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Abstract. High-temperature effects need to be considered for a better design of
hypersonic and reentry vehicles. They affect both the boundary layer flow and
its flow transition, whose primary stages can be investigated through modal
stability analysis. In this work, physical and numerical tools for high-
temperature flows are presented and the efficiency of the new developed in-
house boundary layer and stability solvers is tested. Specially, we focus on the
stability of a flat plate flow in thermochemical non-equilibrium through an
investigation of growth rates under the influence of various flow parameters.
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1 Introduction

Transition of hypersonic boundary layers from laminar to turbulence is crucial for the
high-speed vehicle design. Transition is reported to increase the surface heating loads
by a factor of 4–10 [18], thus the accurately-predicted aerodynamic design can greatly
decrease the requirement for the Thermal Protection System and improve flight effi-
ciency. However, the transition phenomenon is extremely complicated, as it can be
strongly dependent on environmental conditions and boundary conditions. Morkovin
[1] gave five different paths of transition according to the magnitude of the environ-
mental disturbances. Low level of external disturbances relates to the Natural Transi-
tion process, which is applicable for high altitude atmospheric environment. This paper
will focus on the modal growth process that natural transition needs to undergo under
the framework of Linear Stability Theory (LST) [2].

On the other hand, an important feature of hypersonic flow is the steeply rising
temperature as the Mach number increases. Taking the Apollo reentry as an example,
the flight speed of Mach 36 will give a post-shock temperature of more than 50000 K
under the assumption of a calorically perfect gas (CPG), while the actual temperature is
about 11000 K [3]. The huge difference is due to the so-called high-temperature effect,
where an extremely high gas temperature excites the vibrational energy of air mole-
cules and causes chemical dissociation or even ionization, resulting in the failure of the
calorically perfect gas assumption. Since the thermo-chemical equilibrium cannot be
physically reached everywhere, in order to describe the thermo-chemical non-
equilibrium (TCNEQ) process, additional equations are needed to describe the

© Springer Nature Singapore Pte Ltd. 2019
X. Zhang (Ed.): APISAT 2018, LNEE 459, pp. 499–512, 2019.
https://doi.org/10.1007/978-981-13-3305-7_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3305-7_41&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3305-7_41&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3305-7_41&amp;domain=pdf
https://doi.org/10.1007/978-981-13-3305-7_41


convection and diffusion of vibrational energy, electronic energy and component mass
[4]. The high-temperature effect will inevitably affect the basic flow, as well as stability
and transition process in the flow field.

Malik [5] pioneered the research of the real gas effects on the stability of boundary
layers. Stuckert [6], Hudson [7], Klentzman [8] and Miró [19] used LST to analyze the
effects of thermo-chemical processes, but these works focused on the instability modes
instead of the evolution of discrete modes. The new framework of boundary layer
stability proposed by Fedorov and Tumin [9] provides an insight of the evolution and
interaction between modes. On this basis, Bitter and Sherpherd [18] analyzed the
thermal non-equilibrium boundary layer with extremely cooled wall, but the results are
mainly around Mach 5, without considering higher Mach numbers and chemical
processes. In summary, the objective of this paper is to study the effects of thermo-
chemical non-equilibrium process on the stability of high-speed boundary layers,
especially the evolution and interaction of discrete modes.

2 Governing Equations and Physical Models

2.1 Navier-Stokes Equations

We consider a 5-species model (N2, O2, NO, N, O) without ionization. Introducing the
Two-Temperature Model proposed by Park [12], we arrive at the NS equations for the
thermo-chemical non-equilibrium flow as Eqs. 1–5:

Continuity Equation:
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Vibrational Energy Equation:
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Species Equation:

q�
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Dt�

¼ r� � q�D�
sr�Ys

� �þ _x�
s ð5Þ

Here asterisk denotes dimensional quantities; Ys is the species mass fraction with
s 2 2; � � � ; ns½ � the species index; c�p is the heat capacity at constant pressure, c�vib is the
vibrational heat capacity and h�m is the species enthalpy; k�vib is the vibrational thermal
conductivity, D�

s is the coefficient of species mass diffusion; U� is the viscous dissi-
pation function, Q�

t�v and _xs are the source terms for thermal (TNEQ) and chemical
non-equilibrium (CNEQ).

