phospholipid accumulation in the outer leaflet of the OM [201]. A proposed phos-
pholipid transporter system of the VacJ/Yrb ABC (ATP-binding cassette) transport 
was shown to be involved in OMV formation [202]. However, the mechanism for 
intracellular trafficking of the cargo DNA in accounting for HGT is still 
insubstantial.

The conserved functions and mechanistic strategies of MV release are similar, 
including the use of eukaryotic endosomal sorting complexes required for transport 
(ESCRT) proteins and ESCRT protein homologues to facilitate these processes in 
archaea and eukaryotic microbes [57]. The ESCRT machinery is made up of cyto-
solic protein complexes: ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III. Together 
with several accessory proteins, these ESCRT complexes enable a unique mode of 
membrane remodeling that results in membranes bending/budding away from the 
cytoplasm [203, 204]. These ESCRT components have been respectively studied in 
numerous eukaryotes, including yeast and humans [205].

The change in the intracellular structure before budding is illustrated in Figs. 7.4 
and 7.5. DNA cargo must have been prepared around the center of the cell; however, 
how and what mechanism would proceed to select the DNA cargo content accom-
panied by budding production are unclear. OMV was reported to have continually 
budding production with a morphologically similar shape to VPs from 
γ-proteobacteria, Acinetobacter baylyi [63]. OMVs could be grouped into three size 
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populations, with mean diameters ranging from 13 to 304 nm. OMVs were extracted 
from bacterial cultures and tested for their ability to vector gene transfer into popu-
lations of E. coli and A. baylyi, including naturally transformation-deficient mutants 
of A. baylyi, and determine the movement of DNA into OMVs using FITC-labelled 
and anti-dsDNA antibodies to track the movement of OMVs. Exposure to OMVs 
isolated from plasmid-containing donor cells resulted in HGT to A. baylyi and E. 
coli at transfer frequencies ranging from 1 × 10−6 to 1 × 10−8, with transfer efficien-
cies of approximately 1 × 103 and 1 × 102/μg of vesicular DNA, respectively. The 
intracellular production looked at several points in the cell, which was different 
from that observed for VP, as described below. It is uncertain whether this finding 
could be comparable to the content described previously because no DNA content 
per OMV was provided. Nonetheless, this report provides the only data on quanti-
tatively estimated MV-mediated gene transfer. To the author’s knowledge, there 
have been no reports on MV-mediated “serial transduction” attempts to date.

DNA containing extracellular vesicles (see Table 7.1), referred to as ToEV, pro-
duced by budding was observed for T. onnurineus” NA1T. The DNA content in 
ToEV amounted 40 to 20 kb [22]. In comparing the encapsulated DNA in VP with 
such MVs, VP carried substantial DNA content, as shown in Table 7.2.

The VP production process was studied using ultra-thin sections to analyze fea-
tures of the membrane fraction at the time of particle production. The materials 
CEtrans_F2 and STEVP (Table 7.1) were used because their morphological charac-
teristics, production profiles of VP, and cargo size DNA (CEtrans_F2: 368.5 ± 8.7 kb, 
n = 49; STEVP: 372.09 ± 10.12 kb, n = 46) coincided with each other, even though 
the environmental situation of sampling sites differed [7, 8]. Consequently, the par-
ticle production initiated around the center of the cell by an adhering electron- dense 
material around the chromosome, following a hurricane-like structure formation. 
The shape was changed by condensation to create an EDB, which migrated to the 
vicinity of the cell membrane. Finally, budding took place. VP production in 
STEtrans was also consistently observed for intracellular trafficking of EDB from 
the cellular center towards the cell membrane for budding. The mode of VP produc-
tion was found to be consistent between STEtrans and CEtrans. The acquisition of 
membrane vesicle production of VP-mediated transductant was observed when the 
rel-mutant was used for the recipient, whose population size was approximately 
1/10 of that of “bona fide” VP particles.

To collect information on the cell membrane during VP production, 8 M urea 
dissolved the cell lysate membrane fraction of STEtrans, DHlactrans, and the paren-
tal E. coli and was applied to 5.2 M urea denatured-polyacrylamide gel electropho-
resis (PAGE) (Fig. 7.4d). The denatured-PAGE showed that specific proteins in the 
membrane protein fraction corresponded to the period of particle production only 
for the transductant. The cytoplasmic extrachromosomal nucleic acid fraction before 
the VP budding release period was also examined for STEtrans, CEtrans_F2, and 
the recipient E. coli AB1157. Small DNA species specific for this period were 
observed, whereas the RNA fraction showed no difference (Fig. 7.4c). Such a VP 
transductant- specific molecular species must have been committed to intracellular 
EDB production. Successful intracellular trafficking from the central part towards 
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budding proximity site might have been imitated in ESCRT of Archaea and Eukarya. 
Further biochemical studies are needed to elucidate the molecular mechanisms of 
VP production.

A standard feature of all VPs is that the particles reproduced from the trans-
ductant do not have a uniform size and are composed of varying types of particle 
species, even though particles of a specific size are selected for transduction. In 
the marine strain, approximately 20 species of VP were produced; a much smaller 
number of VP species was produced by the thermophile strain, whose trend for 
particle production of the transductant appeared to be inherited from the parental 
strain. Such pleomorphic particle production can be found in MV production; 
however, the molecular mechanism of MV depends upon the host cell belonging 
to a variety of phylogenic positions, and a commonly applicable pathway is still 
uncertain. Some similarity of pleomorphic particle production can be found 
among budding viruses. Usually, the capacity of a viral capsid is well regulated, 
and the packaging of a nucleic acid is performed by a head-full mechanism [94]. 
A eukaryotic paramyxovirus with an ssRNA genome (Myxoviridae) produces a 
varied particle size and comprises several pleomorphic viruses that may occur as 
irregular spheres of size, ranging from approximately 150 to nearly 300 nm in 
diameter [206, 207], or even as long filaments [207]. Although a prokaryotic bud-
ding virus is rare, the mode of exit is shared by pleomorphic archaeal and bacte-
rial viruses (pleomorphiclipovirus, plasmavirus) [208] and mycoplasma phages 
[160] out of 70 lipid-containing viruses known to date (Archaea: 41; Bacteria, 
Gram-positive: 21, Gram-negative: 8; lipid enveloped: 9; Archaea 7; Gram-
positive: 2) [159].

Genomic sequencing is currently in progress for recipient E. coli AB 1157, 
PfEtrans, VP source P. filamentus, STEtrans, and DHlactrans followed by com-
parative genomic analyses combining data with the generalized transducing phage 
Myoviridae P1, budding prokaryotic virus Plasmavirus Acholeplasma phage L2 
[160], its host Acholeplasma laidlawii PG-8A, and the polymorphic virus 
Pleolipoviridae HGPV- 1, HHPV-1, HIS 2, HRPV-1, 2, 3, 6 [209]. Preliminary 
findings revealed that none of the complete gene set of viruses was discovered in 
the VP transductants’ genome; however, dnaB-like Phage P1 replicative helicase, 
Phage P1 DNA invertase, Phage P1 IS5 transposase family mobile element, Phage 
P1 ssDNA binding protein, and Phage P1 methyl-directed repair DNA adenine 
transferase were shared with all VP donor microorganisms and generated 
transductants.

7.4  Function-Related Gene Transfer

The VP-mediated HGT described previously is mainly for host somatic gene 
rescue; however, the simultaneous transfer of multiple genes might have 
impacts that are much more profound on the evolutionary processes. Some 
examples of VP-mediated function transfer are described in the following 
sections.
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7.4.1  Nitrogen Fixation Acquisition of Escherichia coli by VPs 
Originating from Klebsiella pneumoniae subsp. 
rhinoscleromatis [139]

From the rhizosphere of the Sago palm tree, the Sago2 strain was isolated, which 
has a 16S DNA sequence with 99.93% similarity to Klebsiella pneumoniae subsp. 
rhinoscleromatis. Sago2 cultured in LB at 30 °C showed budding spherical particle 
(SGVP) production; the particles were purified by equilibrium CsCl density gradi-
ent ultracentrifugation. The particles had densities between 1.3183 and 1.2722 and 
diameters between 103.8 and 164.1 nm. They were used for transduction at a MOI 
of 2 by infecting the following recipients at 30  °C for 15 min: E. coli AB1157, 
DH5α [F−; ø80d, lacZ M15 endA1 recA1 hsdR17 (rk−, mk−) supE44 thi-1 λ− gyrA96 
relA1 (lacZYA-argF)U169]; and JE6937 [F−; strR]. Irrespective of UV irradiation, 
SGVPs showed no lethal effect on the recipients.

The selection of transductants was made on N− agar plates supplemented with and 
without 20-μg/mL arginine and incubated anaerobically at 30 °C. The strains, which 
could form distinctive colonies within 5 days of incubation, were regarded as the 
transductants. SGVPs without UV inactivation were successfully transferred with N2 
fixation to generate on N− agar plates. The results for DH5α were: four colonies 
(SGDHtrans), N2 fixation gene transfer frequency = 2.83 ± 3.24 × 10−7 CFU/SG-VP 
(n = 3). The results for the JE6937 recipient were: four colonies (SGEtrans), N2 fixa-
tion gene transfer frequency = 1.84 ± 0.80 × 10−8 CFU/SGVP (n = 3). To examine the 
N2 fixation ability of SGVP-mediated transductants, seven clones of SGDHtrans and 
four clones of SGEtrans were subjected to an acetylene reduction assay, with the 
parental recipients as the negative control and Sago2 as the positive control.

Consequently, anaerobically incubated Sago2  in LB and N− medium showed 
nitrogenase activity. All the SGDHtrans clones exhibited nitrogenase activity when 
anaerobically cultured in LB; however, two of them did not show nitrogenase activ-
ity in N− medium. As for SGEtrans, no clones exhibited nitrogenase activity in LB 
and N− medium. Hence, different genotypic variations of transductants could be 
generated by VPs; still, more acceptance of incorporating gene sets must have been 
affected by recipient genetic constitution.

7.4.2  Thermo- and Psychro-Tolerance Acquisition

P. filamentus ATCC700397T, which was isolated from Arctic ice, cultured in 1/2 
ZoBell at 10˚C showed budding particle production. Produced particle size in diam-
eter distributed between 86 and 346 nm that contained ca. 150 kb as dsDNA (P. fila-
mentus: 5×108 cells/mL, 2×109 VLP/mL, VP yields: 1.1 VP/cell). Although VPIF 
during the stationary phase kept ca. 14% high yields of free particles by ca. 120% 
of the cell population was given. The particles were purified in two bands by equi-
librium CsCl density gradient ultracentrifugation to give 1.2893 ± 0.0102 g/cm3 as 
the buoyant density. The upper particles were infected with E. coli AB1157. 
Consequently, the recipient lethality was not observed. As for gene transfer, three 
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transductants with the complete marker reversion exhibiting the frequency at 5.0 ± 
1.6 × 10-5 CFU/VP, referred to as PfEtrans, were obtained [138]. PfEtrans exhibited 
enhanced growth in 1/2 ZoBell at 10 °C, exceeding parental P. filamentus to attain 
~2 × 109 cells/mL. A hypothesis was examined that the gene transfer due to VPs 
originating from P. filamentus lowers the range and optimum temperature of growth 
of the recipient E. coli. The optimum growth temperature of P. filamentus is 10 °C, 
and PfEtrans exhibited a cell population in the stationary phase that enhanced 
growth to the maximum of P. filamentus cell population at 10  °C.  PfEtrans was 
examined in the still culture in 1/2 ZoBell in 3 days, consequently showing that the 
optimal temperature was reduced to 30  °C and it was possible to grow at 
0 °C. Furthermore, culture in 1/2 ZoBell at 10 °C showed a maximum cell density 
of ~2 × 109 cells/mL with VP production, by which serial transduction was also 
demonstrated  [138]. Genomic sequence analyses for P. filamentus with E. coli 
AB1157 clarified how PfEtrans acquire cold and high osmotic tolerance that resulted 
in the enhancement of genes relating to stress response and osmotic regulators 
(Chiura, Yoshizawa, Kogure, Unpublished). (Fig. 7.6).

Numerous factors are assumed to control the temperature range and the optimum 
growth. Hence, the growth–temperature relationship has been examined. To deter-
mine whether thermo-resistance gene(s) could be transferred towards mesophilic 
recipients, Aquifex sp. and T. kodakaraensis B4 originating VP-mediated E. coli trans-
ductants, STEtrans and TkBEtrans, were grown in conditions exceeding the permis-
sive temperature for E. coli (50, 56, and 70 °C) for 15 days. Consequently, the parental 
recipient, E. coli AB1157, decreased its population to less than a few percent of the 
inoculum by 48 h; then, the living cells became undetectable by LIVE/DEAD in all 
conditions [131, 134] (Fig. 7.6). It was known that heat-shock response would be 
activated when E. coli cells were transferred from a permissive state to a high tem-
perature; however, the situation exceeding 50 °C could not be rescued even with such 
a response. Hence, prolonged treatment above 42 °C would cause the disorganization 
of cell structure, resulting in cell death. On the contrary, STEtrans and TkBEtrans 
treated under the same conditions exhibited different profiles. At the initiation of the 
treatments under the restricted condition for E. coli, the population decreased by 
5–25% in 2–5 days because transductants were generated at 30 °C. After that, the 
population increased by 2- to 140-fold or at least maintained the initial inoculum size.

TkBEtrans was inoculated at an initial population size of 1.23  ×  107 cells/
mL. The cells decreased to 6.31 × 105 cells/mL (approximately 5% of the inoculant) 
at day 5, and then the cells grew to 7.48 × 107 cells/mL (approximately six-fold of 
the inoculant) at day 13 at 50 °C. The generation time of the transductant in the 
period of propagation was estimated to be approximately 28 h. At 56 °C, the cells 
decreased to approximately 3 × 106 cells/mL (~25%) at day 5, and then the cells 
grew to 1.95 × 107 cells/mL (~1.6-fold of the inoculant); the generation time in the 
growing period was estimated to be approximately 73 h. At 70 °C, the cells decreased 
to 1.53 × 106 cells/mL (~12% of the inoculant) at day 3, and then grew to 2.43 × 107 
cells/mL (~2-fold of the inoculant) at day 13, of which generation time during the 
propagation was estimated to be approximately 266 h.

Change in the population under high-temperature incubation for STEtrans is also 
given in Fig. 7.6. For STEtrans (initial population size: 4.20 × 107 cells/mL), the 
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population was observed to decrease to approximately 2 × 107 cells/mL (~50%) 
toward the second day. It maintained this level for another 4 days, after which the 
cells grew to approximately 6 × 109 cells/mL (~140-fold of the inoculant) in the 
following 2 days; finally, the population became stable. The generation time of the 
transductant during the growth was estimated to be approximately 6 h. At 56 °C, the 
cell number at day 2 was observed to be approximately 2 × 107 cells/mL (~50%), 
and its population became constant afterwards. At 70 °C, approximately 2 × 107 
cells/mL (~50%) of cells were observed on day 2, and its population became con-
stant afterwards.

This trans-phyla thermo-tolerance transfer is a consequence of broad-host-range 
transduction from a thermophile to a non-thermophilic enterobacterium. The trans-
ductants used above were first selected by the prototrophic reversion of the auxotro-
phic recipient at 30  °C and resided at the mesophilic temperature for several 
generations. Even after such a period when the transductants remained at a permis-
sive temperature, the thermo-tolerance trait of the transductant suggesting VPs con-
tributes to enhanced host adaptation.

Although it is often assumed that phages do not intrude on the genus barrier 
[92], this concept has been questioned. The host ranges of marine phages have 
been shown to vary by Wichels et al. [210]. Jensen et al. [211] disputed that nar-
row host- ranges are an isolation artefact. Substantial variability in host ranges 
was also reported by Suttle [212] for cyanophages. Viruses might exhibit a 
broader host range in deep waters than in surface waters [97]. However, viruses 
also can influence the stable stockpile of genes in prokaryotic species on eco-
logical scales [213].

7.4.3  Relationship between Cell Population Density 
and Induction Frequency of VP Lysogen: A Marine- 
Originating VP-Mediated Transductant, CEtrans [214]

In a natural water column, FVIC was observed to be an equilibrium because of 
cell and virus interactions; however, there is no substantial evidence to interpret 
such a situation. VP lysogens started particle production when the host attained 
the stationary phase, whose VPIF is commonly quite low (the Pacific Ocean and 
Mediterranean Sea average, 6.92 ± 3.93%, n = 3925). Namely, less than 10% of 
the population would commit to particle production. Some VP lysogens, such as 
Vibrionaceae, produce VP exceeding the host population, which has been 
ascribed to their high VPIF [6]. One of the well-known characteristics of 
Vibrionaceae is its quorum- sensing (QS) behavior. However, the current under-
standing of QS is that the signal is not only solubilized in an aqueous environ-
ment but is also packaged in MVs and delivered in varying propensities to 
different bacteria [28, 29, 39, 40, 197]. As described in Sect. 7.6, VP transfers 
plasmid and cytoplasmic material; VP can transfer cytoplasmic material, so VP 
production must be intimately connected with the community situation. In this 
situation, a change in VPIF under different VP lysogen abundances around the 
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host secreted diffusible substance. CEtrans_F1 was grown in minimal medium 
(MM) after Davis for approximately 2000 h and then the cells were removed to 
recover the supernatant, followed by a subsequent filter with 0.2 μm and 30 kDa 
cut-off membranes to collect the permeate. This permeate was used as the base 
material. The conditioned medium (CM) was prepared by adding the nutrient 
supplement as MM (Fig. 7.7).

CEtrans_F1 was cultured as described above for 48 h, corresponding to the 
period to enter the stationary phase; then, centrifugally collected cells were 
washed with Davis salt. Two sets of 1 × 106 and 1 × 108 cells/mL as the initial 
cell abundance were prepared. For one set of 1 × 107 and 1 × 108 cells/mL, the 
specimen was cultured in the MM as the fresh medium (FM); another set of cells 
was cultured in the CM. The same conditions were used for both sets of speci-
mens. Growth profiles were monitored. Subsamples were intermittently with-
drawn to examine VPIF and the particle yield per cell by EM. As a result, VP 
abundance for the CM series was 10-fold higher than that of FM at the begin-
ning; after 161 h of incubation, it increased to 100-fold higher than that of FM 
(Fig. 7.7a).

The initially high VPIF for every specimen was ascribed to the inoculant being 
started with VP production collected from the 48 h culture. The high initial cell 
abundance seemed to enhance VP induction; furthermore, the CM showed exces-
sive VP induction. In the usual situation of small cell abundance, VPIF was usu-
ally suppressed less than 20%, while more than 80% of the population committed 
to VP production with a high cell abundance in the stationary phase (Fig. 7.7b). 
The particle yields per cell (2.7 ± 0.7. n = 96) were somewhat consistent with each 
other; however, the extended production period and higher VPIF resulted in high 
yields of produced VPs for the CM series (Fig. 7.7c). The result suggests that a 
diffusible substance was profoundly affected by the induction of VPs. A QS sys-
tem is considered to be a bi-directional function towards lysogenized entities and 
their host. QS is a system for bacteria to communicate with each other with a dif-
fusible substance [215].

