
373© Springer Nature Singapore Pte Ltd. 2019 
H. Prabhakar, Z. Ali (eds.), Textbook of Neuroanesthesia and Neurocritical Care, 
https://doi.org/10.1007/978-981-13-3387-3_26

Fluid Management 
in Neurosurgical Patients

Wojciech Dabrowski, Robert Wise, 
and Manu L. N. G. Malbrain

26.1	 �Introduction

Fluid administration in the perioperative man-
agement of neurosurgical patients is challenging. 
Inappropriate intravenous (IV) fluid administra-
tion is associated with postoperative complica-
tions and increased mortality [1–3]. However, 
there is little data on how fluid therapy affects 
neurosurgical patients treated for tumors, cere-
bral aneurysms, or angiomas. Intravenous fluid 
therapy is frequently used to correct and maintain 
adequate cerebral blood flow (CBF) and cerebral 
perfusion pressure (CPP). Perioperative prob-
lems are created by the administration of hypo- 
or hyperosmotic fluids or by administering too 
much or too little. Added to this complexity is the 

risk of causing hypotension on induction of anes-
thesia in hypovolemic patients, hence creating a 
situation where intravenous fluids are often 
administered rapidly. Thus, maintaining 
euvolemia, without the morbidity associated with 
hypovolemia or hypervolemia, becomes a chal-
lenging exercise.

Available intravenous fluids are generally 
classified into two main groups: crystalloids and 
colloids. Fluid constitution differs with respect to 
ion content, buffer, strong ion difference (SID), 
tonicity, and oncotic pressure. Intravenous fluids 
should be considered as drugs, as their adminis-
tration strongly affects intravenous homeostasis 
and intra-/extravascular water balance. As with 
other drugs, as their administration can either 
correct or disturb end-organ function.

26.2	 �Crystalloid Fluids

26.2.1	 �General Principles

Crystalloids are the most popular fluids admin-
istered for correction of intravascular volume. 
Crystalloids are solutions of inorganic ions and 
organic molecules dissolved in water. An ideal 
crystalloid solution is described as one similar 
to interstitial fluid, but not inducing electrolyte 
or acid-base disturbances [4–6]. Use of crystal-
loids in neurosurgical patients has been the sub-
ject of several studies [7–9]. All isotonic 
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balanced solutions consist of water with differ-
ent Na+, K+, Ca++, Mg++, and Cl¯ ions which are 
buffered by anions such as acetate, malate, lac-
tate, or citrate. This differs from plasma con-
taining proteins, organic acids, phosphate, 
sulfate, and acidic carbonates. Hence, the theo-
retical osmolality (as indicated on the fluids 
information package) is calculated by using a 
multiplication factor of 0.926 to estimate the 
fluid’s “in vivo” osmolality [10]. Based on this 
principle, many isotonic fluids are actually 
hypotonic.

Hypotonic solutions should be avoided in neu-
rosurgical patients and patients with traumatic 
brain injury (TBI) (Grade 1C) [11]. A slight 
reduction in plasma osmolality by 1  mOsm/L 
increases the pressure of fluid shifts across the 
blood-brain barrier (BBB) to 19  mmHg. 
Furthermore, a decline in plasma osmolality by 
3% leads to overt cerebral edema with a 30% 
reduction in intracranial blood cerebrospinal 
fluid volume [7, 12, 13].

Some crystalloids are buffered and termed 
balanced solutions. A buffer is a partially neutral-
ized acid that resists changes in pH.  Citrate, a 
crystalloid buffer, binds intravascular ionized 
calcium, thus stimulating coagulation disorders. 
Use of large volumes of such fluids may cause 
serious problems, particularly when rapidly 
infused during sudden perioperative bleeding.

Strong ion difference (SID), calculated as the 
sum of all ions, should be taken into consider-
ation in patients undergoing neurosurgical proce-
dures due to the effect on pH. Administration of 
fluids with a SID of zero, such as 0.9% sodium 
chloride (NaCl), induces metabolic acidosis, 
whereas administration of fluids with SID >40 
induces metabolic alkalosis [14].

