
Hrushikesha Mohanty
Prasant Kumar Pattnaik Editors

Webservices
Theory and Practice

Webservices

Hrushikesha Mohanty • Prasant Kumar Pattnaik
Editors

Webservices
Theory and Practice

123

Editors
Hrushikesha Mohanty
School of Computer and Information
Sciences
University of Hyderabad
Hyderabad, Telangana, India

and

Kalinga Institute of Industrial Technology
Deemed to be University
Bhubaneswar, Odisha, India

Prasant Kumar Pattnaik
School of Computer Engineering
KIIT University
Bhubaneswar, Odisha, India

ISBN 978-981-13-3223-4 ISBN 978-981-13-3224-1 (eBook)
https://doi.org/10.1007/978-981-13-3224-1

Library of Congress Control Number: 2018961210

© Springer Nature Singapore Pte Ltd. 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-13-3224-1

Preface

Webservice provides an Internet-based platform for conducting e-commerce. As the
usage of the Internet increases resulting in smart cities and smart villages, the use
of the Internet on daily basis will gradually increase manifold. Easy connectivity
among people that the Internet promises has now revolutionized all aspects of
human life, including business domain, particularly service sectors. Making ease for
both service providers and consumers with the help of Internet-based technology
has been now a primary focus. Webservice is that kind of technology currently with
increasing usage. The technology just being out of academic laboratories and taking
shape in the industrial world is still evolving and also getting matured for fruitful
and resilient usage in the business world. Keeping the recent trends in view, the
proposed book intends to cover the results that emanate from the researchers’
laboratories and the applications that are being developed by software houses.

Webservice a software, being available on the Internet, provides a service being
invoked by a service consumer for a purpose that is met by the service. Thus, a
webservice is meant for a purpose and its developer makes the service available on
the Internet so that intending service consumers can locate and interact to avail the
service. In order to effectively realize such services, there is a need of Internet-based
infrastructure that facilitates provisioning of webservice-based services. This
architecture is generally called service-oriented architecture (SOA). Making this
architecture useful, efficient, and resilient holds the success of webservices in
practice. The proposed book, keeping this as an objective, charts its coverage and
further illustrates the success of the technology by including experiences of pro-
fessionals from the software industry.

The issues involved in provisioning webservices include webservice engineering
including service choreography and orchestration. A service provider on the
development of a service publishes the same at a service repository, a component of
SOA that contains a minimal service description for making service consumers
aware of the service. This brings out issues like service description and search for a
service. The proposed book takes up these issues with fundamental contributions
made by the chapter authors. In addition, they also discuss all the important
techniques proposed by the other researchers.

v

A service required by a user may not be met by a service provider. In this case, a
collaborative set of services can provide the required service. This process provi-
sioning a service is called service composition. An engineering practice is required
to adjudge collaborating services from the services available in a service repository.
Both service search and composition primarily depend on the way the services are
specified. So, at length, this book deals with service modeling practices. A chapter
surveys finite-state machine (FSM)-, Petri net-, UML-, and SMap-based service
modeling. These models are used for engineering of webservices. An engineering
approach for the development of webservices, i.e., webservice engineering using
FSM, is demonstrated.

Engineering is inherently associated with correctness determination. A product
like webservice must ensure correctness in functioning for the delight as well as the
trust of customers, and that is what a business world always looks for. So, web-
service engineering has to include a study on service verification. This book takes
up the issue in detail in a chapter. It discusses some important techniques
researchers have proposed.

Thus, modeling a webservice using any one of the modeling specification
techniques, then verifying the specified model, and generating an implementation
from the model for the webservice, particularly in “Business Process Execution
Language” (BPEL), are the highlights of this book. A chapter reviews the various
approaches proposed for webservice composition, emphasizing input/output
parameter-based approaches. Popular algorithms and their implementations are
also discussed in the chapter. The role of non-functional properties in the selection
of a service is a practical issue that is taken up in a chapter. First, non-functional
properties are categorized, and then, the specification and discovery of these
properties are addressed. Toward this, specification and discovery in a single
service as well as in compositions are discussed. Both static and dynamic com-
positions are dealt in the chapter.

Service composition is essentially guided by dependencies of services and user
requirements. In a sense it’s a planning problem in finding out appropriate services
by matching of one’s inputs to other’s outputs such that the composed service meets
a user’s requirements for given inputs. A chapter surveys on service composition
techniques including input/output parameter-, graph-, RDBMS- and Object
relational-based service composition.

Resiliency in webservices is also a sought-after feature because a service being
interrupted need not be restarted from the beginning rather should be resumed from
the point where it stopped. Unlike service discovery and composition, till now
resiliency in webservices is a less-researched issue. In this book, a chapter is
earmarked for checkpoint-based service recovery. Finding locations for putting
checkpoints is a problem addressed in this chapter. Several strategies due to service
specification and design analysis provide a lead to a decision on checkpoints,
keeping checkpointing overhead into consideration. Further, the issue of dynamic
revision of checkpoints during service execution is also investigated with the help
of the hidden Markov model. Thus, the chapter addresses a new vista of research in
service recovery.

vi Preface

Further, the proposed book contains issues on webservice security considering
the priority of the issue for practical uses. Though a webservice does not specify
any internal details of its operational activities, its access over the Internet makes it
vulnerable to various security attacks. A chapter articulates various security threats
associated with webservices in general and the countermeasures that address each
of these threats along with a few case studies.

This book also addresses on webservice development cycle that emphasizes the
need of webservice software development process.

Hyderabad, India Hrushikesha Mohanty
Bhubaneswar, India Prasant Kumar Pattnaik

Preface vii

Acknowledgements

The genesis of this book is the industry symposium on “Webservices: Theory and
Practice”, held as a satellite event of International Conference on Distributed
Computing and Internet Technology (ICDCIT, Kalinga Institute of Industrial
Technology (KIIT)) during January 13–16, 2017. The speakers at the symposium
later submitted full chapters, and then, the chapters have gone through a review
process for inclusion here in this book. It is always a difficult task to get full
chapters from professionals amidst their busy schedules. It is heartening to note that
chapter authors agreed to comply with a timeline and responded scrupulously to the
suggested revisions. We extend our sincere thanks to these authors. We also express
sincere thanks to Springer for giving us extra time for editing this book, else
probably we would have missed editing this book.

We are thankful to ICDCIT team for its confidence on us in shaping up this
industry symposium. Shri. Darpendra Narayan Dwivedy has been a great mover to
ICDCIT series since its beginning. We admire his patient hearing to the demanding
situations of the conference series. Founder of KIIT and Kalinga Institute of Social
Sciences (KISS), Prof. Achyut Samanta is the patron of ICDCIT series from its
inception. His unequivocal support has been inspiring to explore new academic
vista for ICDCIT series of conferences. Both the editors express their sincere thanks
to him.

The first author expresses his heartfelt thanks to School of Computer and
Information Sciences, University of Hyderabad, where the major part of this book
editing was carried out.

Hrushikesha Mohanty
Prasant Kumar Pattnaik

ix

About This Book

This book intends to provide a consolidated research material for researchers and
professionals working in webservice. Chapter authors are hailing from both academic
and software industries. The issues on webservice functional and non-functional
requirements’ specification, composition, verification, fault tolerance, security, and
software engineering model are discussed in this book. The first five chapters are
contributed by academia actively engaged in research on webservice. The last two
chapters are contributed by practitioners having industrial experience in developing
webservice systems.

The contents are diligently worked with the rigor of academia and necessities of
practitioners. We believe this book will be useful to the researchers as well as to the
students. It can also be used as a reference book by teachers wishing to give an
elective to undergraduate students. With lucidity and easiness, this book will also be
useful to the practitioners who wish to know the theoretical grounding on the
subject.

xi

Contents

Service Modelling and Verification: A Formal Approach 1
Deepak Chenthati and Hrushikesha Mohanty

Webservice Specification and Discovery . 25
Supriya Vaddi and Hrushikesha Mohanty

Non-functional Properties of a Webservice . 53
N. Parimala and Anu Saini

Service Composition . 79
H. N. Lakshmi and Hrushikesha Mohanty

Handling Faults in Composite Webservices . 99
Vani Vathsala Atluri and Hrushikesha Mohanty

Webservice Security . 119
Ravi Kiran Kumar Meduri

Webservices Engineering . 173
Venkata Swamy Martha and Maurin Lenglart

xiii

About the Editors

Hrushikesha Mohanty possesses a professor position at School of Computer
and Information Sciences, University of Hyderabad, Hyderabad, and now on lien
to work at KIIT, Bhubaneswar, Deemed to be University. He has received his
Ph.D. from IIT Kharagpur to start his professional career at Electronics Corporation
of India Limited (ECIL), Hyderabad, and then to join in academic at University of
Hyderabad. At ECIL, he took part in developing an indigenous real-time system for
the Indian Air Force. His research interests include distributed computing, software
engineering, and computational social science. He also keeps a keen interest in the
literature and regularly writes in literary Odia magazines, newspaper, and his blog
MoKatha.

Prasant Kumar Pattnaik has received his Ph.D. in computer science, is
Fellow IETE, is Senior Member IEEE and is Professor at the School of Computer
Engineering, KIIT University, Bhubaneswar. He has more than a decade of
teaching and research experience. He has published more than 50 numbers of
research papers in Scopus-indexed international journals and conferences. He also
co-authored and co-edited nine books. His areas of interest are mobile computing,
brain–computer interface, and cloud computing.

xv

Service Modelling and Verification:
A Formal Approach

Deepak Chenthati and Hrushikesha Mohanty

Abstract Increasing number of users on web has attracted a large number of busi-
nesses to be made available on web. The growing demand for webservices requires
a systematic approach in service development. For the purpose, this chapter reviews
various models for service specification, composition, deployment and monitoring.
Particularly, the chapter reviews some well-known models like UML, Petrinet and
state machine used for service modelling and verification.

1 Introduction

Web has become a common platform for different enterprises with increasing avail-
ability of the Internet. Also with standardisation of SOA technologies, enterprises
tend to expose their business as webservices. Enterprises to meet the market needs
would resort to the methods that enable them to build a service quickly and effec-
tively without errors. In this process, either the existing services are used for building
a service with enhanced/higher requirement or services are generated from models.
Here, initially, the services are modelled using formal methods, viz. UML, Petrinet,
state machine, etc. A modelled service is used as a source/reference for automatic
generation of executable codes. The advantage of service modelling is in three folds.
Firstly, it gives a visual representation of a service that is being modelled giving
service provider a scope to analyse its flow of execution. Secondly, the errors due to
manual coding are eliminated. Thirdly, the deployed/running service can be verified

D. Chenthati (B)
Teradata (R&D) India Pvt Ltd, Hyderabad, India
e-mail: chvcdeepak@gmail.com

H. Mohanty
Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar 751024, India
e-mail: hmcs_hcu@yahoo.com

H. Mohanty
School of Computer & Information Sciences (On leave), University of Hyderabad, Hyderabad,
India

© Springer Nature Singapore Pte Ltd. 2019
H. Mohanty and P. K. Pattnaik (eds.), Webservices,
https://doi.org/10.1007/978-981-13-3224-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3224-1_1&domain=pdf
mailto:chvcdeepak@gmail.com
mailto:hmcs_hcu@yahoo.com
https://doi.org/10.1007/978-981-13-3224-1_1

2 D. Chenthati and H. Mohanty

against the model either for testing or for checking the abnormal behaviour of a ser-
vice. These advantages have motivated several research works to address modelling
of services considering different aspects.

Awebservice has a business logic available onweb and it is exposed to the external
world as an interface. The major concerns during modelling of services would be (i)
to hide the business logic, (ii) to generate an interface as per a specification standard,
i.e. WSDL, (iii) composing a service when a single service does not meet a need,
(iv) monitoring a deployed service to capture quality details, (v) security aspects of a
service and (vi) provision for model-based verification. Eachmodel follows different
rules for modelling and code generation considering some or all of the aspects stated
above. These rules in turn form the guiding principles for verification of webservices.

The concern of business logic is addressed with orchestration of a service where
the activities of a service are in order for execution. Composition of services involves
issues with matching of interfaces and protocol for proper communication among
constituting services. Matching of I/O interfaces would initially find a set of services
that are further checked for protocol match. Choreography of webservices addresses
this issue assuring observance of an agreed protocol among chosen services. Fur-
ther, the verification of a service specified with rigour of models addresses issues
related to structural and behavioural correctness. However, here no claim is made on
completeness of model-based webservice specification.

Section 2 of this chapter gives a detailed review of some models used for service
modelling. The next section takes up issues on verification of services. Modelling of
services is discussed with respect to approaches based on UML, Petrinet and state
machine. Each of these approaches is discussed with different enhancements and
proposed standards. Finally, the chapter concludes with a brief concluding remark.

2 Modelling of Webservices

2.1 UML-Based Approach

Unified modelling language (UML) has been successful in modelling software sys-
tems that is reflected from its popularity in software industry. Webservices being
a contemporary technology-driven means to deliver services, needs well-thought
design principles for success. UML being a proven modelling approach is consid-
ered for the purpose of webservice design. This, in fact, brings both academia as well
as industry professionals to the same platform to contribute together in development
of UML-based methodology for webservice development. In this section, we will
survey some works in highlighting UML-based webservice design approach.

Model-driven architecture (MDA) is a popular method to develop software sys-
tems.UMLhas amechanism tomodel both structural aswell as behavioural specifica-
tions of a system. In case of webservices, UDDI that maintains service locations also
comes to picture. Further, composition of services is to be modelled. Service compo-

Service Modelling and Verification: A Formal Approach 3

sitionmodelling specifies a waymessages between two services are to be exchanged.
Compatibility of message passing protocol specification leads to successful service
composition. UML class diagram models interface while actions are modelled by
UML behavioural diagrams like use case, activity and interaction diagrams. The
aspects particularly to be modelled with respect to webservices include service arte-
facts, interfaces, data access, execution and communication error handling, execution
tracing, usages of ontology, designing service communication patterns, specifying
service locations and service metamodelling. A brief survey on usability of UML in
specifying webservice composition is given in [1].

W3C, the organisation engaged in developing standard has proposed a specifica-
tion web services choreography description language (WS-CDL) for specification of
webservices. Service providers specify services and for a consumer request, services
are searched and an appropriate service is selected for providing service. Researcher
in [2] proposes a variant of UML-2.0 called UML-S to specify a system to be devel-
oped with WS-CDL specification. This requires a one-to-one mapping between the
two specification approaches, i.e. WS-CDL and UML-S. Service modules speci-
fied in WS-CDL are specified in UML component diagrams. A sequence of actions
a module performs is specified by UML activity diagrams. Behaviours due to each
role specified inWS-CDL is modelled by UML state diagrams, whereas descriptions
for each state is modelled by class diagrams. With an experimentation, authors have
shown the use of UML-S-based specification in modelling and verifying a service
specification.

In [3], researchers have proposed another extension to UML called WS-UML
for webservice design. WS-UML is alike UML, proposes graphical annotations for
specifying webservice concepts like service security, composition, location and trace
of execution. This work stands out among similar works by allowing to specify
service location. It also allows user service providers as well as consumers to trace
service execution. A composed webservice is to provide an integrated service to
a user in accordance with its requirements. This requires selection of services and
composition of services. This process requires certain essential aspects that a service
designer must address. WS-UML provides that mechanism for specification.

First, question of service selection comes. Selection of a service not only is based
on service functionality say by specifying input and output but also its quality of
services. Quality of a service for a webservice is specified by service cost, relia-
bility and execution time required for service delivery. WS-UML provides means
to annotate a service by these information in a given syntax. Further, on selecting
services, compositions are done. In the process, first composability criteria are to
be evaluated. Each service specifies its conditionality for composition, e.g. protocol
requirements for passingmessages. Other than this communication, there is a need to
specify security aspect. Designer makes a provision for defining security mechanism
for both service provider as well as consumer. Hence, during invocation of service
security aspects for both provider and consumer can be ascertained. Locationwhere a
service is hosted on the Internet is to be specified for easy access of users. This access
is to be of course automated. For the purpose location specification is necessary. This
provision is made inWS-UML. Next is execution tracing that is essential in business

4 D. Chenthati and H. Mohanty

world. Once a service is invoked, it is required to trace the execution to checkwhether
the service provision is being done as per requirement, i.e. service-level agreement.

WS-UMLprovidesmeans to specify the desired states bywhich service execution
must pass through. This design provision helps in service error finding and thus
service maintenance.

Later a work [4] proposes a process of webservice design usingUML.Webservice
is seen as a choreography of several loosely coupled services. They collaborate to
solve a common task regardless of their programming languages and environment.
In order to model such collaborative system, UML is considered as a natural choice.
Because, component diagram, sequence diagramand state diagramcanmodel service
components, their functionalities, interactions and state changes during execution.
The paper proposes seven steps for webservice choreography modelling and verifi-
cation. First, WS-CDL structural properties are modelled by component diagrams.
In the second step, sequence diagrams used to model component interactions are
translated to state diagrams. Because, state diagrams can be used for model verifica-
tion. Then, in the third step, the abstract data model for WSDL is modelled by class
diagrams. State diagrams are now enriched by class diagrams with tags stating the
changes occurring to data in different states. Then, in the fifth step, enriched state
machine diagram is translated into language of a model checker like SMV. Then, in
the following sixth step, informal requirements, if any, are specified by designers for
verification. At the last step, a model checker is used to verify a model behaviour.
This work shows not only how to model a webservice but also to verify its design
specification.

In another work [5], use of RT-UML to model and verify orchestration of web-
services is reported. The main purpose is to verify time aspects of orchestration.
For this purpose, RT-UML is considered. Researchers have found one-to-one map-
ping between RT-UML constructs and WS-BPEL. A top-down design approach is
proposed for developing webservices. During analysis, time constraints that webser-
vice orchestration must satisfy are found. And these time constraints are annotated
to sequence diagram. Then, model checking approach is used to discover specifi-
cation errors. This is done by translating RT-UML diagrams into timed automata
that are used to perform model checking. Verified RT-UML design diagrams are
then translated to WS-BPEL. The elements used by RT-UML for webservice design
includes RTDelay, RTEvent, RTAction, RTreset and RTclock. The elements have
their semantics that are well understood by their names. These elements have corre-
sponding translations to WS-BPEL language. Thus, the work provides a systematic
approach in design of webservices using RT-UML particularly keeping time con-
straints in view. The work is in importance for bringing time aspects in modelling
service orchestration.

Recent work focusses beyond UML while modelling webservices. This is so
for variety of emerging distributed architectures like cloud and mobile systems.
The argument on utility of UML is raised for heterogeneity these platforms bring
in. It cites the inability of UML diagrams in representing all the heterogeneities as
inherently class diagrams model homogeneity of design entities. As a solution to this
problem, researchers in [6] have proposed domain specific language (DSL) to design

Service Modelling and Verification: A Formal Approach 5

webservices that runs in different environments. Design abstraction that is common
to all the implementations is extracted and then the abstraction extended for each
implementation. This design extension is carried out to meet the requirement of a
platform. The researchers have proposed simple web service modelling (SWSM)
domain specific language. Webservices in multitenant platforms are specified in
SWSM language. Then, it is customised for a specific tenant. The challenge in having
such a language is to specify webservice architecture at an abstract level separating
logic from its technical implementation aspects.

SWSM language proposes a syntax that elegantly specifies an abstraction of web-
services. The terms used in syntax areWebservice, Port, Binding, Datatype, Opera-
tion,Message and OperationBinding. Modelling of webservices are carried forward
representing principal elements using these terms. The design approach is essentially
top-down. The steps in developing webservices include modelling using SWSM lan-
guage, enhancement and automatic validation ofwebservicemodels, code generation
and code refinement, and refactoring and testing. Model-driven development of soft-
ware systems is successful and UML has given impetus for it. But, non-UML-based
modelling approach is also followed for its conceptual clarity and simplicity. This
work is of that kind introducing non-UML-based webservice modelling. Next sec-
tions of the chapter will review some of these well-known modelling schemes based
on finite state machine (FSM) and Petrinet.

Table 1 gives a summary on research works mapping webservice specifications to
concepts in UML and this table is cited from research work in [3]. WSDL is gener-
ated from UML profile [7], an extension to UML class diagram with service-related
concepts, viz. Service, Port, Port Type. Jeng and Tsai [8] look services as compo-
nents and proposed UML profile based on service component architecture (SCA).
Jeng and Tsai [8] views from security angle and has proposed extra functional prop-
erties to record service invocation logs, control access to operations and encryption.
Composition of services is focused on [9].

2.2 Petrinet-Based Approach

Webservice while taking business on the Internet to a reality there has been spurt
in research activities in this field. Service modelling and composition are the two
important issues under consideration, while modelling concentrates on both static as
well as dynamic aspects of webservices there has been further interest in modelling
temporal as well as asynchrony aspects of webservice execution. For the purpose,
Petrinet is a chosen model. Many have tried with variant of Petrinet models and
shown their utilities in webservice modelling, code generation and more importantly
in design verification. Here, we will review few papers that only represent types of
work researchers engaged in this field. We do not claim the review is complete or
exemplary. For the purpose, here, we believe the papers selected here for review are
representative.

6 D. Chenthati and H. Mohanty

Table 1 Review of webservice specifications in UML

View Concept References

WSDL Class UML stereotyped
“WebService”

[7, 10]

Class UML stereotyped “Port”

Class UML stereotyped
“PortType”

Tagged value relative to a
service and the port
{URI=”/ ”}

SCA Component stereotyped
“ServiceComponent”

[11]

Tagged value relative to an
interface {R.uri=
“Operationuri”}

Class stereotyped
“ServiceInterface”

Security Note stereotyped “Login” [11]

Note stereotyped “Log”

Note stereotyped “Encryption”

Composition and orchestration Class stereotyped
“ServiceWebAtomic”

[9, 10, 12]

Class stereotyped
“ServiceWebComposite”

Class stereotyped
“ModeledOrchestration”
Activity stereotyped
“ImmediateStep”

Note stereotyped
“DataTransformation”
Activity stereotyped
“DataMapper”

Tagged value relative to the
activity “ImmediateStep”
{DomainObject=}

QoS Class stereotyped
“ServiceQuality”

[10, 12]

Community and function Class stereotyped
“Community”
Class stereotyped “Function”

[10, 12]

Service Modelling and Verification: A Formal Approach 7

A webservice at higher level can be viewed as a collection of interacting modules.
Architecture of a webservice is built with these modules. Configuration of modules,
theway these are connected, presents an architecture for awebservice. The paper [13]
presents WS-Net, an architectural description language for specifying webservice
architecture. The language is based on Petrinet semantics accompanied with object-
oriented paradigm. These two aspects of WS-Net provide a mechanism to specify
and verify a webservice model. It is also useful to monitor dynamic behaviour of
webservices. WS-Net uses coloured Petrinet for higher level design.

WS-Net is executable architectural language. Webservice model is seen here as
three-layered model consisting of interface net, interconnection net and interoper-
ation net. Interface net models network of interfaces and their possible transitions.
Each service component is treated as a place and themodules that can be invoked from
the place are connected by transitions. Thus, Petrinet becomes an obvious choice for
webservice modelling. The next layer below, interconnection net models the foreign
transitions that invoke the components that are external to a component. The next
lower level models behaviour of a component, that is, a sequence of invocations of
the units that make a component. Coloured Petrinet is used for understanding like
to distinguish models at different levels. It is shown that the executable architec-
tural language becomes useful for both modelling as well as verification. Adopting
object-oriented paradigm in WS-Net, understandability as well as agility in webser-
vice design are achieved.

A new concept inmodelling and analysing webservice composition using Petrinet
is proposed in [14]. This paper reviews all existing methods and proposes a method
that illustrates modelling issues at different levels using coloured Petrinet. Basic
questions like who and why for service composition are answered in this paper.
Among existing set of services which one is to be selected for composition and how
does the selected one can interact with other services for a given user requirement
are answered by the model. The unique issue the paper takes up is selection of a ser-
vice that is to be guided not only by functional requirements but also nonfunctional
requirements. The cited work extends formalism of CPN tomodel transaction-driven
composition process. Further, while modelling quality of service (QoS) is also taken
into consideration. The composition process also considers system modularity. The
process is standardised to make it compatible with Web 3.0. This modelling helps
service composition operationally simple. A service user just puts a query stating
its requirements and then the composition process matches the Petrinet-based mod-
elled webservices and finds the services that meet both functional and nonfunctional
requirements.

The paper [15] has proposed a high-level Petrinet for service modelling. The
modelling concept is based on G-Net [16]. G-Net provides an algebraic specification
to specify modular complex systems. It has two levels of abstractions; one is to
specify inner working of a module and other on modular interaction. G-Net follows
principles of object-oriented design implementing encapsulation of a module that
shields amodule from external interference. It also provides amechanism for sharing
resources among modules, i.e. by G-Net abstraction. For this mechanism, G-Net is

8 D. Chenthati and H. Mohanty

found suitable for module-based complex system design. This paper [15] extends
G-Net to make it suitable to specify webservices.

A webservice is a tupple<NameS; Desc; URL; CS; SGN>where

{NameS: is the name of a service used as its unique identifier.
{Desc: summarises a service functionality.
{URL: for invocation of webservice.
{CS: a set of component service a service has.
{SGN: (GSP, IS) is the G-Net modelling the dynamic behaviour of a service.

GSP represents service abstraction specifying constituting executable methods
and attributes. IS represents internal structure of a service showing a set of transitions
and their sequence of occurrences. Based on this idea of G-Net, the paper proposes
operators like sequence, parallel, alternative, iteration and random sequence tomodel
service composition with collaborating service components. The paper also proposes
four more operators like discriminator, selection, refinement and replace. The paper
has shown the possibility of service composition using these operators. The unique
point the paper demonstrates is the transformation of G-Net-based algebraic spec-
ification of a webservice composition to a Petrinet model, albeit it is complex but
executable as well as verifiable. Table 2 gives an overview of the existing research
work and how Petrinets are enhanced to model service compositions [14].

2.3 State-Machine-Based Approach

State-machine-based software design is not new. There is a natural correspondence
between system and finite state machine. A software system passed through several
states, that is, represented by states in a finite state machine. System execution is
considered as a dynamic behaviour of a finite state machine. A work [48] demon-
strates possibility ofmodelling complex systemswith a set of finite state ofmachines.
Each machine represents a module. The states of a module represent a node in its
corresponding state machine. A system execution is modelled by interactions among
modules; an interaction is alike to a function call. It models repetitive as well as recur-
sive calls to modules. Execution trace is a path that runs from a start state to end state
of a finite state machine. It presents a hierarchical representation of state transitions
to model behaviour of a complex system. Modularisation of finite state machines
is a concept the paper proposes. This enables to optimise finite state machine by
grouping the system states that are common to different execution paths. Further,
the paper claims utility of the proposed modelling process as the modelled finite
state machine (FSM) that is easily transferable to code enabling automated code cre-
ation. On considering success in finite-state-based system building, there has been
research in finite-state-machine-based webservice modelling. The modelling effort
here includes service modelling, verification and automatic code generation. Here,
we review some works to present the utility of FSM-based webservice modelling.

Service Modelling and Verification: A Formal Approach 9

Table 2 Petrinets for service modelling

Approach Objective References

Classical Petrinet Propose a Petrinet-based algebra to capture the
semantics of WS
composition and to formally model a composite WS,
which is the first step to allow the verification of the
composition and the detection of inconsistencies
within and among WS

[17]

Coloured Petrinet Propose a coloured Petrinet to model types of
resources managed by WSs

[18]

Time-constrained
Petrinet

Propose a time-constrained Petrinet to model and
analyse time-constrained WS composition

[19]

Generalised associative
Petrinet model (APN)
(fuzzy Petrinet)

Define automatic WS selection based on manual user
specifications and using fuzzy Petrinet

[20]

Adaptation of classical
Petrinet and Open
workflow net

Transform a BPEL process to a Petrinet in order to
allow process verification

[21–23]

Open workflow net
composition net

Transform two or more BPEL processes to Petrinets
and compose Petrinets in order to detect WSs
incompatibility

[24, 25]

Open workflow net with
coloured Petrinet

Transform two or more BPEL processes to Petrinets,
compose Petrinets in order to detect WSs
incompatibility, and add mediator transitions to correct
partial incompatibilities among WSs

[26–28]

Classical adaptation of
classical Petrinet
Hierarchical coloured
Petrinet

Transform BPEL or WSCI processes into Petrinets in
order to verify reachability, safety and deadlock

[29–32]

Time Petrinet, adaptation
of classical Petrinet

Transform WSADL specifications into Petrinets to
evaluate aggregated QoS criteria of the composite WS

[33–35]

Adaptation of classical
Petrinet

Generate Petrinet from OWL-S definition of WS for
checking the correctness of WS specifications and the
replaceability of (sub)services

[36]

Time Petrinet Define timed Petrinet representation of WSs flow from
WSDL specification

[37]

Prioritised timed
extension of coloured
Petrinet

Generate Petrinet from WS-CDL definition of
composite WS for simulating timed or prioritised
interactions among component WSs

[38]

Classical Petrinet Propose an automatic QoS-transactional WS selection
based on classical Petrinets

[39]

(continued)

10 D. Chenthati and H. Mohanty

Table 2 (continued)

Approach Objective References

Classical Petrinet Propose an automatic QoS WS selection based on
Petrinet coverability

[40]

Coloured Petrinet Propose an automatic WS selection based on coloured
Petrinets

[41]

Coloured Petrinet Propose an automatic QoS-transactional WS selection
based on coloured Petrinets

[42]

Coloured Petrinet Propose framework for reliable execution of
transactional composite WS based on coloured
Petrinets

[43, 44]

Compensation paired
Petrinet

Propose compensation paired Petrinet to model,
evaluate QoS, verify reachability and deadlock, and
control the execution

[45–47]

Webservice is a piece of code that gets executed on getting a service order. Usually,
a service is hosted on the Internet and a user invokes the same through an interface.
A user can be a person or even could be another service. Being invoked, differ-
ent blocks of a service get executed at different contexts that make states. Context
changes represent transitions. At the end of a service, result is handed over to the
service invoking agency through an interface. So, a service abstraction includes both
service internal module and interfacing module. This paper [8] discusses webservice
design framework with the help of StateJ framework. StateJ is basically a framework
to model event-based applications. It has two major components; one state transition
engine and the other for event notification service. State transition engine invokes
state modules at different contexts (state management service (SMS)). That can
be viewed modelling of intraservice communication (request management service
(RMS)), whereas event notification service (ENS) models interservice communica-
tion. StateJ uses a finite state machine to model the behaviour of a service. Authors
have claimed the usability of StateJ as a natural framework for service modelling.
Further, the framework provides a natural flexibility in designing a service, enabling
a designer to change service component on fly. A scalable design is also possible
due to StateJ. A high-level implementation of an architecture for service design is
shown in Fig. 1.

Service composition is a process of generating a new service from existing ser-
vices. This needs to check compatibility of constituent services. This compatibility
could be at two levels. One is input and output level and the other is at conversational
level. For the prior case, one service calls the other on providing expected inputs and
expecting the required outputs. Later case, two services proceed with conversation
while on execution. In the first case for service composition, one needs input–output
match, while for the later protocol match is required for finding compatible services.

The paper [49] dealswith the problemof service composition. Particularly, it deals
service enactment. Service enactment means finding a service execution plan that
confirms service requirements and constraints as provided by service providers and

Service Modelling and Verification: A Formal Approach 11

SMS

ENSService
Registrar

requestService()

RMS
Process(ServiceOrder,Service)

fireEvent()

requestService()

getService()

Fig. 1 High-level implementation of StateJ architecture

consumers. However, both service providers and consumers are usually not willing to
expose their business details on service repository. This throws a challenge for service
composition. This paper provides a mechanism that does not need stakeholders to
expose their business secrets but still enables to compose a service with possible exe-
cution plan that satisfies their requirements. The proposed approach uses finite state
machines to model constituent webservice operations and their interdependencies,
security constraints and access control policies. It incrementally generates service
enactment plan. The paper also suggests commutative encryption-based techniques
to preserve privacy and security.

The paper [50] provides a formal approach for B2B collaboration among web-
services. Existing webservices collaborate to provide different services that as such
do not readily exist on web. In this context, study on matchmaking process takes a
lead. This paper uses deterministic automata for the purpose. Before matchmaking
of webservices input–output matching technique is a well-known technique. It says
two services are composable when input of one matches to output of other. This
standard paradigm at times may not work when there is a mismatch in their process
descriptions. In spite of input–output match between two services, there could be
mismatch when a service at a state needing some input from other may not get it if
there is no corresponding output from the other service. This paper proposes finite-
state-machine-based approach for service matchmaking. A service specification is
seen as a sequence of state changes where each state is annotated with a message that
has sender, message content and receiver associated with. Composition of services
is viewed as intersection of state sequences services undergo during their life cycles.
This is based on simple reasoning on message transmission verifying whether the
right message is sent by right sender to the right receiver. In case of null intersection
of state sequences of two services, service composition becomes impossible. In case
of partial match, negotiation among services takes place to make the services agree
to make a composed service. This idea of negotiation for composition is found new
with the work.

12 D. Chenthati and H. Mohanty

Role of communication in service composition is further researched in [51] show-
ing the use of Mealy machine that accepts a language meant for webservice compo-
sition. In addition to idea proposed in [50], this paper introduces a notion of global
controller that keeps a watch on message passing at different webservices. In order
to realise asynchrony in message passings, it introduces a notion of prepone operator
that brings in random delay to message passing. A projection of global communi-
cation in view of a participating service presents local picture on message commu-
nication. Message passing between two webservices is formalised by project-join
of global communication. A composite service is considered as Mealy implementa-
tion that generates conversations whose projections are consistent with participating
individual webservices. However, there are some communications among Mealy
machines which cannot be formalised as project-join of a regular language. Hence,
the researchers propose a formalism for webservice communication that is useful for
service composition. With this protocol in addition to modelling interplay between
two Mealy machines, global behaviour can also be modelled. The research shows
that for a given regular language it is possible to get a conversation by applying
prepone and project-join closure corresponding to the set of conversations a set on
Mealy machines can perform for a given language. The second result spells the con-
ditions at which a set of conversation from a given language applying prepone and
project-join closure is achievable.

Modelling and verification go hand in hand. On reviewing some of the prominent
modelling techniques next we will review some important works on webservice
verification and while doing so, we may touch upon some modelling issues. This
may lead to some repetitions as well as additions in the next section. Readers are
foretold of the fact before we proceed for review on webservice verification.

3 Webservice Verification

Software verification is a crucial activity for achieving fault-free product. There has
been active research on webservice verification. State-machine-based verification is
one of the techniques pursued in [52]. Two issues, i.e. communication and service
module verifications are considered here. Communication between two composing
services is expressed in XPath expressions. This defines guard conditions on com-
munications. Service module defined in BPEL code is tested. For testing the later,
a service BPEL code is translated to state machines that models threads execution
contained in BPEL code. Communications among composing services are also mod-
elled as state transitions. Communication conditions label state transitions. Promela
is a target language to translate service implementation to finite state machine. This
executable language is run on SPIN to simulate behaviour of a state machine and
to identify correctness of the model. The model assumes unbounded message queue
while modelling message communication. In practice, webservices are engaged in
bounded communication. SPIN verifies synchronisation. SPIN can only operate with
bounded message communication and partial verification of synchronisation can

Service Modelling and Verification: A Formal Approach 13

also be done. The paper proves for asynchronous communication if there exists a
bounded number of messages that need to be passed amongwebservices for synchro-
nisation and then it is possible to verify synchronisation for the same set of messages
in case of synchronous messages communication. Thus, communication protocol for
a service composition is verified with the help of finite-state-machine-based models.

A formal verification approach is proposed in [53]. The approach is useful to
verify workings of a service that is composed of several services. The composition
follows matching of conversations among participating services. Most services per-
form stateful conversation so themethod takes this featurewhile verifyingworking of
a composed service. The novelty in this approach is its global viewonmodelling com-
munication among participating webservices. They have proposed coloured Petrinet
model for the purpose. This model is based on the control flow patterns of BPEL4WS
where each node represents a node and an arc represents message passing. In a way,
CP-net models control flow among services that make a composed service. Webser-
vice activities are seen as message passing and action invoked thereof. Onmodelling,
a service verification is taken into consideration. The thrust is given to protocol con-
formance, i.e. while putting a service in a composition the issue of conversation
among services is to be relooked to ensure whether conversations among partici-
pants are well defined and so also there of actions. In addition, general criteria such
as liveness, boundedness and reachability are verified by applying CP-net analysis
technique. A similar work is reported in [54] that models webservice developed in
BPEL to coloured Petrinet net (CPN) by mapping BPEL constituents to Petrinet
nodes, transitions and colour tokens. By virtue of Petrinet concurrency, communi-
cation and synchronisation properties are being modelled. Then, using CPN tool,
service behaviour is analysed and verified.

In [55] a generic framework called VERBUS is proposed for verification webser-
vices. VERBUS framework integrates several formal verification tools like Spin and
SMV. A webservice can be developed in many languages. Usually, from implemen-
tation, a formal model is to be extracted and then formal model is to be verified be it
a CPN or a FSM. Thus, verification process is used to be tied with implementation
language. This work is distinctly different in suggesting an intermediate specifica-
tion language to which any type of implementations can be translated into. A service
specification written VERBUS intermediate language is compiled to produce exe-
cutable for a model checker. The paper reports verification of invariants, goals, pre-
and post-conditions, activity reachability analysis and temporal properties. A logic-
based approach for service verification is reported in [54]. The researchers take up
service composition in two steps; one identifying services required for the purpose
of a service consumer and other on selecting the right one for the identified services,
while the first step ensures the functionalities and the second one ensures the quality
of service. Thus, the method not only ensures selections but right selections. The first
one tells signature matching and the other one as specification matching. Signature
matching is based on matching of input–output parameters among constituting ser-
vices, while specification matching ensures satisfaction of constraints defined over
input–output parameters. For specifying, it uses both temporal logic action (TLA)
and first-order logic (FOL), while the former specifies service signature the later

14 D. Chenthati and H. Mohanty

one specifies system behaviour. For a given query, equivalent logic expression in
TLA is formulated and then services satisfying the expression are identified. Fur-
ther, constraints defined on services are evaluated to choose the right ones. The key
for verification rests on formulating right kind of constraints that participants of
constituting services would satisfy.

Unified modelling language being de facto industry standard in software devel-
opment, the work in [56] takes up the issue to show modelling as well as verifying
a webservice. The process goes through several stages. Specification written in web
services choreography description language (WS-CDL) is first converted to compo-
nent diagram and this diagram is put through static analysis to verify some structural
properties like dependency and connectedness. Secondly, a sequence diagram is
generated that depicts service behaviour. In third stage, sequence diagram is used to
derive state diagram that is enriched with control and data flows. Then, state diagram
is translated to SMV language so that SMV model checker is used to verify differ-
ent design properties that are allowed with respect to application domain. The work
demonstrates the verifiability of a service specified in WS-CDL transforming into
multiple UML models.

The idea verifying early in the process of development is always preferable for
its utility in getting a verified correct design so that implementation will be correct
provided no error has crept in during translation of a design to an implementation.
The paper in [57] takes up this approach. A UML specification of a webservice in
message sequence charts (MSC) is converted to finite state process (FSP) notation.
And then, the specification in FSP is traced for analysis. Such notation specifies
design views and then these are matched with user views. In case of match, the
design is considered correct. The properties they verify include process and partners,
message passing, sequence, loops and concurrency. In general, the paper proposes a
technique that supports modelling, verification as well as implementation.

Petrinet-based static analysis of a webservice is presented in [58]. A process lan-
guage like BPEL has been adopted for webservice implementation. BPEL provides
language primitives for message passing. These primitives combined with several
control features including sequential, branching, parallel and synchronisation are
implemented. A BPEL process can be translated to a Petrinet. And then, making use
of Petrinet analysis technique, control flow of a business process can be verified. A
work towards static analysis of webservices is reported in [58].

The paper [59] presents verification of webservice choreography by analysing
their cooperations. It ensures correctness in their protocols. This ensures a right
business partner talking to right one on a purpose. This is ensured by their protocol
matching. It also ensures to check deadlock-free communication. The approach pro-
posed includes first characterisation of each activity with a set of operational rules.
These rules clearly define permissible functional behaviour of a service. Service
activities include both basic communication activities like request, reply, etc. and
structured activities like flow, while, switch, etc. that model business workflow. Sec-
ondly, compatibility rules are defined to adjudge the compatibility of two processes.
That means, two processes can proceed their activities in cooperation by message

Service Modelling and Verification: A Formal Approach 15

passing. Then, algorithms for that check are formulated. The algorithms check both
progresses of a service execution as well as their communication.

Zhao et al. [60] proposes a technique for webservice verification. It also proposes
a method for generating test cases from BPEL logic so that dynamic behaviour of a
service can be verified. From these, some test cases are selected with respect to coun-
terexamples of model checking output. A service in BPEL is translated to LOTOS
and labelled transition system (LTS) is translated to test and testing control notation
(TTCN) behaviour tree. Keeping runtime behaviour checking in mind, the process
of testing puts importance in determining frequency of testing and identification of
operations to be tested. More testing should be done without interrupting service
execution. A tool is developed to model BPEL with LOTUS. The EVALUATOR 3.0
tool is applied to generate LTS as output. Making use of such a tree safety, liveness
and fairness properties of a service are verified.

A recent work on service behavioural compatibility and similarity study using
Petrinet is reported in [61]. Seamless running of a composed service depends on
compatibility of constituent services. This has been verified by matching of individ-
uals protocols. But, this paper proves that study on termination is good enough to
verify correctness of a composed service. For the purpose, services are required to
be well structured. It talks of resilience by replacing a service equivalent to a failing
service. Researchers define conditions to study on context-independent similarity
among webservices. For the purpose, a notion of behavioural compatibility is for-
mulated. A formalism called service workflow net (SWN) based on coloured Petrinet
(CPN) is developed to model webservices. Through this formalism some important
runtime behaviours like message passing, buffering and choice making are anlaysed.
With the help of these studies, reachability termination and proper termination are
verified. Further, for finding similarity weak soundness is considered so that con-
ditions can be relaxed to find suitable compatible alternative matching services to
replace faulty ones. A tool supporting the proposed theory for verification and similar
service detection is developed.

Keeping developments in cloud computing and deployment of services on cloud
there have been a concern on pace of development of service technology. In that
context, the work in [62] addresses the issue of dependable services. For mod-
elling that service behaviours are characterised to operational behaviours and control
behaviours. Runtime coordination among those behaviours is achieved by message
passing. Based on this modelling, an approach for service verification is proposed.
The approach is based on symbolic model checking. Verification properties are
extracted from control behaviours in form of temporal logic formulas. And these for-
mulas are verified with operational behaviours. This checking is done using NuSMV
model checker. Based on this approach, a set of tools are developed for service engi-
neering confirming the possibility of automating a set of tasks including assistance in
service specification, detecting design problems, debugging and monitoring service
behaviours.

Resilience in webservices has become prime interest for making it useful for busi-
ness houses. This has led to understanding mistakes and provisioning to overcome
such mistakes. The paper [63] takes up this issue viewing webservices as event-

16 D. Chenthati and H. Mohanty

based transactional systems. The transactional behaviour is studied in both design
and runtime to find out design errors as well as runtime errors. The method proposed
includes first to translate service transactional patterns to formal expressions using
event calculus. These expressions are evaluated to check transactional consistency
before design and after run. Prior conditions to a transaction expressed in event cal-
culus are evaluated. And then posterior conditions are tested using service logs. A
webservice has a life cycle consisting of states, viz. initial, active, cancelled, failed,
compensated and completed. It has also a set of transitions, viz. activate(), cancel(),
fail(), compensate(), complete(). Pre- and post-conditions are associated with a state
change. Verifiability of a service is made possible by satisfiability of these pre- and
post-conditions.

Data-centric webservices require interfacing of data repository and services as per
the user requirements. Further, in case of composed services, constituent services in
a sequence use data. In the process, data creation, deletion and modification take
place. Correctness of data usages is required in assuring correctness in data-centric
service operations. A service-contract-based strategy is proposed in [64]. For a given
set of data operations, a formalism is enforced. This contains conditions associated
to a data operation. This is called service contract. For a given set of data, an inter-
facing formalism is defined so that when a service interfaces with a repository for
a data operation the contract is validated. Similarly, in case of a service, service
interaction contracts for data provider and consumer are defined. These contracts are
to be satisfied during execution of a composite webservice. The paper presents an
implementation of the proposed approach, Java modelling language (JML). Dafny
and Resolve are used to specify contract specification. LML is an extension to Java
programming language. Dafny has features of procedural and functional program-
ming languages, whereas Resolver with sound mathematical foundation is used to
evaluate contracts and explain later for understanding.

Runtime verification of a webservice is always important to ensure resilience in
service rendering. Because, in spite of well-verified design and implementation run-
time glitches may creep into put service execution in jeopardy. The issue has been
addressed in [61]. Service behaviour is driven by messages. Hence, formalising mes-
sage passings is the main idea proposed in this paper. Service-oriented description
language (SODL) is proposed to specify protocol formessage passings. Estelle-based
formal model named FSM4WSR is proposed. This model is designed to capture run-
time behaviour of a service. This behaviour is validated by the constraints specified
in SODL.

Time is a useful and an important feature in case of service provisioning. In prac-
tice, a service is required to be done in a specific time. That could be of business
interest or domain characteristics. A service execution is seen as a sequence of state
changes. And each state has time constraints to be satisfied. For specifying such tem-
poral behaviour [65] proposed amethod on timedWS automata. The authors propose
methods to translate description of webservice applications written in BPEL4WS to
WS Timed Automata. For formal verification, tool Uppaal is used which evaluates
time-related properties of a systemat different states. The paper explains the proposed
method by a case study on an airline travel reservation system.

Service Modelling and Verification: A Formal Approach 17

Dranidis et al. [66] proposes a scheme for runtime verification of webservices. It
checks whether a service is running according to specification or not. Primarily, two
aspects they verify, that is, control flow and values to variables. During execution,
variables must assume expected values. So, control flow must also progress as per
specification, i.e. on an emanating context, controlmust progress resulting in success-
ful termination of service execution. Specification on expected service behaviour is
formalised by X-machines. A conversational behaviour is formalised by X-machine
which is a kind of extended finite state machine. The machine also helps in moni-
toring verification process through model animation. The contribution of this paper
includes both a method for verification and an architecture for the purpose.

Another work on runtime verification is reported in [67]. The importance of it is
verification of temporal properties of a service choreography. Real-time requirements
of service interactions are specified in Fiacre verification language. This language is
useful to model both behavioural properties as well as timed interactions. Though in
a sense the mechanism of verification is the same like other such works, still the spe-
ciality is in specifying complex requirements with the help of different formalisms.
Logic-based formalism is used to express relation between two occurrences of events.
The logic is built on metric interval temporal logic (MITL), a real-time extension of
linear temporal logic. This enables verification of very general execution scenario,
stated with both local as well as global constraints based on contexts evolving during
execution.

A work that is the first in kind reported in [68] takes up both functional as well as
nonfunctional requirements verification. In order to verify functional requirements a
labelled transition system (LTS) from BPEL semantics is used. The system is drawn
from BPEL semantics. For nonfunctional requirement verification, a roundabout
strategy is used. Nonfunctional properties are translated to functional verification
framework. Three nonfunctional properties, viz. availability, time and cost are con-
sidered in the work. The verification of time and cost is performed on the fly. At
each state of LTS, availability and cost are calculated and tagged for verification,
whereas for response time, at the LTS generation stage required response time is
tagged to each state for online verification. Thus, both functional and nonfunctional
requirements are verified on the fly. Thus, this is the first work at that time to take up
verification of both kinds of requirements. The speciality is that the verification does
not require to build a runtime intermediate abstraction to match with LTS extracted
from BPEL semantics. Rather, at runtime, the extracted LTS is used for verification.

Yin et al. [69] propose a verification technique that is based on Martin-Löf type
theory (MTT). Unlike other formalisation, MTT is not based on predicate logic.
Instead, MTT represents predicates as correspondence between propositions and
sets. A proposition is identified with a set of its proofs. A set of rules determines a
proposition. Existence of a proof ensures proposition. The idea is extended for service
matching. Service matching is a proposition that comes true for two compatible
services. This compatibility check is governed by type checking rules. In case rules
for two services satisfy then it positively verifies composition of two services. The
paper discusses on verification of a service and a set of services. The verification is
governed by rules for subtype, duality and consistency check.