2.2 Non-equilibrium Models

The vibrational energy is calculated from kinetic theory as:
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where h�vib;s is the characteristic vibrational temperature. As for the non-equilibrium
case, the Landau-Teller equation is introduced to describe the energy exchange and
relaxation:
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where the relaxation time is based on Millikan and White’s [10] semi-empirical curve
fits.

The chemical source term is based on the finite-rate reacting model:
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Here five specific reactions are considered:

R1: N2 þM $ 2NþM

R2: O2 þM $ 2OþM

R3: NOþM $ NþOþM

R4: N2 þO $ NOþN

R5: NOþO $ O2 þN

Details can be found in Park [11].
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For the viscous coefficient, Wilke’s rule [13] is employed to treat the mixture.
Species viscosity is obtained from Blottner [14] and thermal conductivities are cal-
culated from Eucken’s relation [15]. A constant Schmidt number is assumed for the
mass diffusion coefficient [7]. The wall boundary is no-slip, adiabatic/isothermal and
non-catalytic.

2.3 Calculation of Basic Flow

A precise and efficient basic flow solver is needed for the stability analysis. One can
directly solve the NS equations using either shock capture [7] or shock fitting [16]
methods to obtain a reliable basic flow, while we turn to boundary layer equations here
to realize a more time-saving solver. With knowledge of the self-similar solution of
CPG, we apply the non-dimensional Lees-Dorodnitsyn transformation:

n x; yð Þ ¼ x

g x; yð Þ ¼
ffiffiffiffiffiffi
ReL
x

q Ry
0
qdy

8<
:

For a flat plate, the transformed equation is generally written as:
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where u ¼ U;T;Tvib;Ys½ �T separately and S is the non-equilibrium source term. Due to
the existence of source terms, the self-similar solution is no longer available. Fortu-
nately, we notice that when n = 0, the equation is ordinary again. Making use of the
parabolic nature, one can march in the stream-wise direction from n = 0. We use 4-th
order finite differences in the n direction and spectral method with Chebyshev inter-
polation points in the η direction. The solution is updated using Newtonian iteration.

Validation of the base flow solver is performed with a comparison to the latest
literature sources available. The in-house base flow solver has been verified against two
different kind of flows, a TNEQ and CNEQ case.

– TNEQ case in [18]: The high-temperature flat plate flow is investigated. Air is
modeled as mixture of 78% N2 and 22% O2. The flow is in thermal nonequilibrium
with a Mach number of 5 and free stream pressure of 20 kPa. The free stream
temperature is set to 1500 K and isothermal wall at 300 K is prescribed.
The dimensional velocity and temperature profiles are extracted at Rex ¼ 1500. The
results are plotted in Fig. 1 and show good agreement with the boundary layer
solutions of Bitter [18].
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Fig. 1. Dimensional velocity and temperature profile over the dimensionless wall normal
coordinate: comparison between the in-house base flow solver and Bitter’s results [18]

Fig. 2. Dimensional velocity, temperature and species profile over the wall-normal coordinate:
comparison between the in-house base flow solver and Miró’s results in [19].
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– CNEQ case in [19]: The highly reacting flat plate flow is investigated. Air is
modeled as mixture of 78% N2 and 22% O2. The flow is in chemical non-
equilibrium with a Mach number of 10 and unit Reynolds number is 6:6� 106=m.
The free stream temperature is set to 600 K and the wall is adiabatic.

The dimensional velocity, temperature and species profiles are extracted at
x� ¼ 0:6 m. The results are plotted in Fig. 2. The chemical equilibrium constants used
in this paper are taken from the Park’s curves fit, and are different from the literature so
the results are generally fitted but slightly different.

3 Linear Stability Analysis

In order to investigate the stability of the flat plate flow, the modal stability analysis is
introduced. This means, one focuses on the development of unstable eigenmodes
(exponential growing disturbances) inside the flow field.

