
Chapter 2
Fixed Points of Some Real and Complex
Functions

This chapter highlights some fixed point theorems for certain real and complex
functions.

2.1 Fixed Points of Continuous Maps on Compact Intervals
of R

The following definitions are well-known.

Definition 2.1.1 Let f, g : X → Y be maps, X and Y being non-empty sets. An
element x0 ∈ X is called a coincidence point of f and g if f (x0) = g(x0). If f : X →
X is a map and if for some x0 ∈ X , f (x0) = x0, then x0 is called a fixed point (fix
point) of f . If f, g : X → X aremaps such that for some x0 ∈ X , x = f (x0) = g(x0),
then x0 is called a common fixed point of f and g.

Definition 2.1.2 Let f : X → X be a map on a non-void set X . The sequence
{ f n(x)} called the sequence of f iterates is defined recursively by : f 0(x) = x ,
f 1(x) = f (x), f n+1(x) = f ( f n(x)), n = 0, 1, 2, . . . ,. This sequence is called a
sequence of ( f ) iterates generated at x . We also call the set { f k(x) : k = 0, 1, 2, . . . }
the orbit of x under f and denote it by O f (x). f m(x) is called the mth iterate of f
at x .

Definition 2.1.3 For a map f : X → X , x0 ∈ X is called a periodic point of period
m if f m(x0) = x0 and f n(x0) �= x0 for n < m.

The classical intermediate value theorem for real functions due to Bolzano is
equivalent to Brouwer’s fixed point theorem for real functions on intervals of real
numbers. In a sense, Bolzano’s theorem can be viewed as the harbinger of fixed point
theory.
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Theorem 2.1.4 (Bolzano’s Intermediate Value Theorem) If g : [a, b] → R is a con-
tinuous function then for every real number r between g(a) and g(b), there is an
element c = c(r) between a and b such that g(c) = r .

Proof Without loss of generality, we can assume that g(a) �= g(b). Since g is contin-
uous, g[a, b] is a connected subset of R containing g(a) and g(b). Since connected
subsets ofR are intervals, the interval with g(a) and g(b) as endpoints is in the range
of g. Hence if r lies between g(a) and g(b), there is an element c = c(r) between a
and b such that g(c) = r . �

As an immediate consequence, we have

Theorem 2.1.5 (Brouwer’s fixed point theorem in R) If f : [a, b] → [a, b] is a
continuous function, then f has a fixed point.

Proof If f (a) = a or f (b) = b, then the theorem is true. So without loss of gen-
erality we assume that f (a) �= a and f (b) �= b. Since function g : [a, b] → R

defined by g(x) = f (x) − x is continuous on [a, b] and g(a) = f (a) − a > 0 and
g(b) = f (b) − b < 0 (as f (a), f (b) ∈ (a, b)) by Theorem 2.1.4, there is a point
c ∈ [a, b] such that g(c) = 0 ∈ [g(b), g(a)]. Thus c is a fixed point of f . �

Remark 2.1.6 The above fixed point theorem, a consequence of the intermediate
value theorem, is indeed equivalent to this theorem.

Let g : [a, b] → R be continuous.Without loss of generality let g(a) < r < g(b).
Define the map f : [−1, 1] → [−1, 1] by

f (t) = ρ

⎛
⎝t −

{r − g
(

(1−t)a
2 + (1+t)b

2

)

g(b) − g(a)

⎞
⎠

where ρ(x) = −1 for x < −1 and ρ(x) = 1 for x > 1 and ρ(x) = x for other real
numbers. Since g is continuous and ρ is continuous onR, clearly f is continuous and
maps [−1, 1] into itself. SobyTheorem2.1.5, f has afixedpoint t0 ∈ [−1, 1]. Further
t0 is neither −1 nor 1 and −1 < t0 < 1. So t0 = f (t0) = t0 −

{
r−g
{

(1−t0)a
2 + (1+t0)b

2

}

g(b)−g(a)

}
.

Hence r = g
(

(1−t0)a
2 + (1+t0)b

2

)
. In short, g has the intermediate value property.

The following is another useful fixed point theorem.

Theorem 2.1.7 Let f : [a, b] → R be a continuous map such that f [a, b] ⊇ [a, b].
Then f has a fixed point.

Proof Since f [a, b] ⊇ [a, b], [a, b] = [ f (c), f (d)] for some interval with end
points c and d lying [a, b]. If c ≤ d, then f (c) ≤ a ≤ c ≤ d ≤ b ≤ f (d). Thus
f (x) − x changes sign in [c, d] and hence by Theorem 2.1.4 has a zero, which is a
fixed point of f . If c ≥ d, then f (d) ≤ d ≤ c ≤ f (c). Thus again f (x) − x changes
sign in [d, c] and so has a fixed point. �
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Remark 2.1.8 Theorem 2.1.4 is not true if the interval is not compact. the map x →
x + 1 is continuous but has no fixed point in (−∞,∞) or [0,∞). The continuous
map x → 1+x

2 on [0, 1) has no fixed point in [0, 1). Theorem 2.1.4 fails even if f is
continuous everywhere on [a, b] except at a single point. For instance f : [0, 1] →
[0, 1] defined by

f (x) =
{

x
2 , x �= 0

1, x = 0

has no fixed point, and x = 0 is the only point of discontinuity of f .

Remark 2.1.9 Ff , the set of fixed points of a continuous map on [a, b] is closed.
Indeed Ff = {x ∈ [a, b] : f (x) = x} = g−1(0) where g : [a, b] → R is defined by
g(x) = f (x) − x . Since {0} is a closed set and g is continuous g−1{0} is a closed
subset. So Ff is a closed subset of [a, b] ([a, b] being compact, Ff is also compact).

Remark 2.1.10 Indeed we can prove that for each closed subset F of [0, 1] there
is a continuous map f : [0, 1] → [0, 1] for which F is the set of fixed points of
f . For proving this we can, without loss of generality, assume that 0, 1 ∈ F . So
[0, 1] − F = G is open and is a countable union of disjoint open intervals (ai , bi ),
i ∈ N. Now we consider the case when this collection is countably infinite, leaving
the case of finite collection as an exercise.

For n ∈ N define fn : [0, 1] → [0, 1] by

fn(x) =

⎧⎪⎨
⎪⎩

x, x ∈ F ∪⋃∞
i=n(ai , bi ),

ai , if x ∈ [ai , ai+bi
2

]
for i < n,

2x − bi , if x ∈ [ ai+bi
2 , bi

]
for i < n.

It can be seen that the sequence of continuous functions ( fn) converges uniformly to
a continuous function f for which f (x) = x when x ∈ F and f (x) �= x if x /∈ F .
In fact, the result is true for any non-empty closed subset of R.

2.2 Iterates of Real Functions

In this section, some theorems on the behaviour of iterates of real functions are
discussed. First, Krasnoselskii’s theorem on the convergence of special iterates of
non-expansive maps of [a, b], following Bailey’s [2] proof using elementary prop-
erties of subsequential limits is discussed in detail. Theorems 2.2.6–2.2.8 detail the
rates of convergence of iterates of special class of functions and are due to Thron
[30].

Theorem 2.2.1 (Krasnoselskii [20], Bailey [2]) Let f : I (= [a, b]) → I be a map
such that | f (x) − f (y)| ≤ |x − y| for all x, y ∈ I . For any x ∈ I , the sequence (xn)
defined recursively by xn+1 = 1

2 (xn + f (xn)), n = 1, 2, . . . , converges to some fixed
point of f .
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Proof Suppose that (xn) does not converge to a fixed point. We show that this leads
to a contradiction. To this end, the proof is divided into several steps.

Step I. If (xn) converges to z ∈ I , then (xn+1) also converges to z. As xn+1 =
1
2 (xn + f (xn)), and f is continuous, xn+1 converges to

f (z)+z
2 . So z = f (z).

Step II. No subsequence of (xn) converges to a fixed point of f . For, if (xni ) converges
to z and f (z) = z, then |z − xni+1| ≤ |z − 1

2 (xni + f (xni )| ≤ 1
2 |z − xni | + 1

2 | f (z) −
f (xni )| (as z = 1

2 (z + f (z))) ≤ |z − xni | (since | f (x) − f (y)| ≤ |x − y|). This
shows that (xn) itself converges to z, a fixed point of f , contradicting our assumption
that (xn) does not converge to a fixed point of f .