Also, chloride-rich solutions may induce 
hyperchloremic acidosis, associated with 
impaired renal blood flow [15–17]. Again, main-
taining euvolemia becomes important as any dis-
orders in renal blood flow may lead to acute 
kidney injury (AKI), one of the most important 
postoperative complications following major 
surgery [16, 18]. A large meta-analysis of 22,851 
patients with preoperatively low chloride con-
centration and normal renal function confirmed 

the strong correlation between acute postopera-
tive hyperchloremia and the incidence of renal 
dysfunction. Hyperchloremia was also associ-
ated with increased 30-day mortality and length 
of hospital stay in non-cardiac surgical patients 
[18]. An association between hyperchloremia 
and administration of 0.9% NaCl has been 
widely analyzed in experimental and clinical 
studies [16, 17, 19–21]. A normal plasma chlo-
ride concentration ranges between 95 
and110  mEq/L, in contrast to 0.9% NaCl con-
taining 154 mEq/L of chloride. Both animal and 
clinical studies documented a dose-dependent 
0.9% NaCl-induced hyperchloremia [19, 20]. 
Evidence also suggests that chloride-rich fluids 
contribute to delayed recovery of gut function 
and reduced gastric blood flow [21, 22], which 
may stimulate postoperative vomiting and subse-
quent increases in intracranial pressure (ICP). 
Therefore, treatment with balanced isotonic 
crystalloids is preferred over administration of 
0.9% NaCl in patients undergoing neurosurgical 
procedures.

26.2.2	 �Saline Solutions

There are two kinds of saline solutions in clinical 
practice: 0.9% normal saline (NS) and hypertonic 
saline (HS). Importantly, all saline solutions have 
a SID of zero. Normal saline has been the main-
stay therapy for patients undergoing cerebral sur-
gery, but its effect on the progression of brain 
injury has not been well documented [23, 24]. 
Experimental animal studies comparing resusci-
tation with NS and fresh frozen plasma have 
documented pronounced cerebral edema and a 
larger lesion size when using NS. When compar-
ing NS and synthetic colloid solutions in resusci-
tation, NS was noted to increase cerebral edema 
but resulted in a lesion size equal to that caused 
by the synthetic colloid resuscitation [23]. 
Administration of NS also affects coagulation 
parameters, increasing activation of natural anti-
coagulation in the brain that results in activated 
fibrinolysis in serum and upregulation of vascular 
adhesion molecule expression in the injured brain 
[24]. Also, administration of large volumes of NS 
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may result in extravasation of intravascular fluid, 
with increased extravascular water accumulation 
causing tissue edema and gastrointestinal dys-
function [25, 26].

Adverse effects, similar to those seen in 
patients given NS, have been documented in 
patients treated with HS [27, 28]. The increased 
risk of hyperchloremic metabolic acidosis and 
AKI should prompt physicians to limit the liberal 
use of NS and HS. Nevertheless, HS is frequently 
used with good effect to treat elevated ICP. It may 
be safer to use repeated boluses of HS as opposed 
to continuous infusions, as infusions are associ-
ated with higher rates of hyperchloremia and AKI 
[28]. It has been suggested to use an infusion of 
NS or HS in hypovolemic TBI patients with met-
abolic alkalosis due to massive alcohol-related 
vomiting [29]. The administration of saline solu-
tions in these situations corrects volume deficit 
and acid-balance disorders via induction of meta-
bolic acidosis, while HS has the added advantage 
of potentially reducing ICP.

26.2.3	 �Balanced Solutions

In recent years buffered (balanced) salt solutions 
have been the most common choice of resuscita-
tion fluid in clinical practice [30]. Their composi-
tion more closely resembles the extracellular 
(intravascular) fluid and thus is considered a bet-
ter choice, for many of the reasons already out-
lined. Balanced crystalloids do not affect 
acid-base balance to the same degree and have a 
lower incidence of hyperchloremic acidosis, peri-
operative AKI, need for blood transfusion, and 
systemic inflammation [31–36]. Recent large ret-
rospective trials documented beneficial effects in 
patients treated with balanced crystalloids com-
pared to NS.  They demonstrated significantly 
lower postoperative complications, such as elec-
trolyte disturbances, postoperative occurrence of 
AKI requiring renal replacement therapy, postop-
erative infections, and need for blood product 
transfusions [36].

In traumatic brain injury patients, the admin-
istration of balanced solutions did not affect 
ICP, SID, phosphate, sodium, or chloride levels, 

whereas saline solutions lowered blood pH, 
SID, and phosphate and also significantly 
increased chloride and sodium [37]. Balanced 
crystalloids have also been presented as a more 
effective treatment of hypovolemia-induced aci-
dosis [38]. Therefore, the use of balanced iso-
tonic crystalloids appears to be a more attractive 
choice than saline solutions in perioperative 
fluid resuscitation of TBI and other neurosurgi-
cal patients.

