
Service Modelling and Verification:
A Formal Approach

Deepak Chenthati and Hrushikesha Mohanty

Abstract Increasing number of users on web has attracted a large number of busi-
nesses to be made available on web. The growing demand for webservices requires
a systematic approach in service development. For the purpose, this chapter reviews
various models for service specification, composition, deployment and monitoring.
Particularly, the chapter reviews some well-known models like UML, Petrinet and
state machine used for service modelling and verification.

1 Introduction

Web has become a common platform for different enterprises with increasing avail-
ability of the Internet. Also with standardisation of SOA technologies, enterprises
tend to expose their business as webservices. Enterprises to meet the market needs
would resort to the methods that enable them to build a service quickly and effec-
tively without errors. In this process, either the existing services are used for building
a service with enhanced/higher requirement or services are generated from models.
Here, initially, the services are modelled using formal methods, viz. UML, Petrinet,
state machine, etc. A modelled service is used as a source/reference for automatic
generation of executable codes. The advantage of service modelling is in three folds.
Firstly, it gives a visual representation of a service that is being modelled giving
service provider a scope to analyse its flow of execution. Secondly, the errors due to
manual coding are eliminated. Thirdly, the deployed/running service can be verified

D. Chenthati (B)
Teradata (R&D) India Pvt Ltd, Hyderabad, India
e-mail: chvcdeepak@gmail.com

H. Mohanty
Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar 751024, India
e-mail: hmcs_hcu@yahoo.com

H. Mohanty
School of Computer & Information Sciences (On leave), University of Hyderabad, Hyderabad,
India

© Springer Nature Singapore Pte Ltd. 2019
H. Mohanty and P. K. Pattnaik (eds.), Webservices,
https://doi.org/10.1007/978-981-13-3224-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3224-1_1&domain=pdf
mailto:chvcdeepak@gmail.com
mailto:hmcs_hcu@yahoo.com
https://doi.org/10.1007/978-981-13-3224-1_1


2 D. Chenthati and H. Mohanty

against the model either for testing or for checking the abnormal behaviour of a ser-
vice. These advantages have motivated several research works to address modelling
of services considering different aspects.

Awebservice has a business logic available onweb and it is exposed to the external
world as an interface. The major concerns during modelling of services would be (i)
to hide the business logic, (ii) to generate an interface as per a specification standard,
i.e. WSDL, (iii) composing a service when a single service does not meet a need,
(iv) monitoring a deployed service to capture quality details, (v) security aspects of a
service and (vi) provision for model-based verification. Eachmodel follows different
rules for modelling and code generation considering some or all of the aspects stated
above. These rules in turn form the guiding principles for verification of webservices.

The concern of business logic is addressed with orchestration of a service where
the activities of a service are in order for execution. Composition of services involves
issues with matching of interfaces and protocol for proper communication among
constituting services. Matching of I/O interfaces would initially find a set of services
that are further checked for protocol match. Choreography of webservices addresses
this issue assuring observance of an agreed protocol among chosen services. Fur-
ther, the verification of a service specified with rigour of models addresses issues
related to structural and behavioural correctness. However, here no claim is made on
completeness of model-based webservice specification.

Section 2 of this chapter gives a detailed review of some models used for service
modelling. The next section takes up issues on verification of services. Modelling of
services is discussed with respect to approaches based on UML, Petrinet and state
machine. Each of these approaches is discussed with different enhancements and
proposed standards. Finally, the chapter concludes with a brief concluding remark.

2 Modelling of Webservices

2.1 UML-Based Approach

Unified modelling language (UML) has been successful in modelling software sys-
tems that is reflected from its popularity in software industry. Webservices being
a contemporary technology-driven means to deliver services, needs well-thought
design principles for success. UML being a proven modelling approach is consid-
ered for the purpose of webservice design. This, in fact, brings both academia as well
as industry professionals to the same platform to contribute together in development
of UML-based methodology for webservice development. In this section, we will
survey some works in highlighting UML-based webservice design approach.

Model-driven architecture (MDA) is a popular method to develop software sys-
tems.UMLhas amechanism tomodel both structural aswell as behavioural specifica-
tions of a system. In case of webservices, UDDI that maintains service locations also
comes to picture. Further, composition of services is to be modelled. Service compo-



Service Modelling and Verification: A Formal Approach 3

sitionmodelling specifies a waymessages between two services are to be exchanged.
Compatibility of message passing protocol specification leads to successful service
composition. UML class diagram models interface while actions are modelled by
UML behavioural diagrams like use case, activity and interaction diagrams. The
aspects particularly to be modelled with respect to webservices include service arte-
facts, interfaces, data access, execution and communication error handling, execution
tracing, usages of ontology, designing service communication patterns, specifying
service locations and service metamodelling. A brief survey on usability of UML in
specifying webservice composition is given in [1].

W3C, the organisation engaged in developing standard has proposed a specifica-
tion web services choreography description language (WS-CDL) for specification of
webservices. Service providers specify services and for a consumer request, services
are searched and an appropriate service is selected for providing service. Researcher
in [2] proposes a variant of UML-2.0 called UML-S to specify a system to be devel-
oped with WS-CDL specification. This requires a one-to-one mapping between the
two specification approaches, i.e. WS-CDL and UML-S. Service modules speci-
fied in WS-CDL are specified in UML component diagrams. A sequence of actions
a module performs is specified by UML activity diagrams. Behaviours due to each
role specified inWS-CDL is modelled by UML state diagrams, whereas descriptions
for each state is modelled by class diagrams. With an experimentation, authors have
shown the use of UML-S-based specification in modelling and verifying a service
specification.

In [3], researchers have proposed another extension to UML called WS-UML
for webservice design. WS-UML is alike UML, proposes graphical annotations for
specifying webservice concepts like service security, composition, location and trace
of execution. This work stands out among similar works by allowing to specify
service location. It also allows user service providers as well as consumers to trace
service execution. A composed webservice is to provide an integrated service to
a user in accordance with its requirements. This requires selection of services and
composition of services. This process requires certain essential aspects that a service
designer must address. WS-UML provides that mechanism for specification.

First, question of service selection comes. Selection of a service not only is based
on service functionality say by specifying input and output but also its quality of
services. Quality of a service for a webservice is specified by service cost, relia-
bility and execution time required for service delivery. WS-UML provides means
to annotate a service by these information in a given syntax. Further, on selecting
services, compositions are done. In the process, first composability criteria are to
be evaluated. Each service specifies its conditionality for composition, e.g. protocol
requirements for passingmessages. Other than this communication, there is a need to
specify security aspect. Designer makes a provision for defining security mechanism
for both service provider as well as consumer. Hence, during invocation of service
security aspects for both provider and consumer can be ascertained. Locationwhere a
service is hosted on the Internet is to be specified for easy access of users. This access
is to be of course automated. For the purpose location specification is necessary. This
provision is made inWS-UML. Next is execution tracing that is essential in business



4 D. Chenthati and H. Mohanty

world. Once a service is invoked, it is required to trace the execution to checkwhether
the service provision is being done as per requirement, i.e. service-level agreement.

WS-UMLprovidesmeans to specify the desired states bywhich service execution
must pass through. This design provision helps in service error finding and thus
service maintenance.