Step III. Since (xn) lies in the compact interval I = [a, b], it has a subsequential limit
p for which f (p) > p. Otherwise for all subsequential limits p of (xn), f (p) ≤ p.
Let z be the infimum of all subsequential limits. Then z itself is a subsequential limit
of (xn). So f (z) ≤ z. If f (z) < z, then f (z) < 1

2 ( f (z) + z) < z and 1
2 ( f (z) + z)

is a subsequential limit of (xn) smaller than z, the smallest subsequential limit of
(xn), we get a contradiction, unless f (z) = z. But by Step II above, f (z) cannot be
z. Thus, there is a subsequential limit p of (xn) for which f (p) > p.

Step IV. By Step II, there exists ε > 0 such that | f (x) − x | ≥ ε for all subsequential
limits x of (xn). Otherwise, there is a sequence (wn) of subsequential limits of (xn)
with |wn − f (wn)| < 1

n for all n. This in turn implies that any subsequential limit
of (wn), which is also a subsequential limit of (xn) is a fixed point of f , contrary to
Step II.

Step V. Let w be the largest subsequential limit of (xn) such that f (w) > w so
f (w) > Q = 1

2 ( f (w) + w) > w. Since Q is a subsequential limit exceeding w,
f (Q) < Q.
By Step IV, there is the least subsequential limit R of (xn) such that f (R) < R

and w < R < f (w) (at least Q satisfies these conditions). Now f (R) < w.
Otherwise for A = 1

2 [R + f (R)], w < A < R. If f (R) ≥ w, then A = 1
2 (R +

f (R)) ≥ 1
2 (R + w) > 1

2 (w + w) = w and A = 1
2 (R + f (R)) < 1

2 (R + R) = R.
Since A is a subsequential limit greater than w, the largest subsequential limit less
than f (w), f (A) ≤ A. As A < R and R is the least subsequential limit with f (R) <

R, A ≤ f (A). Hence A = f (A) and this contradicts our assumption that no subse-
quential limit can be a fixed point of f . Hence f (R) < w. Consequently f (R) <

w < R < f (w) and |w − R| = R − w < | f (R) − f (w)| = f (w) − f (R). This is
a contradiction to the assumption on the map f that | f (x) − f (y)| ≤ |x − y| for all
x, y ∈ I . Hence (xn) converges to a fixed point of f . �

Remark 2.2.2 However, for any continuous map of I into itself, the sequence of iter-
ates defined in Theorem 2.2.1 may not converge. Let f : [0, 1] → [0, 1] be defined
by
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f (x) =

⎧⎪⎨
⎪⎩

3
4 for 0 ≤ x ≤ 1

4

3
(
1
2 − x
)

for 1
4 < x ≤ 1

2

0 for 1
2 ≤ x ≤ 1.

Clearly x = 3
8 is a fixed point of f . For x1 = 1

4 , x2 = 1
2 (x1 + f (x1) = 1

2 , x3 =
1
2 (x2 + f (x2)) = 1

4 and so on. This shows that xn does not converge.

In this context, the following result due to Cohen and Hachigian [10] is pertinent.

Theorem 2.2.3 Let f : [−1, 1] → [−1, 1] be a continuous map such that f (−1) =
−1 and f (1) = 1. Then for each m = 0, 1, 2, . . . , ‖ f m+1 − I‖ ≥ ‖ f m − I‖. Here I
denotes the identity map and ‖g‖ = sup{|g(x)| : x ∈ [−1, 1]) for any g ∈ C[−1, 1].
Proof If f ≡ I , the conclusion is obvious. So suppose that f �= I . Let F = {x ∈
[−1, 1] : f (x) = x}. Since F is closed, the complement of F is open and so can be
written as a disjoint union of open subintervals Sα of [−1, 1]. For x ∈ Sα , f (x) <

x or f (x) > x . Clearly the conclusion is true for m = 0. Suppose the inequality
‖ f k+1 − I‖ ≥ ‖ f k − I‖ is true for k = 1, 2, . . . ,m. As [−1, 1] is compact and f m

is continuous, there exists p in [−1, 1] such that | f m(p) − p| = ‖ f m − I‖.
Suppose without loss of generality f m(p) > p. We claim that f (p) > p. Clearly

f (p) �= p. If f (p) < p, then for q = f (p),

‖ f m−1 − I‖ ≥ | f m−1(q) − q| = | f m(p) − q|
= f m(p) − q (as q < p < f m(p))

> f m(p) − p = ‖ f m − I‖.

As this is a contradiction f (p) > p. Let p ∈ Sα = (a, b). So for x ∈ Sα , f (x) > x .
As a, b /∈ Sα , a = f (a) < p < b = f (b). So by the intermediate value property of
the continuous function f , there exists r ∈ Sα with f (r) = p. Since f (x) > x in Sα

and r ∈ Sα , f (r) = p > r . Now

‖ f m+1 − I‖ > | f m+1(r) − r | = f m(p) − r

> f m(p) − p = ‖ f m − I‖.

Thus for f different from I , the identity map

‖ f m+1 − I‖ ≥ ‖ f m − I‖,m = 0, 1, 2, . . . . �

Cohen and Hachigian [10] have constructed an example of a continuous self-map
on the closed unit disc for which every point on the unit circle is a fixed point, with
the property that ‖I − f ‖ > ‖I − f k‖ for some iterate f k of f .

For special real functions Thron [30] had obtained some interesting results on
the rates of convergence of iterates. Some of these are relevant to the solution of
Schroder’s functional equation. They provide useful estimates in approximating fixed
points by iterates.
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Definition 2.2.4 Amap g : R → R is said to belong to the class H(a1, k) if for some
x0 > 0, 0 < g(x) < x for x ∈ (0, x0] and g(x) = a1x + xk+1h(x) for x ∈ [0, x0]
where 0 ≤ a1 ≤ 1, k is a positive number and k is a continuous function on [0, x0]
with |h(x)| < M in [0, x0].
Remark 2.2.5 Clearly for g ∈ H(a, k), 0 is the unique fixed point of g and every
sequence (xn) of g-iterates defined by xn+1 = g(xn), n ∈ N and x1 ∈ (0, x0] con-
verges to 0.

Theorem 2.2.6 Let g ∈ H(a1, k) where 0 < a1 < 1. Then for the sequence (xn) of
g-iterates, there exists a constant K1(g, x) such that

lim
n→∞

xn
an1

= K1

Proof From the definition of g and xn+1

xn+1

xn
= a1xn + xk+1

n h(xn)

xn
= a1 + xknh(xn)

As (xn) decreases to zero, there exists x0 ∈ N such that for x ≥ n0

0 < xknM <
1 − a1

2

Sor xn+1

xn
< 1+a1

2 < 1. Hence
∑

xn and
∑

xknh(xn) converge. So, the infinite product
∞∏
n=1

(
1 + xknh(xn)

a1

)
converges to a number L (say). Writing un = xn

an1
it follows that

un+1

un
= xn+1

a1xn
=
(
1 + xkn h(xn)

a

)
.

Since un+1 = u1

n∏
m=1

(
1 + xkmh(xm)

a1

)
, un+1 converges to u1L . Hence un = xn

an1

converges to u1L (= K1(g, x1)). �
Theorem 2.2.7 If g ∈ H(a1, k) for a1 = 0 and (xn) is the sequence of iterates gen-
erated at x1 ∈ (0, x0], then there is a constant K2(g, x1) with 0 < K2 < 1 such that
0 < xn < K (k+1)n

2 for all n after some stage. If additionally lim inf
x→0

h(x) > 0, then

for some K3(g, x1) with 0 < K3 < 1, lim
x→∞ x (k+1)−n

n = K3.

Proof Since a1 = 0 and xn+1 = xk+1
n h(xn), log xn+1 = (k + 1) log xn + log h(xn).

Define vn = (k + 1)−n log xn . We obtain for n ≥ n0

vn+1 = vn + (k + 1)−(n+1) log h(xn)

= vn0 +
n∑

m=n0

(k + 1)−(m+1) log h(xm). (2.2.1)
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If lim
x→0

inf h(x) > 0, then
∞∑

m=n0

(k + 1)−(m+1) log h(xm) converges to a number

K3(g, x1) − vn0 , say. So (vn) converges to log K3 as n → ∞ or lim
n→∞(xn)

(k+1)−n =
K3.