3.1 Linear Stability Equations

The linear stability analysis is based on the compressible Navier-Stokes equations in
Sect. 2. All flow variables are split into a steady and a fluctuation part:

q x; y; z; tð Þ ¼ �q x; yð Þþ q0 x; y; z; tð Þ ð6Þ

The steady state is a solution of the 2-D base flow in Sect. 2, whereas the fluctu-
ation variable vector remains unsteady and 3-D:

�q x; yð Þ ¼ �q; �u;�v; �w; �T; �Ys; �Tvibð Þ

q0 x; y; z; tð Þ ¼ q0; u0; v0;w0; T 0; Y
0
s; T

0
vib

� �

Once the flow variables in the NS equations are replaced by Eq. 6, the base flow is
subtracted and the resulting linearized equations are written as:
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where matrices C, A, B, C, D, Hxx, Hyy, Hzz, Hxy, Hyz, Hxz are 10 � 10 matrices and
function of the mean flow variables. The resulting linear stability equations are valid for
any kind of flow. As the following research deals with a flat plate boundary layer, a
further simplification, i.e. “locally parallel flow”, can be undertaken similarly to [5, 18],
which leads to:

�v ¼ 0;
@�q
@x

¼ 0;
@�q
@z

¼ 0

meaning that it is the local boundary-layer profile determining the flow instability. The
last step is to apply a modal ansatz for the disturbances, this can be written in a wave-
like form:

q0 ¼ q0 x; y; z; tð Þ ¼ ~q yð Þ exp i axþ bz� xtð Þ½ � þ c:c: ð8Þ

with i2 ¼ �1 and c.c. denotes the complex conjugate. Parameters a, b and x are the
stream-wise, span-wise and time-wise wave numbers. Spatial theory is chosen over the
temporal theory so that the disturbance waves are periodic in t and z growing in x, thus
a is a complex number and whereas x and b are real:

a ¼ ar þ iai;x ¼ xr; b ¼ br

In this research we focus only on 2-D disturbances so b ¼ 0. The behaviour of
small disturbances depends on the term exp �aixð Þ; as x is always positive (streamwise
direction), growth takes place for ai\0.

Once Eq. 8 is inserted in the linear stability equations the resulting modal system
constitutes an Eigenvalue Problem (EP). Eigenvalues and eigenvectors can be obtained
through two different methods:

– global method (GM): the modal system is rewritten into large matrices and dis-
cretized. The EP is solved by a standard eigenvalue solver and both discrete and
continuous modes can be obtained.

– local method (LM): a close initial eigenvalue guess is needed (e.g. from the GM),
then the correct eigenvalue is computed using iterative methods. Only one eigen-
value near the guess can be obtained, but this is fast and accurate.

3.2 Global Method

After introducing Eq. 8, linear stability equations can be written in a compact matrix
form resulting into a non-linear EP of second order:

R~qþ S
d~q
dy

þT
d2~q
dy2

¼ a M~qþN
d~q
dy

	 

þ a2P~q ð9Þ
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In order to solve Eq. 9 a spectral method with Chebyshev collocation points is used
here. The method is easy to implement and performs best for high speed flows where
eigenvalues lie close to each other [17]. The new transformed EP derived from Eq. 9 is:

R0 þ S0Dn þT0D2
n 0

0 I

� �
~Q
a~Q

� �
¼ a

M0 þN0Dn P
I 0

� �
~Q
a~Q

� �
ð10Þ

with the global vector of disturbances as ~Q ¼ ~q1; ~q2; � � � ; ~qj; � � � ; ~qN
� �

and the Che-
byshev differentiation matrix as Dn. Matrices R0, S0, T0, M0, N0, P0 are a function of the
namesake matrices in Eq. 9.

Boundary conditions for Eq. 10 need to be prescribed at both ends of the com-
putational domain. At the wall:

y ¼ 0: ~u ¼ ~v ¼ ~w ¼ ~T ¼ ~Tvib ¼ d~Ys
dy

¼ 0 ð11Þ

In the freestream:

y ! 1: ~u ¼ ~v ¼ ~w ¼ ~T ¼ ~Tvib ¼ ~Ys ¼ 0 ð12Þ

Equation 12 is just an approximation of the disturbances in the free stream; in
reality, the perturbations in the free stream are not exact zero. One can extend the mesh
to a value much greater than the boundary layer thickness, this is instead computa-
tionally inefficient and physically incorrect. Instead of the GM, the local method can be
applied.