Later a work [4] proposes a process of webservice design usingUML.Webservice
is seen as a choreography of several loosely coupled services. They collaborate to
solve a common task regardless of their programming languages and environment.
In order to model such collaborative system, UML is considered as a natural choice.
Because, component diagram, sequence diagramand state diagramcanmodel service
components, their functionalities, interactions and state changes during execution.
The paper proposes seven steps for webservice choreography modelling and verifi-
cation. First, WS-CDL structural properties are modelled by component diagrams.
In the second step, sequence diagrams used to model component interactions are
translated to state diagrams. Because, state diagrams can be used for model verifica-
tion. Then, in the third step, the abstract data model for WSDL is modelled by class
diagrams. State diagrams are now enriched by class diagrams with tags stating the
changes occurring to data in different states. Then, in the fifth step, enriched state
machine diagram is translated into language of a model checker like SMV. Then, in
the following sixth step, informal requirements, if any, are specified by designers for
verification. At the last step, a model checker is used to verify a model behaviour.
This work shows not only how to model a webservice but also to verify its design
specification.

In another work [5], use of RT-UML to model and verify orchestration of web-
services is reported. The main purpose is to verify time aspects of orchestration.
For this purpose, RT-UML is considered. Researchers have found one-to-one map-
ping between RT-UML constructs and WS-BPEL. A top-down design approach is
proposed for developing webservices. During analysis, time constraints that webser-
vice orchestration must satisfy are found. And these time constraints are annotated
to sequence diagram. Then, model checking approach is used to discover specifi-
cation errors. This is done by translating RT-UML diagrams into timed automata
that are used to perform model checking. Verified RT-UML design diagrams are
then translated to WS-BPEL. The elements used by RT-UML for webservice design
includes RTDelay, RTEvent, RTAction, RTreset and RTclock. The elements have
their semantics that are well understood by their names. These elements have corre-
sponding translations to WS-BPEL language. Thus, the work provides a systematic
approach in design of webservices using RT-UML particularly keeping time con-
straints in view. The work is in importance for bringing time aspects in modelling
service orchestration.

Recent work focusses beyond UML while modelling webservices. This is so
for variety of emerging distributed architectures like cloud and mobile systems.
The argument on utility of UML is raised for heterogeneity these platforms bring
in. It cites the inability of UML diagrams in representing all the heterogeneities as
inherently class diagrams model homogeneity of design entities. As a solution to this
problem, researchers in [6] have proposed domain specific language (DSL) to design



Service Modelling and Verification: A Formal Approach 5

webservices that runs in different environments. Design abstraction that is common
to all the implementations is extracted and then the abstraction extended for each
implementation. This design extension is carried out to meet the requirement of a
platform. The researchers have proposed simple web service modelling (SWSM)
domain specific language. Webservices in multitenant platforms are specified in
SWSM language. Then, it is customised for a specific tenant. The challenge in having
such a language is to specify webservice architecture at an abstract level separating
logic from its technical implementation aspects.

SWSM language proposes a syntax that elegantly specifies an abstraction of web-
services. The terms used in syntax areWebservice, Port, Binding, Datatype, Opera-
tion,Message and OperationBinding. Modelling of webservices are carried forward
representing principal elements using these terms. The design approach is essentially
top-down. The steps in developing webservices include modelling using SWSM lan-
guage, enhancement and automatic validation ofwebservicemodels, code generation
and code refinement, and refactoring and testing. Model-driven development of soft-
ware systems is successful and UML has given impetus for it. But, non-UML-based
modelling approach is also followed for its conceptual clarity and simplicity. This
work is of that kind introducing non-UML-based webservice modelling. Next sec-
tions of the chapter will review some of these well-known modelling schemes based
on finite state machine (FSM) and Petrinet.

Table 1 gives a summary on research works mapping webservice specifications to
concepts in UML and this table is cited from research work in [3]. WSDL is gener-
ated from UML profile [7], an extension to UML class diagram with service-related
concepts, viz. Service, Port, Port Type. Jeng and Tsai [8] look services as compo-
nents and proposed UML profile based on service component architecture (SCA).
Jeng and Tsai [8] views from security angle and has proposed extra functional prop-
erties to record service invocation logs, control access to operations and encryption.
Composition of services is focused on [9].

2.2 Petrinet-Based Approach

Webservice while taking business on the Internet to a reality there has been spurt
in research activities in this field. Service modelling and composition are the two
important issues under consideration, while modelling concentrates on both static as
well as dynamic aspects of webservices there has been further interest in modelling
temporal as well as asynchrony aspects of webservice execution. For the purpose,
Petrinet is a chosen model. Many have tried with variant of Petrinet models and
shown their utilities in webservice modelling, code generation and more importantly
in design verification. Here, we will review few papers that only represent types of
work researchers engaged in this field. We do not claim the review is complete or
exemplary. For the purpose, here, we believe the papers selected here for review are
representative.



6 D. Chenthati and H. Mohanty

Table 1 Review of webservice specifications in UML

View Concept References

WSDL Class UML stereotyped
“WebService”

[7, 10]

Class UML stereotyped “Port”

Class UML stereotyped
“PortType”

Tagged value relative to a
service and the port
{URI=”/ ”}

SCA Component stereotyped
“ServiceComponent”

[11]

Tagged value relative to an
interface {R.uri=
“Operationuri”}

Class stereotyped
“ServiceInterface”

Security Note stereotyped “Login” [11]

Note stereotyped “Log”

Note stereotyped “Encryption”

Composition and orchestration Class stereotyped
“ServiceWebAtomic”

[9, 10, 12]

Class stereotyped
“ServiceWebComposite”

Class stereotyped
“ModeledOrchestration”
Activity stereotyped
“ImmediateStep”

Note stereotyped
“DataTransformation”
Activity stereotyped
“DataMapper”

Tagged value relative to the
activity “ImmediateStep”
{DomainObject=}

QoS Class stereotyped
“ServiceQuality”

[10, 12]

Community and function Class stereotyped
“Community”
Class stereotyped “Function”

[10, 12]



Service Modelling and Verification: A Formal Approach 7

A webservice at higher level can be viewed as a collection of interacting modules.
Architecture of a webservice is built with these modules. Configuration of modules,
theway these are connected, presents an architecture for awebservice. The paper [13]
presents WS-Net, an architectural description language for specifying webservice
architecture. The language is based on Petrinet semantics accompanied with object-
oriented paradigm. These two aspects of WS-Net provide a mechanism to specify
and verify a webservice model. It is also useful to monitor dynamic behaviour of
webservices. WS-Net uses coloured Petrinet for higher level design.

WS-Net is executable architectural language. Webservice model is seen here as
three-layered model consisting of interface net, interconnection net and interoper-
ation net. Interface net models network of interfaces and their possible transitions.
Each service component is treated as a place and themodules that can be invoked from
the place are connected by transitions. Thus, Petrinet becomes an obvious choice for
webservice modelling. The next layer below, interconnection net models the foreign
transitions that invoke the components that are external to a component. The next
lower level models behaviour of a component, that is, a sequence of invocations of
the units that make a component. Coloured Petrinet is used for understanding like
to distinguish models at different levels. It is shown that the executable architec-
tural language becomes useful for both modelling as well as verification. Adopting
object-oriented paradigm in WS-Net, understandability as well as agility in webser-
vice design are achieved.

