
Chapter 2
Microcystins in Freshwater Ecosystems:
Occurrence, Distribution, and Current
Treatment Approaches

Thanh-Luu Pham and Tran Ngoc Dang

Abstract Toxic cyanobacterial blooms (TCBs) are an environmental concern due
to their ability to produce wide a range of hepatotoxins, neurotoxins, and derma-
totoxins. Microcystins (MCs) are the most common toxin and are considered to be
one of the most hazardous groups. The increasing occurrence and detection of MCs
in recreation or drinking water sources pose a variety of challenges to water
treatment. To ensure the safety of drinking water supplies, a variety of physical,
chemical and biological processes, such as coagulation, flocculation, sedimentation,
filtration, disinfection, adsorption, and biodegradation have been applied for
removal of MCs. It is important to determine which type of MCs is present and
whether the toxins reside within the cell or as extracellular to optimize treatment
approaches. Conventional treatments using coagulation, flocculation, sedimenta-
tion, and filtration are effective for removing cyanobacteria intact cells. However,
these methods are faced with the release of dissolved toxins as well as the
requirement of regular backwashing. Dissolved MCs have been shown to be
effectively removed by some techniques such as activated carbon adsorption or
biological degradation. However, factors affecting the removal such as acclimation
periods, biofilm composition, temperature, and water quality cannot be easily
controlled. This chapter provides an overview of the current knowledge of MCs
including occurrence, distribution, as well as current methods of their removal from
drinking water.
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2.1 Introduction

Eutrophication of surface water, in particular through the excessive use of fertilizer
and manure in agriculture as well as through sewage discharges are the major cause
for the global occurrence of toxic cyanobacterial blooms (TCBs) (He et al. 2016;
Preece et al. 2017). Recent evidence revealed that warmer conditions, rising CO2,
and climate changes have enhanced TCBs in water systems (Visser et al. 2016).
These blooms accumulated with high concentrations of cyanotoxins in drinking,
recreational, and irrigation water bodies pose a serious hazard for wild and domestic
animals as well as humans (Pham and Utsumi 2018). Among cyanotoxins,
microcystins (MCs) are the most common and are considered to be one of the most
hazardous groups in eutrophic freshwaters (Li et al. 2017). MCs are mainly pro-
duced by the three genera Microcystis, Dolichospermum, and Planktothrix, but they
can be also produced by other cyanobacteria such as Aphanizomenon,
Anabaenopsis, Aphanocapsa, Fischerella, Gomphosphaeria, Hapalosiphon,
Nostoc, Phormidium, and Pseudanabaena in which Microcystis has been reported
as the most common bloom-forming and the main producer of MCs in freshwater
ecosystems worldwide (Preece et al. 2017).

Microcystins are cyclic peptides with molecular weight (MW) �800–
1100 Dalton (Da). They contain seven peptide-linked amino acids, with the two
terminal amino acids of the linear peptide being condensed (joined) to form a cyclic
compound (Fig. 2.1). Most congeners are with the general structure cyclo-
(D-alanine-X-D-MeAsp-Y-Adda-D-glutamate-Mdha) in which R1 and R2 are
variable L amino acids, D-MeAsp is D-erythro-b-methylas-partic acid, and Mdha is
N-methyldehydroalanine (Pham and Utsumi 2018). The amino acid Adda,
(2S,3S,8S,9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid,
is the most unusual structure in this group of cyclic peptide toxins. There are over
100 MC congeners have so far been reported but the three most common are
MC-LR, -RR and -YR, in which MC-LR is the most toxic one (Li et al. 2017).
Chemical structures of the several most common MC variants are shown in
Fig. 2.1. MCs were produced non-ribosomally by a multifunctional enzyme com-
plex that includes peptide synthetase and polyketide synthase modules, both of
which are encoded by the microcystin synthetase gene (mcy) cluster which contains
55 kb of DNA and has been revealed in several cyanobacterial genera (Pham et al.
2015).