Suppose 0 < h(x) < M and that log h(xn) could approach −∞ so that the series
(2.2.1) might not converge. Nevertheless, we have from (2.2.1)

vn+1 <

n∑
m=n0

(k + 1)−(m+1) logM + (k + 1)−n0 log xn0

= logM(k + 1)−(n0+1)

[
1 − (k + 1)−n+n0+1

1 − (k + 1)−1

]
+ (k + 1)−(n0+1) log xk+1

n0

(2.2.2)

If logM < 0, choosing x0 such that xn0 < 1, we get from (2.2.2)

vn < (k + 1)−(n0+1) logM < 0. (2.2.3)

If logM ≥ 0, (2.2.2) gives

vn < (k + 1)−(n0+1) log
(
M

1+k
k xk+1

n0

)
. (2.2.4)

For large n0, the right-hand side of (2.2.3) or (2.2.4) as the case may be is negative
and is set as log K2(g, x1).

Now vn < log K2 for n ≥ n0. So 0 < xn < K (k+1)n

2 . �

Theorem 2.2.8 Let g ∈ H(a1, k) for a1 = 1. Then B1 = lim inf
x→0+

−h(x) ≥ 0, B2 =
lim sup
x→0+

−h(x) ≤ M. Given ε > 0 for the sequence (xn) of iterates in (0, x0] there
exists N (ε, g, x1) so that

xn > [(B2 + ε)kn]− 1
k for n > N .

If B1 > 0 and 0 < ε < B1, then for some N ′(ε, g, x1)

xn < [(B1 − ε)kn]− 1
k for n > N ′

Proof Since g(x) = x + xk+1h(x), g(x) < x and |h(x)| < M , 0 ≤ −h(x) < M
for x ∈ [0, x0]. Hence B1 ≥ 0 and B2 ≤ M . Writing −h(xn) = dn , xn+1 = xn +
xk+1
n h(xn) becomes, for k = 1

xn+1 = xn(1 − xndn)

and so
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1

xn+1
= 1

xn

1

(1 − xndn)
.

Choose n1(g, x1, ε) so that xndn < 1,
∞∑

m=2

dm
n x

m−1
n <

ε

3
and B1 − ε

3
< dn < B2 + ε

3
.

For n ≥ n1

1

xn+1
= 1

xn
+ dn +

∞∑
m=2

dm
n x

m−1
n (by Binomial theorem)

<
1

xn
+ B2 + 2ε

3
. (2.2.5)

So xn1+m >
1

m

(
B2 + 2ε

3

)
+ 1

xn1

.

So for n ≥ n1

xn >
1

n
[(
1 − n1

n

) (
B2 + 2ε

3

)+ 1
nxn1

]

>
1

n
[
B2 + 2ε

3 + 1
nxn1

]

Choose n′
1 ≥ n1 so that 1

nxn1
< ε

3 for n ≥ n′
1. So we have for n ≥ n′

1,

xn >
1

n(B2 + ε)
.

From (2.2.5) for n ≥ n1, we get

1

xn+1
>

1

xn
+ B1 − ε

3
.

So when B1 − ε > 0, for n > n1

1

xn
>

1

xn1
+ (n − n1)(B1 − ε) or

xn <
1

n
[(
1 − n1

n

)
(B1 − ε) + (nxn1)−1

] . (2.2.6)

Choose N ′ > n′
1 ≥ n1, such that for n > N ′,
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(
1 − n1

n

) (
B1 − ε

3

)
> B1 − ε.

So for n ≥ N ′, we get from (2.2.6)

xn <
1

n(B1 − ε)
.

For the case k �= 1, define wn = xkn then xn+1 = g(xn) = xn(1 + xknh(xn)). So

wn+1 =
[
g
(
w

1
k
n

)]k
= wn

[
1 + wnh

(
w

1
k
n

)]k

= wn[1 + wnh1(wn)].

Since [g(w 1
k
n )]k is a function of wn , say g1, it follows that g1(w) ∈ h1(1, 1) for 0 ≤

w ≤ w0 = xk0 . Also lim inf
w→0+

h1(w) = kB1, lim sup
w→0+

−h1(w) = kB2. The discussion

now reduces the case k �= 1 to the case k = 1 for g1 ∈ H(1, 1). It follows from the
previous discussion that for B1 > 0 and 0 < ε < B1, there exists N ′ ∈ N such that
for n > N ′

xn < [(B1 − ε)kn]− 1
k

and for ε > 0, there exists N0 ∈ N such that for n > N0,

xn > [(B2 + ε)kn]− 1
k .

�

Remark 2.2.9 Since g(x) = sin( x2 ) ∈ H( 12 , 2) in (0, 1), limn→∞(2nsinn(
x

2
)) converges

for each x ∈ (0, 1) by Theorem 2.2.6.

Remark 2.2.10 Theorem 2.2.7 can be applied to g(x) = sin(x1+ε) for any ε > 0 in
(0, 1) to conclude that for any sequence (xn) of iterates of sin(x1+ε), lim

n→∞(x (1+ε)−n

n )

converges.

2.3 Periodic Points of Continuous Real Functions

This section treats Sharkovsky’s theorem on the existence of periodic points of con-
tinuous self-maps on a compact interval I ⊆ R. Sharkovsky published a fundamental
paper [27] on the existence of periodic points of continuous self-maps on compact
intervals in 1964, when he was about 27 years old. He introduced a new (total) order
on the set of natural numbers, often called Sharkovsky order. Interestingly, if a con-
tinuous map has a periodic point of period m, in the compact interval I (which it
maps into itself) it has periodic points of all periods ‘bigger than’ m (with respect to
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this order). The smallest natural number in this order is 3 and so it turns out that if
a continuous function mapping [a, b] into itself has periodic point of period 3, then
it has periodic points of all periods. Another implication of Sharkovsky’s theorem is
that if such a map has an odd periodic point then it has periodic points of all even
periods.

The more remarkable feature of Sharkovsky’s theorem is that its proof is essen-
tially based on the ingenious applications of the intermediate value theorem. The
paper by Li and Yorke [21] in 1975 proving a special case of Sharkovsky’s theorem
as well as May’s paper [22] highlighted the complicated behaviour of iterates of
simple functions and brought to limelight Sharkovsky’s work. The ‘simple proof’ of
Sharkovsky’s theorem presented below is due to Bau-Sen Du [14].

In the following, we assume that f : I → I is a continuous map, where I is a
compact interval in R. The following total ordering in N, the set of natural numbers
is called Sharkovsky’s ordering ≺. m ≺ n in the following ordering:
3 ≺ 5 ≺ 7 ≺ · · · ≺ 2.3 ≺ 2.5 · · ·
≺ 22.3 ≺ 22.5 ≺ 22.7 ≺ · · · ≺ 23.3 ≺ 23.5 ≺ · · ·
≺ · · · ≺ 2n.3 ≺ 2n.5 ≺ · · ·
≺ · · · ≺ 23 ≺ 22 ≺ 2 ≺ 1

Sharkovsky’s theorem states that if f : I → I has anm-periodic point then f has
an n-periodic point precisely when m ≺ n.

Lemma 2.3.1 Let a and b be points of I such that either f (b) < a < b ≤ f (a) or
f (b) ≤ a < b < f (a). Then there exists z, a fixed point of f < b, a 2-periodic point
y of f with y < z and a point v in (y, z) with f (v) = b and

max{ f 2(v), y} < v < z < min{ f (y), f (v)}.

Further, f (x) > z and f 2(x) < x for y < x ≤ v.

Proof Whether f (b) < a < b ≤ f (a) or f (b) ≤ a < b < f (a), f (x) − x changes
sign in (a, b) and hence has a zero in (a, b). In other words, f has a fixed point z in
(a, b). As b ≤ f (a), a < z < b, and f (z) = z, there exists v ∈ [a, z)with f (v) = b.
If f (x) > z whenmin I ≤ x ≤ v, let u = min I ; otherwise let u = max{x : min I ≤
x ≤ v, f (x) = z}. Then f 2(u) ≥ u and f (x) > z for u < x ≤ v. Since f 2(v)(=
f (b)) ≤ a < v, f 2 has a fixed point in [u, v) or f has a 2 periodic point in [u, v).
If y is the largest 2-periodic point, then u ≤ y < v < z < f (y). Since f 2(v) < v,
f 2(x) < x for each x in (y, v]. �

Remark 2.3.2 Let P be a period-m orbit of f with m ≥ 3. Let p, b (p < b) be
points in P such that f (p) ≥ b and f (b) ≤ p. So f has a fixed point in [p, b]. Let
a ∈ [p, b) be such that f (a) = b. Since f (b) < a (< b = f (a)), the hypotheses of
Lemma 2.3.1 are satisfied. Also b, as a point in P , has least period m.