A new concept inmodelling and analysing webservice composition using Petrinet
is proposed in [14]. This paper reviews all existing methods and proposes a method
that illustrates modelling issues at different levels using coloured Petrinet. Basic
questions like who and why for service composition are answered in this paper.
Among existing set of services which one is to be selected for composition and how
does the selected one can interact with other services for a given user requirement
are answered by the model. The unique issue the paper takes up is selection of a ser-
vice that is to be guided not only by functional requirements but also nonfunctional
requirements. The cited work extends formalism of CPN tomodel transaction-driven
composition process. Further, while modelling quality of service (QoS) is also taken
into consideration. The composition process also considers system modularity. The
process is standardised to make it compatible with Web 3.0. This modelling helps
service composition operationally simple. A service user just puts a query stating
its requirements and then the composition process matches the Petrinet-based mod-
elled webservices and finds the services that meet both functional and nonfunctional
requirements.

The paper [15] has proposed a high-level Petrinet for service modelling. The
modelling concept is based on G-Net [16]. G-Net provides an algebraic specification
to specify modular complex systems. It has two levels of abstractions; one is to
specify inner working of a module and other on modular interaction. G-Net follows
principles of object-oriented design implementing encapsulation of a module that
shields amodule from external interference. It also provides amechanism for sharing
resources among modules, i.e. by G-Net abstraction. For this mechanism, G-Net is



8 D. Chenthati and H. Mohanty

found suitable for module-based complex system design. This paper [15] extends
G-Net to make it suitable to specify webservices.

A webservice is a tupple<NameS; Desc; URL; CS; SGN>where

{NameS: is the name of a service used as its unique identifier.
{Desc: summarises a service functionality.
{URL: for invocation of webservice.
{CS: a set of component service a service has.
{SGN: (GSP, IS) is the G-Net modelling the dynamic behaviour of a service.

GSP represents service abstraction specifying constituting executable methods
and attributes. IS represents internal structure of a service showing a set of transitions
and their sequence of occurrences. Based on this idea of G-Net, the paper proposes
operators like sequence, parallel, alternative, iteration and random sequence tomodel
service composition with collaborating service components. The paper also proposes
four more operators like discriminator, selection, refinement and replace. The paper
has shown the possibility of service composition using these operators. The unique
point the paper demonstrates is the transformation of G-Net-based algebraic spec-
ification of a webservice composition to a Petrinet model, albeit it is complex but
executable as well as verifiable. Table 2 gives an overview of the existing research
work and how Petrinets are enhanced to model service compositions [14].

2.3 State-Machine-Based Approach

State-machine-based software design is not new. There is a natural correspondence
between system and finite state machine. A software system passed through several
states, that is, represented by states in a finite state machine. System execution is
considered as a dynamic behaviour of a finite state machine. A work [48] demon-
strates possibility ofmodelling complex systemswith a set of finite state ofmachines.
Each machine represents a module. The states of a module represent a node in its
corresponding state machine. A system execution is modelled by interactions among
modules; an interaction is alike to a function call. It models repetitive as well as recur-
sive calls to modules. Execution trace is a path that runs from a start state to end state
of a finite state machine. It presents a hierarchical representation of state transitions
to model behaviour of a complex system. Modularisation of finite state machines
is a concept the paper proposes. This enables to optimise finite state machine by
grouping the system states that are common to different execution paths. Further,
the paper claims utility of the proposed modelling process as the modelled finite
state machine (FSM) that is easily transferable to code enabling automated code cre-
ation. On considering success in finite-state-based system building, there has been
research in finite-state-machine-based webservice modelling. The modelling effort
here includes service modelling, verification and automatic code generation. Here,
we review some works to present the utility of FSM-based webservice modelling.



Service Modelling and Verification: A Formal Approach 9

Table 2 Petrinets for service modelling

Approach Objective References

Classical Petrinet Propose a Petrinet-based algebra to capture the
semantics of WS
composition and to formally model a composite WS,
which is the first step to allow the verification of the
composition and the detection of inconsistencies
within and among WS

[17]

Coloured Petrinet Propose a coloured Petrinet to model types of
resources managed by WSs

[18]

Time-constrained
Petrinet

Propose a time-constrained Petrinet to model and
analyse time-constrained WS composition

[19]

Generalised associative
Petrinet model (APN)
(fuzzy Petrinet)

Define automatic WS selection based on manual user
specifications and using fuzzy Petrinet

[20]

Adaptation of classical
Petrinet and Open
workflow net

Transform a BPEL process to a Petrinet in order to
allow process verification

[21–23]

Open workflow net
composition net

Transform two or more BPEL processes to Petrinets
and compose Petrinets in order to detect WSs
incompatibility

[24, 25]

Open workflow net with
coloured Petrinet

Transform two or more BPEL processes to Petrinets,
compose Petrinets in order to detect WSs
incompatibility, and add mediator transitions to correct
partial incompatibilities among WSs

[26–28]

Classical adaptation of
classical Petrinet
Hierarchical coloured
Petrinet

Transform BPEL or WSCI processes into Petrinets in
order to verify reachability, safety and deadlock

[29–32]

Time Petrinet, adaptation
of classical Petrinet

Transform WSADL specifications into Petrinets to
evaluate aggregated QoS criteria of the composite WS

[33–35]

Adaptation of classical
Petrinet

Generate Petrinet from OWL-S definition of WS for
checking the correctness of WS specifications and the
replaceability of (sub)services

[36]

Time Petrinet Define timed Petrinet representation of WSs flow from
WSDL specification

[37]

Prioritised timed
extension of coloured
Petrinet

Generate Petrinet from WS-CDL definition of
composite WS for simulating timed or prioritised
interactions among component WSs

[38]

Classical Petrinet Propose an automatic QoS-transactional WS selection
based on classical Petrinets

[39]

(continued)



10 D. Chenthati and H. Mohanty

Table 2 (continued)

Approach Objective References

Classical Petrinet Propose an automatic QoS WS selection based on
Petrinet coverability

[40]

Coloured Petrinet Propose an automatic WS selection based on coloured
Petrinets

[41]

Coloured Petrinet Propose an automatic QoS-transactional WS selection
based on coloured Petrinets

[42]

Coloured Petrinet Propose framework for reliable execution of
transactional composite WS based on coloured
Petrinets

[43, 44]

Compensation paired
Petrinet

Propose compensation paired Petrinet to model,
evaluate QoS, verify reachability and deadlock, and
control the execution

[45–47]

Webservice is a piece of code that gets executed on getting a service order. Usually,
a service is hosted on the Internet and a user invokes the same through an interface.
A user can be a person or even could be another service. Being invoked, differ-
ent blocks of a service get executed at different contexts that make states. Context
changes represent transitions. At the end of a service, result is handed over to the
service invoking agency through an interface. So, a service abstraction includes both
service internal module and interfacing module. This paper [8] discusses webservice
design framework with the help of StateJ framework. StateJ is basically a framework
to model event-based applications. It has two major components; one state transition
engine and the other for event notification service. State transition engine invokes
state modules at different contexts (state management service (SMS)). That can
be viewed modelling of intraservice communication (request management service
(RMS)), whereas event notification service (ENS) models interservice communica-
tion. StateJ uses a finite state machine to model the behaviour of a service. Authors
have claimed the usability of StateJ as a natural framework for service modelling.
Further, the framework provides a natural flexibility in designing a service, enabling
a designer to change service component on fly. A scalable design is also possible
due to StateJ. A high-level implementation of an architecture for service design is
shown in Fig. 1.

Service composition is a process of generating a new service from existing ser-
vices. This needs to check compatibility of constituent services. This compatibility
could be at two levels. One is input and output level and the other is at conversational
level. For the prior case, one service calls the other on providing expected inputs and
expecting the required outputs. Later case, two services proceed with conversation
while on execution. In the first case for service composition, one needs input–output
match, while for the later protocol match is required for finding compatible services.

