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Abstract Sustainable development has led to use of waste materials for replace-
ments in conventional concrete. This study focuses on concretes made by cement
replaced with high volumes of fly ash, which exhibits good long-term mechanical
and desirable durability properties. Usage of high volumes of fly ash in concrete
reduces the energy demand globally also saving the natural resources which are on
the verge of depletion. Desirable high-volume fly ash (HVFA) concretes are
experimentally achieved by trials, leading to wastage of materials, time and money.
An alternate approach, artificial neural network (ANN) can be used, which has
lately gained popularity in the civil engineering field. ANN is a soft computing
technique impersonating the human brain characteristics, learning from previous
situations and adapting to new surroundings without any constraints. In this study,
HVFA concrete compressive strength (CS) data collected from past experimental
investigations are used for ANN modeling. A total of 270 datasets has been col-
lected from literature, of which 12 nos. from an experimental study is used for
testing purpose. An ANN model is developed with eight input parameters (i.e.,
cement, fly ash, water–binder ratio, superplasticizer, fine aggregate, coarse aggre-
gate, specimen and fly ash type) to predict the CS of HVFA concrete; hidden layer
nodes along with weights and biases are fixed by trial and error to achieve the better
performing model. Coefficients of correlation for train and test data are obtained as
97 and 97.9% respectively, which shows that ANN could be used for predicting the
HVFA concrete strengths.
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1 Introduction

Fly ash, an outcome from coal scorched powerhouse featuring pozzolanic attributes
has been adopted for cement replacement in concrete from last few decades.
Employment of high volumes of fly ash in concrete has attained popularity in
developing countries to meet the rise in metropolitanization and community
demands. High-volume fly ash (HVFA) concretes being cost-effective also has
advantages of longstanding mechanical properties and good durability properties
reducing the greenhouse gas emissions addressing disposal issues of fly ash. A high
volume of fly ash along with reduction of the hydration rate in concrete also acts as
filler with unreacted silica and aluminum oxides decreasing the concrete porosity.
Research has been profoundly carried out to effectively replace cement completely
by fly ash for the use in structural applications possessing high-strength properties.
Trials on HVFA concrete leads to wastage of materials and requirement of skilled
labor for manufacture and testing of the 28 days HVFA CS. These experimental
trials are uneconomical since a small manual error will lead to repetition of the
whole trial.

From decades researchers are involved in developing various mathematical and
computational prediction models to address the shortcomings of experimental
investigations. Many mathematical regression models are developed and employed
whose prediction accuracy is not satisfactory in comparison with the experimentally
predicted values. A unique soft computational approach known as Artificial Neural
Network (ANN) has gained attention for applications in the civil engineering
domain. ANNs are basically the thumbprints of human brain, where the elements
are arranged in the form of layers interconnected with each other through weights. It
has the capability to resolve the complex problem with ease, in the process learning
from old data and solving for new data without any constraints. Recent findings
have presented the applicability of ANN to forecast the CS of concrete with various
replacement materials.

From previous studies on HVFA concrete strengths, many researchers have
benchmarked their findings with varying percentages of fly ash to be used in various
civil engineering applications. Optimized usage of fly ash content could save cost
from 10 to 40% compared to control concrete with the use of natural and recycled
aggregate (NA and RA) depending on the field requirements [1–3]. From the
experimental results, it is evident that Class-F fly ash can be appropriately used up
to 50% replacement level for reinforced cement concrete construction, precast
elements, and pavement applications with economic benefits and with proper mix
proportioning, optimization, and marginal material combinations [2, 4–6]. Suitable
use of cement replaced with fly ash up to 80% is proposed for both structural and
pavement application with a rational mix proportions for both control concrete and
self-compacting concrete(SCC) where 40% of FA content is limited in the latter due
to strength loss [7, 8]. Fly ash concretes (0–55%) produce lower tensile strength at
later ages in comparison to fracture tests in terms of crack tip opening displacement
and final mid-span deflection [9, 10]. At low w/b (water to binder ratio) fly ash
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concrete mixes contributed higher strength due to improved interfacial bond, also
HVFA concretes displayed better resistance to chloride diffusion for longer curing
periods and lower degree of hydration [11, 12]. Addition of nano-silica, fiber
content, and super plasticizers in HVFA concrete increase strengths of both short
and long duration and abrasion resistance [13–18]. The mechanical properties of
roller compacted concrete, SCC, high strength concrete (HSC), etc., are studied
with high volumes of fly ash content in different curing conditions with NA and RA
to be used in pavements and large industrial floor as an alternative to normal
Portland concrete [3, 5, 19–39]. The possibility of replacing cement and fine
aggregate with fly ash in concrete is also assessed [40].