7.5  Molecular Evidence for VP-Mediated Gene Transfer

Attempts have been made to perform polymerase chain reaction (PCR) for molecu-
lar evidence of VP-mediated gene transfer and construct a clone library from 
VP-derived DNA for gene determination [136]. STEVP was infected with E. coli 
DH5α (ΔlacZYA-argF relA1 recA) and selected by lactose utilization acquisition; 
arginine prototrophism resulted in the generation of E. coli DHlactrans. DHlactrans 
produced DHlacVP (size ± SD: 69.4 ± 2.1, 78.6 ± 1.1, and 93.4 ± 4.0 nm; n = 480) 
with smaller diameter and more compact encapsulated DNA (size ± SD: 74.9 ± 6.7, 
108.5,  ±  4.5, and 181.9  ±  23.4 kb; n  =  4) than parental STEVP (size  ±  SD: 
128.3 ± 2.3 nm, n = 1225; DNA size ± SD: 389.7 ± 6.5 kb, n = 49). Particle produc-
tion commenced immediately after inoculation, accompanied by transparent mem-
brane vesicles (DHlacMV), whose proportion to the VP with electron-dense 
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content was approximately 10%; this can be ascribed to relA1 because a compa-
rable phenomenon has been observed for STEVP-infected E. coli JM109 transduc-
tants  (Chiura, Unpublished). Production of the membrane vesicle concomitantly 
changed with a change in particle production to maintain the MV/VP ratio 
(Fig. 7.4f).

The recA mutation is a point mutation caused by a substitution of glycine to 
aspartic acid (G160→D160), which prevents the homologous recombination of exog-
enous fragments from the host chromosome (“Strain-DH5a”; https://cogsc2.biol-
ogy.yeal.edu/Strain.php?=43590). Hence, the cargo DNA strand stays in the 
extrachromosomal state after STEVP infection in a DH5α recipient. Lactose utiliza-
tion made the selection of the transductant; the cargo content must have been only 
for the lactose metabolism with additional VP production-responsible genes. 
Generated DHlactrans reproduced DHlacVP to accomplish the serial transduction. 
Therefore, the cargo DNA size is postulated to decrease as a consequence of pack-
aging the ΔlacZYA-argF frame of 78 kbp (Fig. 7.8b) to complement the host, with 
an additional 16 kbp of DNA encoding the VP production-responsible genes (PPRG) 
originating from STEVP.  VP cargo size decreased, which supports the above 
hypothesis, as shown in Fig. 7.8a.

Three-step PCR was used for verification of lacZ with lacZ-specific primers 
on VP-derived extrachromosomal DNA and total DNA extracted from DH5α 
and DHlactrans. Positive DNA amplification was observed in the VP transduc-
tant DHlactrans and VP-derived extrachromosomal DNA (Fig.  7.8c, d). 
Nonetheless, DHlacVP cargo content was found to be composed of the whole 
range of E. coli chromosomal genes (Kawarabayashi, personal communication). 
Hence, the above hypothesis is disproven. DHlactrans was subjected to a 
genome sequence together with STEtrans and E. coli AB1157. The sequence 
data of DH5α was obtained from the NCBI database (Escherichia coli strain 
DH5alpha chromosome, complete genome https://www.ncbi.nlm.nih.gov/nuc-
core/CP025520.1?report=genbank). The comparative genomic analysis is cur-
rently in progress (Table 7.6).

Preliminary findings revealed that the recA1 mutation in DH5α remains 
unchanged in DHlactrans and no introduction of wild recA was found from 
STEtrans. The total amino acid sequence identity between DH5α and DHlactrans is 
99.39%. In all, 26 unique genes, of which 25 are hypothetical proteins, are exclu-
sively found in DHlactrans, in addition to 79 non-synonymous substitutions. 
Genomic analysis revealed the genetic robustness of the recipient as a biological 
entity, together with the flexibility to adapt to environmental change. There must be 
an unknown scheme for genetic recombination upon intracellular VP production. 
Including the material from the experiment described in Sect. 7.4.2 on thermo- and 
psychro-tolerance acquisition, all host and recipient strains were found to share a 
generalized transducing phage P1 recombinase gene; therefore, such a recombinase 
might have been committed in recombination with host chromosomal fragment rep-
lication to produce the VP cargo. Thus, the gene set for the VP production apparatus 
may have been widely distributed among cellular organisms in advance throughout 
evolutionary history.
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Fig. 7.8 A change in VP cargo size depended on the transduction recipient, loci of target 
genes in E. coli chromosome, and PCR amplification of target genes in DH5α and DHlac 
trans. (a) After in situ lysis, the treated gel plugs were loaded on 1.0% agarose ME gel and run in 
a gel with 0.5× TBE buffer at 14 °C; switching time, 50–90 s; runtime, 22 h; angle, 120°, and volt-
age gradient, 6 V/cm. A higher yield of ~120 kb DNA fragments was gained in samples washed 
with salt. Lanes: λ ladder, size marker (48.5 kb – 1.2 Mb, FMC, USA); E. coli AB1157, the trans-
duction recipient of STVP; STEVP, VP produced by STEtrans; STEtrans: a transductant of E. coli 
AB1157 generated with the aid of STVP-mediated transduction originated from Aquifex sp.; 
DHlacVP, VP produced by DHlactrans; DHlactrans, a transductant of E. coli DH5α generated 
with the aid of STEVP-mediated transduction originated from STEtrans. Note that the cargo size 
of DHlacVP decreased by 1/3 from STEVP.  The recipient E. coli AB1157 is an auxotrophic 
mutant but has wild rel, whereas E. coli DH5α has a deletion of lacZ-argF as depicted above and 
mutations of relA1 and recA. The recipient with the relA mutation was found to decrease the cargo 
size of reproduced VPs from VP-mediated transduction. (b) PCR primers were designed to amplify 
genes shown as arrows. Sequence information was obtained from the database “Profiling of E. coli 
Chromosome” (PEC: http://www.shigen.nig.ac.jp/ecoli/pec/index.jsp). DH5α has a deletion frame 
over the lacZ-argF region (broken line). Genes yagX and yahF were located inside, whereas yagF 
and mhpB were located outside the deletion frame. The sharp end of the individual gene indicates 
the transcription direction. All genes described here are non-essential. (c) Amplification of total 
DNA prepared from the recipient E. coli DH5α (R) and the transductant DHlactrans (T) by using 
specific primers for marker genes, lacZ, argF, and mhpB. The gene mhpB locates ~7 kb down-
stream of lacZ in E. coli genome and therefore should be contained in both R and T DNA. The 
reaction mixture was directly loaded on 1.0% agarose gel. Template-primer pairs are shown as 
follows: Lane, T + lacZ template; R + lacZ template; −w/o addition of lacZ template; T + argF; 
R + argF; −w/o addition of argF template; T + mhpB template; R + mhpB template; −w/o addition 
of mhpB template. λ/Sty size marker: 19.33, 7.74, 6.22, 4.26, 3.47, 2.69, 1.88, 1.49, 0.93, 0.42, and 
0.07 kbp. (d) DNA extracted from DHlactrans was amplified with primers (+) for six positional 
marker genes regarding non-template reactions (−). Lane, (+ and −) underneath respective maker 
gene stands for +, template added and −, without addition of the template. λ/Sty: size marker

Table 7.6 Genomic feature of the recipients and the transductants

Genome E. coli DH5α DHlactrans STEtrans E. coli AB1157
Size, bp 46,05,446 45,86,117 46,07,192 45,96,195
GC content 50.8 50.8 50.8 50.8
No. of contigs (with PEGs) 1 33 26 2
No. of subsystems 585 583 591 591
No. of coding sequences 4433 4397 4368 4477
No. of RNA 108 120 112 107
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7.6  VPs Also Transfer Plasmid and Cytoplasmic Material

VPs from the marine strains exhibited 2,4D utilization and drug resistance transfer. 
Hence, cellular proteinaceous material and plasmids for drug resistance transfer to 
the recipient, mediated by VPs, in addition to the host chromosomal fragments 
examined. To survey the cytoplasmic substance transfer capability of VPs, conjuga-
tive plasmid pYFP-Bluescript (yfp::ampr) was constructed from BamHI-NotI 
double- digested fragments pEYFP-Mito (YFP) and Blue-script II kS (ampr) to gen-
erate fusion plasmid pYFP-Bluescript (yfp::ampr), applied to E. coli JM109 (recA1, 
endA1, gyrA96, thi, hsdR17 (rk

−mk
+), e14− (mcrA−), supE44, relA1, Δ(lac-proAB)/F’ 

[traD36, proAB+, lac lq, lacZΔM15]) and selected white colonies. The obtained 
transformants, E. coli JM109 (yfp::ampr), exhibited ampicillin resistance and yel-
low fluorescence under B excitation. Then, STEVP was infected with E. coli JM109 
(yfp::ampr) at a MOI of 3.0 to generate the lactose utilization transductants 
(JMlactrans) with a transduction frequency of 1.0 × 10−5 CFU/particle [137].

JMlactrans acquired budding particle (JMlacVP) production together with 
empty vesicles starting immediately after the culture; like DHlactrans, this was 
ascribed to the relA1 mutation of the recipient. The abundance of of JMlacVPs in 
the 96-h culture was ~1 × 1011 particle/mL, with 1/10 abundance of the vesicles. 
Collected and purified JMlacVPs exhibited yellow fluorescence under B excitation. 
Consequently, VPs originating from the thermophile were demonstrated to encapsu-
late cellular proteinaceous material (YFP) in the particle. Applying JMlacVPs to an 
E. coli DH5α recipient at a MOI of 9.9 resulted in the generation of ampicillin- 
resistant E. coli DH5α with a transduction frequency of 1.9 × 10−6 CFU/particle.

Some novel properties of VP-mediated broad-host-range gene transfer originat-
ing from Aquifex sp. after several serial transductions showed transferability of cel-
lular proteinaceous material and plasmids for drug resistance. Thus, the JMlacVP 
characterized above might be a novel pathway for gene and material flux in the 
environment, contributing to the dispersal of drug resistance among environmental 
microbes [4, 5, 9].

7.7  VP Production-Responsible Gene(s) Are Recombined 
with the Host Chromosome

The author defined VPs as being capable of infecting, transferring, and budding 
reproduction in a recipient cell and exceeding the phylogenetic family level from 
the original host, as previously described. Plentiful VLPs are found in the oceans 
that exceed the cell population by tenfold, but their original host is uncertain because 
a VLP is defined as a particle that is morphologically like a virus under electron 
microscopy. Other than the bona fide virus, VPs and MVs compose VLP assem-
blages, whose cargo is considered to be information substances. In other words, the 
VLP assemblage is an enormous gene pool composed of total organismal genes 
pursuing HGT in situ. The organismal range—of which individual VLPs can infect, 
propagate, and maintain—corresponds to the host range. The author has isolated 
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VLPs from the natural environment originating from various hosts to verify as VPs 
by applying them to various recipients, whose hosts are phylogenetically distant 
from the family level. Although the first VP phenomenon was demonstrated by 
adopting VPs originating from a marine proteobacteria (AkVP), the VP is not capa-
ble of transferring genes toward exceeding phylum. An extreme example of a VP 
capable of transferring genes towards the entire Domain is produced by an Aquifex 
sp. (STVP). Thus, there must be a level of accessibility for the VP to the recipient 
cell that is still unknown. If VPs have a VP production gene (PPRG), then elucida-
tion of the PPRG redefines the new HGT scheme establishment. Would PPRG be 
transferred exclusively by VP infection of the recipient? If PPRG is integrated with 
the chromosome, then conjugative transfer would be possible. If PPRG is like a 
plasmid, there must be an incompatibility group. If PPRG is like a bona fide virus, 
then there must be new category group. Thus, the possibility of the conjugative 
transfer of VP production must be considered.

A particular genetic subsystem for particle production must be inherited in the 
progeny transductant. Thus, the locus of the VP production-related gene, namely 
PPRG, was investigated by employing a classical microbial genetics method. First, 
STEVP was infected at a MOI of 0.29 in an E. coli W2252 (HfrC; metB λ− Sms) 
recipient and selected by met prototrophic reversion; met+ E. coli transductants were 
successfully obtained with a transduction frequency of 1.43 ± 0.82 × 10−7 CFU/par-
ticle (n  =  3), referred to as Hfrmettrans. Then, Hfrmettrans (donor) and E. coli 
AB1157 (F−; leuB proA hisG argE Smr, recipient) were applied to conjugation at 
donor/recipient ratios of 1:30, 1:50, and 1:90. Combination HfrC without VP infec-
tion and the recipient F− was used as the control [135].

For arg and his markers of Hfrmettrans, conjugative transfer frequencies toward 
AB1157 were comparable to that of the E. coli W2252 control, whereas leu marker 
frequency decreased by four orders of magnitude; furthermore, pro marker fre-
quency was undetectable. Moreover, about half the proportion of the generated 
Hfrmettrans-E. coli AB1157 transconjugants were incapable of particle production. 
Gene transfer of E. coli W2252 at conjugation begins at 13 min on the linkage map 
(thrA: 0 min) and proceeds in the counterclockwise direction [216]. Hence, pro and 
leu markers should be translocated to the recipient before arg and his markers from 
the donor. Namely, DNA originating from STEVP is likely to integrate near proA 
(5.6  min) and leuB (1.7  min) loci. Likewise, proA and leuB were recombined 
between hisG (45.0 min) and the terminal of conjugation (13 min) because the gen-
erated transductant showed prototrophic reversion for pro and leu markers. STEVP 
can transfer a dsDNA fragment of approximately 370 kb [130] and the distance 
between proA and leuB markers is 180.9 kb [217]. Therefore, STEVP would have 
the capacity for multiple recombinations at the transduction of E. coli W2252. 
PPRG would probably be transferred at the beginning of conjugation, being likely 
to locate near the conjugative terminal point because the coordinated marker trans-
fer with leu, arg, and his markers was observed without the pro marker. VP-mediated 
generalized transduction has been observed [4]. Generalized recombination involves 
large regions of homologous DNA sequences; however, site-specific recombination 
involves considerably smaller segments of DNA, in which the recombination event 
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occurs at a specific sequence—that is, the recognition sequence [218]. Based on this 
result, proA and leuB were integrated between 13 and 45 min on the linkage map of 
E. coli. This result indicates that the recombination in the VP-mediated transduction 
should not be ascribed to homologous recombination.

Furthermore, the existence of the recognition sequence or insertion sequence was 
postulated. From the above findings, the bacteriophage P22 (attP22: 5.6 min) attach-
ment site is located within the region of 1.7–5.6 min on the E. coli linkage map [217, 
219, 220], which would be associated with the PPRG integration region. VP is dis-
tinct from the P22 phage regarding shape, DNA molecular mass, host range, and so 
on. However, generalized transduction occurred by a wrapping choice mechanism 
[191, 192, 221], which might indicate that a comparable mechanism is involved in 
VP-mediated transduction. Indicated site-specific recombination may provide a ref-
erence to explain the genetic transfer processes in VP-mediated transductions.

Consequently, PPRG is likely to locate between 1.7 and 5.6 min on the transduc-
tant chromosome. A sulfur-reducing, hyperthermophilic archaeon, Thermococcus 
onnurineus NA1T, produces extracellular vesicles referred to as ToEV by budding 
[22], with a TEM image resembling that described for VP above. The nucleic acid 
retained in the ToEVs amounted 40 to 20 kb. Interestingly, the host T. onnurineus 
chromosomal region corresponding to 9.4  kb is not encapsulated in ToEV.  The 
region encodes hydrogenase, formate- and alcohol-dehydrogenase, oxidoreductase, 
Fe and S binding protein; however, why these enzyme genes are not encapsulated in 
the particles is unknown. As described previously, the conjugation of E. coli AB1157 
with HfrmetEtrans was not able to generate proAB transconjugant. The region of 
proAB encodes dehydrogenase, protein-kinase, and DNA binding protein. The lack 
of transconjugant generation for that region might imply that the sequence region in 
the chromosome somehow prevented transfer from the encapsulation to the particle. 
A comparative genome analysis for such a region might provide some insight.

7.8  Summary and Concluding Remarks

7.8.1  Discovery

Plasmid-like elements were extracted from marine isolates by 2,4 D utilization and 
prototrophic reversion of auxotrophic recipient by transformation. Electron micros-
copy observations of PLE revealed the existence of particles instead of DNA strings 
being postulated intracellularly as maturing phage-like particles. Thus, the term 
“plasmid-like elements” was changed to “phage-like particles.”

The spontaneous release of PLPs to the culture broth started when the host cell 
entered the stationary phase. Collected and purified PLPs accomplished transductant 
generation of the auxotrophic recipient beyond the family border. The spontaneous 
release without host cell disruption by PLPs from the transductant was observed, 
which was inconsistent with the concept of virus-mediated transduction. This curious 
and unusual manner of gene transfer was denoted as serial transduction, and the medi-
ator for this gene transfer phenomenon is referred to as the broad- host- range VP.
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7.8.2  Definition

VP-mediated transductants can produce new progeny particles by budding, which 
are again infectious to carry on the same transfer gene toward the next recipients. 
The resulting second-generation VP-mediated transductants again produce particles 
like the original donor, which again infect and induce successive transductants; this 
phenomenon is termed “serial transduction.” Under current technical restraints, 
confirmation of this phenomenon is exclusively provided by the budding particle 
production from the transductant.

7.8.3  Distribution

VPs and VP producers must be ubiquitous on this planet because they have been 
found in a variety of environments, including marine, thermal, and terrestrial.

7.8.4  Physico-Chemical Characteristics

Based on studies to date, the morphology of VPs takes a spherical shape with a 
diameter between 20 nm and 500 nm, resembling a spherical virus. The collection 
and purification of VPs may be achieved by a method used for environmental viruses 
because the VPs reside in a virus-like particle fraction (20 nm < VLPs <100 kDa) in 
the environment. The concentration of VPs in environmental samples and the cul-
ture supernatant of producers was found by the tangential flow technique followed 
by equilibrium CsCl density gradient ultracentrifugation. VPs are considered to 
have lipid components in their surface structure; the buoyant density of VPs is 
lighter than that of a bona fide virus.

VPs are composed of cargo DNA combined with proteinaceous material and 
cytoplasmic substances without RNA, whose surface must have embedded enzyme 
domains (proteinase/peptidase and glycanase)  [222] to achieve membrane fusion 
the infection of the recipient. The production of a VP appears as an electron-dense 
body under electron microscopy, starting around the center of the producing cell by 
a spooling DNA strand covered with proteinaceous material to make a reel struc-
ture. Then, the reel structure is translocated to the vicinity of the cell membrane, 
from where the budding-like extrusion of the VP occurs. Finally, pinching releases 
the VP to the external environment. The yield of VPs per cell was found to be an 
average of three particles, so the host strictly controls the production of VPs. The 
produced VPs exhibit a pleomorphic discrete size distribution that is even used to 
select a distinct range of VP sizes. A VP’s cargo DNA could range from 5 kb to 
2 Mb in size, whereas the volume of a VP does not always correspond to the molec-
ular type of DNA estimated by PFGE. Large VPs may encapsulate multiple seg-
ments of somewhat similar sizes.
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7.8.5  VPs as a Biological Function

No lethal effects (or a slight lethal effect) were observed for the VP on the recipient, 
whereas enhanced growth was found in some cases. A trend of lethal effects may be 
found in a smaller subset of close phylogenic positions between the producer and 
the recipient. Gene transfer was observed for a single gene locus as well as gene 
cluster, contributing to adaptations such as temperature and osmolality tolerance.

7.8.6  Resemblances and Differences of VPs with the Budding 
Virus and the MV

The host range of an HGT mediator is defined as the breadth of organisms that are 
capable of infecting and expressing their function, with limits on the host cell 
ascribed to the mediator, host, or environmental characteristics. However, no stan-
dard definition of a broad-host-range mediator currently exists because of the view-
points of different disciplines.

The author empirically defines a broad-host-range vector particle as a VP that is 
capable of infecting, transferring, and budding reproduction in recipient cell and 
exceeds the phylogenetic family level from the original host.

VPs are characterized by a massive chromosomal gene transfer ability together 
with cytosolic substances, including plasmids and proteins. VPs are distinct from 
budding viruses and MVs. Although pleomorphic viruses have been recently con-
ferred, pleomorphic viruses have a strict host range. None of the pleomorphic or 
budding virus genes are found in the VP-mediated transductants’ genomes (Chiura, 
2018, Unpublished data). The production scheme of MVs is considered to be 
entirely different based on the DNA cargo size and yields per cell. The proportion 
of DNA containing MVs is reportedly quite small.