3.3 Local Method

In the LM it is preferable to reduce the order of the system in Eq. 9 to a first order EP
as:

d~q
dy

¼ L~q ð13Þ

where L is a 18 � 18 matrix obtained from the linear stability equations and q� is the
new disturbance vector containing also first order derivatives as:

~q ¼ ~q; ~u;~v; ~w; ~T; ~Ys; ~Tvib;
d~u
dy

;
d~w
dy

;
d~T
dy

;
d~Ys
dy

;
d~Tvib
dy

	 


Different from the GM, the LM applies a non-zero BC in the freestream:

y ! 1: ~u ¼ ~v ¼ ~w ¼ ~T ¼ d~Ys
dy

¼ ~Tvib\1 ð14Þ
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The solution of LM is obtained by integrating Eq. 13 from the free stream to the
wall using a Runge Kutta 4-th order method. The solution of is a linear combination of
fundamental solutions uk yð Þ as:

~q yð Þ ¼
X
k

Ckuk yð Þ ð15Þ

where Ck are linear combination coefficients calculated through the boundary condi-
tions at the wall. In the free stream the fundamental solutions have the simple form of:

u1;k yð Þ ¼ v1;k exp k1;ky
� � ð16Þ

as in case of the flat plate, the matrix L is constant for y ! 1. The eigenvalue search is
done iteratively using the temperature disturbance at the wall (~T 0ð Þ) as iteration cri-
terion. Over each iteration the searched eigenvalue a is calculated through the secant
method as:

anþ 1 ¼ an � ~Tn 0ð Þ an � an�1

~Tn 0ð Þ � ~Tn�1 0ð Þ ð17Þ

where n is the iteration number and a0 is obtained from the GM.

3.4 Verification

Validation of the stability solver is performed with a comparison to the latest literature
sources available. The in-house stability solver has been verified against two different
kind of flows, a TNEQ and CNEQ case.

– TNEQ case in [18]: The instability of a highly cooled flat plate flow is investigated.
The flow is in thermal non-equilibrium with a Mach number of 4.5 and free stream
pressure of 10 kPa. The free stream temperature is set to 1500 K and isothermal
wall at 300 K is prescribed. The instability analysis is carried out at Rex ¼ 2000
with a special analysis of the dispersion curve. Spatial growth rate �ai and real
phase speed cr are calculated at different frequencies. The LM, combined with the
GM as initial value, is used with N ¼ 1000 grid points in wall-normal distance. The
results are plotted in Fig. 3.
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Wall cooling destabilizes the fast mode F1 and stabilizes the slow mode S1. A new
supersonic mode F�1 arises through the synchronization of F1 with the continuous
spectrum. For further information, see the work of [18].

– CNEQ case in [19]: The instability of a highly reacting flat plate flow is investi-
gated. The flow condition is exactly the same case as the verification of the base
flow. The results are plotted in Fig. 4 and the growth rate of the S1 mode fits well.

Fig. 4. Dimensional spatial growth rate over the frequency: comparison between the in-house
stability solver and Miró’s results in [19]

Fig. 3. Dimensionless spatial growth rate (top figure) and real phase speed (bottom figure) over
the frequency: comparison between the in-house stability solver and Bitter’s results [18]. The
stability solver shows good agreement with the literature results.
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4 Results

The new supersonic mode F�1, introduced in Sect. 3, is analyzed more in detail. Modal
stability analysis is able to capture this unique feature of the second mode as it gets
unstable and travels supersonically with respect to the free stream. This means that
oscillatory disturbance waves are travelling outside the boundary layer and are not
decaying the free stream. Indeed, as one can see from Fig. 5 the global method is not
able to capture this phenomenon and fails to converge.

The problem of the global method lies in its free stream boundary conditions
(Sect. 3). Local method bounds the BCs to a finite value, thus the supersonic mode is
well captured similarly to [18]. Not only the F�1 mode is of interest, in highly cooled
walls the modal instability is due to the F1 mode. In the following analysis, effects of
the Reynolds number (Rex) and the free stream/wall temperature (T�

1, T�
w) are evalu-

ated. Moreover, two different kind of hypersonic flows are considered, a CPG flow and
a TNEQ flow. The flow parameters are the same as in Sect. 2.3.