18 D. Chenthati and H. Mohanty

Table 3 A summary of service verification approaches

Approach Objective References

FSM Bounded message queue in
communication service
module verification

[52]

CPNET Protocol conformance—
liveliness, boundedness and
reachability analysis

[53]

CPNET Concurrency, communication
and synchronisation
verification

[54]

VERBUS Verification of invariants,
goals, pre- and
post-conditions, activity
reachability analysis and
temporal properties

[55]

Logic based Formulating right constraints [54]

UML (component sequence
and state diagrams)

Dependency and correctness
tests

[56]

UML
(MSC & FSP)

Process and partners roles
analysis, message passing,
sequence, loops and
concurrency verifications

[57]

Petrinet Control flow verification
Static analysis

[58]

Times input and output
transition system (TIOTS)

Deadlock detection and
protocol matching

[59]

LOTOS and TTCN (behaviour
tree)

Safety, liveness and fairness [60]

CPNET Reachability, termination
criteria, message passing,
buffering, choice making tests

[61]

Symbolic model checking Control and operational
behaviour testing

[62]

Event calculus Pre- and post-conditions
checking

[63]

Contract based (JML) Data consistency check [64]

X-machines Control flow, values to
variables checks

[66]

Logic based
(MITL)

Temporal properties, general
execution scenario analysis

[67]

LTS Functional and nonfunctional
requirements verification

[68]

Service Modelling and Verification: A Formal Approach 19

The research works discussed in this section are summarised in Table 3 given
below. It presents the verification objectives and associated approaches used for the
purpose.

4 Conclusion

This chapter presents some earlyworks onmodelling and verification ofwebservices.
The works are representatives of different approaches used for both modelling and
verification. In this chapter, FSM, Petrinet, logic and UML are chosen for discussion
based on their popularity among users and rigour for the purpose of modelling. Each
one is found suitable for modelling of certain aspects of webservices.

FSM,Petrinet, logic,UML, behaviour trees, etc. are used to verify several dynamic
properties of service provisioning. The service properties under study include con-
trol flow analysis and checking of system liveliness, boundedness, reachability, con-
currency, constraints, deadlock, safety, fairness, data consistency, termination and
temporal properties. The detailed review gives readers an insight into considering
a formal model as a choice for webservice modelling and verification. Readers can
appreciate the beauty of eachmodel in specifying certain aspects of an application. So
that, for a complex service requirement a designer can choose a set of relevantmodels
useful to model various aspects of an application. At the initial stage of service engi-
neering, such a model composition approach helps to explore uncharted dimensions
of an application so, requirement engineering leads towards completeness.

All these modelling approaches being rigorous help in developing concrete algo-
rithms for checking correctness and completeness of service models. It also helps in
designing a provable service system as its behaviour is formally defined and realised
in implementation.

Further, because of formal approaches for both modelling and verification of
webservices, automation of both the processes has been possible. There have been
several tools for formal modelling and verification. These tools with respect to dif-
ferent modelling approaches are also discussed.

References

1. Irum Rauf. Muhammad Zohaib Z Iqbal, Zafar. I. Malik UML based Modeling of Web Service
Composition- A Survey; Sixth International Conference on Software Engineering Research,
Management and Applications, 2008

2. Christophe Dumez, Ahmed Nait-Sidi-Moh, Jaafar Gaber, MaximeWack, Modelling and spec-
ification of Web services composition using UML-S, 4th international conference on Next
Generation Web Services Practices (NWeSP08), Oct 2008, Seoul, South Korea. IEEE Com-
puter Society, 0, pp. 15–20

20 D. Chenthati and H. Mohanty

3. Dhikra Kchaou, WS-UML: A UML Profile for Web Service Applications, ISIICT’09 Proceed-
ings of the Third international conference on Innovation and Information and Communication
Technology, British Computer Society Swindon, UK, 2009

4. Pengcheng Zhang, Henry Muccini; Model and Verification of WS-CDL based on UML Dia-
grams; International Journal of Software Engineering and Knowledge Engineering Vol. 20,
No. 8 (2010) 1119–1149

5. M. Emilia Cambronero J. Jose Pardo Gregorio Diaz Valentin Valero; Using RT-UML for
Modelling Web Services; SAC07 March 11–15, 2007, Seoul, Korea

6. Viet-Cuong Nguyen, Xhevi Qafmolla, Karel Richta; Domain Specific Language Approach on
Model-driven Development of Web Services; Acta Polytechnica Hungarica Vol. 11, No. 8,
2014, 121–138

7. W. Provost, “UML for Web services”, XML.com, August 5, 2003
8. Jun-Jang Jeng, Wang-Chuan Tsai; Designing An FSM Architectural Framework for Service-

Based Applications; COMPSAC, 2000, pp. 234–239
9. R. Gronmo, I. Solheim, “Towards Modeling Web Service Composition in UML”, INSTICC

Press, 2nd International Workshop on web services: Modeling, Architecture and Infrastructure,
Porto, Portugal, April 2004

10. F. Belouadha andO. Roudiés, «Vers unmodèle de spécification pour la composition de services
web », Proceedings of SIIE’08, Tunisie, Février 2008

11. G. Ortiz and J. Hernandez, “Toward UML Profiles for web services and their Extra-functional
Properties”, IEEE International Conference on Web services (ICWS’06), 2006

12. F. Belouadha and O. Roudiés, “Un profil UML de spécification de services web composites
sémantiques”, CARI 2008-MAROC, pp. 537–544

13. Jia Zhang, Carl K. Chang, Jen-Yao Chung, Seong W. Kim; WS-Net: A Petri-net Based Spec-
ification Model for Web Services; Proceedings of the IEEE International Conference on Web
Services (ICWS04)

14. Yudith Cardinale, Joyce El Haddad, Maude Manouvrier, Marta Rukoz; Web Service Compo-
sition Based on Petri Nets: Review and Contribution; LNCS 8194, pp. 83–122, 2013

15. Sofiane Chemaa, Faycal Bachtarzi, Allaoua Chaoui; A high-level Petri net based approach for
modeling and composition of web services; Procedia Computer Science 9 (2012) 469–478

16. Y. Deng, S. K. Chang, J. C. A. De Figueiredo, A. Psrkusich, Integrating software engineering
methods and petri nets for the specification and prototyping of complex information systems,
in: Proc. The 14th International Conference on Application and Theory of Petri Nets, Chicago,
1993, pp. 206–223

17. Hamadi, R., Benatallah, B.: A Petri net-based Model for Web Service Composition. In: Proc.
of the 14th Australasian Database Conf., ADC 2003, vol. 17, pp. 191–200

18. Zhang, Z., Hong, F., Xiao, H.: A colored petri net-based model for web service composition.
Journal of Shanghai University (English Edition) 12, 323–329 (2008)

19. Yu, H., Fan, G., Chen, L., Liu, D.: Analyzing time constrained service composition based on
Petri net. In: 3rd Int. Symposium on Electronic Commerce and SecurityWorkshops, pp. 68–71
(2010)

20. Fang, X., Jiang, C., Fan, X.: Independent global constraints for web service composition based
on GA and APN. In: Proc. of the First ACM/SIGEVO Summit on Genetic and Evolutionary
Computation, GEC 2009, pp. 119–126 (2009)

21. Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to Petri nets. In: van der Aalst, W.M.P.,
Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 220–235.
Springer, Heidelberg (2005)

22. Lohmann, N.,Massuthe, P., Stahl, C.,Weinberg, D.: Analyzing interactingWSBPEL processes
using flexible model generation. Data Knowl. Eng. 64(1), 38–54 (2008)

23. Ouyang, C., Verbeek, E., van der Aalst, W.M.P., Breutel, S., Dumas, M., ter Hofstede, A.H.M.:
Formal semantics and analysis of control flow in WS-BPEL. Sci. Comput. Program. 67(2–3),
162–198 (2007)

24. Martens, A.: Analyzing Web Service Based Business Processes. In: Cerioli, M. (ed.) FASE
2005. LNCS, vol. 3442, pp. 19–33. Springer, Heidelberg (2005)

Service Modelling and Verification: A Formal Approach 21

25. Xiong, P., Fan, Y., Zhou, M.: A Petri Net Approach to Analysis and Composition of Web
Services. IEEE Transact. on Systems, Man, and Cybernetics, Part A 40(2), 376–387 (2010)

26. Du, Y., Li, X., Xiong, P.: A Petri Net Approach to Mediation-aided Composition of Web
Services. IEEE Transactions on Automation Science and Engineering (2012) (to appear)

27. Li, X., Fan, Y., Sheng, Q.Z., Maamar, Z., Zhu, H.: A Petri Net Approach to Analyzing Behav-
ioral Compatibility and Similarity of Web Services. IEEE Trans. on Systems, Man, and Cyber-
netics, Part A, 510–521 (2011)

28. Tan, W., Fan, Y., Zhou, M.: A Petri Net-BasedMethod for Compatibility Analysis and Compo-
sition of Web Services in Business Process Execution Language. IEEE T. Automation Science
and Engineering 6(1), 94–106 (2009)

29. Chi, Y.-L., Lee, H.-M.: A formal modeling platform for composing web services. Expert Syst.
Appl. 34(2), 1500–1507 (2008)

30. Ding, Z.,Wang, J., Jiang, C.: An Approach for Synthesis Petri Nets forModeling and Verifying
Composite Web Service. J. Inf. Sci. Eng. 24(5), 1309–1328 (2008)

31. Yang, Y., Tan, Q., Xiao, Y.: Verifying web services composition based on hierarchical colored
petri nets. In: Proc. of the 1st Int. Workshop on Interoperability of Heterogeneous Information
Systems, IHIS 2005, pp. 47–54 (2005)

32. Yang, Y., Tan, Q., Xiao, Y., Liu, F., Yu, J.: Transform BPELworkflow into hierarchical CP-nets
to make tool support for verification. In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa, M., Zhang,
Y. (eds.) APWeb 2006. LNCS, vol. 3841, pp. 275–284. Springer, Heidelberg (2006)

33. Dong, Y., Xia, Y., Sun, T., Zhu, Q.: Modeling and performance evaluation of service choreog-
raphy based on stochastic petri net. JCP 5(4), 516–523 (2010)

34. Mao, C.: Control Flow Complexity Metrics for Petri Net-based Web Service Composition.
Journal of Software 5(11), 1292–1299 (2010)

35. Xia, Y., Liu, Y., Liu, J., Zhu, Q.: Modeling and performance evaluation of bpel processes: A
stochastic-petri-net-based approach. IEEE Trans. on Systems, Man, and Cybernetics, Part A
42(2), 503–510 (2012)

36. Bonchi, F., Brogi, A., Corfini, S., Gadducci, F.: Compositional Specification of Web Services
Via Behavioural Equivalence of Nets: A Case Study. In: van Hee, K.M., Valk, R. (eds.) PETRI
NETS 2008. LNCS, vol. 5062, pp. 52–71. Springer, Heidelberg (2008)

37. Thomas, J.P., Thomas, M., Ghinea, G.: Modeling of web services flow. In: IEEE Int. Conf. on
E-Commerce (CEC), Stillwater, OK, USA, pp. 391–398 (2003)

38. Valero, V., Macià, H., Pardo, J.J., Cambronero, M.E., Díaz, G.: Transforming Web Services
Choreographies with priorities and time constraints into prioritized-time colored Petri nets.
Sci. Comput. Program. 77(3), 290–313 (2012)

39. Blanco, E., Cardinale, Y., Vidal,M.-E.: Aggregating Functional andNon-Functional Properties
to Identify Service Compositions, pp. 1–36. IGI BOOK (2011)

40. Li, B., Xu, Y., Wu, J., Zhu, J.: A petri-net and qos based model for automatic web service
composition. Journal of Software 7(1), 149–155 (2012)

41. Qian, Z., Lu, S., Xie, L.: Colored Petri Net Based Automatic Service Composition. In: Proc.
of the 2nd IEEE Asia-Pacific Service Computing Conf., pp. 431–438 (2007)

42. Cardinale, Y., El Haddad, J., Manouvrier, M., Rukoz, M.: CPN-TWS: a coloured petri-net
approach for transactional-QoS driven Web Service composition. IJWGS 7(1), 91–115 (2011)

43. Cardinale, Y., Rukoz, M.: Fault Tolerant Execution of Transactional Composite Web Services:
An Approach. In: Proceedings UBICOMM, Lisbon, Portugal, pp. 1–6 (2011)

44. Cardinale, Y., Rukoz, M.: A framework for reliable execution of transactional composite web
services. In: MEDES, pp. 129–136 (2011)

45. Mei, X., Jiang, A., Li, S., Huang, C., Zheng, X., Fan, Y.: A Compensation Paired Net-based
Refinement Method for Web Services Composition. Advances in Information Sciences and
Service Sciences 3(4), 169–181 (2011)

46. Mei, X., Jiang, A., Zheng, F., Li, S.: Reliable Transactional Web Service Composition Using
Refinement Method. In: Proc. of the 2009 WASE Int. Conf. on Information Engineering, ICIE
2009, vol. 01, pp. 422–426 (2009)

22 D. Chenthati and H. Mohanty

47. Wang, Y., Fan, Y., Jiang, A.: A paired-net based compensation mechanism for verifying Web
composition transactions. In: 4th International Conference on New Trends in Information
Science and Service Science (NISS), pp. 1–6 (2010)

48. Sukhamay Kundu; Modeling Complex Systems by A Set of Interacting Finite-State Models;
APSEC, 2003, pp. 380–389

49. Basit Shafiq, Soon Chun, Jaideep Vaidya, Nazia Badar, Nabil Adam, Secure Composition of
Cascaded Web Services, 8th International Conference Conference on Collaborative Comput-
ing: Networking, Applications and Worksharing, Collaboratecom 2012 Pittsburgh, PA, United
States, October 14–17, 2012, 137–147

50. Andreas Wombacher, Peter Fankhauser, Bendick Mahleko; Matchmaking for Business Pro-
cesses based on Choreographies; Proceedings of the 2004 IEEE International Conference on
e-Technology, e-Commerce and e-Service

51. Conversation Specification: A New Approach to Design and Analysis of E-Service Composi-
tion; WWW2003, May 2024, 2003, 403–410

52. Xiang Fu, Tevk Bultan, Jianwen Su; Analysis of Interacting BPELWeb Services; WWW2004,
May 1722, 2004, New York, USA

53. Xiaochuan Yi and Krys J. Kochut, A CP-nets-based Design and Verification Framework for
WebServicesComposition, Proceedings of the IEEE InternationalConference onWebServices
(ICWS04)

54. Yabei Wang, Shangliang Pan; CPN-Based Verification of Web Service Composition Model,
Proc. International Conference on Educational and Information Technology, 2010, V1-153-158

55. Jesus Arias Fisteus, Luis Sanchez Fernandez, Carlos DelgadoKloos, Applyingmodel checking
toBPEL4WSbusiness collaborations, Proc. ofACMSymposiumonAppliedComputing, 2005,
826–830

56. Zhang, Bixin Li, HenryMuccini, Yu Zhou,Mingjie Sun, Data-enrichedModeling and Verifica-
tion of WS-CDL Based on UMLModels; Zhang, Bixin Li, Henry Muccini, Yu Zhou, Mingjie
Sun; Proc. on IEEE International Conference on Web Services, 2008, 752–754

57. Howard Foster, Sebastian Uchitel, Jeff Magee, Jeff Kramer, Model-based Verification of Web
Service Compositions

58. Chun Ouyang, Eric Verbeek, Wil M.P. van der Aalst, Stephen Breutel, Marlon Dumas, and
Arthur H.M. ter Hofstede, Formal Semantics and Analysis of Control Flow in WS-BPEL;
Technical Report, Faculty of Information Technology, Queensland University of Technology,
Australia

59. Melliti Tarek, CelineBoutrous-Saab, SylvainRampacek;Verifying correctness ofWeb services
choreography, Technical Report, IBISC, University of Evry, France … Find reference details

60. Huiqun Zhao, Jing Sun, Xiaodong Liu; AModel Checking Based Approach to Automatic Test
Suite Generation for Testing Web Services and BPEL, Proc. of IEEE Asia-Pacific Services
Computing Conference, 2012, 61–69

61. Zhuqing Li, DianfuMa, Yongwang Zhao, Jing Li, QingYang; FSM4WSR:AFormalModel for
Verifiable Web Service Runtime; Proc. of IEEE Asia-Pacific Services Computing Conference,
2011, pp. 86–93

62. Quan Z. Sheng, Zakaria Maamar, Lina Yao, Claudia Szabo, Scott Bourne, Behavior modeling
and automated verification of Web services, Inform. Sci. (2012)

63. WalidGaaloul, SamiBhiri, andMohsenRouached, Event-BasedDesign andRun-timeVerifica-
tion of Composite Service Transactional Behavior, IEEE Transactions on Services Computing,
vol. 3, no. 1, January-March 2010, 32–45

64. Iman Saleh, Gergory Kulczycki, M. Brian Blake, Yi Wei; Formal Methods for Data-Centric
Web Services: From Model to Implementation; Proc. of IEEE 20th International Conference
on Web Services, 2013, pp. 332–339

65. Jia Mei, Huaikou Miao, Qingguo Xu, Pan Liu; Modelling and Verifying Web Service Applica-
tions with Time Constraints; Proc. 9th IEEE/ACIS International Conference on Computer and
Information Science, 2010, 791–795

66. Dimitris Dranidis, Ervin Ramollari, Dimitrios Kourtesis; Run-time Verification of Behavioural
Conformance for Conversational Web Services; IEEE European Conference on Web Services
Proc. of Seventh IEEE European Conference on Webservices, 2009, 139–147

Service Modelling and Verification: A Formal Approach 23

67. Nawal Guermouche, Silvano Dal Zilio; Towards Timed Requirement Verification for Service
Choreographies; 8th International Conference Conference on Collaborative Computing: Net-
working, Applications and Worksharing, Collaboratecom 2012 Pittsburgh, PA, United States,
October 14–17, 2012, 117–126

68. Manman Chen, Tian Huat Tan, Jun Sun, Yang Liu, Jun Pang, and Xiaohong Li; Verification
of Functional and Non-functional Requirements of Web Service Composition; LNCS 8144,
2013, 313–328

69. YuYu Yin, JianWei Yin, Ying Li, ShuiGuang Deng; Verifying Consistency of Web Ser-
vices Using Type Theory; Proc. of IEEE Asia-Pacific Services Computing Conference, 2008,
1560–1567

Webservice Specification and Discovery

Supriya Vaddi and Hrushikesha Mohanty

Abstract Recent advances in Internet technologies have populated the web with a
large number of services. Service specification is the first step in SOA for implemen-
tation of service publication, service discovery, service selection, and composition.
Several specification standards were developed considering the different features of
services, viz., service operations, input/output, Quality of Service (QoS), etc. Ser-
vices are specified in chosen specification standard and are published over reposito-
ries/web. The published services are discovered by users on querying the repositories
with the specific APIs that are made available or by browsing the web with queries.
This chapter gives an overview of the existing specification standards and their fea-
tures and further, it discusses various approaches of service discovery.

1 Introduction

Webservices have evolved over the years. Earlier, the businesses were confined to
a group of organizations. Invention of Internet has made conducting business over
web even more simple. Internet is not only used for advertising about a company and
its products but to actually perform business over the web. A business could take an
order online and deliver the actual product to the consumer at their doorstep. Though
this looks simple a lot of concerns are to be addressed from both consumer point of
view and from service provider point of view. As both service provider and consumer
are not associated with each other, the major concerns that are to be addressed would
be (i) How does a consumer know about a business? (ii) How can a business tell

S. Vaddi (B)
School of Computer and Information Sciences, University of Hyderabad, Hyderabad, India
e-mail: supriyavaddi@gmail.com

H. Mohanty
Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar 751024, India

H. Mohanty
School of Computer & Information Sciences (On leave), University of Hyderabad, Hyderabad,
India

© Springer Nature Singapore Pte Ltd. 2019
H. Mohanty and P. K. Pattnaik (eds.), Webservices,
https://doi.org/10.1007/978-981-13-3224-1_2

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3224-1_2&domain=pdf
mailto:supriyavaddi@gmail.com
https://doi.org/10.1007/978-981-13-3224-1_2

26 S. Vaddi and H. Mohanty

about its details without revealing the business logic? (iii) A business in order to
process a user order has to communicate with various other applications. How can
applications that are technically different communicate with each other?

Service-Oriented Architecture (SOA) has evolved as a unanimous paradigm pro-
viding solutions to the above-addressed issues enabling development of distributed
applications.

Service is the core element of SOA. Each service is a bundled business avail-
able over web that can be availed by a consumer. These bundled businesses are
webservices and are the core element of SOA. A webservice is a self-describing
self-contained modular application that can be described, published, located and
invoked over a network.

Unlike the standard software that is installed on systems of different consumers.
A webservice is readily available on the web and a consumer in need of a service
has to invoke the service with a set of inputs. The prominent features of webservices
are reusability and composability.

Any number of consumers can invoke the same service with different inputs any
number of times as they are reusable. Services being loosely coupled can be invoked
irrespective of their working platforms. And they cooperate among themselves to
deliver a desired service.

Awebservice uses distributed environment in which applications and components
can interoperate in a manner independent of their implementations (e.g., platform
independent, language independent).

The webservice architecture in SOA paradigm is shown in Fig. 1. It provides a
means for service providers and service consumers to knowabout each other. SOA is a
registry-based architecture.Universal Description Discovery and Integration (UDDI)
[1] is a universal business registry which acts as a central repository in SOA archi-
tecture. All webservices offered by service providers are registered with registry
UDDI. The registry stores details of publisher, published service, and descriptions
of services as shown in Fig. 1. Service descriptions are made in specification stan-
dard called Web Services Description Language (WSDL) proposed by W3C. These
service interfaces coded in WSDL point to actual services that are to be invoked by
a service consumer.

Based on requirement service consumerwould search for services inUDDI. Later,
service interface details are followed up and a particular service is selected to be
consumed. The services provided could be implemented in any language (C, C#,
Java…) and is independent of service registry implementation. The selected service
is invoked using binding details that are published on registry.

In the case of webservices, unlike traditional software engineering approach, soft-
ware modules are not built on gathering requirements from the consumer. But rather
requirements are mapped to services that are already built. Hence, the process of
service discovery from consumer and provider perspectives is different. The generic
process of discovery fromeachof these perspectives is shown inFig. 2.Here, a service
provider would specify a service in specification format that registry is expecting.

The standard service specification formats are WSDL [2], OWL-S [3], SAWSDL
[4], and WSMO [5]. The specified services are stored either in database or as a flat

Webservice Specification and Discovery 27

Fig. 1 Webservices architecture

Fig. 2 Service discovery from service consumer and provider perspectives

file in XML. A user in need of a service would query a repository with requirements
in the specified format. On verification of query, repository is searched to retrieve
all services that meet the query. If none of the available services from the repository
is meeting user requirement, then a set of services are to be composed to meet the
requirements.

A service provider would tell about its service following a definite specification
so that service details are expressed in a standard form that makes users convenient
to browse, and also helps other systems to interface without any integration incom-
patibility problem. A detailed study of service specification standards is discussed
in Sect. 2. Searching of a service from repositories is discussed in Sect. 3.

28 S. Vaddi and H. Mohanty

2 Webservice Specification Standards

Specification (Dictionary meaning) is a detailed description of how something is,
or should be, designed, or made. Basically, a service specification gives a detailed
description of how a service is designed. According to IBM, a service specification
must specify everything that a potential consumer of the service needs to know to
decide if they are interested in using the service, as well as exactly how to use it.

The basic information a specification on a service has to provide are (i) Name of
the service, indicating what the service is about. (ii) Provided and required interfaces,
describing the functional capabilities of the service. Functional capabilities include
function name, required, or optional service data inputs and outputs, preconditions
that consumers are expected to meet before using the capability, exceptions, or fault
conditions that might be raised if the capability cannot be provided for some reason.
(iii) Communication protocol or rules that determine when the capabilities can be
used or in what order. (iv) Qualities that service consumers should expect and that
providers are expected to provide such as cost, availability, performance, footprint,
suitability to the task, competitive information, etc. (v) Policies for using the service
such as security and transaction scopes for maintaining integrity or recovering from
the inability to successfully perform the service or any required service.

Initially, webservice specification was standardized by IBM and Microsoft and
Web Services Description Language (WSDL 1.1) was published in March 2001.
Later,WorldWideWebConsortium (W3C) has worked on specification and released
WSDL 1.2 in the year 2003. According to W3C, “WSDL is an XML format for
describing network services as a set of endpoints operating on messages contain-
ing either document-oriented or procedure-oriented information. The operations and
messages are described abstractly, and then bound to a concrete network protocol
and message format to define an endpoint”. WSDL [2] is used to describe service
interface. It specifies services as a collection of network endpoints or ports associ-
ated to operation names, data format of the Input (I) and Output (O) are described as
message types.

WSDL 2.0 component model is given in Fig. 3. A service is availed by either
sending or receiving a sequence of messages. The message format is declared under
type’s component of the model. Each message may be simple with one element or
can be complex with many elements. Each of these elements and their data types is
declared under an element.

For example, address element is complex and contains house number, streetname,
city, state, and pin code. Each of these elements data types is declared house-no:
String, Streetname: String, city: String, and state: String and pin: Int. If a schema
file containing all these details is present, then that particular xsd (XML schema
definition) is imported in types. The Following is the syntax of example for declaring
the complex type message address.

Webservice Specification and Discovery 29

Fig. 3 Component model of WSDL

<xs:element name="address" type="tAddress"/>
<xs:complexType name="tAddress">
<xs:sequence>

<xs:element name="houseNumber" type="xs:string"/>
<xs:element name="streetName" type="xs:string"/>
<xs:element name="city" type="xs:string"/>
<xs:element name="pin" type="xs:integer"/>

</xs:sequence>
</xs:complexType>

Communication with service takes place through a set of operations defined in the
interface. An interface has a name and it can be an extension of other interfaces by
using extends attribute. All communications supported by an interface are defined
in operations. Each of these operations has input and output messages. A message
communicationmay result in an error when themessage fails either to get transmitted
or received. WSDL supports handling of these faults by declaring fault component
for each operation. A fault message may be used to communicate information, viz.,
the reason for the error, the origin of the fault, as well as other informal diagnostics
such as a program stack trace. Hence, operations not only define ordinary message
interactions but also fault messages that are exchanged between service and users of
service. Also, operations define message exchange pattern, viz., number of messages
and the order of exchange of these messages. There are eight message exchange
patterns (MEP) defined in WSDL 2.0 considering the faults. These patterns are
discussed below, indicating the direction of message flowwith in or out, respectively.

30 S. Vaddi and H. Mohanty

Fig. 4 Syntax for operation
specification <description>

<interface>
<operation

name="xs:NCName"
 pattern="xs:anyURI"?

style="list of xs:anyURI"?
wsdlx:safe = "true">

<documentation />*
[<input /> | <output /> | <infault /> |

<outfault />]*
</operation>
</interface>

(1) In-Only: This pattern has only one message that is received (in) by the service.
(2) Robust In-Only: This pattern has exactly one message that is received (in) by

a service. On the occurrence of fault, it returns a fault message.
(3) In-Out: This pattern has two messages and follows the sequence. The service

receives a message (in) and returns a response message (out).
(4) In-Optional-Out: This pattern has one or two messages in sequence. The ser-

vice receives a message and optionally returns a response message.
(5) Out-Only: This operation has only one message and service sends (out) a mes-

sage.
(6) Robust-Out-Only: This operation has only one message. The service sends

(out) a message and on the occurrence of fault at the consumer side (or third-
party service), it receives a fault message.

(7) Out-In: This pattern has two messages in sequence. The service sends (out) a
message to the consumer and in turn, receives (in) a response message from the
consumer.

(8) Out-Optional-In: This pattern has one or two messages in sequence. The ser-
vice sends (out) a message and receiving a response message is optional.

For patterns In-Out and Out-In consisting of follow-up message if the fault occurs
after single message communication, then instead of the next message in sequence
fault message would follow. The syntax for operation is shown below in Fig. 4.

Each operation is specified by a unique name and the pattern is an URL referring
to one of the eight MEPs defined in WSDL 2.0.

An optional attribute style indicates the type of communication protocol that is
chosen for implementing the pattern. Style is of three types such as RPC, IRI and
the Multipart each applying different set of rules. If the operation meets the criteria
of safe interaction, then wsdlx:safe attribute is marked as true else false. This is
followed by fault or input/output messages.

Webservice Specification and Discovery 31

<description>
<interface name=”ShoppingCart”>
<fault name=>
<operation name=”Delivery”

pattern=”http://www.w3.org/ns/wsdl/out-in”>
<output

messageLabel="out"
element="tns:DeliverItems">

</output>
<input

messageLabel="In"
element="tns:DeliverItemsResponse">

</input>
<infault ref="tns:InvalidAddress"
messageLabel="In" />
</operation>
</interface>
</description>

Binding component gives actual implementation details like message formats and
protocol interactions associated with operations and also faults. Binding is given a
namewhich would be referred by service element. Reference to the existing interface
element already defined in WSDL is made in interface attribute. Message format of
the interface is given in type and binding is made available in multiple transport
values http-get, http-post, or SOAP.

<description>
<binding

name="xs:NCName"
interface="xs:QName"?

 type="xs:anyURI" >
<documentation />*

[<fault /> | <operation />]*
</binding>
</description>
</interface>
</description>

The binding extension is available in SOAP and HTTP to support different ver-
sions of each protocol. The declared operations and faults are referred here in binding.

The implemented service is deployed and this information is available as a collec-
tion of endpoints in the service component. Each service element is a given unique
name and it is an instance of the interface defined previously in interface element.

32 S. Vaddi and H. Mohanty

<description>
<service name="xs:NCName" interface="xs:QName" >
<endpoint

name="xs:NCName"
 binding="xs:QName"

address="xs:anyURI"? >
<documentation />*
</endpoint>+
</service>
</description>

Each endpoint is identified by a name and refers to binding element previously
defined and URI points to the actual address where the service is available.

Documentation element throughout the WSDL document contains human-
readable or machine-readable content that a service provider or developer gives
describing the service. These descriptions would also aid query processor when
searching for a service meeting query.

Generally, a service provider and consumer frame service descriptions without
knowledge of each other. Ontology emerged as a solution for this. Ontology is a for-
mal explicit description of concepts in a domain of discourse (classes), properties of
each concept describing various features and attributes of the concept (roles or prop-
erties), and restrictions on roles (role restrictions) [6]. Ontology is introduced for
webservices so as to enable different service providers to declare and describe the
services using standard terminology with predefined set of classes and properties.
Several specifications like SAWSDL, OWL-S, and WSMO are proposed that refer
to these ontologies. WSDL 1.2 specification was updated to WSDL 2.0 enabling
semantics using these ontologies. Semantics is giving meaning to the words. During
service specification concepts that are available as ontologies at standard URIs are
used in defining names of operations, messages, etc. These ontologies are specified
inWeb Ontology Language (OWL) that can be referred by both service provider and
consumer.

SAWSDL an extension to WSDL with semantic annotations is proposed in [4]
to give the meaning to keywords. SAWSDL does not specify a new language to
represent semantic models but refers to external ontologies in the WSDL itself. The
data mapping of XML schema types from annotations to ontology is given. FUSION
[7] is one of the semantic registries that this work has developed. It uses SAWSDL
and OWL knowledge base for service specification.

OWL-S [3] segregates service information into three categories, namely service
profile, process model, and grounding as shown in Fig. 5. Each of these categories
is described in separate ontologies. Service profile states what a service does and
describes functional parameters, i.e., hasInput, hasOutput, and precondition and
effect (IOPEs). It also describes nonfunctional parameters such as serviceName,
serviceCategory, qualityRating, textDescription, and service provider details like
name and contact information.

A process model describes how a webservice performs its tasks. Provision to
specify the order of messages exchanged is given thus communication protocol can

Webservice Specification and Discovery 33

Profile Process

Grounding

Fig. 5 Components of OWL-S specification

Goals

Mediators

Webservices

Ontology

uses uses

uses uses

Fig. 6 Components of WSMO specification

be derived from it. Each process model is annotated as atomic or complex. A process
model is said to be atomic or simple if message exchange is of request-response type.
Whereas, it is said to be complex if more number of message transfers are involved.

Grounding specifies mechanisms to access a webservice, viz., transport proto-
cols, message formats, and other service-specific details such as port numbers used
in contacting a service. Further description of each of OWL-S elements is given
in the syntax shown in Fig. 7. Though OWL-S has been successful for semantic
specification and discovery of webservices based on domain ontology, but there are
no standard ontologies. Making an ontology for a domain brings in constraints in
specifications, as all are limited to use the ontology that is agreed upon. The attempt
has been made to overcome the limitation allowing users to generate new ontology
combining the concepts available in ontology (Fig. 6).

WSMO [5] is one such attempt. Web Services Modeling Ontology (WSMO)
describes services in terms of four main elements, viz., Ontology’s, Webservice
descriptions, Goals, and Mediators. Ontology is introduced to maintain same ter-
minology with other WSMO elements descriptions, viz., webservices, goals, and
mediators. Webservice element provides a conceptual model for describing web-
services nonfunctional properties, capabilities, and interfaces. Goals represent the
user’s requirements following the same syntax as that of webservices stated before;
Mediators deal with interoperability problems that arise between different WSMO
elements.

On the whole, WSMO ontology can be used to define the concepts, sub-concepts,
super concepts, and similar concepts using Concept and Relation elements. It can be
perceived that WSMO is higher in abstraction than OWL-S as it provides a means

34 S. Vaddi and H. Mohanty

Spec
Name

Syntax

WSDL :: <operation, input, output,infault, outfault,
BindingDetail, EndpointDetails>

OWLS :: <profile><process><grounding>
<profile>:< SrvName, SrvClassification,TextDesc ..>
<process>:<hasInput,hasOutput,hasPrecondition,hasResult,ComposedOf>
ComposedOf:<controlconstruct,sequence, split, split-join, any-order, choice..>
::Grounding<WsdlAtomicProcessGrounding >
<WsdlAtomicProcessGrounding>:<wsdlDocument,wsdlOperation,wsdlService,wsdlInputMessages,wsdlInput,
wsdlOutputMessages,wsdlOutput.>

SAWSDL :: <ModelReference><LoweringSchemaMapping><LiftingSchemaMapping >
WSMO :: <Ontology><WebService><Goal><Mediator>

<Ontology>:<usesMediator, hasConcept,hasRelation,hasFunction,hasInstance,hasAxiom>
<WebService>:<importsOntology, usesMediator,hasCapbility, hasInterface>
<Goal>:<importsOntology, usesMediator, requestsCapbility,requestsInterface>
<Mediator>:<importsOntology,hasSource,hasTarget,hasMediationService>

Fig. 7 Syntax of different service specifications

Fig. 8 Core data structure of UDDI

to generate new concept from given ones; thus allowing users unlimited capability
for generating newer concepts. This capability while is a boon, also can be a bane
for difficulty in tracing concepts and getting a meaning as they are discrete with-
out having defined inter-concept relations. Defining so many concepts and relations
makes WSMO heavier. WSMO consortium is working to standardize concept-based
service specification. And academia, as well as professionals, is adding new dimen-
sions to WSMO [5, 8]. WSML [9] is a specific designed language for WSMO and
contains logical formulae to describe different WSMO elements. Figure 7 provides
a comprehensive syntactic description of service specifications following WSDL,
OWL-S, SAWSDL, and WSMO formalisms.

A protocol defines an order of exchange of messages between user and provider
in availing a service. WSDL gives operation details which is sufficient for using a
service that is stateless in nature. A service is said to be stateless when it accepts
an input that contains all necessary information to process and generates an output.
Whereas, a service is said to be stateful when a service takes some input andmessages
are exchanged in between before generating output.

Webservice Specification and Discovery 35

Table 1 Comparison of different service specifications

References Name In Out Cond Protocol Ontology

WSDL [2] – – –

SAWSDL[4] – –

OWL-S [3]

WSMO [5]

OWL-S [3] and WSMO [5] specifications introduced earlier supported the order
in which intermediate communication happens. For this, OWL-S process model
would be stated as composite process that is composed of messages with control
constructsSequence, Split, Split + Join, Choice, Any-Order, Condition, If-Then-Else,
Iterate, Repeat-While, and Repeat-Until. Syntax of four types of standard specifi-
cations (WSDL, OWL-S, SAWSDL, and WSMO) reviewed is shown in Fig. 7. A
comparison of these on different perspectives is presented in Table 1. Existing specifi-
cations concentrate only on input, output and function name and none of this address
the issue of service structure and its role in-service specification.

Research work in [10] considers service structure and has proposed Service Map
(SMap) for specifying service. A service is viewed as a collection of service items
packaged to cater to different needs of users. These service items are connected with
associations includes, akindof, leads-to, and has-with and combinations of service
items is specified with AND and OR. The service items description is extendible and
is not limited by the specification. A service provider can present service features,
viz., promotions, conditions, and alternatives that attract the consumer.

Targeting toward service flow and composition service specifications, viz., Web
Services Business Process Execution Language (WS-BPEL) [11] and Web Services
Choreography Description Language (WS-CDL) [12] have evolved over time. Ear-
lier, Business Process Modeling Language (BPML) [13] was used for specification
now it is part of OMG and is replaced by WS-BPEL.

WSDL is the specification standard followed by industry for specifying services.
Since the standard is rigid not allowing user to specify more detail WSMO evolved.
Though WSMO is very descriptive, it is complex for a service provider to publish a
service in WSMO. But the information needed to attract users is not supported. On
the other hand, WSMO details technical details that one-way risks service providers
of malicious usages and in other way, it also makes consumer burdened for availing
a service. As a customer has to go through enormous amount of specification detail
to check if a service meets requirement.

Since many services are published, an issue of identifying a service meeting the
requirement is of prime importance. Services with different specification standards
are available; to search for a service a user should have basic knowledge of specifi-
cation syntax. Instead of user searching through all the available services, the system
provides a means for searching through large number of services and list down ser-
vices that are meeting user requirements this would reduce burden on the user. Hence

36 S. Vaddi and H. Mohanty

on discussing standards for service specifications, it is natural is discuss on searching
of webservices in a service repository. In the next section, we will address the issue.

3 Service Discovery: A Bird’s View

The services available on the web are growing exponentially, selecting the most
relevant webservice fulfilling user requirements is challenging. Service search (or
service discovery) is a process of searching for webservices matching a given set of
functional and nonfunctional requirements of users. The services could be published
on the web or on registries, and in different specification standards discussed in
Sect. 2. Thus, searching for a service is a difficult task and is performed differently
for the web and service registries. Each registry has services specified in a specific
standard. Various approaches have been used for service search such as searching in
UDDI, web and service portals (Registries). Here, we would discuss each of these
searches in detail.

3.1 Web Search

Searching web by using different keywords or with combination of keywords is
known as web search. In return, search engines would list enormous number of web
pages which a consumer has to browse through to identify the needed service. This
is a tedious process and to overcome it, automation of service search has received
much attention. A technique proposed in [14, 15] shows the preparation of service
repository by web crawlers fetching service data on its WSDL interface accessing
URLs of services hosted on the web. In [15], Dong et al. have proposed Woogle that
categorizes services into a group based on similarity among services. The similarity
is found based on semantic matching of parameters that specify services. It means a
cluster of services is found suitable for similar services. Thus, work in [14] shows it
is important to describe a service with defined syntax and words of proper semantics.

Later, for flexibility in specification, WSDL specification is extended with XML
extension, that means a crawler has to search for WSDL of a service in its XML
file available at an URL hosted by a service provider. As shown in [16], XML-based
service specification is well appreciated for its portability as well as flexibility in
extending a specification.

3.2 Directory Search

In directory-based approach, service providers would publish their services in the
specific format specified for a directory. A consumer in need of a service would query

Webservice Specification and Discovery 37

the directory. UDDI [1] is one such well-known service repository where services
are published and queried using APIs. UDDI has emerged as a model and in similar
lines, juddi an open-source implementation is made available on the web. Targeting
towards reuse organizations tend to set up juddi locally to publish software modules
developed in-house for interorganizational use.

3.2.1 Service Search in UDDI

Universal Description, Discovery, and Integration (UDDI) [1] is an industry stan-
dard for service registries, developed to solve the webservice search problem. UDDI
enables service providers to register themselves with their business name. On regis-
tration, they can advertise services and products offered and specify how the business
transactions can be conducted on the web.

The provided data is captured and stored in the information model. A UDDI
information model is composed of four primary data structures as shown in Fig. 8:

1. businessEntity: describes a business or service provider that typically provides
webservices, viz., business name, contact detail, and other business information.

2. businessService: represents business descriptions for a webservice. It describes
a logical collection of related webservices offered by a businessEntity.

3. bindingTemplate: contains the technical information associated with a single
webservice for interacting and binding. Each bindingTemplate describes an
instance of a webservice offered at a particular network address, typically given
in the form of a URL. The bindingTemplate also describes the type of webservice
being offered using references to tModels, application-specific parameters, and
settings.

4. tModel: technical specification for a webservice is defined in tModel. It points
to the URL where the actual specification is present. The services published
in UDDI are categorized for easy search the detail of each service category is
given in tModel. It also contains the type of protocol (SOAP or HTTP) used for
communicating with service.

Search in UDDI is through set of APIs provided for inquiry. These
are find_binding, find_business, find_relatedBusiness, find_service, find_tModel,
get_bindingDetail, get_businessDetail, get_operationalInfo, get_serviceDetail, and
get_tModelDetail.

Existing open web registries for publishing and querying of webservices areWeb-
serviceX (WebserviceX.NET) [17], XMethods (XMethods.NET) [18]. They support
search by browsing or by keywordswhere all the services having the queried keyword
in their service description are listed. Searching registry is either done manually by
browsing through services or by performing keyword-based search. For browsing,
the consumer should have prior knowledge of a service. Searching by keywords is
found to be insufficient [15] as published services have very small information for
choice of keywords. Further meaningfulness of keywords with respect to services is
also a question of concern.

38 S. Vaddi and H. Mohanty

3.3 Service Search Classification

Either search on the web or in registry depends on the information available on
the web or at registries. The operations information is present in WSDL documents.
Traditional search method is to follow information retrieval approach where required
service operations are searched in WSDL documents. As services are exposed by
their interfaces, most of the research works in discovering a service focuses on
matching Input, Output, and their data types. Further, the search is narrowed down by
introducing precondition and effect. While some approaches are based on interface
matching, in contrast, other research works consider structure of the service for
matching. Ontologies have paved way to semantic webservices. Further with the
introduction of ontologies, logic-based approaches have emerged for retrieval of
services. Service discovery approaches can be categorized as follows also shown in
Fig. 9.

3.3.1 Information Retrieval Approach

Information retrieval approach is a traditional approach of retrieving required doc-
ument from the collection of documents on examining words that are common to
documents. Text document matching is the method of identifying set of documents
that contain a given text. Few such works are used to build a vector space model
[19] to create an index [20] on collection and query by example. In the first case,
each service is represented as a weighted vector of unique words. Each document
is parsed for phrases/sentences and these are divided into words. From these, stop
words are eliminated and stemming is performed on words to get root word. In the
case of webservices, WSDL document describes a service by its keywords. Term
Frequency (tf) and Inverse Document Frequency (idf) of words are used to build up
the vector space model and in a way to measure the similarity between documents.

In the second case, an index is created using inverse document frequency. In
inverse document frequency, the term that occurs in fewer documents is a better
discriminator than a term that occurs in most of the documents. Hao et al. [20] uses
both information retrieval and similarity between XMLs to select the documents.
Each service in XML has a schema tree. Distance between trees gives similarity
between services. A variant of tree edit distance is used to measure the distance.

A user, query is represented as weighted vector and is searched among repository
of services represented as weighted vector. Service preference is defined in terms of
service relevance and service importance. Cosine similarity measure is used to find
the relevance of service with query. If many services use (connect to) a service, then
the used service is important to the one that is not used. Connectivity between services
is obtained bymatching schema tree of services. If schemasmatch connectivity score
is high and so is the importance score.

Webservice Specification and Discovery 39

Service
Discovery

Interface Match

SignatureMatch[5][2]

Seman c
Match

Clustering [6]

Structure
Process in FSM [8]

Msg Seq Matching [9]

Informa on
retrieval

Approach

Vector Space
Model

Syntax Match

Wordnet [2]

Ontology

Distance Measure

Logical Reasoning
[10][11]

Fig. 9 Classification of service search approaches

In query by example [21], case consumer describes the expected service as
an example and this is preprocessed to represent as a vector. The above-stated
approaches would be discussed in detail in Sect. 4.

3.3.2 Interface Match

Interface of a webservice has description of service, operations, messages, and their
data types as shown in Sect. 2. Matching of interface can be classified into match-
ing of syntax (data type match) and matching of semantics (names) as shown in
Fig. 9. Signature matching approach is used for matching syntax. Semantic match-
ing involves matching service names, operations, and message names. Semantics
is giving meaning to words. Wordnet and ontologies are two approaches of adding
semantics to words. Wordnet [3] is a large lexical database of English connecting
meaningfully related words and concepts to form a network. Ontology is introduced
for webservices so as to enable different service providers to declare and describe the
services using standard terminology with predefined set of classes and properties.
Several distance measures are proposed to obtain the distance between words in net-
work and among ontology classes. Most of the research works use combination of
semantics and syntax match to compute similarity score between services. Logical
reasoning is applied over services using ontologies

40 S. Vaddi and H. Mohanty

Each of these categories is briefly discussed below.
Reusability of software has received a lot of attention in the 90s with Component-

Based Software Engineering (CBSE) [22]. Where, Commercially-Off-The-Shelf
components (COTS) are built for reuse. Component is a nontrivial, nearly inde-
pendent and replaceable part of a system that fulfills a clear function in the context
of well-defined architecture. In component retrieval from libraries for given desired
requirements, a software module meeting the stated requirements is retrieved from
library using signature matching [23]. Signature matching is matching the functions
type that is a list of input and output parameters. Extensions to this signaturematching
are applied to webservices [24] for interface matching.

Signature matching for webservices compares the set of operations offered by
services. As operations consist of input and output messages, corresponding input
messages, and output messages of services are compared. Since each message is
described with data types in succession these are compared. Each message can be
simple or complex type. A complex message has to be further matched recursively.

For example, reviewing shopping cart service discussed in Sect. 2 from Fig. 4
signature of delivery operation would be as follows:

Operation: Delivery
Input: DeliverItems
Output: DeliverItemsResponse
Messagetype:

Input data type:customerIDint,
orderNumber int,

 customerName<FirstName,MiddleName,LastName>,
 itemList <ItemID,ItemName,Quantity>,
address<houseNumber, streetName, city, pin>

paymentDetail<pre,post>

Output data type:deliveryDate date,
receiverName string

The operation name is “Delivery”. It takes DeliverItems message as input and
gives DeliverItemsResponse as output. DeliverItems is a complex message with
sequence of message elements customerId, orderNumber, customerName, itemList,
and paymentDetail. Each element has simple data type or complex type creating a
syntax. Signaturematching of this operation corresponds tomatching all themessage
elements according to syntax and their data types.

Syntaxmatching [25] is an extension of signaturematching, though paper presents
it as structure matching and we look structure of XML as syntax. Here, WSDL
operations, input/output messages, and their data types are compared and matching
score is computed. This score also considers matching between parameters that come
in different orders.

In semantic matching [25], scores are assigned based on the distance between
words in wordnet hierarchy. Querying over collection of WSDLs is also performed
with synonyms of terms from requested WSDL, thus expanding the result. Semantic

Webservice Specification and Discovery 41

structure matching score is computed between requestedWSDL andWSDLs present
in the repository. Top WSDLs with maximum scores are selected from repository
and these retrieved services were found to be close to query. A detailed description
of interface matching is discussed in Sect. 4.2.

3.3.3 Structure Match

In the above subsection, webservice interfaces are used as references for matching
services. But the functionality of service is obtained on the following certain process.
In [26], the authors have proposed a matching approach based on the internal process
of services. Where, both service internal process and sequence of functionalities
expected by requester is modeled as FSM.