The molecular mechanism for VP production must be partly shared with bud-
ding viruses and MVs, whereas the scheme for VP production is considered to be 
unique. A VP production scheme would be an intermingled function taken from the 
virus and variety of the cells during the evolution of life to be maintained through-
out the cell.

Considering that VP budding release is specific to the stationary phase, a particu-
lar purpose for the VP lysogenic host must have existed for the VP production. 
Focusing on Aquifex sp., the originating STVP encapsulated approximately 400 kb 
DNA species; the host strain’s genome size of 1.5 Mb corresponds to approximately 
3.2 VPs yields per cell. STVP-mediated transduction toward E. coli generated VP 
lysogens of STEVP. Encapsulated DNA species amounted to the same as STVP, 
approximately 400 kb, whereas VP yields per cell were consistent with the original 
host. Three times more VP production would be necessary to cover the whole E. coli 
genome size of 4.6  Mb. To compensate for the shortage of the amount, STEVP 
should encapsulate three sets of 400-kb DNA cargo in one particle. As seen above, 
AkVP originating from A. kielensis is considered to carry plural segments of DNA 
cargo, which might have induced pleomorphism of the particle.
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VP assemblage is considered to be the gene pool of VP lysogens because the 
DNA cargo in VPs consists of the host genome chromosome. Microorganisms in situ 
are continually suffering from environmental stresses, with the most severe impair-
ment being chromosomal damage. Among the DNA repair systems, mismatch repair 
is the most effective system [174] to maintain the sequence fidelity; however, the 
system could not be achieved without the template strand. The most prominent role 
of VPs in the environment is likely to be the provider for the template strand to cure 
cells in need, in addition to carrying genetic information to be shared in the microbial 
assemblage to achieve environmental adaptation enhancements.
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8Bacterial Transposable Elements 
and IS-Excision Enhancer (IEE)
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Abstract
Insertion sequence (IS) elements are the simplest transposable elements (or 
mobile genetic elements) and are widely distributed in bacteria. The transposi-
tion and proliferation of IS elements induce not only insertional gene inactiva-
tion and modification of gene expression but also a wide range of genomic 
rearrangements, such as deletions, inversions, and duplications. IS-mediated 
bacterial genome diversification has been extensively studied in enterohemor-
rhagic Escherichia coli (EHEC). Excision of IS elements occurs frequently in 
O157, the major serogroup of EHEC isolated from humans, and IS-excision 
enhancer (IEE) promotes IS excision from the O157 genome in a transposase- 
dependent manner. IEE promotes the excision of IS elements belonging to sev-
eral IS families, and various types of genomic deletions are also generated via 
IEE-promoted IS excision in O157. In addition, IEE has been found in specific 
lineages of enterotoxigenic E. coli (ETEC) strains isolated from swine, in which 
the iee genes are located on integrative elements that are similar to SpLE1 of 
EHEC O157. iee-positive ETEC lineages also contain multiple copies of IS ele-
ments at genomic locations that exhibit significant variations between strains, as 
observed in O157. These data and the phylogeny of IEE homologs found in a 
broad range of bacteria suggest that IEE has coevolved with IS elements and 
plays pivotal roles in bacterial genome evolution by inducing IS removal and 
genomic deletion.
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8.1  Transposition of Insertion Sequence (IS) Elements 
in Bacteria

8.1.1  IS Elements

Transposable elements (TEs) are widely distributed in eukaryotic and prokaryotic 
genomes. They are considered selfish (or parasitic) genetic elements, but they also 
play important roles in genome evolution [1]. IS elements, which are the simplest 
TEs, are generally 700–2500 bp in size and encode only the transposase (TPase) 
that catalyzes their own transposition [2]. The transposition and proliferation of IS 
elements induce not only insertional gene inactivation and modification of gene 
expression [1] but also a wide range of genomic rearrangements, such as deletions, 
inversions, and duplications [3, 4].

In bacteria, several thousand types of IS elements have thus far been identi-
fied from various species and strains [5] and classified into approximately 20 
families based on the sequences of their TPases and terminal inverted repeats 
(TIRs) as well as several other features [2]. The mechanism of transposition dif-
fers between IS families, but IS elements generally transpose either by leaving 
the original copy in the donor DNA (termed copy-and-paste, or replicative, 
transposition) or by eradicating it from the donor DNA (cut-and-paste, or non-
replicative, transposition) [6], as shown in Fig.  8.1. Most IS elements create 

ISIS

IS

Donor Target

IS

CUT and PASTE
(non-replicative)

COPY and PASTE
(replicative)

Fig. 8.1 Two types of transposition mechanisms of IS elements. Different transposition reactions 
generate different products. In copy-and-paste (or replicative) transposition, an IS element transposes 
to the target DNA and leaves the original copy in the donor DNA. In cut-and-paste (or non- replicative) 
transposition, the IS element is excised from the donor DNA and inserted into the target DNA
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duplicated sequences 2–14 bp in length at the site of insertion, called target site 
duplications (TSDs), and the length of the TSD differs depending on the type of 
IS element is inserted.

8.1.2  Transposition Mechanism of the IS3 Family

The mechanisms of IS transposition have been intensively studied for representative 
IS elements from several families; among these are the members of the IS3 family. 
The process of transposition in this large IS family is initiated by the formation of a 
“figure-eight” intermediate, which is followed by the generation of a circular DNA 
molecule (called an IS circle) that is randomly inserted into the target DNA [2]. 
Although the entire process is not yet fully understood at the molecular level, it has 
been demonstrated that a replicative pathway is used to generate the IS circle from the 
figure-eight intermediate for IS911. Thus, IS911 transposes by the copy-and- paste 
mechanism [7].

If the copy-and-paste mechanism is the major pathway for IS3 family transposi-
tion, the excision of IS3 family members rarely occurs during the normal transposi-
tion process. Indeed, it has long been believed that the excision of IS elements is a 
rare genetic event in bacteria [8] because end-joining systems, which are required to 
reseal the donor DNA for its survival after IS excision, have been identified only in 
a limited number of bacterial species [9]. Thus, very little attention has been paid to 
the genetic events that occur with the donor DNA upon IS excision. TE excision in 
bacteria has been described in several reports, but these excision events are consid-
ered TPase-independent. Instead, they depend on host factors required for replica-
tion slippage and repair functions [10, 11]. In practice, these excision events have 
been observed at low frequencies.

However, several lines of evidence show that the excision of IS629, a member of 
the IS3 family, occurs frequently in the enterohemorrhagic Escherichia coli (EHEC) 
O157 strains that have been recently reported (see Sects. 8.2 and 8.3).

8.2  IS-Mediated Bacterial Genome Diversification  
in EHEC O157

8.2.1  IS629: The Most Abundant IS Element in EHEC O157

EHEC O157 produces highly potent cytotoxins (Shiga toxins Stx1 and/or Stx2) and 
causes diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome; thus, it is 
regarded as one of the most serious food-borne infections worldwide [12]. O157 
strains contain many IS elements, and these elements play important roles in O157 
genome diversification. For example, the O157 strain RIMD0509952 (referred to as 
O157 Sakai) contains 25 types of IS elements (116 copies in total), the most abun-
dant of which is an IS3 family member, IS629 (also called IS1203v). Twenty- three 
copies are present on the chromosome and a large virulence plasmid, pO157 [13, 14]. 
Of these IS629 copies, 17 (74%) are apparently intact, whereas only 22 copies 
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(24%) are intact among all other types of IS elements, suggesting that active copies 
of IS629 are maintained in O157.

The intact IS629 consists of two open reading frames (ORFs), orfA and orfB, 
which overlap in the −1 frame, and TIRs located on the ends of the IS element. IS629 
TPase is produced as a fused protein, OrfAB, by translational frameshifting between 
the two ORFs [15], which is a common feature of the IS3 family [16]. The −35 and 
−10 promoter regions and the Shine-Dalgarno sequence for the TPase are involved 
with the TIR located upstream of orfA [17]. Both TIRs are recognized by the TPase, 
which contains a DNA-binding motif in the N-terminal domain encoded by orfA, and 
this process is required for the transposition of IS3 family members [2].

8.2.2  Structural Polymorphisms in O157 Genomes

The chromosome of O157 Sakai contains 1.4 Mb of sequences that are not present 
in the E. coli laboratory strain K-12. These O157 Sakai-specific sequences are scat-
tered throughout a 4.1-Mb chromosome backbone that is shared with K-12 [13]. 
Most of the large O157 Sakai-specific sequences are prophages and prophage-like 
integrative elements (Sp1–Sp18 and SpLE1–SpLE6, respectively), and many of the 
virulence-related genes in O157 have been introduced into the O157 genome by 
these mobile genetic elements (MGEs) or the pO157 plasmid [13, 14]. K-12 also 
contains 11 prophages and prophage-like integrative elements, implying that bacte-
riophages are major contributors to the genomic diversification of E. coli [18]. High 
degrees of genomic diversity have been identified in the O157 lineage by whole 
genome PCR scanning (WGPS) analysis, a long-range PCR-based method to com-
pare genome structures [19], and comparative genomic hybridization (CGH) analy-
sis using an O157 oligo DNA microarray [20]. Among the numerous structural 
polymorphisms identified, large-size structural polymorphisms (LSSPs) are present 
in regions corresponding to prophages, indicating that prophages are a major con-
tributor to genomic diversity within the O157 lineage [19]. This finding is supported 
by the results of genomic comparisons of O157 substrains obtained from rounds of 
repeated subculturing in vitro, i.e., spontaneous recombination between homologous 
prophage regions caused large-scale inversions within the O157 chromosome [21].

Numerous small-size structural polymorphisms (SSSPs), ranging from a few 
hundred base pairs to several kilobase pairs, have also been identified in the O157 
lineage. In a systematic genome-wide analysis of SSSP-containing genomic regions 
in nine O157 strains, it was found that a large portion of the SSSPs (130 of 165) 
were generated by genetic events associated with only two types of IS elements, 
IS629 and ISEc8 [22]. ISEc8 is the second-most common IS element following 
IS629 (11 copies) in the O157 Sakai genome, and most ISEc8 insertions identified 
were simple insertions. In contrast, IS629 induced a wide variety of genomic rear-
rangements, including simple insertions, simple excisions, and various deletions of 
IS-flanking regions ranging in size from 1 bp to several kilobase pairs. These findings 
indicate that IS629 (and also ISEc8), along with bacteriophages, serves as an impor-
tant driving force to generate the genomic diversity of O157 strains.
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Insertion sites for IS629 and ISEc8 exhibit a highly biased distribution in O157 
genomes (Fig. 8.2): these IS elements are much more frequently located in O157- 
specific regions than in the chromosome backbone [22]. The genomic locations of 
other types of IS elements in the O157 Sakai genome are also highly biased toward 
O157-specific regions, and thus this trend is not specific to IS629 and ISEc8 [22]. 
As shown in Fig. 8.2, many copies of IS629 and ISEc8 are inserted in prophages, 
prophage-like integrative elements, and plasmids, which have carried these IS ele-
ments into the O157 genome and constitute a large proportion of O157-specific 
regions [13]. Given that IS elements (at least IS629 and ISEc8) are randomly 
inserted into the genome, it is most likely that clones with IS insertions into genes 
with essential functions have been selectively removed from the population, and 
those with insertions into regions that are less essential or nonessential for growth, 
such as many of the O157 Sakai-specific regions, have survived. Accordingly, IS 
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Fig. 8.2 Distribution of IS629 and ISEc8 in the nine O157 genomes. The locations of IS629 and 
ISEc8 on each chromosome and plasmid are shown. Red vertical lines, insertion sites for IS629; 
gray vertical lines, insertion sites for ISEc8; blue rectangles, regions corresponding to prophages 
and prophage-like integrative elements
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insertion and IS-mediated genomic deletion have induced the inactivation or dele-
tion of various foreign genes carried into the O157 lineage by MGEs, along with 
genes required for their mobility [22]. This suggests that IS insertion and IS-mediated 
genomic deletion generate various phenotypic differences among O157 strains, 
including differences in potential virulence (see Sect. 8.3.1).

8.2.3  IS-Printing: The IS Locus-Based Typing Method for EHEC O157

The highly variable distribution of IS629 between O157 genomes was exploited 
to develop a multiplex PCR-based strain-typing method for O157, termed 
IS-printing [23]. The principle of the IS-printing method is schematically presented 
in Fig. 8.3. An outward universal primer for IS629 and a set of outside primers are 
designed for the highly conserved region of IS629 and for the adjacent regions of 
each IS629 locus in the O157 genome, respectively. The positions of outside prim-
ers are designed to produce ladder patterns in the range of 100 bp to 1.0 kb with 
50- to 100- bp spacing when multiplex PCR is performed using the outward primer 
and the outside primer set. Thus, O157 strains with different IS629 insertion pat-
terns (namely, different genomic locations of IS629) exhibit distinct ladder patterns 
(fingerprints). Using this method, 32 IS629 loci were selected as the targets for 
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Fig. 8.3 Schematic of the IS-printing method. An outward universal primer for IS629 (blue 
arrow) and the outside primers for the adjacent regions of each IS629 locus in the O157 genome 
(open arrow) are designed such that the amplicons produce a ladder pattern. When comparing 
O157 strains #1 and #2, differences in the presence of IS629 at loci C, E, and H are reflected by the 
observation of corresponding amplicons (red arrow)
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amplification from 77 loci identified in eight WGPS-analyzed O157 strains [19] to 
maximize the discriminatory power [23].

Among the currently available methods for molecular typing of O157 strains, 
pulsed-field gel electrophoresis (PFGE) is most widely used for epidemiologic studies 
and the surveillance of O157 infections due to its high discriminatory power [24, 25]. 
However, PFGE analysis requires well-trained technical skills and several days to 
obtain results. It is also difficult to obtain consistently reproducible results among dif-
ferent laboratories, which hinders inter-laboratory data comparisons. On the other 
hand, the IS-printing method can be performed without the need for special equipment 
and techniques and can be completed within 2 h after colony picking. Furthermore, 
since banding patterns can be transformed into digital data (1 for presence and 0 for 
absence), the data are readily compared across different laboratories. Although the 
IS-printing method possesses these advantages, it has a lower discriminatory power 
than PFGE, for example, 201 O157 strains showing different XbaI digestion patterns 
by PFGE were classified into only 127 types by the IS-printing method [23]. Therefore, 
the IS-printing method may not be sufficiently discriminatory as a stand-alone typing 
method for O157 strains but instead can be used for initial screening to rapidly detect 
strains that are potentially associated with outbreaks as recently reported [23, 26, 27].

8.3  IEE-Promoted IS Excision and Genomic Deletion

8.3.1  Excision of IS629 in EHEC O157

IS629 insertion has been identified at various sites in stx2 genes in O157 clinical iso-
lates [17, 26, 28–31]. Although they occur at a very low frequency, such inactivated 
stx2 genes were found to be reactivated by precise IS629 excision (i.e., removal of 
IS629 and a TSD sequence, which generates a wild-type stx2 gene) in the E. coli labo-
ratory strain K-12 [15]. Moreover, using a reporter plasmid-based assay, it was shown 
that precise IS629 excision occurs much more frequently in O157 Sakai than in K-12, 
i.e., the excision frequencies of IS629 carried on the reporter plasmid in O157 Sakai 
and in K-12 were 2.5 × 10−4 and 2.0 × 10−8, respectively. Several other EHEC strains 
also exhibited a high frequency (within a range of 10−3 to 10−4) of IS629 excision [32]. 
These results suggested that some E. coli strains, including O157, contain a system 
that promotes IS excision and regenerates the donor DNA lacking the IS copy.

The clear difference between O157 Sakai and K-12 in terms of excision frequency 
further suggests that this system is encoded by some of the approximately 1600 
O157 Sakai genes that are not present in K-12 [13].

8.3.2  IS-Excision Enhancer (IEE)

A genetic determinant that is responsible for the high frequency of IS629 excision 
in O157 was identified by a combination of reporter plasmid-based IS629-excision 
assay and CGH analysis of E. coli strains and designated as IEE [33]. As shown in 
Table  8.1, no precise IS629 excision in an IEE-deletion mutant of O157 Sakai 
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(strain GMSS401), and the excision frequency of the mutant returned to the parental 
level by reintroducing IEE [GMSS401(pIEE1)]. Furthermore, K-12 derivatives 
containing IEE (chromosomally inserted or plasmid encoded) showed a high IS629 
excision rate comparable to that in O157 Sakai [GMEC101 and K-12(pIEE1)]. 
These results indicate that IEE enhances precise IS629 excision in the genetic back-
grounds of O157 and K-12. The gene encoding IEE (iee) is located on a large 
integrative element called SpLE1 [13], which is one of the O157 Sakai-specific 
genomic regions. The IEE-mediated enhancement of IS629 excision requires the 
IS629 TPase. The complete DDE motif in the TPase, which represents the active 
center of the IS TPase [2], was indispensable for this activity. Thus, IEE promotes 
IS629 excision from the O157 genome in an IS TPase-dependent manner [33].

By using reporter plasmid-based IS-excision assays for two other IS3 family 
members (IS2 and IS3) and six IS elements each belonging to the IS1, IS4, IS5, 
IS26, IS30, and IS621 families, IEE was found to enhance the excision of members 
of the IS3, IS1, and IS30 families [33]. As the excision of IS2 and IS3 is promoted 
by IEE at the same level as that for IS629, IEE most likely acts on the entire IS3 
family. The excision frequencies of IS1 and IS30 also clearly increase in the pres-
ence of IEE, but to a lesser extent than that of the IS3 family. The activity of IEE on 
IS1 is much weaker than that on IS3 family members and even IS30. This phenom-
enon is interesting because IS1 appears to be able to use two pathways for transposi-
tion [34]: one involves the formation of a circular transposition intermediate (similar 
to the IS3 family) and thus is expected to be IEE-sensitive, whereas the other 
involves cointegrate formation and thus may be insensitive to IEE.