Microcystins cause toxic effects to human, animals, and plants. Their adverse
effects on different living organisms have been extensively studied and reviewed
(Chen et al. 2016; Elisabete et al. 2016; McLellan and Manderville 2017). The
inhibition and regulation of the expression of protein phosphatases (PPs) groups are
well known as the principal mechanism of toxicity of MCs (Chen et al. 2016;
Elisabete et al. 2016). PPs are well known for their regulated function to maintain
homeostasis in the cell, inhibition of PPs may generate hyperphosphorylation,
causing severe cell damage (Elisabete et al. 2016). This is an important
post-transitional modification which can lead to excessive signaling and may

16 T.-L. Pham and T. N. Dang



resulted in cell proliferation, cell transformation, and tumor promotion (McLellan
and Manderville 2017). In addition, MCs are known to induce oxidative stress,
which caused by reactive oxygen species (ROS) such as superoxide anion (O2

��),
hydrogen peroxide (H2O2), and hydroxyl radical (HO�), in both animal and plant
(Elisabete et al. 2016). As a preventive step to protect the public health from
adverse effects, the World Health Organization (WHO) recommends a provisional
guideline value of 1 lg/L for MC-LR concentration in drinking water in 1998, and
a chronic tolerable daily intake (TDI) of 0.04 lg/kg body mass per day for human
consumption (Chorus and Bartram 1999).

2.2 The Occurrence of Microcystin in Freshwater
Ecosystems

The occurrence of TCBs associated with cyanotoxins has been reported in eutrophic
freshwaters worldwide, where cyclic hepatotoxic MCs are found in over 75% of
cyanobacterial bloom cases (Harke et al. 2016). A summary of TCBs, toxin pro-
ducers, their prevalence, and MC concentrations recorded worldwide are shown in
Table 2.1. Through the literature reports, Microcystis is one of the most ubiquitous
bloom-forming cyanobacterial genera in inland freshwaters (Lürling et al. 2017). Its
blooms associated with toxins have been recorded in at least 108 countries and
territories worldwide except Antarctica, and MCs have been detected in 79 of these
locations (Harke et al. 2016). Due to the lower amount of publications from Eastern
Europe, Africa, and South America reflecting the lack of monitoring campaigns in
these regions, this may lead to the underestimation of the prevalence of toxic
cyanobacterial blooms and the diversity of toxins worldwide (Merel et al. 2013).
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Fig. 2.1 Chemical structure of the several common microcystin (MC) variants. R1 and R2

positions are highly variable L-amino acids that determine the suffix in the nomenclature of
microcystins
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A recent study indicated an expansion of Microcystis, as previous documentation
noted less than 30 countries with bloom recorded (Zurawell et al. 2005), suggesting
that Microcystis has proliferated and dominated phytoplankton communities in a
wide range of freshwater ecosystems in both temperate and tropical climates
(Lürling et al. 2017). Likewise, MCs in freshwater blooms are found at higher
concentrations than the other cyanotoxins (Lürling et al. 2017). MC levels in lakes
can vary over orders of magnitude and can be strongly related to Microcystis
abundance. However, MCs are produced by only toxic cyanobacterial strains, and
cyanobacterial blooms are often comprised of toxic and nontoxic strains. Thus, total
MC concentrations generally positively correlated with quantification of toxigenic
cyanobacterial biomass (Singh et al. 2015; Dong et al. 2016).