Literature review work is carried on application of soft computing techniques in
prediction of the FA concrete strength. Optimum architectures for artificial neural
networks (ANNs) and the prime nodes for coupling between ANNs are determined
by simulation study to overcome the drawback of single architecture developed
from experimental obtained data in predicting CS [41]. The use of ANN is proposed
by many researchers to model the complicated relationship between composition of
concrete and the strength [42], over design of experiments to ascertain the effect of
replacements of FA on early and late CS [43] along with silica fume content [44].
Also, the CS and slump of HSC with various amounts of additives is predicted
using multiple regression analysis (MRA), ANN and fuzzy logic models, hybrid
models usage with genetic algorithm (GA) based on ANN and adaptive
network-based fuzzy inference system (ANFIS) [45–49]. The feasibility of using
ANNs, combined classification and regression techniques and artificial intelligence
hybrid system for estimation of the CS of high performance concrete (HPC) are
demonstrated over a wide range of mix proportions which is affected by the water
content, cement content, w/b, and cement replaced with FA and silica fume [50–
55]. Many ensemble methods and machine learning techniques are adapted to
predict the CS of HPC [56, 57]. Predictions of the rheological and mechanical
properties of SCC are attempted using ANN techniques with low and high volumes
of mineral additives [58–63]. The models studies show acceptable performance in
expedient accuracy and use in practical production, enhancing their high poten-
tiality to alternate the conventional regression models in real-life scenario.

In this study, a detailed survey on past experimental investigations of high
volumes of fly ash usage in concrete has been carried out. The various mix pro-
portions of these HVFA concretes along with their 28 days compressive strength
(CS) are collected and the major constituents are used as input parameters for ANN
model construction. The ANN architecture consists of input, hidden, and output
layers, with each layer connected to other by weights and bias passing through a
suitable transfer function and trained over a number of epochs until the error is
minimized. The performance of the model is assessed in terms of statistical
measures.
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2 Artificial Neural Network

ANN is an expert system complementing the metaphor of human neurological
system. ANN is a nonlinear type of computational system used for solving complex
problems without any fixed formula, the only requisite being a proper data for
training the network. The trained ANN models have the capability of logical rea-
soning and identification of alike patterns of inputs even among the noise data.

ANN is constructed with number of neurons or simple processing units which
are interconnected in some arrangement, i.e., layers to allow flow of information
within them in a parallel fashion. All the neurons are joined to each other by a link,
which is in turn associated with the weights having knowledge about the input
signals. The input layer receives facts from exterior surroundings and passes it on to
the hidden layer where the information is processed by summing it up and passing
through activation function to get the output. The network known as feedforward
multi-layer perceptron learns by backpropagation algorithm, where the outputs are
compared with the actual values, if the errors are more than the prementioned
boundaries then these weights are readjusted until the errors are minimized. Once
the network is trained over a number of iterations, then the trained network can be
used over new set of inputs.

Figure 1 shows the typical model of an artificial neuron, the calculated output
passing through transfer function with Eqs. (1) and (2) is as shown below.

Net of Input,

zin ¼ a1 � w1þ a2 � 2þ � � � am � wm þ ¼
Xn
i

aiwi þ b ð1Þ

Output,

Z ¼ F zinð Þ; ð2Þ

Fig. 1 An artificial neuron
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where

m is the number of input neurons
b is the bias
F is the hyperbolic tangent sigmoid activation function = 2

1þe�ð2þ nÞ � 1:

3 ANN Model Parameters and Structure

The ANN model developed in this study consists of eight neurons in the input layer
and one neuron in the output layer. The parameters for input layer are cement (C),
fly ash (F), water–binder ratio (w/b), superplasticizer (SP), fine aggregate (FA),
coarse aggregate (CA), specimen (ST), and fly ash type (FT). The output parameter
is the 28 days CS of HVFA concretes. Table 1 shows the limits of each of input and
output parameters. A single ANN architecture is developed with the hidden layer
neurons fixed by trial and error to attain the best performing model. Figure 2 shows
the structure of the proposed ANN model.