8.3.3  IEE-Promoted Genomic Deletion

Using the IS-printing method, structural alterations were detected at the target 
IS629 insertion sites in the O157 genome (that is, deletion of IS629 and/or flank-
ing regions) by inspecting the ladder patterns (Sect. 8.2.3). When O157 Sakai 
cells possessing both IS629 TPase- and IEE-expressing plasmids (with IS629 and 
iee left on the chromosome) were cultivated for 24 h in Luria-Bertani (LB) broth, 

Table 8.1 The effects of iee on IS629 excision frequency in O157 Sakai, K-12, and their 
derivatives

Strain iee Excision frequency
O157 Sakai + 2.5 × 10−4

GMSS401a − <10−9

GMSS401(pIEE1)b + 1.6 × 10−3

GMEC101c + 9.7 × 10−3

K-12 − 2.0 × 10−8

K-12(pIEE1)b + 6.1 × 10−2

aGMSS401 is an isogenic mutant of O157 Sakai in which iee was deleted from the chromosome
bpIEE1 is an IEE expression plasmid
cGMEC101 is an isogenic mutant of K-12 in which iee was inserted in the chromosome
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32 single colonies were randomly selected and analyzed by the IS-printing 
method, and alterations to the ladder pattern were detected in 29 clones (91%) in 
which 1–7 bands disappeared (Fig. 8.4a). No such alterations in the ladder pattern 
occurred in O157 Sakai cells containing the TPase- or the IEE-expressing plasmid 
alone (Fig. 8.4b–d). Thus, IEE, TPase, and an IS629 sequence with complete TIRs 
recognized by TPase during transposition are all required for IEE-induced struc-
tural alterations [33].
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Fig. 8.4 IS629 TPase- and IEE-induced structural alterations at IS629 insertion sites in the O157 
Sakai genome. The results of IS-printing analyses for four sets of O157 Sakai derivatives (32 
clones each) that were obtained after overexpression of the IS629 TPase and IEE together (a), 
IS629 TPase alone (b), IEE alone (c), or neither IS629 TPase nor IEE (d) are shown. IS-printing 
analysis was performed using three sets of multiplex PCR primers (the first to third sets). All 23 
IS629 insertion sites in the O157 Sakai genome were examined by multiplex PCR followed by 
agarose gel electrophoresis. The presence or absence of structural alterations at each IS629 inser-
tion site was determined according to the ladder band patterns observed for each clone
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Analysis of the structures of all IS629 insertion sites that underwent structural 
alterations via the actions of IEE and IS629 TPase (78 sites in 29 clones) provided 
somewhat expected findings; not only simple IS deletion but also various types 
genomic deletions were generated at the IS insertion sites [33]. As summarized in 
Fig. 8.5, these genomic deletions were categorized into four types: (I) deletion of 
IS629 with an adjacent short sequence of 1–7 bp (mainly 3 or 4 bp); (II) deletion of 
IS629 with an adjacent long sequence; (III) partial deletion of IS629; and (IV) dele-
tion of a long sequence adjacent to IS629 without IS deletion. In types I, II, and III, 
additional deletion of a 3–5 bp sequence (mostly 3 bp) which is located adjacent to 
the other end of IS629 was also sometimes observed (types Ib, IIb, and IIIb in 

TIR TIR

IS629

IS629 and 1 − 7 bp

3 bp

IS629 and 72 − 44,417 bp

3 or 5 bp

3 or 4 bp

Deletion type

Ia

Ib

IIa

IIb

51.3% (40/78)

6.4% (5/78)

2.6% (2/78)

7.7% (6/78)

26 − 1,285 bp

IIIa

IIIb

3.8% (3/78)

3.8% (3/78)

55 − 23,347 bp

IV 24.4% (19/78)

Detection frequency

IS629

Fig. 8.5 Various genomic deletions generated by IS629 TPase and IEE.  Structural changes at 
IS629 insertion sites in the O157 Sakai genome that were induced by IEE in the presence of IS629 
TPase were classified into four types. In types I and II, the entire IS629 sequence was deleted, 
together with short (1–7 bp, mainly 3 or 4 bp) and long (72–44,417 bp) adjacent sequences, respec-
tively. In type III, portions (26–1285 bp) of the 1310-bp IS629 sequence were deleted. Deletion 
occurred at one IS end in types Ia, IIa, and IIIa, and additional deletions of adjacent sequences 
occurred at the other IS end in types Ib, IIb, and IIIb. In type IV, only the genomic segments adja-
cent to IS629 (55–23,347 bp) were deleted without deletion of the IS element. Blue triangles indi-
cate TIRs of IS629. The detection frequency of each type is expressed as the percentage, and the 
number of clones obtained for each type is indicated in parenthesis
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Fig. 8.5). Among the four types of deletions, the most frequently generated was type 
Ia (51.3%), which corresponds to precise or simple excision.

During the transposition process for IS3 family members, TPases first cleave one 
DNA strand at the 3′ end of the IS element [7, 35] (Fig. 8.6a), and the liberated 3′ end 
is transferred to the same DNA strand at a position 3 or 4 bp away from the 5′ end of 
the IS element to generate a figure-eight intermediate (Fig. 8.6b, c). In the final step, 
DNA replication from the figure-eight junction generates a circular transposition 
intermediate and regenerates donor DNA that contains the original IS copy [2, 36]. 
Considering these processes and the proposed molecular mechanisms underlying 
each step, IEE most likely functions in the last step to guide the process toward 
deleting the IS629 copy from the donor DNA (Fig. 8.6d). Indeed, the molecular 
mechanism underlying this phenomenon has yet to be clarified, but second- strand 
cleavage and resealing of donor DNA may be involved. In several cases, deletion of 
a 1-, 5-, 6-, or 7-bp sequence adjacent to the IS element was also observed (Fig. 8.5). 
These atypical deletions may have been generated by imprecise strand transfer. 
Other types of deletions (types II, III, and IV) were also formed only when IEE and 
IS629 TPase were co-expressed (Fig. 8.4). This finding indicates that these dele-
tions were also generated via a process coupled with IS excision and promoted by 
IEE and IS629 TPase. The most plausible explanation at present is that the deletions 
were generated by aberrant strand transfer during the process promoted by IEE and 
IS TPase (Fig. 8.6e). Notably, all variant deletions were observed in naturally occur-
ring O157 strains (see Sect. 8.2.2).

8.3.4  Distribution of IEE in Bacteria

Pathogenic E. coli strains other than EHEC are also important etiological agents of 
zoonotic or food-borne disease in humans and of colibacillosis in domestic animals 
[37, 38]. Among these, enterotoxigenic E. coli (ETEC) is an important cause of 
diarrhea in children, which is associated with high morbidity and mortality in non- 
industrialized countries. ETEC is also the main cause of diarrhea in travelers to 
these countries [37]. In swine, ETEC infections, which occur immediately after 
birth (neonatal diarrhea), and ETEC or Shiga toxin-producing E. coli infections, 
which occur after weaning (post-weaning diarrhea or edema disease), are respon-
sible for significant economic losses due to diarrhea, growth retardation, and mor-
tality [39, 40]. The majority of swine-pathogenic E. coli strains belong to a limited 
range of O serogroups, and O139 and O149 are among the most frequently reported 
serogroups worldwide [39, 41, 42].

Recently, these swine ETEC strains in serogroups O139 or O149 were found to 
possess the iee gene [43]. The iee gene is located on a large integrative element of 
O157 EHEC, SpLE1, and on SpLE1-like elements in O26, O111, and O103 EHECs. 
In the swine ETEC strains, IEE is distributed specifically among three distinct lin-
eages, and the gene is encoded by integrative elements similar to SpLE1 [43]. 
SpLE1-like elements are highly conserved in their genomic structure among these 
ETEC lineages, and similar to SpLE1, they carry the iha gene and the ure operon, 

8 Bacterial Transposable Elements and IS-Excision Enhancer (IEE)



208

Type I

Strand transfer

II IVIII

II
III

IV

Minor productsMajor product

Possible intermediates

3'5'

5'3'

TPase

I

Presence of IEEAbsence of IEE

(Original donor DNA)

Repair

Replication Second strand cleavage

IS629

First strand
cleavage

Figure eight
formation

Resolution of the
figure eight

3'5'

5'

3'5'

5'

a

b

c

d

e

Fig. 8.6 Possible pathways for IS629 excision and for the generation of various types of genomic 
deletions by IS excision. (a) TPase first cleaves one strand at the 3′ end of IS629 (thick blue line) 
as indicated by the red arrow. (b) The liberated 3′ end is transferred to the proximity of the 5′ end 
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major product is a type I deletion representing simple excision, and other types of genomic dele-
tions (types II, III, and IV) are minor products. (e) If aberrant strand transfer [to a genome position 
far away from the 5′ end of IS629, inside IS629, or very far from the 5′ end (i.e., near the 3′ end of 
IS629)] occurred, as indicated by dotted arrows II, III, and IV, these events would be intermediates 
for the formation of each variant type of genomic deletion
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which are required for efficient colonization by O157 in the swine intestine [44]. 
Most of the structural variations observed between the elements of EHECs and 
those of ETEC are minor variations associated with IS insertion (or deletion) [43]. 
Considering that the three IEE-positive ETEC lineages are phylogenetically dis-
tantly related each other and that one lineage is closely related to the O26 and O111 
EHECs, the SpLE1-like elements of ETEC strains may have been transferred from 
these EHEC lineages. Alternatively, SpLE1-like elements may circulate more 
widely in the E. coli population than recognized and transfer frequently between 
E. coli strains. Notably, all IEE-positive ETEC lineages also contain multiple copies 
of IS629, a preferred substrate of IEE, and their genomic locations vary signifi-
cantly between strains [43]. Therefore, it is very likely that IS629 actively moves in 
the genomes of these ETEC strains and, in combination with IEE, promotes the 
diversification of their genomes, as observed in EHEC O157.

Importantly, IEE homologs have been identified in a broad range of bacterial 
species [33]. According to a phylogenetic analysis of the IEE homologs, the 
homologs from different phyla often cluster together (Fig. 8.7). This finding indi-
cates that the evolution of IEE homologs did not follow that of the host genomes. 
The distribution of IEE homologs suggests that they have spread in each species 
in a strain- specific manner, as observed in E. coli. For example, among the four 
fully sequenced Legionella pneumophila strains, IEE homologs were found in 
only two. In Bacteroides fragilis, Desulfitobacterium hafniense, Lactobacillus 
rhamnosus, and Streptococcus pneumoniae, IEE homologs were found only in 
one strain among the two or more sequenced strains. In these five species, genes 
for their IEE homologs were located in strain-specific regions or genomic islands. 
Furthermore, many IEE homologs are encoded in genomic regions exhibiting low 
GC content and/or containing genes related to MGEs [33]. Thus, IEE and its 
homologs appear to represent a novel protein family that has been widely spread 
in bacteria by horizontal gene transfer and has coevolved with MGEs, especially 
IS elements. It is possible that IEE family proteins play pivotal roles in the evolu-
tion of many bacterial species or strains by inducing IS excision and various types 
of genomic deletions.

8.4  Conclusion: Impact of IS Elements and IEE on Bacterial 
Genome Evolution

IEE promotes the excision of IS elements belonging to the IS3 family, as well as 
those belonging to the IS1 and IS30 families, from bacterial genomes and generates 
various types of genomic deletions in cooperation with the IS TPase. Although the 
molecular mechanism of IEE action remains unknown, the identification of IEE is 
important from several perspectives. First, IEE is the first bacterial protein shown to 
promote IS excision in a TPase- or transposition-dependent manner. Several host 
factors, such as proteins for DNA repair and recombination, may also induce the 
deletion of TEs [45] but in a TPase-independent manner and at much lower efficien-
cies [33]. This function of IEE is particularly important for bacterial cells because, 
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unlike eukaryotic cells, most bacterial species demonstrate no specific end-joining 
activity to regenerate and protect the donor genome after IS excision [8, 9]. Second, 
IEE-promoted IS excision generates a variety of genomic deletions. IS elements and 
their transpositions are generally regarded as one of the major driving forces gener-
ating various mutations and genomic structural changes. Such structural changes 
include genomic deletions. Many genomic deletions have been detected in 
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sequenced bacterial genomes and are often suspected to have been generated by IS 
transposition-related events, but the precise mechanisms remain unknown. The 
action of IEE can explain how genomic deletions are generated upon IS transposition 
or excision. Third, the structural features of the donor DNA regenerated after IEE-
promoted IS excision, particularly those associated with variant types of deletions, 
may provide further insights into the processes or molecular mechanisms of IS 
transposition. The processes leading to the generation of such variant types of 
genomic deletions may occur only when IEE is present. However, it is also possible 
that rare or aberrant intermediates that are unable to survive during the normal trans-
position process (that is, in the absence of IEE) may be trapped by the action of 
IEE. If so, the generation of these deletions may represent the inaccuracy present in 
the IS transposition mechanism. Finally, IEE can be regarded as a new type of 
genetic system that controls TE copy numbers in host genomes. The invasion and 
proliferation of TEs are important for long-term genome evolution, but their uncon-
trolled proliferation is sometimes detrimental to the host. Thus, various genetic sys-
tems to suppress or attenuate their transposition activities have coevolved. 
Importantly, however, the coexpression of IEE and the IS629 TPase reduced the 
copy number of IS629 in O157 [33], and this may also happen to other members of 
the IS3 family and to members of the IS1 and IS30 families. This type of control 
mechanism, which actively reduces TE copy numbers, has not previously been 
identified, even in eukaryotes and archaea.
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Abstract
Bacterial strains capable of degrading man-made xenobiotic compounds are 
thought to have evolved to degrade such compounds within only several decades. 
Various sphingomonad strains belonging to Alphaproteobacteria were isolated 
that degrade highly recalcitrant compounds including man-made xenobiotics, 
indicating the versatility of this bacterial group. However, each strain degrades 
only a limited set of compounds, and specific genes for the degradation of a spe-
cific compound are found only in the genomes of its degraders, suggesting the 
plasticity of genomes of sphingomonads. Comparison of the complete genome 
sequences of four γ-hexachlorocyclohexane (γ-HCH)-degrading sphingomonad 
strains, Sphingobium japonicum UT26, Sphingomonas sp. MM-1, Sphingobium 
sp. MI1205, and Sphingobium sp. TKS, strongly suggested that the γ-HCH- 
degrading strains emerged through the recruitment of specific lin genes for the 
γ-HCH degradation into ancestral strains that had core functions of sphingomo-
nads. Plasmids, most of which are specialized for sphingomonads, and IS6100, 
the most abundant insertion sequence in the four strains, seem to be involved in 
the recruitment of the lin genes and the diversification of the lin-flanking regions 
in the four strains. Here, we show concrete examples and discuss the important 
roles of such mobile genetic elements for the emergence and evolution of the 
bacterial strains degrading highly recalcitrant compounds.
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9.1  Introduction

Various chemical compounds have been released into the environment by human 
activities, and they often cause serious environmental problems, since most such 
compounds cannot be readily degraded in the environment and have harmful effects 
on the natural ecosystem, including on humans [1–3]. Some microorganisms that 
degrade environmental pollutants have been isolated and characterized for the pur-
pose of bioremediation [4–7]. Such microorganisms have also attracted attention 
from the viewpoint of microbial adaptation and evolution toward chemical com-
pounds that they have never or only rarely encountered before [4–7].

There are various environmental pollutants, and their degradability in the envi-
ronment varies depending on the substance. Simple aromatic compounds, e.g., ben-
zene, toluene, phenol, and naphthalene, are major environmental pollutants but 
relatively easily degraded by microorganisms [5]. In fact, many bacterial strains 
degrading such aromatic compounds have been isolated and studied in detail. In 
most cases, a series of genes encoding enzymes necessary for transformation of 
these compounds into TCA cycle intermediates constitute a gene cluster whose 
expression is regulated as an operon [8]. Moreover, such operons are usually located 
on mobile genetic elements, e.g., transposons, plasmids, and integrative and conju-
gative elements (ICEs), and can be transferred between bacterial cells as a set [8–
13], and thus non-degrading bacterial cells can easily become degraders of aromatic 
compounds only by acquiring such “ready-made” gene clusters. In other words, the 
degradation system of simple aromatic compounds has already been well estab-
lished in nature, and the gene clusters necessary for the degradation can be distrib-
uted among bacterial cells in the environments contaminated with these compounds, 
where cells having the ability to assimilate the compounds have a survival advan-
tage. The fact that systems degrading simple aromatic compounds have been well 
established in nature is not surprising, since most of such compounds are not man- 
made but natural products and have existed for a long time in the environment, 
although their distribution and abundance on the surface of the earth have been 
broadened and increased, respectively, by human activities. On the other hand, 
anthropogenic compounds that were chemically synthesized or industrially pro-
duced are usually highly recalcitrant, because microorganisms have never or rarely 
encountered such chemical compounds and have not fully established systems to 
degrade them [4–7]. However, bacteria that can degrade even anthropogenic chemi-
cals have been isolated, and surprisingly, most aerobic xenobiotics-degrading bac-
teria can use such chemicals as their sole sources of carbon and energy. Since it has 
been proposed that the pathways for aerobic degradation of man-made xenobiotic 
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compounds evolved relatively quickly (within several decades) after the release of 
such compounds into the environment, the bacterial strains capable of degrading 
man-made xenobiotic compounds are excellent models for studying the adaptation 
and evolution of bacteria in the environment [4–7]. However, with the exception of 
a few speculative examples, the evolutionary processes of these bacterial strains 
remain largely unknown. Recent genome analyses of such strains have strongly sug-
gested that they indeed emerged relatively recently by gathering genes for the deg-
radation of xenobiotic compounds, and that mobile genetic elements played 
important roles for the recruitment of the genes [6, 14, 15].

In this chapter, we will avoid a simple enumeration of examples of mobile genetic 
elements involved in the degradation of highly recalcitrant compounds. Instead, we 
will explain in detail our hypothesis for the emergence and evolution of the degrad-
ers of highly recalcitrant xenobiotic compounds and the roles of mobile genetic 
elements on the process by showing selected typical examples. For this purpose, we 
will mainly use γ-hexachlorocyclohexane (γ-HCH)-degrading sphingomonad 
strains, since the γ-HCH degradation system in aerobic bacteria is an excellent 
model for investigating fundamental issues in microbial and molecular evolution [6, 
16].

9.2  Sphingomonads, a Bacterial Group Containing Various 
Strains Degrading Highly Recalcitrant Compounds

Microorganisms have developed new metabolic pathways for various chemical 
compounds, including xenobiotic compounds, in order to exploit new carbon 
sources and to detoxify harmful compounds [5]. The mechanisms by which they 
adapt to xenobiotics are of great interest. Many xenobiotics-degrading bacterial 
strains belonging to various taxonomical classification have been isolated [14, 
15], and “sphingomonads” are one of the most important bacterial groups for the 
degradation of recalcitrant hydrophobic compounds [7, 17–19]. Sphingomonads 
is a collective category comprising Sphingomonas, Sphingobium, 
Novosphingobium, Sphingopyxis, and their related genera belonging to 
Alphaproteobacteria [20], and various sphingomonad strains have been isolated 
that degrade highly recalcitrant hydrophobic compounds, e.g., γ-HCH [16, 21], 
pentachlorophenol [22], dioxin- related compounds [23], lignin-related com-
pounds [24], polyaromatic hydrocarbons [25], polyvinyl alcohol [26], polyethyl-
ene/polypropylene glycol [27–30], and organophosphate [31]. Of course, many 
strains belonging to other bacterial groups are also known that can degrade highly 
recalcitrant compounds, but no other bacterial groups have members degrading 
such various highly recalcitrant compounds including man-made ones at least 
among bacteria that are widely distributed in the environment and can be easily 
cultured under laboratory conditions, suggesting that sphingomonads can adapt 
more quickly or more efficiently to the degradation of new compounds in the 
environment than members of the other bacterial genera. However, it should be 
noted that each sphingomonad strain degrades only a limited set of compounds. 
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For example, γ-HCH degraders cannot degrade any of the other “special,” i.e., 
highly recalcitrant and anthropogenic, compounds. In addition, there are also 
sphingomonad strains that degrade no “special” compound, and such strains seem 
to be one of the major bacteria in the environment [32]. In other words, most 
sphingomonads are “ordinary,” but have the potential to be specialists for the deg-
radation of highly recalcitrant hydrophobic compounds.

The genome sequences of a vast number of bacterial strains have already been 
determined, and the complete genome sequences of xenobiotics-degrading bacterial 
strains are now available. Thus, it has become possible to discuss the emergence and 
evolution of bacterial strains that degrade xenobiotics on the basis of their genomic 
information. Comparison of genome sequences of sphingomonad strains including 
degraders of highly recalcitrant compounds supports the idea that sphingomonads 
are a versatile group because of the plasticity of their genomes [33, 34]. The organi-
zation and coding potential of the sphingomonad genomes appear to be highly vari-
able, and the specific genes necessary for the degradation of specific compounds are 
found only in the genomes of the degraders of the compounds. It is strongly sug-
gested that plasmid-mediated gene transfer and chromosome-plasmid recombina-
tion, together with prophage and transposon-mediated rearrangements, play 
prominent roles in the genome evolution of sphingomonads. In some cases, the gene 
organizations seem to be edited by using insertion sequences. These points will be 
explained in greater detail in the following sections by using aerobic γ-HCH- 
degrading sphingomonads as an example.