There are numerous studies about the occurrence and distribution of MCs in
lakes and reservoirs throughout the world. MC concentrations in surface waters
have been reported from trace to several milligrams per liter. In temperate regions,
high MC levels are often recorded during the summer period when heavy
cyanobacteria blooms usually occurred (Turner et al. 2018). However, in tropical
environments with sustained high temperatures, cyanobacterial blooms may occur
at any time and persist for months (Singh et al. 2015; Pham et al. 2017). Recent
evidence indicated that eutrophication and warmer conditions have enhanced
cyanobacterial biomass and MCs concentration (Visser et al. 2016; Lürling et al.
2017). For instance, field and laboratory studies showed the level of MCs in Lake
Taihu, China was nearly 20 times higher than previous records (Su et al. 2018).
Several large and most important inland waters on Earth are increasingly experi-
encing severe TCBs associated with MCs, such as Lake Erie in USA (Rinta-Kanto
et al. 2009), Lake Winnipeg in Canada (Binding et al. 2018), Lake Suwa in Japan
(Chan et al. 2007), Lake Victoria in Kenya (Sitoki et al. 2012), Lakes Poyang
(Zhang et al. 2015), Erhai (Yu et al. 2014), Chaohu (Yu et al. 2014), and Dianchi
(Wu et al. 2014) in China, Dau Tieng and Tri An Reservoirs in Vietnam (Pham
et al. 2017; Dao et al. 2016). Due to the temporal and spatial variation of MCs, it is
difficult to accurately assess MC contamination within and among lake systems (Su
et al. 2018). Each lake or reservoir has its own limnological and meteorological
characteristics, which may lead to differences in the cyanobacterial composition,
dominant species and congener in the water column (Su et al. 2018; Amé et al.
2010). In addition, because of differentiation in extraction and detection method-
ologies, comparing MC concentrations among water bodies is challenging.
Nevertheless, extremely high levels of MCs from crude extract of bloom materials
or from water column have been reported worldwide. For example, MCs concen-
tration has been reported up to 7280 lg/g dry weight (dw) from central China
(Chorus and Bartram 1999), or 7100 lg/g dw in Portugal waters (Vasconcelos et al.
1996). Very high levels of total MCs (including intracellular and extracellular) in
water have also been documented up to 19,500 lg/L in Lake Suwa, Japan (Harke
et al. 2016), 29,200 lg/L in Lake Oubeira, Algeria (Nasri et al. 2004), or
36,500 lg/L in Lake Horowhenua, New Zealand (Wood et al. 2006) (Table 2.1).

In general, MCs are first synthesized and retained more than 95% in toxic cells
(intracellular or cell-bound), but they will be then released to the water after cell
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lysis or death, which results in accumulation of a high concentration of dissolved
MCs (extracellular) in water column (Pham and Utsumi 2018). Thus, water column
serves as an intermediate transmission compartment and is often the most con-
taminated with both intracellular and extracellular MCs. From here, MCs could
contaminate to other aquatic compartments such as sediment, animals, aquatic, or
terrestrial plants. MCs are chemically stable and can persist in water for several
days or weeks after the bloom event (Preece et al. 2017). A ubiquitous distribution
of MC in the aquatic environment has been summarized (Pham and Utsumi 2018).
The main route of human exposure to MCs is the chronic and accidental ingestion
of contaminated drinking water, although other routes such as consumption of
contaminated food, dermal contact with toxins during recreational activities in
recreational waters, or oral intake of cyanobacterial dietary supplements can be
considered significant for some cultures and individuals (He et al. 2016).