The paper [49] dealswith the problemof service composition. Particularly, it deals
service enactment. Service enactment means finding a service execution plan that
confirms service requirements and constraints as provided by service providers and



Service Modelling and Verification: A Formal Approach 11

SMS

ENSService
Registrar

requestService()

RMS
Process(ServiceOrder,Service)

fireEvent()

requestService()

getService()

Fig. 1 High-level implementation of StateJ architecture

consumers. However, both service providers and consumers are usually not willing to
expose their business details on service repository. This throws a challenge for service
composition. This paper provides a mechanism that does not need stakeholders to
expose their business secrets but still enables to compose a service with possible exe-
cution plan that satisfies their requirements. The proposed approach uses finite state
machines to model constituent webservice operations and their interdependencies,
security constraints and access control policies. It incrementally generates service
enactment plan. The paper also suggests commutative encryption-based techniques
to preserve privacy and security.

The paper [50] provides a formal approach for B2B collaboration among web-
services. Existing webservices collaborate to provide different services that as such
do not readily exist on web. In this context, study on matchmaking process takes a
lead. This paper uses deterministic automata for the purpose. Before matchmaking
of webservices input–output matching technique is a well-known technique. It says
two services are composable when input of one matches to output of other. This
standard paradigm at times may not work when there is a mismatch in their process
descriptions. In spite of input–output match between two services, there could be
mismatch when a service at a state needing some input from other may not get it if
there is no corresponding output from the other service. This paper proposes finite-
state-machine-based approach for service matchmaking. A service specification is
seen as a sequence of state changes where each state is annotated with a message that
has sender, message content and receiver associated with. Composition of services
is viewed as intersection of state sequences services undergo during their life cycles.
This is based on simple reasoning on message transmission verifying whether the
right message is sent by right sender to the right receiver. In case of null intersection
of state sequences of two services, service composition becomes impossible. In case
of partial match, negotiation among services takes place to make the services agree
to make a composed service. This idea of negotiation for composition is found new
with the work.



12 D. Chenthati and H. Mohanty

Role of communication in service composition is further researched in [51] show-
ing the use of Mealy machine that accepts a language meant for webservice compo-
sition. In addition to idea proposed in [50], this paper introduces a notion of global
controller that keeps a watch on message passing at different webservices. In order
to realise asynchrony in message passings, it introduces a notion of prepone operator
that brings in random delay to message passing. A projection of global communi-
cation in view of a participating service presents local picture on message commu-
nication. Message passing between two webservices is formalised by project-join
of global communication. A composite service is considered as Mealy implementa-
tion that generates conversations whose projections are consistent with participating
individual webservices. However, there are some communications among Mealy
machines which cannot be formalised as project-join of a regular language. Hence,
the researchers propose a formalism for webservice communication that is useful for
service composition. With this protocol in addition to modelling interplay between
two Mealy machines, global behaviour can also be modelled. The research shows
that for a given regular language it is possible to get a conversation by applying
prepone and project-join closure corresponding to the set of conversations a set on
Mealy machines can perform for a given language. The second result spells the con-
ditions at which a set of conversation from a given language applying prepone and
project-join closure is achievable.

Modelling and verification go hand in hand. On reviewing some of the prominent
modelling techniques next we will review some important works on webservice
verification and while doing so, we may touch upon some modelling issues. This
may lead to some repetitions as well as additions in the next section. Readers are
foretold of the fact before we proceed for review on webservice verification.

3 Webservice Verification

Software verification is a crucial activity for achieving fault-free product. There has
been active research on webservice verification. State-machine-based verification is
one of the techniques pursued in [52]. Two issues, i.e. communication and service
module verifications are considered here. Communication between two composing
services is expressed in XPath expressions. This defines guard conditions on com-
munications. Service module defined in BPEL code is tested. For testing the later,
a service BPEL code is translated to state machines that models threads execution
contained in BPEL code. Communications among composing services are also mod-
elled as state transitions. Communication conditions label state transitions. Promela
is a target language to translate service implementation to finite state machine. This
executable language is run on SPIN to simulate behaviour of a state machine and
to identify correctness of the model. The model assumes unbounded message queue
while modelling message communication. In practice, webservices are engaged in
bounded communication. SPIN verifies synchronisation. SPIN can only operate with
bounded message communication and partial verification of synchronisation can



Service Modelling and Verification: A Formal Approach 13

also be done. The paper proves for asynchronous communication if there exists a
bounded number of messages that need to be passed amongwebservices for synchro-
nisation and then it is possible to verify synchronisation for the same set of messages
in case of synchronous messages communication. Thus, communication protocol for
a service composition is verified with the help of finite-state-machine-based models.

A formal verification approach is proposed in [53]. The approach is useful to
verify workings of a service that is composed of several services. The composition
follows matching of conversations among participating services. Most services per-
form stateful conversation so themethod takes this featurewhile verifyingworking of
a composed service. The novelty in this approach is its global viewonmodelling com-
munication among participating webservices. They have proposed coloured Petrinet
model for the purpose. This model is based on the control flow patterns of BPEL4WS
where each node represents a node and an arc represents message passing. In a way,
CP-net models control flow among services that make a composed service. Webser-
vice activities are seen as message passing and action invoked thereof. Onmodelling,
a service verification is taken into consideration. The thrust is given to protocol con-
formance, i.e. while putting a service in a composition the issue of conversation
among services is to be relooked to ensure whether conversations among partici-
pants are well defined and so also there of actions. In addition, general criteria such
as liveness, boundedness and reachability are verified by applying CP-net analysis
technique. A similar work is reported in [54] that models webservice developed in
BPEL to coloured Petrinet net (CPN) by mapping BPEL constituents to Petrinet
nodes, transitions and colour tokens. By virtue of Petrinet concurrency, communi-
cation and synchronisation properties are being modelled. Then, using CPN tool,
service behaviour is analysed and verified.

In [55] a generic framework called VERBUS is proposed for verification webser-
vices. VERBUS framework integrates several formal verification tools like Spin and
SMV. A webservice can be developed in many languages. Usually, from implemen-
tation, a formal model is to be extracted and then formal model is to be verified be it
a CPN or a FSM. Thus, verification process is used to be tied with implementation
language. This work is distinctly different in suggesting an intermediate specifica-
tion language to which any type of implementations can be translated into. A service
specification written VERBUS intermediate language is compiled to produce exe-
cutable for a model checker. The paper reports verification of invariants, goals, pre-
and post-conditions, activity reachability analysis and temporal properties. A logic-
based approach for service verification is reported in [54]. The researchers take up
service composition in two steps; one identifying services required for the purpose
of a service consumer and other on selecting the right one for the identified services,
while the first step ensures the functionalities and the second one ensures the quality
of service. Thus, the method not only ensures selections but right selections. The first
one tells signature matching and the other one as specification matching. Signature
matching is based on matching of input–output parameters among constituting ser-
vices, while specification matching ensures satisfaction of constraints defined over
input–output parameters. For specifying, it uses both temporal logic action (TLA)
and first-order logic (FOL), while the former specifies service signature the later



14 D. Chenthati and H. Mohanty

one specifies system behaviour. For a given query, equivalent logic expression in
TLA is formulated and then services satisfying the expression are identified. Fur-
ther, constraints defined on services are evaluated to choose the right ones. The key
for verification rests on formulating right kind of constraints that participants of
constituting services would satisfy.