Theorem 2.3.3 If f has a periodic point of least period m with m ≥ 3 and odd then
f has periodic points with least period n for each odd integer n ≥ m.
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Proof Let P be a periodic orbit of f with period m. By Lemma 2.3.1 and Remark
2.3.2. f has a fixed point z, a 2-periodic point y and a point v with y < v < z < f (y)
such that f (v) lies in P and f (x) > z and f 2(x) < x when y < x ≤ v. Define
pm = v. As m is odd and y is a 2-periodic point of f , f m+2(y) = f (y) > y and
because f 2(pm)(= f 2(v)) is a period-m point of f , f m+2(pm) = f 2(pm) < pm .
So pm+2 = min{x : y ≤ x ≤ pm, f m+2(x) = x} is well-defined and is an (m + 2)
periodic point of f . Since f m+4(y) = f (y) > y and f m+4(pm+2) = f 2(pm+2) <

pm+2 (and it be noted that f 2(pm+2) cannot be pm+2). So pm+4 = min{x : y ≤ x ≤
pm+2, f m+4(x) = x} exists and is a periodic point of f with period (m + 4). Thus
proceeding, we obtain a decreasing sequence of points pm , pm+2, . . ., pm+2k , . . .with

y < · · · < pm+2k+2 < pm+2k < · · · < pm+2 < pm = v

such that pm+2k is a periodic point of f with period m + 2k (k = 1, 2, . . . ). �

Theorem 2.3.4 If f has a periodic point of least period m with m ≥ 3 and odd,
then f has periodic points of all even periods. Further, there exist disjoint closed
subintervals I0 and I1 of I such that f 2(I0) ∩ f 2(I1) ⊇ I0 ∪ I1.

Proof Let P be an m-orbit of P . By Lemma 2.3.1 and Remark 2.3.2, there is a fixed
point z of f , a 2-periodic point y of f and a point v such that f (v) = b ∈ P ,

max{ f 2(v), y} < v < z < b = f (v) = f m+1(v)

and f 2(x) < x and f (x) > z for x in (y, v]. Write g = f 2 and let z0 = min{t :
v ≤ t ≤ z, g(t) = t}. Then y and z0 are fixed points of g such that y < v <

z0 ≤ z < b = g
m+1
2 (v). Also g(x) < x and f (x) > z for y < x < z0. If g(x) <

z0 for min I ≤ x ≤ z0, then g([min I, z0]) ⊆ [min I, z0] and this contradicts that
g

m+1
2 (v) = b > z0. Hence d = max{x : min I ≤ x ≤ y, g(x) = z0} is well defined

and f (x) > z > z0 > g(x) for all x in (d, z0). Define s = min{g(x) : d ≤ x ≤ z0}.
If s ≥ d, then g([d, z0]) ⊆ [d, z0]. But this contradicts that g

m+1
2 (v) = b > z0.

So s < d, [s, d] ∪ [d, z0] are non-overlapping closed subintervals and f 2[s, d] ∩
f 2[d, z0] ⊇ [s, d] ∪ [d, z0]. Let ĝ : [d, z0] → [d, z0] be the map defined by ĝ(x) =
max{g(x), d}. Clearly, ĝ is continuous and onto and let t = min{x : d ≤ x ≤ z0,
g(x) = d}. For each n ∈ N, define cn = min{x : d ≤ x ≤ t, ĝ(x) = x}. It is not dif-
ficult to note that d < · · · < c4 < c3 < c2 < c1 ≤ y and that cn generates an n-period
orbit Qn ⊆ (d, z0) of ĝ. Clearly Qn is also an n-period orbit of g = f 2. Since
x < z0 ≤ z < f (x) for x in Qn , Qn ∪ f (Qn) is 2n-period orbit of f . Thus f has
periods of all even orders. �

Theorem 2.3.5 (Sharkovsky) Let f : I → I be a continuous map, where I is a
compact interval of real numbers. Then

(1) if f has a periodic point of period m and if m ≺ n (in the Sharkovsky order),
then f has also a periodic point of period n;

(2) for each positive integer n, there exists a continuous map g : I → I that has a
periodic point of period n but no point of period m ≺ n;
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(3) there is a continuous map h : I → I having a 2i -periodic point for 0, 1, 2, . . . ,
and has no other periodic point.

Proof If f has j-periodic point with j ≥ 3 and odd, then by Theorem 2.3.3 f has
( j + 2) periodic point and by Theorem 2.3.4, f has a periodic point of period (2.3).
If f has (2. j) periodic point with j ≥ 3, and odd, f 2 has j-periodic point. So by
Theorem 2.3.3, f 2 has ( j + 2) periodic point and so f has either ( j + 2) periodic
point or period 2( j + 2) points. If f has ( j + 2) periodic point, then by Theorem
2.3.4, f has 2( j + 2) periodic point. In any case f has 2( j + 2) periodic point. If f 2

has j-periodic point, by Theorem 2.3.4, f 2 has 2.3 periodic point. So f has (22.3)
periodic point. So if f has 2k . j periodic point, j ≥ 3 and odd and if k ≥ 2, then f 2

k−1

has period 2. j points. So from what we have proved, we see that f 2
k−1

has period
2( j + 2) points and period 22.3 points. It follows that f has period (2k .( j + 2))
points and period (2k+1.3) points, with j ≥ 3. If f has (2i . j) periodic points, j ≥ 3
and odd and if i ≥ 0, then f 2

i
has j-periodic point. For � ≥ i f 2

� = ( f 2
i
)2

�−i
has

period j points. So by Lemma 2.3.1, f 2
�

has period 2 points. So f has period 2�+1

points for � ≥ i . Finally when f has 2k-periodic points for some k ≥ 2, then f 2
k−2

has 4 periodic point. Again by Lemma 2.3.1 f 2
k−2

has 2 periodic points implying
that f has 2k−1 periodic points. Hence (1) is true.

For proving (2) and (3), without loss of generality, we can assume that I = [0, 1]
and T (x) = 1 − |2x − 1|, a map with a triangular graph having vertices at (0, 0),
( 12 , 1) and (1, 0). Then for each n ∈ N, T n(x) = x has exactly 2n distinct solutions
in I . So T has finitely many n-periodic orbits. Among these let Pn be an orbit
of the least diameter (= max Pn − min Pn). Define Tn on I by Tn(x) = max Pn , if
T (x) ≥ max Pn , Tn(x) = min Pn , if T (x) ≤ min Pn and Tn(x) = T (x) for min Pn ≤
T (x) ≤ max Pn . Clearly Tx is continuous on I and Tx has exactly one-period n orbit,
i.e. Pn but has no m-periodic orbit for any m ≺ n.

Let Q3 be any 3-periodic orbit of T of minimal diameter. Then [min Q3,max Q3]
contains finitely many 6-periodic orbits of T . If Q6 is one with smallest diameter,
then [min Q6,max Q6] contains finitely many 12-periodic orbits of T . We choose
one, say Q12 of minimal diameter and continue this process inductively. Define
q0 = sup{min Q2i .3 : i ≥ 0} and q1 = inf{max Q2i .3 : i ≥ 0}. Define T ′ : I → I by

T ′(x) =

⎧⎪⎨
⎪⎩

q0 if T (x) ≤ q0
q1 if T (x) ≥ q1
T (x) if q0 ≤ T (x) ≤ q1

. Clearly T ′ is continuous and has 2i -periodic

point for i = 0, 1, 2, . . . but has no other periodic point. Thus (2) and (3) are
true. �

Remark 2.3.6 Lemma 2.3.1 has interesting consequences. Let x0 ∈ I and n ≥ 2 be a
natural number such that f n(x0) < x0 < f (x0). Let X = { f k(x0) : 0 ≤ k ≤ n − 1}
(a finite set), a = max{x ∈ X : q0 ≤ x < f (x)}, and b ∈ {x ∈ X : a < x ≤ f (a)}
with f (b) < a. From these conditions on a, b, x0, f (x0) and X it is clear that f (b) <

a < b ≤ f (a). If f n(x0) ≤ x0 < f (x0) and n is odd (> 1) then f has n-periodic
points.
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If in addition O f (c) contains both a fixed point z and a point different from z, then
f has periodic points with all even periods. Arguments similar to those in Theorems
2.3.3 and 2.3.4 can be used.