2.3 The Occurrence of Cyanobacterial Toxins
in Vietnamese Freshwaters

During the last two decades in Vietnam, most studies focused only on morpho-
logical characteristic and described the present or absent of cyanobacteria species.
The most commonly cited potentially toxic cyanobacteria species is Microcystis
aeruginosa, which has been morphologically described from Lake Thanh Cong
(Hummert et al. 2001), the Huong River (Nguyen et al. 2007), and the Tri An
Reservoir (Fig. 2.2a) (Dao et al. 2010). Other potentially toxic species such as
Microcystis botrys and Microcystis wesenbergii have also been reported (Pham
et al. 2015; Nguyen et al. 2007). Nguyen et al. (Nguyen et al. 2012) collected,
morphologically characterized, and classified Microcystis strains in the middle and
north of Vietnam, but provided no information on MC concentrations. The first
report on cyanobacterial toxins in Vietnam was the study in Lake Thanh Cong,
where extracts of M. aeruginosa contained MC-RR, MC-YR, MC-WR, and five
minor compounds (Hummert et al. 2001), but no toxin concentration was given.
However, during the past 10 years, the occurrence of cyanobacterial blooms and
their toxin have been frequently reported from many water bodies in Vietnam
(Fig. 2.2b, c). Nguyen et al. (Nguyen et al. 2007) reported a bloom of Microcystis
spp. in a pond and several rivers in Thua Thien Hue, a central province in Vietnam,
where total MC concentrations in the water were up to 76.2 µg/L. The authors also
detected MC-LR and MC-RR in a culture biomass of Microcystis spp. with max
concentration up to 4.12 mg MC/g dw (Nguyen et al. 2007). Dao et al. (Dao et al.
2016) reported MC concentrations up to 640 µg/g dw in bloom samples from the
Tri An Reservoir. Duong et al. (2013, 2014) measured MCs concentration up to
1699 µg/g dw in bloom samples and 185 µg/L in water samples from the Nui Coc
Reservoir and Hoan Kiem Lake, respectively. Pham et al. (2015) reported the
present of three MCs includes MC-LR, MC-RR, and MC-YR with concentrations
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up to 2129 µg/g dw from either cyanobacterial strains or bloom biomass from the
Dau Tieng Reservoir. Although MCs have been detected from several reservoirs
used for drinking purpose, there are no facilities for removal of MCs from drinking
water plant so far in Vietnam.

Fig. 2.2 Map of Vietnam with some waterbody locations where microcystins have been reported
a: 1. Nui Coc Reservoir; 2. Thanh Cong Lake; 3. Hoan Kiem Lake; 4. Huong River; 5. Tri An
Reservoir and 6. Dau Tieng Reservoir. Bloom of Microcystis from Dau Tieng (b) and Tri An
Reservoirs (c)
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2.4 Current Approaches to Microcystins Removal

As TCBs and their toxins in freshwater increase in frequency, the protection of
water supplies becomes more challenging (He et al. 2016). Therefore, there is a
need for alternate water treatment technologies to remove MCs to reduce the risk
from toxic cyanobacterial blooms in drinking water. MCs removal by common
drinking water treatment (DWT) processes usually include a sequence of funda-
mental and optional processes. The most basic treatment steps for a high-quality
surface water resource would typically consist of coarse filtration followed by
clarification to remove natural organic matter (NOM) and disinfection to inactivate
pathogens (Fig. 2.3). These techniques could be divided into two categories: those
based on the retention of contaminants (coagulation, flocculation, sand filtration,
adsorption, etc.), and those based on the degradation of contaminants (biodegra-
dation, advanced oxidation, etc.) (Merel et al. 2013). Although multiple tech-
nologies have been developed for removal of MC, this chapter will discuss those
currently in use for general water treatment.

2.4.1 Coagulation, Flocculation, and Sedimentation

Conventional methods for water treatment such as coagulation, flocculation, sedi-
mentation, and filtration are frequently used in DWT. The traditional coagulation
process involves the addition and rapid mixing of a metal salt compound (e.g.,
aluminum sulfate, ferric chloride) with raw water (He et al. 2016). These reactions
produce a variety of precipitates that facilitate the agglomeration of suspended
particles, which enhances removal during sedimentation.