26.2.4	 �Synthetic Colloid Fluids

Synthetic colloids are frequently used in patients 
undergoing intracranial surgery. These solutions 
have large insoluble molecules that increase the 
intravascular oncotic pressure, thus potentially 
drawing water from the extravascular space. 
Their high oncotic pressure decreases cerebral 
edema and improves mean arterial blood pres-
sure via increased intravascular volume [39]. 
Gelatin and hydroxyethyl starch (HES) solu-
tions are the most popular colloids used in neu-
rosurgical patients. Gelatins consist of 
polydispersed polypeptides from degraded 
bovine collagen with molecular weights between 
30 and 35 kDa, while HES is an artificial poly-
mer of amylopectin obtained from potatoes, 
waxy maze, or sorghum. Unfortunately, both 
types of fluids can diffuse into the interstitium 
via an injured glycocalyx following surgery-
induced general inflammation, and their admin-
istration affects the transendothelial filtration 
rate (Jv) [40, 41]. Evidence regarding the effects 
of HES on coagulation are conflicting. Several 
authors have shown HES to increase coagulation 
disorders by decreasing the concentration of 
blood coagulation factors VII, VIII, and von 
Willebrand and impairing platelet aggregation 
[42, 43]. Others did not confirm these disorders 
in patients undergoing neurosurgical proce-
dures; however, they did note increases in 
thrombin-antithrombin levels postoperatively 
without plasmin-antiplasmin activation. This 
may have resulted from the administration of 
HES [44]. Several studies also documented an 
increased incidence of AKI following HES 
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administration in critically ill [16, 45, 46]. 
Administration of HES potentially corrects 
intravascular volume deficit but does not neces-
sarily remain intravascularly. According to the 
revised Starling Principle, unsolved molecules 
can deposit in the skin, liver, muscle, spleen, 
endothelial cells, and kidneys leading to organ 
dysfunction [7, 40, 41, 47]. However, some 
researchers have suggested that the adverse 
effects of HES are dependent on dose and 
molecular weight [48]. Several retrospective 
studies in patients with subarachnoid hemor-
rhage (SAH) have not yet confirmed a correla-
tion between high volumes of HES and the 
incidence of AKI [48, 49]. Therefore, the effect 
of HES on renal function has remained contro-
versial, and the precise understanding of kidney 
injury following HES administration requires 
further investigation in neurosurgical patients.

The effect of gelatin solutions on renal func-
tion is not yet well understood. A case report 
documented AKI following Gelofusine adminis-
tration in a patient undergoing aortobifemoral 
grafting [50]. This patient received 2 liters of 
Gelofusine together with mannitol, which may 
have impaired renal function per se [51]. 
Experimental studies seem to confirm an unfa-
vorable effect of infusions of gelatin solutions on 
renal function [52]. An infusion of 4% Gelafundin, 
at the dose 1 mL/100 g body weight, resulted in 
serum creatinine and neutrophil gelatinase-
associated lipocalin (NGAL) elevation in septic 
rats, and histological examination showed sig-
nificantly increased interstitial edema, loss of 
brush border in the proximal tubules, and higher 
defragmentation of cell nuclei in kidneys [52]. 
Clinical studies also confirmed that only higher 
cumulative doses (>33  mL/kg body weight) of 
gelatin were associated with an increased risk of 
AKI in septic patients [53]. Thus, it seems rea-
sonable to avoid large volumes of gelatin infu-
sions, particularly in patients with impaired renal 
blood flow, history of renal disease, or combina-
tion with other osmotically active fluids such as 
mannitol.

Recently the Coordination Group for Mutual 
Recognition and Decentralised Procedures—
Human (CMDh) endorsed the recommendation 

of European Medicine’s Agency PRAC 
(Pharmacovigilance Risk Assessment 
Committee) to suspend the marketing authoriza-
tions of HES solutions for infusion across the 
European Union. HES solutions are used as 
plasma volume replacement following acute 
(sudden) blood loss, where treatment with alter-
native products known as “crystalloids” alone is 
not considered sufficient. The suspension was 
due to the fact that HES solutions have continued 
to be used in critically ill patients and patients 
with sepsis, despite the introduction of restric-
tions on use in these patient populations to reduce 
the risk of kidney injury and death in 2013.