For matching, two FSMs are compared and different metrics are used to find
similarity score between services. For this, all possible sequences of both queries
FSMand service FSMare obtained as strings. Each string of request is comparedwith
all sequences of service. Based on certain distance metrics, viz., Common Process
Count (CPC), Longest Common Substring (LCStr), Longest Common Subsequence
(LCSeq), and Edit Distance (ED), the structural similarity is calculated. CPC is ratio
of number of common processes to the total number of processes in the sequences.
LCStr is number of contiguous processes between query and service sequence. It
is ratio of length of common substring to length of query string. ED is minimum
number of operations of insertion, deletion, or substitution of single character to
transform one string to another. Combination of these metrics was found to result in
many qualitative results compared to individual metrics alone.

Webservices are described as business processes [27] rather than as operations and
associated individual messages. The focus of this paper is in matching the communi-
cation sequence of query service and service from repository. The message sequence
is obtained from BPEL file given by the provider during the publishing of service.
Two services are said to be matched when they have a common message sequence,
i.e., their languages have non empty intersection. This match is done by using FSA.
This work addresses more of behavior matching than structure matching.

4 Service Search Techniques

For this traditional approach like Vector Space Model as briefed below uses text-
matching technique.

42 S. Vaddi and H. Mohanty

4.1 Information Retrieval Approach

4.1.1 Vector Space Model

Vector Space Model (VSM) is a method of representing a document as a vector
where uniquewords present in the document form vector components. So, the vectors
from a set of documents make a vector space model. In this approach, the search is
performed over collection of text documents. Number of times the terms occur in a
document is of importance for referring the document by such words. In the case of
webservice discovery, the assumption is that all the available services are specified
in WSDL and are stored in a centralized repository preparing a central repository
of webservices is the first step in making an architecture that is used for search of
services on a request of a service user.While searching for a request, i.e., of keywords
in the request, number of services matching the keywords with service vectors are
picked up.

Here, we would brief on the concept of representing document as vector. Various
weighing factors viz. Term frequency (tf), combination of term frequency and inverse
document frequency (tf-idf) could be used for a term in document.

Term frequency (t fi j) of a term i in document j is total number of occurrences of
term i in j.

Document frequency (d fi) is defined as the number of documents in collection N
that contain the term i. Inverse document frequency (id fi) of term i in collection of
documents N is defined as

id fi � log
N

d fi

Term frequency and inverse document frequency determines the weight of vector
(Wij) associated with term “i” in document “j”.

Wi j � t fi j × id fi � t fi j × log
N

d fi

The document is now represented as vector with terms from dictionary and each
term is weighted with weights given by the above equation. If a term is not present
in a document, then the corresponding weight for that term is zero.

If {t1, t2, t3, t4, . . . , tn} are terms in dictionary. Then, the vector associated with
document (d1) containing terms {t2, t4, t7, t9} is

−→
V1 � w21 ∗ t2 + w41 ∗ t4 + w71 ∗ t7 + w91 ∗ t9

A query with a set of terms is represented as a vector. Searching for a query doc-
ument in the collection of documents is done by measuring similarity between the
query document and documents in collection. Similarity measure is a function which
computes the degree of similarity between a pair of vectors or documents. Several

Webservice Specification and Discovery 43

Table 2 Example of weighing WSDLs and query by term frequency

Doc/term add basket deliver item product remove save

x.wsdl 1 3 1 1

y.wsdl 1 2 1

z.wsdl 1 1 4 1 1

Q 1 1 3 1

Table 3 Similarity of query to WSDL documents

Query/document x.wsdl y.wsdl z.wsdl

Q 2/12 (0.166) 2/
√
72 (0.166) 3/

√
240 (0.968)

similarity measures, viz., Euclidean distance, cosine similarity, Jaccard coefficient,
Dice coefficients, and Pearson correlation coefficients [28] are applied to find simi-
larity score between query vector and collection of document vectors.

Vector space search engine [29] an extension to UDDI has been proposed to
search and index webservices. Here, WSDL documents are collected from reference
specified inUDDI are preprocessed andVSM is built. In preprocessing, keywords are
extracted from endpoint URL, attribute names, message names, and XML comments
of each WSDL. To search, a given query is represented as a vector and cosine value
is evaluated. Cosine value between two vectors p and q is calculated as

cos(p, q) � p · q
|p||q| �

∑n
i�1 piqi√∑n

i�1 p
2
i

∑n
i�1 q

2
i

where p · q is dot product between the vectors and |p| and |q| is Euclidean distance.
For documents with high similarity, cosine value tends toward 1 and with less simi-
larity value tends toward 0. Sorted list of services (WSDLs) based on their similarity
score is shown as result.

For example, consider a user in search of a shopping cart service with opera-
tions addItem, removeItem, and deliverItem. Assume that repository contains three
shopping cart services x, y, and z. Each having operations as x(addProduct, remove-
Product, and viewProduct), y(addToBasket, removeFromBasket), and z(addItem,
removeItem, saveItem, and deliverItem). In preprocessing, terms are extracted and
frequency of occurrence of each term is noted as shown in Table 2.

Cosine similarity measure is applied to compute distance between query and
document vectors. Computed cosine value is shown in Table 3. It can be observed
that service z has high cosine value it implies that z is more similar to query compared
to other services (x, y).

VSM model has been used by Wang and Stroulia [25] for searching services that
are specified in natural language under WSDL description. It uses both information
and component retrieval approaches so as to enable programmatic service discovery.
For this, preprocessing is performed over the documents to remove stop words and

44 S. Vaddi and H. Mohanty

to combine related words into common word stem. The model is powered with
wordNet [30] to have subvectors. Each of them includes (i) stems of original words,
(ii) synonyms, and (iii) direct hypernyms, hyponyms, and siblings for the terms in
document and for all word senses. For a given query, initially, VSM is used to identify
a set of services from a collection and over this pruned list [25], semantic structure
matching is performed to match operation and message names.

Structure matching is an extension of signature matching where WSDL opera-
tions, input/output messages, and their data types are compared and matching score
is computed. This score also considers matching between parameters that come
in different orders. In semantic matching, scores are assigned based on the dis-
tance between words in wordnet hierarchy. Querying over a collection of WSDLs is
also performed with synonyms of terms from requested WSDL, thus expanding the
result. Semantic structurematching score is computed between requestedWSDL and
WSDLs present in the repository. Top WSDLs with maximum scores are selected
from repository and these retrieved services were found be close to query.

In another work [31] Preference degree of a service is proposed for ranking ser-
vices. Service relevance and service importance are two desired properties for pref-
erence degree. Service relevance is obtained by measuring the tf/idf of list of words
in WSDLs of repository. Service importance identifies the relation between services
based on schema matching. Service connectivity is measured by using schema tree-
matching algorithm.

Computing distance between query vector and vector associated with the pub-
lished service will be time-consuming as repository size increases. Instead of per-
forming search over the entire repository if available services are clustered and search
is performed on one of the clusters, the search space is reduced. Deciding on what
basis clustering is performed is important as similar services are expected to be
grouped together.

4.1.2 Clustering

Information retrieval approach has also been used in Web Service Query By Exam-
ple (WSQBE) [21]. This work follows a two-step approach for retrieving matching
services. In the first step, search space is reduced by identifying a group of similar
services and in second step for given query, subspace is searched and ranked list of
services are obtained. The first step ofWSQBE uses automatic document classifier to
classify services of a repository into clusters based on their contents. The consumer
would give an example describing an interface with set of words or gives functional
description of expected operations. The example is preprocessed to remove irrelevant
words and resulting set of words are represented as a vector. In the next stage, this
example vector is classified into one of the existing categories. Now, cosine similarity
score is computed between the query vector and service vectors to retrieve matching
services. Top 50% of services are shown as candidate services for the query.

In [15], Dong et al. have proposed Woogle that supports service discovery for
webservice operations following clustering of parameters into semantically mean-

Webservice Specification and Discovery 45

ingful concepts. A set of operations are considered to be similar when they take
similar inputs and produce similar outputs and similarity of concepts associated with
parameters is based on TF/IDF measure.

4.2 Interface Match Approach

In case of information retrieval approach, words that are common in the collection
of documents are examined to assess the similarity. Interface similarity is addressed
at different levels [32]. The query is specified as an interface giving expected input,
output, and operations. The template for the query is similar to that of service publi-
cation. Similarity among interfaces (SimInterfaces) is computed by assessing similarity
between operations (SimOperation) and quantitative score is computed. As each oper-
ation consists of inputs and outputs, inputs specified in the query interface (Sq) are
compared with inputs of a selected service published in repository (Sr).

SimInterfaces
(
Sq ,Sr

) � Max
p∑

i�1

q∑

j�1

SimOperation
(
O1i , O2 j

) × xi j

xi j �
{
1 when Combining O1i wi th O2 j

0 else

Assuming that Sq has p operations and Sr has q operations. Similarity is calculated
from every operation of Sq to every other operation in Sr . The comparison of services
results in operation matrix with operations from query service and service from
repository.

SimOperations(O1, O2) �Max
m∑

i�1

n∑

j�1

SimInput
(
I1i , I2 j

) × xi j +

Max
u∑

i�1

v∑

j�1

SimOutput
(
I1 j , I2 j

) × yi j

Assuming that operation O1 has m input parameters and u output parameters, O2
has n input parameters and v output parameters. To compare inputs, for similarity
calculation, parameter name (SimLexical) and data types (SimDatatype) are compared.
Parameter names being words their lexical (semantic) similarity is computed.

SimInput/output(I1, I2) � SimLexical(I1.Name, I2.Name) + SimDatatype(I1.DT, I2.DT)

Input SimInput and Output Simoutput similarity score is calculated by pairwise
correspondence of input–output parameter list. Similarity betweenoperations is score

46 S. Vaddi and H. Mohanty

associated with input/output parameter lists that maximizes the sum total of the
matching scores of the input/output individual pairs.

Data type similarity is syntax matching and lexical similarity is semantic match-
ing.

4.2.1 Syntax Matching

In [23], Zaremski and Wing have proposed exact and relaxed signature matching for
retrieving functions with matching signatures. Exact match is when the sequence of
variables and their data types in query match with sequence of variables of a function
allowing the renaming of variables. But no specific mechanism is used to find the
similarity between variable names. Relaxed match is partial match that considers
generalized and specialized cases of type match, reordering of parameters. For an
integer, float or long is generalized case and for Boolean int is specialized case. Also,
pre- and post-conditions are used to determine the type of match.

Syntactic and semantic matching approaches [25] have been proposed to assess
the similarity between two WSDLs. Services are compared on matching data types
and identifiers. For syntax matching if both services have same data types, maximum
score is assigned else lesser score is assigned.

A similar syntax matching is proposed in [33] with algorithm to match data types
of simple and complex data elements. The paper [34] presents comparative study
on using various algorithms, viz., total enumeration, greedy and Kuhn-Munkers for
measuring the similarity between data types of service messages associated with
each operation.

4.2.2 Semantic Matching

Targeting toward automatic service discovery researchers has introduced semantics
into the service descriptions. Ontologies are used in service descriptions to clearly
specify what each of the terms is meant by service provider.

Distance Measures
In [25], semantics is used for matching identifiers (names of operation and mes-
sages). Semantic matching is powered by wordnet [30] to identify identical words,
synonyms, and hierarchical semantic relations (hypernyms, hyponyms). Hypernym
is the generalized term and specific instance of it is hyponym. Number of semantic
links between words in wordnet hierarchy is number of hierarchical links. Identical
words get high score of 10, synonyms get score of 8, and for hierarchical relation
between words score is 6/(number of hierarchical links). Similarity score between
webservice and query service is the sum of syntax and semantic matching scores
between their corresponding WSDLs. Each service in repository is matched against
query service and the sum total of matching scores is computed. Based on score
services are ranked and top 50% are returned as result.

Webservice Specification and Discovery 47

Table 4 Concept relationship definitions

Relationship Description

Exact Request and advertisement are same

Plug-in Request is sub class of advertisement/
Advertised service has more general concept than request

Subsume Advertisement is subclass of request/
Advertised service has smaller concept than request

Fail No relationship exists between request and advertisement

Semantic matchmaking of services based on input and output descriptions of
webservices and also precondition and effect is proposed in [35]. Conditions inOWL-
S are described using SemanticWebRuleLanguage (SWRL).Matching of advertised
services with that of requested service results in different degrees of matching. The
score is calculated based on subsumption-based scoring, semantic distance-based
scoring, and wordnet-based scoring.

For subsumption, score calculation input terms of advertisement are compared
with input terms of request based on the type of relation in ontology tree, match may
fall into one of the categories as shown in Table 4. Accordingly, scores are assigned
for results [35, 36].

Semantic distance is calculated by identifying subsume relationship in ontology
and is assigned weight between 0 and 1 this is subsumption score. Semantic weight
distance between any two concepts x and y is the product of semantic weights on the
path from x to y. And this is multiplied by subsumption score.

In [24], service concept model is defined along with signature Service Interface
(SI) and it includes Common Properties (CP), Special Properties (SP), and Quality of
Service (QoS). CP of webservices are service name, service key, service description,
service owner, and service URL and are populated from UDDI registry. Special
properties like type of media stream are stated here. Service interface is defined with
Service Name (SN) Input and Output parameter (IM/OM) list. SI = <SN, IM, OM>
QoS is defined as tuple QoS = <Time, Reliability, Fidelity, Security>. Performance
of a service with respect to time is characterized by time to process, time to delay,
time to repair, and time to failure. Reliability is a function of failure rate. Fidelity is
function of effective design. All QoS values are double and are in the range of 0–1.

4.2.3 Logical Reasoning

In [37], service interface details are specified in OWL-S profile, goal, and mediations
are specified inWSMO.Webservicematchmaking algorithm is proposed that extends
object-based matching techniques (used in Structural Case-based Reasoning) along
with it description logic reasoning over profile instances is used. It explores structural
knowledge of ontology other than subsume.

48 S. Vaddi and H. Mohanty

Two profile aware similaritymetrics DLH andDLR are proposed.WhereDescrip-
tion Logic Hierarchy (DLH) represents similarity of two ontology concepts based on
their hierarchical position. Hierarchical filters between two ontology concepts fall
into one of the exact, plug-in, subsume, and sibling. Distance between concepts is
measure of Edge Count (EC) and Upward Cotopic (UC) measure. EC is number of
edges found on the shortest path between two concepts. UC is the ratio of common
superclasses of two concepts. DLH corresponds to taxonomical similarity.

Description Logic Role (DLR) denotes the similarity between query and adver-
tised services in terms of functional (IO) and nonfunctional (data types) similarities.
Functional similarity is geometric mean of DLH similarity of input and output sets of
two profiles. Functional similarity follows three filters to match IO parameters exclu-
sive (x), exclusive input (xi), and exclusive output (xo). Corresponding to query and
service having same number (x) of input and output parameters, only input parame-
ters are same (xi), only output parameters are same (xo).

Total score is weighted average of taxonomical, functional, and nonfunctional
similarities. Weights are assigned based on user requirement. Along with these pro-
files, taxonomies are considered as filters in retrieving matching profiles.

In [38], a logical framework is proposed for semantic webservice discovery. The
services are specified in WSMO and the components of WSMO, i.e., goals, capabil-
ities, ontologies, and mediators are specified by F-Logic (frame based logic) expres-
sions.

For this proof obligations for service discovery are stated at three levels service
discovery, service contracting and the discovery query. A proof obligation is an
established logical entailment for a service to be considered as amatch for a discovery
goal. While service discovery proof obligation is, for a given user goal, the service
will be able to satisfy user goal.

Service contracting proof obligation is to check if the actual inputs, outputs,
preconditions, and effects are met by service. The discovery query obligation is to
find all such services meeting user goal.

To check satisfiability of first obligation after user states goal, mediator con-
structs input that is appropriate for set of services mediated by this mediator and
also converts goal into postcondition expressed in service ontology. For service con-
tracting, first obligation is extended to check precondition and effect. For discovery
query transaction logic is used, here the service effects are hypothetically inserted
into knowledge base and a query is framed as new hypothetical state if it is true,
then query has a match. The assertion is rolled back after all services matching the
requester goals are retrieved. FLORA-2 a logical reasoning engine is developed to
realize the framework.

In [39], two-phase service discovery is proposed. Here, functional descriptions
of services are specified as change of states in abstract state-space model where
preconditions form the initial state and post-conditions form the final state. Each
service request is mapped to a goal template where the precondition and effect are
described in first-order logic, and in second phase, the instances that meet the input
are selected from identified set.

Webservice Specification and Discovery 49

In [40], the services are specified in Web Services Modeling Language (WSML)
describing goals, ontologies, services, and mediators. Rules specified in WSML
are based on F-Logic. Syntactic matching of services is performed on transforming
service description into weighted keyword vector and one of the similarity metrics
cosine, extended Jaccard, Loss of Information (LOI), and weighted LOI is applied.

5 Conclusion

Changes in the business scenario to be online are supported by advances in tech-
nology. Service-oriented architecture through webservices has not only facilitated
business to be performed on the web but also to provide new business as per need.
Service specification plays an important role when publishing over the web. Evolu-
tion of standards from interface description WSDL to machine processable WSMO
is comparatively discussed. A well-defined service that is published is easily discov-
erable. Service search is performed either on the web or on registry. Different search
approaches, viz., information retrieval, signature matching, and semantic distance
measures are presented.

References

1. OASIS, U. V. (2004). Uddi spec technical committee draft. URL http://uddi.org/pubs/uddi_v3.
htm. Organization for the Advancement of Structured Information Standards (OASIS).

2. Christensen, E., F. Curbera, G.Meredith, and S.Weerawarana (2001).Web services description
language. URL http://www.w3.org/TR/wsdl.

3. Martin, D., Burstein, M., Hobbs, J. (2004). Owl-s: Semantic markup for web services. http://
www.w3.org/Submission/OWL-S/.

4. Joel Farrell, IBM, Holger Lausen, DERI Innsbruck, Semantic Annotations for WSDl and SML
schema URL: https://www.w3.org/TR/sawsdl/.

5. Jos de Bruijn, D. F.M. H. U. K. e. a., John Domingue (2005).Web ServiceModelling Ontology
(WSMO). URL http://www.w3.org/Submission/WSMO/. [29] http://www.wsmo.org/TR/d16/
d16.1/v1.0/.

6. Noy, Natalya F., andDeborah L.McGuinness. “Ontology development 101: A guide to creating
your first ontology.” (2001). URL: http://liris.cnrs.fr/amille/enseignements/Ecole_Centrale/
What%20is%20an%20ontology%20and%20why%20we%20need%20it.htm.

7. Kourtesis, D. and I. Paraskakis, Combining sawsdl, owl-dl and uddi for semantically enhanced
web service discovery. In The Semantic Web: Research and Applications, volume 5021 of
Lecture Notes in Computer Science. Springer, Berlin/Heidelberg, 2008, 614–628.

8. Wang, H. H., N. Gibbins, T. R. Payne, and D. Redavid (2012). A formal model of the semantic
web service ontology (wsmo). Information Systems, 37(1), 33–60. ISSN 0306-4379. URL
http://www.sciencedirect.com/science/article/pii/S0306437911001049.

9. de Bruijn, J., H. Lausen, A. Polleres, and D. Fensel, The web servicemodelling language wsml:
Anoverview. InY. Sure and J.Domingue (eds.), TheSemanticWeb:Research andApplications,
volume 4011 of Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, 2006. ISBN
978-3-540-34544-2, 590–604. URL http://dx.doi.org/10.1007/11762256_43.

10. Supriya Vaddi, Hrushikesha Mohanty, and R. K. Shyamasundar. 2012. Service maps in XML.
In Proceedings of the CUBE International Information Technology Conference (CUBE ’12).
ACM, New York, NY, USA, 635–640. DOI: http://dx.doi.org/10.1145/2381716.2381838.

http://uddi.org/pubs/uddi_v3.htm
http://www.w3.org/TR/wsdl
http://www.w3.org/Submission/OWL-S/
https://www.w3.org/TR/sawsdl/
http://www.w3.org/Submission/WSMO/
http://www.wsmo.org/TR/d16/d16.1/v1.0/
http://liris.cnrs.fr/amille/enseignements/Ecole_Centrale/What%20is%20an%20ontology%20and%20why%20we%20need%20it.htm
http://www.sciencedirect.com/science/article/pii/S0306437911001049
http://dx.doi.org/10.1007/11762256_43
http://dx.doi.org/10.1145/2381716.2381838

50 S. Vaddi and H. Mohanty

11. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.
12. http://www.w3.org/TR/ws-cdl-10/.
13. http://www.ebpml.org/bpml.htm.
14. Fan, J. andS.Kambhampati (2005).A snapshot of publicweb services.ACMSIGMODRecord,

34(1), 24–32.
15. X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang. Similarity search for web services.

In Proceedings of the Thirtieth international conference on Very large data bases - Volume 30,
VLDB ‘04, pages 372–383. VLDB Endowment, 2004.

16. C. Atkinson, P. Bostan, O. Hummel and D. Stoll, “A Practical Approach to Web Service
Discovery and Retrieval,” IEEE International Conference on Web Services (ICWS 2007), Salt
Lake City, UT, 2007, pp. 241–248.

17. webservicex.net URL: http://www.webservicex.net/new/Home/Index.
18. XMethods.NET URL: http://lig-membres.imag.fr/donsez/ujf/GICOM/GICOM_ENS/

exemples/webservices/xmethods/www_xmethods_net.htm.
19. Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Introduction to Informa-

tion Retrieval, Cambridge University Press. 2008.
20. Yanan Hao, Yanchun Zhang, Jinli Cao, Web services discovery and rank: An information

retrieval approach, In Future Generation Computer Systems, Volume 26, Issue 8, 2010,
Pages 1053–1062, ISSN 0167-739X, https://doi.org/10.1016/j.future.2010.04.012. (http://
www.sciencedirect.com/science/article/pii/S0167739X10000762).

21. Marco Crasso, Alejandro Zunino, Marcelo Campo, Easy web service discovery: A query-
by-example approach, Science of Computer Programming, Volume 71, Issue 2, 2008,
Pages 144–164, ISSN 0167-6423, http://dx.doi.org/10.1016/j.scico.2008.02.002.

22. Roger Pressman. 2009. Software Engineering: A Practitioner’s Approach (7 ed.). McGraw-
Hill, Inc., New York, NY, USA.

23. Zaremski, A.M. and J.M.Wing (1995). Signature matching: a tool for using software libraries.
ACM Transactions on Software Engineering and Methodology (TOSEM), 4(2), 146–170.

24. Jian Wu and Zhaohui Wu, “Similarity-based Web service matchmaking,” 2005 IEEE Interna-
tional Conference on Services Computing (SCC’05) Vol-1, 2005, pp. 287–294 vol. 1.

25. Wang Y., Stroulia E. (2003) Semantic Structure Matching for Assessing Web-Service Similar-
ity. In:OrlowskaM.E.,Weerawarana S., PapazoglouM.P.,Yang J. (eds) Service-OrientedCom-
puting - ICSOC 2003. ICSOC 2003. Lecture Notes in Computer Science, vol 2910. Springer,
Berlin, Heidelberg.

26. A. Gunay and P. Yolum. Structural and semantic similarity metrics for web service matchmak-
ing. In Proceedings of the 8th international conference on E-commerce and web technologies,
EC- eb’07, pages 129–138, Berlin, Heidelberg, 2007. Springer-Verlag.

27. A.Wombacher, B.Mahleko, and E. Neuhold. Ipsi-pf: A business process matchmaking engine.
In e-Commerce Technology, 2004. CEC 2004. Proceedings. IEEE International Conference
on, 137–145, pages 137–145. IEEE, 2004.

28. Huang, Anna. “Similarity measures for text document clustering.” Proceedings of the sixth
new zealand computer science research student conference (NZCSRSC2008), Christchurch,
New Zealand. 2008.

29. C. Platzer and S. Dustdar, “A vector space search engine for Web services,” Third European
Conference on Web Services (ECOWS’05), 2005, pp. 9 https://doi.org/10.1109/ecows.2005.5.

30. WordNet http://www.cogsci.princeton.edu/~wn/.
31. Ruiqiang Guo, Jiajin Le and XiaLing Xia, “Capability Matching of Web Services Based

on OWL-S,” 16 th International Workshop on Database and Expert Systems Applications
(DEXA’05) 2005 pp 653–67.

32. Jian Wu and Zhaohui Wu, “Similarity-based Web service matchmaking,” 2005 IEEE Interna-
tional Conference on Services Computing (SCC’05) Vol-1, 2005, pp. 287–294 vol. 1.

33. Yiqiao Wang and E. Stroulia, “Flexible interface matching for Web-service discovery,” Pro-
ceedings of the Fourth International Conference on Web Information Systems Engineering,
2003. WISE 2003., 2003, pp. 147–156.

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.w3.org/TR/ws-cdl-10/
http://www.ebpml.org/bpml.htm
http://www.webservicex.net/new/Home/Index
http://lig-membres.imag.fr/donsez/ujf/GICOM/GICOM_ENS/exemples/webservices/xmethods/www_xmethods_net.htm
https://doi.org/10.1016/j.future.2010.04.012
http://www.sciencedirect.com/science/article/pii/S0167739X10000762
http://dx.doi.org/10.1016/j.scico.2008.02.002
https://doi.org/10.1109/ecows.2005.5
http://www.cogsci.princeton.edu/%7ewn/

Webservice Specification and Discovery 51

34. G. Tretola and E. Zimeo, “Structure Matching for Enhancing UDDI Queries Results,” IEEE
International Conference on Service-Oriented Computing and Applications (SOCA ‘07), New-
port Beach, CA, 2007, pp. 21–28.

35. Ayse B. Bener, Volkan Ozadali, and Erdem Savas Ilhan. 2009. Semantic matchmaker with
precondition and effectmatching usingSWRL.Expert Syst. Appl.36, 5 (July 2009), 9371–9377.
DOI=http://dx.doi.org/10.1016/j.eswa.2009.01.010.

36. Mehmet Şenvar andAyşe Bener. 2006.Matchmaking of semantic web services using semantic-
distance information. In Proceedings of the 4th international conference on Advances in Infor-
mation Systems (ADVIS’06), Tatyana Yakhno and Erich J. Neuhold (Eds.). Springer-Verlag,
Berlin, Heidelberg, 177–186. DOI=http://dx.doi.org/10.1007/11890393_19.

37. G. Meditskos and N. Bassiliades. Structural and role-oriented web service discovery with
taxonomies in owl-s. IEEE Transactions on Knowledge and Data Engineering, 22(2):278–290,
2010.

38. M. Kifer, R. Lara, A. Polleres, C. Zhao, U. Keller, H. Lausen, and D. Fensel. A logical frame-
work forweb service discovery. In ISWC2004Workshop on SemanticWebServices: Preparing
to Meet the World of Business Applications, volume 119. Hiroshima, Japan, 2004.

39. Stollberg, M., U. Keller, H. Lausen, and S. Heymans, Two-phase web service discovery based
on rich functional descriptions. In The Semantic Web: Research and Applications. Springer,
2007, 99–113.

40. Klusch, M. and F. Kaufer (2009).Wsmo-mx: A hybrid semantic web service matchmaker.Web
Intelligence and Agent Systems, 7(1), 23–42.

http://dx.doi.org/10.1016/j.eswa.2009.01.010
http://dx.doi.org/10.1007/11890393_19

Non-functional Properties
of a Webservice

N. Parimala and Anu Saini

Abstract A webservice is intended to support communication between various
applications over the world wide web. There are three types of properties that are
associated with a webservice—functional, behavioural and non-functional. Non-
functional properties are defined as the constraints on the functional properties and
behavioural description of awebservice. Invariably, if services offer similar function-
ality then they are differentiated and chosen on the basis of non-functional properties.
In this chapter, first, the manner in which non-functional properties are categorized
is explained. Next, the specification and discovery of these properties are addressed.
Towards this, specification and discovery in a single service as well as in composi-
tions are discussed. Webservice composition can be a static way or dynamic. Both
these aspects are dealt with.

Keywords Webservice · Non-functional properties · WSDL · UDDI
Webservice composition · BPEL

1 Introduction

Service-Oriented Architecture (SOA) can be defined as an architectural software
concept that outlines the use of services to support business requirements. In SOA,
resources are made available to other participants in the network as independent
services that are accessed in a controlled way [39]. When these services publish
their details and interface information on the web, it is termed as ‘webservice’.
Webservices are platform and language-independent. Webservices are available over
the web and they can send and receive data as an XML document. The three core

N. Parimala (B)
School of Computer & Systems Sciences, Jawaharlal Nehru University, New Delhi 110067, India
e-mail: dr.parimala.n@gmail.com

A. Saini
G. B. Pant Government Engineering College, Okhla–III, New Delhi 110020, India
e-mail: drsainianu@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
H. Mohanty and P. K. Pattnaik (eds.), Webservices,
https://doi.org/10.1007/978-981-13-3224-1_3

53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3224-1_3&domain=pdf
mailto:dr.parimala.n@gmail.com
mailto:drsainianu@gmail.com
https://doi.org/10.1007/978-981-13-3224-1_3

54 N. Parimala and A. Saini

XML specifications of webservices areWSDL (Web ServiceDescription Language),
UDDI (Universal Description Discovery and Integration) and SOAP (Simple Object
Access Protocol).

A service is described using WSDL. It is possible to specify the functions that a
service provides using WSDL. But, it is restricted to specifying only the functional
properties of a service. However, functional, behavioural and non-functional proper-
ties are associated with a service [36]. Non-functional properties are constraints over
the first two. When two services are almost the same in terms of the functions they
offer, non-functional properties (NFPs) can be used to choose one over the other.

In this chapter, we study the specification and discovery of services based on their
NFPs. The layout of the chapter is as follows. Section 2 gives a brief introduction to
SOA architecture. The NFPs are described in Sect. 3. The manner in which NFPs can
be specified for a single service is dealt with in Sect. 4 followed by the discovery of
services based on NFPs, in Sect. 5. NFPs can be associated with composite services
as well which is considered in Sect. 6. Section 7 is the concluding section.

2 Architecture of SOA

The architecture of SOA is shown in Fig. 1. It consists of three core XML specifica-
tions which are defined below.

WSDL: It defines the XML grammar for describing services as collections of
communication endpoints capable of exchanging messages.

UDDI: It is a registry, which is used to store and locate the desired service.
In UDDI registry, search can be performed in many ways like search by specific
company name, by the name of a particular service, or maybe the different types of
service. UDDI can be used by consumers to discover the desired service and by the
provider to promote the available services.

Registry

Service ProviderService Consumer

1. Service description
in WSDL

2. Service
Enquiry

3. Query
Response

4. Service Request

5. Service Response

Fig. 1 Service-oriented architecture

Non-functional Properties of a Webservice 55

SOAP: It is a lightweight protocol for exchange of information [25]. It is based on
XML and consists of three parts: a SOAP envelope (describingwhat is in themessage
and how to process it); a set of encoding rules; and a convention for representing
RPCs (Remote Procedure Calls) and responses.

First, the service description is published by the service provider in the UDDI
registry. Then the service consumer requests or receives a contract for some particular
service from UDDI registry. Finally, the service provider provides a service that
performs some business function at the request of the Service Consumer. All the
communication among various entities of SOA is done using SOAP protocol.

According to W3C [6], a webservice can be defined as follows:

A webservice is a software system identified by a URI, whose public interfaces and bindings
are defined and described using XML. Its definition can be discovered by other software
systems. These systems may then interact with the webservice in a manner prescribed by its
definition, using XML based messages conveyed by Internet protocols.

3 Non-functional Properties

Three different properties are associatedwith services: (1) functional, (2) behavioural
and (3) non-functional [36]. The functions that a service can perform are described
by the functional properties. These functions are used by a consumer of the service.
The manner in which a user/consumer interacts with the service in order to invoke
its functions is described by the behaviour property. Further, in order to provide the
functionality to its user, a service may interact with other services. The manner in
which this interaction takes place also forms part of the description of the behavioural
properties. Finally, constraints over the functional and behavioural properties are
specified as non-functional properties.

Functional properties that are used to publish or find webservices are basic infor-
mation like name, contact information, etc. However, in some situation, it is inade-
quate to find the service only on the basis of the basic information. Further, with the
growing number of services, there are a number of services which have similar or
sometimes, even identical, functionalities. There is a need to add more information
to the service to distinguish one service from the other. The additional information is
available as non-functional property of a service. These properties can be, for exam-
ple security or performance. As a result, the user can now choose a service based on
some non-functional properties as well.

According to [16, 37] a service is described completely only when the non-
functional aspects are also described. To discover, select and substitute services,
NFPs are very important [48]. NFPs are also necessary for service management,
enabling service negotiation, composition and substitution [37].

Recall the architecture of SOA, where a service is first published in the UDDI,
then a user discovers the service and finally requests the provider for the service.
NFPs are incorporated within SOA in all the stages, namely, specification, publishing

56 N. Parimala and A. Saini

Table 1 Non-functional properties

Availability Accessibility Accuracy Audit trail Authorization

Best practices Capacity Classification Control Compliance

Encryption Execution time Integrity Interoperability Introspection

Latency Non-repudiation Penalty Price Refresh time

Reliable
messaging

Response time Robustness Scalability Security

Throughput Usability

and discovery of webservices. Further, composite services can be composed using
services supporting NFPs. These, in turn, support NFPs.

Quality of Service (QoS) attributes formamajor component ofNFPs.Anextensive
list is given in [26]. Some important ones are shown in Table 1.

Some of the QoS attributes are explained below [33].
Availability quality aspect of a webservice indicates whether it is available for

immediate consumption or use. It is the probability of availability of a service. Higher
the probability the greater is the chance of finding the service. Smaller probability
values indicate that the service may not be available at all times. If a service is
unavailable, then it takes a finite time to repair the service. This finite time is referred
to as time to repair (TTR). Smaller values ofTTRwill increase the service availability.

Accessibility attribute refers to the quality feature of a service as to whether it
is capable of serving a webservice request. Accessibility and scalability are inter-
related. Highly scalable systems can provide high accessibility. A webservice may
be available but not accessible.

Accuracy measures the error rate generated by a webservice. Obviously, it is
desirable to minimize the number of errors that the service generates over a time
period.

Integrity deals with the manner in which unauthorized access to data is prevented
and the manner in which the correctness of the interaction is maintained by the
service. To a great extent, integrity can be achieved by the use of a transaction. A
transaction is a sequence of activities to be treated as atomic.

Performance is measured in terms of time taken by the service to execute. It can
be considered in terms of throughput, response time, execution time, transaction time,
and latency. Throughput can be defined as the number of service requests that can be
managed within a particular time. The time taken to service a webservice request is
the response time. The time a consumer waits for a response after making a request
is termed as latency. Time taken by a webservice to complete its execution is the
execution time. Similarly, the time taken to complete a transaction is the transaction
time. High throughput, fast response and transaction time, low execution time and
latency values indicate good performance of a webservice.

One aspect of reliability deals with whether the delivery of messages between
sender and receiver in the specified order has been achieved. The second aspect

Non-functional Properties of a Webservice 57

deals with the ability to maintain the service and service quality. The third aspect of
reliability can be the number of failures per month or year.

Webservices have to follow rules, comply with standards and the established
service-level agreement. This quality aspect is referred to as regulatory. Standards
such as SOAP, UDDI andWSDL are already available. Webservices have to not only
adhere to these standards but also the correct versions so that consumers of services
invoke the webservices correctly.

A webservice displays robustness if it can function correctly even in the presence
of invalid, incomplete or conflicting inputs.

Scalability implies that even when the number of requests increases, it is possible
to service the requests.

Since webservices are invoked across public internet, security aspect must also
be considered. There is a need for a secure message exchange between the provider
and the consumer of the service. Towards this, confidentiality, encryption and access
control must be provided.

3.1 Categories of NFPs

NFPs such as performance, scalability, reliability, availability, stability, cost, com-
pleteness, channel, charging styles, settlement, payment, payment obligations, secu-
rity, trust, etc., are specified as QoS properties in [14, 52].

Some researchers, instead of dealing with individual property, classify the NFPs
into categories. In [7], NFPs are divided into two categories: QoS properties and con-
text properties. QoS-based properties are divided into two main categories namely
execution and security while the main subcategories of context properties are busi-
ness and environmental. The former is further divided into execution and response
time, accessibility, compliance, possibility of success, availability and security into
encryption, authentication and access control. The business properties are further
divided into cost, reputation, organizational arrangement, payment method, moni-
toring and environmental properties into temporal and location properties.

In [32], the authors divide the QoS attributes into two categories: quantitative
attributes, e.g. response time, availability, reliability and throughput and qualitative
attributes, e.g. security and privacy.

In [26], NFPs are classified according to their reaction in service aggregation,
composition, architecture, etc., and according to their semantic description. The
first category has five levels of axes, which are domain-dependency, negotiability,
type of value, direction and place of measurement. The semantic view has three
levels: business, system and service and four categories: performance, dependability,
security and trust and cost and payment.

Immaterial of the categorization, NFPs have to be published along with a service.
Further, it should be possible to discover the services based on NFPs. Both these
aspects are considered in this chapter.

58 N. Parimala and A. Saini

4 Extensions for Specification

By using the standard WSDL definition, it is not possible to incorporate the NFPs
as WSDL is designed for expressing only the functional properties. Efforts have
been made to extend WSDL to include NFPs in the definition of a webservice like
specifying testing factors, handling various versions, security parameters, quality of
service, etc. Before explaining the extensions, WSDL is briefly explained first.

4.1 Web Service Definition Language

Webservice can be defined using Web Service Definition Language (WSDL).
WSDL is a specification which is based on XML grammar and is used to define and
describe the webservices. WSDL also helps the user to access the service. According
to W3C, WSDL describes network services as a set of endpoints. They operate on
messages. Messages themselves contain either document-oriented or procedure-
oriented information [15]. WSDL describes the functionalities of a service. It also
describes the manner in which the service can be invoked. Service provider and
service consumer can communicate with the help of WSDL. WSDL elements
are divided into two parts—abstract and concrete. Abstract part contains various
elements: <definition>, <types>, <messages>, <porttype> which further contain
<operation>, <inputmessgae>, <outputmessage> as shown in Fig. 2a. Concrete part
has <bindings>, <service> further divided into <port> as shown in Fig. 2b.

Abstract

definitions types Porttype
Operation

Message
Inputmessage
outputmessage

Concrete

binding service
port

binding

(a)

(b)

Fig. 2 a WSDL abstract elements. b WSDL concrete elements

Non-functional Properties of a Webservice 59

WSDL document consists of the following elements to define a network service
[15].

Definitions: The root element of the entire WSDL documents must be the defini-
tions element. It specifies the name of the webservice, declares multiple namespaces
utilized all through the rest of the document and comprise every service element
explained here.

Data types: The data types describe the different types of data to be used in
the messages between the client and the server. It is normally in the form of XML
schemas though other mechanisms are also possible.

Message: It is either a whole document or arguments that are to be mapped to a
method invocation or it is an abstract definition of the data.

Operation: It is an abstract definition of the function that will receive and process
a message.

Port type: It is the collection of operations. It can bemapped tomultiple endpoints.
Binding: The concrete protocol and data formats defined for a particular port type

for the operations and messages is termed as binding.
Port: The target address of the service communication is provided by port, which

combines a binding and a network address.
Service: The service definitions in the file are encompassed by a set of related

endpoints called service; binding is mapped to the port by services which also incor-
porate any extensibility definitions.

Import: For importing other WSDL documents or XML schemas the import ele-
ment is used.

4.2 Extensions to WSDL

We first consider the specification of NFPs in a single service using WSDL.
In [2], using the extension element ofWSDL,NFPs are specified. In this extension,

it is possible to describe, measure and update the value of NFPs. A complex type,
NFpropertype, is predefined to define the properties that have to be enforced. Below
is an example which specifies that the response time for the operation ‘subtract’ has
to be 2 s.

<nf:operation name="subtract">
<nf:property

name="http://www.ibm.com/wsdl/NFProperties/ResponseTime
"

dataType="decimal" unit="seconds"
validUntil="2009-12-31T12:00:00">

 2
</nf:property>
</nf:operation>

BothWSDLandUDDI are extended in [28] to support versioning of awebservice.
Here, it is possible tomaintainmultiple versions of a single aswell asmultiple service

60 N. Parimala and A. Saini

Screen : Attribute
Label = screen

Size: Attribute
label = size
value = 3
Type = inches

Fig. 3 An example

interfaces. WSDL is extended at both service and operation levels. The version can
be specified for all the elements of an operation level. That is, types, messages,
interface, bindings and service endpoints can have different versions. If the main
elements of a service are changed at the same time, then the version is assigned to the
service. That is, ifWSDL elements like interface, types, messages and other elements
are changed at the same time, then a service-level versioning is used. The version
identifier consists ofmajor.minor versions numbers.Below is an example of a service-
level versioning, wherein the changes in this specific version are described. Service
consumers can programmatically query version information to plan the development
activities.

<wsdlx:versions mode = “servicelevel”>
<wsdlx:version vid = “2.0” type = “backward-

incompatible” intent =”revision”>
<wsdlx:previousVersion vid = “1.0”/>
<wsdlx:versionInfo> “modified XML….”
</wsdlx:versionInfo>
</wsdlx:version>

In [18], a model-driven architecture has been used to create an accurate mapping
between physical object and webservice. Themapping is accomplished by extending
WSDL with NFPs. First, a metamodel for WSDL is built. This is expressed in UML
notation. There are ten classes. The class Definition is composed of Types, Import,
Service, Binding, Message and PortType. The class Service is composed of class
Port. Class Message has class Operation and one or more class Part.

Next, this model is extended by defining a two-level descriptive model which has
two classes—Attribute and Description. Class Attribute gives the overall description
of the attribute and the class Description shows the detail. For example, in Fig. 3 the
size of the Screen has to be 3 inches.

This model is more suitable for the composed service rather than single service
as it is complex if it is extended for all NFPs.

WSDL metamodel is used also in [20]. Here, the performance attribute of qual-
ity of service such as response time, throughput, utilization is considered. WSDL
is extended to incorporate the description of the performance characteristics of a
webservice. The extension is called P-WSDL (Performance-enabled WSDL). The
specification is a two-step meta data-driven process. In the first step, WSDL meta-
model is derived from the WSDL XML Schema as in [18]. In the next step, the
WSDL metamodel is extended by applying a metamodel transformation that maps

Non-functional Properties of a Webservice 61

the elements of a source metamodel (i.e. the WSDL metamodel) to the elements of
a target metamodel (i.e. the P-WSDL metamodel). In this model, it is possible to
compare the actual performance with the expected performance.

In [1], UDDI and WSDL are extended for expressing security of webservices.
The authors extend bothWSDL and UDDI, by a new element <securityParameters>,
for publishing and discovering a webservice. The security parameters are added as
optional parameters to provide a secure environment in which transactions can occur.
These parameters include provider encryption and signature public keys, conditions
for acceptability of user keys for encryption and signature, access control policies
and data use policies.

To incorporateQoS informationWSDL is extended toWSDL-S [54]. In this study,
quality attributes are classified into domain-independent and domain-specific one.
Domain independent are attributes like availability, performance, etc.; the domain
specific ones pertain to the domain. For example, the QoS attribute frame rate is only
in media services. The service provider advertises these QoS attributes by incorpo-
rating those intoWSDL documents. The service with the QoS attributes is published
in UDDI and the relatedWSDLURL is sent to Quality Manager. A service requestor
sends the expected quality descriptions along with function descriptions to Quality
Manager. Table 2 is an example of such a request. Quality Manager first selects all
services that satisfy the functional properties. Within these, the most suitable service
which meets user’s expectations of QoS is chosen.

Ontologies have been used to define the semantics of QoS. The upper ontology
is built as the basis of quality ontologies. QualityIndependent ontology has domain-
independent quality attributes andQualitySpecific ontology has the ontological terms
of a particular domain.

NFP is considered as a different property from QoS in [38]. The authors have
proposed a new webservice named as ‘Criteria Based Webservice’, where criteria
as a NFP are associated with a webservice. Criteria are extra added properties to
the webservice. For example, criteria for ‘book flight’ service could be that it has ‘a
window seat’. Therefore, to incorporate the newly added criteria with a webservice
the authors have extendedWSDL toX-WSDL. To do this,WSDL schema is extended
by adding a new keyname ‘criteriaservice’ as shown in Fig. 4.

An example, which shows the criteria ‘Window seat’ and ‘Vegetarian food’ asso-
ciated with FlightRoomService is shown in Fig. 5.

Table 2 A requestor with
quality constraints

QS(S) >= 0.85
ER(downloadSpeed)�0.85
ER(ResponseTime)�0.55
booktype=pdf

62 N. Parimala and A. Saini

<xs:element name="definitions">
<xs:key name="criteriaservice">

<xs:selector xpath="cr:service"/>
<xs:field xpath="@name"/>

</xs:key>
</xs:element>

Fig. 4 Schema definition for X-WSDL

<wsdl:definitions
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:cr=” http://localhost:8080/EUDDI/wsdl1”
targetNamespace= “http://localhost:8080/EUDDI/wsdl1.xsd”
<cr:service name=" FlightBookService">

<cr:criteria name= “ Window Seat”/>
<cr:description name =” Need window seat”

</criteriadescription”>
<cr:criteria name= “ Vegetarian Food ” />
<cr:description name = “ Vegetarian food should be available” </criteriadescription”>
<cr:port name=" FlightBook"

binding=" ">
</cr:port>

</cr:service>
</def inition>

Fig. 5 Example of the definition of X-WSDL

5 Extensions for Discovery

Having specified NFPs while describing a service, it is necessary to provide a mech-
anism where NFPs can be specified while discovering a service. The methods range
from extensions to UDDI, discovery semantics based using ontology, peer-to-peer
systems and agent-based framework. We discuss each of these in turn. Before we do
so, the structure of UDDI is briefly explained.

5.1 Universal Description Discovery and Integration

Universal Description Discovery and Integration (UDDI) is a registry for publishing
and discovery of webservices. Service providers use the registry to publish their ser-
vice definitions and the registry is used by the users/requestors to find the required ser-
vice. These registries aid the businesses to quickly, easily, and dynamically discover
webservices and interact with each other. UDDI permits businesses to register their
presence on the web [46]. The basic structure of UDDI containing businessEntity,
businessService, businessTemplate, tModel is shown in Fig. 6 [10]. UDDI contains

Non-functional Properties of a Webservice 63

UDDI

businessService

businessEntity

bindingTemplate

tModel

Description
details
about

service like
key, name

contact

Information
about service

provider

Contains
technical

information about
service Contains

Taxonomies

Fig. 6 UDDI structure

three pages—white page, orange page and green page. These pages contain infor-
mation about webservices. The basic information about businessService is given on
white page. The various services offered by businessEntity are given in yellow page.
The technical description about webservices is provided on the green page. The
three pages are represented in businessEntity, businessService, bindingTemplate and
tModel.

businessEntity: businessEntity element includes information about the actual busi-
ness of a service provider. An element in businessEntity is a Universally Unique ID
(key) for individually representing their business.

businessService: businessService provides a list of webservices offered by busi-
nessEntity. Each businessService contains a businessEntity key, service key, service
name and webservice description.

bindingTemplate: A bindingTemplate is a child of a businessService. Each busi-
nessService contains a list of binding templates, which offer information on where to
get the service and how to utilize the service. A binding template includes a unique
key to specify a businessService to which it belongs and in addition, it contains the
access point of the service implementation.

tModel: In UDDI data model, tModels are utilized to specify the technical defini-
tions. Each tModel contains name, explanatory description and one unique key that
are referenced by many bindingTemplate.

5.2 Extensions to UDDI

Many extensions to UDDI to incorporate QoS have been proposed. We consider
some of them here.

UDDI is extended toUDDIe to includeQoS attributes for discovering and describ-
ing a service in [43]. There are three main extensions incorporated in UDDIe are
given below:

64 N. Parimala and A. Saini

• support for ‘leasing’ which specifies a limited time period duringwhich the service
is available

• support for search on other attributes of a service wherein the businessService
class is extended with propertyBag

• extending the find method in UDDI.

UDDIe supports ‘Finite’ and ‘Infinite’ leases. The services can be made available
by service providers for limited time periods by specifying ‘Finite’ (for security
reasons, for instance)—or may provide the service for an infinite period of time.
Service properties are contained in the propertyBag entities of a business service.
Various attributes of the property are propertyName, propertyType and propertyValue
as shown in Fig. 7.