Fig. 2.3 Basic steps for microcystins (MCs) removal in drinking water treatment. (*)The barrier
which is mainly responsible for MCs removal. Source: Adapted and modified from Merel et al.
(2013)
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Cyanobacteria are microscopic organisms with negative charges on the cell
membrane that can be roughly considered as colloids and removed by conventional
methods. For example, up to 90% removal can be achieved on cultured of
Microcystis spp. (Merel et al. 2013). Due to the positive buoyancy, low specific
density, motility, variable morphologies, the removal of some cyanobacteria genera
may be more challenging (Merel et al. 2013). For those positive buoyancy, the
application of dissolved air flotation (DAF), which uses air injected at the bottom of
the reactor to carry the cells to the surface where they can be removed by scrapping,
could also efficiently remove cyanobacteria instead of sedimentation (Teixeira et al.
2010). Previous studies have shown that coagulation and flocculation are effectively
removed cyanobacteria cells or intracellular MC but do not remove extracellular
one (Teixeira and Rosa 2007; Sun et al. 2012). In addition, physical perturbations
involved in coagulation processes may result in cyanobacterial cell lysis and a
direct increase in dissolved MC concentration. Coagulation and sedimentation are
typically followed by the process of rapid or slow sand filtration by using sand,
gravel, and/or anthracite. The traditional purpose of a rapid sand filtration is to
remove any remaining particles in the water following sedimentation (He et al.
2016).

Direct and rapid filtration was not effective in removing cyanobacterial cells and
extracellular MC, but slow sand filters were shown to remove both cyanobacteria
and their toxins during water treatment. For example, slow sand filters can remove
up to 99% of the cells of Planktothrix agardhii (Grützmacher et al. 2002). In
addition, slow sand filtration possibly develops a biofilm on the top of the filter, due
to its lower loading rate, resulting in biodegradation of extracellular MCs
(Grützmacher et al. 2002; Bourne et al. 2006). Grützmacher et al. (2002) found that
more than 90% of extracellular MC were removed during slow sand filtration,
primarily due to the biodegradation on or inside the filter bed. Thus, rapid filtration
is not enough effective method for removal of cyanobacterial cells and extracellular
MC, but slow sand filtration could improve the treatment (Grützmacher et al. 2002;
Ho et al. 2006). However, this water treatment requires regular backwashing of the
filters and if this process is performed inadequately, plugging of the filter and toxin
release from the lysed cyanobacterial cells entrained in filter beds are significant
problems. Coagulation and filtration alone do not lead to a substantial reduction of
toxicity but are potentially very useful if combined with other treatment techniques
(Pantelíc et al. 2013).

2.4.2 Membrane Filtration

Membrane filtrations involve pressure-driven filtration through small pores to
remove contaminants not typically removed through physical coarse filtration
(Roegner et al. 2014). The term membrane filtration includes four categories
characterized by the pore size of the associated membrane: microfiltration
(MF) (0.1–10 lm), ultrafiltration (UF) (1–100 nm), nanofiltration (NF) (around
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1 nm), and reverse osmosis (RO) (0.1 nm) (Merel et al. 2013). These retention
techniques have received great attention for their application to remove micropol-
lutants in DWT. MF and UF techniques are effective for removing cyanobacteria
intact cells as well as intracellular toxins. For instance, Merel et al. (2013) showed
that both kinds of membranes can remove up to 98% of the cells of the toxic
cyanobacteria M. aeruginosa. Previous studies revealed that MF and UF with a
molecular weight cutoff (MWCO) of 100 kDa rejected cyanobacterial cells but not
the MCs (Gijsbertsen-Abrahamse et al. 2006; Lee and Walker 2008). However, MF
and UF techniques are not expected to remove extracellular MC and require costly
pumping of water as well as face fouling and cell lysis problems.

To date, MF and UF processes appear adequately to remove cyanobacterial
biomass if backwashing, cleaning, and disinfection occur between runs (Roegner
et al. 2014). Both kinds of MF and UF processes can be applied to remove
extracellular toxins previously adsorbed on powdered activated carbon
(PAC) (Dixon et al. 2011). On the contrary, RO and NF membranes are effective
for removing MCs via size exclusion since the pore size of these membranes
MWCO *100 Da for RO, and 150−200 Da used for NF is smaller than the
molecular weight of MCs (*1000 Da). For example, Teixeira and Rosa (2006)
found that NF reduced more than 95% of MC-LR. Neumann and Weckesser (1998)
observed that 95% and 99% of MC-LR and -RR were removed by using NF and
RO membranes, respectively. Although membrane filtration seems to be a
promising method to remove both cyanobacteria and MC during DWT, they require
a high cost and high technique level of maintenance to prevent membrane fouling
by NOM and cyanobacterial cells (Lee and Walker 2008).