26.2.5	 �Mannitol

Current guidelines recommend mannitol at the 
dose of 0.25–1 g/kg body weight as basic hyper-
osmotic therapy in patients with intracranial 
hypertension (ICH) [54]. Mannitol is a six-
carbon alcohol of mannose sugar and is fre-
quently used as hyperosmotic therapy to reduce 
ICH, as well as intraocular hypertension and 
tissue edema. The mechanism is thought to be 
via an increase in water drawn from the extra-
vascular space. It should preferably be used in 
patients with low plasma osmolality, whereas it 
needs to be avoided when plasma osmolality is 
above 320 mOsm/kg H2O. Mannitol is not reab-
sorbed in the renal tubules, and as such it 
increases the osmolality of the glomerular fil-
trate, resulting in a diuresis through inhibition 
of sodium and chloride reabsorption [55, 56]. 
Many studies document a close association 
between mannitol and postoperative AKI in 
TBI patients [57, 58]. Deng and colleagues 
demonstrated that the use of mannitol intraop-
eratively (as compared to preoperatively) was 
an independent risk factor for postoperative 
AKI with a 1.97-fold increase in the risk-
adjusted odds ratio [57]. Hence, more than 50% 
of clinicians prefer HS for treatment of ICH 
[59]. Mannitol-related AKI develops within 
1  week of administration, with a more rapid 
cessation of mannitol resulting in a better AKI 
prognosis [57].
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26.3	 �Hemodynamic Goals

The main goal of perioperative fluid manage-
ment is to optimize the circulatory system with 
adequate CBF during neurosurgery. However, 
elevated net fluid balance may worsen postoper-
ative outcome [60]. It is difficult to improve CBF 
without appropriate monitoring. Various authors 
have suggested continuous blood pressure moni-
toring via an arterial line in patients undergoing 
surgery for cerebral aneurysm, brain tumor, 
angioma, or endovascular mechanical thrombec-
tomy [61–68]. Unfortunately, analysis of con-
tinuous blood pressure has been frequently 
criticized when used as the only method for eval-
uating volume status in neurosurgical patients 
[64–66]. Rapid and uncontrolled infusion of flu-
ids immediately after induction of anesthesia 
may negatively affect local, tumor-related brain 
edema in fluid-unresponsive patients. Hence, 
many clinicians recommend the use of dynamic 
variables, such as pulse pressure variation (PPV), 
stroke volume variation (SVV), or pleth variabil-
ity index (PVi®), to identify fluid responsiveness 
and to guide intraoperative fluid management 
[66–71]. Stroke volume variation is a sensitive 
predictor of fluid responsiveness in previously 
healthy patients before brain surgery [68, 69], 
especially in patients receiving hyperosmotic 
therapy in the perioperative period. Goal-
directed therapy has been recommended for 
patients undergoing neurosurgical procedures 
[65, 68, 72]. Pleth variability index (PVi®) is a 
noninvasive parameter that may be superior to 
other dynamic parameters, especially when used 
in combination with continuous hemoglobin 
measurements [73]. It has been proposed as a 
sensitive, noninvasive measurement to optimize 
fluid treatment in major non-cardiac surgery 
under general anesthesia [70, 71]. Rapid infu-
sion of crystalloids immediately after anesthesia 
induction may result in iatrogenic hemodilution 
in patients receiving hyperosmolar therapy in the 
preoperative period. Iatrogenic hemodilution 
may further induce dilutional coagulopathy  
leading to increased surgical bleeding and 
increased use of intraoperative blood transfu-
sion. Continuous noninvasive measurement of 

hemoglobin concentration together with PVi®, in 
accordance with intravascular volume status, 
allows real-time detection of iatrogenic hemodi-
lution in non-bleeding patients [73].

26.4	 �Fluid Management 
in Specific Neurosurgical 
Procedures

The multiplicity of neurosurgical procedures 
calls for fluid diversification. Traumatic brain 
injury is frequently associated with hypovolemia 
and hemodynamic instability. Patients undergo-
ing surgery for cerebral aneurysms are frequently 
hypertensive, while patients undergoing surgery 
for brain tumors sometimes require preoperative 
hyperosmotic treatment and forced diuresis 
which is in contrast to patients undergoing elec-
tive spinal surgery who are generally normovole-
mic. Therefore, fluid treatment should be 
individualized and tailored in accordance with 
the patient’s clinical condition and needs.

26.4.1	 �Traumatic Brain Injury

The main goal of fluid therapy related to neuro-
surgery is to restore and maintain adequate 
CPP. Fluid management in TBI will be discussed 
elsewhere (see chapter “Fluid Management in 
Neurointensive Care”). The perioperative admin-
istration of fluids in TBI should be guided by 
hemodynamic monitoring using dynamic vari-
ables such as SVV, PVV, and PVi® [65, 74, 75]. 
Primary cerebral injury is the main factor deter-
mining final outcome, but secondary brain injury 
following pre- and perioperative cerebral hypo-
perfusion can contribute to unfavorable outcomes 
[76]. Perioperative hypotension has been 
observed in 36–65% of patients undergoing 
emergency craniotomy following TBI [77–79]. 
Balanced crystalloids should be the first line 
choice of fluid to correct hemodynamic instabil-
ity (in patients who remain fluid responsive), and 
hypotonic solutions should be avoided. Also, 
synthetic colloids can be used together with crys-
talloids, but their administration should be guided 
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by plasma AKI biomarkers. Inotropic support 
should be added in all cases with fluid-
unresponsive hypotension.