9.3  γ-HCH-Degrading Sphingomonad Strains

γ-HCH (also known as γ-BHC or lindane) is a completely man-made chlorinated 
pesticide that has caused serious environmental problems due to its toxicity and 
long persistence in upland soils [18, 35, 36]. Although the use of γ-HCH is now 
banned in many countries, this compound still remains in various environments and 
causes serious environmental problems [36]. γ-HCH is chemically synthesized by 
the process of photochlorination of benzene. The synthesized product is called 
technical- HCH (t-HCH) and consists mainly of five isomers, α- (60–70%), γ- (12–
16%), β- (10–12%), δ- (6–10%), and ε-HCH (3–4%) [36]. Among t-HCH isomers, 
only γ-HCH has insecticidal activity, and it is used after purification as the insecti-
cide lindane (> 99% purity). The remaining isomers were in many cases improperly 
deposited and also caused serious environmental problems. In addition to γ-HCH, 
α- and β-HCH isomers were also included as additional POPs, persistent organic 
pollutants that must be controlled under international agreement, at the Stockholm 
Convention [36]. Among the HCH isomers, β-HCH is the most recalcitrant; it is 
usually the predominant isomer remaining in contaminated soils and in animal tis-
sues and fluids [37].

Only 60 years after the first release of γ-HCH into the environment, a number 
of bacterial strains that aerobically degrade γ-HCH have been isolated from 
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geographically dispersed locations [18]. The archetypal γ-HCH-degrading bacte-
rium Sphingobium japonicum UT26 was isolated from an upland experimental 
field to which γ-HCH had been applied once a year for 12 years, and the aerobic 
degradation pathway of γ-HCH in this strain was intensively studied [38] 
(Fig.  9.1). In strain UT26, γ-HCH is converted to β-ketoadipate via reactions 
catalyzed by dehydrochlorinase (LinA), haloalkane dehalogenase (LinB), dehy-
drogenase (LinC), reductive dechlorinase (LinD), ring-cleavage dioxygenase 
(LinE), and maleylacetate reductase (LinF); β-ketoadipate is further converted to 
succinyl-CoA and acetyl- CoA by succinyl-CoA:3-oxoadipate CoA transferase 
(LinGH) and β-ketoadipyl CoA thiolase (LinJ), respectively [34, 38]. The last 
two compounds are metabolized in the TCA cycle. In the early degradation pro-
cess, two dead-end products, 1,2,4-trichlorobenzene (1,2,4-TCB) and 2,5-dichlo-
rophenol (2,5-DCP), which are not degraded by strain UT26 are produced 
(Fig. 9.1). The linA, linB, and linC genes are constitutively expressed at a rela-
tively high level in UT26, while the linD and linE genes constitute an operon, 
and their expression is regulated by an LysR- type transcriptional regulator (LinR) 
[39]. Since the β-ketoadipate pathway is often used by environmental bacterial 
strains [40], the lin genes for the conversion of γ-HCH to β-ketoadipate (Fig. 9.1: 
linA to linF) are peculiar to the γ-HCH-degrading pathway. In particular, the linA 
gene is unique, because it does not show significant similarity to any sequences 
in the databases except for the almost identical linA genes (> 90% identical) from 
other bacterial strains and metagenomes [18, 38]. LinA and LinB are also impor-
tant targets from the viewpoint of protein evolution, since the LinA and LinB 
variants show different levels of enzymatic activity toward different HCH iso-
mers and their metabolites [18, 38, 41].

In addition to catabolic enzymes, a putative ABC-type transporter system is 
necessary for the γ-HCH utilization in UT26. This putative ABC transporter sys-
tem consists of four components (Fig. 9.1): permease, ATPase, periplasmic pro-
tein, and lipoprotein, encoded by linK, linL, linM, and linN, respectively, which 
constitute a cluster. Mutation and complementation analysis indicated that all the 
linKLMN genes are required as a set for the γ-HCH utilization in UT26 [42]. One 
of the dead- end products, 2,5-DCP, is toxic to cells [43]. The LinKLMN system is 
involved in γ-HCH utilization by conferring tolerance toward this toxic metabo-
lite to the cells [42]. However, the LinKLMN system is not a simple efflux pump 
of the toxic compound, but seems to be involved in the integrity of the outer mem-
brane. The mutant cells defective in the LinKLMN system showed higher γ-HCH 
degradation activity and greater accumulation of the toxic dead-end product 2,5-
DCP, higher sensitivity of the cells to 2,5-DCP itself, and higher permeability of 
hydrophobic compounds than the wild-type cells [42]. It still remains unknown 
how the LinKLMN system is involved in the integrity of the outer membrane, but 
the periplasmic protein LinM has a mammalian cell entry (Mce) domain [44], 
which is necessary for the lipid binding [45], and thus it is speculated that the 
LinKLMN system transports lipid- related compounds, e.g., sphingolipid, for the 
integrity of the outer membrane.
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9.4  Genomes of γ-HCH-Degrading Sphingomonad Strains

Sphingobium japonicum UT26 is an archetypal γ-HCH-degrading strain, and its 
complete genome sequence was the first determined among γ-HCH degraders [34, 
46]. The S. japonicum UT26 genome consists of five replicons, two circular chro-
mosomes (Chr), Chr1 (3.5 Mb), and Chr2 (682 kb), and three circular plasmids, 
pCHQ1 (191 kb), pUT1 (32 kb), and pUT2 (5 kb) ([34, 46]; Table 9.1). The lin 
genes for the γ-HCH degradation are dispersed on Chr 1 (linA, linB, linC, and lin-
KLMN), Chr 2 (linF and linGHIJ), and pCHQ1 (linRED) [34] (Table  9.1). The 
comparison of the genome of UT26 with those of other sphingomonad strains 
revealed that the UT26 genome consists of regions conserved among these sphingo-
monad strains as well as specific regions unique to UT26 [34]. All of the 196 bacte-
rial essential genes proposed by Gil et al. [47] are dispersed on the conserved regions 
of Chr1. The G + C contents of the specific regions of Chr1 are lower than those of 
conserved regions. Another important point is that the linKLMN and linGHIJ genes 
are located on conserved regions among sphingomonads, while the linA, linB, linC, 
linRED, and linF genes are located within unique regions of UT26 [34].

Aerobic γ-HCH-degrading bacterial strains other than UT26 have been isolated 
around the world, and most of such strains—particularly those that have been inten-
sively analyzed—are sphingomonads [17, 18]. To gain more insight into the emer-
gence and evolution of γ-HCH-degrading sphingomonad strains, we determined the 
complete genome sequences of three other γ-HCH degraders: Sphingobium sp. 
MI1205 from Miyagi, Japan [48, 49], Sphingomonas sp. MM-1 from India [50, 51], 
and Sphingobium sp. TKS from Kyushu, Japan [52]. These three γ-HCH-degrading 
strains and UT26 are phylogenetically dispersed on the basis of 16S rRNA gene 
analysis among closely related sphingomonad strains. In addition, comparison of 
genome sequences of the four strains revealed that their gene repertories (each 
strain has 4128–5248 ORF clusters among total 10,325 ORF clusters of the four 
strains) are quite different from each other (only 1288 ORF clusters are shared) and 
that the organization of replicons is completely different among the four strains [16] 
(Table 9.1). These results clearly indicated that the four γ-HCH degraders are phy-
logenetically divergent, and it was strongly suggested that the four γ-HCH degrad-
ers independently acquired γ-HCH degradation ability. At least, it is unlikely that 
the four strains were derived from a single ancestral γ-HCH degrader.

γ-HCH is degraded in MI1205, MM-1, and TKS by the same pathway as in 
UT26 (Fig. 9.1). All four strains carry almost identical linA to linE genes for the 
conversion of γ-HCH to maleylacetate, and MI1205 and MM-1 also carry almost 
identical linF and linGHIJ genes for the metabolism of maleylacetate, while differ-
ent genes that show no significant similarity to linF and linGHIJ genes at DNA level 
(linFb and linGHIJ homologues) are used for the latter conversion steps in TKS. The 
linKLMN genes for the putative ABC transporter necessary for γ-HCH utilization 
exhibit structural divergence, which reflects the phylogenetic relationship of their 
hosts [16], but the linKLMN homologues of MM-1, which is phylogenetically the 
most distant strain from UT26, could complement the linKLMN function in UT26 
[16]. Moreover, as mentioned above, the linKLMN homologues were found not only 
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in γ-HCH degraders but also in non-γ-HCH-degrading sphingomonad strains [34]. 
These findings strongly suggest that the linKLMN system is one of the inherent 
functions necessary for γ-HCH utilization in sphingomonads. In summary, it can be 
concluded that the lin genes for the utilization of γ-HCH consist of three types of 
genes for (1) the “specific” pathway for γ-HCH degradation, (2) a common pathway 
for the degradation of chlorinated aromatic compounds (more than one genes have 
been found for the function), and (3) inherent function(s) in sphingomonads 
(Fig. 9.1).

In addition to the genes for γ-HCH degradation, putative genes for the degrada-
tion of aromatic compounds were found in the genomes of the four strains [16]. The 
numbers of ORFs potentially involved in the degradation of aromatic compounds in 
the four strains (62, 46, 27, and 25 for TKS, UT26, MI1205, and MM-1, respec-
tively) are much smaller than those in versatile recalcitrant pollutant degraders, 
Cupriavidus necator JMP134 [53, 54] and Burkholderia xenovorans LB400 [55, 
56] (149 and 135 for JMP134 and LB400, respectively). In particular, those in 
UT26, MI1205 and MM-1 are even smaller than those in the typical metabolically 
versatile soil bacterial strains Burkholderia multivorans ATCC 17616 [57–60] and 
Pseudomonas putida KT2440 [61] (73 and 62 for KT2440 and ATCC 17616, 
respectively). In addition, no gene for the degradation of other highly recalcitrant 
compounds was found in their genomes. These results support our hypothesis that 
the four sphingomonad strains are “specialists” for γ-HCH degradation, but not 
“generalists” for the degradation of many recalcitrant compounds.

9.5  Plasmids in Sphingomonads

It is generally accepted that horizontal gene transfer (HGT) is an important mecha-
nism of microbial adaptation and genomic evolution [8, 9, 11–13]. HGT between 
bacteria in natural habitats is largely mediated by mobile genetic elements (MGEs), 
e.g., self-transmissible plasmids, transposons, integrons, IS elements, ICEs, and 
bacteriophages. Among such known MGEs, plasmids are particularly important for 
the rapid adaptation of bacteria toward xenobiotics [9, 19, 62, 63], and genes for the 
degradation of recalcitrant compounds are also often located on plasmids [19, 64, 
65].

After publication of the UT26 genome, many draft genome sequences of other 
HCH (including not only γ-HCH but also other HCH isomers) degraders and their 
related but non-HCH-degrading strains were determined, and their comparative 
analyses have been conducted [66, 67]. These studies provided us some important 
primary information on the evolution of HCH degraders with the involvement of 
plasmids and insertion sequences. In addition, our analysis of the complete genomes 
of the four γ-HCH degraders clearly indicated how plasmids/insertion sequences 
are involved in the emergence and evolution of HCH degraders [16]. As described 
above, all four of the strains carry almost identical specific lin genes, suggesting 
they acquired such genes by HGT. However, the specific lin genes are dispersed on 
multiple replicons in the four strains (Table 9.1). In UT26, linA to linC are located 
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on Chr1, and only the linRED cluster is located on a plasmid. On the other hand, all 
the specific lin genes are dispersed on multiple plasmids in various combinations in 
the other three strains, although additional copies of linB and linC are also located 
on Chr1 in TKS (Table 9.1). Finally, there are various replicon types of such plas-
mids carrying the specific lin genes (Table 9.2). In other words, no plasmid carrying 
a whole set of the specific lin genes has been found. These observations indicate that 
these four strains did not simply acquire all the specific lin genes at once as a cluster. 
This contrasts with other aromatic compound-degrading strains, which may have 
acquired a whole set of responsible genes at once by the simple conjugative transfer 
of plasmids and/or ICEs [10, 62, 63].

The putative replication origins (oriCs) of the main chromosomes (Chr1s) of the 
four γ-HCH degraders are of α-proteobacterial-chromosome type [79, 80]; these 
oriCs were located upstream of the uroporphyrinogen decarboxylase gene (hemE) 
with multiple DnaA boxes [TT(A/T)TNCACA] [81]. On the other hand, the Chr2s 
of UT26, TKS, and MI1205 have the plasmid-type replication and active partition 
systems [16, 34]. These three plasmid-type chromosomes, the 21 plasmids in the 
four strains and the plasmids from other sphingomonads, were classified into 18 
types based on the similarities of their RepA (DNA replication initiator) proteins 
(Table  9.2). The RepA proteins of plasmids in sphingomonads show a very low 
level of similarity to those of well-studied plasmids (e.g., IncP-1, F, IincP-7, and 
IncP-9 plasmids), and thus we compared only plasmids in sphingomonads. Since 
the RepA proteins of the 18 types are very divergent, they were further categorized 
into four major groups, in each of which the RepA proteins exhibit 22–60% iden-
tity: (1) the Chr2UT26- and pCHQ1-types, (2) the pUT1-, pISP3-, pTK3_1-, pTK3_2-, 
and pNIC1-types, (3) the pISP4-, pTK2-, pTK7-, pTK8-, pSA2-, pSM103mini-, 
and pDE6-types, and (4) the pLB1 and pDE3-types. Based on our BLASTP analy-
sis, the RepA proteins of pUT2 and pNL1 did not show similarity to those of any of 
the other types of plasmids listed in Table 9.2, although the RepA of pUT2 was 
similar to those of the IncP-9 family of plasmids.

The sizes and gene contents of the same type plasmids, even ones having the 
identical repA gene, are highly divergent (Table 9.2), suggesting that plasmids in 
sphingomonads underwent dynamic rearrangements. It was clearly indicated that 
the replicons having highly conserved replication/partition genes are distributed 
among sphingomonad strains with frequent recombination events including repli-
con fusion [17]. Active DNA rearrangements between plasmids and host chromo-
somes might have caused the “mosaic” genetic structures of sphingomonads [63]. 
Interestingly, six pISP4-type plasmids carry identical repA and parA genes, and five 
of them also have other types of repA genes (Table  9.2), suggesting a prevalent 
fusion event of replicons in the pISP4-type plasmids. It is noteworthy that all six 
pISP4-type plasmids carrying identical repA and parA genes contain the lin genes 
(Table 9.2), indicating that this type of plasmid plays an important role in dissemi-
nation of the lin genes.

The genes for conjugal transfer consist of those encoding proteins involved in 
mating pair formation (Mpf) and DNA transfer and replication (Dtr) [82]. The mpf 
genes encode proteins that assemble in a large macromolecular structure called the 
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Type IV secretion system (T4SS), whereas the dtr genes encode proteins that bind 
to the DNA at the origin of transfer region, oriT, forming a structure called a relaxo-
some. This modular gene organization is shared by most conjugative systems, and 
indicates a high degree of gene synteny conservation. Among the sphingomonad 
plasmids listed in Table 9.2, the conjugal transferability of pCHQ1 and pLB1 has 
been experimentally confirmed [76, 83]. Moreover, using the exogenous plasmid 
isolation technique, we successfully isolated from HCH-contaminated soil a conju-
gative plasmid, pLB1, which carries two copies of linB [76]. Metagenomic analysis 
also suggested the importance of the horizontal transfer of the specific lin genes by 
plasmids for HCH-degradation in the environment [84]. These facts strongly sug-
gest that conjugative plasmids play important roles in the distribution of the specific 
lin genes under environmental conditions. Some sphingomonad plasmids encoding 
transfer machineries may be self-transmissible (Table 9.2) [63]. In particular, the 
pCHQ1- and pLB1-type plasmids, whose conjugal transferability has been experi-
mentally proven [76, 83], seem to be representative self-transmissible plasmids in 
sphingomonads. These plasmids are also suggested to have a narrow- host range 
property [76, 83].

9.6  Genome “Editing” Role of IS6100 in γ-HCH Degraders

Many putative transposable elements including insertion sequence (IS) elements 
and Tn3-type transposons were found in the genomes of the four γ-HCH degraders 
[16, 34]. Although most of the IS elements are present as a single-copy form in the 
four strains, IS6100 is the most abundant element in the UT26, MM-1, TKS, and 
MI1205 genomes (13, 15, 29, and 24 copies, respectively: Table 9.1). This suggests 
that IS6100 can transpose and increase its copy number in these γ-HCH degraders. 
The IS entrapment experiments indeed detected the transposition of IS6100 in 
γ-HCH degraders [16].

IS6100, which belongs to the IS6 family, is 880 bp long and carries a transposase 
gene and 14-bp terminal inverted repeats (IR) at both ends. Since IS6100 is a “rep-
licative” IS element [85], its transposition without apparent preference of target 
specificity causes the duplication of IS6100 with an 8-bp duplication of the target 
sequence. Therefore, the IS6100 transposition can generate three types of DNA 
rearrangements (Fig. 9.2): intra-molecular transposition with a deletion/resolution 
(intra-replicon 1) or inversion (intra-replicon 2) event, and inter-molecular transpo-
sition with a fusion (inter-replicon) event. On the basis of this IS6100 transposition 
mechanism (Fig.  9.2), the most plausible past events caused by transposition of 
IS6100 can be inferred by comparison of the regions just upstream and downstream 
of copies of IS6100 [16]. Here, we show the case in TKS as an example. We found 
seven pairs of 8-bp sequences among the regions just upstream and downstream of 
the 29 copies of IS6100 in the TKS genome (Table 9.3), and inferred the most plau-
sible past events caused by transposition of IS6100 (Fig. 9.3); it is indicated that not 
only simple transposition with inversion but also transposition accompanied with 
the fusion and resolution of replicons must have occurred. TKS was isolated from 
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γ-HCH-enriched liquid cultivation of a microbial community from a sediment 
sample contaminated with HCH isomers [16]. Recently we found three predicted 
previous structures in metagenome sequence of the enrichment culture from which 
TKS was isolated (Fig. 9.3; unpublished data), suggesting such events occurred dur-
ing the repeated single-colony isolation processes on the solid medium. This fact 
shows that rapid genome evolution is occurring and suggests that the genome 

Table 9.3 Flanking 8-bp sequences of IS6100 in TKS genome
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Fig. 9.3 Inference of the past genome rearrangements via IS6100 in Sphingobium sp. strain TKS. 
Blue pentagons, triangles with alphabet, and red pentagons indicate IS6100, 8-bp target sites, and 
lin genes, respectively. Triangles with the same alphabet mean identical sequence and direction 
(see Table 9.3 and Fig. 9.2 for details: note that sequences shown in Table 9.3 are cyan strands of 
8-bp targets in Fig. 9.2). Blue pentagons marked with internal white circle indicate the IS6100 
element which transposed. IS6100 is a “replicative” IS element, and it increases its copy number 
with the transposition (Fig. 9.2). Only replicons carrying IS6100 are illustrated, and relative posi-
tions and directions of IS6100 and lin genes in each replicon are schematically shown. The IS6100 
elements involved in the proposed past genome rearrangements are shown in larger size. Three 
predicted previous structures found in metagenome sequences of the γ-HCH-enrichment culture 
from which TKS was isolated are shown in red arrows
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structure of the bacterial strain isolated in the laboratory may be different from the 
ancestral strain inhabiting the environment.