2.4.3 Activated Carbon

Manufactured from wood, coal, peat, and coconut shell, activated carbon (AC) has
a high porosity and a large surface area, typically ranging from 600 to 1200 m2/g,
which enables to adsorb contaminants from water (Donati et al. 1994; Huang et al.
2007). AC in both powdered activated carbon (PAC) and granular activated carbon
(GAC) forms has been extensively used for decades to remove pollutants in
drinking water and wastewaters (Donati et al. 1994; Huang et al. 2007; Drogui et al.
2012). Adsorption by AC, either GAC or PAC is considered as the best available
technology and commonly used for trace organic contaminants removal from
surface water. In particular, MCs are effectively adsorbed into AC (Donati et al.
1994; Mohamed et al. 1999). By far, as a single technology, AC most effectively
removes dissolved MCs from a water source, with reported levels of up to 99%
removal (Roegner et al. 2014). AC is effectively adsorbed extracellular MC but
neither cyanobacteria nor intracellular MC. The removal efficiency of cyanotoxins
may depend on the kind of adsorbent employed (Donati et al. 1994; Huang et al.
2007; Newcombe and Nicholson 2004). PAC with mesopores range from 2 to
50 nm in diameter is sizeable surface areas for adsorptions, while micropores
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(<2 nm) hold fewer adsorption sites and limit water flow, making them less
effective (Roegner et al. 2014). Indeed, Donati et al. (1994) investigated the
adsorption of MC-LR on eight activated carbons, and adsorbents with the largest
volume of mesopores (pore diameter in the range of 2–50 nm) were shown to be the
most efficient.

Water quality has a strong influence on the removal capability of cyanotoxins by
AC since NOM can compete with contaminants and limit their adsorption. Indeed,
Lambert et al. (1996) observed a clear difference when compare PAC adsorption
isotherms of MC-LR ultrapure water versus surface water. The isotherms obtained
with surface water or previously used AC exhibit an alteration of the slope indi-
cating much lower adsorption capacity for MC (Lambert et al. 1996). Other factors
influence the removal capability of AC is the dose of adsorbent and contact time.
For effective MC removal, very high doses of PAC are required (10 lg/L MC
requite >200 mg PAC/L) at a contact time from 1 to 12 h (Pantelíc et al. 2013; Ho
et al. 2011).

Although AC can efficiently retain cyanotoxins, AC filtration displays a limited
lifetime for all contaminants including MCs (Pantelíc et al. 2013). It needs to be
changed frequently vary between 2 months to 1 year depending on the type of toxin
and the water quality, and the removing efficiency will decrease with time (Ho et al.
2011). Therefore, complete adsorption would require a high amount of different
adsorbent types, what significantly increases treatment costs. AC filtration is safe
because no by-products were produced during treatment process. Consequently, AC
should not be considered as an individual remediation measure but as a part of a
multi-barrier approach (Roegner et al. 2014).