Remark 2.3.7 Sharkovsky’s theorem cannot be generalized to continua (compact
connected subsets) of the plane. On the unit disc, the map z → ze

2π i
3 has 0 as the

only fixed point and all the other points are 3-periodic points. For each n ∈ N, the
map z → ze

2π i
n has only one fixed point and the rest of the points are n-periodic

points. No point of fundamental period greater than n exists.
Sharkovsky’s result is definitely and unalterably one-dimensional (See

Ciesielski and Pogoda [8].) Nevertheless, there has been appropriate generaliza-
tion of Sharkovsky’s theorem to general topological spaces and more general maps
than continuous functions. See Schirmer [25].

2.4 Common Fixed Points, Commutativity and Iterates

It is natural to find out if two continuous real functions f, g : I (= [a, b]) → I have
a common fixed point. The maps x → x

2 and x → 1 − x on [0, 1] have the only fixed
points 0 and 1

2 respectively. Since their compositions are 1−x
2 and 1 − x

2 , they do not
commute. If f, g : I → I have a common fixed point x0, then x = f (x0) = g(x0) =
g f (x0) = f g(x0) and thus f and g commute at least on {x0}. Ritt [24] showed that if
f and g are polynomials that commute, then they arewithin certain homeomorphisms
iterates of the same function, both power of x or bothmust beChebyshev polynomials
and in both these cases, the commuting polynomials have a common fixed point. So
Dyer conjectured that if f, g : I (= [a, b]) → I are continuous real functions that
commute, then f and g have a common fixed point. However, Boyce [5] and Huneke
[17] had disproved the conjecture independently by constructing counter-examples
to point out that commuting continuous self-maps on a compact real interval may not
have a common fixed point. Isbell [18] first recorded this problem in a more general
form.

This section discusses some results that ensure the existence of common fixed
points of two commuting continuous functions f, g : I → I under suitable additional
assumptions. We recall the following definitions.

Definition 2.4.1 Let F be a family of maps from a topological space X into a
metric space (X, d). It is said to be equicontinuous at x0 ∈ X , if for each ε > 0,
there exists an open set O in X containing x0 such that for each x ∈ O and f ∈ F ,
d( f (x0), f (x)) < ε.F is said to be equicontinuous on X , if it is equicontinuous at
each x ∈ X .

Definition 2.4.2 If f : X → X is a map, a subset A ⊆ X is said to be f -invariant
or invariant (under f ) if f (A) ⊆ A.

An elementary proposition on invariant subsets of continuous maps on compact
intervals is given below.
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Proposition 2.4.3 If f : I = [a, b] → I is a continuous map on the compact inter-
val I of real numbers, then every non-empty closed invariant subset C of I contains
a minimal closed invariant non-empty subset C ′.

Proof Let C be a non-empty closed invariant subset of I and C be the family of all
closed invariant subsets ofC . ClearlyC ⊂ C . LetF be a chain of sets inC . SinceF
is a subfamily of non-empty closed subsets ofC which are indeed compact subsets of
I , F0 = ∩{F : F ∈ F } is non-empty and compact. Further f (F0) ⊆ f (F) ⊆ F for
all F ∈ F and hence f (F0) ⊆ ∩{F : F ∈ F } = F0. Thus, F0 is an invariant closed
subset which is contained in each F ∈ F . Thus F0 is the least element of F in C .
So by Zorn’s Lemma, C has a minimal element C0, which is a non-empty minimal
closed invariant subset of C . �

Remark 2.4.4 Indeed if f : X → X is a continuous map of a compact connected
T2 space, then every non-empty closed invariant subset A of X contains a minimal
closed invariant subset of A.

Proposition 2.4.5 If Y is a minimal non-empty closed invariant subset of I a
compact interval of R, then for y ∈ Y , Y = O f (y) where O f (y) = { f n(y) : n =
0, 1, 2, . . . } is the orbit of y, under f .

Proof If y ∈ Y , then O f (y) ⊆ Y as f (Y ) ⊆ Y . Since Y is closed, O f (y) ⊆ Y . Now
by the continuity of f , O f (y) ⊆ Y . By the minimality of Y , Y ⊆ O f (y). So Y =
O f (y). �

Theorem 2.4.6 (Schwartz [26]) Every non-void closed invariant minimal subset of
the continuous function f : I → I is contained in the closure of Pf , where Pf =
{x ∈ I : f k(x) = x for some k ∈ N}, the set of periodic points of f .
Proof Let Y be a non-empty minimal closed invariant subset of I . If Y is the orbit
of a periodic point, obviously it is finite and closed and the conclusion is true.

Suppose Y is not a periodic orbit. Let c = inf Y . As Y is closed, c ∈ Y . As Y is
minimal closed invariant subset, by Proposition 2.4.5, Y = O f (c). So given ε > 0,
we can find k ∈ N with |y − f k(c)| < ε

2 . Also we can find M, N ∈ N such that
c < f N+M(c) < f N (c) < c + ε′, as c = inf Y = O f (c). As Y is minimal and is
not a periodic orbit, f M(c) > c. Thus, the continuous map f M maps [c, f N (c)] into
itself and so has a fixed point d. Since c < f M(c) < f M+N (c), d ∈ (c, f N (c)). Thus
f M(d) = d is a periodic point and |c − d| < f N (c) − c < ε′.
As f k is continuous at c, for ε > 0 we can find δ > 0 with ε > δ such that

| f k(x) − f k(c)| < ε
2 for |x − c| < δ. Since |y − f k(d)| ≤ |y − f k(c)| + | f k(d) −

f k(c)|, choosing ε′ = δ, we see that |y − f k(d)| < ε. As f M(d) = d, it is clear
that z = f k(d) is a periodic point of f which is within ε (> 0) distance from y. So
Y ⊆ P( f ). �

Corollary 2.4.7 If Y is a non-empty minimal closed invariant subset of f then Y is
nowhere dense.
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Proof Let x0 be an interior point of Y . Then for some ε > 0, [x0 − ε, x0 + ε] ⊆ Y .
If [x0 − ε, x0 + ε] contains a periodic point y of Y , then O f (y) is finite and is closed.
Since y ∈ Y , Y = O f (y) = O f (y) and this contradicts that Y is uncountable (since
it has an interior point). So [x0 − ε, x0 + ε] has no periodic point. As x0 ∈ Y , by
Theorem 2.4.6, [x0 − ε, x0 + ε] must contain a periodic point, contradicting the
preceding assertion. Hence Y is nowhere dense. �

Theorem 2.4.8 (Cano [6]) Let F = F1 ∪ F2 be a collection of continuous func-
tions mapping a compact interval I = [a, b] ⊆ R into itself, satisfying the following
assumptions:

(i) for f ∈ F1, F f the set of fixed points of f in I is a compact interval [a f , b f ];
(ii) for f ∈ F2, every periodic point of f is a fixed point of f ;
(iii) for f, g ∈ F , f (g(x)) = g( f (x)) for all x ∈ I ( f and g commute).

If h : I → I is a continuous function that commutes with each f ∈ F , thenF ∪ {h}
has a common fixed point in I .

Proof Let C1 ∪ {h} be any finite subset ofF ∪ {h} of the form { f1, . . . , fn} ∪ {h} ∪
{g1, . . . , gm} where fi , i = 1, 2, . . . , n ∈ F1 and {g1, . . . , gm} ⊆ F2. Since Ffi is

a compact interval and fi ’s commute
n⋂

i=1

Ffi is a non-empty compact interval, say

[c, d]. As h commutes with each fi ∈ C1, h maps [c, d] into itself and so has a
fixed point z ∈ [c, d]. Now gn1 (z) has a limit point z1 in Pg1 by Theorem 2.4.6. As
Pg1 = Fg1 (by hypothesis (ii), and Fg1 is closed, Pg1 = Pg1 . Similarly gn2 (z1)has a limit
point z2 in Pg2 = Fg2 = Pg2 and as Fg2 is closed z2 ∈ Fg2 . Thus z1, z2 ∈ [c, a]. Thus
proceeding, we see that {gnj (z j−1)} has a limit point z j in Pg j for j = 2, . . . ,m which
is fixed for f1, . . . , fn , h, g1, . . . , gm . So ∩Ff �= φ for all f ∈ C1 ∪ {h}. It is also
easily seen that for any finite subset C2 ofF1,

⋂
f ∈C2

Ff �= φ as also
⋂
f ∈C3

Ff �= φ for

any finite subsetC3 ofF2. Thus, the family of closed subsets {Ff : f ∈ F ∪ {h}} of
[a, b] has finite intersection property and hence ∩{Fr : f ∈ F ∪ {h}} is non-empty,
in view of the compactness of [a, b]. �

Theorem 2.4.9 (Cano [6]) Let f : I (= [a, b]) → I be a continuous function such
that { f n : n ∈ N} is an equicontinuous family at each x ∈ I . Then

(1) Fp, the fixed point set of f is a compact subinterval of I ;
(2) if F f is a non-degenerate interval, then Ff = Pf (Pf being the set of periodic

points of f ).

