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Abstract We calculate the radiation force on the nonlinear nanoparticle based on
nonlinear Mie theory and Maxwell’s stress tensor method. The bistable radiation
force can be observed and can be tuned through varying the nanoparticle’s size,
the incident wavelength and the permittivity of the surrounding medium to obtain
larger bistable region. Our results introduce nonlinear material to study the radiation
force, which will have potential applications in optical manipulations and optical
transportation.
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1 Introduction

Optical micromanipulation based on radiation force has attracted much attention
in the past decades due to its wide applications in physics, chemistry and biology
[1–5]. In the last century, Ashkin et al. have demonstrated the trapping of micron-
size particles experimentally by radiation pressure of light [6]. It is interesting that
light beam can not only push the object forward, but also pull the particle toward the
source via a backward scattering force, called optical pulling force [7–9].Meanwhile,
the nonlinear materials have also attracted much interest [10, 11]. Nonlinear optical
effects, such as optical bistability [12–14], have an important role in optical switching,
optical transistor and optical modulation. In this paper, we study the radiation force
on the nanoparticle and demonstrate that the radiation force exhibits bistability.

We adopt Maxwell’s stress tensor method to calculate the radiation force on
the nonlinear nanoparticle. Considering the nanoparticle is nonlinear, we obtain the
fields of the nanoparticle based on Mie theory and the self-consistent mean-field
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approximation method. The strong optical bistability of the radiation force for the
nonlinear nanoparticles is demonstrated. The bistable region can be tuned by altering
the nanoparticle’s size, the surrounding environment’s permittivity and the incident
wavelength.

2 Theoretical Development

We firstly consider the linear nanoparticle with radius a, the relative permittivity εc
and permeability μc, embedded in the medium of the relative permittivity εm and
permeability μm . Based on the Lorenz–Mie scattering theory, the incident field, the
scattered field and the field in the nanoparticle can be expressed as series expansions
for transverse-magnetic (TM) and transverse-electric (TE) spherical modes [15, 16].

To study the nonlinear effects on optical materials, we consider the Kerr mate-
rial with weak nonlinearity ε̃c = εL + χ(3)|Ec|2. And we adopt the mean-field
approximation method and replace the nonlinear local field with the mean field, that
is,

ε̃c = εL + χ(3)|Ec|2 ≈ εL + χ(3)
〈|E |2〉

c. (1)

Substituting Eq. (1) into Lorenz-Mie scattering theory, we can deduce the
nonlinear Lorenz-Mie scattering theory.

After solving the electric fields based on the above theory, we integrate the
Maxwell’s stress tensor over the surface of the nanoparticle to calculate the radi-
ation force on it. The field components are related with Maxwell’s stress tensor by
the following expression

Ti j = ε0εmEi E j + μ0μmHi Hj − 1

2
δi j (ε0εm |E |2 + ε0εm |H |2).

Then, the total time-averaged radiation force acting on the nanoparticle can be
written as

〈F〉 = 1

2
Re

⎛

⎝

∫

S

Ti j · n jdS

⎞

⎠, (3)

where nj is the outward normal vector of the surface of the nanoparticle. The normal-
ized force is expressed as F0 = πa2Sinc/c, where Sinc is the power flow density of
the incident wave.
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3 Numerical Calculations

We now consider the nanoparticle with nonlinear relative permittivity [17], ε̃c =
εL + χ(3)|Ec|2, where εL = 2.2 and χ(3) = 4.4× 10−20m2/V2. We assume both the
background and the nonlinear nanoparticle are non-magnetic with μm = μc = 1.

Firstly,we study the radiation forcewhen the nanoparticle is illuminated by a plane
wave with different wavelengths. In Fig. 1, it shows that the radiation force on the
nonlinear nanoparticle exhibits bistable behavior. The radiation force first increases
with the incident fieldE0 and then discontinuously jumps up to the upper branch upon
reaching the switching-up threshold field E0−up(E0−up ≈ 1.45 × 1010V/m for λ =
510 nm). On the other hand, when the incident field E0 is decreased to the switching-
down threshold field E0−down ≈ 9.5× 109V/m for λ = 510 nm), it discontinuously
jumps down to the lower branch. Interestingly, we find that there is a maximum posi-
tive radiation force at the switching-down threshold field. And the bistable behavior
becomes broader with increasing the wavelength.

Next,we plot the radiation force as a function of the permittivity of the surrounding
medium to study the effect of the environment on the force. Figure 2 shows that
increasing the permittivity, the bistable region becomes narrower. As shown in
Fig. 2a, the maximum positive radiation force at the switching-down threshold field
decreases with increasing the permittivity of the surrounding medium. However, for
the permittivity larger than about 3, Fig. 2b shows a smoother line shape of the
radiation force compared to Fig. 2a, and the radiation force at the switching-down
threshold field is not the maximum positive value. In this case, one point worth
emphasizing is that the radiation force firstly decreases and then increases at low
incident electric field.

Then, we study the influence of the size of the nanoparticle on the bistable
behavior. Figure 3a shows that increasing the size of the nanoparticle results in
the bistable region of the radiation force becoming narrower due to the decrease
of the switching-up threshold field. Meanwhile, the bistable region of the radiation

Fig. 1 Normalized radiation
force as a function of the
incident field E0. The size of
the nanoparticle is a =
100 nm, and the permittivity
of the surrounding medium
is εm = 2.25
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Fig. 2 Normalized radiation force as a function of the incident fieldE0. The size of the nanoparticle
is a = 100 nm, and the incident wavelength is λ = 500 nm

Fig. 3 Normal radiation force on the nanoparticle with different sizes. a Normalized radiation
force as a function of the incident field E0 with λ = 500 nm. b Normalized radiation force as a
function of wavelength with the incident electric field E0 = 9 × 109 V/m. The permittivity of the
surrounding medium is εm = 2.25

force shifts downwards when the size of the particle increases. In Fig. 3b, we plot the
radiation force versus the incident wavelength for a fixed input electric field E0 = 9
× 109 V/m. It shows that the bistable behavior is observable as well with varying the
incident wavelength. The bistable behavior is similar to the case where the incident
electric field is varied. However, the bistable region red shifts with increasing the
size of the nanoparticle. This result provides the possibility of tuning the switching
wavelength and switching threshold field of the radiation force via changing the size
of the nanoparticles for potential applications.
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4 Conclusions

In conclusion,we calculate the radiation force on nonlinear nanoparticles and demon-
strate optical bistability of the radiation force based on nonlinear Mie theory and
Maxwell’s stress tensor method. When the optical intensity is sufficiently high, the
nonlinearity of nanoparticles can give rise to bistable responses of radiation force.
The bistable radiation force can be tuned by the nanoparticle’s size, the incident
wavelength and the permittivity of the surrounding medium.
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