Copies of IS6100 are often found in close proximity to lin genes in HCH- 
degrading strains and the metagenomic sequences from HCH-contaminated sites 
[17, 18, 86, 87]. A plasmid pLB1 that carries an IS6100-composite transposon con-
taining two copies of linB was isolated by the exogenous plasmid isolation tech-
nique [76]. These facts suggest that IS6100 plays an important role in the recruitment 
of the specific lin genes. Comparison of the specific lin-flanking regions in the four 
strains revealed that not only the lin genes themselves but also their flanking regions 
are highly conserved (Fig. 9.4). Interestingly, such conserved regions are located 
very close to IS6100 and the distances between the IS6100 copies and the lin genes 
are vary [16] (Fig. 9.4). This means that IS6100 is likely to play a crucial editing 

Chr1UT26

pMI2

a

b

pTK4

pISP1

Chr1UT26

Chr1TKS

pTK3

pISP4

pMI1

pMI3

linC linF’

linC linF’linB

linB linB

linB

linB

linB

linB

linA

linA

linA

linA

1 kb

1 kbDuplication

Gathering

Trimming

Trimming

70 75 80 85 90 95 100

Fig. 9.4 Comparison of regions containing the linA (a) and linB (b) genes in the four γ-HCH- 
degrading sphingomonad strains. The regions homologous to each other were colored in the gradi-
ent depending on the level of similarity as shown in explanatory note. The lin genes, transposase 
gene of IS6100, and other ORFs were shown by pentagons in red, blue, and orange, respectively. 
Drawn by GenomeMatcher [88]
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role in the “trimming” the regions unnecessary for HCH utilization and the “gather-
ing” of the specific lin genes. This observation supports the “Selfish Operon model,” 
in which HGT allows genes to cluster into an operon by a series of approximations 
[89, 90]. At least, the most plausible explanation is that the transposition of IS6100 
led to the diversification of the distribution and organization of the lin genes in the 
genomes. The distance between IS6100 and linA is the longest in UT26 (Fig. 9.4a), 
and the linB gene in UT26 has no IS6100 element in its flanking regions (Fig. 9.4b). 
Moreover, IS6100 is located at only one side of linC and the linRED cluster in UT26 
[16, 34]. These results suggested that UT26 is the closest to the prototype of the 
γ-HCH degrader, at least among the four strains. In addition, IS6100 seems to be 
involved in the genetic instability of the specific lin genes. The linA, linC, and 
linRED genes in UT26 are genetically unstable, i.e., spontaneous deletion mutants 
of the regions containing these genes could easily be obtained, and these deletion 
processes in the mutants can be most simply explained by the involvement of IS6100 
[34]. As in the case of IS6100, IS1071, a member of the Tn3 family, is also often 
associated with the genes for the degradation of xenobiotics, including atrazine [15] 
and 2,4-D [9], suggesting that IS1071 also has the functions like those of IS6100. 
Generally, diverse IS family transposase genes are associated with genes for the 
degradation of xenobiotics [9]. It will be of great interest to learn how such combi-
nations between IS elements and degradative genes have arisen.

9.7  Emergence and Evolution of γ-HCH-Degrading Bacteria

Comparison of the genomes of γ-HCH-degrading and non-γ-HCH-degrading sphin-
gomonad strains strongly suggested that the γ-HCH-degrading bacteria emerged 
through the recruitment of the specific lin genes into an ancestral strain that had core 
functions of sphingomonads, such as the LinKLMN-type ABC transporter system 
and the β-ketoadipate pathway (Fig.  9.5). Other unknown factors may also be 
involved in the core functions. The important conclusion at present is that at least 
four γ-HCH degraders emerged independently and in parallel around the world. 
Multiple plasmids whose replication/partition machineries are highly conserved in 
sphingomonads might have played important roles in the recruitment of the specific 
lin genes by their HGT. In addition, IS6100 likely plays a crucial “editing” role in 
the distribution and organization of the lin genes in genomes. It is also speculated 
that IS6100 is involved in the recruitment of the lin genes from an environmental 
gene pool whose details are still obscure. Recently, the complete genome sequence 
of Sphingobium indicum B90A was published [21], which is a HCH degrader phy-
logenetically closely related to UT26. Since most of the genomic regions of B90A 
and UT26 are highly conserved [21], B90A may be a kind of UT26-derived strain 
emerged from a common ancestral γ-HCH degrader via transpositions of IS6100. 
However, the replicon organizations of these two strains are different from each 
other (Table 9.2), and thus acquisition and/or loss of some plasmids seems to have 
occurred during the diversification process of the two strains. In the future, our 
hypothesis may be confirmed in experiments using the HCH degraders and their 
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related but non-HCH-degrading and/or IS6100-free sphingomonad strains. Further, 
the lin system may still be evolving toward one or more optimal states by using the 
combination of plasmids and IS6100, e.g., by forming an operon of lin genes 
(Fig. 9.5). It is noteworthy that IS6100 is also involved in the loss of the lin genes 
[34], and thus can contribute to the adaptation for other conditions under which the 
lin genes are no longer necessary.
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Abstract
The seemingly insurmountable problem of antimicrobial resistance (AMR) in 
clinical, food, and agricultural environments requires considerable efforts to be 
made in order to mitigate associated risks. Understanding the dynamics of the 
multitude of processes contributing towards AMR development, spread, and per-
sistence in microbial populations will prove paramount in resolving these prob-
lems. Mobile genetic elements (MGEs) such as plasmids, transposons/insertion 
sequences, and bacteriophages contribute towards horizontal gene transfer of 
antimicrobial resistance genes (ARGs) in the environment. ARGs can be trans-
ferred from naturally resistant, ubiquitously distributed microbial populations 
acting as reservoirs for these genes. When ARGs are introduced into pathogens 
or opportunistic pathogens, these microorganisms subsequently become prob-
lematic when introduced into human/animal populations.

The role of MGEs in the evolution and emergence of pathogens of significant 
clinical and veterinary importance is well-documented. From a microbiological 
perspective, improving our knowledge of MGE-mediated AMR transmission by 
the application of traditional microbial culture techniques, molecular biology 
methods, and genomic/metagenomic/transcriptomic approaches will enhance 
our understanding of the flow of genetic information in bacteria. Mathematical 
modelling will prove to be integral to developing testable hypotheses regarding 
gene transfer rates, the consequences of positive selection, persistence in the 
absence of selection, and the fitness cost of gaining/losing resistance.
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Horizontal gene transfer of AMR genes has led to the emergence of signifi-
cant globally distributed enterobacterial pathogens such as Escherichia coli, 
Salmonella spp., and Klebsiella spp. The consequences of the emergence of 
these pathogens pose significant risks for humans and veterinary medicine, in 
what is a highly convoluted and at present, a seemingly intractable problem.

Keywords
Antimicrobial resistance · Mobile genetic elements · Horizontal gene transfer  
Plasmids · Transposable elements · Bacteriophages · Mathematical modelling

10.1  Introduction

Factors governing the emergence, establishment, and persistence of multidrug- 
resistant (MDR) bacteria can largely be attributed to a number of natural pro-
cesses—mutation/evolution, selection, and DNA transfer in  vivo and in the 
environment. The flow of DNA can be vertical (mother-to-daughter) or horizontal 
(between bacterial cells) and forms a complex continuum of interactions in micro-
bial populations [1]. Beneficial traits have the potential to spread throughout bacte-
rial populations via horizontal transmission and become established in lineages 
following vertical transmission. Although positive selection exerts a major influ-
ence over this process, such genetic traits can persist in the absence of selection [2]. 
With information flowing in multiple directions, mixed microbial communities can 
benefit and evolve from the loss (e.g. insertional inactivation) or acquisition of 
genes that increase fitness of the recipient. Horizontal gene transfer (HGT) consti-
tutes the major route of DNA traffic in many environments, although there are roles 
for bacteriophage (phage)-mediated gene transfer, and transformation of bacteria by 
DNA in the environment. A wide range of mechanisms underpin HGT in nature [3], 
most notably mobile genetic elements (MGEs). MGEs such as plasmids and associ-
ated mobile elements including transposons, insertion sequences, and class I inte-
grons have played pivotal roles in the emergence of many human and animal 
bacterial pathogens [4, 5]. Phages also contribute towards HGT via the processes of 
generalised and specialised transduction [6–8]. As vectors of genetic information, 
the significant role MGEs perform in driving bacterial evolution is well-documented 
[9]. From a microbial perspective, the potential to acquire novel traits such as anti-
microbial resistance genes (ARGs) conferring the ability to survive in the presence 
of lethal compounds including antibiotics of clinical and veterinary importance, 
toxic metals, and disinfectants is evolutionarily advantageous in environments 
where lethal levels of antimicrobial compounds are present. Reservoirs of ARGs 
can be found in environments harbouring both pathogenic and non-pathogenic bac-
teria. Significantly, habitats such as the human and animal gut harbour high levels 
of Gram-negative Enterobacteriaceae, and therefore higher levels of ARGs [10]. It 
is readily accepted that genetic exchanges occur frequently between pathogens/non- 
pathogens in the environment. Consequently, the development and spread of 
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antimicrobial resistance (AMR) is a seemingly foregone conclusion. Delineating 
the important factors driving the global problem of AMR requires multidisciplinary 
approaches capable of drawing meaningful conclusions from often highly convo-
luted microbial interactions. Traditional microbial culture-based analysis, func-
tional and comparative genomics, and mathematical modelling will all play crucial 
roles in the study of AMR.

The cumulative effect of mobilising and disseminating ARGs in the environment 
is the spread of multiple resistance mechanisms capable of mitigating the effects of 
antimicrobial compounds, rendering treatment ineffective. Masking or mutation of 
the target site of the antimicrobial compound can render it ineffective. Resistance to 
macrolides, lincosamides, and streptogramins (MLS) is conferred by the activity of 
genes encoded by the erm (erythromycin ribosome methylase) family of methyl-
ases. Methylation of 16S rRNA mediated by erm alters the cognate target site of 
erythromycin and similar compounds. Actively pumping out antimicrobial com-
pounds via the acquisition of genes encoding specific/non-specific efflux pumps 
reduces the efficacy of many antimicrobial agents including antibiotics, metals, and 
disinfectants. Active modification of antimicrobial compounds into non-/less-toxic 
forms also leads to a loss of function and may ultimately lead to treatment failure 
[11]. Target site masking/mutation, efflux pumps, detoxification, and other associ-
ated resistance mechanisms are nearly always found to be acting in synergy. The 
combined effect leads to higher levels of resistance following positive selection for 
more resilient microbes.

10.2  Horizontal Gene Transfer

10.2.1  Plasmids

Plasmids are closed-circular autonomously replicating DNA molecules encoding 
genes for the propagation/retention of the plasmid and can also contain genes 
encoding various functions associated with increasing bacterial host fitness. Many 
plasmids are self-transmissible as they encode the necessary conjugative apparatus 
for transfer to recipient bacteria. Others, whilst notably lacking the ability to self- 
transmit due to the absence of conjugation-associated genes, are capable of being 
transferred in the presence of self-transmissible plasmids [12, 13]. Plasmid-mediated 
horizontal gene transfer is a major driving force behind the dissemination of AMR 
in bacterial populations [14]. Large AMR/virulence plasmids can simultaneously 
encode resistance to multiple antibiotic classes (e.g. β-lactams/cephalosporins, 
macrolides, tetracyclines, aminoglycosides, and sulphonamides), a wide range of 
antimicrobial metal resistances (e.g. copper, silver, zinc, and mercury), and resis-
tance to detergents/disinfectants (e.g. quaternary ammonium compound resistance 
(qacE)). Often co-located with AMR genes are virulence operons encoding diverse 
pathogenicity functions [15, 16]. Siderophore systems involved in iron acquisition, 
fimbriae/pili for cell-to-cell contact, and toxins are all common features of large 
virulence plasmids [13]. Smaller plasmids encoding single or a few resistances can 
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often be found co-existing in the same bacterial cell with large plasmids. Plasmids 
can readily be transferred between bacterial cells during the process of conjugation, 
allowing the dissemination of AMR genes throughout microbial communities, and 
small plasmids lacking the apparatus for conjugation can be mobilised with large 
self-transmissible plasmids. Recombination events between plasmids take place 
frequently and evolution has generated a diverse array of hybrid/mosaic mobile ele-
ments [12, 13, 17]. The activity of composite and complex transposons moving 
between plasmids, chromosomes, and genomic islands allows expansion of resis-
tance gene assemblages within and between plasmids, adding a further layer of 
complexity to the spread of AMR. Genes encoding resistances to a wide range of 
antibiotics including blaTEM [16], blaCTX-M-15 [18], and blaNDM-1 [19] are often found 
linked to or within insertion sequences in composite transposons, whilst complex 
transposons such as Tn3 family transposons Tn5, Tn7, and Tn10 which all carry 
antimicrobial resistances have been found on plasmids. Other genetic elements such 
as class I integrons have been found to be plasmid encoded and play a major role in 
the capture of AMR-associated gene cassettes allowing the generation of novel 
resistance phenotypes [1]. The constant interplay of mobile elements, recombina-
tion events, and bacterial conjugation leads to the formation of a complex mobile 
genetic landscape—the plasmidome [20–22]. The mobile nature of the plasmidome 
drives the emergence of resistance in the environmental resistome [10, 23]. 
Understanding the intricate relationships between bacteria and mobile genetic ele-
ments in the environment is central to combatting AMR.

Plasmids represent a highly diverse pool of MGEs that are grouped according to 
the type of replicon complexes (PCR-based replicon typing (PBRT)), mobilisation 
genes (mob-encoded relaxases), and incompatibility (Inc) groups. Plasmid incom-
patibility is a phenomenon arising from the fact that two plasmids of an identical Inc 
group cannot stably co-exist in the same bacterial cell [13, 24, 25]. In silico detec-
tion of plasmid-incompatibility groups is possible using the freely available 
PlasmidFinder—https://cge.cbs.dtu.dk/services/PlasmidFinder [26]. Factors gov-
erning incompatibility include essential functional plasmid components undergoing 
competitive/antagonistic interactions, thus abrogating plasmid establishment. 
Plasmid partitioning apparatus, DNA replication control elements, and other impor-
tant replication/establishment/maintenance functions can all be affected. It should 
be noted that a single plasmid can contain multiple replicons, e.g. IncFI/IncFIA/
IncFII, and IncHI/IncHI2. Further, it is reported that incompatibility can arise 
between plasmids bearing multi-replicons when trying to occupy the same bacterial 
cell. IncFIA/IncHI incompatibility arises due to the presence of a repFIA replicon 
in IncHI plasmids. However IncHI2 and IncFIA plasmids can stably co-exist in the 
same cell together as the IncFIA/repFIA replicon is absent in IncHI2 plasmids [17]. 
Multi-replicon plasmids such as those observed in the IncF/IncH partnership can 
evolve following fusion of the two plasmid DNA elements [27]. It has also been 
shown that an IncHI plasmid pEQ1 (239,151 bp) can undergo recombination with a 
48.5  kb IncXI plasmid generating a novel large virulence/resistance plasmid in 
Escherichia coli of equine origin. The IncXI plasmid encoded a progenitor 
β-lactamase gene blaTEM-1 and quinolone-resistance determinant qnrS1, and the 
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resultant recombinant plasmid pEQ2 (287,616 bp) had successfully acquired these 
ARGs [28]. Generation of large hybrid plasmids via fusion events instantly pools 
the encoded antimicrobial resistance and virulence determinants of the two 
elements.

10.2.2  Plasmid Conjugation

The process of IncF plasmid transmission (bacterial conjugation) in Gram-negative 
bacteria has been intensively studied with attention being focused on 
Enterobacteriaceae including E. coli and Salmonella spp. [29]. Conjugation is the 
process by which self-transmissible plasmids are transferred from a donor-host to a 
recipient bacterium via apparatus such as Type IV secretion systems (T4SS) [30, 
31]. Conjugation machinery constitutes a subfamily of T4SSs that are found to be 
related to secretion systems that deliver effector proteins to target prokaryotic/
eukaryotic cells. For both conjugative and effector secretion machinery, it is a 
necessity that intimate cell-to-cell contact is maintained throughout the substrate 
translocation process [32]. Conjugation systems are capable of driving the translo-
cation of DNA (e.g. via rolling-circle replication/ssDNA transfer) into recipient 
cells [33]. Secreted effector systems constitute a virulence-associated mechanism 
wherein protein substrates (e.g. toxins and cytoskeletal modulators) can be injected 
into target cells [32]. The IncF plasmid T4SS constitutes a dynamic pilus structure 
capable of extending and retracting to guide cell-to-cell interactions and ultimately 
transfer plasmid DNA during conjugation. The genes associated with conjugal 
transfer transcriptional regulation, pilus-assembly, molecular chaperones, surface- 
entry/exclusion, and mating-pair stabilisation are encoded in the tra regions of 
IncF-like plasmids [29, 34, 35]. The ~34-Kb tra operon has been the focus of many 
studies investigating bacterial conjugation due to the association with the spread of 
AMR. A range of proteins associated with the formation and function of the T4SS 
pilus complex are produced during conjugation. Fertility inhibition is the process 
which controls expression of the tra operon. Transcriptional regulation of traJ 
(plasmid transcription factor) is achieved via the finOP two-component system. 
FinP is an antisense non-coding RNA that interacts with transcribed traJ mRNA 
with the overall effect of tra gene repression [29]. FinO protein is recognised as 
stabilising the finP/traJ mRNA complex; however, IS3-mediated insertional inacti-
vation of finO can derepress control of the tra operon resulting in high-frequency 
transfer phenotypes [36, 37].

Expression of the tra operon leads to the production of the T4SS pilus complex 
of IncF plasmids, which is also a target for F-specific phages [38]. The major struc-
tural proteins of the T4SS serve to form three major substructures and contribute 
towards three important processes of the complex. Expression of pilus is required to 
successfully mediate cell-to-cell contact/adhesion via interactions with proteins 
such as the multi-subunit pilin protein TraA [39]. Transportation of plasmid DNA 
across the Gram-negative cell membrane into a recipient bacterium requires the 
formation of a pore channel. Pore formation following the assembly of proteins 
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TraB/TraK creates a structure observed to span the inner membrane, periplasm, and 
outer membrane. Pilus extension proceeds through the membrane-spanning pore 
and the internal tubular structure serves as a conduit for the secretion of DNA sub-
strates. Translocation of single-stranded DNA (ssDNA) substrates generated 
through rolling-circle replication requires attachment of a type 4 coupling protein 
(T4CP) to oriT-nicked DNA substrate. A large protein complex (the relaxosome) is 
involved in the generation of the ssDNA molecule via relaxase-mediated substrate 
nicking, and the ssDNA molecule is transferred to the recipient cell [39–41]. 
Stabilisation of the mating-pair complex requires the activity of two proteins 
encoded by traN/traG. A stable association between the plasmid donor and recipi-
ent bacterial cell is mediated via tight-junction formation arising through interac-
tions with the outer membrane protein TraN, inner membrane protein TraG, and the 
pilus complex [34, 35].

10.2.3  Plasmid Sequencing and ARG Identification/Annotation

Whole plasmid sequencing provides significantly more power towards establishing 
the true genetic relationship between different plasmid types/groups [25]. Plasmids 
have highly mosaic genetic structures that are under constant selective pressure to 
adapt and evolve. The application and cost-effective use of next-generation short- 
read sequencing technologies such as Illumina MiSeq has resulted in a huge increase 
in the number of microbial chromosomal/plasmid DNA sequences present in nucle-
otide databases such as NCBI.  The DNA sequences obtained from short-read 
assemblies can often be quite fragmented in terms of multiple contigs [42]. Genetic 
recombination, repetitive regions (e.g. IS elements), fusion events, and large-scale 
deletions can all be identified from short-read assemblies. However, the true loca-
tion and orientation of multiple contigs can be complex issues to resolve. Improved 
assembly software such as Plasmid SPAdes [43] and ReScaf allow for greater con-
fidence in short-read plasmid assemblies—although gaps still exist and resolution 
may require multiple rounds of PCR. In recent years, long-read DNA sequencing 
via the PacBio platform is allowing previously unseen resolution of closed-circular 
plasmid molecules. In-depth inferences can be made as to the overall structure at the 
nucleotide level, corrections can be made to preexisting plasmid sequences gener-
ated from short-read assemblies, and stronger phylogenetic relationships between 
plasmids can be observed using complete closed-circular sequences obtained with 
long-read technologies. Over time, the costs associated with long-read technologies 
will become more comparable to those of short-reads. The positive effect on our 
ability to obtain highly accurate plasmid sequences will prove invaluable to our 
understanding of the flow of genetic information in the environment.