Unified modelling language being de facto industry standard in software devel-
opment, the work in [56] takes up the issue to show modelling as well as verifying
a webservice. The process goes through several stages. Specification written in web
services choreography description language (WS-CDL) is first converted to compo-
nent diagram and this diagram is put through static analysis to verify some structural
properties like dependency and connectedness. Secondly, a sequence diagram is
generated that depicts service behaviour. In third stage, sequence diagram is used to
derive state diagram that is enriched with control and data flows. Then, state diagram
is translated to SMV language so that SMV model checker is used to verify differ-
ent design properties that are allowed with respect to application domain. The work
demonstrates the verifiability of a service specified in WS-CDL transforming into
multiple UML models.

The idea verifying early in the process of development is always preferable for
its utility in getting a verified correct design so that implementation will be correct
provided no error has crept in during translation of a design to an implementation.
The paper in [57] takes up this approach. A UML specification of a webservice in
message sequence charts (MSC) is converted to finite state process (FSP) notation.
And then, the specification in FSP is traced for analysis. Such notation specifies
design views and then these are matched with user views. In case of match, the
design is considered correct. The properties they verify include process and partners,
message passing, sequence, loops and concurrency. In general, the paper proposes a
technique that supports modelling, verification as well as implementation.

Petrinet-based static analysis of a webservice is presented in [58]. A process lan-
guage like BPEL has been adopted for webservice implementation. BPEL provides
language primitives for message passing. These primitives combined with several
control features including sequential, branching, parallel and synchronisation are
implemented. A BPEL process can be translated to a Petrinet. And then, making use
of Petrinet analysis technique, control flow of a business process can be verified. A
work towards static analysis of webservices is reported in [58].

The paper [59] presents verification of webservice choreography by analysing
their cooperations. It ensures correctness in their protocols. This ensures a right
business partner talking to right one on a purpose. This is ensured by their protocol
matching. It also ensures to check deadlock-free communication. The approach pro-
posed includes first characterisation of each activity with a set of operational rules.
These rules clearly define permissible functional behaviour of a service. Service
activities include both basic communication activities like request, reply, etc. and
structured activities like flow, while, switch, etc. that model business workflow. Sec-
ondly, compatibility rules are defined to adjudge the compatibility of two processes.
That means, two processes can proceed their activities in cooperation by message



Service Modelling and Verification: A Formal Approach 15

passing. Then, algorithms for that check are formulated. The algorithms check both
progresses of a service execution as well as their communication.

Zhao et al. [60] proposes a technique for webservice verification. It also proposes
a method for generating test cases from BPEL logic so that dynamic behaviour of a
service can be verified. From these, some test cases are selected with respect to coun-
terexamples of model checking output. A service in BPEL is translated to LOTOS
and labelled transition system (LTS) is translated to test and testing control notation
(TTCN) behaviour tree. Keeping runtime behaviour checking in mind, the process
of testing puts importance in determining frequency of testing and identification of
operations to be tested. More testing should be done without interrupting service
execution. A tool is developed to model BPEL with LOTUS. The EVALUATOR 3.0
tool is applied to generate LTS as output. Making use of such a tree safety, liveness
and fairness properties of a service are verified.

A recent work on service behavioural compatibility and similarity study using
Petrinet is reported in [61]. Seamless running of a composed service depends on
compatibility of constituent services. This has been verified by matching of individ-
uals protocols. But, this paper proves that study on termination is good enough to
verify correctness of a composed service. For the purpose, services are required to
be well structured. It talks of resilience by replacing a service equivalent to a failing
service. Researchers define conditions to study on context-independent similarity
among webservices. For the purpose, a notion of behavioural compatibility is for-
mulated. A formalism called service workflow net (SWN) based on coloured Petrinet
(CPN) is developed to model webservices. Through this formalism some important
runtime behaviours like message passing, buffering and choice making are anlaysed.
With the help of these studies, reachability termination and proper termination are
verified. Further, for finding similarity weak soundness is considered so that con-
ditions can be relaxed to find suitable compatible alternative matching services to
replace faulty ones. A tool supporting the proposed theory for verification and similar
service detection is developed.

Keeping developments in cloud computing and deployment of services on cloud
there have been a concern on pace of development of service technology. In that
context, the work in [62] addresses the issue of dependable services. For mod-
elling that service behaviours are characterised to operational behaviours and control
behaviours. Runtime coordination among those behaviours is achieved by message
passing. Based on this modelling, an approach for service verification is proposed.
The approach is based on symbolic model checking. Verification properties are
extracted from control behaviours in form of temporal logic formulas. And these for-
mulas are verified with operational behaviours. This checking is done using NuSMV
model checker. Based on this approach, a set of tools are developed for service engi-
neering confirming the possibility of automating a set of tasks including assistance in
service specification, detecting design problems, debugging and monitoring service
behaviours.

Resilience in webservices has become prime interest for making it useful for busi-
ness houses. This has led to understanding mistakes and provisioning to overcome
such mistakes. The paper [63] takes up this issue viewing webservices as event-



16 D. Chenthati and H. Mohanty

based transactional systems. The transactional behaviour is studied in both design
and runtime to find out design errors as well as runtime errors. The method proposed
includes first to translate service transactional patterns to formal expressions using
event calculus. These expressions are evaluated to check transactional consistency
before design and after run. Prior conditions to a transaction expressed in event cal-
culus are evaluated. And then posterior conditions are tested using service logs. A
webservice has a life cycle consisting of states, viz. initial, active, cancelled, failed,
compensated and completed. It has also a set of transitions, viz. activate(), cancel(),
fail(), compensate(), complete(). Pre- and post-conditions are associated with a state
change. Verifiability of a service is made possible by satisfiability of these pre- and
post-conditions.

Data-centric webservices require interfacing of data repository and services as per
the user requirements. Further, in case of composed services, constituent services in
a sequence use data. In the process, data creation, deletion and modification take
place. Correctness of data usages is required in assuring correctness in data-centric
service operations. A service-contract-based strategy is proposed in [64]. For a given
set of data operations, a formalism is enforced. This contains conditions associated
to a data operation. This is called service contract. For a given set of data, an inter-
facing formalism is defined so that when a service interfaces with a repository for
a data operation the contract is validated. Similarly, in case of a service, service
interaction contracts for data provider and consumer are defined. These contracts are
to be satisfied during execution of a composite webservice. The paper presents an
implementation of the proposed approach, Java modelling language (JML). Dafny
and Resolve are used to specify contract specification. LML is an extension to Java
programming language. Dafny has features of procedural and functional program-
ming languages, whereas Resolver with sound mathematical foundation is used to
evaluate contracts and explain later for understanding.

Runtime verification of a webservice is always important to ensure resilience in
service rendering. Because, in spite of well-verified design and implementation run-
time glitches may creep into put service execution in jeopardy. The issue has been
addressed in [61]. Service behaviour is driven by messages. Hence, formalising mes-
sage passings is the main idea proposed in this paper. Service-oriented description
language (SODL) is proposed to specify protocol formessage passings. Estelle-based
formal model named FSM4WSR is proposed. This model is designed to capture run-
time behaviour of a service. This behaviour is validated by the constraints specified
in SODL.