Finally, interaction with the registry system is accomplished by extending three
existing APIs. The extensions are to _saveService wherein attributes such as cost
of access, performance can be stored using the propertyBag mechanism provided in
UDDIe. API _findService is extended to include queries based on Service Property
and Service leasing. Lastly, _getService Details API provides the details of the new
properties.

UDDIe contains an additional ‘blue page’. When a service is published, the QoS
information is stored on the blue page. The information stored on the blue page is
used by the consumer to discover services based on QoS properties. The G-QoSM
framework [3] is used to implement the system. A service request by the consumer is
sent to QoS broker. The broker interacts with the UDDIe registry to find the service
(with the QoS properties) that satisfies the user’s request.

UDDI specifications are extended to offer and utilize the predictions about web-
services behaviour in [5]. In this work, a developer is not expected to state the
QoS attributes that are supported. A consumer also is not expected to provide QoS
attributes that she expects. However, agents are able to pick up the most suitable
service at run time. Predictions about a service are calculated and are available for
the agents to examine. The QoS properties that are used to predict a service are
availability, reliability and completion time. Availability is the probability that the
webservice is up; Reliability is the probability that a correct SOAP request will gen-
erate the correct SOAP response; Completion Time is arrival the time between arrival
and response of the SOAP request. To execute such an extension, a prototype—named

property

uddie:propertyType uddie:propertyValueuddie:propertyName

Fig. 7 Property attributes

Non-functional Properties of a Webservice 65

eUDDIr—has been developed. The bindingTemplate of the UDDI registry has been
extended in eUDDIr. The bindingTemplate lists are ordered by the predicted run-
time behaviour of the service. Three pairs of qualifiers, for the three attributes of QoS
that are supported, have been proposed. The qualifiers for availability are SBPAA
and SBPAD where the last letter indicates whether the result set of a qualifier is to
be sorted in ascending or descending order. The corresponding tModel names are
euddir:sortByAvailabilityAsc and euddir:sortByReliabilityDesc. The qualifiers for
completion time are SBPCTD and SBPCTA where, as before, the last letter indi-
cates whether the result set of the qualifier is to be sorted in ascending or descending
order. The corresponding tModel names are euddir:sortByCompletionTimeDesc and
euddir:sortByPredictedCompletionTimeAsc. For reliability, the pairs are SBPRD,
euddir:sortByReliabilityDesc and SBPRA, euddir:sortByReliabilityAsc.

Ran [40] has proposed a webservice registration model which consists of four
roles. Webservice supplier, Webservice consumer, Webservice QoS certifier and the
new UDDI registry. A provider provides QoS constraints that are supported by the
service. These are verified by a QoS certifier. The new UDDI registry is a repository
of Webservices with certified QoS. A service consumer can look up the new UDDI
registry for a service with the desired functional description and QoS attributes as a
constraint.

businessEntity data structure of UDDI is modified to include publisherAssertion
data type about QoS attributes that are supported. This data structure is under both
the businessService data structure type, and bindingTemplate data structure type,
specifies the tModel. UDDI data structure is extended by ‘qualityInformation’ data
type. Below is an example wherein the desired QoS attribute ‘availability’ to be at
least 0.9 (that is available 90% of the time) is embedded in a SOAP request.

<qualityInformation>
<availability> 0.90 </availability>

</qualityInformation>

Blum and Carter [11] propose, in a technical note, the different ways in which
management information can be stored inUDDI.The overall performance, reliability,
availability and throughput are aggregated. tModels have been used to represent the
concepts or constructs that are used to describe compliance with a specification. Four
alternative methods to store such information in UDDI registries are discussed. In the
first method, a reference to an external QoS is defined in the UDDI by introducing the
QoS tModel, called QoS information. Each UDDI bindingTemplate contains a QoS
Information tModel and adds the QoS Information tModel to the tModel Instance
Details collection. In the second method, for each different type of QoS information,
new tmodels are created which are subsequently added to the binding templates.
The third method is similar to the first method with the difference that it contains
the binding template. As a result, the category bag of QoS information tModel has
many key references to represent different QoS information. The last method uses
the categoryBag in UDDI to store the QoS values. Multiple steps are needed to locate
the required service which implies that it may take a long time to locate a service.
The system may well turn out to be inefficient.

66 N. Parimala and A. Saini

5.3 Specification Using Semantics

A requester’s preferences of QoS attributes in a semantic context is considered in
[27]. OWL-Q ontology is extended to capture preferences expressed in a language
calledQoSPref. Constraints that a servicemust satisfy are declared as a list of comma-
separated Boolean conditions. An example is given below

chartType = "time series",
cost < 10,
availability > 0.90,
imageResolution = "720x720",

responseTime < 8}

constraints {

The main contribution is that a user can specify the preferences among the con-
straints. For the above example, the user can specify the preferences as

preferences {
cost,
availability : high,
responseTime,
colors : low}

The user also states that high is to be preferred over low. New classes in OWL-
Q are introduced. The new classes are QoSDemand class for the specification of
constraints and QoSPreference class for a preference rule. The preference rules are
used to rank webservices, which may not satisfy the constraints identically.

OWL-S is combined with WSDL to express the semantics of a webservice in
[34]. The semantics of awebservice is described in the ontology. Specifically, Service
Profile module of OWL-S is used to express functional and non-functional properties
of a webservice. Using the semantic definitions, a user is provided with information
that helps in searching, discovery, selecting and composing webservices. A service
is discovered on the basis of user’s requirement. A finer refinement of matching
is used in [31]. Here, the match may be specified to be exact, subsumed, plug-in,
intersection or disjoint. In these approaches, effort has been made to automatically
locate the webservice by using ontologies. Even though considering semantics has
major benefits, there are some drawbacks. Ontology definition is a complicated, hard
and nonflexible task [29]. Another problem with ontology is their maintenance. An
additional difficulty is that it lacks repositories or marketplace where interaction can
take place.

QoS concepts of webservices like reliability, execution time, response time, avail-
ability, etc., are described by concepts in a QoS ontology and then embedded into
service description files [50]. The value of a WoS attribute is normalized with a
higher value indicating better compliance. QoS values over a time are collected as
feedback when services are actually executed. This data is used by a real-valued time
series forecasting technique to predict its future quality conformance. Based on these
values the selected services are ranked. To do so, a user query is represented as ‘a
vector Q of triples {qj, nj, vj} where qj represents for the required QoS attribute, nj
is the level of importance of this quality attribute to the user and vj is the minimal

Non-functional Properties of a Webservice 67

delivered QoS value that this user requires’ [50, 51]. Simple Additive Weighting
method is used to rank services.

5.4 Peer-to-Peer Systems

Webservice can be discovered on the basis of NFPs by using a peer-to-peer system.
Here, NFPs can be interoperability, scalability, efficiency, fault tolerance and seman-
tics. These systems are unstructured are decentralized, scalable and self-organizing.
Service provider is not needed in peer-to-peer systems for the discovery of service
[9]. To provide a service, this system works in a distributed way. Each entity works
as a server and client of the peer-to-peer service. In this system, there is no way to
determine which peer in the system is more likely to have certain data. Therefore, it
leads to an inefficient search [24].

In [24], both the functionality and the behaviour of Webservices are taken into
account for discovering a webservice. Once the services which satisfy the functional
and behavioural requirements are found, they are ranked on the NFPs. NFPs that are
considered are trust and quality ratings. Towards this, a scalable reputation model
is built. To start with, a webservice is expressed as a Path Finite Automaton (PFA),
a finite automaton with no loops. Two counters, q and t, are associated with each
PFA. These represent the quality of the service and the trustworthiness of the service
provider, respectively. Users of a Webservice can assign a value for q and t for each
webservice and the values are collected over six months. Score for each webservice
is computed as α · t + (1 − α) · q. The scores are used for ranking the services in the
reputation model.

Yu [53] and Vu et al. [51] propose a distributed service discovery framework
based on structured peer-to-peer overlays as the service repository network. The
providers publish service advertisements with embedded QoS information in P2P-
based registries. Any registry peer can be queried by the user for a service with the
required functionality and QoS properties. This request is internally routed to the
registry peer that can answer it. Once the results are returned to the user, the user
can invoke the service. The feedback from the users regarding the QoS properties
as experienced by them is taken by the registry peer. A safeguard to distinguish
malicious feedback from the genuine ones is built into the system. Communication
between registry peers provides the support to the user for locating a servicewherever
it is, taking feedback and other operations.

5.5 Agent/Broker-Based Systems

Agent framework, referred to as Web Services Agent Framework (WSAF), is pro-
posed in [35]. Service consumers and providers communicate by using an agent
framework. First, QoS data is collected from agents which are subsequently aggre-

68 N. Parimala and A. Saini

gated and stored. This data is shared between the consumers and providers. Service
providers advertise QoS attributes via WSDL. Service brokers augment UDDI bro-
ker registries with agencies with which service agents collaborate. The consumer
application can contain agents. The interaction between these is shown in Fig. 8. A
service agent queries agencies for a suitable match for the consumer’s requirement
in terms of functional properties and also QoS preferences or policies.

For a dynamic selection of webservice, a broker-based approach is proposed in
[21]. Here, all requirements, functional as well as non-functional are specified. A
QoS broker negotiates between the registry and service user. This broker helps the
users choose the required service from the registry. A QoS broker consists of three
components: Service Selector, Service Publisher and Quality Manager. A service
provider uses service Publisher to publish both the functional and QoS properties
supported by the service. The QoS broker verifies the QoS properties and certifies
them. Upon certification, the service is published in the service registry by the ser-
vice publisher. Next, is the manner in which a consumer finds a service with the
requisite functional and QoS properties. The requirements on QoS properties are
expressed as QoS constraints. The constraints can be simple or composite. A simple
QoS constraint normally deals with one QoS property. For example, QoS constraint
like ‘response time should be less than 4’ is a simple constraint and is expressed
as (RT) < 4. Composite constraints are formed using simple constraints and con-
straint operators AND and OR. The composite constraints expressed as AND–OR,
QC, tree. The edges can be assigned weights to express the different importance of
each constraint. The QC tree and the functional requirements are sent to the Service
Selector by a service consumer. Service Selector component finds the service that
matches these requirements. The important step is the feedback system. The con-
sumer sends the feedback to the quality manager, which updates the QoS properties

Consumer Provider

Broker

1. Publish WSDL2. Find UDDI

3. Bind with
SOAP

Agency A Agency A

Multiple
Agents

Fig. 8 Agents and agencies in a service-oriented architecture

Non-functional Properties of a Webservice 69

Webservice

WebserviceCoordinatorWebservice

Webservice

Fig. 9 Orchestration

of the specific webservice. Thus, it is possible to fine-tune the QoS properties with
the actual performance of the service.

6 Specifications of NFPs in a Composition

A single webservice which is able to fulfil a user’s request on its own is referred
to as an atomic service [45]. It does not depend on other webservices to carry out
the functionality. Atomic services have limited functionality. When anatomic ser-
vice is not able to fulfill a user’s needs, there is a requirement to compose several
individual services. A composition may consist of atomic services as well as other
composite services. Services can be combined to form a composition in two different
ways—orchestration and choreography [22, 45]. In orchestration, there is a single
executable business process. It invokes other services to carry out its functional-
ity as shown in Fig. 9. Orchestration is based on the concept of a central process
which interacts with the involved Webservices. It coordinates the activities with the
webservices. The webservices themselves do not know that they are a part of the
orchestration. The central process coordinates with webservices in such a manner so
as to realize the overall goal of the process. The composition describes the sequence
and the conditions under which other services are invoked.

On the other hand, in choreography, services interact with each other to carry
out a complex task. Choreography represents the interaction between peer services
from a global perspective as shown in Fig. 10. The peer services collaborate in a
manner so as to achieve the overall goal. Each service is aware of the goal of the
business process, its contribution to the business process, the peers with whom it has
to exchangemessages and the timing of thesemessages. The services that participate,
the rules and order of exchange of messages are described in the choreography.

70 N. Parimala and A. Saini

Webservice

Webservice

Webservice

Webservice

Fig. 10 Choreography

Of the different languages proposed for orchestration, Business Process Execution
Language (BPEL) as given in [4] is considered in this chapter.

According to [45], the composition can be either static or dynamic depending on
the time when they are composed. In static-based composition, the process model
consisting of the tasks is specified at design time. The services that are to be invoked
are chosen, bound together as per the process workflow and deployed. In static
composition, the webservices are bound early. Now, if the composition is to support
the specification of NFPs, then the component webservices must also support NFPs.
In other words, the webservices that are chosen must support the specification of
NFPs. Further, such services must be available. In the absence of the existence of
these services, the composition cannot be taken to completion. Further, if these
services are withdrawn at a later time by the developer, then the composition which
was running earlier on will fail. The aggregation of the NFPs of the services can
be treated as the NFPs that will be satisfied by the composition. In addition, the
composition may have its own requirement of NFPs to be satisfied.

On the other hand, in dynamic composition, the webservices can be chosen at run
time. Therefore, there must be a support system to discover, select and bind services
late, at the time of execution.However, the late binding gives the flexibility to discover
webservices which satisfy NFPs at execution time. Undoubtedly, compositions are
more likely to go through a webservices environment is highly dynamic in nature.

The composition of webservices using the functional properties can be expressed
using BPEL. In this chapter, we explain the manner in which NFPs are incorporated
in the composition.

Non-functional Properties of a Webservice 71

6.1 Static Composition

In static composition, QoS properties are expressed along with the specification of
the process model. The webservices which satisfy the QoS properties are chosen at
run time.

Quality of Service Language for Business Processes (QoSL4BP), a language
which incorporatesQoS behavioural logic in orchestration is proposed in [8]. Orches-
trationQuality of Service (ORQOS), a composition platform, has also been proposed.
Policies can be expressed using a policy-based language. The policy consists of three
sections: SCOPE, INIT and RULES. QoS settings to be enforced at pre-deployment
time for an activity can be defined using the INIT section and at run time using
the RULE section. The BPEL activity itself is identified in the ‘SCOPE’ section.
ORQOS platform process has three steps. First, all the services which match the
abstract services of the orchestration are picked up provided the total quality of these
services matches the SLA (Service-Level Agreement) of the orchestration. Activ-
ities for monitoring are introduced in the orchestration. Finally, ORQOS performs
QoS adaptation at runtime. Thus, ORQOS guarantees the QoS properties at pre-
deployment time and at run time. QoS data is collected both, at the service level and
at the composition level. It can be accessed using primitives. Some of these are

(a) REQUIRE which gives QoS information required
(b) PROVIDE which gives QoS information provided by the service
(c) SLAVIOLATION to check if there is SLA violation
(d) SCOPEVIOLATION to check if there is any scope violation
(e) EXCEPTION using FAIL and THROW
(f) PERFORMandPROCESS to check the inbound and outboundSOAPmessages.

Transactional and QoS-driven composition approach for composition is proposed
in [23]. They combine transactional and QoS requirements in the selection of web-
services. The system takes two inputs: a workflow and the user’s preferences. Yet
Another Workflow Language (YAWL) is used to represent the workflow. The user’s
preferences are expressed as weights over QoS criteria and as risk levels. The com-
position manager selects a webservice from the registry. The registry provides ways
for not only publishing and locating webservices but also to maintain the metadata
for describing the functional, behavioural and NFPs of a web server. The Plan-
ner Engine assigns a selected webservice to the concerned activity in the workflow
thereby generating an execution plan. This plan is executed enforcing the transac-
tional requirements and the QoS criteria defined by a user.

Performance of a composite webservice is predicted [19]. The work is based on
using performance-enabled webservice, P-WSDL given in [20]. Using the composite
service specification a class diagram (CD), describing the interface of the composite
webservice, and an activity diagram (AD), describing the abstract workflow is pro-
duced. When the abstract service is bound to a concrete data, the AD is annotated
with performance-oriented data which is available with each concrete service. Dif-
ferent compositions are created. Each composition predicts the performance of the
composition. The system can then decide which composition to execute.

72 N. Parimala and A. Saini

QoS properties are added to the BPEL process by using policies in [13]. The
approach is based on XPath, WS-Policy and WS-PolicyAttachment. Webservices
can publish their policies using WS-Policy [42]. A policy is a collection of policy
assertions that can be combined using several operators. The policies can be attached
to WSDL documents or any resources using WS-PolicyAttachment [44]. A BPEL
process may have its own policies, which are specific to the activities of a BPEL
process. Therefore, the authors introduce policy attachment files (.pat files for short).
The selector element is an XPath expression for selecting a set of activities. At
deployment time of a BPEL process, webservices which satisfy the policy in the
WSDLfiles are chosen. The policies attached to BPEL andWSDLfiles are combined
for enforcement of the policies. The approach is implemented by extending the
Colombo [17] BPEL engine in an event-driven manner so that the policy handling
component is notified about different events in the execution of process activities.

For the composition of Criteria-BasedWebservice, BPEL is extended to X-BPEL
in [41]. Criteria are an additional property which can be associated with a service.
To incorporate the newly added criteria information standard BPEL schema needs
to be extended. Four new activities get_criteria, accept_criteria, find_dservice and
replyX are added. A list of criteria is provided by the user by using get_criteria
activity. Here, information flow is from process to user. User responds by using
accept_criteria through which BPEL engine accepts the list of criteria. An example
of get_criteria is shown below:

<xbpel:get_criteria name= “ flightservcie”
Service description =” criteria list for flight service”

</get_criteria>

An example of accept_criteria activity is shown below:

<xbpel:accept_criteria name = [window seat, vegetarian food]
Criteria description= “ “

</accept_criteria>

To search for the criteria-based webservice from X-UDDI registry, find_dservice
has been used. In the result, the registry provides the list of services along with the
matched criteria. The replyX activity is used to return the list of alternatives, in the
form of an array of strings, to the user.

6.2 Dynamic Composition

As stated before, in dynamic composition, the process model is developed and web-
services are chosen at run time. When QoS are specified, the webservices which
satisfy the QoS properties are chosen to participate in the composition.

Non-functional Properties of a Webservice 73

In [30], a framework for the functional composition ofwebservices is described. A
semantic graph is developed which represents the final composition. Initially, Causal
Link Matrix (CLM) formalism which represents relevant service compositions is
developed. Using this, the set of possible solutions is arrived at. Service and service
request contain functional properties such as inputs, outputs, goals, preconditions,
etc., and non-functional properties such as cost, security, performance, reliability,
etc. These are specified in terms of annotations. These annotations are references to
elements defined on ontologies. An example of an annotated service request is:

<Non-functional>
<"NFPOnt#Cost" value=10>
</Non-functional>

The annotation NFPOnt#Cost says that the cost of the service should be 10. NFPs
may be specified with each service. Appropriate functions such as sum, max, min,
etc., are used to compute the overall value of the non-functional properties of the
composition. For example, if total cost of the composition is to be computed then the
function, sum, is appropriate. If a composition does not match the value requested
by the users then it is dropped. Finally, a set of valid service compositions which
satisfy the NFPs are selected. The value is also used to rank the compositions.

A new platform, Star Web Services Composition Platform (StarWSCoP), is used
for dynamic composition of webservice in [47]. StarWSCoP supports specification
of QoS properties of a webservice by extending WSDL. BPEL4WS, a composi-
tion language is extended to support QoS. Ontology is used to achieve a semantic
match for a webservice. To support semantic lookup of a request, UDDI has also
been extended. The architecture includes many parts such as an intelligent system
to decompose a user’s requirement into abstract service. The differences in the web-
services are concealed by a wrapper, which acts as a proxy of the webservice. At
run time, QoS is gathered by a real-time QoS estimation engine. The engine is fired
when the execution of each component of a composite webservice is completed.
It is possible that real-time QoS as collected by the engine is at variance with the
user’s requirement. In such a situation, the engine alters the composite webservice
definition.

In [49], a decentralized dataflow model is proposed for webservice composition.
Data distribution, reliability, availability and QoS are considered. The framework is
made up of nine components: service provider, composer, service requestor, UDDI
registry, translator, repository, execution engine, evaluator andmatching engine.Data
to find a service is increased due to multiple repositories. However, the authors do
not show the manner in which the framework can be implemented.

Brahmi and Gammoudi [12] propose an efficient webservice composition
approach based on Multi-Agents System (MAS). The completion of a composi-
tion fulfils the user’s QoS requirements such as speed, cost, reliability, etc. The QoS
of the components is aggregated to get the QoS value of the composition. A user
requests for a composition fulfils the functionalities as well as the QoS requirements.
All similar services are grouped into a Service Class which is managed by a Class
Agent. Agents can be connected to each other akin to social networks. These agents

74 N. Parimala and A. Saini

cooperate together to find the optimal and feasible composition. The user specifies
the inputs and the required outputs as R = {Inputs = A; Outputs = F}. The composer
agent, Compositor, initializes the composition process using the Class Agents. These
agents, in turn, use other agents to complete the composition. They send amessage to
successive agents with their partial composition and QoS value. For example, let the
agent A0 choose a service S01 as part of a composition with QoS value 10. A0 sends
a message to A2. The message contains {(S01, A0)}#10}. Let agent A2 choose the
service S23 as the next part of the composition. The partial composition is indicated
by the message ({(S01, A0), (S23, A2)}#40). This says that agents A0 and A2 are
triggered and that QoS value so far is 40. The final compositions are returned to
Compositor which chooses the composition with the best QoS value.

7 Conclusion

In this chapter, we have dealt with NFPs of a webservice. These are essentially the
constraints on the functional and behavioural properties of a service. The NFPs help
in choosing a service among those that have similar or even identical functionality.
As to what can be specified as a NFP is left to the designer of a webservice. Most of
the work, however, has considered QoS as part of NFPs.

NFPs are to be defined with a webservice. WSDL, however, has no provision for
specifying NFPs. Typically, extensions toWSDL have been proposed by researchers
to incorporate the additional properties. Since WSDL is expressed as an XML doc-
ument, new elements have been added to define NFPs. The next step is to publish
and discover a service with NFPs. Four methods of publishing and discovery are
explained in this chapter. The first is by extending UDDI so that a service with NFPs
can be published. Further, extensions for searching UDDI based on NFPs are also
dealt with. The next three methods, explained in this chapter, do not extend UDDI
but build an additional layer to support publishing and discovery of services with
NFPs. In the first method, an ontology is built in which NFPs can be expressed and
is used for searching for services with NFPs. In the second method, a peer-to-peer
system is built over the service discovery framework and in the third, a broker system
is developed.

Composition using webservices with NFPs can be static or dynamic. Both the
approaches have been discussed. In both the cases, compositions which satisfy the
requirements based on NFPs are chosen. In static composition, the services which
satisfy theNFP requirement are chosen to complete the composition before executing
the process. In dynamic composition,webserviceswhich satisfy theNFP requirement
are chosen at run time. These services are used to complete the composition.

Non-functional Properties of a Webservice 75

References

1. Adams, C., & Boeyen, S. (2002). UDDI and WSDL extensions for Web Service: A Security
Framework. ACM Workshop on XML Security (pp. 30–35). https://doi.org/10.1145/764792.
764798.

2. Agarwal, V., & Jalote, P. (2009). Enabling End-to-End Support for Non-Functional Properties
in Web Services. IEEE Int. Conf. on Service-Oriented Computing and Applications (pp. 1–8).
https://doi.org/10.1109/soca.2009.5410272.

3. Ali, R., RanaO.F., Walker, D., Jha, S., & Sohail, S. (2012). G-QoSM: Grid service discovery
using QoS properties. Computing and Informatics, 21(4), 363–382.

4. Alves, A. (2007). Web Services Business Process Execution Language Version 2.0, OASIS
Standard. Retrieved from http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

5. Ambrosi, E. (2005). Extending the UDDI API for service instance ranking. ISWS,
(pp. 104–110).

6. Austin, D. (2002, 11 14). Web Services Architecture Requirements. Retrieved from https://
www.w3.org: https://www.w3.org/TR/2002/WD-wsa-reqs-20021114.

7. Badr, Y. (2008). Enhancing Web Service Selection by User Preferences of Non-Functional
Features. 4th IEEE Int. Conf. on Next Generation Web Services Practices (pp. 60–65). https://
doi.org/10.1109/nwesp.2008.39.

8. Baligand, F., Rivierre, N., & Ledoux, T. (2007). A declarative approach for qos-aware web ser-
vice compositions. In International Conference on Service-OrientedComputing (pp. 422–428).
Springer, Berlin, Heidelberg.

9. Banaei-Kashani, F., Chen, C., & Shahabi, C. (2004). Wspds: Web services peer-to-peer dis-
covery service. (pp.). In Proceedings of the International Conference on Internet Computing,
(pp. 733–743).

10. Bellwood, T. (2002). UDDI Version 2.03 data structure reference. Retrieved from http://uddi.
org/pubs/DataStructure-V2.03-Published-20020719.pdf.

11. Blum, A., & Carter, F. (n.d.). Web Services Management Information - Oasis. Retrieved
February 13, 2017, from https://www.oasis-open.org/committees/download.php/…/UDDI%
20WSM-Info-1v7.d….

12. Brahmi, Z., & Gammoudi, M. (n.d.). QoS-aware Automatic Web Service Composition based
onCooperativeAgents. In Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE), 2013 IEEE 22nd International Workshop on (pp. 27–32). IEEE.

13. Charfi, A., Khalaf, R., & Mukhi, N. (2007). QoS-aware web service compositions using non-
intrusive policy attachment toBPEL. InternationalConference on Service-OrientedComputing
(pp. 582–593). Springer, Berlin, Heidelberg.

14. Chen, Y.-p. (n.d.). Study onQoSDrivenWeb Services Composition,”. 8th Intl. Conf. of APWeb,
LNCS, (pp. 702–707).

15. Christensen, E. (2001).Web services description language (WSDL) 1.1.Retrieved from https://
www.w3.org: https://www.w3.org/TR/wsdl.

16. Chung, L. (1991). Representation and utilization of non-functional requirements for informa-
tion system design. International Conference on Advanced Information Systems Engineering
(pp. 5–30). Springer, Berlin, Heidelberg.

17. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., & Weerawarana, S. (2005).
Colombo: Lightweight middleware for service-oriented computing. IBM Systems Journal,
44(4), 799–820.

18. Dai, C., & Wang, Z. (2010). A Flexible Extension of WSDL to Describe Non-Functional
Attributes. 2nd IEEE Int. Conf. on e-Business and Information System Security (pp. 1–4).
https://doi.org/10.1109/ebiss.2010.5473641.

19. D’Ambrogio, A., & Bocciarelli, P. (2007). Amodel-driven approach to describe and predict the
performance of composite services.Proceedings of the 6th international workshop on Software
and performance (pp. 78–89). ACM.

https://doi.org/10.1145/764792.764798
https://doi.org/10.1109/soca.2009.5410272
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
https://www.w3.org
https://www.w3.org/TR/2002/WD-wsa-reqs-20021114
https://doi.org/10.1109/nwesp.2008.39
http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.pdf
https://www.oasis-open.org/committees/download.php/%e2%80%a6/UDDI%20WSM-Info-1v7.d%e2%80%a6
https://www.w3.org
https://www.w3.org/TR/wsdl
https://doi.org/10.1109/ebiss.2010.5473641

76 N. Parimala and A. Saini

20. D’Ambrogio, C. (2006). A Model-Driven WSDL Extension for Describing the QoS of Web
Services. 6th IEEE Int. Conf. on Web Services (pp. 789–796). https://doi.org/10.1109/icws.
2006.10.

21. D’Mello, D., Ananthanarayan, V., & Thiilagam, S. (2008). A qos broker based architecture
for dynamic web service selection. In Modeling & Simulation, 2008. AICMS 08. Second Asia
International Conference on. IEEE, (pp. 101–106).

22. Dustdar, S., & Schreiner, W. (2005). A survey on web services composition. International
journal of web and grid services, 1(1), I 1–30.

23. El Hadad, J., Manouvrier, M., & Rukoz, M. (2010). TQoS: Transactional and QoS-aware
selection algorithm for automatic Web service composition. IEEE Transactions on Services
Computing, 3(1), 73–85.

24. Emekci, F. (2004). Emekci, F., Sahin, O. D., Agrawal, D., & El Abbadi, A. (2004, July). A peer-
to-peer framework for web service discovery with ranking. Proceedings IEEE International
Conference on Web Services (pp. 192–199). IEEE.

25. Gudgin, M. (2003). SOAP Version 1.2.W3C recommendation, 24. Retrieved from https://www.
w3.org: https://www.w3.org/TR/2002/WD-soap12-part1-20020626/.

26. Hernandez, E. (2010). Evaluation Framework for Quality of Service in Web Services: Imple-
mentation in a Pervasive Environment, Master Thesis. LIRIS, INSA, Lyon. https://www.ibm.
com/developerworks/library/ws-quality/. (n.d.). Retrieved 02 10, 2017, from https://www.ibm.
com/.

27. Iordache, R., & Moldoveanu, F. (2014). QoS-aware web service semantic selection based on
preferences. Procedia Engineering, 69, 1152–1161.

28. Juric, M. (2009). WSDL and UDDI Extensions for Version Support in Web Services. Journal
of Systems and Software, vol. 82, no. 8, 1326–1343.

29. Konstanty, H., Kaczmarek,M., & Zyskowski, D. (2008). Semantic web services applications–a
reality check.Wirtschaftsinformatik 50.1, 39–46.

30. Lécué, F., Silva, E., & Pires, L. (2008). A framework for dynamic web services composition.
Emerging Web Services Technology, Volume II , 59–75.

31. Li, L., & Horrocks, I. (2004). A software framework for matchmaking based on semantic web
technology. International Journal of Electronic Commerce, 8(4), 39–60.

32. Mabrouk, N. (2009). QoS-Aware Service Composition in Dynamic Service Oriented Environ-
ments. ACM/IFIP/USENIX Int. Conf. on Middleware (pp. 123–142). Springer-Verlag, https://
doi.org/10.1007/978-3-642-10445-9_7.

33. Mani, A., &Nagarajan, A. (2010).Understanding quality of service for web services.Retrieved
from www.ibm.com: https://www.ibm.com/developerworks/library/ws-quality.

34. Martin, D. (2004). Bringing semantics to web services: The OWL-S approach. In International
Workshop on Semantic Web Services and Web Process Composition (pp. 26–42). Springer,
Berlin, Heidelberg.

35. Maxmilien, E., & Singh, M. (2004). Maximilien, E. M., & Singh, M. P. A framework and
ontology for dynamic web services selection. IEEE Internet Computing, 8(5), 84–93.

36. O’Sullivan, J. J. (2006). Towards a precise understanding of service properties. (Doctoral
dissertation, Queensland University of Technology).

37. O’Sullivan, J., Edmond, D., & ter Hofstede, A. (2002). 6. Justin O’Sullivan, David Edmond
and Arthur Ter Hofstede. “What’s in a Service?,”, pp. 117–133, 2002.Distributed and Parallel
Databases, vol. 12, no. 2–3, 117–133.

38. Parimala, N., & Saini, A. (2011). Web service with criteria: Extending WSDL. In Digital
Information Management (ICDIM), 2011 Sixth International Conference on (pp. 205–210).
IEEE.

39. Petritsch, H. (2006). Service-Oriented Architecture (SOA) vs. Component Based Architecture.
Vienna University of Technology White Paper.

40. Ran, S. (2003). A model for web services discovery with QoS. ACM Sigecom exchanges, 4(1),
1–10.

41. Saini, A., & Parimala, N. (2016). An extension to BPEL for criteria-based web service com-
position. International Journal of Computational Science and Engineering, 13(1), 87–97.

https://doi.org/10.1109/icws.2006.10
https://www.w3.org
https://www.w3.org/TR/2002/WD-soap12-part1-20020626/
https://www.ibm.com/developerworks/library/ws-quality/
https://www.ibm.com/
https://doi.org/10.1007/978-3-642-10445-9_7
http://www.ibm.com
https://www.ibm.com/developerworks/library/ws-quality

Non-functional Properties of a Webservice 77

42. Schlimmer, J. (2004). Web services policy framework (WS-Policy).
43. ShaikhAli, A. (2003). Uddie: An extended registry for web services. Applications and the

Internet Workshops. In IEEE/IPSJ International Symposium on, (pp. 85–89). IEEE Computer
Society.

44. Sharp, C. (2004). Web services policy attachment (WS-PolicyAttachment). Specification.
45. Sheng, Q. (2014). Web services composition: A decade’s overview. Information Sciences, 280,

218–238.
46. Srinivasan, N., Paolucci,M.,&Sycara, K. (2006). Semanticweb service discovery in theOWL-

S IDE. In System Sciences. HICSS’06. Proceedings of the 39th Annual Hawaii International
Conference on (vol. 6) (pp. 109b–109b). IEEE.

47. Sun, H. (2003). Research and implementation of dynamic web services composition. Inter-
national Workshop on Advanced Parallel Processing Technologies (pp. 457–466). Springer,
Berlin, Heidelberg.

48. Toma, I., & Foxvog, D. (2006). Non-functional properties in web services. Retrieved from
http://www.academia.edu: http://www.academia.edu/475416/Non-functional_properties_in_
web_services.

49. Vadivelou, G., & Ilavrasan, E. (2011). Solution to dynamic web service composition related to
QoS. Electronics Computer Technology (ICECT), 2011 3rd International Conference on (Vol.
5) (pp. 351–355). IEEE.

50. Vu, L.-H., Hauswirth, M., & Aberer, K. (2005). QoS-based service selection and ranking with
trust and reputation management. In OTM Confederated International Conferences “On the
Move to Meaningful Internet Systems” (pp. 466–483). Springer, Berlin.

51. Vu, L.-H., Hauswirth, M., & Aberer, K. (2005). Towards p2p-based semantic web service
discovery with QoS support. International Conference on Business Process Management
(pp. 18–31). Berlin, Heidelberg: Springer.

52. Yu, H., & Reiff-Marganiec, S. (2008). Non-Functional Property Based Service Selection: A
Survey and Classification of Approaches. CEUR Workshop Proceedings, Sun SITE Central
Europe.

53. Yu, L. (2006). Towards P2p-Based Semantic Web Service Discovery with QoS Support.Work-
shop on Business Process Management, LNCS, (pp. 18–31). Springer.

54. Zhu, K. (2008). Quality of Service in Web Services Discovery. IEEE Symp. of Advanced
Management of Information for Globalized Enterprises, (pp. 1–5).

http://www.academia.edu
http://www.academia.edu/475416/Non-functional_properties_in_web_services

Service Composition

H. N. Lakshmi and Hrushikesha Mohanty

Abstract As growing number of services are being available, selecting the most
relevant webservice fulfilling the requirements of a user query is indeed challenging.
Service discovery (or service search) is a process of searching webservices matching
a given set of user functional and nonfunctional requirements. Service composition
can be defined as creating a composite service, obtained by combining available
webservices. In this chapter, we review the various approaches proposed for webser-
vice composition, emphasizing input/output parameter based approaches. Popular
algorithms and their implementations are also discussed.

1 Introduction

Service-oriented computing (SOC)has emerged as an important computing paradigm
and redefined the way software applications are designed, delivered, and consumed.
Services are the fundamental elements used in SOC, to support rapid, low-cost
development of distributed applications in heterogeneous environments. Webser-
vices technology is the most promising choice to implement service-oriented archi-
tecture (SOA) and its objectives. Nowadays, enterprises are exposing their internal
business processes as services utilizing the technology of webservices, thus making
them accessible via the Internet.

Services are the basic blocks and service-oriented applications are realized by
interoperations among them. As growing number of services are being available,
selecting the most relevant webservice fulfilling the requirements of a user query
is indeed challenging. Service discovery (or service search) is a process of search-
ing webservices matching a given set of user functional and nonfunctional require-
ments. Various service search techniques have been discussed in the previous chapter.

H. N. Lakshmi (B) · H. Mohanty
University of Hyderabad, Hyderabad, India
e-mail: hnlakshmi@gmail.com

H. Mohanty
e-mail: hmcs_hcu@yahoo.com

© Springer Nature Singapore Pte Ltd. 2019
H. Mohanty and P. K. Pattnaik (eds.), Webservices,
https://doi.org/10.1007/978-981-13-3224-1_4

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3224-1_4&domain=pdf
mailto:hnlakshmi@gmail.com
mailto:hmcs_hcu@yahoo.com
https://doi.org/10.1007/978-981-13-3224-1_4

80 H. N. Lakshmi and H. Mohanty

Service composition can be defined as creating a composite service, obtained by com-
bining available webservices. If no single webservice can satisfy the functionality
required by the user, there is a need to combine existing services together in order to
fulfill the user request, resulting in a service composition. Webservice composition
still is a highly complex task due to the dramatical increase in the number of services
available during the recent years and also due to the dynamic nature of the services.

In this chapter, we provide an overview of the various approaches proposed for
service composition, with an emphasis on input/output parameter based service com-
position. We first provide an overview of service composition in Sect. 2. This section
is followed by Sect. 3 that discusses the approaches proposed for input/output param-
eter based service composition approaches with an emphasis on graphs based tech-
niques. A detailed discussion on relational models and object relational models for
service composition is given in Sects. 4 and 5. The conclusion is given in Sect. 6.

2 Overview of Service Composition

Service composition can be defined as the process of aggregating multiple webser-
vices into a single service in order to performmore complex functions. The individual
services required for composition are obtained by applying any of the search tech-
niques explained in the previous chapter. Webservices composition techniques can
be categorized based on various criteria.

A composed service is a sequence of services that make the composition. Such a
sequence can be described in two ways: service orchestration and service choreogra-
phy. Service orchestration is the coordination and arrangement of multiple services
that are often exposed as a single executable business service, as shown in Fig. 1. The
business logic and the flow of execution of the various services are predetermined
and are under the control of a single endpoint. Transactions between the services
involved in the composition, necessary error handling, and the overall process man-
agement are done by orchestration. The standard for webservices orchestration is
WS-BPEL (or BPEL in short), which is largely supported by the industry.

Fig. 1 Service orchestration

Service Composition 81

Fig. 2 Service
choreography

Choreography employs amore collaborative anddecentralized approach to service
composition. It allows each of the individual services participating in the composition
to describe its part in the interaction. Service choreography is a global description
of the services involved in the composition defined by the messages exchanged,
interaction rules and agreements between the various endpoints. Interactions among
the services involved in choreography are as shown in Fig. 2. The choreography
mechanism is supported by the standard WS-CDL (Web Services Choreography
Description Language).

2.1 Steps in a Service Composition

From the example depicted above, we can list out the necessary steps in generating
a webservice composition as below,

1. Requirement specification.
2. Service selection.
3. Designing service composition.

Requirement specification: In this step, the user specifies the service requirements,
in terms of inputs provided by the user, expected outputs and a set of QoS attribute
values (optional) that the user expects from the webservice. The requirement is then
decomposed, into an abstract composite service, which specifies a set of activities,
the control and data flow among them and theQuality of Service (QoS) requirements.

Service selection: For each activity identified in the abstract composite service,
suitable services that match the requirements of various activities are searched from
either a service registry or a service portal.

It is likely that more than one candidate service will meet the requirements, hence
services that best match the user requirements are selected to be composed.

Designing service composition: On selecting all the required webservices required
composition, the services are bound to the corresponding activities, thus generating
a composite webservice. The constructed composite service is deployed to allow its
instantiation and invocation by end users. The result of this step is an executable
composite service.

82 H. N. Lakshmi and H. Mohanty

Fig. 3 Steps in service
composition

Figure 3 depicts the various steps in service composition process.

2.2 Static Versus Dynamic Composition

Based on the time when webservices are composed, service composition can be
categorized as static and dynamic composition [1]. The composition can be done
statically where the user builds an abstract model of the tasks that should be carried
out during the execution of the webservice. The model is to be finalized before the
composition planning starts. Webservices matching of each task is found and one of
them is selected for execution of the composed webservice. These approaches are
usually implemented through graphs.

This approach works fine as long as the webservice environment, i.e., service
providers, and service components do not, or only rarely, change. As and when the
old services are replaced by new ones by the providers, inconsistencies might be
caused.

Hence, in such a scenario it becomes unavoidable to change the service composi-
tion and bind to other services or, in theworst case, even change the process definition
and redesign the system. In addition, when there are multiple service providers who
often update their services, the static composition may be too restrictive and may not
be adaptive to unpredictable updates.

The service environment is a highly flexible and dynamic in that new services
may be added by providers on a daily basis and also the number of service providers
constantly increasing. Ideally, the service composition process must be able to adapt

Service Composition 83

to such environmental changes, and also to varying customer requirements, with
minimal user intervention. To realize this, the dynamic composition is achieved
by creating an abstract model of tasks and selecting individual webservices without
much interference of the user in the composition process. Such a service composition
requires supporting systems like automatic service discovery, selection, and binding
of selected services.However, dynamic service composition is a very challenging task
and needs to consider a number of important issues correctness of the composition,
time constraints, and transactional support and so on. This type of composition is
usually performed using work flow based composition techniques.

2.3 Manual, Semi-automated, and Automated Composition

Webservices composition techniques can be categorized based on the degree of user
intervention in the composition process as manual, semi-automated or automatic [1].
Manual composition done by human composers is a mature technique and has been
applied universally in the industry. This method can be done either using top-down
or bottom-up design approach. In the bottom-up approach, the potential webservices
participating in the composition are identified and then connected to each other
using a business logic. The top-down approach starts from a specified work flow
containing abstract tasks, which are then substituted by concrete webservices, one
for each task. Since manual composition relatively demands user intervention and
higher costs, the automatic composition is becomingmorepopular andhence research
on automatic webservice composition has become popular, intending to eliminate
the user intervention completely.

Automated services composition techniques aim to define a service composition
from the specified requirements without any user intervention. Automated services
composition approaches typically exploit semantics and artificial intelligence (AI)
planning techniques. On receiving a specified requirement from the user, the com-
ponent services are searched for and best matching ones selected and a composite
service specification is generated automatically. Various approaches for automatic
selection of webservices are available based on semantic similarity, QoS require-
ments, etc. However, realizing a fully automated services composition is far from
realization. The basic weakness of most of research efforts proposed so far is that
webservices do not share common semantics, affecting the automatic selection of
services.

A technique that is not purely manual and automatic is simple and practical to
realize. This thought gave rise to semi-automated composition, where the process is
very much similar to automated composition except that user intervention is allowed
at points where selection becomes tough. Such methods aim to assist the user at
different steps of services composition process, as and when required.

84 H. N. Lakshmi and H. Mohanty

Fig. 4 Parameter-based
composition example

2.4 Composition as a Planning Problem

When considering service composition as a planning problem, often webservices are
described by the Inputs they receive, Outputs they produce, Preconditions applicable
and Effects (IOPEs). The nonfunctional properties of services are often given by
QoS (Quality of Service) attributes. Approaches that treat composition as a planning
problem start from inputs and preconditions and finally lead to a goal state by going
through a sequence of actions [2]. However, most of these proposals have some
drawbacks: high complexity, high computational cost, and inability to maximize the
parallel execution of webservices.

3 Input/Output Parameter Based Service Composition

There are various approaches proposed for service composition. In this section,
we restrict our discussion to approaches that are based on input/output parameters
matching of services. A Webservice, ws, has typically two sets of parameters, as a
set of inputs wsI and set of outputs wsO. Conventionally two services wsi and wsj are
said to be composable iff wsOi � wsIj , i.e., wsj receives all the required inputs from
outputs wsi has.

Figure 4 gives an example of input/output parameter based service composition.
In the example, when a user queries for a webservice that takes {PackageID} as
input and provides {HotelName; FlightInfo; TourCost} as output, then a composi-
tion of services PackageDetails, DisplayTourInfo and TourCost satisfies the query.
Similarly a query that takes {Date; City} as input and expects {TourCost} as output
can be satisfied by two compositions: TourPackage, AgentPackage, TourCost and
TourPackage, AgentPackage, TourReservation.

Service Composition 85

Table 1 Size of the graph
generated for WSC data set

Dataset No. of edges No. of paths

Composition-20-32 11,024 930,394

Composition-50-32 58,270 29,363,370

3.1 Graph-Based Service Composition Techniques

A great deal of research [3–6] has been done in recent years on graph-based
approaches for webservices composition that consider input/output parameter match
of the webservices. Webservices are treated as vertices, edges encode whether one
of a service’s outputs may serve as another service’s inputs. Edges may be weighted
based on the matching levels of associated input and output of services.

This transforms service composition search into a graph search problem, i.e.
finding paths between vertices in the graph. Many graph algorithms like DFS, BFS,
Bellman–Ford, etc., have been applied to solve the problem of service composition.

To understand the complexity of the service composition problem we analyze
the size of the graph that is generated using the WSC dataset [7]. WS-Challenge
(WSC) data set is a benchmark dataset which consists of webservices with a complex
structure. Each webservice in WSC data sets has multiple input parameters and
output parameters. The dataset “composition-50-32” means as follows: 50 denotes
the number of webservices composition and 32 means that a webservice has 32–36
input and output parameters. The number of webservices in the “Composition-20-
32” and “Composition-50-32” are 1000. Table 1 shows the number of edges and the
number of paths generated by the WSC dataset.

It can be seen from Table 1 that the number of paths generated for “Composition-
50-32” dataset is more than 29 million, showing the complexity of the graph
involved in a service registry of just 1000 Webservices. We present few graph-based
approaches proposed for service composition.

Precomputed service graphs:Webservices in a repository are visualized as a depen-
dency graph, that capture dependencies among the input and output parameters of the
services. The graph is pre-computed using the services listed in the repository where
nodes of the graph represent individual services with their input and output param-
eters and the edges represent input–output dependencies among these services. The
various approaches proposed differ in the algorithms used for composition search.

Hashemian et al. [5] propose an approach wherein the dependency graph captures
only one-to-one input–output dependencies. This is a restriction since in practice
very few services have a single input and/or return a single output. Further, they
use a graph search algorithm to search for matching service compositions. Graph
exploration algorithms and chaining algorithms are utilized to find a solution for
the composition [6]. The proposed approach utilizes backward chaining and depth-
first search algorithms to find sub-graphs that contain services to accomplish the
requested task. At the end of the network exploration, several composition plans can

86 H. N. Lakshmi and H. Mohanty

be found which are further categorized as: simple composition, serial composition,
independent parallel composition, and dependent parallel composition.

Dynamic construction of service graphs: Webservices that may be necessary for
a given user requirement are searched from either a service repository or a ser-
vice search engine and a graph from this set of services is constructed at run time.
This reduces the size of the graph generated by a great extent and hence such
approaches are faster than the precomputed versions. Also, these approaches support
the dynamic nature of service environment where services are updated often by the
service providers.

Gekas et al. [4] propose an approach where the search space consists of all the
potential webservices that can be part of awork flow. The service registry is viewed as
a hyperlinked graph network consisting of services linking to other services. Heuris-
tics regarding the connectivity structure of the repository and how tightly various
types of webservices are linked together are derived from the service repository,
which is further utilized to select services for service compositions. The composi-
tion is done using a recursive depth-first algorithm, which starts from the initial state
and tries to reach the goal state following the shortest route possible.

Pablo et al. [2] present an A* algorithm for matching semantic input–output mes-
sage structure for webservice composition. A service dependency graph is dynami-
cally generated for a given user request from services in a repository and a minimal
composition satisfying the request is found using A* search algorithm. Arpinar et al.
[3] propose an ontology-driven webservices composition platform. They present an
approach which uses weighted graphs for webservice composition. The composi-
tion technique aims to find an optimal composition of services considering QoS and
semantic matching of parameters. They propose a modified Bellman–Ford shortest-
path dynamic programming algorithm to find the shortest sequence from the initial
stage at node SI (a webservice in the graph) to the termination node SF (a webservice
in the graph).

Most of the graph-based approaches for Service composition create the graph at
the time of composition which incurs substantial overhead and use in-memory algo-
rithms for Webservices composition search. The scalability of in-memory approach
is limited by the size of physical memory. That makes this kind of algorithms non-
scalable. Hence, research on using Relational Database as a scalable repository for
storing webservices has become popular recently. The next section describes how
services can be stored in a database and discusses the various approaches proposed
so far.