26.4.2	 �Brain Tumor Surgery

The primary goal of perioperative fluid therapy 
is to maintain preoperative mean arterial pres-
sure during the intraoperative and early postop-
erative period. Rapid changes in mean and 
diastolic blood pressure, fluid balance, and 
length of surgery are all independently associ-
ated with perioperative cerebral infarct size and 
overall survival after elective brain tumor sur-
gery [80]. Therefore, appropriate fluid therapy is 
essential to reduce perioperative brain injury and 
subsequent morbidity and mortality. Treatment 
options to restore intravascular volume deficien-
cies include crystalloids and colloids, but an 
elevated plasma osmolality following preopera-
tive hyperosmotic therapy significantly limits 
the use of hypertonic crystalloids during the 
perioperative period. Hypotonic solutions should 
be avoided. The use of balanced crystalloids 
seems be the best option for initial fluid resusci-
tation, since colloids impair coagulation during 
and after surgery [44]. The occurrence of col-
loid-related coagulation disorders is a controver-
sial issue in brain tumor surgery. Some pediatric 
studies did not confirm a relation between col-
loid administration and coagulopathy suggesting 
that colloids may be safely used during intracra-
nial tumor resection [81]. However, large 
amounts of colloids may impair kidney function, 
especially in patients receiving hyperosmotic 
therapy with mannitol in the preoperative period.

26.4.3	 �Cerebral Aneurysm Surgery

Delayed cerebral ischemia (DCI) following intra- 
or postoperative cerebral vasospasms is the main 
cause of poor outcome and raised mortality in 
patients undergoing cerebral vascular surgery [82, 
83]. The incidence of vasospasm can be as high as 
70% between day 5 and 14 after the onset of sub-
arachnoid hemorrhage (SAH); however, clinical 

symptoms are only noted in 30% of patients [83, 
84]. Both hyper- and hypovolemia increase the 
risk of vasospasm and DCI [82–86]. A random-
ized pilot trial showed a fourfold increase in 
hypervolemia-related adverse effects in patients 
with SAH [86]. Appropriate management of fluid 
therapy is crucial for patients with cerebral aneu-
rysm, and balanced crystalloids seem again to be 
the best choice. The use of colloids in patients 
with SAH is associated with increased inflamma-
tory responses, more requirements for blood trans-
fusion, and altered cerebral autoregulation when 
compared to those treated with balanced crystal-
loids [87]. Interestingly, a study using transpulmo-
nary thermodilution in SAH showed that the 
magnitude of DCI was related to the global end-
diastolic volume index (GEDVI) and cardiac 
index (CI) [88]. Achieving a mean 822  mL/m2 
(680–800 mL/m2) was deemed appropriate to pre-
vent DCI. The use of invasive hemodynamic mon-
itoring in combination with goal-directed fluid 
therapy significantly decreased DCI incidence and 
improved outcome [74]. Thus, dynamic hemody-
namic variables seem be superior to static, but 
fluid administration have to be closely monitored 
in patients undergoing cerebral vascular surgery.

26.5	 �Conclusions

In summary, the choice of fluid during neurosur-
gical procedures depends largely on the patient’s 
clinical condition, particularly renal function. 
Balanced, isotonic crystalloids are a good first 
choice to restore and/or maintain intravascular 
volume and hemodynamic stability and are supe-
rior to normal saline. Generally, normal saline 
should be avoided; however (hypertonic) saline 
solutions can be administrated in selected patients, 
but their infusion has to be guided by plasma elec-
trolyte concentrations and acid-base balance. 
Hypotonic solutions and colloids (HES) should 
be avoided. Fluids should be treated as drugs, and 
the clinician should always consider the dose and 
duration of fluid administration, moving toward 
de-escalation when fluids are no longer needed. 
Fluid administration should be guided by dynamic 
variables assessing fluid responsiveness.
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Key Points

•	 Inappropriate intravenous (IV) fluid 
administration is associated with post-
operative complications and increased 
mortality.

•	 Hypotonic solutions and colloids should 
be avoided in neurosurgical patients.

•	 Treatment with balanced isotonic crys-
talloids is preferred over administration 
of 0.9% NaCl in patients undergoing 
neurosurgical procedures.

•	 The choice of fluid during neurosurgical 
procedures depends largely on the 
patient’s clinical condition, particularly 
renal function.

•	 Fluid administration should be guided 
by dynamic variables assessing fluid 
responsiveness.
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