2.4.4 Advanced Oxidation Processes

Advanced oxidation processes such as ozonation and UV photolysis are also a very
efficient process for the rapid and complete destruction of MCs from water
(Westrick et al. 2010; He et al. 2015). Ozone is one of the most commonly used
oxidants in water treatment due to its effective and fast reaction agent. Ozone has
been widely utilized for disinfection and oxidation purposes. It has been recently
applied at a two-stage treatment including pre- and post-ozonation in water treat-
ment plants (Pantelíc et al. 2013). Ozone is one of the most effective and fastest
agents for the destruction of intracellular and extracellular cyanotoxin fraction.
Indeed, Westrick et al. (2010) reported that nearly 100% of MC in natural water
was oxidized by ozonation (0.22 mg/L ozone) within a short treatment time (15 s).
The ability to oxidate MCs depends on pH values. At pH values below 7.0, ozone
can be very effective for MC-LR oxidation; however, about pH 7.0, oxidation will
be minimal and may not achieve desired removal (Pantelíc et al. 2013). By studying
the intermediates and by-products pathways from ozonation degradation of MC-LR
in aqueous solution, Chang et al. (2014) demonstrated that ozone reacted with two
sites of MC-LR: the diene carbon bonds in the Adda side chain and the Mdha
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amino acid in the cyclic structure. The fragment from the Adda side chain oxidative
cleavage could be further oxidized to an aldehyde.

UV irradiation is a potential process for drinking water disinfection. Although
sunlight alone cannot cause the degradation of the cyanotoxins, UV light in the
range 240–280 nm results in inactivating microorganisms by inducing DNA
alteration (Westrick et al. 2010). UV photolysis is effective for the destruction of
MCs, but high UV radiation dosage (1530−20,000 mJ/cm2) is required for the
successful UV photolysis of MCs, which is impractical for full-scale water treat-
ment (Westrick et al. 2010). MC-LR and -RR degraded much more rapidly when
the toxins were exposed to UV and UVC (100–280 nm) light at wavelengths
around their absorption maxima (238–254 nm) (He et al. 2016). Recent studies
suggested that the UV/O3 process was a more effective method for the removal and
mineralization of MC-LR in water, compared with UV- and O3-alone processes
(Chang et al. 2015). The degradation pathways of the MC-LR during UV/O3

process involved isomerization, hydroxylation, and oxidative cleavage of the Adda
side chain, oxidation of Mdha and decarboxylation of MeAsp and Glu, in which the
oxidation of Adda moiety was the dominant reaction (Chang et al. 2015). While UV
radiation mainly resulted in the isomerization of Adda moiety and the decar-
boxylation of MeAsp and Glu, O3 oxidation resulted in the oxidation and cleavage
of Adda and Mdha (Chang et al. 2015).

Although ozonation and UV photolysis contribute significantly to MCs removal,
the potential problem of ozonation is the generation of toxic by-products due to
incomplete oxidation (He et al. 2016). Due to high doses required, low to medium
pressure lamp, UV treatment is not recommended as a viable treatment barrier for
MCs. The disadvantages of these treatment techniques also include the high cost of
ozonation equipment, highly corrosive and toxicity of ozone, as well as higher level
of maintenance and operator skill (Westrick et al. 2010).

2.4.5 Biodegradation

Although less commonly employed compared to physical and chemical treatment
processes, biodegradation is increasing attention since it has been proven as an
environmentally benign and cost-efficient method for MCs removal. Current
research advances for MC biodegradation were discussed in detail by Li et al.
(2017). Biological treatment is most often employed in combination with the fil-
tration process in DWT (He et al. 2016). Microorganisms capable of degrading
MCs have been described in the literature for almost two decades. Nowadays,
various organisms originated from diverse ecosystems including prokaryotes (e.g.,
bacteria) and eukaryotes with the ability to degrade MCs in water have been
identified, with the majority identified as Sphingomonas and Sphingopyxis genera
belonging to a-Proteobacteria class (Li et al. 2017). The degradation pathways and
enzymatic processes are fully characterized for strains within a, b, and
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c-proteobacteria, including Sphingomonas, Stentophomonas, Sphingopoxyis, and
Methylobacillus (He et al. 2016).