Time is a useful and an important feature in case of service provisioning. In prac-
tice, a service is required to be done in a specific time. That could be of business
interest or domain characteristics. A service execution is seen as a sequence of state
changes. And each state has time constraints to be satisfied. For specifying such tem-
poral behaviour [65] proposed amethod on timedWS automata. The authors propose
methods to translate description of webservice applications written in BPEL4WS to
WS Timed Automata. For formal verification, tool Uppaal is used which evaluates
time-related properties of a systemat different states. The paper explains the proposed
method by a case study on an airline travel reservation system.



Service Modelling and Verification: A Formal Approach 17

Dranidis et al. [66] proposes a scheme for runtime verification of webservices. It
checks whether a service is running according to specification or not. Primarily, two
aspects they verify, that is, control flow and values to variables. During execution,
variables must assume expected values. So, control flow must also progress as per
specification, i.e. on an emanating context, controlmust progress resulting in success-
ful termination of service execution. Specification on expected service behaviour is
formalised by X-machines. A conversational behaviour is formalised by X-machine
which is a kind of extended finite state machine. The machine also helps in moni-
toring verification process through model animation. The contribution of this paper
includes both a method for verification and an architecture for the purpose.

Another work on runtime verification is reported in [67]. The importance of it is
verification of temporal properties of a service choreography. Real-time requirements
of service interactions are specified in Fiacre verification language. This language is
useful to model both behavioural properties as well as timed interactions. Though in
a sense the mechanism of verification is the same like other such works, still the spe-
ciality is in specifying complex requirements with the help of different formalisms.
Logic-based formalism is used to express relation between two occurrences of events.
The logic is built on metric interval temporal logic (MITL), a real-time extension of
linear temporal logic. This enables verification of very general execution scenario,
stated with both local as well as global constraints based on contexts evolving during
execution.

A work that is the first in kind reported in [68] takes up both functional as well as
nonfunctional requirements verification. In order to verify functional requirements a
labelled transition system (LTS) from BPEL semantics is used. The system is drawn
from BPEL semantics. For nonfunctional requirement verification, a roundabout
strategy is used. Nonfunctional properties are translated to functional verification
framework. Three nonfunctional properties, viz. availability, time and cost are con-
sidered in the work. The verification of time and cost is performed on the fly. At
each state of LTS, availability and cost are calculated and tagged for verification,
whereas for response time, at the LTS generation stage required response time is
tagged to each state for online verification. Thus, both functional and nonfunctional
requirements are verified on the fly. Thus, this is the first work at that time to take up
verification of both kinds of requirements. The speciality is that the verification does
not require to build a runtime intermediate abstraction to match with LTS extracted
from BPEL semantics. Rather, at runtime, the extracted LTS is used for verification.

Yin et al. [69] propose a verification technique that is based on Martin-Löf type
theory (MTT). Unlike other formalisation, MTT is not based on predicate logic.
Instead, MTT represents predicates as correspondence between propositions and
sets. A proposition is identified with a set of its proofs. A set of rules determines a
proposition. Existence of a proof ensures proposition. The idea is extended for service
matching. Service matching is a proposition that comes true for two compatible
services. This compatibility check is governed by type checking rules. In case rules
for two services satisfy then it positively verifies composition of two services. The
paper discusses on verification of a service and a set of services. The verification is
governed by rules for subtype, duality and consistency check.



18 D. Chenthati and H. Mohanty

Table 3 A summary of service verification approaches

Approach Objective References

FSM Bounded message queue in
communication service
module verification

[52]

CPNET Protocol conformance—
liveliness, boundedness and
reachability analysis

[53]

CPNET Concurrency, communication
and synchronisation
verification

[54]

VERBUS Verification of invariants,
goals, pre- and
post-conditions, activity
reachability analysis and
temporal properties

[55]

Logic based Formulating right constraints [54]

UML (component sequence
and state diagrams)

Dependency and correctness
tests

[56]

UML
(MSC & FSP)

Process and partners roles
analysis, message passing,
sequence, loops and
concurrency verifications

[57]

Petrinet Control flow verification
Static analysis

[58]

Times input and output
transition system (TIOTS)

Deadlock detection and
protocol matching

[59]

LOTOS and TTCN (behaviour
tree)

Safety, liveness and fairness [60]

CPNET Reachability, termination
criteria, message passing,
buffering, choice making tests

[61]

Symbolic model checking Control and operational
behaviour testing

[62]

Event calculus Pre- and post-conditions
checking

[63]

Contract based (JML) Data consistency check [64]

X-machines Control flow, values to
variables checks

[66]

Logic based
(MITL)

Temporal properties, general
execution scenario analysis

[67]

LTS Functional and nonfunctional
requirements verification

[68]



Service Modelling and Verification: A Formal Approach 19

The research works discussed in this section are summarised in Table 3 given
below. It presents the verification objectives and associated approaches used for the
purpose.

4 Conclusion

This chapter presents some earlyworks onmodelling and verification ofwebservices.
The works are representatives of different approaches used for both modelling and
verification. In this chapter, FSM, Petrinet, logic and UML are chosen for discussion
based on their popularity among users and rigour for the purpose of modelling. Each
one is found suitable for modelling of certain aspects of webservices.

FSM,Petrinet, logic,UML, behaviour trees, etc. are used to verify several dynamic
properties of service provisioning. The service properties under study include con-
trol flow analysis and checking of system liveliness, boundedness, reachability, con-
currency, constraints, deadlock, safety, fairness, data consistency, termination and
temporal properties. The detailed review gives readers an insight into considering
a formal model as a choice for webservice modelling and verification. Readers can
appreciate the beauty of eachmodel in specifying certain aspects of an application. So
that, for a complex service requirement a designer can choose a set of relevantmodels
useful to model various aspects of an application. At the initial stage of service engi-
neering, such a model composition approach helps to explore uncharted dimensions
of an application so, requirement engineering leads towards completeness.

All these modelling approaches being rigorous help in developing concrete algo-
rithms for checking correctness and completeness of service models. It also helps in
designing a provable service system as its behaviour is formally defined and realised
in implementation.

Further, because of formal approaches for both modelling and verification of
webservices, automation of both the processes has been possible. There have been
several tools for formal modelling and verification. These tools with respect to dif-
ferent modelling approaches are also discussed.

References

1. Irum Rauf. Muhammad Zohaib Z Iqbal, Zafar. I. Malik UML based Modeling of Web Service
Composition- A Survey; Sixth International Conference on Software Engineering Research,
Management and Applications, 2008

2. Christophe Dumez, Ahmed Nait-Sidi-Moh, Jaafar Gaber, MaximeWack, Modelling and spec-
ification of Web services composition using UML-S, 4th international conference on Next
Generation Web Services Practices (NWeSP08), Oct 2008, Seoul, South Korea. IEEE Com-
puter Society, 0, pp. 15–20



20 D. Chenthati and H. Mohanty

3. Dhikra Kchaou, WS-UML: A UML Profile for Web Service Applications, ISIICT’09 Proceed-
ings of the Third international conference on Innovation and Information and Communication
Technology, British Computer Society Swindon, UK, 2009

4. Pengcheng Zhang, Henry Muccini; Model and Verification of WS-CDL based on UML Dia-
grams; International Journal of Software Engineering and Knowledge Engineering Vol. 20,
No. 8 (2010) 1119–1149

5. M. Emilia Cambronero J. Jose Pardo Gregorio Diaz Valentin Valero; Using RT-UML for
Modelling Web Services; SAC07 March 11–15, 2007, Seoul, Korea