Proof As f : I → I is continuous, Ff �= φ. If Ff is a singleton, the theorem is true.
Suppose a0, b0 ∈ Ff and a0 < b0. Assume that for no x ∈ (a0, b0), x0 = f (x0).
Then for all x ∈ (a0, b0), f (x) > x or f (x) < x . Assume that f (x) > x for all
x ∈ (a0, b0).
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Case (i) If f (x) < b) for all x ∈ (a0, b0) then f n(x) ∈ (a0, b0) for all n ∈ N and
f n(x) < f n+1(x) < b0 and so it converges to a fixed point of f , which cannot
be in (a0, b0) and hence has to be b0. So given ε > 0, by the equicontinuity of
{ f n} at a0, there exists δ > 0 such that |a0 − x0| < δ such that for |a0 − x0| < δ,
| f n(a0) − f n(x0)| < ε. Since f n(a0) = a0, for all n, this contradicts that f n(x0)
converges to b0.

Case (ii) Suppose for some x0 ∈ (a0, b0), f (x0) ≥ b0. Then there is a least num-
ber z in (a0, b0) with f (z) ≥ b0. In fact f (z) = b0. Otherwise, there exists z′ < z
with f (z′) ≥ b0 by the continuity of f and this contradicts the definition of z. Thus
proceeding, we can find a non-increasing sequence (xn) in (a0, z] such that (xn) con-
verges to a0, x1 = z and f (xn) = xn−1, n = 2, 3, . . . . Since f n(xn) = f n−1(xn−1) =
· · · f (x1) = f (z) = b0 for all n, f n cannot be equicontinuous at a0. (Note that as
(xn) is non-increasing in (a0, z) it converges to a number z′ ≥ a0. z′ > a0 is a con-
tradiction as z′ = f (z′) and by assumption f has no fixed point in (a0, b0).)

Suppose f (x) < x for all x ∈ (a0, b0). We consider

Case (i)′ Suppose f (x) > a0 for all x ∈ (a0, b0). Then for all x ∈ (a0, b0), f n(x) >

f n+1(x), n ∈ N and ( fn(x)) as in Case (i) converges to a0. However the family of f
iterates cannot be equicontinuous at b0.

Case (ii)′ If for some x ∈ (a0, b0), f (x) ≤ a0. Then there is a greatest element z′
in (a0, b0) with f (z′) ≤ a0. In fact f (z′) = a0. By this process, a non-decreasing
sequence (yn) can be chosen in (z′, b0] with y1 = z′, f (yn) = yn−1, n = 2, 3, . . . .
So f n(yn) = f (z′) = a0. If (yn) converges to w, then f (yn) (= yn−1) converges
to f (w) and so w = f (w). As w /∈ (a0, b0), (yn) converges to b0. Since f n(yn) =
f n−1(yn−1) · · · = f (z′) = a0. As yn converges to b0, there is a contradiction to the
equicontinuity of f n at b0.

Thus we have shown that Ff is a non-void compact interval. If Ff is non-
degenerate let Ff = [a0, b0] where a0 < b0. Let f n(x) = x for some n and x ∈
[a, a0). (If x ∈ (b0, b], then a similar argument can be provided). Since f n has
a fixed point and its iterates are equicontinuous at each point, f n(y) = y for
all y ∈ [x, a0] by what has been proved in (i) so far. Since f (y) > y for all
y ∈ [a, a0) and f (a0) = a0, we can choose y from (x, a0) close to a0, such that
a0 − 1

k < y < f (y) · · · < f n−1(y) < a and this implies f n(y) > y, a contradic-
tion. So a0 + 1

k > f (y) > a0 > y > a0 − 1
k . Then f (y) is a fixed point for f .

So f (y) = f 2(y) and f n(y) = f n−2( f 2(y)) = f n−1(y). Thus proceeding, y =
f n(y) = f n−1(b) · · · = f (y) contradicting f (y) > a > y. Thus if Ff = [a0, b0],
[a0, a) has no periodic point. Similarly (b0, b] has no periodic point. �

This leads to the following.

Theorem 2.4.10 (Jachymski [19]) Let g : I → I be a continuous map and I , a
compact interval [a, b] of real numbers. Then the following are equivalent:

(i) Fg the set of fixed points of g is a compact subinterval of I ;
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(ii) either Fg is a singleton or the family {gn : n ∈ N} of iterates is equicontinuous
on Fg;

(iii) g has a common fixed point with each continuousmap f : I → I that commutes
with g on Fg.

Proof (i) =⇒ (ii). Suppose Fg is not a singleton and is [a1, b1] where a1 <

b1. Since for a1 < x < b1, gn(x) = x for all n ∈ N, the continuity of g at x
implies that given ε > 0 with b − a > ε, there is a δ(ε) > 0 such that (x − δ, x +
δ) ⊆ (a1, b1) and |g(x) − g(x ′)| < ε for x ′ ∈ (x − δ, x + δ). So |gn(x) − gn(x ′)| =
|g(x) − g(x ′)| < ε for x ′ ∈ (x − δ, x + δ), proving the equicontinuity of {gn} on
(a1, b1). We now show that {gn} is equicontinuous at a1. Since g is continuous at
a1, there exists δ(ε) > 0 with ε > δ(ε) for a given ε > 0 such that for a1 − δ < x <

a1 + δ, |g(x) − g(a1)| = |g(x) − a1| < ε. We now show by the principle of finite
induction that a1 − ε < gn(x) < a1 + ε for all x ∈ (a1 − δ, a1 + δ) for all n ∈ N.
Clearly, the inequality is true for n = 1. Suppose it is true for n = 1, 2, . . . , k.
Let x ∈ (a − δ, a). If a1 ≤ gk(x) < a1 + ε, then gk(x) ∈ Fg and so |gk+1(x) −
a1| = |gk+1(x) − gk+1(a1)| = |gk(x) − gk(a1)| = |gk(x) − a1| < ε. If gk(x) < a1,
then gi (x) < a1 for i = 1, 2, . . . , k. Otherwise by induction hypothesis for some i ,
1 ≤ i ≤ k and a1 ≤ gi (a) < a1 + ε or gi (x) ∈ Fg and so gk(x) ∈ Fg or gk(x) ≥ a1,
a contradiction. Since Fg = [a1, b1], g(x) > x for x ∈ [a, a1). So gi (x) > gi−1(x)
for i = 1, 2, . . . , k, implying that gk(x) > gk−1(x) > · · · > x . As a1 − δ < x and
gk(x) < a1, it follows that gk(x) ∈ (a1 − δ, a1). So |g(gk(x)) − g(a1)| = |gk+1(x) −
a1| < ε. For x ∈ (a1, a1 + δ) ⊆ [a1, b1], |gn(x) − gn(a1)| = |x − a1| < ε. Thus gn

is equicontinuous at a1. By a similar reasoning, (gn) is equicontinuous at b1.

(ii) =⇒ (i). This follows from the proof of Theorem 2.4.9 (i). In fact to prove
(i) of Theorem 2.4.9, it suffices to assume that { f n} is equicontinuous on Ff .

(i) =⇒ (iii). If f commutes with g on Fg then Fg is invariant under f . Since Fg

is a compact interval by (i), f has a fixed point in Fg which is a common fixed point
of f and g.