4 RDBMS-Based Service Composition Techniques

An overview of how webservices are registered in UDDI and how services are
described using WSDL is given in the previous chapters. The WSDL document
of a service describes instances of the service using a WSDL service element. Each

Service Composition 87

Table 2 Example webservices

Service no. Service name Input parameters Output parameters

ws1 HotelBooking Period, City HotelName, HotelCost

ws2 AirlineReservation Date, City FlightInfo, FlightCost

ws3 TaxiInfo Date, City CarType, TaxiCost

ws4 DisplayTourInfo HotelName, FlightInfo,
CarType

TourInfo

ws5 TaxiReservation CarType, Date, City TaxiCost

service element in a WSDL document is used to publish a UDDI businessService.
The service interface described using WSDL portType and binding is published as a
UDDI tModel before publishing a businessService. The various elements of WSDL
are mapped to UDDI data structures as follows:

• WSDL portType element is mapped to UDDI tModel.
• WSDL binding element is mapped to UDDI tModel.
• WSDL port element is mapped to UDDI bindingTemplate.
• WSDL service element is mapped to UDDI businessService.

Since currentUDDI implementations store theUDDIdata structures in a relational
database, a first thought would be to include the service parameters in a relational
database. This has motivated many researchers to utilize techniques in relational
database to solve the service composition problem.

Each operation in a service has an input and output message, each of which in turn
may have one or more parameters. For example, a HotelBooking service may take
{Period, City} as input parameters and provide {HotelName, HotelCost} as output
parameters. A normalized relational database solution to this requires that we store
input and output parameters of each operation across multiple rows. Let us consider
a simple example to explain it further—Table 2 lists a few example webservices. A
relational database solution to this is to assign each parameter a unique parameter
id (as in Pars Table) and list the various input and output parameters of webservices
across multiple rows as shown in Table 3.

Normalizing the tables in 3 further, we get tables as shown in 4.
We review approaches that utilize relational schemas described above for service

composition. Although these approaches use similar relational schemas, they differ
in the service details stored, algorithms defined for searching service compositions.

4.1 Relational Databases for Service Composition

Lee et al. [8, 9] were the first to propose utilization of relational database for comput-
ing webservices composition. The proposed method extracts information on service

88 H. N. Lakshmi and H. Mohanty

Table 3 Relational schema
for webservices

(a) Pars table

Par ID Par name

1 Period

2 City

3 Date

4 HotelName

5 FlightInfo

6 CarType

7 TourInfo

8 TaxiCost

9 HotelCost

10 FlightCost

(b) WSInput table

WS ID InParsId

ws1 1

ws1 2

ws2 2

ws2 3

ws3 2

ws3 3

ws4 4

ws4 5

ws4 6

ws5 2

ws5 3

ws5 6

(c) WSOutput table

WS ID OutParsId

ws1 4

ws1 9

ws2 5

ws2 10

ws3 6

ws3 8

ws4 7

ws5 8

Service Composition 89

input and output from WSDL of the service and then stores them as tuples in cor-
responding tables. The WS table stores each webservice name along with a unique
identification number assigned to it. The names of parameters for webservices are
stored in Pars table. These parameters may be used as input or output parameters
for webservices. The Input table and the Output table store the input parameters and
output parameters of webservices, respectively.

The Edge table stores edges are links present in the webservice composition
graph. The join operations of Pars, Input, Output, and Edge tables produce the
weighted, directed graph representation of webservices. The approach precomputes
all possible webservice compositions and stores in aPath table. Intermediate vertices
(webservices) in a path are stored in VisitedWS table.

On precomputing all possible webservices composition, one can perform webser-
vice compositions search against a given user query. The service search algorithm is
described in Algorithm 1.

Algorithm 1: Service Composition Search Algorithm 1
Input: Q:user query
Output: FinalWSs: pairs of webservices

1 Finds all paths (PathIDs) which can be obtained from user inputs and
outputs
2 Find all input parameters of services in paths that are not having values
3 if Number of input parameters not having values ! = 0 then
4 Find new paths that can be obtained from user inputs and outputs
5 Go to step 2
6 else
7 FinalWSs are set of all visited webservices in the paths (PathIDs)

found

The limitation of the approach discussed above is that it is restricted to services
having only single input and output parameter. C. Zheng et al. [10] extended the
above approach to handle services with multiple input/output parameters. Also, they
consider the semantic similarity of service parameters, usingWordNet, to findmatch-
ing relationships between services. Relationships between the services are stored in a
One-way Matching Table (OMT). OMT visualizes a weighted directed graph where
each node denotes a webservice and each edge denotes the semantic matching degree
between two webservices. Thus, the Service composition problem is simplified to
find all reachable paths of two nodes in the graph. They propose a Fast-EP algorithm,
based on the algorithm proposed by Lee et al. [8, 9], that improvises the time taken
by multiple joins of the table to find all possible service compositions.

Jing Li et al. [11] extend the approach proposed by Lee et al. [8, 9] by adding
QoSmatching towebservice composition search. Their proposal named FSIDB (Full
Solution Indexing using Database) uses a relational database approach for automatic

90 H. N. Lakshmi and H. Mohanty

service composition. All possible service compositions are precomputed as paths in
the graph along with their effective QoS values and stored in a relational database.
When a user queries for a service composition, the system uses a SQL query to search
for a service composition satisfying the user requirements.

Utkarsh [12] propose the development of a Web Service Management System
(WSMS): a general-purpose system that enables clients to query multiple Webser-
vices simultaneously in a transparent and integrated fashion. They build virtual tables
for input/output parameters of webservices to manage service interfaces, and uses a
multi-thread pipeline executive mechanism to improve the efficiency of webservices
search, so the service composition problem is transformed into query optimization
in the database. Query processing over webservices is visualized as a work flow or
pipeline: input data is fed to the WSMS, and the WSMS processes this data through
a sequence of webservices. The output of one Webservice is returned to the WSMS
and then serves as Input to the next webservice in the pipeline, finally producing the
query results.

5 Object-Relational Databases for Service Composition

In the previous section, we gave an overview of approaches that use a relational
database to store webservice information. There are several advantages of utilizing
a normalized database as

• Provides indexing.
• Minimizes modification anomalies.
• Saves space.
• Enforces referential integrity.
• Provides High Performance.

One reason to carefully review the usage of normalization in a database design is
the database’s intended use. There are certain scenarioswhere the benefits of database
normalization are outweighed by its costs.

Two of these scenarios are described below

1. Immutable Data and Append-Only Scenarios—Database normalization may be
unnecessary in situations where we are storing immutable data such as financial
transactions or a particular day’s price list.

2. When Multiple Joins are needed to produce a Commonly Accessed View—the
biggest problem with normalization is that you end up with multiple tables rep-
resenting what is conceptually a single item. With such design, it takes multiple
SQL Join operations to access and display the information about a single item.
This implies reduced database performance. Tomake a long story short, a normal-
ized database in such a scenario requires much more CPU, memory, and I/O to
process database queries. A normalized databasemust locate the requested tables
and then join the data from the tables to either get the requested information or
to process the desired data.

Service Composition 91

Table 4 Relational tables
after further normalization

(a) WSInput table

WSIP WS ID InParsId

1 ws1 1

2 ws1 2

3 ws2 2

4 ws2 3

5 ws3 2

6 ws3 3

7 ws4 4

8 ws4 5

9 ws4 6

10 ws5 2

11 ws5 3

12 ws5 6

(b) WSOutput table

WSOP WS ID OutParsId

1 ws1 4

2 ws1 9

3 ws2 5

4 ws2 10

5 ws3 6

6 ws3 8

7 ws4 7

8 ws5 8

Service database schema fits the second scenario. Consider the type of queries
that we plan to use for webservice composition

• List all webservices that match a given set of input parameters.
• List all webservices that match a given set of output parameters.
• List all webservices that are composable with a given set of output parameters.

Clearly, the tables in Table 4 would require multiple joins to support these types
of queries. Also, the number of tuples in these tables increases drastically when the
services have more input/output parameters, thereby generating more tuples in table
joins, hence decreasing the database performance. Though the techniques discussed
in the previous subsection use database technology for service matching and com-
positions, still those are constrained to the usage of multiple joins. Thus, we require
a strategy to store these multivalued input and output parameters in the registry.

Object-relational database (ORDB) technology has emerged as a way of enhanc-
ing object-oriented features in relational database systems. In a relational model,
multi-valued attributes are not allowed in the first normalization form. The solution
to the problem is that each multiple-valued attribute is handled by forming a new

92 H. N. Lakshmi and H. Mohanty

table or distributed across multiple rows of the same table. To retrieve the data back
in such a storage design, one has to do multiple joins across the tables (or the table,
if stored as multiple rows in the same table). To avoid the need for multiple joins
and to speed up the query, we propose to use multi-valued attributes for storing input
and output parameters in our database design, and hence use an Object-Relational
Database for our proposed Extended Service Registry. ORDBMs allowmulti-valued
attributes to be created in a database by usingCollections Type orNested Tables. The
advantage of this approach is that it supports querying for services efficiently and
also supports complex queries involving input and output parameters.

For a given user query, the algorithms discussed so far generate a service compo-
sition based on exact matches of input/output parameters. Generation of such a
service chain fails when the preceding service’s output (wsOP) is not an exact match of
input parameters of a succeeding service (wsIS). Our proposal alleviates this problem
bymakingmatch criteria flexible, by introducing twomorematches called the partial
match and super match for conditions wsOi ⊂ wsIj and ws

O
i ⊃ wsIj , respectively [13].

To avoid the overheads involved in multiple joins and to further speed up querying,
our proposal uses multivalued attributes for the storage of input and output parame-
ters. To support this structure our proposed Extended Service Registry [14] uses an
object-relational database.

5.1 Service Matches and Service Composition Types

A webservice, ws, has typically two sets of parameters—set of input parameters
wsI and set of output parameters wsO. The classical definition of service matching,
i.e., one-to-one and onto mapping between input and output parameters of matching
services, is extended to give rise to three types of service matches:

1. Exact Match: A webservice wsi is an exact match of webservice wsj if the
input/output parameters of wsi exactly match all the input/output parameters of
wsj.

2. Partial Match: A webservice wsi is a partial match of webservice wsj if the
input/output parameters of wsi partially match the input/output parameters of
wsj.

3. Super Match: A webservice wsi is a super match of webservice wsj if the
input/output parameters of wsi is a superset of the input/output parameters of
wsj.

Utilizing the three types of service matches we define three types of composition
as

Service Composition 93

Fig. 5 Example CST

1. Exact composition (EC): Exact composition is a composition obtained by using
a webservice that is exactly matching with user required outputs.

2. Super composition (SC): Super composition is a composition obtained by using
a webservice that has a super match with user required outputs.

3. Collaborative composition (CC): Collaborative composition is a composition
obtained by using a set of partial matching webservices that can collaboratively
satisfy the desired set of output parameters.

All the above composition types may require additional input parameters than
those provided by the user.

5.2 Service Composition

In order to visualize the composition process and to find possible compositions that
satisfy a given user query, we propose to construct a composition search tree.

Figure 5 depicts composition search tree generated when the webservices in
Table 5 are used to construct the tree for a query with QI �{Date; City} and QO �
{HotelName; FlightInfo; CarType; TourCost}.

The process of constructing the composition search tree is given in Algorithm 2.
The various notations used in the algorithm is described in Table 6.

94 H. N. Lakshmi and H. Mohanty

Table 5 Example webservices

Service no. Service name Input parameters Output parameters

ws1 HotelBooking Period, City HotelName, HotelCost

ws2 AirlineReservation Date, City FlightInfo, FlightCost

ws3 TaxiInfo Date, City CarType, TaxiCost

ws4 DisplayTourInfo HotelName, FlightInfo,
CarType

TourInfo

ws5 TaxiReservation CarType, Date, City TaxiCost

ws6 TourPeriod Date, City Period

ws7 TourCost TourInfo TourCost

ws8 AgentPackage PackageID Period, TourInfo

ws9 TourPackages Date, City PackageID

ws10 TourReservation Period, TourInfo HotelName, FlightInfo,
CarType, TourCost

ws11 PackageDetails PackageID HotelName, HotelCost,
FlightInfo, FlightCost,
CarType, TaxiCost,
TourCost

Table 6 Notations used in CST Algorithm

Notation Description

QO Set of output parameters desired in the searched webservice as given in the
user query

QI Set of input parameters that the user is capable of providing as given in the
user query

WS Webservice/Set of webservices satisfying the DO of the Parent node

NWS Number of webservices participating in the service composition

DO Desired set of output parameters

RI
EC Additional input parameters required to execute the Exact matching

webservice

RI
SC Additional input parameters required to execute the Super matching

webservice

RI
CC Additional input parameters required to execute the webservices participating

in the Collaborative composition

Service Composition 95

Algorithm 2: Composition Search Tree Construction
Input: WSInOutTable, Covering clusters,
QO, QI Output: composition search tree

1 Create a RootNode with DO = QO

2 NWS = 0 , WS = ø ;
3 Insert the RootNode to LivenodesQ
4 CurrentNode = LivenodesQ.Delete()
5 Retrieve matching services from service clusters for CurrentNode //

search for Matching services

6 Classify the compositions
7 repeat
8 if ExactComposition then

// Left child for EC
9 Create LeftChild for CurrentNode

10 WS = ws
11 NWS = NWS + 1 , DO = RIEC

I

12 if DO ≠ø ; then
13 LivenodesQ.Insert(LeftChild)
14 else
15 Mark the LeftChild as SolutionNode
16 Insert a copy of LeftChild to Solutions
17 Make the LeftChild point to its ParentNode
18 if SuperComposition then

// Middle child for SC
19 Create MiddleChild for CurrentNode
20 WS = ws
21 NWS = NWS + 1 , DO = RISC

I

22 if DO ≠ø then
23 LivenodesQ.Insert(MiddleChild)
24 else
25 Mark the MiddleChild as SolutionNode
26 Insert a copy of MiddleChild to Solutions
27 Make the MiddleChild point to its ParentNode
28 if CollaborativeComposition then

// Right child for CC
29 Create RightChild for CurrentNode
30 WS = WSCC
31 NWS = NWS + | WSCC | , DO = RICC

I

32 if DO ≠ø then
33 LivenodesQ.Insert(RightChild)
34 else

96 H. N. Lakshmi and H. Mohanty

35 Mark the RightChild as SolutionNode
36 Insert a copy of RightChild to Solutions
37 Make the RightChild point to its ParentNode
38 if No Compositions then
39 Mark CurrentNode as UnsolvableNode
40 CurrentNode = LivenodesQ.Delete()
41 Extract compositions from Covering clusters // Solve for Additional

input parameters
42 until LivenodesQ is not empty

The composition search tree finds all compositions satisfying the given query as
explained in the previous section. The array Solutions stores all leaf nodes that give
compositions satisfying the user query in the composition search tree. Compositions
satisfying the given query can be obtained by tracing back from a leaf node till the
root node in the composition search tree. The set of webservices required for service
composition satisfying a given query for a solution node can be obtained using
procedure WebServicesInComposition. Algorithm 3 lists all possible compositions
for a given user query obtained from composition search tree generated for the query.
Each solution is a set of webservices that need to be composed in an order, to obtain
the desired output parameters utilizing input parameters provided by the user.

Algorithm 3: All Solutions in CST
Input: Solutions
Output: SWS for all solutions in CST
// SWS is a set of required services for composition

1 SWS = ø ;.
2 for each Leaf Node in Solutions do

// Call procedure WebServicesInComposition for each Leaf Node
3 SWS=WebServicesInComposition(Leaf Node)
4 Print SWS

From the CST depicted in Fig. 5, we have five solutions for the given query, listed
below in Table 7.

Service Composition 97

Table 7 Solutions in CST

Sl no. Webservices in composition Composition types involved

1 ws9, ws8, ws10 Exact, super

2 ws4, ws6, ws10 Exact, collaborative

3 ws9, ws11 Super

4 ws9, ws8, ws1, ws2, ws3, ws7 Collaborative, super

5 ws4, ws6, ws1, ws2, ws3, ws7 Collaborative

Procedure WebServicesInComposition
Input: Leaf Node
Output: SWS for service composition
// SWS is a set of required services for composition

1 SWS = ;.
2 CurrentNode =LeafNode with a solution for composition
3 while CurrentNode 6= RootNode do

// WS is the set of services in the CurrentNode.
4 SWS = SWS [WS
5 CurrentNode = Parent Node of the CurrentNode
6 return [SWS]

6 Conclusion

In this chapter, we introduce the concepts of service composition and give a brief
description of the various classifications of service composition. We then explain
the various approaches proposed so far for service composition, with an emphasis
on input/output parameter based composition. A detailed description of the latest
approaches for service composition, relational and object-relational databases, the
research proposals in these areas are further discussed. It is evident from the discus-
sion that database based approaches are more promising in that they are scalable and
efficient when compared to graph-based approaches.

98 H. N. Lakshmi and H. Mohanty

References

1. Yang Syu, Shang-Pin Ma, Jong-Yin Kuo, and Yong-Yi FanJiang. A survey on auto-mated
service composition methods and related techniques. In Services Computing (SCC), 2012
IEEE Ninth International Conference on, pages 290–297. IEEE, 2012.

2. Pablo Rodriguez-Mier, Manuel Mucientes, and Manuel Lama. Automatic web ser-vice com-
position with a heuristic-based search algorithm. In Web Services (ICWS), 2011 IEEE Inter-
national Conference on, pages 81–88. IEEE, 2011.

3. I. Budak Arpinar, Boanerges Aleman-Meza, Ruoyan Zhang, and Angela Maduko. Ontology-
drivenweb services composition platform. InProceedings of the IEEE InternationalConference
on E-Commerce Technology, CEC ‘04, pages 146–152, 2004.

4. John Gekas and Maria Fasli. Automatic web service composition based on graph network
analysis metrics. In On the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and
ODBASE, volume 3761 of Lecture Notes in Computer Science, pages 1571–1587. Springer,
2005.

5. S.V. Hashemian and F. Mavaddat. A graph-based framework for composition of stateless web
services. In Web Services, 2006. ECOWS ‘06. 4th European Conference on, pages 75–86,
2006.

6. Hassina Nacer Talantikite, Djamil Aissani, and Nacer Boudjlida. Semantic annotations for web
services discovery and composition. Computer Standards Interfaces, 31:1108–1117, 2009.

7. M.B. Blake, W. Cheung, M.C. Jaeger, and A. Wombacher. Wsc-06: The web service chal-
lenge. In E-Commerce Technology, 2006. The 8th IEEE International Conference on and
Enterprise Computing, E-Commerce, and E-Services, The 3rd IEEE International Conference
on, pages 62–62, 2006.

8. Joonho Kwon, Kyuho Park, Daewook Lee, and Sukho Lee. Psr: Pre-computing solutions in
rdbms for fastweb services composition search. In Web Services, 2007. ICWS 2007. IEEE
International Conference on, pages 808–815, July 2007.

9. Daewook Lee, Joonho Kwon, Sangjun Lee, Seog Park, and Bonghee Hong. Scalable and
efficient web services composition based on a relational database. J. Syst. Softw., 84(12),
2011.

10. Cheng Zeng,Weijie Ou, Yi Zheng, and Dong Han. Efficient web service composition and intel-
ligent search based on relational database. In Information Science and Applications (ICISA),
2010 International Conference on, pages 1–8, April 2010.

11. Jing Li, Yuhong Yan, and Daniel Lemire. Full solution indexing using database for qos-aware
web service composition. In Proceedings of the 2014 IEEE International Conference on Ser-
vices Computing, SCC ‘14, pages 99–106, 2014.

12. Utkarsh Srivastava, Kamesh Munagala, Jennifer Widom, and Rajeev Motwani. Query opti-
mization over web services. In Proceedings of the 32Nd International Conference on Very
Large Data Bases, VLDB ‘06, pages 355–366, 2006.

13. H.N. Lakshmi and H. Mohanty. Rdbms for service repository and composition. In Advanced
Computing (ICoAC), 2012 Fourth International Conference on, pages 1–8, Dec 2012.

14. LakshmiH.N. andMohantyH. Extended service registry to support i/o parameter-based service
search. In 1st International Conference on Intelligent Computing, Communication andDevices,
ICCD 2014, pages 145–155, 2015.

Handling Faults in Composite
Webservices

Vani Vathsala Atluri and Hrushikesha Mohanty

Abstract Webservices have been instrumental in implementing business processes.
Individual services available over the web can be composed into a bigger service
to realise complex business processes. In order to provide resilient execution for
composite services, fault handling must be provided. In literature, various strategies
of handling faults in webservices can be found. In this chapter, we briefly describe
different types of strategies applicable to webservices for handling faults with focus
on transient faults.

Keywords Webservices · Choreography · Checkpointing · Fault handling

1 Introduction to Webservices

A softwaremodule that offers services over the internet can be called as awebservice.
Webservices are witnessing enormous growth nowadays. This growth is because of
availability of a large number of services on the internet and also for their operational
use and efficiency. The ease of operation is because of Service-Oriented Architecture
(SOA) that provides a framework to host as well as to utilise an available service.

Service-Oriented Architecture is a form of distributed systems architecture [1]
which is basically characterised by separation of service specification from service
implementation. The main stakeholders in this architecture are provider of service,
consumer of service and a services registry. Service providers whowant tomake their
services public publish about their service in a registry. Service consumers search
for required services in the registry and invoke a suitable service. Figure 1 depicts
this service-oriented architecture.

V. V. Atluri (B) · H. Mohanty
CVR College of Engineering and University of Hyderabad, Hyderabad, India
e-mail: atlurivv@yahoo.com

H. Mohanty
e-mail: mohanty.hcu@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
H. Mohanty and P. K. Pattnaik (eds.), Webservices,
https://doi.org/10.1007/978-981-13-3224-1_5

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3224-1_5&domain=pdf
mailto:atlurivv@yahoo.com
mailto:mohanty.hcu@gmail.com
https://doi.org/10.1007/978-981-13-3224-1_5

100 V. V. Atluri and H. Mohanty

Fig. 1 Service-oriented
architecture

Webservices have the following properties: (1) Only a logical view of actual pro-
grammes (called operations) which implement business processes is made public.
The logical view defines what these operations do but does not specify how they
do. (2) A published service operation can be invoked by a service consumer using
platform independent messages (called interactions). Thesemessages and operations
are described in a document called as Web Services Description Language (WSDL)
which is published in the registry. These properties enable webservices to provide
reusable business functionality irrespective of the platform on which they are work-
ing.

A webservice that implements a business process, without invoking another web-
service, is called as atomic webservice. A simple business process may be realised by
invoking only one webservice. In order to accomplish complex business processes,
suitable atomic webservices are searched over the internet and are composed into a
bigger application called composite application. These composite applications may
expose themselves as services on the web, resulting in what are known as service
compositions or composite services. The webservices which participate in such a
composition are called as constituent services or, participants.

Two main jargons used frequently in the context of composite webservices are
Choreography and Orchestration. In the following subsection, we introduce and
differentiate them for ease of understanding of concepts that follow.

1.1 Types of Composite Services

Choreography and Orchestration are the two words which are used most often with
reference to webservice composition. The word Choreography is used to describe
the collaboration between multiple services which communicate with one another
so as to achieve a common business process. This description includes a list of
roles of participating services, sequence in which messages are to be exchanged for

Handling Faults in Composite Webservices 101

Fig. 2 Orchestration and
choreography of webservices

interaction among each other and data elements to be exchanged. But choreography
does not describe the implementation details of any individual service.

The described choreography model may be implemented in two ways (refer to
Fig. 2): (1) There is a central coordinator which monitors and dictates the order in
which constituent services are to be called. Such a composition with a central coor-
dinator is called as an Orchestration. Centralised orchestrations are to be used when
amount of data to be transferred among constituent services is not large. But if large
amount of data is to be transmitted, or if such a centralised arrangement is not imple-
mentable due to limitations imposed by business rules, implementations of complex
business processes have to be decentralised. (2) In decentralised implementation, all
the participating services are treated equally, with no central coordinator controlling
the sequence of interactions. All the constituent services have a local view of inter-
actions that they perform with other constituent services. No single service has a
global view of the overall integration.

For providing seamless operation of composite webservices over unreliable Inter-
net, webservices have to be outfitted with efficient fault handling strategies. In the
following section, we introduce and discuss this issue.

2 Faults and Their Handling in Webservices

Due to the supply of several functionally equivalent services over the internet, it
becomes crucial for webservices to use a robust fault handling strategy to sustain in
the competition. The fault handling strategies become indispensable as webservices
execute over the internet which is highly dynamic.

A webservice is said to fail when it does not deliver expected service or what it
delivers does not match with what is requested. A fault is defined as a defect in the
environment of a webservice or in its code which results in a failure of the service
[2]. Webservice faults can be categorised as follows [3, 4]:

102 V. V. Atluri and H. Mohanty

• Content/Development faults: Bugs that might have been introduced in design or
in code result in development faults. As a result of these faults, the service gives
incorrect results. A price query service gives wrong value back for a given Item
ID.

• Domain-specific faults: Faults of this type are defined by application designers
of a service and are published in WSDL document of that service. These faults
are raised when the service halts unsuccessfully. A student cannot be granted
admission due to his ineligible qualification.

• Transient/Temporary hardware faults: These faults occur due to temporary server
crashes or due to the failure of power or connection link. These faults are asyn-
chronous, and self-healing techniques like rollback and recovery enable the system
to carry forward work.

• Permanent hardware faults: Irreparable faults such as crashing down of a server
hosting a service result in this kind of faults.

• Interaction faults: The faults due to differences in actual parameters and expected
parameters in messages exchanged between service provider and service con-
sumers come under interaction faults.

• SLA faults: Service Level Agreement (SLA) specifies deadlines for expected
response time, cost of service, reliability etc., upon which both the service con-
sumer and service provider agree. These faults occur when an invoked service
does not satisfy SLA. For a particular service query, the response is given in 20 s
but the value specified in Service Level Agreement is just 5 s.

Content faults and interaction faults need modification in code without which
they are bound to resurface. Domain-specific faults are various situations that arise
in business applications. Composite webservice development languages like BPEL
provide fault (exception) and event handlers which provide alternate execution paths
for every predefined fault/event that occurs during execution. The domain-specific
faults and corresponding actions to be taken to handle those faults have to be specified
explicitly by application designers.

Permanent hardware faults are inadvertent and unavoidable in nature. Hence we
have to look out for ways and means of handling permanent hardware faults. Same is
the casewith transient faults.When either of these two faults terminates the execution
of a webservice, the service is to be quickly restored back for its continuation. But
this recovery has to be done in a manner that is transparent to the user. These faults
may result in SLA faults when recovery actions take considerable additional time
and cost. Webservices have to take necessary steps to avoid SLA faults (violations).
Thus, it becomes very important for service providers to avoid or reduce possible
delays generated due to recovery from transient faults or permanent faults. Thus,
fault handling techniques are of importance.

In this chapter, we present our survey on fault handling techniques proposed in
the field of webservices for handling transient faults and permanent faults. In the
following section, we introduce two different fault handling strategies that have been
applied to webservices.

Handling Faults in Composite Webservices 103

3 Transient Fault Handling Strategies for Webservices

Transient fault handling techniques proposed in the literature fall under two basic
categories [2]: backward recovery and forward recovery. Upon failure of a service
during its execution, the service is rolled back to an earlier saved state, also called as
checkpoint, and then the strategy is called as backward recovery. Execution of the
services resumes from this saved state. On the contrary, if the failed service resumes
its execution by trying out alternative paths instead of going back to a check pointed
state, then the strategy is called as forward recovery. The popular examples for
forward recovery techniques include substitution (invoking functionally equivalent
services) [4–7] and fault compensation.

In the following subsections, we discuss each of them and their applicability.

3.1 Backward Recovery

Checkpointing has been used in previous decades very successfully for recovering
database applications after their failure. Checkpointing is a technique that has proved
itself time and again as a robust fault handling strategy across areas like distributed
computing, operating systems, banking transactions, etc. Checkpointing is a proac-
tive technique which prescribes to save the state of an application so as to enable its
recovery in case of any failure of the application at a later time. A failed applica-
tion rolls back to a previously checkpointed state and continues its execution from
there on. Checkpointing and recovery can be applied to webservices also due to the
following reasons:

• Checkpointing and recovery scheme is independent of application, environment
or platform and hence can be applied to webservices too.

• As transient faults do not surface at the same location in every execution, back-
ward recovery technique of rolling back the failed service to a previous state and
resuming its execution from there on proves to be an efficient strategy for recovery
from transient faults.

• For another type ofwebservice fault, permanent server crash, the process of check-
pointing a service and in the case of failure of the primary server, migrating the
service instances onto a secondary server/redundant server and then resuming the
service instances will largely reduce the amount of rework.

3.2 Forward Recovery

Popular forward recovery techniques that are mostly used in webservices are substi-
tution and fault compensation.When a service is invoked by another webservice (say
caller), it is possible that either the caller or the invoked service (also called as callee)
fail. In the event of failure of the callee, backward recovery using checkpointing may

104 V. V. Atluri and H. Mohanty

be employed by the caller. Or, alternatively, if the callee does not reply back within
a stipulated time, the caller might resort to calling an alternate functionally similar
service instead of waiting for a reply from the initially invoked callee. This approach
is called as Substitution.

Fault compensation specifies corrective actions that negate the effect of an already
executed unsuccessful activity. In cases where re-execution helps completing an
activity, compensation is not the required solution.

But, in case the server hosting the caller itself fails there might be many instances
of the service which are still in execution at the time of server crash. (A service
instance is a webservice in execution. When two or more requests for a webservice
are received simultaneously from users, multiple instances would be initiated). In the
absence of checkpointing and recovery, all the caller instances have to restart their
execution. This re-execution will trigger re-invocation of the callee by all restarted
caller instances, thereby increasing the net execution times. Hence if the caller fails,
substitution approach is not practically suitable. Instead, checkpointing the caller at
places of invocation of partner services and rolling back to one of these checkpoints
without re-invoking partner services greatly improves the performance of failed exe-
cutions.

4 Checkpointing and Recovery

In this section, we introduce the basic terminology generally used while discussing
checkpointing techniques and, discuss various techniques proposed in literature for
checkpointing distributed systems and their applicability to webservices.

While checkpointing standalone applications, the focus would be on maintaining
a balance between (i) recovery overhead that will be incurred during failure and
recovery and (ii) checkpointing overhead during normal executions of the applica-
tion. Several strategies have been worked out in the past in the area of checkpointing
individual applications. Important among them are (1) Checkpoint at regular inter-
vals of time (2)Checkpoint after every ‘n’ lines of code and (3) checkpoint any crucial
work done.

Multiple process running concurrently at geographically distant locations com-
municate with each other mainly through messages in what are called as distributed
applications. To checkpoint processes in such applications, the above-mentioned
strategies are insufficient. Additionally, event-driven checkpointing is triggered by
two main events: sending and receipt of a message is employed to checkpoint-
distributed applications.

Checkpointing strategies [8–17] on distributed applications revolve around one
main concept: consistent checkpoints. A set of local checkpoints of processes consti-
tuting the distributed application is called as a global checkpoint. A global checkpoint
is called as a consistent checkpoint if it does not lead to loss of a message or any
information and there are no redundant messages. In other words, a global check-
point is said to be consistent if it does not result in any orphan messages. A message

Handling Faults in Composite Webservices 105

Fig. 3 Classification of fault handling techniques in distributed systems

is said to be an orphan message if it is recorded as delivered but not recorded as sent
by their respective processes after recovery to a global checkpoint.

On the other hand, a global checkpoint is not inconsistent if a message is recorded
as sent but not recorded as delivered by their respective processes, because this
situation is identical to a state, wherein the message is sent by its sender and is in
transit. All the recovery protocols require processes to save the incoming messages
on stable storage for possible replay during recovery.

In the following subsection, we discuss various distributed checkpointing tech-
niques proposed in literature and their applicability to webservices.

4.1 Applicability of Distributed Checkpointing Techniques
to Webservices

Fault handling techniques in distributed computing can be categorised into pure
checkpointing and recovery techniques or log based checkpointing and recovery
(refer to Fig. 3). As discussed in [10], the first category of techniques may be fur-
ther subdivided into: coordinated checkpointing, uncoordinated checkpointing and
communication-induced checkpointing. As per the first two techniques, apart from
the failed process, other processes involved in communication with the failed process
also need to be rolled back. In yet another backward recovery strategy, checkpointing
is coupled with message logging.

A central monitor is the heart of coordinated checkpointing, which would be
entrusted with the job of coordinating and issuing control messages to all the indi-
vidual processes of the distributed application. Using these control messages, the
central monitor would trigger checkpointing of all the processes. There are two main
variants of coordinated checkpointing: blocking mode coordinated checkpointing
[18] and nonblocking mode coordinated checkpointing [8–10, 17]. A brief outline
of blocking mode coordinated checkpointing algorithms is given in Algorithm 1.

106 V. V. Atluri and H. Mohanty

Algorithm 1: Coordinated Checkpointing : Blocking Mode
1: Participants: All processes that are part of application, one among them

designated as Central initiator.
2: Central initiator takes a tentative checkpoint.
3: Central initiator sends control messages to all other processes to take

checkpoints.
4: Upon receiving control message each process does the following things in

the given sequence:
i) Stop computation
ii) Stop sending and receiving messages
iii) Take a tentative checkpoint
iv) Send back an acknowledgement message to the initiator

5: Upon receiving acknowledgement messages from all processes, initiator
sends commit messages to them.

6: Upon receiving commit message from initiator, each process converts its
tentative checkpoint to permanent checkpoint and comes out of blocking
mode to continue its execution.

The key strategy employed by all blocking algorithms is to see that participating
processes do not send or receive messages once checkpointing phase begins. This
restriction is imposed in order to make sure that the global checkpoint taken is
consistent. But this strategy has got a major disadvantage of suspending/blocking all
the executing processes for a considerable amount of time which proves to be costly
in terms of execution speeds.

To prevent temporary blocking of processes and to enable them to receive and
send messages, Chandy and Lamport [9] have proposed the nonblocking approach
of taking coordinated checkpoints, which is outlined in Algorithm 2.

Algorithm 2: Coordinated Checkpointing : Non Blocking Mode
1: Participants: All processes that are part of application, one among them

designated as Central initiator.
2: Central initiator takes a checkpoint.
3: Central initiator sends marker messages (checkpoint request messages

encoded with serial no of global checkpoint to be taken) to all other
processes.

4: Upon receiving a marker message, each process gets to know about the
initiation of a checkpoint phase.

5: In this phase, before sending any application message, each process does
the following things in the given sequence:

i)Take a checkpoint
ii)Transmit a marker message to whom an application message

has to be sent
iii)Send the application message

Handling Faults in Composite Webservices 107

This approach ensures that any global checkpoint taken is consistent. If only the
initiator transmits marker messages, the following scenario might occur: Process A
receives a marker message from its initiator and takes a checkpoint. Then, it sends
an application message m to process B. Process B receives the message m first and
then, a marker message from its initiator. Process B takes its checkpoint. Hence in
the checkpoint taken by process A, sending of message m is not recorded, whereas
in the checkpoint taken by process B, receipt of message m is recorded, resulting
in an orphan message and hence an inconsistent checkpoint. Instead if process A
transmits a marker message to process B, before the message m, process B would
first take a checkpoint and then receive the message m. This approach results in
nonblocking consistent checkpointing. This advantage comes with a cost: processes
have to circulate more number of control messages among them to take a consistent
checkpoint.

As pointed out earlier, both blocking mode and nonblocking mode algorithms
of coordinated checkpointing dictate that all the processes, irrespective of which
process has failed, have to be rolled back to their latest checkpoints to maintain a
globally consistent state.

On the contrary, processes in uncoordinated checkpointing [10, 19] take their
checkpoints decisions on their own without requiring any central monitor. To take a
consistent global checkpoint, each of them shares dependencies among each other
(order of sending and receiving messages) using data structures like dependency
graphs. But the disadvantage comes when the processes have to coordinate with each
other to compute a global recovery line when one of the processes fails. This coor-
dination is achieved by exchanging additional control messages. Set of local check-
points that belong to a global recovery line are decided using dependency graphs.
The processes whose local checkpoints belong to the computed global recovery line
are forced to roll back to their latest checkpoints. Thus, processes lose their inde-
pendence. More dangerously, these forced rollbacks might lead to a more adverse
effect known as domino effect [10]. Domino effect is a cascading effect that occurs
if processes are more interdependent on each other, and rollback of a set of processes
will trigger a sequence of rollbacks in which all the processes have to start their
execution from the beginning.

Yet another type of checkpointing algorithms have been proposed in literature
called Communication-induced checkpointing [15, 20, 21] algorithms. As per these
algorithms, checkpointing details are piggybacked by each process in the messages
sent to other processes of the application. The decision ofwhether to take a checkpoint
or not is taken by the receiver of these messages after looking at the piggybacked
checkpointing information. In log-based recovery, we come to see a new type of
checkpoints called useless checkpoints (checkpoints that do not contribute to a global
consistent state). The key approach used by these algorithms is not to allow some
predefined patterns in communication (like Z-Paths and Z-Cycles [15]). Although
these algorithms avoid domino effect, they also require some of the other processes
to rollback in the event of failure of one of them, to maintain consistent state.

All the three types of checkpointing techniques discussed above require several
processes to rollback in the case of failure and recovery. In composite webservices,

108 V. V. Atluri and H. Mohanty

forcing the rollback of other constituent services during execution is a practical
proposition. Particularly for service-oriented applications, rollback of several ser-
vices affects resiliency in service delivery.

Log-based recovery [10, 22–25] is similar to uncoordinated checkpointing when
it comes to independence of processes in taking checkpoints. Additionally, processes
are required to log every message received by them in the case of log-based recovery.
These logged messages are replayed for the recovery of the process when it fails and
rollbacks to its last saved checkpoint. Other processes are not forced to rollback. On
the contrary, they can continue their execution as far as possible (till the point where
they are waiting for a message from the failed process). Thus, rollback has to be done
only by the process that has failed in message logging technique.

Log-based recovery can be broadly categorised into three flavours [10]: Pes-
simistic logging, Optimistic logging and Causal logging. According to Pessimistic
logging [24]when amessage is received, execution of the process has to be suspended
temporarily, themessagehas to be loggedon to a permanent storage, and then themes-
sage can be processed by the process. Blocking of the process, although temporarily,
leads to performance overhead. In order to avoid the performance overhead incurred
in pessimistic logging, the approach of asynchronous logging of messages is adopted
by optimistic logging [23, 24].Whenmessages are being logged asynchronously, the
process can be executed parallely with logging. As a result of asynchronous logging,
optimistic logging leads to the creation of orphan processes [10] (a process whose
state depends on a message which has not been saved). Contrary to pessimistic log-
ging, all the processes which have received messages from orphan process before its
failure are also rolled back. Thus, optimistic logging requires additional processes to
be rolled back in addition to failed process. The main feature of optimistic logging
is that it ensures total removal of orphans by the end of recovery process. Processes
that are not involved in recovery resend the messages delivered to and not saved at
the failed process, thereby aiding the failed process in its recovery.

Causal logging [10, 22] takes on the advantages of both pessimistic and optimistic
logging. Asynchronous logging of messages is adopted from optimistic logging. The
underlying principle of pessimistic logging is that it requires the messages sent to
a process be logged before proceeding to send a message to remaining processes,
thereby avoiding orphan messages. The same principle is adopted by causal log-
ging. These advantages come with a disadvantage, i.e. recovery of the failed process
involves complex procedure. Surviving processes must resend the unlogged mes-
sages, along with their order of replay, to aid in recovery of the failed process. In
order to resend messages in the hour of need, each process must know the global
order of message replay. Due to this reason, each process maintains a dependency
graph that depicts the causal ordering of messages. These dependency graphs are
exchanged among processes that aid other processes involved in a recovery. This
exchange of graphs is inevitably a substantial overhead, which is a hindrance to
providing quality service and hence cannot be applied to a webservice if it has to
honour an SLA.

To handle failures within coordinated workflows that share common resources
over a network, the authors of [13] propose a new scheme for compensation and re-

Handling Faults in Composite Webservices 109

execution which eliminates unnecessary recovery overheads when different modules
(called steps) of a workflow are rolled back partially and re-executed. The focus of
this work is to maintain consistency of data items that are shared among workflows.
Decision onwhether to re-execute or to compensate a step depends upon the updation
of involved data items values in that step. This work does not address the issue of
meeting time and cost deadlines which are central to webservices checkpointing.

When multiple webservices work in tandem with one another to form a compo-
sition, failure in one of the webservices should not require rollback of other partner
webservices during recovery. Checkpointing coupled with log-based recovery may
seem to be applicable to webservices as it does not require surviving processes to
rollback. But the associated costs (unavoidable logging of messages, creation of
orphan processes and exchange of dependency graphs) of the three log-based recov-
ery approaches would reduce their applicability to webservices.

Hence, an approach for checkpointing and recovery of webservices should imple-
ment the following: (1) not to request rollback of processes other than failed process
(2) use pessimistic logging to avoid creation of orphan processes but not to log all the
messages (since it results in considerable performance overhead) and (3) to consider
the characteristics of webservices in designing a strategy.

4.2 Checkpointing Webservices

Having discussed the non-applicability of distributed checkpointing techniques to
webservices in the previous section, we now present important characteristics of
webservices which every webservice checkpointing scheme has to consider while
deciding on checkpoint locations:

1. Composite nature of webservices and non-repeatability of actions: Con-
stituent services of a composite service interact with each other in a specified
sequence. Checkpoint locations should be such that rollback to a checkpoint
should not result in re-invocation of other webservices that perform nonrepeat-
able actions for business obligations. For example, in Fig. 4, online booking ser-
viceWS1 sends payment details and invokes anotherwebservice, theatre booking
webservice WS2 which performs a nonrepeatable action of booking a seat in a
specified theatre. A failure of WS1 at time T1 would require a rollback of WS1
to one of its checkpoint locations. Rollback to checkpoint at location L1 results
in re-invocation of WS2 (not desirable), whereas rollback to checkpoint at loca-
tion L2 does not result in re-invocation of WS2 (desirable). Hence, checkpoint
locations should be based on interactions between webservices.

2. Compliance to SLA: Webservices must work in compliance with Service Level
Agreements (SLA). In order to see that a composite webservice does not violate
its SLA, it is very important to plan its checkpointing and recovery based upon
the promised QoS values of its constituent services.

110 V. V. Atluri and H. Mohanty

Fig. 4 Checkpoint locations
and their impact

3. Dynamic selection of constituent services: One of the salient features of com-
posite webservices is that some of the participating services can be selected at
runtime resulting in dynamic composition ofwebservices. Considering their QoS
values while placing checkpoints is vital in avoiding SLA faults that might arise
during failed and recovered executions. Hence, checkpointing locations have to
be revised after consider the QoS values of dynamically selected services.

4. Dynamic nature of Internet and web server environments: The traffic that
flows through the internet is highly dynamic in nature which might result in
large variations in the response times of webservices. Also, number of pending
requests at a web server will have an impact on how quickly a request is processed
by the web server. This dynamic nature of the environment in which webservices
operate also has to be considered while taking checkpointing decisions.
In literature, we can find some interesting papers [7, 26–30] that discuss the need
and techniques of checkpointing webservices for their resilient execution. In this
section, we discuss significant checkpointing works proposed for handling faults
in webservices, analysing their merits and demerits. At the end of this section
we present a comparison of these works based on the above-listed characteristics
that each of them have considered while proposing a solution. Another criterion
is also used for comparing these works.

5. Decision on checkpointing locations: Location of checkpoints in a composite
webservice has impounding effect on total execution time for failure free execu-
tions and on recovery time for failed and recovered executions. Hence, proper
placement of checkpoints is vital for resilient execution of webservices.

In the comparison table presented at the end of this section, we have specified
whether each of the works has proposed any checkpointing algorithm or they left it
to designers of applications to decide.

In one of the most cited webservice checkpointing works by Soumaya Marzouk
et al. [27], the authors propose a fault handling mechanism to handle permanent
server failures. The main contributions of this work are: (i) An architecture and
(ii) A scheme for webservice recovery from server faults. The proposed architec-
ture mainly consists of two servers, namely one primary and the other redundant
secondary server to manage the permanent failure of primary server. If permanent
server failure is not handled, it might lead to another serious problem of QoS vio-

Handling Faults in Composite Webservices 111

lation. To avoid this situation, they propose to checkpoint the executing services
instances and migrate executing instances from primary server to secondary server
in case of failure of the former. Additionally, they introduce the use of two ser-
vices that manage checkpointing and invocation of webservices. The first service is
Web Service Checkpoint Manager (WSCM) and the second service is Web Services
Invocation Manager (WSIM).

WSCM is responsible for checkpointing of webservices and also for their sub-
sequent migration and recovery following the primary server crash. Suspended
instances would resume their execution from their last saved checkpoints. After
migration, the job of routing requests from service consumers to secondary web
server is taken up by WSIM. Hence, WSCM and WSIM together achieve mobility
of services. The approach of modelling the mobility, checkpointing and recovery and
migrating as aspects is what makes their work stand apart.

Although several options for deciding checkpoint locations (like checkpointing
at regular intervals of time, checkpointing just before communicating with other ser-
vices, etc.) have been suggested by the authors, they leave it to the users to select
a suitable option based on their requirement. Thus, the expertise of the users in
placing checkpoints at apt locations decides the checkpointing and recovery over-
head. Execution of the two services WSCM andWSIM on reliable servers is another
performance overhead.

A recovery scheme for composite webservices has been proposed byMarta Rukoz
et al. in [28]. Their main contributions include (i) An architecture and (ii) A recovery
scheme for handling faults in a composite webservice. Their architecture consists
of three layers: client, server and a software layer comprising of execution engine
and engine threads. The states of execution of each of the participant services are
monitored and captured by these software components. In case of failure of a service,
all the surviving constituent services are allowed to proceed till the point where they
need to communicate with the faulty service. They will be checkpointed at the state
where they cannot proceed further. As soon as the failed service resumes, all the
remaining, waiting services are also resumed. But this approach also requires the
failed service to restart from the beginning since it is not checkpointed anywhere.

The authors of [29] propose a checkpointing and recovery scheme for Inter Organ-
isational Workflows (IOWS). Their solution is to checkpoint an IOWS at everyMax-
imum Sequential Path (MSP). A Maximum Sequential Path is defined as a set of
all tasks in an IOWS that can be executed sequentially. A checkpoint is placed after
every MSP. As every MSP represents a logical unit of work, the end of every MSP
is argued as a suitable location to which the failed workflow can be reverted back.
But the drawback of this proposal is that it results in large number of checkpoints
whenever there are too many control flow branches.

Urban Susan et al. have proposed an interesting work in [30] to respond to exe-
cution errors in composite webservices. Their main contributions include a scheme
for checkpointing and recovering orchestrated webservices. They introduce what are
called as Assurance Points (APs) which act as both logical and physical checkpoints.
At every APmarked at the end of a logical work in a choreography, a physical check-
point is taken, but after checking with post and pre-conditions dictated by business

112 V. V. Atluri and H. Mohanty

level constraints. Each AP is associated with a set of integration rules which specify
whether the recovery is backward recovery or forward recovery. The decision is taken
as per specified pre-conditions and post-conditions. Backward recovery resumes the
execution from last AP, whereas, alternate paths are suggested in forward recovery.
Even in their scheme, the responsibility of placing the assurance points is vested in
the hands of the designer and there is no policy using which automatic placements
of assurance points can be done.

In [31, 32], the authors propose a two-stage checkpointing: Design time and
Deployment time checkpointing to handle transient faults in composite webservices.
Design Time Checkpointing: In [31], the authors have captured interaction centric
design of a choreographed webservice by proposing an interaction pattern model.
Five atomic interaction patterns and five composition operators are proposed that are
used to model essential elements of a choreography. Probable checkpointing loca-
tions are identified using the proposed patterns which are termed as C-points. Design
time checkpointing rules are proposed that convert these C-points into checkpoints to
avoid re-invocation of webservices that perform nonrepeatable actions (Static Check-
pointing). They also advocate recovery rules that ensure recovery without initiating
re-invocation of other services that perform nonrepeatable actions.