6. Viet-Cuong Nguyen, Xhevi Qafmolla, Karel Richta; Domain Specific Language Approach on
Model-driven Development of Web Services; Acta Polytechnica Hungarica Vol. 11, No. 8,
2014, 121–138

7. W. Provost, “UML for Web services”, XML.com, August 5, 2003
8. Jun-Jang Jeng, Wang-Chuan Tsai; Designing An FSM Architectural Framework for Service-

Based Applications; COMPSAC, 2000, pp. 234–239
9. R. Gronmo, I. Solheim, “Towards Modeling Web Service Composition in UML”, INSTICC

Press, 2nd International Workshop on web services: Modeling, Architecture and Infrastructure,
Porto, Portugal, April 2004

10. F. Belouadha andO. Roudiés, «Vers unmodèle de spécification pour la composition de services
web », Proceedings of SIIE’08, Tunisie, Février 2008

11. G. Ortiz and J. Hernandez, “Toward UML Profiles for web services and their Extra-functional
Properties”, IEEE International Conference on Web services (ICWS’06), 2006

12. F. Belouadha and O. Roudiés, “Un profil UML de spécification de services web composites
sémantiques”, CARI 2008-MAROC, pp. 537–544

13. Jia Zhang, Carl K. Chang, Jen-Yao Chung, Seong W. Kim; WS-Net: A Petri-net Based Spec-
ification Model for Web Services; Proceedings of the IEEE International Conference on Web
Services (ICWS04)

14. Yudith Cardinale, Joyce El Haddad, Maude Manouvrier, Marta Rukoz; Web Service Compo-
sition Based on Petri Nets: Review and Contribution; LNCS 8194, pp. 83–122, 2013

15. Sofiane Chemaa, Faycal Bachtarzi, Allaoua Chaoui; A high-level Petri net based approach for
modeling and composition of web services; Procedia Computer Science 9 (2012) 469–478

16. Y. Deng, S. K. Chang, J. C. A. De Figueiredo, A. Psrkusich, Integrating software engineering
methods and petri nets for the specification and prototyping of complex information systems,
in: Proc. The 14th International Conference on Application and Theory of Petri Nets, Chicago,
1993, pp. 206–223

17. Hamadi, R., Benatallah, B.: A Petri net-based Model for Web Service Composition. In: Proc.
of the 14th Australasian Database Conf., ADC 2003, vol. 17, pp. 191–200

18. Zhang, Z., Hong, F., Xiao, H.: A colored petri net-based model for web service composition.
Journal of Shanghai University (English Edition) 12, 323–329 (2008)

19. Yu, H., Fan, G., Chen, L., Liu, D.: Analyzing time constrained service composition based on
Petri net. In: 3rd Int. Symposium on Electronic Commerce and SecurityWorkshops, pp. 68–71
(2010)

20. Fang, X., Jiang, C., Fan, X.: Independent global constraints for web service composition based
on GA and APN. In: Proc. of the First ACM/SIGEVO Summit on Genetic and Evolutionary
Computation, GEC 2009, pp. 119–126 (2009)

21. Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to Petri nets. In: van der Aalst, W.M.P.,
Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 220–235.
Springer, Heidelberg (2005)

22. Lohmann, N.,Massuthe, P., Stahl, C.,Weinberg, D.: Analyzing interactingWSBPEL processes
using flexible model generation. Data Knowl. Eng. 64(1), 38–54 (2008)

23. Ouyang, C., Verbeek, E., van der Aalst, W.M.P., Breutel, S., Dumas, M., ter Hofstede, A.H.M.:
Formal semantics and analysis of control flow in WS-BPEL. Sci. Comput. Program. 67(2–3),
162–198 (2007)

24. Martens, A.: Analyzing Web Service Based Business Processes. In: Cerioli, M. (ed.) FASE
2005. LNCS, vol. 3442, pp. 19–33. Springer, Heidelberg (2005)



Service Modelling and Verification: A Formal Approach 21

25. Xiong, P., Fan, Y., Zhou, M.: A Petri Net Approach to Analysis and Composition of Web
Services. IEEE Transact. on Systems, Man, and Cybernetics, Part A 40(2), 376–387 (2010)

26. Du, Y., Li, X., Xiong, P.: A Petri Net Approach to Mediation-aided Composition of Web
Services. IEEE Transactions on Automation Science and Engineering (2012) (to appear)

27. Li, X., Fan, Y., Sheng, Q.Z., Maamar, Z., Zhu, H.: A Petri Net Approach to Analyzing Behav-
ioral Compatibility and Similarity of Web Services. IEEE Trans. on Systems, Man, and Cyber-
netics, Part A, 510–521 (2011)

28. Tan, W., Fan, Y., Zhou, M.: A Petri Net-BasedMethod for Compatibility Analysis and Compo-
sition of Web Services in Business Process Execution Language. IEEE T. Automation Science
and Engineering 6(1), 94–106 (2009)

29. Chi, Y.-L., Lee, H.-M.: A formal modeling platform for composing web services. Expert Syst.
Appl. 34(2), 1500–1507 (2008)

30. Ding, Z.,Wang, J., Jiang, C.: An Approach for Synthesis Petri Nets forModeling and Verifying
Composite Web Service. J. Inf. Sci. Eng. 24(5), 1309–1328 (2008)

31. Yang, Y., Tan, Q., Xiao, Y.: Verifying web services composition based on hierarchical colored
petri nets. In: Proc. of the 1st Int. Workshop on Interoperability of Heterogeneous Information
Systems, IHIS 2005, pp. 47–54 (2005)

32. Yang, Y., Tan, Q., Xiao, Y., Liu, F., Yu, J.: Transform BPELworkflow into hierarchical CP-nets
to make tool support for verification. In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa, M., Zhang,
Y. (eds.) APWeb 2006. LNCS, vol. 3841, pp. 275–284. Springer, Heidelberg (2006)

33. Dong, Y., Xia, Y., Sun, T., Zhu, Q.: Modeling and performance evaluation of service choreog-
raphy based on stochastic petri net. JCP 5(4), 516–523 (2010)

34. Mao, C.: Control Flow Complexity Metrics for Petri Net-based Web Service Composition.
Journal of Software 5(11), 1292–1299 (2010)

35. Xia, Y., Liu, Y., Liu, J., Zhu, Q.: Modeling and performance evaluation of bpel processes: A
stochastic-petri-net-based approach. IEEE Trans. on Systems, Man, and Cybernetics, Part A
42(2), 503–510 (2012)

36. Bonchi, F., Brogi, A., Corfini, S., Gadducci, F.: Compositional Specification of Web Services
Via Behavioural Equivalence of Nets: A Case Study. In: van Hee, K.M., Valk, R. (eds.) PETRI
NETS 2008. LNCS, vol. 5062, pp. 52–71. Springer, Heidelberg (2008)

37. Thomas, J.P., Thomas, M., Ghinea, G.: Modeling of web services flow. In: IEEE Int. Conf. on
E-Commerce (CEC), Stillwater, OK, USA, pp. 391–398 (2003)

38. Valero, V., Macià, H., Pardo, J.J., Cambronero, M.E., Díaz, G.: Transforming Web Services
Choreographies with priorities and time constraints into prioritized-time colored Petri nets.
Sci. Comput. Program. 77(3), 290–313 (2012)

39. Blanco, E., Cardinale, Y., Vidal,M.-E.: Aggregating Functional andNon-Functional Properties
to Identify Service Compositions, pp. 1–36. IGI BOOK (2011)