• Reynolds number: the modal stability analysis is carried out at two different local
Reynolds numbers (Rex ¼ 500, 2000). Results of the unstable F�1 mode are shown
in Fig. 6.

First of all, one can notice the effect of TNEQ on the growth rate. Vibrational non-
equilibrium causes a destabilization of the F1 mode. However, this is dependent on the
local Reynolds number. At low Reynolds numbers the flow is still frozen and energy
exchange between translational and vibrational energy modes is not yet activated. At
higher Rex the flow is in non-equilibrium. This behaviour can be explained by taking
the vibrational source term in the dimensionless boundary layer equations RenQt�v.
Energy exchange takes place only when ReL is big enough.

Fig. 5. Dimensionless spatial growth rate (top figure) and real phase speed (bottom figure) over
the frequency: comparison between the global and local method solver
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Moreover, at low Reynolds numbers the F1 mode becomes stable before the slow
acoustic branch point (ai ¼ 0, cr ¼ 0:8). No supersonic mode is observed. At high Rex
the F1 mode shows a kink, this is due to its synchronization with the slow acoustic
waves (cr ¼ 0:8). With a certain phase speed delay, a new discrete but stable mode F�1
is generated, however the starting point and the slopes coincide for both CPG and
TNEQ flows.

Last but not least, the synchronization of the F�1 mode with the entropy/vorticity
spectrum at cr ¼ 1 reveals a Rex dependence. At lower Rex, due to the interaction with
the S1 mode (here not displayed), the dampening appears to be stronger than for the
Rex ¼ 2000 mode. Overall, further analyses need to be undertaken.

Fig. 7. Spatial growth rate over the real phase speed for the F1 mode: comparison between CPG
and TNEQ flows with T�

w=T
�
1 ¼ 0:2 and T�

1 = 300 K, 1000 K, 1500 K

Fig. 6. Spatial growth rate over the real phase speed for the F�1 mode: comparison between CPG
and TNEQ flows with (Rex ¼ 500, 2000)
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• Wall and free stream temperatures (T�
1, T�

w): the modal stability analysis is carried
out at two different T�

w=T
�
1 ratios 0:2; 1ð Þ with three different free stream temper-

atures T�
1 (300 K, 1000 K, 1500 K). Results of the unstable F1 mode are shown in

Fig. 7.

First of all, the supersonic mode F�1 seems not affected by the variation of the free
stream temperature. When the ratio T�

w=T
�
1 is kept constant, the mode coincides for

T�
1 = 1000 K and T�

1 = 1500 K.
Furthermore, TNEQ has no influence on the supersonic mode but only on the Fþ

1
mode; the variation, however, is small when T�

1 is low since the free stream temper-
ature stands for the level of TNEQ in the flow. What alters significantly the second
mode instability peak is the wall cooling, or better to say the ratio T�

w=T
�
1. This

overwhelms the TNEQ effect for T�
w=T

�
1 � 1. Last but not least, the synchronization

“jump” at cr ¼ 1 appears to be stronger at lower T�
1, meaning a greater dampening of

the F1 mode.

5 Conclusions

A boundary layer and modal stability solver have been developed and verified through
literature comparisons for a hypersonic flat plate flow with high-temperature effects.
The in-house solver shows good consistency both with base flow profiles and spatial
growth rates for both TNEQ and CNEQ. New modal stability analyses for a TNEQ
flow have been performed varying the Reynolds numbers, free stream temperature and
wall temperature. At low Reynolds number the flow is still frozen. Both thermal non-
equilibrium and wall cooling destabilize the second mode instability in different
manners. TNEQ is only relevant at high-temperatures, where as wall cooling influences
the modal growth already at low temperatures. The supersonic mode is not influenced
by the TNEQ. Future steps include the further analysis of the aforementioned
parameters with special focus on the disturbance eigen-functions and LST N-factors.
Moreover, thermal and chemical equilibrium is under investigation. Last but not least,
other gases need to be considered such as oxygen and its high disturbance dampening
feature.
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