Multiple programs and databases are available for the identification and annota-
tion of ARGs present in plasmid, chromosomal, and metagenomic sequence reads 
and assemblies. Simple Blast-based programs can rapidly search and annotate 
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nucleotide fasta files, identify functional protein domains, and generate user-friendly 
outputs for examination. For the identification of ARGs from DNA sequences, 
ResFinder (https://cge.cbs.dtu.dk/services/ResFinder) and PATRIC (https://www.
patricbrc.org/) can prove to be useful tools [44, 45]. ResFinder is capable of identi-
fying acquired ARGs covering all major classes of antibiotics. Identification of 
chromosomal point mutations in genes associated with the development of antibi-
otic resistance in a number of pathogens including Campylobacter spp., E. coli, 
Salmonella spp., Neisseria gonorrhoeae, and Mycobacterium tuberculosis is pos-
sible [45]. The BacMet database (http://bacmet.biomedicine.gu.se) offers rapid 
identification of genes and proteins associated with microbial resistance to metals 
and disinfectant/biocides [46]. Annotation of shotgun metagenomic DNA sequences 
is possible using the popular freely available MG-RAST (https://www.mg-rast.org/) 
[47]. Resistance databases such as Comprehensive Antibiotic Resistance Database—
CARD (https://card.mcmaster.ca/)—are powerful tools for identifying intrinsic, 
acquired, and mutational antibiotic resistances in microbial genomic datasets [48]. 
It is possible to identify most ARGs using general annotation programs such as 
PROKKA [49]; however, manual curation of predicted genes is recommended as 
some ARGs can be overlooked during the initial annotation.

10.2.4  Extended-Spectrum β-Lactamases

From a human perspective, the emergence and dissemination of antimicrobial resis-
tance (AMR) in the clinic, agriculture, communities, and beyond poses significant 
threats to modern day civilisation. MDR extended-spectrum β-lactamase-producing 
(MDR-ESBL) Gram-negative Enterobacteriaceae encoding resistance towards sev-
eral classes of antibiotics including third-/fourth-generation cephalosporins are of 
global concern [10]. Human and animal pathogens including MDR-ESBL Salmonella 
spp., Klebsiella spp., and E. coli therefore constitute considerable public and veteri-
nary health risks [50–54]. MDR-ESBL pathogens can readily be isolated from peo-
ple and associated environments (homes, hospitals, companion animals, etc.), 
livestock (farms, manures, slurries, etc.), and retail foods (dairy, meats, fruits, and 
vegetables). Of critical concern are emerging carbapenem- resistant ESBL-producing 
Enterobacteriaceae encoding the gene blaNDM-1. Production of the enzyme carbapen-
emase encoded by blaNDM-1 provides resistance against carbapenems essential for the 
treatment of MDR Gram-negative bacilli. Surveillance of ESBL-producing 
Enterobacteriaceae is therefore essential if prevention, containment, and treatment 
strategies are to be developed to control AMR [55, 56]. Abrogating the risks associ-
ated with AMR can only be achieved by enhancing knowledge of the varied factors 
influencing resistance in the environmental resistome. It is important to remember 
that environmental reservoirs of ARGs are observed in non-pathogenic bacteria—
functional metagenomics studies can play an important role in studying antimicro-
bial resistance [57].
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10.2.5  Class I Integrons

Integrons represent an environmental pool of ARGs that can be found in areas influ-
enced by human activity. The pool is continually enriched with functional resistance 
determinants that reflect human use of antibiotics, metals, and compounds such as 
disinfectants and detergents [58]. Mobile gene cassettes encoding ARGs can be 
acquired by integrons through the activity of integrase (intI—a site-specific tyrosine 
recombinase) and subsequently expressed from integron-specific promoters (PC/
PANT and P2). DNA/protein sequence analysis of integron-associated integrase genes 
highlights several distinct classes, e.g. classes I, II, and III [59]. Class I integrons are 
recognised as being a major contributing factor towards the development and per-
sistence of AMR in Gram-negative Enterobacteriaceae. Dispersal of class I inte-
grons throughout microbial populations in human-associated environments 
including agriculture/food production, sewage/waterways/river catchments, soils, 
and the clinic is well-documented. The highly diverse and seemingly endless array 
of genetic configurations found in class I integrons can be attributed to >130 identi-
fied gene cassettes [60]. A recent study proposed an elegant mechanism for the 
origin and subsequent global dissemination of class I integrons. A series of nested 
transposons were found embedded in an IncP plasmid-associated class I integron 
harboured by an environmental Enterobacter cloacae isolate. The authors hypoth-
esise that the progenitor clinical class I integron was mobilised from a 
β-proteobacterial chromosome as part of a Tn5090 transposon which subsequently 
generated a Tn402 transposable element. The newly formed plasmid-integrated 
Tn402-element gained the ability to mobilise between microbial populations via 
plasmid conjugation. Transposition of Tn402 into a mercury resistance (mer operon) 
Tn501-like transposon formed the hallmark Tn21 transposon of the Tn3 family 
[61]. Pre-antibiotic era Tn21-like mercury resistances have been found not to con-
tain the integron element [62, 63]. From an initially non-mobilisable genetic ele-
ment, this chain of events allowed the evolution of one of the most pivotal 
antimicrobial resistance determinants within the microbial gene pool. The clinical 
class I integron was therefore well equipped to disseminate throughout globally 
distributed microbial populations.

Prior to the introduction of antibiotics as antimicrobial agents, the selective pres-
sures driving the evolution of class I integrons are likely to have been disinfectants, 
and other small molecules with antibacterial activity. As antibiotic usage became 
common place in humans, agriculture, and horticulture, the necessary components 
of the class I integron were already in place allowing gene cassette expansion of 
novel determinants associated with antibiotic resistance. The first integron isolated 
in Japan in the mid-1950s was carried on the mercury resistance transposon Tn21 
and carried quaternary ammonium ion, sulphonamide, and streptomycin resistance 
[64]. Due to its widespread environmental distribution, the class I integron is con-
sidered to be a useful marker for anthropogenic pollution. Following the global 
dissemination of class I integrons, it is now well documented that the element is 
present in both pathogenic and non-pathogenic bacteria. Coupled with our knowl-
edge of anthropogenically derived selective pressures such as the profligate use of 
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antibiotics, metals, and disinfectants, utilising the class I integron (and the Tn21- 
family mercury resistance transposon that frequently carry the integrons) as a repre-
sentation of environmental pollution will prove important in our attempts to 
understand AMR [58, 65].

The capture, integration, and excision of gene cassettes by class I integrons is a 
well-understood biological process. IntI1 facilitates the integration of gene cassettes 
via RecA-independent site-specific recombination between integron attI and gene 
cassette attC [58, 61]. Transcription of integrated ARGs is driven from PC allowing 
expression of the encoded functional determinants [66]. Gene cassettes located 
proximal to intI1 are observed to have higher levels of expression when compared 
to cassettes positioned distal to intI1. Over time, class I integrons can evolve through 
the loss or capture of specific ARGs, expansion of the number of integrated cas-
settes, or via disruption of gene synteny following transposition events [58]. The 
3′-conserved segment (3′-CS) of class I integrons is recognisable by the presence of 
a sulphonamide resistance gene (sulI) and quaternary ammonium compounds (e.g. 
qacEΔ1). Interruption of sul/qac following IS26 transposition (see Fig. 10.1) such 
as observed in the large virulence plasmid of S. Typhimurium U288 (pSTU288-
1- 148,711 bp) creates an atypical 3′-CS [16, 66]. It has recently been reported that 
class I integrons containing atypical 3′-CS are associated with higher degrees of 
resistance when compared to typical 3′-CS [67].

10.2.6  Microbial Metal Resistance

The presence of specific gene operons capable of conferring resistance towards 
metal compounds is well documented in a wide range of bacterial species. Many 
natural and human-influenced environments contain levels of metals that require 
specific and effective mechanisms for microorganisms to survive (and sometimes 
prosper). Microbial-encoded resistance to metals can be conferred by diverse gene 
collections such as cus/pco (copper resistance), czc system (cobalt/zinc/cadmium 
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Fig. 10.1 Atypical class I integron of Salmonella Typhimurium U288 (pSTU288–1)—adapted 
from Hooton et al. [16]. An IS26-mediated transposition event has introduced sulIII into the 3′-end 
of the integron disrupting the qac/sulI fusion of typical class I integrons
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resistance), sil operon (silver resistance), mer operon (mercury resistance), ter 
operon (tellurium resistance), and ars operon (arsenic resistance). Mobility of metal 
resistance determinants can be influenced via the activity of transposable elements. 
A striking example of the mobility of metal resistances are the mercury resistance 
(mer) operons found in Gram-negative bacteria, of which Tn21 and Tn501 are 
exemplars [64]. The mer operon is often linked to a Tn21 element found flanking 
the 5′-CS of class I integron arrays. A striking example of metal resistance mobility 
is observed in the sil/pco region of S. Typhimurium metal resistance plasmid 
pMG101. The sil region is flanked by the Tn7 transposable element (TnsABCDE) 
which provides mobility of the pco/sil operons. Interestingly, when pMG101 is con-
jugated into E. coli J53, the Tn7/pco/sil unit is observed to transpose into the chro-
mosome of the recipient cell [68].

Mercury resistance is associated with genes encoded within the mer operon. The 
mer operon of multidrug-resistant S. Typhimurium T000240 (DT12) is flanked 
either side by IS1 transposable elements (insA/insB), transposon-associated genes 
(tniA/tniB), and an IS3 element (istA/istB). Mobility of the element is actually driven 
by its physical location as it is present along with a class I integron, ARGs, and viru-
lence factors that form part of a larger mobile genomic island (SGI-DT12) dis-
cussed in detail below (also see Fig.  10.2). The IS1-elements flanking the mer 
operon precede the terminal regions of the integrated genomic island and may con-
stitute an important factor in the spread of mobile genomic islands [69].

10.2.7  Co-selection of Antibiotic and Metal Resistance

Many metal resistance determinants are located on plasmids that also encode resis-
tance to multiple antibiotics. Co-selection/co-occurrence and maintenance of AMR 
is particularly worrying due to the fact that even following removal of a selective 
pressure such as an antibiotic, resistance may be maintained due to co-localisation 
with genes that are still undergoing selection [46, 70]. The presence of copper and 
zinc in many human-dominated environments such as agricultural livestock produc-
tion has allowed the proliferation of co-selected genetic elements in both Gram- 
positive and Gram-negative bacteria. It is reported that the use of various metals in 
food production environments can lead to proliferation and persistence of a range 
of pathogenic microorganisms. The use of copper in the pig-rearing process is 
linked to the development of MDR Salmonella, zinc in feedstuffs can select for 
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Fig. 10.2 mer operon of multidrug-resistant S. Typhimurium T000240 (DT12)—accession no. 
AP011957 [69]
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methicillin-resistant Staphylococcus aureus [71], and zinc was observed to select 
for co-resistance to the antibiotics sulfamethoxazole and ciprofloxacin in E. coli 
[72]. The addition of metals such as copper and zinc to pig feed at concentrations 
well above normal physiological requirements (Zn 2–3000  ppm and Cu 125–
250 ppm) results in improved growth post-weaning and also reduces the incidence 
of scour [73]. With such practices commonplace in agriculture, co-selection for 
simultaneous resistance towards numerous metal and antimicrobial compounds will 
undoubtedly persist. Even in the absence of selection, it is likely that such resis-
tances will persist in the environmental resistome indefinitely.

10.2.8  Mobile Genomic Islands

Genomic islands (GIs) are large DNA elements that have the potential to excise 
from the bacterial chromosome and move via secondary interactions with conjuga-
tive plasmids. This process is exemplified in Enterobacteriaceae that can mobilise 
genomic islands in conjunction with IncA/C plasmids [74]. The IncA/C group con-
stitutes a diverse collection of large multidrug-resistant, conjugative, broad-host 
range plasmids disseminated throughout clinical and environmental microbial pop-
ulations [75]. Studies involving the MDR-conferring 43  kb Salmonella genomic 
island-1 (SGI-1) provide a fascinating insight into factors driving the dissemination 
of this integrative mobile element (IME). Resistances encoded on SGI-1 include the 
class I integron-borne (IN104) cassettes conferring resistance to ampicillin, chlor-
amphenicol, streptomycin, sulphonamides, and tetracycline. SGI-1 has not only 
successfully spread through a number of S. enterica serovars, but it has also been 
reported in clinical Proteus mirabilis isolates. Chromosomal insertion of SGI-1 
occurs in a site-specific manner at an 18-bp site situated at the 3′-end of trmE [74, 
75]. The exact mechanism of mobilisation involves in trans interactions via a con-
jugative IncA/C following chromosomal excision of SGI-1. Interestingly, a mobile 
resistance-associated island found in Vibrio cholerae (MGIVcholHai6) is also 
mobilised via IncA/C plasmids, integrates in the trmE loci, and is associated with 
contributing towards the multidrug resistance phenotype of the host [76]. The adop-
tion of whole genome sequencing has allowed for the identification of a highly 
diverse collection of IMEs in bacterial chromosomes. Originally identified in a case 
of human gastroenteritis in Japan, in 2000, the 82-kb genomic island SGI-DT12 of 
fluoroquinolone-resistant S. Typhimurium T000240 (DT12) provides an interesting 
example of pathogen evolution [69]. Encoded within SGI-DT12 are a range of 
genes providing virulence-associated functions such as siderophores (aerobactin 
IucABCD system) and high-affinity Fe2+-binding proteins. Further determinants 
providing protection against a range of antibiotics including the transposon-linked 
tetracycline resistance genes and chloramphenicol acetyltransferase gene are also 
present. SGI-DT12 further encodes a class I integron structure flanked by a Tn3/Tn21 
transposable element and the classical mercury resistance operon (mer). The class I 
integron is observed to contain a β-lactamase-encoding blaOXA-30 gene cassette that 
confers resistance to ampicillin and cefepime. SGI-DT12 was identified as having 
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IS-1 family transposons at both ends of the chromosomal insertion site. The 
presence of such elements indicates the likely mechanism of HGT that drove the 
integration of SGI-DT12 into the S. Typhimurium T000240 chromosome [69]. 
Diverse resistance phenotypes are capable of being acquired following IME 
acquisition and such elements are therefore major contributors towards bacterial 
evolution. Freely available online programs such as IslandViewer 4 can be used to 
interrogate genomic DNA sequences for the presence of genomic islands [77].

10.3  Bacteriophages

As obligate intracellular parasites of bacteria, bacteriophages (phages) have exclu-
sive access to their microbial hosts’ intracellular environment. As part of their natu-
ral lifecycles, phages can either integrate into the bacterial host chromosome during 
the process of lysogeny (temperate pathway) or by default actively replicate inside 
the bacterium thereby increasing virion copy number prior to lysis of the host cell 
(lytic pathway). Phages and bacteria have co-existed and interacted over millennia 
in countless predator/prey or host/parasite interactions. This shared pathway driven 
by lytic phage predation, temperate phage integration, and bacterial resistance 
mechanisms has resulted in a co-evolutionary arms race. Phages are therefore rec-
ognised as playing a pivotal role in the past and continued evolution of prokaryotic 
genomes [78]. A striking example of the role phages have performed in bacterial 
evolution is the emergence of Shiga-toxin (Stx)-producing E. coli (STEC). STEC 
(and STEC-like pathogens) are well documented as having emerged following the 
integration of multiple temperate phages encoding the stx genes necessary for Stx 
production—a process known as lysogenic conversion. E. coli O157:H7 is recog-
nised as being a significant pathogen of humans capable of causing numerous dis-
ease sequelae including haemolytic uraemic syndrome, haemorrhagic colitis, and 
thrombotic thrombocytopenic purpura. Further outbreaks of Stx-associated disease 
arising from human infections with non-O157:H7 serotypes are a direct result of 
Stx phage disseminating throughout distinct E. coli lineages and other 
Enterobacteriaceae, e.g. E. cloacae [79]. The toxicity of Shiga toxin towards 
eukaryotic cells is well-documented and understood. It is believed that a potential 
beneficial function for E. coli carrying Stx-producing phages is protection afforded 
towards the avoidance of predation by grazing single-cell eukaryotes in the bovine 
intestine where E. coli O157:H7 is commonly found [80, 81].

10.3.1  Bacteriophages and HGT

The role of phages in the transfer of AMR genes in the environment still remains 
unclear. Undoubtedly, phages will have a role in the transfer of AMR genes, but how 
significant this role is still remains to be quantified. Phages in general can mediate 
the transfer of genes through four mechanisms: generalised, specialised, auto- 
transduction, and phage-mediated plasmid transformation.
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Transduction is the transfer of DNA from one bacterial host to another via a 
phage particle, and this process is further divided into generalised and specialised 
transduction. Generalised transduction can occur in both lytic and temperate phages, 
whereby a mispackaging event causes host DNA to be incorporated within the 
phage virion. Upon lysis of the host, the transducing particle is released, and there-
fore capable of infecting another bacterial cell to transfer the host DNA incorpo-
rated within the virion particle. As generalised transduction is a result of the random 
mispackaging of host DNA, it provides a mechanism to transfer any part of the host 
genetic material to another bacterial host.

Specialised transduction was first discovered in the 1950s [82] and can only be 
carried out by temperate prophages. Specialised transduction occurs as a result of 
the inexact excision of a prophage from the host chromosome, resulting in host 
genetic material being incorporated into a virion particle along with phage 
DNA.  Upon release of phage particles, the specialised transducing particles are 
capable of infecting and replicating in their next host, unlike generalised transduc-
ing particles which merely transfer host genetic material. Unlike generalised trans-
duction, only genes that are localised next to prophage insertion sites can be 
transferred.

The third mechanism of phage-mediated transduction has been termed auto- 
transduction and has so far only been demonstrated in S. aureus [83]. In auto- 
transduction, a lysogenic population of bacteria releases phage particles that are 
capable of infecting a susceptible population of bacterial cells. These infected cells 
subsequently produce more phage virions and occasionally generalised transducing 
particles. The original lysogenic population is immune to the resulting phage parti-
cles owing to prophage homo-immunity, a system that prevents infection by the 
same phage type. However, the transducing particles are able to transfer DNA into 
the lysogenic population of bacteria. In the case of S. aureus, the process of auto- 
transduction provided a mechanism for cells to quickly acquire resistance to antibi-
otics [83].

Recently, a fourth method of phage-mediated gene transfer has been described, 
which is distinct from transduction and is described as phage-mediated plasmid 
transformation. Upon infection of the host with what has become known as a 
“superspreader”, an increased amount of plasmid DNA is released then transferred 
via the process of transformation into other cells. The underlying mechanisms that 
allow this are not fully understood but are thought to involve absence of endonucle-
ases in the “superspreader” phages, which consequently do not degrade the plasmid 
DNA [84].

10.3.2  Bacteriophage Genomes and ARGs

Despite the mechanisms of generalised and specialised transduction long being 
known, how significant phage are in the transfer of ARGs in the environment is still 
unknown and largely understudied. A recent analysis of 1181 phage genomes 
revealed that only three phages carried an antibiotic resistance gene within their 
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genomes [85], suggesting that phage rarely encode ARGs. Whilst this may be cor-
rect, further work is needed to determine the role of phages in the transfer of ARGs 
as well as the carriage of ARGs. The study of Enault and colleagues that examined 
complete phage genomes was based on the relatively small dataset that was avail-
able at the time that was dominated by lytic phages so may be a sampling bias and 
not representative of all phages. Our analysis of 8263 phage genomes using conser-
vative parameters identified only 24 phage that carry ARGs (~0.23%), suggesting as 
Enault and Kleinheinz have that ARGs encoded in phage genomes are rare, despite 
a near sevenfold increase in the database (A. Millard—Unpublished data).