A total of 270 datasets from various published literature [1, 2, 3, … 40] is
collected and normalized to review the quality of data. The proposed ANN model,
which operates in MATLAB, is constructed using 258 datasets for training and a
dataset of 12 nos. from an experimental study [9] is used for testing purpose. In the
present study, the training algorithm of backpropagation type is used in feedforward
with single hidden layer and gradient descent technique is used to minimize the
error. The hyperbolic tangent sigmoidal activation function is adopted in the input
layer and hidden layer, which is a nonlinear function used to map the inputs with
the given outputs.

Table 1 Limits of input and output parameters

Minimum Maximum

Input parameters

Cement (kg/m3) 78 702

Fly ash (kg/m3) 0 544

Water-binder ratio 0.19 0.72

Superplasticizer (kg/m3) 0 35.1

Fine aggregate (kg/m3) 279 1263

Coarse aggregate (kg/m3) 712 1405

Specimen type (Cube or Cylinder) 0 1

Fly ash type (Class C or F) 0 1

Output parameter

Compressive strength at 28 days (N/mm2) 13.1 122.84
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4 Results and Discussion

The ANN model performance in this study is expressed in terms of statistical
measures such as Coefficient of Correlation (CC), Root Mean Square Error (RMSE)
and Scatter Index (SI) calculated as shown in Eqs. (3)–(5), respectively.

CC ¼
Xn

i¼1
ðOi � �OiÞðPi � �PiÞ

h i
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðOi � �OiÞ2ðPi � �PiÞ2

r" #
ð3Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðOi � �PiÞ2
n

s
� 100 ð4Þ

Fig. 2 Structure of ANN model

476 R. Rajeshwari and S. Mandal



SI ¼ RMSE
�Oi

; ð5Þ

where Oi and Pi are the observed and predicted CSs of HVFA concrete respec-
tively, n is the number of data set used, �Oi and �Pi are the average observed CS and
predicted CS of HVFA concrete respectively.

The ANN model is developed using eight input parameters as shown in Fig. 2.
The ANN model performance with varying number of hidden neurons, .i.e., from 2
neurons to 14 neurons in the hidden layer is evaluated. It is noticed that the ANN
model with 11 neurons in the hidden layer with 40 epochs had minimal error
showing good correlation between observed and predicted compressive strengths in
comparison to other networks. The best ANN architecture for predicting the CS of
HVFA concrete is 8-11-1. The ANN trained model parameters values are as shown
in Table 2.

Table 2 ANN model
parameter values

Model parameters Values

Number of nodes in Input layer 8

Number of nodes in hidden layer 11

Number of nodes in output layer 1

Learning algorithm Levenberg–Marquardt

Minimum performance gradient 1e−100

Performance goal 1e−05

Number of epochs 40
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Comparison between the experimental and predicted CS values for the training
and testing data are shown in Figs. 3 and 4 respectively. The performances of the
ANN model in terms of statistical measures such as CC, RMSE, and SI are shown
in Table 3.

The training values exhibit that the proposed ANN model has successfully
mapped the input parameters with the output as 28 days CS of HVFA concrete. The
statistical measures for the training data are: CC of 0.97, RMSE of 5.1113 and SI of
0.1348. The performances of the ANN model in terms of all the statistical measures
for testing data are— CC of 0.979, RMSE of 3.5716, and SI of 0.0973, which show
that it has the capability of predicting the CS values close to the experimental
values. It can also be seen that the model has suitably estimated the HVFA CS of a
particular dataset from an experimental study, with good correlation. In general the
ANN models are not only able predict data, when divided into train and test groups
in 70:30, 60:40, etc., ratios as shown in previous studies but are also capable of
generalizing the input with the output from a single study with good correlations
between the predicted and experimental CS values.
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Table 3 Statistical measures
of the proposed ANN model

Statistical measures Training Testing

CC 0.9700 0.9790

RMSE 5.1113 3.5716

IS 0.1348 0.0973
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5 Conclusion

The following inferences are drawn from this study:

• The ANN-based model is established to estimate the 28 days CS of HVFA
concrete.

• With the increase in the number of input parameters for making of HVFA
concrete, the experimental methods led to wastage of materials, time and
money.

• ANN has a great potential for estimating the 28 days CS of HVFA concrete.
• In this study, the CSs from a particular experimental study are predicted using

ANN model with good correlation (CC = 97.9%).
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