(iii) =⇒ (i). If Fg is not an interval, then there exists a1, b1 ∈ Fg such that
(a1, b1) ∩ Fg = φ. Define f : [a, b] → [a1, b1] by

f (x) =

⎧⎪⎨
⎪⎩

b1 for x ∈ [a, a1]
b1 + a1 − x for x ∈ (a1, b1]
a1 for x ∈ (b1, b]

f is continuous on I . Let x ∈ Fg. Then x ∈ [a, a1] or [b1, b]. If x ∈ [a, a1], then
f g(x) = f (x) = b1 = g f (x) = g(b1). If x ∈ [b1, b], then f g(x) = f (x) = a1 =
g(a1) = g f (x). Thus, f and g commute on Fg but Ff ∩ Fg = φ. Hence the theo-
rem. �



40 2 Fixed Points of Some Real and Complex Functions

Example 2.4.11 The continuous map g : [0, 1] → [0, 1] defined by g(x) = 1 on
[0, 1

4 ], 3
2 − 2x for x ∈ ( 14 ,

3
4 ] and 0 on ( 34 , 1] has the only fixed point x = 1

2 . But
gn( 12 + δ) = (−2)nδ + 1

2 for 0 < δ < 1
4 , as long as 2nδ < 1

4 or δ < 1
2n+2 . Suppose

g is equicontinuous at x = 1
2 . Then for ε = 1

4 , there exists δ > 0 such that |gn(1 +
δ) − gn( 12 )| < ε for all n. Since g( 12 ) = 1

2 and choosing least n0 such that 2
n0δ > 1

4 ,
it follows that gn( 12 + δ) = 0 for all n ≥ n0 and |gn( 12 + δ) − gn( 12 )| = |0 − 1

2 | =
| 12 | �< 1

4 , a contradiction. So (gn) is not equicontinuous.
If f : [0, 1] → [0, 1] commutes with g at 1

2 , then f g( 12 ) = g( f ( 12 )) = f ( 12 ) (as
g( 12 ) = 1

2 ). Since f ( 12 ) is a fixed point of g and g has the unique fixed point
1
2 , f (

1
2 ) =

1
2 . Thus, f and g have a common fixed point, even though {gn} is not equicontinuous.

This example points out that the hypothesis Fg is a singleton cannot be dropped
in Theorem 2.4.10.

The next theorem on the convergence of iterates, due to Coven and Hedlund [12],
was also obtained independently by Chu and Moyer [7].

Theorem 2.4.12 If f : I = [a, b] → I is continuous and Pf = Ff , then for each
x ∈ I , there exists p ∈ Ff such that { f n(x)} converges to p.

Proof If { f n(x)} converges to p, it follows from the continuity of f , that p ∈ Ff .
Thus it suffices to prove the convergence of { f n(x)} for each x ∈ I . If f n(x) ∈ Pf

for some n ≥ 0, the conclusion is obvious. Suppose that f n(x) is not a periodic point
of f for any n ≥ 0. Let Cn be the component of N Pf , the set of non-periodic points
of f in I containing fn(x). Let ξn = +1 if f is completely positive on Cn (i.e.)
( f (x) > x on Cn) and ξn = −1 if f is totally negative on C (i.e. f (x) < x on Cn).
Since f is continuous and Cn is connected, f (x) − x cannot take both positive and
negative values on Cn as Cn has no fixed point.

If for some N ≥ 0, ξn = +1 for n ≥ N , then f N (x) < f N+1(x) and so f n(a)

converges. Similarly if ξn = −1 for all n ≥ N1, then { f n(x)} converges.
Suppose+1 and−1 appear infinitely many times in the sequence (ξn), n ≥ 0. Let

A = {n ≥ 0 : ξn = +1} = {p1 < p2 < · · · } and B = {n ≥ 0 : ξn = −1} = {m1 <

m2 < · · · }. { f pi (x)} is increasing while { f mi (x)} is decreasing in I and hence these
subsequences of { f n(x)} converge to p and q respectively in I . Now we can find a
subsequence ki ∈ A such that ki + 1 ∈ B. Since { f ki (x)} converges to p { f ki+1(x)}
converges to q and f is continuous f (p) = q. By a similar reasoning we find that
f (q) = p. Thus f 2(p) = f (q) = p and f 2(q) = f (p) = q. Thus p ∈ Pf = Ff .
So p = f (p) = q. Hence the theorem. �

Corollary 2.4.13 If f : I = [a, b] → I is continuous and the set of least periods
or periodic points is finite, then for each x ∈ [a, b], there exists p ∈ Pf such that
| f n(x) − p| converges to zero as n → ∞.

Proof Let N be the least common period of the periodic points. Apply Theorem
2.4.12 to f N and that Pf N = Ff N . (It is to be observed that N must be a power of 2,
as can be seen from Sharkovsky’s theorem.) �
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Our next theorem characterizes functions f : I → I that are continuous and for
which Pf = Ff .

Theorem 2.4.14 (Jachymski [19]) Let g : I = [a, b] → I be a continuous function.
Then the following are equivalent:

(i) Fg = Pg;
(ii) {gn : n ∈ N} is pointwise convergent on I ;
(iii) g has a common fixed point with every continuous map f : I → I that com-

mutes with g on Ff .

Proof (i) =⇒ (ii) is precisely Theorem 2.4.12.

(ii) =⇒ (iii). Let x ∈ Ff . By the commutativity of f and g on Ff , Ff is g-
invariant. So gn(x) ∈ Ff for all n ≥ 1. Since {gn(x)} converges to z ∈ I by (ii) and
Ff is closed z ∈ Ff and as g is continuous z = g(z). Thus z = f (z) = g(z).

(iii) =⇒ (i). Let C be a non-empty g-invariant closed subset of I . We show that
C ∩ Fg �= φ. For such a set, there is a continuous map f : I → I such that Ff = C .
If x ∈ Ff , then g( f (x)) = g(x) and f (g(x)) = g(x), since C is g-invariant. So f
and g commute on F(g). By assumption (iii) Ff ∩ Fg = C ∩ Fg �= φ. Let p be a
periodic point of least period M for g. Then C = {p, g(p), . . . , gM−1(p)} is closed
and invariant under g. So from what we have shown, C has a fixed point of g. If
for 1 ≤ i ≤ M − 1, g(gi (p)) = gi (p), gi (p) = g(M)(p) = p, contradicting p is a
periodic point of g with least period M . So i = 0 gives g(p) = p or p is a fixed point
of g. Thus Pg = Fg. �

2.5 Common Fixed Points and Full Functions

In this section, an existence theorem on the common fixed points for two commuting
continuous self-maps on a compact real interval, due to Cohen [9] is proved. This
supplements the theorems in Sect. 2.4. Without loss of generality we take I = [0, 1].
We need the following lemmata and definitions.

Lemma 2.5.1 Let f, g : I → I be continuous maps and h : I → J = [c, d] be a
homeomorphism onto J . f and g commute on I and have a common fixed point if
and only if h f h−1 and hgh−1 commute on J and have a common fixed point.

Proof Let h : I → J be a homeomorphism onto J and f, g : I → I be contin-
uous functions. Let h f h−1 : J → J and hgh−1 : J → J be commutative and y0
be a common fixed point. Then y0 = h f h−1(y0) = hgh−1(y0. Since h is a home-
omorphism from I onto J , so h−1 is a homeomorphism of J onto I . So h−1y0 =
h−1(h f h−1(y0)) = h−1hgh−1(y0). Thus h−1(y0) = f (h−1(y0)) = g(h−1(y0)) or
x0 = h−1(y0) belongs to I and is a common fixed point for f and g in I . Also



42 2 Fixed Points of Some Real and Complex Functions

by the commutativity of h f h−1 and hgh−1 we get h f gh−1 = (h f h−1) ◦ hgh−1 =
(hgh−1) ◦ (h f h−1) = hg f h−1 whence f g = gh on I .

If f (g(x)) = g( f (x)) for all x ∈ I and h−1 : J → I is a homeomorphism, for
each y ∈ J , f gh−1(y) = g f h−1(y) and so f h−1hgh−1y = gh−1h f h−1y for y ∈ J .
Premultiplying by h we get for y ∈ J

(h f h−1)(hgh−1)y = (hgh−1)(h f h−1)y.

Thus h f h−1 and hgh−1 commute. If for x0 ∈ I x0 = f (x0) = g(x0), then h(x0) =
h f (x0) = hg(x0). But x0 = h−1(y0) for some y0 ∈ J . So y0 = h f h−1

(y0) = hg f −1(y0). Thus h f h−1 and hgh−1 have a common fixed point. �

Lemma 2.5.2 If f, g : I → I are commuting continuous functions without a com-
mon fixed point, then there are commuting functions mapping I onto I without a
common fixed point.