40. Li, B., Xu, Y., Wu, J., Zhu, J.: A petri-net and qos based model for automatic web service
composition. Journal of Software 7(1), 149–155 (2012)

41. Qian, Z., Lu, S., Xie, L.: Colored Petri Net Based Automatic Service Composition. In: Proc.
of the 2nd IEEE Asia-Pacific Service Computing Conf., pp. 431–438 (2007)

42. Cardinale, Y., El Haddad, J., Manouvrier, M., Rukoz, M.: CPN-TWS: a coloured petri-net
approach for transactional-QoS driven Web Service composition. IJWGS 7(1), 91–115 (2011)

43. Cardinale, Y., Rukoz, M.: Fault Tolerant Execution of Transactional Composite Web Services:
An Approach. In: Proceedings UBICOMM, Lisbon, Portugal, pp. 1–6 (2011)

44. Cardinale, Y., Rukoz, M.: A framework for reliable execution of transactional composite web
services. In: MEDES, pp. 129–136 (2011)

45. Mei, X., Jiang, A., Li, S., Huang, C., Zheng, X., Fan, Y.: A Compensation Paired Net-based
Refinement Method for Web Services Composition. Advances in Information Sciences and
Service Sciences 3(4), 169–181 (2011)

46. Mei, X., Jiang, A., Zheng, F., Li, S.: Reliable Transactional Web Service Composition Using
Refinement Method. In: Proc. of the 2009 WASE Int. Conf. on Information Engineering, ICIE
2009, vol. 01, pp. 422–426 (2009)



22 D. Chenthati and H. Mohanty

47. Wang, Y., Fan, Y., Jiang, A.: A paired-net based compensation mechanism for verifying Web
composition transactions. In: 4th International Conference on New Trends in Information
Science and Service Science (NISS), pp. 1–6 (2010)

48. Sukhamay Kundu; Modeling Complex Systems by A Set of Interacting Finite-State Models;
APSEC, 2003, pp. 380–389

49. Basit Shafiq, Soon Chun, Jaideep Vaidya, Nazia Badar, Nabil Adam, Secure Composition of
Cascaded Web Services, 8th International Conference Conference on Collaborative Comput-
ing: Networking, Applications and Worksharing, Collaboratecom 2012 Pittsburgh, PA, United
States, October 14–17, 2012, 137–147

50. Andreas Wombacher, Peter Fankhauser, Bendick Mahleko; Matchmaking for Business Pro-
cesses based on Choreographies; Proceedings of the 2004 IEEE International Conference on
e-Technology, e-Commerce and e-Service

51. Conversation Specification: A New Approach to Design and Analysis of E-Service Composi-
tion; WWW2003, May 2024, 2003, 403–410

52. Xiang Fu, Tevk Bultan, Jianwen Su; Analysis of Interacting BPELWeb Services; WWW2004,
May 1722, 2004, New York, USA

53. Xiaochuan Yi and Krys J. Kochut, A CP-nets-based Design and Verification Framework for
WebServicesComposition, Proceedings of the IEEE InternationalConference onWebServices
(ICWS04)

54. Yabei Wang, Shangliang Pan; CPN-Based Verification of Web Service Composition Model,
Proc. International Conference on Educational and Information Technology, 2010, V1-153-158

55. Jesus Arias Fisteus, Luis Sanchez Fernandez, Carlos DelgadoKloos, Applyingmodel checking
toBPEL4WSbusiness collaborations, Proc. ofACMSymposiumonAppliedComputing, 2005,
826–830

56. Zhang, Bixin Li, HenryMuccini, Yu Zhou,Mingjie Sun, Data-enrichedModeling and Verifica-
tion of WS-CDL Based on UMLModels; Zhang, Bixin Li, Henry Muccini, Yu Zhou, Mingjie
Sun; Proc. on IEEE International Conference on Web Services, 2008, 752–754

57. Howard Foster, Sebastian Uchitel, Jeff Magee, Jeff Kramer, Model-based Verification of Web
Service Compositions

58. Chun Ouyang, Eric Verbeek, Wil M.P. van der Aalst, Stephen Breutel, Marlon Dumas, and
Arthur H.M. ter Hofstede, Formal Semantics and Analysis of Control Flow in WS-BPEL;
Technical Report, Faculty of Information Technology, Queensland University of Technology,
Australia

59. Melliti Tarek, CelineBoutrous-Saab, SylvainRampacek;Verifying correctness ofWeb services
choreography, Technical Report, IBISC, University of Evry, France … Find reference details

60. Huiqun Zhao, Jing Sun, Xiaodong Liu; AModel Checking Based Approach to Automatic Test
Suite Generation for Testing Web Services and BPEL, Proc. of IEEE Asia-Pacific Services
Computing Conference, 2012, 61–69

61. Zhuqing Li, DianfuMa, Yongwang Zhao, Jing Li, QingYang; FSM4WSR:AFormalModel for
Verifiable Web Service Runtime; Proc. of IEEE Asia-Pacific Services Computing Conference,
2011, pp. 86–93

62. Quan Z. Sheng, Zakaria Maamar, Lina Yao, Claudia Szabo, Scott Bourne, Behavior modeling
and automated verification of Web services, Inform. Sci. (2012)

63. WalidGaaloul, SamiBhiri, andMohsenRouached, Event-BasedDesign andRun-timeVerifica-
tion of Composite Service Transactional Behavior, IEEE Transactions on Services Computing,
vol. 3, no. 1, January-March 2010, 32–45

64. Iman Saleh, Gergory Kulczycki, M. Brian Blake, Yi Wei; Formal Methods for Data-Centric
Web Services: From Model to Implementation; Proc. of IEEE 20th International Conference
on Web Services, 2013, pp. 332–339

65. Jia Mei, Huaikou Miao, Qingguo Xu, Pan Liu; Modelling and Verifying Web Service Applica-
tions with Time Constraints; Proc. 9th IEEE/ACIS International Conference on Computer and
Information Science, 2010, 791–795

66. Dimitris Dranidis, Ervin Ramollari, Dimitrios Kourtesis; Run-time Verification of Behavioural
Conformance for Conversational Web Services; IEEE European Conference on Web Services
Proc. of Seventh IEEE European Conference on Webservices, 2009, 139–147



Service Modelling and Verification: A Formal Approach 23

67. Nawal Guermouche, Silvano Dal Zilio; Towards Timed Requirement Verification for Service
Choreographies; 8th International Conference Conference on Collaborative Computing: Net-
working, Applications and Worksharing, Collaboratecom 2012 Pittsburgh, PA, United States,
October 14–17, 2012, 117–126

68. Manman Chen, Tian Huat Tan, Jun Sun, Yang Liu, Jun Pang, and Xiaohong Li; Verification
of Functional and Non-functional Requirements of Web Service Composition; LNCS 8144,
2013, 313–328

69. YuYu Yin, JianWei Yin, Ying Li, ShuiGuang Deng; Verifying Consistency of Web Ser-
vices Using Type Theory; Proc. of IEEE Asia-Pacific Services Computing Conference, 2008,
1560–1567


	Service Modelling and Verification: A Formal Approach
	1 Introduction
	2 Modelling of Webservices
	2.1 UML-Based Approach
	2.2 Petrinet-Based Approach
	2.3 State-Machine-Based Approach

	3 Webservice Verification
	4 Conclusion
	References