Deployment Time Checkpointing: In [31], the authors present their proposed sec-
ond stage of checkpointing. Response time, vulnerability and cost of service are
identified as the primary QoS attributes which have to be considered while taking
checkpointing decisions. The proposed interaction pattern model in [31] is amended
to include modelling of QoS attributes. Using these attributes and other quantities
measurable at deployment time like: time taken to checkpoint, time taken to log a
message and, restoration time, etc., the proposed time and cost aware checkpointing
algorithm marks checkpoint locations in a composite service. This algorithm rec-
ommends to take a new checkpoint only when time and cost constraints are not met
when the composite webservice fails and recovers.

4.3 Comparison

In this subsection, we present a summary of our survey. We present the strengths and
weaknesses of all the surveyed papers on fault handling in composite webservices
in the table below (Table 1). We compare them based on the features of composite
webservices that they have consideredwhile taking checkpointing decisions.We also
consider whether checkpoint locations are automatically generated by the scheme
or require user to specify them. It may be noted here that user-specified checkpoint
locations require the user to have thorough knowledge of the application domain.

Handling Faults in Composite Webservices 113

Table 1 Comparison of webservices checkpointing

Non-
repeatability
of actions

Compliance
to SLA (Time
and Cost)

Dynamic
selection of
constituent
services

Dynamic
nature of the
environment

Checkpoint
locations
(A/U)

Markouz et al.
[27]

X X X Y U

Sen et al. [29] X X X X A

Mansour et al.
[7]

X Only Time X Y A

Susan et al.
[30]

Y X X X U

Rukoz et al.
[28]

Y Y X X U

Vani et al. [31,
32]

Y Y X X A

X Not addressed, Y Addressed, A Automatic, U User defined

5 Substitution

Substitution is another popular technique that is used for handling faults in composite
webservices [4–7].

The approach proposed by Mansour and Dillon et al. in [7] consists of a central
coordinator for handling faults in composite webservices. In order to aid in man-
agement of faults in a composite webservice, the authors propose to associate each
webservice with a reliability factor. Reliability of every webservice is computed
dynamically. A choreography of webservices that represents a composite webser-
vice is pictorially represented in the form of a graph. Each participating service is
represented by a vertex in the graph. If the execution of service a is followed by
service b in the given choreography, then it is represented by placing an edge from
vertex a to vertex b. For every edge (a, b) inserted between the services a and b,
a measure E(a, b) is defined as E A e where E is the maximum expected time of
recovery from the latest checkpoint, A is the recorded actual time of recovery and e
is the expected total time of execution of service b.

A checkpoint is inserted after a and before b if the computed E(a, b) is less than
zero. If it is positive, then testing continues with the next edge to decide whether a
checkpoint can be placed after that edge. In case of failure of a called webservice, the
calling service is rolled back to its latest saved state and execution resumes from there.
Then, an alternate functionally equivalent service is invoked. Apart from reliability,
no other QoS attributes have a role in their model. Checkpoint locations are decided
purely based on computed reliability values. The involvement of the network that
lies between the geographically separated webservices and the environment in which
services are deployed are totally ignored in deciding checkpoint locations.

114 V. V. Atluri and H. Mohanty

In [4], yet again, reliability of webservices is used for handling faults of partner
services in a composite webservice. Content faults, system faults, logical faults and
service level agreement faults are the four types of faults that might appear in called
services as identified by the authors. Replicate, notify, retry, ignore andwait are some
of the eight different fault handling techniques which is proposed to encounter the
faults specified above.EventConditionAction (ECA) rules are proposed that describe
which fault handling strategy is to be used when and how. However, no strategy is
proposed to handle faults in central coordinator that invokes partner services in a
composite webservice.

The fault-tolerant strategy proposed in [6] also is an example of substitution.
RobustBPEL is the framework proposed by the authors which is capable of auto-
matically producing a fault-tolerant process equivalent to a given BPEL process.
A failure in one of the constituent webservices results in the failure of the entire
composite webservice. To avoid such a situation, a proxy server is kept available all
through. In case of failure of primary server, all unanswered requests are routed to
this proxy server. The job of forwarding requests is taken care by an adapt-ready
process. The proxy server is responsible for calling a functionally equivalent ser-
vice. RobustBPEL comes in two flavours. Static RobustBPEL always routes calls
to the same set of functionally equivalent services which are hardwired in the code.
Dynamic RobustBPEL, on the contrary, searches for equivalent services at the time
of execution and routes calls to them.

In [5], the authors present a framework for self-healing of webservices. They
have proposed an approach which is non-intrusive for recording message exchanges
between the participants of a composite webservice. A four-step procedure is devised
to monitor, diagnose and detect, plan repair and execute repair actions for providing
self-healing. The SOAPmessages are attached with QoS parameters and their values
observed by monitor components running at receiver and provider ends. When a per-
formance degradation is detected using a specified policy, alternate partner services
are invoked. Dynamic binding and substitution are the main policies upon which
their algorithm works.

In the next section, we discuss another fault handling strategy in webservices:
Redundancy.

6 Redundancy

By and large, the technique used in this strategy is to maintain redundant web servers
so that failure of one web server does not affect the delivery of a prompt service.

The work proposed in [33] addresses the problem of handling coordinator fail-
ures by providing an infrastructure called WS-Replication for WAN replication of
webservices. Webservices are maintained on redundant servers in the proposed WS-
Replication architecture. There would be essentially no difference in the way in
which replicated webservices are invoked in comparison with their non-replicated
counterparts. It is the responsibility of WS-Replication to deploy a webservice on

Handling Faults in Composite Webservices 115

several servers, route calls to all these servers in a transparent fashion, receive replies
from all of them and finally give one reply to the service consumer.

In [34], the authors propose to use redundant servers to handle failure of the pri-
maryweb server. They propose an FT-SOAP systemwhich contains four components
to perform the following functions: replication management, fault management, log-
ging/recovery mechanism and client FT transparency. The fault manager performs
the tasks of fault detection and fault notification. The recovery manager captures and
logs the invocation activities for recovery purpose. Replication manager takes up the
responsibility of replicating webservices on redundant servers. These replicas are
called as a fault-tolerant WS group.

For every fault-tolerant WS group, a new tag called Web Service Group (WSG),
is appended to WSDL. This helps in achieving fault transparency at the end of the
service consumer. In case of failure of the invoked service, thisWSGcan be examined
by the SOAP engine deployed at service consumer. Using theWSG tag, SOAP engine
at the end of the service consumer may attempt several times to invoke other replicas
in order to successfully retrieve the service. In the case of not receiving a response
from any of the servers listed inWSG, a failure exception is sent by the SOAP engine
to the application requesting the service. In such a case, the client application should
again search for another WSDL.

7 Conclusion

Checkpointing and recovery schemes designed for composite webservices should
successfully recover the failed instances from faults so as to avoid SLA faults. This
chapter discusses mainly three techniques for handling faults in composite webser-
vices: checkpointing, substitution and redundant servers. Checkpointing is a tech-
nique that has proved itself time and again as a robust fault handling strategy across
areas like distributed computing, operating systems, banking transactions, etc. Con-
ventional checkpointing techniques include coordinated checkpointing, uncoordi-
nated checkpointing, communication-induced checkpointing and log-based check-
pointing and recovery. But conventional checkpointing schemes are not directly
applicable to webservices because of their distinct characteristics. This chapter intro-
duces four main webservice characteristics which have to be considered while tak-
ing checkpointing decisions. It also discusses various checkpointing and recovery
schemes for composite webservices and presents a comparison of them in a tabular
format.

Various substitution approaches that have been proposed for handling faults in
webservices are also discussed. Substitution approach [4–7] works well when a
callee fails: callee is replaced by a functionally similar service. The approach fails if
the server hosting the caller itself fails. All the execution instances of the caller in the
case of failure of the server hosting the caller would have to be re-executed from the
beginning. This requires re-execution of all the failed instances of the caller resulting

116 V. V. Atluri and H. Mohanty

in increased execution times. Checkpointing and recovery schemes can handle faults
in both caller and called services, but involve considerable amount of rework.

Redundant servers help in quickly restoring failed instances webservices, but
their maintenance poses considerable overhead. A variety of redundancy solutions
proposed for handling web server failures are also discussed at the end.

References

1. Berson and Alex. Master Data Management & Data Governance. McGraw-Hill Education
(India) Pvt Limited.

2. A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxonomy of
dependable and secure computing. Dependable and Secure Computing, IEEE Transactions on,
1(1):11–33, Jan 2004.

3. K.S.MayChan, JudithBishop, JohanSteyn,LucianoBaresi, andSamGuinea.A fault taxonomy
for web service composition. Service-Oriented Computing Work- shops, 4907:363–375, 2009.

4. An Liu, Li Qing, Liusheng Huang, and Mingjun Xiao. Facts: A framework for fault-
tolerant composition of transactional web services. IEEE Transactions on Services Computing,
3(1):46–59, 2010.

5. R Ben Halima, Khalil Drira, and Mohamed Jmaiel. A qos-oriented reconfigurable middleware
for self-healing web services. IEEE International Conference on Web Service, pages 104–111,
2008.

6. Onyeka Ezenwoye and S. Masoud Sadjadi. Trap/bpel: A framework for dynamic adaptation of
composite services. Proc of WEBIST , pages 216–221, 2007.

7. H.E. Mansour and T. Dillon. Dependability and rollback recovery for composite web services.
IEEE Transactions on Services Computing, 4(4):328–339, 2011.

8. Greg Bronevetsky, Daniel Marques, Keshav Pingali, and Paul Stodghill. Automated
application-level checkpointing ofmpi programs.Proc of the Ninth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pages 84–94, 2003.

9. K. Mani Chandy and Leslie Lamport. Distributed snapshots: determining global states of
distributed systems. ACM Transactions on Computer Systems, 3(1):63–75, 1985.

10. Elmootazbellah Nabil Elnozahy, Lorenzo Alvisi, and Yi-Min Wang. A survey of rollback-
recovery protocols in message-passing systems. ACM Computing Surveys, 34(3):375–408,
2002.

11. Richard Koo and Sam Toueg. Checkpointing and rollback-recovery for distributed systems.
IEEE Transactions on Software Engineering, pages 23–31, 1987.

12. L. Lin and M. Ahamad. Checkpointing and rollback-recovery in distributed object based sys-
tems. 20th International Symposium Fault-Tolerant Computing, pages 97–104, 1990.

13. Kamath Mohan and Krithi Ramamritham. Failure handling and coordinated execution of con-
current workflows. Proceedings of the Fourteenth International Conference on Data Engineer-
ing, Orlando, Florida, USA, February 23–27, 1998, pages 334–341, Aug 1998.

14. Manivannan Robert Netzer, D.Manivannan, Robert H. B. Netzer, andMukesh Singhal. Finding
consistent global checkpoints in a distributed computation. IEEE Transactions on Parallel and
Distributed Systems, 8:623–627, 1997.

15. Robert HB Netzer and Jian Xu. Necessary and sufficient conditions for consistent global snap-
shots. IEEE Transactions on Parallel and distributed Systems, 6(2):165–169, 1995.

16. Y. Robert, F. Vivien, and D. Zaidouni. On the complexity of scheduling checkpoints for com-
putational workflows. IEEE/IFIP 42nd International Conference on Dependable Systems and
Networks Workshops, pages 1–6, 2012.

17. LME Silva and Joao Gabriel Silva. Global checkpointing for distributed programs. Proc of
11th Symposium on Reliable Distributed Systems, pages 155–162, 1992.

Handling Faults in Composite Webservices 117

18. Y. Tamir and C. H Sequin. Error recovery in multicomputers using global checkpoints. Proc
of the International Conference on Parallel Processing, pages 32–41, 1984.

19. B. Bhargava and S.-R. Lian. Independent checkpointing and concurrent rollback for recovery
in distributed systems-an optimistic approach. Seventh Symposium on Reliable Distributed
Systems, 1988. Proc., pages 3–12, Oct 1988.

20. D.L Russell. State restoration in systems of communicating processes. Proc of IEEE Transac-
tions on Software Engineering, 6(2):183–194, 1980.

21. Y.M WANG. Consistent global checkpoints that contain a set of local checkpoints. Proc of
IEEE Transactions on computers, 46(4):456–468, 1997.

22. Lorenzo Alvisi, Karan Bhatia, and Keith Marzullo. Causality tracking in causal message-
logging protocols. Journal of Distributed Computing, 15(1):1–15, 2002.

23. David B. Johnson and Willy Zwaenepoel. Recovery in distributed systems using optimistic
message logging and check-pointing. J. Algorithms, 11(3):462–491, September 1990.

24. R. Strom and S. Yemini. Optimistic recovery in distributed systems. Proc of IEEE Transactions
on computers, 3(3):20–226, 1985.

25. Willy Zwaenepoel and D.B. Johnson. Sender-BasedMessage Logging. Proc of the Seventeenth
International Symposium on Fault-Tolerant Computing, pages 14–19, 1987.

26. WesleyBland, PengDu,AurelienBouteiller, ThomasHerault, andBosilca. Extending the scope
of the checkpoint-on-failure protocol for forward recovery in standard mpi. Concurrency and
Computation: Practice and Experience, 25(17):2381–2393, 2013.

27. Soumaya Marzouk, Afef Jmal Maˆalej, and Mohamed Jmaiel. Aspect-oriented checkpointing
approach of composed web services. Proc of the 10th International Conference on Current
Trends in Web Engineering, pages 301–312, 2010.

28. Marta Rukoz, Yudith Cardinale, and Rafael Angarita. Faceta*: Checkpointing for transactional
composite web service execution based on petri nets.Procedia Computer Science, 10:874–879,
2012.

29. Sagnika Sen, Haluk Demirkan, and Michael Goul. Towards a verifiable checkpointing scheme
for agent-based inter-organizational workflow system” docking station” standards. Proc of the
38th Annual Hawaii International Conference, pages 165– 173, 2005.

30. Urban Susan D., Gao Le, Shrestha Rajiv, and Courter Andrew. Achieving recovery in service
composition with assurance points and integration rules. On the Move to Meaningful Internet
Systems: OTM, 6426:428–437, 2010.

31. Atluri Vani Vathsala and HrushikeshaMohanty. Interaction patterns based check- pointing of
choreographed web services. Proc of the 6th International Workshop on Principles of Engi-
neering Service Oriented and Cloud Systems, pages 28–37, 2014.

32. Atluri Vani Vathsala and HrushikeshaMohanty. Time and cost aware checkpointing of chore-
ographed web services. Proc of the 11th International Conference on Distributed Computing
and Information Technology, pages 207–219, 2015.

33. Jorge Salas, Francisco Perez-Sorrosal, Marta Patiño Martínez, and Ricardo Jiménez-Peris.
Ws-replication: A framework for highly available web services. In Proceedings of the 15th
International Conference on World Wide Web, WWW ’06, pages 357–366, New York, NY,
USA, 2006. ACM.

34. Deron Liang, Chen-Liang Fang, Chyouhwa Chen, and Fengyi Lin. Fault tolerant web service.
In Software Engineering Conference, 2003. Tenth Asia-Pacific, pages 310–319, Dec 2003.

Webservice Security

Ravi Kiran Kumar Meduri

Abstract Webservices have become quite common in enterprise solutions as organi-
zations have started exposing their services and products to the outside world through
their extranets and the internet. Since webservices offer a great deal of flexibility in
implementing business processes that span across application systems built on het-
erogeneous technologies, adding end-to-end security towebservices has becomevery
important to make them robust. As webservices communicate over HTTP through
XML messages, we need security at the transport layer and at both the sending and
receiving ends of the messages. This chapter details the concepts of webservice secu-
rity at both the levels followed by different standards used for its implementation
and concludes with a brief overview onOracleWebserviceManagement Framework.

1 Introduction

With the emergence of Service-Oriented Computing (SOC) [1] which is based on
service-oriented architecture, webservices have become a common mechanism to
design, build, and consume software applications. In succinct terms, SOA is an
architectural model that organizes software applications and infrastructure into a set
of services that interact with one another in a loosely coupled and highly cohesive
manner using standards-based and platform-independent protocols within a hetero-
geneous distributed environment. The key reason behind the emergence of SOA is
the necessity to respond quickly to opportunities coupled with the need for busi-
ness agility in the contemporary markets [2]. In order to accommodate these needs,
enterprises have been trying to streamline their existing business processes besides
exposing their in-house and various other packaged applications in a standardized
manner, as webservices that can be composed to form highly cohesive and loosely
coupled independent business processes.

R. K. K. Meduri (B)
Department of Computer Science, Government Degree College, Gummalakshmipuram,
Vizianagaram District, India
e-mail: ravikiranmeduri@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
H. Mohanty and P. K. Pattnaik (eds.), Webservices,
https://doi.org/10.1007/978-981-13-3224-1_6

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3224-1_6&domain=pdf
mailto:ravikiranmeduri@gmail.com
https://doi.org/10.1007/978-981-13-3224-1_6

120 R. K. K. Meduri

As mentioned, webservices are the most promising choice to implement service-
oriented architecture and achieve its strategic objectives which are essential to build-
ing modern software applications. Let us spend a moment to understand what a
webservice is. In its essence, a webservice is a semantically well-defined abstraction
of a set of computational activities that rely on a number of resources to meet the
given customer needs or business requirements. In other words, a webservice just
talks about what it does in an abstract way and does not even give a glimpse of
how it performs its activities. This is the very reason why webservices have become
platform independent making them the best choice for building applications that
work over the internet. Though a webservice does not specify any internal details
of its operational activities, its access over the internet makes it vulnerable to vari-
ous security attacks. This chapter articulates various security threats associated with
webservices in general and the countermeasures that address each of these threats
along with a few case studies.

This chapter is organized into multiple sections and begins with a brief overview
of webservices followed by their classification and interaction patterns. It then jumps
to security, in general, followed by a brief explanation of security terminology used
within this chapter and in general. It then elucidates key webservice threats [3] such
as forged claims, loss of confidentiality, message modification, principal spoofing,
loss of confidentiality, man in the middle, message replays and denial of service,
and the countermeasures available both at transport layer level and message level to
counterattack these threats. It also gives a brief idea of various security frameworks
available to address some of these security threats and finally concludes with a
case study on enabling webservice security using Oracle Webservice Management
(OWSM).

1.1 Webservices Description

Webservices are defined usingWeb Service Description Language. This XML-based
language abbreviated as WSDL defines what a webservice performs hiding all the
implementation details which is why webservices provide platform-agnostic inter-
faces to integrate applications that run on heterogeneous platforms. The key elements
of WSDL include:

• Types: to define the XML schema types that are used in the webservice definition.
• Message Types: to define the parametric types that can be used to pass messages
to and from different operations.

• Port Types: to define the collection of operations that a webservice can perform
along with the message types associated with each of its operations.

• Bindings: to specify the protocol to send the messages, the message style and the
connection between the webservice operation and its actual execution point or the
end point.

• Service: to specify the actual webservice execution URL or the end point URL.

Webservice Security 121

So, in succinct terms, WSDL specifies what the webservice does and how it can
be accessed without making any mention of its implementation details making it
the best choice for integrating applications running on disparate technology stacks.
Based on the definition of theWSDL, it can either be abstract (a blueprint without any
implementation) or concrete (definition of an implementedwebservice).Webservices
are generally registered in a repository defined using UDDI framework. UDDI is an
acronym for Universal Description, Discovery, and Integration. This framework is
an XML-based, platform-agnostic and open specification for publishing and finding
webservices. Based on their operational behavior, webservices can be classified as
below.

1.2 Classification

As introduced, webservices are playing a key role in implementing today’s software
applications that operate over Internet. Before we go any further in understanding the
other related aspects of webservices, it is worthwhile to have a look at different types
of webservice provisioning techniques. Though the classification of webservices is
not within the scope of this chapter, in order to understand the security framework
depending on the provisioning technique, we need to have a quick look at the imple-
mentation variations. Based on the architectural style that is followed to implement
webservices, we can classify them as Service-Oriented Architecture (SOA)-based
webservices and Resource-Oriented Architecture (ROA)-based webservices. Ser-
vices built using SOA use Simple Object Access Protocol (SOAP) while those built
using ROA use Representational State Transfer (REST) framework. Let us have a
quick juxtaposition between the two frameworks to understand the key differences
that play an important role in identifying and implementing a security framework.

SOAP
SOAP [4] is a traditional framework suitable for implementing enterprise level
Business-to-Business (B2B) solutions. It is a tightly coupled framework and gener-
ally consists of very large payloads consuming more bandwidth than its counterpart.
SOAP always uses POST with complex XML request making response-caching
difficult. SOAP is a transport-agnostic framework and is designed to implement dis-
tributed computing. It has an additional layer of security in terms of WS-Security
and does not make any assumptions about the security available over the transport
protocol it uses. Since it is predominantly used in building webservices, various
standards and tools provide better support to this framework when compared to its
counterparts.

REST
REST [1] is a newer technology as compared to its previous counterpart and asso-
ciates itself with the implementation of a few mission-critical applications. It is a
loosely coupled and lightweight framework utilizing less bandwidth for data trans-
fers. REST can use GET making forward proxies and reverse proxies to cache the

122 R. K. K. Meduri

responses. When a GET request is made through a forward proxy from a consumer,
the response given by the corresponding provider can be cached within the forward
proxy and any subsequent request can be directly responded through the cachedmes-
sage. Similarly, when an Internet-based consumer makes a request through a reverse
proxy that is attached to a private network, the response obtained from a provider
located within the private network can be cached and be used to service further
requests of the same kind. REST works only on HTTP and is not a suitable candidate
for distributed computing as it only supports point-to-point communication model.
REST does not have any built-in support for security and relies on the transport layer
security (HTTPS). Lack of support for standards, security and reliable messaging
makes it a difficult choice to build sophisticated services.

1.3 Webservice Message Exchange Patterns

The general working nature of webservices includes a consumer who is interested
to consume services offered by a provider which provides different services as a
sequence of operations (Fig. 1).

During the process of interaction, a consumer and a provider together expose
a pattern that demonstrates the way the two parties exchange messages. These are
called Message Exchange Patterns (MEPs) [5]. The common MEPs are

• Synchronous Request–Response Pattern:
This pattern makes a consumer wait until the corresponding provider processes
the request received from the consumer and provides the response or a time-out
occurs. Both request and response are exchanged in single connection.

• Asynchronous Request–Response Pattern:
This is akin to synchronous pattern except that a consumer does not wait for the
corresponding provider’s response in the same connection.

• One-way Request–Response Pattern:
This pattern is generally used for For Your Information (FYI) services. For this
pattern, the response to a communication either does not exist or is not required.

Though these patterns provide the basic way of enabling interactions between
a service provider and a service consumer, they are used in several permutations

Fig. 1 Service-oriented interaction

Webservice Security 123

and combinations among many webservices to provide greater functionality. These
services are generally exposed to the external world through Internet and corpo-
rate extranets and therefore the security requirements of most of these webservices
demand that the strongest possible safety mechanisms be implemented across their
integration touch points. Before we jump into the implementation of webservice
security frameworks, let us understand the security fundamentals for webservices in
the next section.

2 Security Fundamentals

Since webservices are generally atomic in behavior, they are composed to implement
the desired business functionality. The composed webservices require messages to
be exchanged across multiple nodes (webservices) and webservices involved in this
kind of message-based architecture span across heterogeneous environments. These
scenarios indicate that security needs to be attached at the message level to support
interoperability across heterogeneous platforms andmessage passing acrossmultiple
intermediary nodes.

Security in General:
Security [6] is very important as it is related to the protection of assets. Asset can be
either tangible item such as a customer database or it can be a less tangible one such
as reputation of a company.

We must understand that security is a chain and we need to find the weak links
within the chain. In order to find the weak links with a view to improving the security,
weneed to identify the potential threats and the degree of risk that each threat presents.
Once the threats and their corresponding risks are identified, we need to implement
effective countermeasures. Therefore, it can be noted that security is about managing
risks posed by different kinds of threats. Effective security can be achieved through
an effective collaboration of people, process, and technology.

Security Elements:
Following are the key security elements on which all the security models rely on.
Understanding these concepts is essential to provide end-to-end security to an IT
application or a webservice.
Authentication: The Organization for the Advancement of Structured Information
Standards (OASIS) [7] defines authentication as the corroboration that the peer entity
is the actual one as claimed. This addresses the question of “who is accessing the
application or service”. This is a process of uniquely identifying the consumers of
an IT application or a webservice.
Authorization: This addresses the question what a consumer can do after its authen-
tication. It is the process of managing permissions to an authenticated consumer or
entity or process so that it can access granted resources and perform allowed opera-
tions. Resources include databases, files, tables and so on while operations include
transactions such a creating a purchase order, shipping an item to the end customer,

124 R. K. K. Meduri

transferring funds from one account to another or changing the profile of a customer
based on inputs.
Non-repudiation: Non-repudiation is a guarantee that a user cannot deny performing
an operation or accessing a resource. This is essential to avoid fraudulent transactions
and activities. Event logging and auditing are the keys to enable non-repudiation in
any IT application or service.
Confidentiality: Confidentiality, also known as, privacy is the process of ensuring
that data is accessible only to authorized entities. It prevents unauthorized users and
eavesdroppers from gaining access to sensitive data illegally. Encryption and access
control lists are commonly used to enforce confidentiality.
Integrity: Integrity is an assurance that data is protected from accidental or malicious
modification while it passes across multiple networks. Hash techniques and message
authentication codes provide integrity for data that goes across networks.
Availability: From a security viewpoint, availability ensures that an application or
a service is available to legitimate users. As most of the security attacks aim at
overwhelming an application or a service with huge data making it inaccessible to
genuine user community, availability remains one of the key elements of security. The
goal of availability is to protect an application or a service from Denial-of-Service
(DoS) attacks.

All the security elements apply to any web application including those based on
webservices. Therefore, it is fundamental to ensure that all these security elements
are addressed during the design of a webservice to make it a secure webservice.
To make a webservice secure, we first need to understand the possible security
threats associated with webservices. The next sections give a brief idea of threat
nomenclature followed by an overview of threats associated with webservices.

Security Issues—Terminology
When thinking about security, we have to understand the nomenclature associated
with it so that we can describe the security policy in detail [8].

An asset is something that is worthy of being protected. Sensitive data, services,
certain critical operations, and intellectual property are all assets. For instance, credit
card numbers are an asset which needs to be protected within an application or while
being sent over the network to a payment gateway. Updating customer rating is an
example for critical operation that cannot be performed by all the legitimate users of
the application and has to be available only to users with elevated privileges. A threat
is a scenario wherein an information system is attacked through unauthorized access,
modification of sensitive information and/or denial of service so that the activities,
assets and/or individuals or an organization are adversely impacted. In short, a threat
is a potential occurrence of an incident that damages an asset. Vulnerability is defined
as a flaw in an information system, system security procedures, internal controls, or
implementation that could be exploited. In common terminology, vulnerability is
a weakness in a software component, giving rise to a threat. Vulnerabilities arise
due to errors in configuration, inappropriate architecture/design or insecure coding
techniques. For example, improper validation of input is a vulnerability that may
cause input attacks at application layer. An attack is defined as an assault to a system

Webservice Security 125

that is triggered by an intentional use of vulnerability. In other words, an attack enacts
a threat by making use of security vulnerabilities.

In summary, a threat is a potential event that can adversely affect an asset while
an attack exploits vulnerabilities in an application or a service to enact a threat.

Webservice Security Threats
As we have seen in security issue nomenclature, threat is the manifestation of a
security vulnerability which can damage an asset. At this juncture, we need to under-
stand various threats that are possible in the arena of webservices when accessed over
Internet or through a corporate extranet. According to Webservices Interoperability
(WS-I), following are the most important threats faced by webservices [9].

Intentionally modifying the original message and making the receiver consider it
as the original message is called the message alteration. This attack adds, deletes
or modifies the data sent in a message to mislead the receiver. The disclosure of
sensitive data to unauthorized entities, processes and/or individuals is termed as loss
of confidentiality. Obtaining a credit card number through an attack is an example
for loss of confidentiality. Construction of fake messages with an intention to make
the receiver believe that they are sent from a valid sender falls under attacks through
falsified messages. Relaying and possibly altering the communication between two
parties and making them believe that they are directly communicating is popularly
known as man-in-the-middle attack. This attack is enacted by a third party who
sits between the sender and the receiver, and tries to modify messages making both
participants unaware of the middleman. The attack wherein an attacker constructs
and sends a message with credentials such that the message appears to be from a
different authorized principal is called principal spoofing. The attack of invoking a
webservice through untrusted credentials comes under the category of forged claims.
In this attack, the attacker constructs and sends a message with false credentials that
appear valid to the receiver. The attacks that send a previously sentmessage entirely or
that include parts of a previously sent message in a newmessage are known asReplay
(in parts and whole message). The motivation behind replaying the messages sent
by original sender is to gain unauthorized access. The attack of forcing a webservice
to perform large amounts of work through disproportionate payloads such that the
valid requests are denied is called Denial-of-Service (DoS) attack.

3 Security Solutions, Mechanisms and Countermeasures

In order to counterattack the security threats explained in the previous section, sev-
eral mechanisms have been proposed. In this section, let us have detailed a look
at mechanisms to address these security challenges that can be applied to different
communication layers. The primary layers where security can be provisioned are
the transport layer and the SOAP messaging layer [10]. Both these layers can be
configured on their own and/or in combination to address a variety of requirements.

126 R. K. K. Meduri

Transport Layer Security
Webservices transmit SOAPmessages over the transport layer. So the transport layer
can act as a gateway to provide security to webservices by implementing various
security measures. These security provisions provide integrity, confidentiality and
authentication for HTTP messages that include the SOAP messages. These security
mechanisms provide point-to-point security between a service consumer node and
a service provider node. To understand the transport layer security provisions, we
need to understand the concepts of Secure Socket Layer (SSL) and Transport Layer
Security (TLS).

Secure Socket Layer and Transport Layer Security:
Secure Sockets Layer (SSL) is a security standard to establish an encrypted connec-
tion between a server and a client—typically a web server (website) and a browser.
In the context of webservices, it establishes a secure link between a webservice
provider and a webservice consumer. SSL aims at transmitting sensitive information
such as login credentials, personal identifiers, banking transactions securely between
awebservice provider and awebservice consumer. Normally, data is sent in plain text
between a consumer and its provider—making the connection vulnerable to eaves-
dropping. If data is exchanged in plain text, an attacker can intercept all data (plain
text) sent between a consumer and its provider and use it for attacking the entire
system. SSL is a security protocol that encrypts the data being transmitted over the
link established between a webservice provider and its consumer. SSL has been
improvised over the years resolving many security issues. Since SSL version 3.0, it
is renamed as Transport Layer Security (TLS). Though there are some minor differ-
ences between SSL and TLS protocols, they are not within the scope of this chapter
and the readers are advised to go through the corresponding literature [11–13].

SSL is implemented in the form of a certificate. An SSL certificate is associated
with a pair of keys out of which one is a public and the other is a private key. These
keys are together used to establish an encrypted connection between a provider and a
consumer. A certificate contains a “subject,” which is the identity of the webservice
provider. Once we get a certificate through a Certificate Signing Request (CSR), we
need to install it on the consumer so that all the connections made to the provider
are established securely.

When a consumer attempts to access a provider running on an HTTP server over
SSL, the consumer and the provider establish a secure connection through “SSL
Handshake” [13] that happens in the background without the user having any idea
on the internal details of the connection establishment. The handshake process uses
three keys—public, private, and session keys while setting up an SSL connection
between a provider and a consumer. Though public and private keys alone can be
used for encrypting and decrypting messages, the asymmetric key infrastructure
usually consumes more processing power than symmetric process. Therefore, these
keys are only used to generate a symmetric key while setting up the SLL connection.
After the establishment of SSL connection between the provider and the consumer,
messages will be encrypted and decrypted using the symmetric session key. The

Webservice Security 127

Fig. 2 SSL Handshake

following diagram explains of SSL Handshake which is also popularly known as
Three-Way SSL Handshake (Fig. 2).

Let us now understand how SSL/TLS provides the basic authentication, integrity,
and confidentiality for SOAP messages.

Confidentiality
SSL/TLS, when used in association with HTTP (HTTPS), provides confidentiality
for messages exchanged between a provider and a consumer. During SSL handshake,
a consumer and a provider determine the encryption algorithm and the symmetric
key to be used for the duration of the session. Both the consumer and the provider
use the agreed-upon encryption algorithm and the session key to encrypt messages
ensuring that the data exchanged remains a secret even if the session is intercepted by
unauthorized entities. Since SSL/TLS uses asymmetric encryption to transport the
session key between a provider and a consumer during the SSL session establishment,
the same session key cannot be known to other sessions thus avoiding the possibility
of an attack on data privacy. However, it should be noted that SSL/TLS provides
confidentiality only for the duration of an active HTTPS session. It does not provide
any protection for messages that are already received. We also have to note that
SSL/TLS provides confidentiality to a complete message. It cannot be used to add
privacy to parts of a message making SSL/TLS inappropriate in scenarios where a

128 R. K. K. Meduri

message passes through several intermediate nodes each having its own requirement
to secure specific parts of the message.

Integrity
SSL/TLS, when used in combination with HTTP (HTTPS), it provides integrity to an
HTTPmessage which in turn includes the actual data to be exchanged. It uses secure
hash functions such as SHA [14, 15] and MD5 [14] to calculate message digests or
Message Authentication Codes (MAC) [16]. These MACs are sent along with the
actual messages to provide integrity. As in the case of confidentiality, integrity is also
provided only for the duration of the HTTP session. Once a message is delivered
throughHTTPS to a consumer or a provider,message integritywill cease to exist. This
means end-to-end message integrity cannot be provided using SSL/TLS. Another
shortcoming of communication over HTTPS is that SSL/TLS provides integrity
to the entire message and cannot digitally sign parts of a message thus making it
unsuitable for providing end-to-end integrity for amessage passing across a topology
of webservices.

Server Authentication
The SSL/TLS in its basic form provides authentication of a provider to its consumer
or a webservice client. Once the consumer generates a symmetric key, it encrypts and
sends it using the public key of the provider. The provider can identify the symmetric
key only if it can decrypt the symmetric key using the right private key. If the provider
does not have the correct private key, the authentication of the server fails.

Consumer Authentication
A service provider can authenticate its consumer provided it requests the later to
share its certificate (client certificate). The client certificate typically is X.509 cer-
tificate [17]. Once the SSL/TLS handshake is performed between a provider and
its consumer, the provider validates the correctness of the certificate shared by the
consumer. The provider responds back to the consumer with a “finished” message
only if the client certificate is found to be from a trusted Certifying Authority (CA)
and is valid. This mechanism can be considered as SSL/TLS handshake with Client
Certificates and is depicted in Fig. 3.

HTTP Authentication
Authentication of a consumer over HTTP can be provided without SSL/TLS as well.
This method is very popular with web applications but is vulnerable to security
attacks. The same, however, can be used for authenticating webservice consumers
as well. This mechanism includes two types of authentication methods:

1. Basic Authentication [18] uses the credentials to be sent in HTTP authorization
header in plaintext. Both username and password are concatenated using a “:”
and the concatenated string is sent using Base64 encoding scheme. Since the
credentials are not encrypted, this method is not recommended over HTTP but
can be used over HTTPS (SSL/TLS) as the credentials are encrypted.

2. Digest Authentication [18] alleviates the problem of sending credentials in
Base64 encoding format and incorporates digest mechanism to send the cre-
dentials over HTTP. This method uses a hash function to calculate the digest

Webservice Security 129

Fig. 3 SSL/TLS Handshake with client certificates

based on the username, password, a unique value generated by the client known
as “nonce”, security realm, the request count, the Quality of Protection (QoP),
and the URL of the resource being requested. The hash value along with all
the other values except the password are sent in the HTTP header. The server
then uses all the values to compute the hash and checks if it matches with the
one received in the HTTP header. If the hash values match, then the consumer’s
request is serviced. This method is more secure than the basic authentication as
the credentials are not sent in plain text. When used with HTTPS, digest authen-
tication mechanism makes webservices more secure. More details on the use
of HTTP authentication scheme are available in RFC 2617 [18]. Readers are
advised to go through it before using it for securing webservices.

Message-Level Security
Though transport layer security provides authentication, integrity and confidentiality
for messages exchanged between a consumer and its provider, it needs to be enabled
between each pair of nodes when webservices are orchestrated or choreographed in
a Service-Oriented Architecture. In other words, transport layer security provides
point-to-point security and needs to be extended across all pairs of nodes to enable
end-to-end security when a message passes across multiple webservices. Enforcing
transport layer security at each node may not be possible. Therefore, plugging in the
security features within the message will be a better option when compared to the
former. Themechanismused to attach security to SOAPmessages is popularly known
as “SOAPMessageSecurity” and this section gives various details of enrichingSOAP
messages with security.

Message-level security is provided at the application layer and it ensures the
protection of messages exchanged between applications. Therefore, message-level
security is essential.

• When messages are exchanged asynchronously.
• When security at the application level is important.
• When messages flow across multiple nodes connected with different protocols.

130 R. K. K. Meduri

Since message-level security is provided at the application level which is the
highest layer in a network stack, security at the bottom layers becomes needless.
Webservices built using SOAP often use the message-level security while the REST
services typically rely on transport layer security.

Message-level security attaches security information to a SOAP message so that
the security information travels alongwith themessage. This feature provides end-to-
end security formessages that are sent across a topology ofwebservices. For instance,
let us consider a scenario where a part of a SOAP message is signed and encrypted
by a sender for a particular receiver. If the message passes through a network of
services before arriving at its intended recipient, the digitally signed and encrypted
parts cannot be visible to any of the intermediate services and can only be visible
to the actual recipient. In other words, message-level security achieves end-to-end
security by providing security from the origination of a message until it reaches its
destination.

Some of the advantages of message-layer security include the following:

• Security information travels along with the message from its origination until it
reaches the destination providing end-to-end security.

• Specific parts of a message and attachments can be secured as well.
• Security information can be applied even at intermediate services when messages
are exchanged across a network of services.

• Security provided at themessage level is neither dependent on a specific application
nor dependent on a specific protocol.

The drawback of message-layer security is that it is relatively more complex as
compared to transport layer security and adds overhead to message processing. It
becomes more difficult to handle message-level security when a message passes
through several intermediaries with different security requirements.

Message-level security is provided by several policy mechanisms and we need
to understand them before we see how they provide various nuances of security
discussed in the earlier sections of this chapter.

WS-Security
SOAP message security is provided by “Web Services—Security (WS-Security,
WSS)” which is an extension to SOAP and is published by Organization for the
Advancement of Structured Information Standards (OASIS) [7]. WS-Security
defines threemechanisms to enable security for themessages exchanged using SOAP
across multiple webservices:

• XML Digital Signature: Signing SOAP messages to ensure integrity and provide
non-repudiation.

• XML Encryption: Encrypting SOAP messages to assure confidentiality.
• WS-Security Tokens: Attaching security tokens such as X.509 certificates [19,
20], Kerberos tickets [21, 22], User ID/Password credentials, Security Assertion
Markup Language (SAML) [23] Assertions and custom-defined tokens to ratify
the identity of the sender.

Webservice Security 131

WSS attaches the aforementioned security structures in the header section of
a SOAP message and works in the application layer providing end-to-end security.
However,WSS is just a specification and does not securewebservices on its own. This
specification, when used in combination with webservice frameworks such as Oracle
Webservice Management (OWSM) and higher level application-specific protocols,
creates a secure channel between a provider and a consumer. The standards offered
by this specification enforce a wide gamut of security features when implemented
with various application-level frameworks. While using any of these frameworks
along with WSS specification, it is the responsibility of the implementer to make
sure that the connections established are not vulnerable.

XML Digital Signature
Digital signatures use Public Key Cryptography (PKC) [24, 25], which is based on
an algorithm that uses two different but mathematically related keys—one to create
the digital signature of a message to be secured and the other to verify the digital
signature. This asymmetric key mechanism uses the private key of the sender to
encrypt a message, whereas the encrypted message can only be decrypted using the
public (available to all) key of the sender of the message. This key pair security
mechanism is considered to be the strongest available security mechanism as it is
computationally impossible to deduce one key from the other. This very feature of
PKC provides the following security measures:

A consumer can identify the identity of its provider as it can decrypt an inbound
message using its private only if it is sent after encryption by the corresponding
public key. This feature enables webservice provider authentication. If a message
is encrypted by the public key of a consumer, it can only be viewed after decrypt-
ing it with the corresponding paired private key. This mechanism achieves message
confidentiality. If there is any tampering of a message sent by a provider to a con-
sumer during its transit, it can easily be identified by comparing message digest val-
ues thereby achieving message integrity. PKC in combination with message hashing
encures non-repudiation as a provider cannot deny sending amessage or any actions
committed.

Let us not understand how a digital signature can be created. The following
sequence of steps illustrates the creation of a digital signature:

Step1: The sender generates the message digest for a given message using a message
digest algorithm such as SHA [11]. The message digest algorithms are so robust that
even a change in a single character of the original message will result in a different
message digest. This mechanism, hence, ensures message integrity.
Step2: The sender encrypts the message digest generated in Step1 using the private
key. This is called the digital signature of the message. The encrypted message can
only be decrypted using the corresponding public key ensuring sender authentication.
Step3: The sender attaches the digital signature to the original message and sends it
to the receiver.

The digital signature protocol helps to ensure the following while being used in
webservices:

132 R. K. K. Meduri

• A signature ensures the authenticity of the provider.
• A signature cannot be copied as a private key is unique and is known only to the
provider.

• Two different messages do not produce the same digital signature as it is defined
as a function of the message and is unique for each message.

• A digitally signed message cannot be altered during transit as any unidentified
alteration will make the signature verification fail at the receiver’s end since the
regenerated hash value will be different from the actual hash value.

• A digital signature cannot be repudiated as the message and the corresponding
signature can be changed only by the provider through the private key.

The process of digitally signing a message is depicted in Fig. 4 [26].
The above fundamentals lay the basis to create XML digital signatures which

are specifically meant for exchanging XML data over the Internet. XML digital sig-
natures are digital signatures designed for use by XML transactions. These digital
signatures are used to protect webservices by adding authentication, integrity and
support for non-repudiation. An important fundamental feature of XML digital sig-
nature is that it can be applied to specific portions of theXML content. This flexibility
is important when XML document has a long history where different parties add dif-
ferent contents at different instances of time as each party needs to sign the content
relevant to itself without worrying about the content signed by other parties. This
feature is also important in cases where we want to maintain the integrity of only
some parts of an XML document while leaving other parts to change. This option is

Fig. 4 Digital signature validation

Webservice Security 133

Fig. 5 Components of an XML digital signature [25]

useful when users are allowed to make changes to a signed XML message. In this
case, only the non-modifiable content can be digitally signed while leaving the other
changeable portions of the message unsigned.

Signature validation mandates the accessibility of the data object that is being
signed. The location of the object being signed is specified in the XML signature
itself. The object being signed can be referenced by anURIwithin theXML signature
or can reside within the same resource as the XML signature. The XML signature
and the original object being signed can exist in a sibling relationship (the signature
is a sibling to the original object) or in parent–child relationship (the signature is the
parent of the original object) or in child–parent relationship (the signature is the child
of the original object) with respect to each other. In other words, both the object being
signed and its digital signature can reside in any hierarchy within an XML message.
However, we must ensure that they are accessible within a given XML message.
Figure 5 [25] shows the basic components of the XML digital signature:

Let us now have a quick glance at the creation of an XML digital signature
followed by its validation procedure.

XML Digital Signature Creation:

1. Determine the resource or the portion of the XML content to be signed.
2. Canonicalize and calculate the digest for each of the identified resources.
3. Collect all the reference elements alongwith their digests under the <SignedInfo>

element.
4. Canonicalize and calculate the digest for the <SignedInfo> element.
5. Encrypt the digest value of the <SignedInfo> element using a key.
6. Add the key details used for encryption in the XML digital signature message.

134 R. K. K. Meduri

Fig. 6 A digitally signed message

Figure 6 shows an example message [25] that is digitally signed using SHA1 [15]
for generating the message digest and X.509 certificate [17] for its encryption.

XML Digital Signature Validation:
As illustrated in Fig. 4, the signature validation process involves three major steps.
First, the digest of the original document received is calculated. This is done by
calculating the digest of the SignedInfo element (as shown in Fig. 6) with the help
of the digest algorithm mentioned in SignatureMethod element. The second step
decrypts the signed digest value given in SignatureValue element using the public
key sent in KeyInfo element to get the original digest value calculated by the sender.
In the third step, both the digest values are compared and if both are the same, the
signature validation becomes successful. Otherwise, it indicates the original message
was tampered in transit. In essence, XML digital signatures allow us to enable data
integrity for messages exchanged in the form XML either partially or fully.

XML Encryption
In order to provide confidentiality to messages exchanged across a webservice topol-
ogy, we need a mechanism to encrypt the data. This feature is provided by XML
encryption standard [27]. One of the most striking features of XML encryption is
to enable the secure exchange of a message between endpoints of webservices that
coordinate with multiple intermediaries. This feature guarantees end-to-end security,
unlike transport layer encryption which encrypts data exchanged between entities
connected in a point-to-point manner. XML encryption takes place at the application
layer encapsulating the encrypted message in the actual message to be exchanged.

Webservice Security 135

Fig. 7 Unencrypted message

The application layer encryption also ensures that the encrypted data remains opaque
to all the intermediaries and can be decrypted only at the destination service.

Before we get into various ways used for encrypting XML content, let us check an
example message and its encrypted content. Figure 7 shows an unencrypted message
while Fig. 8 shows the encrypted version of the former.

Unencrypted SOAP Message:
See Fig. 7.

Encrypted SOAP Message:
See Fig. 8.

Let us understand the terminology used in the encrypted message [28]:

Encrypted Key: The EncryptedKey element details out the information related to the
encryption key.
Encryption Method: The EncryptionMethod element specifies the algorithm in
“Algorithm” attribute and the size of the key used for encryption in “KeySize”
attribute. For instance, Fig. 8 shows an encrypted message which carries the orig-
inal message given in Fig. 7. The original message is encrypted by means of the
Advanced Encryption Standard (AES) [29] symmetric cipher, while the session key
(EncryptedKey) encryption uses the RSA [30] asymmetric algorithm.
Cipher Value: The CipherValue element holds the data that is encrypted using the
encrypted key and the encryption algorithm.
Key Info: The KeyInfo element carries details of the key used in encryption along
with information about the recipient. For instance, the message given in Fig. 8 shows
a key that bundles an X.509 certificate and its common name.
Reference List: TheReferenceList element lists out a set of references to the encrypted
parts of a message. Each Data Reference points to the message encrypted and
enclosed in Encrypted Data element.
Encrypted Data: TheEncryptedData element contains themessage that is encrypted.
In Fig. 8, the entire SOAP Body element is replaced by EncryptedData as SOAP
body is encrypted.

The XML encryption mechanism, essentially, is similar to the approach used in
the transport layer encryption mechanism with the exception that parts of the XML

136 R. K. K. Meduri

Fig. 8 Encrypted message

content can be encrypted whereas the SSL/TLS encrypts the entire XML content.
The following steps give a bird’s eye view of the encryption process:

1. Theprovider generates a session specific symmetric keywhich is used for encrypt-
ing messages exchanged between the provider and its consumer. This symmetric
key is succinctly termed as a session key.

2. The session key is in turn encrypted with the public key of the consumer. This
step ensures that no other entity can extract the session key even if it gets access
to the message because it can only be decrypted by the private key of the intended
consumer.

3. Once session key is generated and sent to the consumer, the provider starts send-
ing data encrypted using the session key.

Webservice Security 137

4. The provider sends a message after encrypting it with the session key along with
the session key encrypted with the consumer’s public key.

5. The consumer upon receiving a message extracts and decrypts the session key
using its private key.

6. The consumer then decrypts the encrypted data using the session key to get the
actual plaintext message.

The fundamental benefit of XML encryption is to provide confidentiality to mes-
sages exchanged between different end points besides equipping the sender and the
receiver to encrypt only parts of the message that needs to be confidential leaving the
rest of the message to be sent in plain text. The only overhead with this approach is
that when an encrypted message needs to be shared with multiple recipients, it needs
to include the sender’s key multiple times as it needs to be encrypted with the public
keys of each of the intended recipients.

Webservice Security Tokens
Authentication is the first step to enable security while accessing any resource as
it ratifies the identity of a sender. Without validating sender’s identity, there is no
point in trying to check the integrity of the message sent by the sender. Therefore,
validating the authenticity of the sender of a message is the first step to enable
webservice security.