Previous studies have demonstrated that aerobic biodegradation is the main
natural attenuation mechanism for MCs (Bourne et al. 2006; Ho et al. 2006).
However, recent researches revealed that MCs can be rapidly degraded under
anaerobic condition with natural sediments as inoculum (Chen et al. 2010; Zhao
et al. 2017). This suggested that both aerobic and anaerobic biodegradation are
important in the natural degradation of MCs. The biodegradation pathway for
MC-LR has been elucidated. Bourne et al. (Bourne et al. 1996) explored that
Sphingomonas sp. ACM-3962 degraded MC-LR by using three enzymes. The first
enzyme, microcystinase, cleaves the Arg–Adda peptide bond in the toxin and
converts the cyclic MC-LR to a linear form. The second enzyme hydrolyzes the
Ala–Leu bond, converting the linearized MC-LR into a tetrapeptide. And the last
one breaks the tetrapeptide into smaller peptides and amino acids, which are used
for constructing new proteins or enzymes (Bourne et al. 1996). The fact that the
by-products from MC-LR degradation are nontoxic compared with parent MC-LR.
A few years later, Bourne et al. (Bourne et al. 2001) identified a gene cluster, mlrA,
mlrB, mlrC , and mlrD, involved in the degradation of MC-LR from the first
isolated MC-degrading bacterium, Sphingomonas sp. ACM-3962. The authors
determined that the mlrA gene encoded an enzyme responsible for the hydrolytic
cleaving of the cyclic structure of MC-LR (Bourne et al. 2001). Hydrolysis of
linearized MC-LR to the tetrapeptide intermediate is catalyzed by mlrB, a putative
serine peptidase. Tetrapeptide cleavage is accomplished via mlrC, also a putative
metallopeptidase (Fig. 2.4). The final gene, mlrD, encoded for a putative transporter
protein that may support for active transport of MC and/or its degradation products
into or out of the cell (Bourne et al. 2001).

Since more and more MC-degrading bacteria are being identified indicates that
MC-degrading bacteria may be prevalent in the natural environment. Unfortunately,
estimating rates of toxin removal in complex natural environments from laboratory
experiments containing isolates or consortia is not straightforward (He et al. 2016),
microbial consortia grown on biofilm seemed to be more effective at MC removal
than isolated strains such as Sphingomonas sp. (Bourne et al. 2006). In addition,
biodegradation is effective for only extracellular MC and degradation rates in
natural environments containing a mixture of cyanotoxins could be more different
than rates measured for isolates grown on individual toxins under laboratory con-
ditions (He et al. 2016). Although biodegradation of MCs from water provides a
reliable, cost-effective purification system, this treatment requires long reaction time
of hours to days to complete degradation. Therefore, biological degradation should
be used in conjunction with other treatment methods such as filtration, PAC, or
GAC to meet the WHO recommended guidelines.
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Fig. 2.4 Biodegradation pathway of MC-LR by Sphingomonas sp. Source: Adapted and modified
from Li et al. (2017)
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2.5 Conclusion

Toxic cyanobacterial blooms continue to plague eutrophic waters worldwide. The
occurrence of TCBs of Microcystis associated with the hepatotoxic MCs appears to
be expanding, with hundred countries or territories around the world. MCs are
ubiquitous in the eutrophic environment. As a result, humans are increasing
exposed to cyanobacterial toxins through drinking water consumption. Thus,
control and abatement TCBs are critical issues faced by the scientist community.
There is also a need for further efforts to curb eutrophication of freshwater
resources. Numerous strategies have been emerged to prevent or eliminate blooms
of cyanobacteria and MCs. To meet the WHO drinking water guideline, it is
important that DWT has to remove both intracellular and extracellular MCs. While
the conventional method efficiently removes cyanobacteria cells or intracellular
MCs and in some case increasing extracellular MCs, combining AC absorption,
biodegradation as well as advanced oxidation processes should ensure the removal
of the most common extracellular MCs. However, MCs contain for hundred
structures and variants, no single treatment has been proven to simultaneously
remove all the MCs in a mixture. Although individual MCs can be efficiently
removed or transformed by at least one treatment step during the production of
drinking water, the efficient management of MCs in DWT should be based on a
multi-barrier approach. Water treatment appears to be successful in the term of
overcome consequence, a sustainable approach strategy should be a prevention of
TCBs in surface waters.
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