The rare occurrence of ARGs in lytic phage genomes is possibly not surprising 
as currently there is no clear selection pressure that can explain why they would be 
maintained within lytic phage genomes, as the very nature of lytic phages means 
that their host will die shortly after infection. Despite this, there are rare occurrences 
of antimicrobial resistance genes in lytic phages, such as a tellurite resistance gene 
found in a phage infecting E. coli isolated from pig faeces [86]. The presence of this 
gene suggests that it could be transferred to other bacteria only if the lytic infection 
is unsuccessful, thus providing an opportunity for recombination with the host bac-
terial DNA. For temperate prophages, the presence of ARGs can easily be seen to 
be advantageous, as the stable association of the prophage within the host chromo-
some for many generations provides the opportunity for carriage of ARGs to be 
selected for. Analysis of 1442 prophages found that ~1% carried one or more ARGs, 
in comparison to ~0.2% of 1642 lytic phages, suggesting that prophages are far 
more likely to carry ARGs than lytic phages [87].

Whilst the carriage of ARGs within the genome of a phage provides direct means 
to allow the transfer of ARGs, it is likely that the process of transduction is of more 
importance in the dissemination of ARGs by phages. However, there are relatively 
few reports of the direct assessment of transduction. The large-scale isolation of 
phages and subsequent testing of their ability to transduce ARGs has demonstrated 
that phage can transduce ARGs. The isolation of 243 phages from chickens reveals 
that ~25% of phage could transduce single/multiple ARGs, with considerable varia-
tion in the resistance genes that could be transduced, with kanamycin transduction 
occurring ~10 times more often than tetracycline [88]. Efforts have been made to 
directly study transduction in the environment using indigenous populations of 
marine bacteria. In a study using marine bacteria from Tampa Bay, it was found that 
the frequency of transduction was 1.5 × 10−8–3.7 × 10−8 transductants/PFU [89]. 
This data was then incorporated into a model along with estimates of phage and 
bacterial abundance, and volume in Tampa Bay to estimate up to 1.3 × 1014 trans-
ductants per year occurred in the Tampa Bay Estuary [89]. Whilst there are limita-
tions to the model used, it clearly demonstrates that phage could have an important 
impact on the movement of genes in the environment.

The role of the recently described phage-mediated plasmid transformation to 
transfer ARGs in the environment has also been investigated. A “superspreader” and 
“normal” phage were spiked into identical natural populations of soil bacteria, 
which resulted in >1000-fold increase in resistant colonies with addition of the 
“superspreader” compared to the “normal” phage [84]. In addition, it was found that 
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E. coli-specific superspreader phage SUSP2 mediated the transfer of plasmid DNA 
from the Gram-negative E. coli to a Gram-positive Bacillus spp. [84]. Whilst it is 
known that plasmids can replicate in both E. coli and Bacillus spp. [90], it adds 
further complexity to our understanding of the role of phages in the transfer of 
ARGs.

10.3.3  Environmental Bacteriophage Genomics

In addition to culture-based techniques used to assess the ability of phages to medi-
ate the transfer of ARGs, the molecular methods of qPCR and metagenomics have 
been used. Metagenomics allows for a greater understanding of the total viral com-
munity and any ARGs within it to be assessed, without the need for isolation of 
phages. Since its first use in 2002 [91], there have been some important develop-
ments in viral metagenomics. The early years of viral metagenomics required a 
number of innovative steps for the sequencing of viral metagenomes compared to 
bacterial metagenomics [92]. These steps were largely to overcome the toxic nature 
of cloning bacteriophage genes into E. coli prior to Sanger sequencing. With the 
advent of next-generation sequencing, cloning of viral DNA became redundant as 
sequencing technology developed. With the development of second-generation 
sequencing, a previously unimaginable depth of coverage for viral genomes has 
become possible. This has allowed viral metagenomics to move from answering 
what is present towards a quantitative measurement of how much is present, with 
optimisation of extraction of the viral fraction and library preparation for sequenc-
ing [93].

With a move towards quantitative viral metagenomics, it has been possible to 
determine the abundance of ARGs within viral metagenomes from a variety of 
different environments [94, 95]. What is not in doubt is that viral metagenomes 
contain ARGs [85, 94, 95]; however, what is still to be determined is how impor-
tant this is as a reservoir and how it relates to the abundance of ARGs in the bacte-
rial fraction. A virome can contain bacterial genes for three reasons: (1) phage can 
incorporate them into their genomes, (2) phage are capable of transduction, there-
fore will package host genes within their capsids, and (3) insufficient removal of 
host DNA during purification. To understand the role in the transfer of ARGs, it is 
essential to minimise the effect of contaminating host DNA. There has been much 
work to optimise the production [96] and analysis of viral metagenomes [97, 98] 
to minimise and identify contaminating host DNA.  However, recent work has 
identified that contaminating bacterial DNA and low-similarity matches have 
overestimated the abundance of ARGs in previously reported viromes [85]. 
Despite the possible pitfalls associated with metagenomics, it is possible to gather 
useful information on the abundance of ARGs within viromes if samples that are 
high in contaminating host DNA are excluded, and stringent values for predicting 
ARGs are used. A study that reanalysed 33 viromes found ARGs in diverse envi-
ronments including freshwater, marine, sewage, swine, and human faeces [94, 
95], with ARGs least abundant in human-associated viromes, and most abundant 
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in viromes associated with pig faeces and freshwater habitats. In particular, genes 
conferring resistance to β-lactam antibiotics were the most abundant class of ARG 
found in any virome [94, 95]. Thus, viral metagenomics clearly demonstrates that 
phages can harbour ARGs in a range of environments. The use of viral metage-
nomics alone, without metagenomics of the bacterial fraction from the sample, 
does not give any indication of the direction of the flow of genes, from phage to 
host or host to phage.

The use of qPCR that targets a small number of known genes provides the 
opportunity to do this, allowing accurate quantification of ARGs in the bacterial 
and phage fraction, at a fraction of the cost of metagenomics. The analysis of water 
samples collected downstream of wastewater treatment plant revealed the differen-
tial abundance of ARGs in bacterial chromosomal DNA, phages, and plasmids 
between upstream and downstream sites [94]. Whilst ARG abundance was higher 
in the bacterial fraction, the differences in abundance between upstream and down-
stream sites were often greatest for the phage or plasmid fraction, suggesting 
phages and plasmids are important vectors in the dissemination of ARGs in river 
water [94, 95].

A higher abundance of ARGs in the bacterial fraction compared to the phage 
fraction has also been demonstrated in other environments. In a soil microcosm 
study that focused on soil contaminated with tetracycline and monitored the abun-
dance of six tetracycline resistance genes, it was found that the bacterial fraction 
contained genes at two orders of magnitude higher than the phage fraction [99]. 
There was also a correlation in the abundance of each gene between the bacterial 
and phage fractions, with decreasing abundances in both fractions as the tetracy-
cline concentration decreased over time [99].

In a study of the River Llobregat, the abundance of six ARGs was studied in both 
the bacterial and viral fraction of sediment and river water over an annual cycle. In 
common with other studies, ARGs were higher in the bacterial fraction in both sedi-
ment and water samples [100]. A clear seasonal variation was observed in the abun-
dance of ARGs in the phage fraction, although the reasons behind this are unknown. 
Furthermore, it was found that ARGs in both phages and bacteria are persistent in 
sediment for over 20 days, suggesting that both phage and bacteria are a reservoir of 
resistance genes in the environment [100]. In another study of the Funan river in 
China using qPCR to target 15 ARGs, it was found that sites located near to a waste-
water treatment facility and a hospital contained the highest abundance of ARGs in 
the phage fraction [101]. Thus, providing further evidence that phages are a reser-
voir of ARGs, and the increased abundance is likely a result of anthropogenic inputs. 
A recent study of agricultural soil and fresh cut vegetables (lettuce, cucumber, and 
spinach) provides further evidence that phages are an important reservoir of ARGs 
[102]. Using qPCR to detect 10 ARGs, it was found that there were variable levels 
of ARGs in the phage fraction extracted from soil and vegetables. Critically within 
this study, it was shown the phage fraction containing ARGs was able to propagate 
in E. coli [102]. Thus, not only does the phage fraction contain ARGs, they are not 
merely transducing particles but are capable of active replication and further spread 
of ARGs.
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Through a combination of culture-based studies and molecular methods, it is 
becoming clear that phages have an important role in both the transfer of ARGs 
within the environment and acting as a reservoir of ARGs. However, there is still 
much to be understood as to how much different methods of phage-mediated gene 
transfer contribute to the overall transfer of ARGs.

10.4  Genomics/Metagenomics

Deep-sequencing an environmental metagenome provides an indication as to micro-
bial population structures and genes present at a given moment in time [1, 103]. 
Sequence-based read mapping is extremely useful but it is limited by the fact that 
genes of interest cannot necessarily be directly linked to taxonomic distribution. 
Identifying AMR genes in metagenomic datasets also provides comprehensive 
information as to the range of resistances present. However, the ownership of AMR 
genes in environmental samples often remains elusive and currently cannot be 
investigated using deep-sequencing strategies alone. To overcome this, emulsion, 
paired-isolation, and concatenation PCR (epicPCR) can be used to link genes of 
interest with 16S rRNA markers (see Fig. 10.3). A suspension of bacterial cells in 
oil emulsion/acrylamide is polymerised allowing capture of single cells in a solid 
matrix. In situ lysis of bacterial cells in a porous matrix provides a sufficient plat-
form for downstream PCR steps. Enzymes and reagents can readily diffuse into the 
bead allowing access to the embedded genomic and plasmid DNA. Combining 16S 
PCR with amplification of a target such as ARGs will provide insights into environ-
mental distribution of antimicrobial resistance determinants. Adapting approaches 
such as epicPCR for the study of antimicrobial resistance will also allow for 

Sequence purified AMR/16S fusion amplicons

Create AMR/16S gene fusion product

PCR
amplification

16SAMR gene & primers

Polymerize & recover
acrylamide beads

Bacterial cells in oil
emulsion/acrylamide

droplets

Lyse bacterial cells
& genomic DNA

Perform epicPCR & link AMR
genes to 16S markers

Bridging primer

Fig. 10.3 Schematic overview 
of epicPCR technique (adapted 
from [104])
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high-throughput screening of environmental samples. Combining metagenomic- 
based approaches with epicPCR also has the potential to identify previously unob-
servable AMR relationships. High-throughput sequencing of epicPCR libraries 
produces unique data by linking environmental genes with bacterial species-level 
identification [104]. Environmental metagenomes may further contain “hidden” 
information about currently uncharacterised or unidentified ARGs [105, 106]. 
Identification of novel environmental resistance genes remains an underinvestigated 
field of AMR research.

Functional metagenomic DNA libraries can be used to screen for the presence of 
known/unknown ARGs in the environment. Dependent on the insert size used dur-
ing library preparation, single genes, operons, or large resistance clusters may be 
identified. Appropriate selection of resistant clones using clinically relevant antibi-
otics allows for the identification of functional AMR-associated genetic markers. 
High-throughput sequencing of DNA inserts obtained from resistant clones pro-
vides genetic data based on phenotypic resistances to the chosen panel of selective 
agents [105–107]. Data obtained from functional metagenomic studies has the 
potential to guide the design of epicPCR experiments [104]. Inverse PCR can also 
be integrated as a platform for high-throughput environmental studies. In combina-
tion with third-generation long-read sequencing technologies, inverse PCR can be 
used to study large amplicons generated using AMR-specific primers. PacBio 
sequencing of inverse PCR products generates high-quality data relating to ARGs 
and immediate sequence environments [108]. Establishing new roles for traditional 
molecular biology techniques in the context of high-throughput sequencing has pro-
vided novel avenues of investigation for AMR research [104–106, 108]. Knowledge 
of the prevalence and phylogenetic distribution of environmental variants of known/
novel ARGs utilising metagenomic approaches such as epicPCR and inverse PCR 
will further our understanding of environmental AMR.

10.5  Transformation with Exogenous DNA

Transformation of competent microbes with exogenous sources of DNA constitutes 
another route for the flow of genetic information [109]. The full importance of 
transformation in the spread of AMR is not fully understood—most reports of trans-
formation by exogenous AMR gene DNA involve Gram-positive bacteria such as 
Streptococcus pneumoniae and N. gonorrhoeae being transformed. Other bacterial 
strains have been reported to be naturally competent, e.g. Bacillus spp. and Ralstonia 
spp., and there have been reports that Gram-negative bacteria such as Haemophilus 
influenzae, Haemophilus parainfluenzae, and Haemophilus suis, Pseudomonas sp., 
and E. coli can be transformed by exogenous DNA under natural environmental 
conditions (reviewed in [9]). Natural competence in bacteria can also be dependent 
upon environmental factors—bacterial cells may need to be metabolically active, 
but have shifted to unbalanced growth [109, 110], presence of metal ions such as 
Ca2+, and Mg2+ [110, 111], and that natural waters containing Ca2+ at levels as low 
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as 1–2 mM are sufficient to induce transformation in E. coli at levels equivalent to 
those reported for other naturally competent bacteria [112].

In addition to the cellular conditions required for natural competence, transfor-
mation requires a number of other conditions to occur: The DNA can be damaged 
or fragmented, but can still transform bacterial cells, but needs to be in intimate 
contact with them, and once taken up the DNA need not be restricted by the host’s 
own restriction/modification systems, and then must be integrated into cellular 
DNA that replicates, or carries all of the machinery that allows it to replicate auton-
omously [9, 113, 114]. DNA is known to be released by bacterial species such as 
Pseudomonas, Bacillus, and Neisseria, and this released extracellular DNA not only 
plays a role in transformation but may also play a role in DNA damage repair, and 
is known to be important in the formation of microbial biofilm communities [115]. 
There also appears to be a potential role in natural transformation for lytic bacterio-
phage, as “superspreaders” of AMR genes, by causing the release of bacterial plas-
mid DNA after cell lysis [84].

10.6  Mathematical Modelling of Spread of Resistance 
Through HGT

Mathematical models for spread of antimicrobial resistance can be useful in a num-
ber of ways: to identify those factors to which spread of resistance is most sensitive; 
to make predictions that can help inform policy; and to make predictions in the face 
of specific outbreaks [116].

Mathematical models can be built in a number of ways. The most common 
approach is to use ordinary differential equations [117–119]. These typically con-
sider populations of sensitive and resistant bacteria, in a homogeneous environment, 
although they can be extended to more than one compartment [120]. Differential 
equation models are rapid to simulate and have a wide range of analytical tech-
niques available. For example, sensitivity analyses have highlighted the importance 
of horizontal gene transfer to spread of resistance, for example in a slurry tank sys-
tem [117] or between compartments, such as animals and humans [118].

Other approaches include the use of stochastic models that can include random-
ness [120, 121]. Stochastic effects have been shown to be important in the way that 
plasmids control the genes for their replicative and conjugative apparatus [122–
124]. Individual-based models treat bacteria as single cells acting in a spatial domain 
[125]. Individual-based models can only model small populations of bacteria, but 
have the advantage of being more realistic. They also allow simulations of spatial 
processes, for example demonstrating that growth-dependent conjugation rates can 
explain how biofilms can resist plasmid invasion [126].

To illustrate how a differential equation model works, we describe a simple ordi-
nary differential model for horizontal transfer of resistance. The model we show 
contains two populations: bacteria that are sensitive to antibiotic (S), and bacteria 
that are resistant to the antibiotic (R). This model can be used to describe 
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bacteriostatic or bactericidal antibiotics, as well as resistance that can be transmitted 
horizontally (i.e. through plasmids) or only vertically (i.e. chromosomal).

The model equations are

 

dS
dt

r R S
K

E S r R S
K

E R SR
S R

G SS R S= -
+æ

è
ç

ö
ø
÷ + -( ) -

+æ
è
ç

ö
ø
÷ -

+
-1 1 1e a

b
d

 

 

dR
dt

r R S
K

E R SR
S R

G RR R= -( ) -( ) -
+æ

è
ç

ö
ø
÷ +

+
-1 1 1e a

b
d

 

These equations contain the following processes:

• Bacterial growth; this has maximal growth rate r and maximum population size 
K.

• Fitness cost α of carrying the antibiotic resistance genes.
• Impact of a bacteriostatic antibiotic on growth of sensitive bacteria (ES) and 

resistant bacteria (ER). Fully resistant bacteria would have ER = 1. In the absence 
of bacteriostatic antibiotic, ES would also be equal to 1.

• Loss of resistance due to plasmid segregation (in the horizontal gene transfer 
case) or simply mutation (in the vertical transfer case) with rate ε.

• Horizontal gene transfer at rate β. If we are considering only vertical transmis-
sion, then β = 0.

• Death of bacteria at rate δ. Previous models have not included death terms [117, 
119], but they are essential for three reasons. First, bacteria do die, especially 
from phage or protozoal predation [127], so it is more realistic. Second, it is 
required for inclusion of bactericidal antibiotics. Third, and more important, it is 
impossible to implement the effect of bacteriostatic antibiotics correctly in a 
logistic growth model without death; without death, the logistic model will oper-
ate near to its carrying capacity, where bacteriostatic effects will be minimal. 
Alternatively, the model would be required to be run far from equilibrium, in 
order to observe bacteriostatic effects, which is also unrealistic. For these rea-
sons, it is essential to include death terms into models for resistance.

• Impact of a bactericidal antibiotic on death of sensitive bacteria (GS) or resistant 
bacteria (GR), fully resistant bacteria would have GR = 1. In the absence of bacte-
ricidal antibiotic, GS would also be equal to 1.

This model could be used in many ways, for example to consider spread of resis-
tance under exposure to either or both of a bacteriostatic or bactericidal antibiotic. It 
could be subjected to sensitivity analyses to determine factors to which it is most 
sensitive. Or it could form the basis of a more complex model that might include mul-
tiple compartments (whether patients or animals, locations, or spatial environments), 
many different antibiotics, different resistances, different gene transfer agents, or dif-
ferent bacterial species. Indeed, the complexity of antimicrobial resistance in real set-
tings makes developing realistic models a considerable challenge [116].
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10.7  Conclusions

The role of horizontal gene transfer in the dissemination of AMR genes amongst 
bacteria has been known for over 60  years, but some of the mechanisms, their 
importance, and impact on acquisition of resistance are still not quantified. 
Horizontal gene transfer arises from a multiplicity of events driven by mobile 
genetic elements—understanding their true influence will require the application of 
multidisciplinary approaches. Plasmids, phages, transposons, etc. all serve to drive 
the continued evolution of bacteria, some of which come to our attention due to 
their pathogenicity. The continued use of antibiotics, metals, and disinfectants/bio-
cides will positively select for bacteria that are capable of acquiring resistance 
determinants and adapting to potentially toxic environments. Even if anthropogenic 
selection was withdrawn, it is highly likely resistance will be maintained throughout 
the prokaryotic kingdom. The use of microbiology culture methods, metagenomics, 
functional metagenomics, and molecular methods will prove essential for enhanc-
ing our understanding of AMR at the genetic and ecological level. Predicting the 
spread of resistance genes via mobile genetic elements is possible using mathemati-
cal models. Developing simple ordinary differential equations capable of describing 
horizontal transfer rates of resistance genes in microbial populations provides use-
ful information that can be tested experimentally. Furthering our understanding of 
the drivers for acquisition and retention of resistance genes and the importance of 
DNA trafficking in the environment will be central to controlling the AMR 
problem.
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