In Webservice Security (WSS), authentication is provided by three kinds of
tokens—Username Token, Binary Security Tokens, and XML-based Security
Tokens. X.509 Token and Kerberos Token are grouped under binary security tokens
while Security Assertion Markup Language (SAML) Token and Rights Expression
Language (REL) Token provide means to send XML-based security tokens. These
authentication policies enable a webservice consumer to send its credentials that will
be ratified by its provider against the identity store and the identification mechanism
defined by the provider. These security tokens travel across different webservice
endpoints in a webservice topology in the header section of a SOAP message so that
the sender of the message can be identified at any time during the message transit
across different nodes (services). The following sections give an exploration of these
security tokens and their usage within SOAP framework.

Username Token
According toOASIS [7], aUsernameToken [31] is used by awebservice consumer to
validate its identity while invoking a webservice provider. Username Token includes
“Username” as a mandatory element. It optionally includes “Password” either in
the form of plain text or in the form of a password digest specified as SHA1 [15]
hash value. Two more optional values—“Nonce” and “Created” are introduced in
the specification of the token to provide a countermeasure for replay attacks.

Figure 9 presents a sample SOAP message that makes use of Username Token
element. This example, taken from OASIS username token reference [31], sends the
password in clear text and hence mandates that the message be sent through a secure
channel such as HTTPS:

Similarly, Fig. 10 describes a SOAP message that uses password digest in com-
bination with a nonce and timestamp [31]:

138 R. K. K. Meduri

Fig. 9 Username token with a plaintext password

Fig. 10 Username token with a digest password

A useful extension to the username token is to use the password along with the
optional “Salt” and “Iteration” values to derive the secret key that can be used to
provide integrity and confidentiality to messages through Message Authentication
Codes (MAC) or encryption. Readers can refer to the OASIS standard specifica-
tion [31] for Username Token for the implementation of key derivation using the
password.

Apart from enforcing authentication, username token addresses replay attacks
through the use of timestamp, nonce, caching, and any other application-specific
security tracking mechanisms. However, transport layer security needs to be enabled
to attach confidentiality and integrity to username token. If the transport layer is not
secure, the password must be digested besides being kept strong enough to thwart
password guessing attacks.

X.509 Token
X.509 security profile [19, 20] is another authentication mechanism that is based on
X.509 certificate framework to provide security to webservices. An X.509 certificate

Webservice Security 139

describes the binding between a webservice and a public key in the form of a set
of attributes. These attributes include the owner of the certificate, the issuer of the
certificate, the serial number of the certificate, and the period during which the
certificate is valid. This binding may be revoked by mechanisms such as issuance
of CRLs (Certification Revocation Lists), OCSP (Open Certificate Status Protocol)
tokens or provisions that are external to the X.509 framework. An X.509 certificate
is generally used to authenticate the sender of a SOAP message by validating its
public key. It can also be used to identify the public key associated with an encrypted
SOAP message.

The X.509 security token type can be a single X.509 certificate, a sequential list
of X.509 certificates bundled in PKIPath (Public Key Infrastructure Path), or a list
of X.509 certificates along with an optional list of CRLs packaged in PKCS #7 [32]
(Public Key Cryptography Standard). The X.509 security tokens can be referenced
using a Key Identifier or as a Binary Security Token or by specifying the certificate
Issuer Name the certificate Serial Number.

Figure 11 [19] shows a single X.509 certificate embedded in a SOAP message as
a binary security token.

Figure 12 [19] shows a SOAP message digitally signed with the help of an X.509
token referenced bymeans of aKeyIdentifier. In thismessage, the signature is embed-
ded in SignedInfo element that includes the actual message body and the certificate
used for its signing. Message body is referenced using the identifier #body to the
message body while its signing certificate is referenced through the reference #key-
info to theKeyInfo element. TheKeyInfo element in this example contains a reference
to an X.509 certificate but not the actual certificate itself. Therefore, it uses a trans-
formation to replace the reference to the certificate with the original certificate. The
KeyInfo element specifies X.509 certificate using its subject key identifier.

Similarly, Fig. 13 [19] shows a sample SOAP message digitally signed using
an X.509 certificate referenced by means of its issuer name and its serial number.
The signature of the message is included in the SignedInfo element which contains
references to the actual message (#body) and the key (#keyinfo) used for signing.
The key is referenced by means of its issuer and serial number which are mentioned
in X509IssuerSerial element in Base64 format inside SecurityTokenReference.

X.509 security tokens can also be used to provide integrity through digital signa-
tures and confidentiality through encryption. They can also be used at the transport
layer to enable SSL/TLS encryption.

Kerberos Token
Kerberos token is an additional grant from the authentication system to access the
desired network resources. Once a consumer authenticates itself using a username
token or an X.509 security token, the security system presents a ticket granting token
(TGT). The TGT is an opaque piece of data that a consumer cannot read but has
to provide to get a service ticket (ST) which in turn provides access to the desired
resources.

The following sequence of steps [33] illustrates the Kerberos protocol mechanism
to access a webservice provider:

140 R. K. K. Meduri

Fig. 11 X.509 certificate as a binary security token

1. A consumer sends an AS-REQ packet to authenticate itself against a Key Distri-
bution Center (KDC). The AS-REQ packet carries a username security token or
an X.509 security token.

2. TheKDC, after validating theAS-REQpacket, sends a TGT inAS-REP response
packet. The TGT is an opaque token which the consumer cannot read but can
use for accessing resources such as a webservice provider.

3. The client uses theTGTand sends aTG-REQwith theTGT to theTicketGranting
Service (TGS) to obtain a Service Ticket (ST) to access a specific webservice
provider and/or its operations.

4. The TGS responds with a TG-REP response that consists of the ST.

Webservice Security 141

Fig. 12 X.509 certificate as a key identifier

5. The consumer then sends the ST in an AP-REQ packet to access the required
network resource.

6. The webservice provider responds back with AP-REP response with successful
authorization.

Figure 14 diagram illustrates the Kerberos authentication process among service
consumer, identity provider and service provider:

142 R. K. K. Meduri

Fig. 13 X.509 certificate specification using an issuer and a serial

Coming to the provisioning of authentication using a Kerberos token, a consumer
usesWS-Security framework to include aKerberos token in a SOAP requestmessage
to obtain access to its provider. However, WS-Security specification is limited to
using only AP-REQ packet (Service Ticket + Authenticator). The process to obtain
a Service Token (ST) is not specified in WS-Security and should be implemented
separately using Kerberos frameworks [34]. The implementation process to obtain
an AP-REQ to send authentication tokens using WS-Security is out of scope for this
chapter.

Webservice Security 143

Fig. 14 Kerberos authentication process

Fig. 15 A sample Kerberos security token

AKerberos security token can be specified as binary security token encoded using
an encoding scheme. Figure 15 shows a sample Kerberos security token encoded
using Base64 encoding scheme:

144 R. K. K. Meduri

Kerberos token can be used to provide authentication when used in digital signa-
tures.When used as an encryption key, alongwith a symmetric encryption algorithm,
it can be used to encrypt a message.

One potential threat with Kerberos tokens is their reuse which can result in
replay attacks. In order to mitigate this threat, we can use timestamps, caching and
application-specific message tracking mechanisms. Kerberos tokens cannot provide
protection againstmessage alteration and eavesdropping. These threats can, however,
be mitigated with the help of confidentiality and integrity provisions of WS-Security
framework.

SAML Security Token
The Security Assertion Markup Language (SAML) [35] is an open framework for
sharing security information over the Internet throughXMLdocuments. The security
information is expressed in terms of statements called assertions. SAML has become
more popular than other security frameworks over the years due to the benefits
it offers. The SAML framework is useful [36] to maintain cookies across multiple
Internet domains, to enable single sign-on (SSO), to define security tokens in various
webservices security frameworks and to enforce security in various phases of a
business transaction.

SAML framework includes four basic parts [36]:

1. Assertions: to specify how the information related to the identification and access
is defined.

2. Protocols: to describe how SAML Request and Response can be used to retrieve
the assertions needed.

3. Bindings: to specify how SAML protocol can work in the transport layer and
messages layer.

4. Profiles: to specify how SAML Protocols and Bindings can together be used to
defend various security attacks.

In the webservice security framework, we only specify SAML assertions while
protocols and bindings are automatically enforced by the framework itself. Apart
from the aforesaid benefits, SAML has become very popular in webservice security
because of the expressive nature of SAML assertions and their ability to thwart replay
and man-in-the-middle attacks.

The assertions of SAML can be categorized into three types [36]. An authentica-
tion statement is used to identify a subject at any given instance of time. An attribute
statement issued by an attribute authority declares the values of attributes associated
with a subject based on defined policies. An authorization decision statement issued
by an authorization authority declares if a subject can be granted access to perform
an action on a given resource.

WS-Security provides three different methods to confirm the subject (the sender)
of themessageusingSAMLassertions.Sender-Vouches enables a third party attesting
authority to vouch for the authentication of a subject. This method, however, needs
the recipient to establish a trust relationship with the attesting authority. It should
also be noted that the attesting authority is responsible to protect the actual message

Webservice Security 145

Fig. 16 Sample message with sender-vouches and holder-of-key subject conformations

from unauthorized modification as well. Holder-of -Key enables the attesting entity
to demonstrate that it is authorized to act as the subject. In other words, it confirms
that the holder of the key has the same privileges as that of the subject itself. Bearer
enables an SAML assertion to be automatically trusted by the endpoint. A consumer
does not have to prove that it owns the SAML assertion. It is the simplest way to
request a SAML assertion, but many endpoints do not support bearer confirmation
method.

Figure 16 [23] shows a sample message with “sender-vouches” and “holder-of-
key” confirmation methods using SAML security profile while Fig. 17 [23] depicts
the bearer conformation method.

Sender-Vouches andHolder-of-Key conformationmethods of SAMLprovide pro-
tection against message alteration including message insertion, deletion, and modifi-
cation. However, they do not guard against eavesdropping unless coupled with some
kind of an encryption mechanism such as SSL/TLS. These methods are vulnerable
to replay attacks and need additional information such as times stamps, nonce and/or
recipient identifiers to guard against resubmission ofmessages. Sender-Vouches con-
firmation method cannot protect a message from Man-in-the-Middle attack.

REL Token
Rights Expression Language (REL) [37] defines the rights, usage permissions, con-
straints, legal obligations, and license terms pertaining to an electronic document.
The vocabulary for REL is defined using Open Digital Rights Language (ODRL)
[38] and eXtensible Rights Markup Language (XrML) [39]. In WS-Security context
[40], REL token is specified as a “license”. A SOAP message contains REL licenses
in its security header element.

146 R. K. K. Meduri

Fig. 17 Sample message with bearer subject confirmation

Figure 18 [40] illustrates theWS-Security specification to include an REL license
(lines enclosed in <r:license> tags) within the SOAP message header.

REL tokens can be referenced [40] using a URI either locally within a SOAP
message or remotely through a URL. They can be referred to using the license
identifier as well (Fig. 19).

Figure 20 [40] illustrates the signing or message parts included in the
<ds:SignedInfo> element using REL license specified in licenseId of the
<ds:KeyInfo> element.

KeyHolder principal of the REL security profile can provide the means to authen-
ticate the sender of a message in which the REL license with the KeyHolder element
is specified. The message sender can add a signature that can be verified using the

Webservice Security 147

Fig. 18 A SOAP message with REL license

Fig. 19 Different methods of referencing REL licenses

key mentioned in the KeyHolder element providing the sender authentication. For
instance, Fig. 21 demonstrates the usage of KeyHolder principal of a license security
token to establish that the consumer whose name is mentioned in the license token
is requesting a specific resource given in the message body.

Similarly, license security token can be used as an encryption key to provide
confidentiality. To provide confidentiality to a message, a sender can include one
or more Encrypted Data elements that can be decrypted using the key determined
from information specified in the KeyHolder principal of the license token. A sender
can also add an encrypted key that can be decrypted using the KeyHolder princi-
pal mentioned in license token. For example, Fig. 22 demonstrates the usage of an
REL KeyHolder principal to protect the confidentiality of an XML message using
the encryption key given in the Encrypted Key element of the security header. In this
example, the original message is encrypted using the symmetric key specified in the

148 R. K. K. Meduri

Fig. 20 Specification of WS-Security token using REL license ID

Encrypted Key element. The symmetric key given in the Encrypted Key element is
encrypted using the recipient’s RSA public key mentioned in the KeyHolder prin-
cipal. The consumer or the recipient uses its private key to decrypt the symmetric
key used for the original message encryption. After obtaining the symmetric key, the
consumer uses it to decrypt the encrypted data (specified in Encrypted Data element)
to get the actual message.

Though the use of licenses enclosed in REL tokens does not introduce any
new threats, it is still vulnerable to message alteration, eavesdropping and message
replay attacks. The first two problems can be resolved using an appropriate message
integrity mechanism such as message signing and a confidentiality mechanism such
as message encryption. Replay attacks can be addressed through the use of times-
tamps, caching and suitable application-specificmessage trackingmechanisms. REL
licenses can be trusted only if they are signed natively using themechanisms outlined
in WS-Security ensuring their integrity.

WS-Addressing
WS-Addressing is an XML specification that offers capabilities to address Web-
services and messages using transport-agnostic techniques. This is a WS standard
specification which is used to identify webservice endpoints using XML elements.
It also provides features to specify endpoint identification in messages sent across a

Webservice Security 149

Fig. 21 A sample SOAP message with an REL license to authenticate a consumer identified with
the name “John Doe”

network of webservices in a manner which is completely independent of the protocol
used at the transport layer. This feature is extremely useful when a message passes
across multiple webservices through different transport protocols.

In order to provide transport neutrality, WS-Addressing uses two interoperable
concepts which carry information related to transport protocols and messaging sys-
tems. These concepts translate the protocol and messaging information into a com-
mon format so that it can be processed without depending on the transport protocol

150 R. K. K. Meduri

Fig. 22 A sample SOAP message encrypted using an REL license

or application. The two constructs are endpoint references and message informa-
tion headers. Endpoint references (EPR) present the information needed to identify
and invoke the operations provided by a webservice provider. Message information
headers are used to address messages uniformly irrespective of underlying transport
and to carry the end-to-end characteristics of a message that includes the message

Webservice Security 151

Fig. 23 A SOAP message with endpoint references and message information headers

identifier along with the addresses of source and destination endpoints. These two
concepts together provide the capability to communicate addressing information
needed for delivering a message to different webservices. The basic components of
a message address are—a source endpoint from which the message has originated,
a destination endpoint to which the message should be delivered, a reply endpoint
to which any replies should get dispatched, a fault endpoint to which any exception
messages are sent, an action that describes the operation that needs to be performed
on the message, a message ID to identify the message uniquely and any relationship
information with previous messages. WS-Addressing feature addresses the message
replay attacks by specifying a unique ID to the message that cannot be duplicated. It
can also specify the source and destination addresses for the message to prevent the
replay attacks from a different source.

Figure 23 [41] illustrates the use of these mechanisms in a SOAP 1.2 message
being sent from http://business123.example/client1 to http://fabrikam456.example/
Purchasing to call the action “SubmitPO”.

As illustrated in Fig. 23, the SOAP message header is specified with the WS-
Addressing information. The line 004 represents the unique message ID while line
007 specifies the reply endpoint to which any reply to this message should be dis-
patched and line 009 provides the destination endpoint where this message should
be delivered to. Line 010 describes the operation that should be executed when this
message is sent to the destination endpoint. The actual message body is represented
in lines (012) to (014).

Anatomy of WS-Security-Enabled SOAP Message
As discussed in the previous sections, WS-Security addresses the security of
webservices by adopting the existing standards and standards-based technologies
in transport-protocol agnostic way. WS-Security uses XML signature to provide

http://business123.example/client1
http://fabrikam456.example/Purchasing

152 R. K. K. Meduri

Fig. 24 Anatomy of a SOAP message

integrity and XML encryption to provide confidentiality while it makes use of vari-
ous security tokens such as username tokens, binary security tokens and XML-based
tokens to provide authentication and authorization for a SOAP message. Based on
these security profiles, it is worthwhile to have a closer look at the SOAP messaging
structure enriched with WS-Security along with its core elements.

WS-Security attaches a set of security extensionswithin a SOAPmessage describ-
ing the structure, its core elements, processing instruments and rules to enable the
message-level security. WS-Security-specific elements are specified as the child ele-
ments of SOAPheader alongwith their namespaces. Figure 24gives a succinct picture
of a SOAPmessage enriched with various elements ofWS-Security framework [42].

Figure 25 [43] gives a comparison of various WS-Security mechanisms and the
threats addressed by them.

Webservice Security 153

Fig. 25 Security mechanisms and threats addressed by them

4 Other Security Frameworks

Apart from the security measures given in the aforementioned sections, there are
other standards and specifications aimed at supporting the protective measures hith-
erto discussed. Among them, XMLKeyManagement System (XKMS) and Extensi-
ble Access Control Markup Language (XACML) are the most prominent standards.
XML Key Management System (XKMS) [44, 45] is a standard which defines the
protocols to take care of the public key infrastructure. It is an XML-based standard to
register and distribute public keys used in digital signatures and encryption. XKMS
[46] consists of two child specifications—XML Key Registration Service Speci-
fication (X-KRSS) for registering public keys and XML Key Information Service
Specification (X-KISS) for validating keys provided in XML signature. Extensi-
ble Access Control Markup Language (XACML) [47, 48] is another specification
which aims at enhancing the access control capability ofWebservices. XACML uses
access control matrix model which defines authorization rules for accessing an XML
document either in parts or as a whole.

XKMS
XKMS is a World Wide Web Consortium (W3C) standard, which outlines the
methodology to access and integrate Public Key Infrastructure (PKI) [49]. PKI lays
the security foundation for creating XML signatures and exchanging XMLmessages
in an encrypted format. Different PKI solutions include X.509, Simple Public Key
Infrastructure (SPKI) [50], Pretty Good Privacy (PGP) [50], and Public Key Infras-
tructure (PKIX) [51]. Though PKIs provide the most robust security framework,

154 R. K. K. Meduri

choosing the right one is a challenge. Managing PKIs becomes more complex when
the sender and the receiver use different key specifications. For instance, when a
sender sends a message in X.509 encryption format to a receiver that is using SPKI,
the receiver will not be able to decrypt the message. So, in order to exchange mes-
sages, both the sender and the receiver have to understand each other’s PKI solution.
Extending the scenario to multiple webservices, we need to ensure that all the web-
services that want to collaborate have to be aware of one another’s PKI solution.
XKMS provides a solution to resolve this issue.

XKMS provides the framework to manage the PKI through a trusted third party
and decouples the PKI management from client applications including webservices.
The third party provides a PKI interface to different client applications including
webservices by hosting the XKMS service. The basic goals of XKMS are i) to create
an abstraction layer between an application or a webservice and the PKI so that
applications can be integrated with different PKI solutions without necessitating
any changes, ii) to remove the unnecessary overhead of understanding complex PKI
syntax and semantics from applications thereby allowing them to focus only on
application functionality and iii) to use platform-independent, transport-neutral, and
vendor-agnostic techniques to integrate various PKI solutions with applications.

As described before, XKMS is made up of two subprotocols—XKRSS and
XKISS. The former is key registration service while the latter is key validation
service.

XML Key Registration Service Specification (XKRSS)
The first portion of XKMS is used to register a key pair with a client application.
There are two ways to register a key pair with an XKMS provider. One way is to
let the client application generate the key pair and register its public key with an
XKMS provider. The second way is to let the XKMS provider generate the key pair
on behalf of a client application and register the public key with itself while sending
the private key to the client application. In both the cases, XKMS service provider
may keep the private key with itself based on the consent from the client application
so that it can be recovered if it is lost by the client application.

This specification encompasses four operations: “Register”—that allows the
clients to register their public keys and optionally the private keys, “Reis-
sue/Renew”—that allows an XKMS provider to reissue/renew the previously issued
key pair by generating new credentials for the key pair, “Revoke”—that permits
clients to delete the data objects pertaining to a key pair and “Recover”—that allows
clients to recover their private keys if the private keys are registered with the XKMS
service provider.

XML Key Information Service Specification (XKISS)
The second part of XKMS is used to allow client applications to validate encrypted or
signed messages. A client (which is a web application or a webservice) authenticates
an encrypted/signed message by sending the key details embedded in the message
to an XKMS service provider. The XKMS service provider then validates the key
and ratifies whether the key pair used for encryption or signing is valid and indeed
belongs to the entity that has done the encryption or signing.

Webservice Security 155

Fig. 26 Sample XKMS key registration request message

An XKISS specification has two operations: “Locate”—that resolves the key
used for encryption or signing but does not prove the validity of the key and “Vali-
date”—that not only resolves the key used for encryption or signing but also returns
whether it is valid or not.

Let us look at some of the sample messages sourced from [44] to illustrate the
use of XKMS. Figure 26 shows a sample request to register a client-generated key
with an XKMS server.

In Fig. 26, Prototype element encapsulates the key information associated with
a client identified by the email ID “Alice@cryptographer.test”. The corresponding

156 R. K. K. Meduri

Fig. 27 Sample XKMS key registration response message

public key is identified by a combination of modulus and exponent. Passphrase
element authenticates the user who submitted the request, against the XKMS key
registration service. Proof Of Possession element guarantees that private key corre-
sponding to the given public key is possessed by the client. This element consists of
the digital signature of the element Prototype signed using the private key possessed
by the client. If the digital signature of Prototype enclosed under Signature element
can be validated using the public key given inKeyInfo, it must have been signed using
the corresponding private key.KeyBidnignAuth element authenticates the given client
request. This done by validating the digital signature of Prototype using an authen-
tication code shared between the client and the XKMS service provider for this
particular request. The Respond element indicates that the client is expecting the key
name and the public key sent in the request along with a method to retrieve the public
key in future.

Figure 27 illustrates a sample response sent by an XKMS provider for the request
shown in Fig. 26. As requested, the XKMS provider responds with the given key
name and the public key along with a retrieval method. In this case, the public key
can be retrieved using an X.509 certificate located in the given URI.

Figure 28 illustrates a sample message to retrieve the key name and the public
key from a given X.509 certificate. Figure 29 shows the key name and the public key
retrieved for this request.

Locate method does not check the validity of a given key. It just requests the
XKMS provider to return the key details for a given request. In order to check the
validity of a key, we need to send a validate request. Figure 30 shows a validate
request message while Fig. 31 shows the corresponding response message. <Result>
element indicates that the request is successfully processed and the validity interval

Webservice Security 157

Fig. 28 Sample key locate request

Fig. 29 Sample locate response message

enclosed under <ValidityInterval> tag confirms that the given key is valid for one
month from 20th Sep 2000 to 20 Oct 2000.

XACML
eXtensible Access Control Markup Language (XACML) [47, 48, 52] is an XML-
based declarative language to process access control requests. It defines methods
to evaluate access requests according to the rules specified in policies. XACML
supports both Attribute-Based Access Control (ABAC) mechanism and Role-Based
Access Control (RBAC)mechanism.ABAC is a systemwherein attributes associated
with a user/action/resource combination determine whether a given user has access
to perform a given action on a given resource. RBAC is a specialization of ABAC
and checks if a group of users tagged under a role can perform a given action on a
given resource according to the policies defined for the given role.

XACML is built on the principle of segregation of duties between the action
decision and the point of action. Action decision is the mechanism that decides if
a given action is permitted for a given user on a given resource according to the

158 R. K. K. Meduri

Fig. 30 Sample validate request message

Fig. 31 Sample validate response message

rules defined in policies. Point of action is the execution of the action itself. On
the contrary, if the decision-making system is embedded in a client application, it
becomes difficult to update the decision criteria when the governing policy changes.
If the access decisions are decoupled from a client application, decision policies can
be updated on the fly and affect all the clients that use the policy.

Webservice Security 159

Fig. 32 XACML validation process

XACML ecosystem is built using a Policy Enforcement Point (PEP), a Policy
Decision Point (PDP), a Policy Administration Point (PAP), a Policy Information
Point (PIP), and a Policy Retrieval Point (PRP). When a consumer wants to access a
resource, the XACML system validates and grants the required accesses as illustrated
in Fig. 32.

XACMLconsists of PolicySet, Policy andRule in a hierarchy towork onAttribute
Categories. A policy set is a collection of policy elements and a policy is a collection
of many rule elements.

Attribute Categories:
XACML elements work on attribute categories called subjects, resources, and
actions. A subject is an entity that requests access, a resource is a data, service,
or system component and an action is the type of access requested by a subject on a
resource. All these elements are defined as one or more attributes.

Rule:
A rule is the most basic element of a policy and consists of a target, a condition
(optionally), an effect, an obligation (optionally) and/or an advice (optionally). A
target is a set of requests to which the rule is intended to apply and is specified
in the form of a logical expression on attributes in the request. A condition is a
Boolean expression that determines if the given rule is applicable or not. An effect of
a rule determines the consequence of an evaluation and it either permits or denies the
action associated with a given rule. If the condition associated with a rule evaluates to
“True”, the effect of the rule is executed. If the effect is “Permit”, the corresponding
action is permitted and if the effect is “Deny”, the corresponding action is denied. If
the evaluation of a condition results in an error, the rule goes into “Indeterminate”
status and returns a processing error. An obligation is a directive that enforces PEP
to perform the given action mandatorily before or after the access is approved. An
advice is similar to an obligation except that it does not enforce PEP to perform the
action specified in the advice.

160 R. K. K. Meduri

Policy:
A policy is essentially a collection of rules and consists of a target, a rule-combining
algorithm, and an optional list of obligation and/or advice expressions. Policy targets
are similar to rule targets except that a policy target applies to all the rules enclosed in
the policy by default. A rule-combining algorithm specifies the procedure by which
the outcomes of rule evaluations are combined. Policy evaluation is guided by the
sequence of rule combinations and their evaluations. This process is executed by PDP
according to the given rule-combining algorithm. Obligation and advice expressions
are similar to those belonging to rules except that they apply to all the rules of the
policy.

Policy Set:
A policy set encapsulates many policy elements and can contain a target, a policy-
combining algorithm and a list of obligatory and advisory expressions optionally.
Targets, obligation expressions, and advice expressions are similar to those defined
in rules and policies except that they apply to the entire policy set by default. The
policy-combining algorithm specifies the mechanism to combine the decisions and
obligations from multiple policies embedded in the given policy set. Based on the
given policy-combining algorithm, the outcome of the policy set is evaluated and
placed in response by PDP.

Figure 33 shows a sample policy [47] that applies to requests for the server called
“SampleServer”. A specific rule of this policy has a target that requires an action
called “login” and a condition that applies only if a subject is trying to login between
“9:00 AM” and “5:00 PM”. It also has a default rule which denies all other requests.

5 An Overview of Oracle Web Services Management
(OWSM)

Oracle Web Services Manager (OWSM) [53] is a standards-based complete secu-
rity solution for providing security to webservices orchestrated in Service-Oriented
Architecture (SOA). Oracle WSM has become a primary choice for organizations
because it allows (1) configuring attachable security policies for securing webser-
vices in a centralized manner, (2) imposing security management policies through
customizable agents and (3) monitoring security incidents in real time. These key
features provide organizations with the necessary agility to respond to any secu-
rity incidents or breaches and to make necessary changes in security policies online
without interrupting any of its ongoing business processes.

OWSM Architecture
Oracle Web Services Manager (OWSM) is a policy-based policy framework to
manage the security of webservices consistently in service-oriented architecture.
This framework is based on WS-Policy standard and uses a declarative language. It
offers the necessary capabilities to develop, impose, execute, and monitor webser-
vice security policies that include authentication, authorization, reliable messaging,

Webservice Security 161

Fig. 33 A sample XACML policy

162 R. K. K. Meduri

message transmission optimization mechanism (MTOM), and addressing. OWSM
policy framework consists of a Policy Manager, an Agent, an OWSM Repository, and
an Enterprise Manager. Policy Manager can create and update both predefined and
custom policies from OWSM repository. Agent is made up of several library (JAR)
files and is loaded on to the server on which OWSM is deployed. It is a state-less
entity that enforces and executes policies using an in-memory policy cache. Agent
consists of Policy Access Point (PAP) and Policy Interceptor. Policy Access Point
communicates to the Policy Manager and loads the policies in memory. Policy Inter-
ceptor gets created when a new webservice is deployed and policy is attached to a
webservice and is responsible to enforce a policy. OWSM Repository stores all the
predefined and custom policies, and can be accessed and updated through Policy
Manager. Enterprise Manager provides the capability to configure OWSM.

OWSM architecture is depicted in Fig. 34. According to this architecture, when a
webservice secured by anOWSMpolicy is accessed by a consumer, the given request
is initially delivered to the OWSM agent. This agent extracts the security information
from the request and queries the OWSM policy cache to impose the applicable
policies on the request. If the cache does not have policy information related to
the security information provided in the request, the OWSM agent connects to the
OWSMPolicyManager to fetch the related policies into the cache. After fetching the
applicable policies, the agent enforces these policies on the request. These policies
may authenticate, encrypt, decrypt, authorize or log the given request according to
their applicability. The OWSM agent, by default, only works with cached policies
and does not connect to the Policy Manager. However, if there is a configuration
change in any of the policies, the OWSM Agent connects to Policy Manager to
reload the updated policies into the cache.

Policies and Assertions
A policy is a condition under which an operation of a webservice can be granted to a
consumer. The WS-Policy framework [54] specifies policy information that can be
managed by webservice security applications like OWSM. Policy expressions are
defined using WS-Policy Attachment specification [55] on various webservice ele-
ments specifying security concerns for these elements. These policies are embedded
in a WSDL file and stored in UDDI for SOA so that external agencies like service
consumers can be integrated into webservices securely. A policy is a collection of
one or more policy assertions. A policy assertion is the basic unit of a policy and per-
forms an action applicable to the given request and the corresponding response. For
instance, a policy assertion may instruct that any given request to a webservice has to
be encrypted. Likewise, another policy assertion may mandate that both request and
response messages have to be logged. Assertions of a policy are chained together in
a pipeline. When a webservice is attached to a policy, the assertions of the policy
are executed both on a given request and its response. When a request is made to a
service, the assertions given in the policy attached are executed one after the other in
the same sequence in which they appear in the policy. If the service gives a response
for the given request, all the assertions of the same policy are executed in the reverse
order on the response. Figure 35 illustrates that assertion 1 is executed followed by

Webservice Security 163

Fig. 34 OWSM architecture

assertion 2, and so on up to assertion n for a request message whereas the same
set of assertions are executed in the reverse order on the response message if one
exists. Figure 36 shows a sample OWSM policy with two assertions. The wss11-
username-with-certificates assertion authenticates a consumer based on username
and password given in the WS-Security Username Token element of the request
while the binding-authorization assertion provides access to the authenticated con-
sumer to execute a specific operation granting the resources needed. If there is a
response from the webservice, the binding-authorization assertion is applied first
followed by wss11-username-with-certificates assertion though these assertions do
not impose any restrictions on the response. Figure 37 illustrates the steps involved
in a policy execution.

164 R. K. K. Meduri

Fig. 35 OWSM policy with multiple assertions

Fig. 36 A sample OWSM policy with multiple assertions

Fig. 37 OWSM policy execution

Webservice Security 165

Fig. 38 OWSM policy naming convention

OWSM Policy Categories
Policies are broadly classified into the following categories:

1. Security: These policies are based on WS-Security 1.0 and 1.1 standards. Both
these policies mainly aim at providing authentication and authorization for web-
service providers and consumers, and protection for messages. These policies
support all the security tokens discussed in the previous sections of this chapter.

2. WS-Addressing: These policies are built usingWS-Addressing standards and use
WS-Addressing headers in SOAPmessages. They manage the ordered exchange
ofmessages between a provider and a consumer to thwartmessage replay attacks.

3. Reliable Messaging: These policies are built using WS-Reliable Messaging [56]
standard and aim at guaranteed and ordered delivery of messages between a
provider and a consumer. These policies are useful in scenarios where messages
need to be delivered in a specific order. They can instruct the receiving system to
process the incoming messages in the correct order even though they arrive in a
different order. They can also be configured to ensure that messages are delivered
exactly once thereby avoiding replay attacks.

4. Management: Management policies work toward maintaining logs for request,
response, and fault messages for future auditing.

ThoughOWSMsupports a fewmore policy categories, they are specificallymeant
to support interoperability and are out of scope for this chapter. Readers are advised to
go through Oracle documentation on OWSM [53] for more details on these policies.

Policy Naming Convention
Oracle recommends a naming convention to define OWSMpolicies so that the policy
name itself illustrates its usage. Figure 38 depicts the convention to define an OWSM
policy though this is not strictly enforced by Oracle:

Path Location: This specifies the directory wherein the given policy is available. For
example, all predefined policies of OWSM are generally available in the directory
named oracle.
Webservices Standard: This part specifies theWS-Security standard used in the given
policy. It can be set as “wss10” if the policy is based on WS-Security 1.0 [57] or
“wss11” for WS-Security 1.1 [58] or “wss” for supporting either of the versions.
Authentication token: This part indicates the type of security token used in authen-
tication. OWSM by default supports http_token, kerberos_token, saml_token, user-
name_token and X509_token.

166 R. K. K. Meduri

Transport security: This portion specifies if the policy needs that messages are to
be transported over a secure protocol. In this case, the token name is suffixed with
over_ssl. For instance, wss_http_token_over_ssl indicates that the HTTP security
token needs to be transmitted through SSL at the transport layer.
Message protection: This piece indicates the policy needs to enforce message pro-
tection by providing integrity and confidentiality. The policies that need message
protection are appended with the phrase with_message_protection.
Policy Type: This part indicates if the given policy needs to be executed either at the
consumer or at the provider. It also specifies whether the given policy is a policy or
a template.

A Few Predefined Policies
Though there are several categories of policies defined by OWSM, let us look at
only those which are most frequently used. There are two types of security policies
for providing authentication. The first set of policies called service policies to pro-
vide authentication for a consumer service while invoking a provider service. These
policies request for credentials in the inbound request and validate them against the
security realm defined by the server in which the provider service is deployed. For
instance, wss_http_token_service_policy is a service policy that adds HTTP basic
authentication policy to a provider service so that any consumer that wants to invoke
the provider needs to supply valid credentials in the HTTP header section of its
request. This policy can be applied to both RESTful and SOAP services. Similarly,
the service wss_username_token_service_policy can be used to add WS-Security
information in WS header section of a SOAP request to authenticate a consumer
service. Any consumer invoking the provider service added with this policy needs
to supply valid credentials in plain text format in its request. There are several sets
of such policies relating to authorization, message protection, message auditing, and
message addressing. Readers are advised to read the corresponding documentation
available at reference [53] to understand more about these predefined policies. All
these policies are self-explanatory in the sense that the name of a policy itself indi-
cates its applicability and usage as it follows the nomenclature mentioned in the
previous section.

Examples
This section illustrates a couple of examples that describe the use of OWSM poli-
cies in securing webservices. The first example adds HTTP basic authentication for
RESTful services. This service is built using Oracle Service-Oriented Architecture
components (BPEL and Mediator) as shown in Fig. 39.

The binding component that invokes this service is GetOrdersRS. This endpoint
is secured through an HTTP basic authentication policy by adding the predefined
policy “oracle/wss_http_token_service_policy” which is shown in Fig. 40.

If we try to execute or invoke this service without supplying valid credentials, the
invocation fails with an authorization error. The request and the response are shown
in Fig. 41 and Fig. 42 respectively.

Webservice Security 167

Fig. 39 A RESTFul service composite definition (GetOrders) with endpoint GetOrders RS

Fig. 40 Addition of HTTP basic authentication policy

The second example shows how aWSS username token can be added to a SOAP-
based service. This is also a SOAP-based service composite built using BPEL com-
ponent as shown in Fig. 43.

The binding component of this service composite is QueryService_ep which
takes a SOAP request as the input. This endpoint is secured through a WSS
username token authentication policy by adding the predefined policy “ora-
cle/wss_username_token_service_policy” which is shown in Fig. 44.

168 R. K. K. Meduri

Fig. 41 Sample request to invoke the GetOrders service composite

Fig. 42 Response indicating that the service is invokes using unauthorized credentials

As in the case of the first example, if we try invoking the QueryService using
no credentials or invalid credentials, the invocation fails with the appropriate fault
message. Figure 45 illustrates the error message we get.

Webservice Security 169

Fig. 43 A SOAP-based service composite (QueryService) with endpoint QueryService_ep

Fig. 44 Adding WSS username token policy

170 R. K. K. Meduri

Fig. 45 Error while invoking the service QueryService with invalid credentials

6 Conclusion

This chapter begins with an introduction to webservices followed by an anatomy of
a webservice using Web Service Description Language (WSDL). It then gives an
overview of their classification based on the messaging protocol that they use—-
SOAP which is a tightly coupled traditional framework and REST which is a loosely
coupled modern framework. It then explains the synchronous request–reply, asyn-
chronous request–reply, and one-way exchange patterns in webservice producer and
consumer interactions. It then gives an introduction to security fundamentals that
include Authentication, Authorization, Non-repudiation, Confidentiality, Integrity,
and Availability. It then explains the security nomenclature associated with security
in general. After a brief summary of various security threats associated with webser-
vices, the chapter gives a detailed elucidation and a comparison of different security
countermeasures that includeXMLdigital signatures,XMLencryption,WS-Security
tokens and WS-addressing to address various threats. It basically divides the secu-
rity measures into two categories—Transport Layer Security and Message-Level
Security. Transport layer security uses SSL/TLS to provide confidentiality, integrity
and provider authentication. It uses basic or digest authentication mechanisms over
HTTP or HTTPS to provide consumer authentication. Message-level security uses
XML digital signatures to ensure integrity and non-repudiation, XML encryption
to provide confidentiality and WS-Security tokens to ascertain the sender’s identity.
This chapter gives a detailed presentation and usage of WS-Security tokens within
SOAP framework. It also presents an overview of the more recent security standards
such as XKMS and XACML along with a few examples. It finally concludes giving
an introductory overview of the policy-based framework of OWSM from Oracle.

Webservice Security 171

References

1. http://www.sciencedirect.com/science/article/pii/S0020025514005428
2. http://www.pressenet.info/texte/service-oriented-architecture.html
3. http://www.ws-i.org/profiles/basicsecurity/securitychallenges-1.0.pdf
4. https://www.w3.org/TR/soap/
5. https://www.w3.org/2002/ws/cg/2/07/meps.html
6. https://www.infosec.gov.hk/english/technical/files/webss.pdf
7. https://en.wikipedia.org/wiki/OASIS_(organization)
8. https://msdn.microsoft.com/en-us/library/ff648318.aspx
9. http://research.ijcaonline.org/icsem/number1/icsem1324.pdf
10. http://www.xyzws.com/scdjws/WSGEN/4
11. https://www.tomsguide.com/us/ssl-vs-tls,news-17508.html
12. https://www.digicert.com/blog/evolution-of-ssl/
13. https://www.digicert.com/ssl.htm
14. https://pdfs.semanticscholar.org/b111/0264f5efa9848bfa647cc8f7f8ea7ecebc34.pdf
15. https://tools.ietf.org/html/rfc3174
16. http://euler.ecs.umass.edu/ece597/pdf/Crypto-Part12-MAC.pdf
17. https://access.redhat.com/documentation/en-US/Fuse_ESB_Enterprise/7.1/html/ActiveMQ_

Security_Guide/files/X509CertsWhat.html
18. http://www.webdav.org/specs/rfc2617.html
19. https://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
20. http://www.herongyang.com/Web-Services/X509-Token-WSS-X509-Certificate-Token-

Profile.html
21. https://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-KerberosTokenProfile.pdf
22. https://msdn.microsoft.com/en-us/library/bb742516.aspx
23. http://docs.oasis-open.org/wss-m/wss/v1.1.1/wss-SAMLTokenProfile-v1.1.1.html
24. http://www.oracle.com/technetwork/articles/java/dig-signatures-141823.html
25. https://www.xml.com/pub/a/2001/08/08/xmldsig.html
26. https://www.cs.virginia.edu/~acw/security/doc/Tutorials/WS-Security.ppt
27. https://www.w3.org/TR/2002/REC-xmlenc-core-20021210/Overview.html
28. https://docs.oracle.com/cd/E27515_01/common/tutorials/encryption_encrypt_settings.html
29. https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture8.pdf
30. https://www.di-mgt.com.au/rsa_alg.html
31. https://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-

UsernameTokenProfile.pdf
32. https://tools.ietf.org/html/rfc2315
33. http://www.zeroshell.org/kerberos/Kerberos-operation/
34. http://web.mit.edu/kerberos/
35. https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
36. https://docs.oracle.com/cd/E24001_01/web.1111/b32511/standards.htm
37. http://xml.coverpages.org/LOC-CoyleReportREL2004.pdf
38. https://www.w3.org/TR/odrl/
39. http://www.service-architecture.com/articles/web-services/extensible_rights_markup_

language_xrml.html
40. http://docs.oasis-open.org/wss-m/wss/v1.1.1/os/wss-rel-token-profile-v1.1.1-os.html
41. https://www.w3.org/Submission/ws-addressing/
42. http://www.cs.ucsb.edu/~bultan/courses/595-W06/WS-Security.ppt
43. https://www.owasp.org/images/3/33/Web_Services_Security_%E2%80%93_Challenges_

and_Trends.ppt
44. https://www.w3.org/TR/xkms/
45. http://www.exchangenetwork.net/node/mentoring/2005_meeting/xkms.ppt
46. https://www.ibm.com/developerworks/xml/library/x-seclay3/x-seclay3-pdf.pdf

http://www.sciencedirect.com/science/article/pii/S0020025514005428
http://www.pressenet.info/texte/service-oriented-architecture.html
http://www.ws-i.org/profiles/basicsecurity/securitychallenges-1.0.pdf
https://www.w3.org/TR/soap/
https://www.w3.org/2002/ws/cg/2/07/meps.html
https://www.infosec.gov.hk/english/technical/files/webss.pdf
https://en.wikipedia.org/wiki/OASIS_(organization
https://msdn.microsoft.com/en-us/library/ff648318.aspx
http://research.ijcaonline.org/icsem/number1/icsem1324.pdf
http://www.xyzws.com/scdjws/WSGEN/4
https://www.tomsguide.com/us/ssl-vs-tls%2cnews-17508.html
https://www.digicert.com/blog/evolution-of-ssl/
https://www.digicert.com/ssl.htm
https://pdfs.semanticscholar.org/b111/0264f5efa9848bfa647cc8f7f8ea7ecebc34.pdf
https://tools.ietf.org/html/rfc3174
http://euler.ecs.umass.edu/ece597/pdf/Crypto-Part12-MAC.pdf
https://access.redhat.com/documentation/en-US/Fuse_ESB_Enterprise/7.1/html/ActiveMQ_Security_Guide/files/X509CertsWhat.html
http://www.webdav.org/specs/rfc2617.html
https://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.herongyang.com/Web-Services/X509-Token-WSS-X509-Certificate-Token-Profile.html
https://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-KerberosTokenProfile.pdf
https://msdn.microsoft.com/en-us/library/bb742516.aspx
http://docs.oasis-open.org/wss-m/wss/v1.1.1/wss-SAMLTokenProfile-v1.1.1.html
http://www.oracle.com/technetwork/articles/java/dig-signatures-141823.html
https://www.xml.com/pub/a/2001/08/08/xmldsig.html
https://www.cs.virginia.edu/%7eacw/security/doc/Tutorials/WS-Security.ppt
https://www.w3.org/TR/2002/REC-xmlenc-core-20021210/Overview.html
https://docs.oracle.com/cd/E27515_01/common/tutorials/encryption_encrypt_settings.html
https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture8.pdf
https://www.di-mgt.com.au/rsa_alg.html
https://www.oasis-open.org/committees/download.php/16782/wss-v1.1-spec-os-UsernameTokenProfile.pdf
https://tools.ietf.org/html/rfc2315
http://www.zeroshell.org/kerberos/Kerberos-operation/
http://web.mit.edu/kerberos/
https://www.oasis-open.org/committees/tc_home.php%3fwg_abbrev%3dsecurity
https://docs.oracle.com/cd/E24001_01/web.1111/b32511/standards.htm
http://xml.coverpages.org/LOC-CoyleReportREL2004.pdf
https://www.w3.org/TR/odrl/
http://www.service-architecture.com/articles/web-services/extensible_rights_markup_language_xrml.html
http://docs.oasis-open.org/wss-m/wss/v1.1.1/os/wss-rel-token-profile-v1.1.1-os.html
https://www.w3.org/Submission/ws-addressing/
http://www.cs.ucsb.edu/%7ebultan/courses/595-W06/WS-Security.ppt
https://www.owasp.org/images/3/33/Web_Services_Security_%25E2%2580%2593_Challenges_and_Trends.ppt
https://www.w3.org/TR/xkms/
http://www.exchangenetwork.net/node/mentoring/2005_meeting/xkms.ppt
https://www.ibm.com/developerworks/xml/library/x-seclay3/x-seclay3-pdf.pdf

172 R. K. K. Meduri

47. https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_
XACML.html

48. https://en.wikipedia.org/wiki/XACML
49. http://www.au-kbc.org/bpmain1/PKI/PKIieee.pdf
50. http://www.facweb.iitkgp.ernet.in/~sourav/PGP.pdf
51. https://www.limited-entropy.com/docs/spki.pdf
52. http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
53. https://docs.oracle.com/middleware/1212/owsm/OWSMC.pdf
54. https://www.w3.org/Submission/WS-Policy/
55. https://www.w3.org/Submission/WS-PolicyAttachment/
56. http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.html
57. https://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
58. http://docs.oasis-open.org/wss-m/wss/v1.1.1/os/wss-SOAPMessageSecurity-v1.1.1-os.html

https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html
https://en.wikipedia.org/wiki/XACML
http://www.au-kbc.org/bpmain1/PKI/PKIieee.pdf
http://www.facweb.iitkgp.ernet.in/%7esourav/PGP.pdf
https://www.limited-entropy.com/docs/spki.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://docs.oracle.com/middleware/1212/owsm/OWSMC.pdf
https://www.w3.org/Submission/WS-Policy/
https://www.w3.org/Submission/WS-PolicyAttachment/
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.html
https://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss-m/wss/v1.1.1/os/wss-SOAPMessageSecurity-v1.1.1-os.html

Webservices Engineering

Venkata Swamy Martha and Maurin Lenglart

Abstract A webservice is a loosely coupled business process accessible over web
and often a webservice leverages more than one another webservice to establish
its deliverables. By loosely coupled, a webservice can be developed without know-
ing its consumers, and new consumers can be on-boarded without modifying the
webservice. A service can be composed of one or more other webservices which
leads to complexity in engineering the webservice. There are several challenges
at design phase of webservices including designing communication tools between
service provider and service requester, specifying service level agreements with or
without prior knowledge of nature of consumers, planning a security enforcements,
etc. Service-oriented architecture (SOA) is widely adopted software design paradigm
for webservices and addresses some of the challenges in webservices development
process. The development life cycle of a system of webservices involves identifying
services, isolating them from one another, governance of services, distribution of ser-
vice development tasks, maintenance. Conventional software engineering principles
become invalid for webservice development and tailor-made engineering approach
called Web Service Engineering (WSE) is brought up for webservices. This chapter
presents nuts and bolts needed for WSE. WSE borrows concepts from agile-based
Software Development Life Cycle (SDLC) for webservices to call it Web Services
Development Life Cycle (WSDLC). In WSDLC, a webservice can be developed
independently from other services in an enterprise, with complete isolation from
other services in the enterprise. Internet era is reaping benefits frommajority of web-
services available across the globe, a streamlined WSDLC approach helps several
industry partners to coordinate each other in a systematic language. By the end of this
chapter, a reader should be capable of developing a webservice in WSDLC. Web-
services revolutionized software systems in industry and few of the organizations
that reaped benefits from webservices approach are discussed in the chapter as case
studies.

V. S. Martha (B) · M. Lenglart
Lore IO, 380 Altair Way, Sunnyvale, CA 94085, USA
e-mail: venkat.taku@gmail.com

M. Lenglart
e-mail: maurin.lenglart@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
H. Mohanty and P. K. Pattnaik (eds.), Webservices,
https://doi.org/10.1007/978-981-13-3224-1_7

173

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-3224-1_7&domain=pdf
mailto:venkat.taku@gmail.com
mailto:maurin.lenglart@gmail.com
https://doi.org/10.1007/978-981-13-3224-1_7

174 V. S. Martha and M. Lenglart

Keywords SDLC ·Webservices engineering
Webservices development life cycle · SOA ·Microservices

1 Introduction

Internet eramademany software accessible overweb asweb applications. A software
is typically a combination of one or more modules and similarly a web application
is a collection of one or more modules. In recent times, the modules evolved into
“services” and further the services are designed to serve over web to call them “Web-
services”. Webservices are derived from web applications, where web application
presents data in a user interface and a webservice only serves data. Briefly, a webser-
vice is an autonomous software component designed to serve a specific functionality
or a task over web. A service provider and a consumer interact over web in web-
services framework. A module in a software can be a webservice if the module
is accessible over web. Typically, web end points, also called Universal Resource
Locators (URLs), serve business functionality over web, and therefore each URL
is a webservice. Citing an URL as a webservice is more general, various groups in
research community defined webservices differently. IBM defined a webservice as
“a self-contained web application that is published, accessible over web”. Every-
thing accessible over web is not a webservice but functional units. A webservice is
an artifact with a published static programming interface and not a set of web pages.
As in client and server in web application, there are service provider and service
requestor in webservicer. Service provider owns a service, while service requestor
consumes the services from service providers.

Service providers publish webservices to a registry and a service requester finds
a service and invokes the service over web. The interactions among service provider,
service registry and service requester are regulated by a contract which all the parties
agree upon. There are popularly two types of contracts, Simple Object Access Pro-
tocol (SOAP) is one and REpresentational State Transfer (REST) is another one. In
SOAP, a webservice definition is published in a Webservice Description Language
(WSDL). WSDL is an XML document for a service that describes the service. A
service requestor communicates using SOAP messages with a service provider as
specified in the WSDL for the service. A SOAP message is an envelop of a header
and a body, where the header contains instructions for reading and processing the
body of the message. On the other hand, a REST service is accessible via a Uniform
Resource Identifier (URI) and avails a set of resources through a set of interactions.
The interactions are well-defined operations on the corresponding resources. PUT,
GET, POST, and DELETE are the operations.

As webservices taking vital role on the Internet, there is a pressing need to enforce
systematic, disciplined, and quantifiable approaches to development, operation, and
maintenance. Web engineering principles, largely borrowed from software engineer-
ing, are brought up to systematic and disciplined approaches to effective life cycle of
the web applications. Web engineering community has been working on issues and

Webservices Engineering 175

challenges involved in web development process. In addition to traditional software
engineering principles, web engineering outlines concern from open and flexible
nature of web. Primarily, there are two factors that make webservices different from
typical software. 1. Frequent updates to the underlying data, 2. Continuously chang-
ing requirements from diverse stakeholders. Both the factors make a webservice
endlessly evolving in nature and webservice should be engineered to support such
evolutions over time. Success of a webservice is dependent on ability to extend, scale
as with its stakeholders. According to 2015 CHAOS report published by Standish
Group, only 29% software projects are successful. With the reach of webservices, a
failed webservice can lead to a crisis, often called web crisis.

Effective engineering principles needed to achieve successful web applications
and web engineering deals with the process of developing web applications. Web
engineering provides a superset of principles for overall web applications and web-
service is part of the web application.

As each resource in a web application is available as a webservice, it is common
to have a webservice that interacts with one other webservice to access a resource.
A webservice that relies on other webservices is called “composite” webservice.
Webservices often interact with more than one webservices and form a web of web-
services. Aweb-based systembecomes complexwhen the size ofweb ofwebservices
abscess though the system is modularized with each service as a module. Service-
OrientedComputing (SOC) is the term coined to represent the applications developed
using a set of services. A system is architected using Service-Oriented Architec-
ture (SOA) to streamline the development process when the system is comprised
of services. SOA is a typical way to develop webservices. The terms “SOA” and
“Webservices” are used interchangeably to represent a suite of services. SOA helps
development teams to consistently deliver sustainable business value, with increased
agility and cost-effectiveness, in line with changing business needs. In SOA, each is
a loosely coupled isolated component with reliance on shared resources. SOA lets
a webservice reuse other services and resources without worrying how the services
work. A webservice plays “consumer” role to consume another webservice, thus a
webservice is a producer and a consumer at the same time.

Service-Oriented Architecture (SOA) is a software design to manage the usage
of services in terms of, and in sets of, related services. The World Wide Web Con-
sortium (W3C) defines SOA as “A set of components which can be invoked, and
whose interface descriptions can be published and discovered”. SOA like software
design pattern will have significant impact on the software development life cycle
of an application. SOA is not just an architecture, but the policies, practices, and
frameworks to ensure the defined service interaction. SOA enables the develop-
ment process to follow independent development process for each of the service
in the application. An application may portray many to many relationships among
services; the relationships are regulated by service contracts. Consumers request a
service with different objectives but nevertheless use the same service. A service is
to be developed independent of other services in the application but the development
should comply the contracts with its consumers who can also be part of the appli-
cation. Such an independent development with dependent requirements (contracts)

176 V. S. Martha and M. Lenglart

Service orchestration Service choreography

Fig. 1 Service composition mechanisms

demands a specially orchestrated development life cycle and this chapter discusses
an extension of traditional software development life cycle to support webservice
development.

SOA is suitable for webservices where

• Services operate over the Internet;
• Every service requestor adheres to changes in provider;
• Need for heterogeneity; and
• To make use of a legacy system in a technology that is not the legacy system
support. To wrap the legacy system in a webservice.

A webservice can consume other webservices, accomplishing a dependency on
the other service. It can also be viewed as a composite service which invokes one or
more dependentwebservices to trigger other business processes. A composite service
is not responsible for the functionality of the dependent services but to trigger them
as per demand. There are two types of service dependencies possible in SOA, one
being “Service orchestration” and other is “Service choreography”.

1. Service orchestration: A service is orchestrated with a composition of other
services and the service is called “orchestrator” or “composite service”. The
orchestrator is the central point to engage with other services. No communication
takes place among other services pertaining to the orchestrator’s service. Only the
orchestrator is aware of the goal, so the orchestration is centralized with specific
instructions to when and what services to invoke.

2. Service choreography: The services are decentralized so that a service provider
can request other services for a service in realizing a service request. This
approach enables the services coordinate themselves with none of them having
control over other services. Each service is responsible for its only functionality
and serves its consumers effectively (Fig. 1).

Webservices Engineering 177

Choreography is a collaboration while orchestration is a centralized execution
process. There are pros and cons with both the approaches and both pose challenges
in their respective ways. In both the approaches, services are distributed and engaged
over web, inherently infusing challenges in distributed systems into SOA. And, web-
services adhere to client–server model with service requestor being client and service
provider being server, thereby inheriting problems associated with the model. The
challenges involved in engineering webservices are discussed further in Sect. 2.

2 Challenges in Engineering Webservices

One of the objectives of SOA is the identification, development, deployment, and
life cycle management of services (webservices). Webservices development process
depends on how a webservice would be used. For example, a webservice has to be
engineered by taking account for how a requestor requests a service, which protocol
to be used, what to expect from the service, and semantics of the request to be placed.
The challenge is in preparing specifications for the service without prior knowledge
of who and how to consume the webservice. Discussion on some of the challenges
is following.

2.1 Service Registration

Webservices are registered with registry to let its consumers know about the service.
Now a question is, what details are to be registered. The registration process requires
the service provider to provide what is the service about and how it is accessible to
consumers. Following are the metadata needed for a service registration.

2.1.1 Messaging Language

Service provider be able to specify a common language which can be used for
communications. The language is used to specify service description. XML is widely
accepted for this purpose.

2.1.2 Interface Language

Interfaces define how to consume a service, it is the service description. Typically,
Webservice Description Language (WSDL) defines the interface of a service and is
submitted to registry at the time of publishing a service. For resource-based web-
services, Universal Resource Identifier (URI) of a service and protocol to reach the
URI present the interface of the service.

178 V. S. Martha and M. Lenglart

2.1.3 Business Protocols

A list of operations that a webservice offer is described as business protocols. Busi-
ness protocols help a consumer to communicate with the service provider to perform
a function. Business protocols are rules to validate which operations are allowed
and when. GET, PUT, POST, and DELETE are business protocols for REST-based
webservices. Web Services Conversational Language (WSCL) and Business Process
Execution Language for Webservices (BPEL) are examples for business protocols.

2.1.4 Properties

Service provider can submit a set of properties associated with a webservice. The
properties can be for service level agreements, QoS, license details, etc. The prop-
erties complement the information from interface language by adding a layer of
information that is not associated with functionality of the service.

2.1.5 Verticals

Vertical standards define a specific common base language, interface, business pro-
tocol, and properties. This is a compilation of metadata of metadata.

A webservice development is tightly tied to metadata of a service, lays foundation
for the service development. Selecting appropriate interface, business protocols will
be game changer for the service throughout its life. The challenge here is to make
decisions on the metadata with prior thoughts on the lifetime of the service. Once a
selection is made for the metadata, it is nearly impossible to change, even if it can
be changed, such migration would cost significant resources.

2.2 Service Binding

A consumer consumes a service by connecting to the corresponding server found
in service discovery phase. Binding mechanism varies with the protocol used for
the service accessibility. Resource-based webservices are transported over HTTP or
HTTPS and object-based webservices are accessed over SOAP messages. A web-
service development process depends on the binding model chosen for the service.

2.3 Service Composition

If a service is composed of more than one service, the service composition can be
through orchestration or choreography. Though both the compositions are backed by

Webservices Engineering 179

benefits and limitations, only one type of composition is to be adopted. Based on the
context and requirements of the service, a service is composed. Nomatter what com-
position a service is, for a consumer it is quite similar to typical webservice and does
not observe differences. Service provider needs to make respective developments to
make the services compatible with the chosen composition.

When a service is composed of services from different enterprises, there is a need
to standardize on the relationships among the enterprises involved in the composition.
The goal of each relationship of a pair of service provider and service consumer is to
produce and consume. WS coordination specifications are compiled to detail how a
webservice can be accessible to other services. WS coordination specifications help
to achieve interoperability among services, the scope spans from a service within an
enterprise, across different services in an enterprise, across enterprises.

2.4 Integrity of Services

Since a webservice can access a shared resource or other services, it is possible that
the consistency for the service is not guaranteed. A shared service can be requested
by more than one service, and if the resource behind the requested service is updated
by the first service request, the subsequent service request is possibly working on
latest data with instructions from outdated data interface. For example, a service that
access “Employee” table is called to raise salary of 1000$. If a service is called twice
for an employee “X” when the salary was 5000$, the service invokes one request to
increment salary to 2000$ and subsequent request is operation on “ahead” data than
the request was invoked to raise the salary to reach 7000$, which is non-intended.

2.5 Governance

The webservices are loosely coupled and engage with one another to form a com-
position. More than one service can consume a shared resource and a webservice
can be dependent on functionality of another service on a resource, thus making
a service dependent on another service without consuming it but indirectly from
the shared service. Such complex relationships among webservices are possible in
SOA.More the number of webservices in a systemmore the chances of encountering
dependency issues. A strategy is needed to govern how the services are developed,
deployed, and managed throughout their life cycle to accomplish enterprise-level
suite of webservices. SOA governance is to be put in place as part of engineering the
webservices, to ensure every webservice is given requirements with its functionality,
what to consume from other services and how the service is contributing to overall
business goals.

180 V. S. Martha and M. Lenglart

2.6 Availability and Performance

As webservices are highly distributed across web, the performance goals can be
a challenge. Moreover, mission critical system started adopting webservices, and
it is of the highest importance to have the services available and perform as per
requirements. A service provider should enlist what a service requestor should expect
from the provider, which is called Web Service Level Agreement (WSLA). WSLAs
are contracts between a service provider and a requestor to agree on the obligations
of both the parties. In webservices terms, WSLA is a commitment from a service
provider to fulfill a service according to agreeduponguarantees.AWSLAcan include
guarantee on availability, response time, throughput, etc. For example, a WSLA for
a webservice, to serve time stamp, includes the service that never have a downtime
more than 10 s without a week’s notice, 10 s response time. With the WSLA, a
service requestor can develop a system with the commitments into consideration.
For instance, assume a service requestor is consuming the webservice, this requestor
can complete his task no less than 10 s, and the limitation inherited from the dependent
webservice.

2.7 Security

The webservices are put on the Internet to make it available over web. Since web is
open to everyone, it is necessary to enforce security policies to limit access to the
service. Typically, authentication and authorizations are services itself and leveraged
all services in aweb application. Each request to awebservice invokes a request to the
authentication service to authenticate the request and another request to authorize the
request. Once a request is through, the request starts to be fulfilled by service provider.
Who can access a webservice is to be well prepared for the deployment of a service.
The webservices that provide security-based functionality are vital in enterprises that
operate on sensitive information.WS-security is awebservice specification to enforce
integrity and confidentiality to webservice communications. When a webservice is
designated with a security protocol as specified in its WS-security specification, the
webservice is accessible to only who adhere to the protocol.

3 Software Development Life Cycle for Webservices
(WSDLC)

Concepts from software engineering principles put together to address challenges
mentioned in Sect. 1. SDLC is heart of software engineering and there are several
SDLC models, each of the SDLC models has benefits and drawbacks. SDLC for
webservices will be discussed following a brief introduction to SDLC models.

Webservices Engineering 181

Typical software development life cycle methodology involves five phases: 1.
Requirements gathering, 2. Analysis and Design, 3. Implementation, 4. Test, and 5.
Release/Deployment. A methodology to stitch the phases to deliberate a software
development is called software development process, and there are various method-
ologies existing in industry.

1. Waterfall model:Waterfall model is a naive software development methodology
where the development phases are executed in sequence. Software development
starts with requirements gathering phase and ends with deployment. There is a
maintenance phase after deployment which continues till the end of the life of
the software. A phase is performed one and only once.

2. Iterative and/or Incremental model: Waterfall model is performed iteratively
and with every iteration releases a version of the software. Software evolves over
iterations; a development phase is performed more than once as many times as
the number of iterations. If a feature is not fit in an iteration, it will be added
to next iteration and will be released in the next version of software. It is also
possible that the requirements for the software also change over time and the new
requirements will be considered to fulfill in the next iteration.

3. Spiral developmentprocess:Giant software systems require significant prepara-
tory work before going onto development and prototyping is a way to verify the
feasibility of the designed system. Spiral model enables to deliver prototypes
at one or more iterations. Once a prototype is evolved to satisfy the requested
requirements, the rest of the development phases progress in sequence to deliver
the software at the end.

4. Agile process: Software is divided into one or more modules (can be called fea-
tures) and each module development is carried out by a team. Such a modulariza-
tion reduces the effort in planning and development of complex software systems.
A software module is developed iteratively and involves cross-functional teams
and each team takes part in all the phases of the development process. A ver-
sion of the software is released at scheduled time points and the release may not
include all the software modules. Each team sign off the corresponding module;
the modules are integrated to form the complete software that goes into release.
Though each team is responsible for its module, theremay be dependent modules
to impact each other’s development process. Cross-functional teams communi-
cation is essential in such software development (Fig. 2).

None of the listed SDLC models here can suite for webservices development as
is, because webservices are loosely coupled with isolation. A set of webservices can
be developed in parallel as there are phases of webservices development that can be
distributed and optimized. Webservices are distributed artifacts and each webservice
is associated with its specific requirements that enable it to follow development on
its own path.

Webservices are similar to independent software modules in agile process but
unlike agile model, webservices are heterogeneous and follow independent devel-
opment process. Webservices development process borrows many of the features

182 V. S. Martha and M. Lenglart

Fig. 2 Flow of development phases in traditional development methods

from agile development process. Further, illustration of the webservice development
process is presented in the following section.

A webservice in a software system can be completely disintegrated from the sys-
tem and follow its own path in development. Therefore, a software system that is
constituted of webservices is developed in different ways but put together to make up
a software solution. The development process in such software solution is heteroge-
neous so that it is complex to engineer a process for the development. Conventional
development schemes discussed in the previous section cannot fulfill the needs in
webservices development and this section addresses the need for defining a devel-
opment model specifically for webservices.

As mentioned, a webservice is an independent software module that can serve its
consumers independently for the specific functionality it is designed for. A software
system can be made up of one or more webservices and there can be many-many
relationships among services in addition to relationship with consumers. The con-
sumers interface with a webservice for a functionality and the service can utilize
other services in accomplishing the requested service. Typically, a webservice that
uses another webservice plays a “consumer” role to consume the service and there
a webservice can be a consumer of another service while service process for its
functionality. Such scenarios result in service dependencies (contracts) and depen-
dencies are not uncommon in system of webservices. Though a webservice is depen-
dent on other services, the webservice is isolated from the dependent services and
acts independently. Therefore, a webservice is an independent software module with
dependent services. A pictorial representation of a software system of webservices
is depicted in Fig. 3.

Webservices Engineering 183

Fig. 3 Webservices architecture

In order to keep focus on the development process, further discussion on the
webservices architecture has been skipped here and assuming the reader having
ample prior knowledge of webservices architecture.

There is not enough researchmade into standardizing the development process for
webservices and this chapter is an attempt toward the direction of instrumenting the
artifacts needed for webservices development model. Though most of the problems
that arise in webservices development have been addressed in literature in different
contexts, a development life cycle model for webservices is not mentioned in the
past. By calling out to have a comprehensive development model, this chapter paves
a way to combine the available solutions for problems in webservices development.
A webservice development model can be seen as an extension to agile model as
webservices possess agility in heterogeneous environment. Webservices are no dif-
ferent from typical software modules but with complete isolation from rest of the
software modules, and therefore webservice development process borrows several
development phases from the traditional software development models. Elaborated
illustration of each phase in webservices development process is following.

184 V. S. Martha and M. Lenglart

3.1 Requirements

Requirements gathering is the first and foremost step in a software life cycle andweb-
services-based systems do follow the same tradition of collecting all the requirements
of functionality. The requirements list defines what the system of webservices should
serve its consumers.

Requirements collection starts with identifying stakeholders of the software.
Stakeholder(s) can be defined as customers, end users, a project manager, etc. A
comprehensive list of requirements is prepared by meeting with each of the stake-
holders. The outcome from the meetings is requirements document which will be
passed onto next phase in the development life cycle. The document also serves as
contract with consumers on what the software is guaranteed to offer.

3.2 Design and Architecture

The requirement document from the previous phase is the basis for planning the rest
of the phases in development life cycle.

In typical software development life cycle, this phase translates the requirements
into a design document which will be used to code the software. Unlike other soft-
ware development models, webservice development process uses the requirements
document to decouple the requirements into one or more requirements documents.
Each requirement document serves as a basis for a webservice so there is a web-
service for every requirement document that came out of this phase. Briefly, this
phase architects the software in terms of webservices. The only restriction on split-
ting a requirements document into many documents is each requirements documents
should serve an end-to-end solution for a specific functionality. By making each
requirements document an end-to-end solution, each webservice is isolated from
others and developed independently.

Webservice governance is orchestrated in this phase to coordinate services
involved here. Each service made here is responsible to fulfill its requirements doc-
ument and does not have overall requirements in the goals. A democratic approach
distributes overall goals and how each service contributes to overall goals to every
service. Though each service is aware of birdview of the system, a service is just
focused on its specific functionality scripted in it requirements document.

Webservices are secured using common rules and in this phase the rules are made
out. The derived services from this phase follow the security guidelines prepared in
this phase. Often times, the security guidelines are programmed as a service and all
the derived services leverage the service to adhere to common security policies.

The requirements documents are distributed among engineering teams for the
developmentwhere an engineering team is capable of performing all the development
phases in traditional development life cycle for the designated webservice. Given

Webservices Engineering 185

the need for a team that is capable of complete development, typically such teams
constitute of individuals with design, implementation, testing, and release skill sets.

It is not unusual to receive new requirements from stakeholders and subsequently
this phase is reinstated either to infuse the new requirements into existingweb servers
or to introduce new requirements document for an addition webservice. As the num-
ber of webservices increases in the system, the overall software evolves increment.
This process is widely popular in small-to-medium scale software products by releas-
ing a minimum viable product with key webservices and then adding additional
webservices to extend the software for wider consumer requirements.

3.3 Webservices Development

A development life cycle of a webservice starts with this phase as previous phases
only drove the process to define webservices. Being each webservice is isolated from
other services, the development process for the webservice can be one from many
existing software development models.

Regardless of what methodology a webservice adapts for development, the devel-
opment phases are common among all models but the phases are wired differently to
achieve the webservice releases at different rates. The development phases for a web-
service are discussed here to give the reader a complete overview of the development
process and the discussion is analogous to typical software development models.

Each team responsible for a webservice acts independently on their development
schedule and relish the freedom of choosing a development methodology for the
owned service. Figure 4 depicts one such organization structure where services are
developed using different schemes. A service follows waterfall model as in Fig. 4a,
one service in iterative development methodology as shown in Fig. 4b, spiral model
(prototyping process) is adapted for a service as in Fig. 4e, where two services are
following agile process as in Fig. 4c, d. In an outline, Fig. 4 demonstrated the capa-
bility of webservices development process to develop independently in a dependent
services system.

3.3.1 Requirements

This stage of the cycle is used to take all the requirements and translate them into
features and technical specifications. It can also include screen layouts, mocks, and
pseudocode. But also how the webservice is supposed to be architected. The require-
ments also include all the stakeholders for the webservice and corresponding con-
tracts with them.

Each of those requirements needs will be categorized into two main categories as
follows:

• Functional requirements such as features, business rules, authorizations, etc.

186 V. S. Martha and M. Lenglart

Fig. 4 Development of services in web-services-based system

• Nonfunctional requirements such as usability, performance, scalability, supporta-
bility, data integrity, etc.

A webservice is supposed to only solve a fixed amount of problems. So it is
important to, once the requirements are analyzed, make sure that a webservice can
solve it and that it is the best solution possible. During the development of a web-
service, the requirements can, and mostly will, change over time. Since the changes
in requirements are tracked regularly, the requirements are needed to re-evaluated
upon changes.

Further, requirements document includes how consumers of a webservice con-
sume the service. How the consumers use the webservice will drive us to construct
a test plan for validation of the service, and thus can verify the given requirements
being achieved upon a release.

3.3.2 Design

Given a requirements document, the webservice is designed to satisfy the given
requirements and achieve the functionality goals designated for the service. As a
first step, a signature of the webservice is prepared where the signature defines how

Webservices Engineering 187

a consumer communicates with the service and what to expect in response. In simple
words, a signature is a schema of input and output data for a webservice.

Once the inputs and outputs of a webservice are identified, the functionality of the
webservice is orchestrated into a design document. The design document includes
architecture diagram, pseudocode, dependency resolution, system impacts, the list of
requirements that are being achieved and anything that needed for the implementation
of the webservice.

Once the requirements are documented, following design choices has to be made:
1. an interface to use, 2. a messaging language to use, 3. list of operations to support,
4. orchestration or choreography, 5. integrity of service, and 6. SLA. The choices
made for these will define the webservice accessibility. The functionality of service
is designed by the choices made.

When a design phase identifies a dependency on some other webservice, the
dependency is created as a requirements document and the requirements document
is spin-off to a webservice development phase (C) and the process repeats for the
webservice.Often times there is an existingwebservice that satisfies the requirements
of dependent webservice and no new development cycle is introduced but reused
existing webservice.

3.3.3 Development

The development is where the code is being written. The goal is to take the design
document and translate the algorithms and the pseudocode created in the design
phase are translated into a programming language.

Typical software system is developed by reusing existing software modules and
does not need to implement end-to-end solution all by itself. Since a webservice is
an end-to-end solution for a functionality, the development team develops all needed
tools except the ones available via other webservices. Thus, the development process
can consume more resources but helps in keeping the webservice isolated from the
rest of the system and to enable independent development cycle.

3.3.4 Testing

Borrowing the lines from the requirements document that illustrate how a consumer
uses a webservice, a test plan is written for the webservice. The test plan is valida-
tion of the webservice onto check whether the given requirements are met. Being
a webservice an end-to-end solution for a functionality, the tests can include black
box testing. This is the phase where other webservices that consume this service can
verify the contract. Since a webservice is serving a specific functionality, the testing
plan is succinct and less resource consuming.

188 V. S. Martha and M. Lenglart

3.3.5 Deployment/Release

The release schedule for a webservice is defined by itself disregard of the overall
release schedule. There would be versioning in the release to flag what version of
webservices should go together to end consumer. Such versioning helps to serve a
consumer a service derived from all specific versions of services, and thus maintain-
ing consistency in service. The versioning is not always needed but depends on the
impact of the release on other services and the services that reach end consumer.

Irrespective of the versioning/flags, deployment of a webservice would be simple
as it does not need to bring down overall software except the webservice in critical
path in consumer services. If there are services that consume a service and had to
make a release, then both the services have to go together if there is no versioning.
There are companies that deploy releases few 100 times a day and not all of them
available to end consumers right away but checked with a flag to make sure that the
consumer avails only stable version of the service.

There is no concept of integration inwebservices but thewebservices consumeone
another and consistency in the contract guarantees the integration does not fail. There
will be a regular review on overall webservices at very high level without bringing
in service details into review discussions. Thus, the review meetings oversee high-
level architecture, while inside each engineering team there is an evaluation phase to
review low-level details of a webservice. Webservices have been evolving and many
enhancements have been made to the webservices to address problems over time.
Some of the advancements are discussed in next section.

4 Advanced Techniques in WSDLC

Webservices have been in the industry for more than a decade, over time webser-
vices evolved into sophistication. With every new advancements in webservices, the
development process has been adopting to the newly introducing concepts. Some
of the cutting-edge technologies in webservices are discussed here to establish their
impact on the development process.

A. Microservices: With growing size of software systems in organizations, web-
services are being further microfied into smaller software pieces. Such micro-
software pieces are calledmicroservices and themicroservices featuremore ben-
efits in addition to being smaller in size.By exhibitingmore agility,microservices
became popular among the webservices. Microservices are not just isolating
software components but adopting stringent practices in development life cycle.
Besides development process, decoupling the services in terms of microser-
vices needs more effort as the microservices facilitate more independence and
capability. In the long term, the process makes the development lucrative with
faster iterations and releases. Like webservices, microservices also developed
independently but withmore contained implementation. Sincemicroservices are

Webservices Engineering 189

smaller, it takes little effort to develop and maintain each service. At the same
time, the integration could become burdensome as more number of pieces stitch
together to make an overall system release.
But by opposition towebservice, amicroservice can be bundled into a “package”:
npm module, python egg, jar file, etc. allowing to be directly integrated into an
other software. It reduces the performance problem encountered.

B. Continuous development and integration: Conventional software develop-
ment process involves sequential phases of development life cycle, while agile
methodology allows to develop parallel development of modules in a software
system. With the evolution of advanced technologies in webservices, it is possi-
ble to not only develop in parallel but deliver parallelly, in other words, deliver
continuously. As in agile methodology, each webservice is implemented in par-
allel and then integrated at regular intervalswithout needing to know the progress
of other services as long as the delivering feature does not impact others. Thus,
a feature can still be delivered irrespective of some or more of other features
delivery. In this process, the integration is critical phase and rigorous testing
following the integration involves every team that integrated their implementa-
tions. As more than one team integrates their code near real time, conflicts in the
implementation arise. The only way to reduce the conflicts is to communicate
the changes beforehand to each team that interact with the service. There is a
version of the product with all the integrations made and where the testing team
runs their test cases. The integrated version of the product goes back and forth
with development team for issues arising from integration. During the testing
phase, the development process still continues onto the next set of enhancements
of their respective services. Once testing team concludes the testing, the system
goes into deployment phase. The process starting from integration to deployment
is independent of development of services, and therefore continuous develop-
ment and deployment. It is not uncommon to see unfinished features that drove
themselves into integration phase and such features are put under flag to hide
from customers. Facebook uses similar strategy that deploys unfinished features
into production system and there is a tool called “Gatekeeper” to manage what
feature a user can see on the Facebook web portal. Keeping a feature off track
from customer usage buys auxiliary time to enhance the feature. At times, the
gatekeeping methodology is exploited to achieve incremental deployment.

C. 2-Pizza teams: Witnessed success at Amazon, 2-Pizza teams strategy has been
popularly adopted across industry. If an engineering team, owning a service, can
eat more than two pizzas, then the service is too large to achieve agility and the
service is eligible to be broken further to make it fit into an engineering team.
The engineering teams are separated into silos and operate independently. In
web-services-based industry, a 2-Pizza team is responsible for a service, and
therefore the services should be small enough to be developed by such 2-Pizza
team independently. If anything goes wrong anywhere in that full life cycle of
the service, these 2-Pizza teams are the ones accountable for fixing it. The teams
comply with SLAs internally and thus services communicate with each other
without conflicts.

190 V. S. Martha and M. Lenglart

D. Containerization: Microservices and containers ride hand in hand as one ben-
efits the other. Containers enable each service to run independently in a het-
erogeneous environment. A service is free to choose its specific programming
language, an operating system, or a hardware without worrying how the rest of
the system is being designed. Succinctly, a service is a virtual machine serving
its consumers a specific service. Containers are lightweight processes emulat-
ing a virtual machine and capable of bringing up given system environment.
A physical computer can support more than one container at an instance and
each of the containers in a machine is isolated from others. Nowadays, the cloud
provider is offering containers out of the box to deploy services. If not on cloud,
containers are deployed on dedicated machines. Google managed billions of
containers internally for years and added Google Container Engine (GCE) to
its infrastructure, Amazon provides quick way to deploy containers on its EC2
cloud, and Microsoft added container support with windows server containers.
Containerization evolved to become de facto standard for microservices.

E. Serverless services: Since the services functionality is shrinking tomicrolevel, it
is not feasible to operate amachine or container for each service. In order to bring
down operational cost, the services are deployed on a server that runs the deploy-
ments with isolation. Services can take advantage of abstraction layer from the
infrastructure and developers can focus on the service functionality without
distracting into infrastructure, scalability, or security. The solutions developed
within a system for infrastructure, scalability, andother componentswill be avail-
able for all the services and the services take benefit from the common solution
in the system. Serverless services are referred in general as “Function as a Ser-
vice (FaaS)”. Though we call it serverless services, the services are served from
a common server for all services in the system. Amazon offers serverless ser-
vices platform on AWS Lambda, Google Cloud Functions, andMicrosoft Azure
Functions. The services developed for a platform will be based on the modules
offered by the platform, and thus it is burdensome to move a service from one
platform to another. Such a lock into a platform denounces one of the funda-
mental properties of webservices. Serverless computing is rapidly evolving and
it could be possible to have a standardization to ease service movements.

Over the years, webservices went through revolutionary transformations and have
been evolving steadily.

5 Challenges in WSDP

Though webservices approach solves many development process problems, there
exist scenarios where webservices do not fare well. At times, adopting webservices
incur challenges over course of development process. Some of the challenges are
listed as follows:

Webservices Engineering 191

1. In case of applicationswith tightly coupled functional units, decoupling become
difficult and could end up with nonuniform services. An application devel-
opment is seamless when the application is divided into several services of
nearly equal development resource requirements. Such nearly symmetric divi-
sion helps in scheduling continuous integration and delivery. It is not always
possible to divide services uniformly, but recommended to dedicate best effort
toward the uniformity.

2. There are two types of decompositions possible and each of them comes with
pros and cons. One of them is “Verb-based” in which each service is a customer
use case. Other type is “Noun-based” where a service represents an entity and
associated with all operation on the entity. Based on the application, one can
choose either or both the mechanisms.

3. A number of webservices grow in an organization over time and monitoring all
the services is burdensome. Webservices are typically committed to always-on
SLA, and supposed to be available at all times. Such a concrete agreementmakes
the development process to consider quality testing toward the availability in
addition to functional and performance testing. Besides testing, themaintenance
of the service also impacts the development life cycle.

4. A webservice can consume one or more other services in the application and
thus the services has to agree on the way they exchange information. The devel-
opment teams have to communicate on regular basis to comply with the agree-
ments. A team responsible for a webservice has to bring in all of its consuming
webservices to update them on the changes planning in the service so that the
other services reshape their service accordingly. The meetings to bring in teams
on regular basis is taxing in development process and could slow down the
process given the meetings could change the course of the webservice.

5. The cost of running more than one service is resource consuming compared
to monolithic application. As each service runs independently in an isolated
environment, altogether consume more resources than a monolithic system.
Such high up-front cost is not desirable for smaller scale industry but can benefit
the team to scale as they grow.

6. Performance is one of the hurting challenges. Since services are itself consum-
ing one or more other services and thus moving data, computing control from
one service to other to increase latency in the overall service response. It is
also possible that a service in the application could be bottleneck and impact
the services that depend on it. In addition to data movement across services,
while moving data from one service to another there are possible data trans-
formations happening before and after the service send and receives data. Such
transformations again incur resource consuming and reduce performance of
services.

7. Since a webservice is focused on serving a very minimal functional unit of the
application, it is not possible to embed security features into the webservices
development and so webservices are prone to vulnerabilities. The webservices
have to be secured to enable interservice communicationflawlessly and typically

192 V. S. Martha and M. Lenglart

security is another service in the application consumed by other services for
secured services.

8. Debugging become harder, as any service can be a point of failure. If a software
fail to behave like expected, any of the dependent service can potentially be the
root cause of a bug. Just understanding where a problem comes from became a
really challenging task.

9. Each service can potentially be developed in a different language with different
frameworks and different code styles. It can tie a developer or a team of devel-
opers to a particular service and limit their knowledge and understanding of the
overall architecture.

10. Each team is contained to one or a few number of services. It then becomes
really challenging to build a feature that will require the need of modifying
multiple services across a company.

6 Case Study

Webservices became de facto standard in software industry and many organizations
ranging from small to large scale are incorporating webservices into systems. A bite
from some organization known to author discussed in this section to construe the
webservice development process. Author is no way soliciting for the organizations
chosen in this discussion but calling out the experiences in the organizations to study
the webservices.

Google
Google has been providing wide range of services for the better human living. The
services range from navigation to weather, humanitarian assistance to business pro-
cess, and marketing to e-commerce. Though some Google services incur cost, there
are plenty of services that are available at no cost for noncommercial use. Not just
its partners but many individuals have been developing many applications based on
Google’s webservices. Such applications consume the always-on services provided
by Google to deliver the applications’ goals. It is not uncommon to keep under the
carpet the details of the service implementation and Google owns responsibly of the
services all by itself. Given such an independence to services, Google can enhance
a service with nearly no dependence on its consumers or consumer goals.

On the other hand, an application depending on a service may need a plan to
integrate the service into its development process. Typically, Google services follow
REST interface for its services where each service is treated as a web resource. A
service is associated with a web URI through which a consumer requests a service.
Google server responds to a requested URI with a response respective to the param-
eters passed in addition to the URI. Google webservices support many platforms
and various programming interfaces. The way an application interacts with a Google
webservice may differentiate the development process.

Webservices Engineering 193

From the initial product idea, a product manager prepares requirements docu-
ments, often times the requirements is a mockup. The features in the mockup are
divided into several pieces, call it services.Most of the times existingGoogle services
can satisfy the requirements and very few new services needed to be implemented.
An engineering team, including a team lead, is assigned to each new service to be
implemented and plan the service development to achieve the given requirements.
The engineering team is of very small size, about 3–10 engineers, and the service
assigned to them to be small enough for the team to deliver at stipulated time inter-
vals. There will not be a release deadline for the product while each service develops
at its own pace and delivers at custom timelines. At high level, the product manager
meets with a team representative, usually called team lead, from each service on
regular basis to review the goals. It is not unusual to modify the goals of a service in
such review meetings and such scenarios put the development of the specific service
incur critical issues. At times, the service with new goals is to be started on from the
scratch by winding the progress at the time point. Such a massive overturn of the
service may not impact the overall product development, it is possible because of
agility of the service-based development process.

Unlike agile development, services (features) in Google are released incremen-
tally. As long as the service does not meet the minimum viable feature request in
the product, the service is put under a flag to hide the feature from customers. The
process similar to circular train, in which you fill bogie of a train at your stop on
regular interval, and the bogie spun out to attach to a train with a destination when
the bogie is full. Similarly, the service is released incrementally at regular intervals
and the product carries the feature under a flag until it is ready for the customers
to consume. Once the service is a full-fledged feature, the flag is lifted out to make
it available for consumers. A product release goes on scheduled time despite some
of the features/services that are not ready. The services that could not make it into
a release will be scheduled as part of the subsequent release. In summary, Google
believes in “Release Early, Release Often” strategy.

Such a process helps to continuously deliver new features into the product and
keeps engineering team’s focus on specific goals despite the gigantic product in
whole. There is a long “feature freeze” period for testing, translation, and stabi-
lization of a service. The release team makes a release every time period, typically
6 weeks, and then the development team just keeps progressing the development
process (Fig. 5).

In this process, there are three live versions of the software at any given time—the
production release, the QA version that is in stabilization, and the development ver-
sion.Operations teamsfind it cumbersome to have three completely separate environ-
ments with databases, etc. (development, QA, and production) for each webservice.
For the reason, Google started utilizing lightweight virtualization mechanism called
containerization. Each webservice can be contained with its specific environment
configuration. Popular Google services such as Gmail, Search, Apps, and Maps run
inside containers. Google, which deals with more than 2 billion containers per week.
That is a lot of containers to manage without automation tools. Google has been
building several software packages to deal with such containers at billions in num-

194 V. S. Martha and M. Lenglart

Fig. 5 Webservices development process in Google

ber. One of the first tools that Google released to for public availability is called
“Kubernetes”.

In summary, Google has been investing resources to facilitate services develop-
ment with nominal effort, also moving toward microservices approach. The services
are being made into completely independent including platform, data, etc. By lever-
aging service-based development process, Google has been able to optimize resource
utilization and continuously deliver at faster pace.

Amazon
Amazon is the leader in offering a variety of webservices, and the services include
software, platform, infrastructure, application, etc. Elastic Computing (EC2) web-
service is an example of Amazon Web Services (AWS) to offer infrastructure as a
service (IaaS). Amazon offers more than 70 products, can be called services, by the
time of thewriting this chapter, nearly all of themare cloud-based enterprise solutions
including computing, networking, storage, analytics, operations, and security. Apart
from AWS, Amazon offers many other webservices internally as well as publicly
and follows strategic approach to manage the development of all the webservices at
the organization level.

Until Amazon officially launched AWS in 2006, it is an e-commerce company
offering online store for retail including books. AWS borrowed lot of learnings from
the development of its e-commerce application. Adopting webservices architecture
is one of the lessons that AWS imported. Amazon had to take an orthogonal shift in its

Webservices Engineering 195

development process in 2001 to migrate from its monolithic system to service-based
approach. “a seniormanager for productmanagement” stated the laboriousmigration
process as “We went through the code and pulled out functional units that served a
single purpose and wrapped those with a webservice interface. We then established
a rule, that from now on, they can only talk to each other through their webser-
vice APIs.” (http://thenewstack.io/led-amazon-microservices-architecture/) (http://
thenewstack.io/springone-2gx-conference-managing-migrating-monoliths-mud/).

Not just moving functional units into a webservice, but are made independent
from each other. Such independence benefitted organization to delegate ownership
of each service to an engineering team and iterate independent from each other. Over
time the functional units in webservices turned into features of the application and
an engineering team for a feature. An engineering team owns a feature end-to-end
starting from drawing a roadmap to deployment and maintenance.

Witnessing the efficiency from service-oriented approach, Amazon later consis-
tently followed the same process across its organization for every application it has
been building. Amazon flourished the number of services at scale of hundreds. In
addition to adopting the service-oriented approach, Amazon standardized organi-
zational structure within the organization and later many companies adopted the
approach. 2-Pizza team and flat engineering teams are some of the popular standards
practiced in Amazon and well known in the industry.

Walmart
Until 2012, the Walmart’s Global e-commerce system was a monolithic application,
deployed once every cycle, nearly 2 months period. Such a long development and
release cycle accounts for an unsustainable rate of innovation in comparison with
the fast-moving technological advancements. Learnt hard way from the incompe-
tent development and maintenance process, Walmart chartered resources to reno-
vate their software system to support cutting-edge technologies and help their busi-
ness grow. Such initiative evolved into a massive “Pangeae” project that transforms
nearly every functionality in their system into microservices [http://www.oneops.
com/ 01/21/2017]. Through the efforts from the Pangaea paved the way, Walmart’s
e-commerce site was rebuilt in service-oriented architecture. The objective of the
Pangaea is to prepare for e-commerce business for 2020, with 4 billion people con-
nected, 25+million apps available, and 5.200 GB of data for each person on Earth.

Further, the Pangaea project is stimulated by acquiring “OneOps” to enable engi-
neering teams an agile, cost-effective, flexible application life cycle management
solution in a cloud. OneOps is a cloud management and application life cycle man-
agement platform that developers offer to both develop and launch new products
faster, and to easily maintain them throughout their entire life cycle. It was a key to
enable the project Pangaea, giving the required autonomy for developers and teams
allowing them to independently do releases and updates with a minimum amount
of effort and little dependency from Ops. Through OneOps, Walmart optimized the
process to deploy and maintain microservices in an infrastructure. Walmart scaled
the process and now on a typical day it accomplishes over 1,000 deployments, exe-

http://thenewstack.io/led-amazon-microservices-architecture/
http://thenewstack.io/springone-2gx-conference-managing-migrating-monoliths-mud/
http://www.oneops.com/

196 V. S. Martha and M. Lenglart

cuted on-demand by development teams, each taking only minutes on average to
complete.

7 Final Words

Aswebservices are becoming de facto adaptation in nearly all organizations, there has
been little research put into standardizing the development process for webservices.
An optimized process increases the benefits to reap from the webservices approach,
and this chapter attempts to establish such process.Webservices development process
borrows many concepts from agile software development process and injects what
is needed in specific to webservices. Not just challenges in webservices, but the new
advancements in webservices should be addressed effectively in the development
process and some of them are discussed in the chapter as well.

References

1. Web Services Architecture, W3CWorking Group Note 11 February 2004 https://www.w3.org/
TR/ws-arch/#id2260892

2. http://www.ibmsystemsmag.com/Blogs/IT-Trendz/September-2015/Microservices-and-the-
Development-Lifecycle/

3. https://www.youtube.com/watch?v=SPGCdziXlHU
4. http://cdn.oreillystatic.com/en/assets/1/event/164/The%20full%20life-cycle%20of%20a%

20microservice_%20How%20to%20realize%20a%20fault-tolerant%20and%20reliable%
20architecture%20and%20deliver%20it%20as%20a%20Docker%20container%20or%
20in%20a%20cloud%20environment%20Presentation.pdf

5. http://3gamma.com/insights/architecting-speed-agile-innovators-accelerate-growth-
microservices/

6. https://opencredo.com/versioning-a-microservice-system-with-git/
7. http://www.pwc.com/us/en/technology-forecast/2014/cloud-computing/features/

microservices.html
8. http://ceur-ws.org/Vol-243/SMR2-2007-paper7.pdf
9. https://hbr.org/2014/07/speed-up-your-product-development-without-losing-control
10. http://www.slideshare.net/StefanIanta/googleuberservices-servica
11. http://agileconsortium.pbworks.com/w/page/f/XR7+mstriebeck-ShtAddingProcess.pdf
12. http://evelynrodriguez.typepad.com/crossroads_dispatches/files/GoogleProductDevProcess.

pdf
13. https://www.oasis-open.org/committees/download.php/13420/fwsi-im-1.0-guidlines-doc-wd-

publicReviewDraft.htm#_Toc105485430

https://www.w3.org/TR/ws-arch/#id2260892
http://www.ibmsystemsmag.com/Blogs/IT-Trendz/September-2015/Microservices-and-the-Development-Lifecycle/
https://www.youtube.com/watch?v=SPGCdziXlHU
http://cdn.oreillystatic.com/en/assets/1/event/164/The%20full%20life-cycle%20of%20a%20microservice_%20How%20to%20realize%20a%20fault-tolerant%20and%20reliable%20architecture%20and%20deliver%20it%20as%20a%20Docker%20container%20or%20in%20a%20cloud%20environment%20Presentation.pdf
http://3gamma.com/insights/architecting-speed-agile-innovators-accelerate-growth-microservices/
https://opencredo.com/versioning-a-microservice-system-with-git/
http://www.pwc.com/us/en/technology-forecast/2014/cloud-computing/features/microservices.html
http://ceur-ws.org/Vol-243/SMR2-2007-paper7.pdf
https://hbr.org/2014/07/speed-up-your-product-development-without-losing-control
http://www.slideshare.net/StefanIanta/googleuberservices-servica
http://agileconsortium.pbworks.com/w/page/f/XR7%2bmstriebeck-ShtAddingProcess.pdf
http://evelynrodriguez.typepad.com/crossroads_dispatches/files/GoogleProductDevProcess.pdf
https://www.oasis-open.org/committees/download.php/13420/fwsi-im-1.0-guidlines-doc-wd-publicReviewDraft.htm#_Toc105485430

	Preface
	Acknowledgements
	About This Book
	Contents
	About the Editors
	Service Modelling and Verification: A Formal Approach
	1 Introduction
	2 Modelling of Webservices
	2.1 UML-Based Approach
	2.2 Petrinet-Based Approach
	2.3 State-Machine-Based Approach

	3 Webservice Verification
	4 Conclusion
	References

	Webservice Specification and Discovery
	1 Introduction
	2 Webservice Specification Standards
	3 Service Discovery: A Bird’s View
	3.1 Web Search
	3.2 Directory Search
	3.3 Service Search Classification

	4 Service Search Techniques
	4.1 Information Retrieval Approach
	4.2 Interface Match Approach

	5 Conclusion
	References

	Non-functional Properties of a Webservice
	1 Introduction
	2 Architecture of SOA
	3 Non-functional Properties
	3.1 Categories of NFPs

	4 Extensions for Specification
	4.1 Web Service Definition Language
	4.2 Extensions to WSDL

	5 Extensions for Discovery
	5.1 Universal Description Discovery and Integration
	5.2 Extensions to UDDI
	5.3 Specification Using Semantics
	5.4 Peer-to-Peer Systems
	5.5 Agent/Broker-Based Systems

	6 Specifications of NFPs in a Composition
	6.1 Static Composition
	6.2 Dynamic Composition

	7 Conclusion
	References

	Service Composition
	1 Introduction
	2 Overview of Service Composition
	2.1 Steps in a Service Composition
	2.2 Static Versus Dynamic Composition
	2.3 Manual, Semi-automated, and Automated Composition
	2.4 Composition as a Planning Problem

	3 Input/Output Parameter Based Service Composition
	3.1 Graph-Based Service Composition Techniques

	4 RDBMS-Based Service Composition Techniques
	4.1 Relational Databases for Service Composition

	5 Object-Relational Databases for Service Composition
	5.1 Service Matches and Service Composition Types
	5.2 Service Composition

	6 Conclusion
	References

	Handling Faults in Composite Webservices
	1 Introduction to Webservices
	1.1 Types of Composite Services

	2 Faults and Their Handling in Webservices
	3 Transient Fault Handling Strategies for Webservices
	3.1 Backward Recovery
	3.2 Forward Recovery

	4 Checkpointing and Recovery
	4.1 Applicability of Distributed Checkpointing Techniques to Webservices
	4.2 Checkpointing Webservices
	4.3 Comparison

	5 Substitution
	6 Redundancy
	7 Conclusion
	References

	Webservice Security
	1 Introduction
	1.1 Webservices Description
	1.2 Classification
	1.3 Webservice Message Exchange Patterns

	2 Security Fundamentals
	3 Security Solutions, Mechanisms and Countermeasures
	4 Other Security Frameworks
	5 An Overview of Oracle Web Services Management (OWSM)
	6 Conclusion
	References

	Webservices Engineering
	1 Introduction
	2 Challenges in Engineering Webservices
	2.1 Service Registration
	2.2 Service Binding
	2.3 Service Composition
	2.4 Integrity of Services
	2.5 Governance
	2.6 Availability and Performance
	2.7 Security

	3 Software Development Life Cycle for Webservices (WSDLC)
	3.1 Requirements
	3.2 Design and Architecture
	3.3 Webservices Development

	4 Advanced Techniques in WSDLC
	5 Challenges in WSDP
	6 Case Study
	7 Final Words
	References