Proof Let a1 = max{inf
I

f, inf
I
g} and b1 = min{sup

I
f, sup

I
g}. Since f and g com-

mute, f [0, 1] ∩ g[0, 1] �= φ both f and g map [a1, b1] into itself. Otherwise for
some x ∈ [a1, b1], f (x) > b1 would imply that for some y ∈ [0, 1], g(y) = x and
g( f (y)) = f g(y) = f (x) > b1. This implies that b1 < min{sup

I
f, sup

I
g}. Similarly

f (x) < a1 for some x ∈ [a1, b1]would imply that there exists y ∈ [0, 1]with g(y) =
x and g( f (y)) = f g(y) = f (x) < a1. This means that a1 > max{inf I f, inf I g}, a
contradiction.Writing f1 and g1 as the restrictions of f and g on J1 = [a1, b1] respec-
tively, we can inductively define ai , bi and fi by ai = max{inf Ji−1 f, inf Ji−1 g} and
bi = min{supJi−1

f, supJi−1
g} where Ji−1 = [ai−1, bi−1], i = 2, 3, . . . , and fi is the

restriction of fi−1 to Ji−1. Since [ai , bi ], i = 1, 2, . . . , form a nested sequence of
compact subsets of [0, 1], they have a non-void intersection. If this intersection is
a singleton, then f and g have a common fixed point contrary to the assumption.

Hence,
∞⋂
i=1

[ai , bi ] is a non-degenerate compact interval [a, b] and the restriction f

and g of f and g respectively map [a, b] onto itself. If h is a homeomorphism of
[a, b] onto I = [0, 1]. Then, the continuous maps h f h−1 and hgh−1 map [0, 1] onto
itself but have no common fixed points by Lemma 2.5.1. �

Lemma 2.5.3 If f, g : I → I are commuting continuous functions, so are f and
g f . f and g have a common fixed point if and only if f and g f have a common fixed
point.

Proof f (g f ) = g f ◦ f as f g = g f . If x0 = f (x0) = g(x0), then x0 = f (x0) =
g(x0) = g( f (x0)). If x1 = f (x1) = g( f (x1)), then x1 = f (x1) = g(x1). �

Definition 2.5.4 A continuous function f : I → I is said to be full if there is a
partition Pf = {x0 = 0 < x1 < x2 · · · < xn = 1} of I such that f on [xi , xi+1] is a
homeomorphism on [0, 1] for each i = 0, 1, . . . , n − 1.
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Definition 2.5.5 A partition Pf = {0 = x0 < x1 < · · · < xn = 1} is regular if the
length of the subintervals xi+1 − xi is the same for all i = 0, 1, . . . , n − 1.A partition
Pg refines a partition Pf uniformly if each subintervals in Pf formed by consecutive
partition points of Pf is the union of partitioning subintervals of g.

Lemma 2.5.6 If f1, g1 are commuting full functions on [0, 1] without a common
fixed point, there are functions f and g with the same properties and additionally
f (0) = g(1) = 0 and f (1) = g(0) = 1, Pf , Pg and Pf g are regular and Pg refines
Pf uniformly.

Proof If f1(0) = g1(0) = 0, then f1 and g1 have a common fixed point contrary
to the assumption. So essentially two cases arise: (i) f1(0) = 0, g1(0) = 1 and (ii)
f1(0) = 1 = g1(0). In case (i) f1(1) = f1g1(0) = g1 f1(0) = 1 and so g1(1) = 0, as
otherwise g1(1) = 1 would imply that f1 and g1 have 1 as a common fixed point. In
this case let f2 = f1 and g2 = g1.

For case (ii), f1(1) = f1g1(0) = g1 f1(0) = g1(1). So f1(1) = g1(1) = 0 as other-
wise 1 would be a fixed point. In this case let f2 = f1g1 and g2 = g1, g2(0) = g(0) =
1, f2(1) = f1g1(1) = f1(0) = 1 and g2(1) = g1(1) = 0. In either case let f3 = f2
and g3 = g2 f2. Clearly Pg3 refines Pf2 uniformly. Let h be any order preserving
homeomorphism on [0, 1] taking Pf3g3 into the corresponding regular partition of [0,
1]. Define f = h f3h−1 and g = hg3h−1. As f3 and g3 have no common fixed point,
by Lemma 2.5.1 f and g do not have a common fixed point. Also Pf , Pg, Pf g are
regular and as Pg3 refines Pf3 uniformly. Pg refines Pf uniformly. �

Theorem 2.5.7 (Cohen) Commuting continuous full functions mapping [0, 1] onto
[0, 1] have a common fixed point.

Proof Let f1, g1 : I → I be two commuting full functions without a common fixed
point. So using Lemma 2.5.6, we can find commuting full functions f1, g1 map-
ping [0, 1] onto itself such that f (0) = g(1) = 0, f (1) = g(0) = 1, Pf , Pg and
Pf g regular partitions with Pg refining Pf uniformly. Let Pf = {0, 1

n ,
2
n , . . . , 1} and

Pg = {0, 1
m , 2

m , . . . , 1} and Pf g = {0, 1
mn ,

2
mn , . . . , 1} where m and n are odd. Let fi

and gi be restrictions of f to [ i−1
n , i

n ] and g to [ i−1
m , i

m ], respectively. Let r = n+1
2

and s = m+1
2 . Suppose r is odd and s is even. If D( fi , g j ) is the domain of fig j for

each i and j then it is a subinterval of Pf g . In particular

D(g1 fr ) =
[
r − 1

n
,
r − 1

n
+ 1

mn

]

D(g2 fr ) =
[
r − 1

n
+ 1

mn
,
r − 1

n
+ 2

mn

]
. . . ,

D(gs fr ) =
[
r − 1

n
+ s − 1

mn
,
r − 1

n
+ s

mn

]

=
[
mn − 1

2mn
,
mn + 1

2mn

]

Similarly
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D( f1gs) =
[
s − 1

m
,
s − 1

m
+ 1

mn

]

D( f2gs) =
[
s − 1

m
+ 1

mn
,
s − 1

m
+ 2

mn

]
. . . ,

D( frgs) =
[
s − 1

m
+ r − 1

mn
,
s − 1

m
+ r

mn

]

=
[
mn − 1

2mn
,
mn + 1

2mn

]

Thus D( frgs) = D(gs fr ). Since gs is continuous and onto [0, 1], its graph must
intersect the diagonal of I × I and gs has a fixed point z1. As D(gs) ⊆ D( f0),
z1 ∈ D( fr ) and thus z1 ∈ D( frgs) = D(gs fr ). So gs fr (z1) = frgs(z1) = fr (z1) and
z2 = fr (z1) is a fixed point of gs . Thus proceeding, we get a sequence z p of fixed
points of gs with z p+1 = fr (z p). Since fr is monotone the sequence z p converges to
z1 a fixed point of both f and g. The case when r is even and s is odd can be handled
similarly. �
Remark 2.5.8 One can show that f is full if and only if f maps [0, 1] onto [0, 1]
and is an open map. For related work, Baxter and Joichi [3] may be referred.

2.6 Common Fixed Points of Commuting Analytic
Functions

We prove a theorem of Shields [28] on the common fixed points of analytic functions
in this section. We denote by G, a non-void bounded open connected set in the
complex plane. Let FG be the family of all analytic functions mapping G into itself.
Clearly FG is a semigroup under composition of mappings. We can consider H(G)

the linear space of all functions analytic onG and continuous onG, with the topology
of uniform convergence on compact subsets ofG. This topology is a metric topology
and indeed it arises froma completemetric and so FG will inherit thismetric topology.
The following lemma implies that FG is a topological semigroup (i.e. the composition
map is a continuous function from G × G into G).

Lemma 2.6.1 Let fn, gn ∈ FG and fn → f , gn → g in the topology of uniform con-
vergence on compact subsets of G. Then fn(gn) → f (g) and so FG is a topological
semigroup.

Proof Let K be a compact subset of G and let U be an open set containing g(K )

with U compact and lying in G. Since gn → g uniformly on K , gn(K ) ⊂ U for all
n ≥ n0 for some n0 ∈ N. Now for all n

| f (g(z)) − fn(gn(z))| ≤ | f (g(z)) − f (gn(z))| + | f (gn(z)) − fngn(z)|

Since g(z), gn(z) ∈ U for z ∈ K for all n ≥ n0 and f is uniformly continuous
on the compact set U and fn → f uniformly on U , the above inequality implies
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that f (gn(z)) → f g(z) and | fn(gn(z)) − f (gn(z))| ≤ sup
w∈U

| fn(w) − f (w)| → 0 as

n → ∞. Hence ( fngn) converges uniformly on K to f g. Thus FG is a topological
semigroup. �

A few facts from the theory of topological semigroups will be needed in the
sequel. For proofs and other details Numakura [23], Wallace [31] and Ellis [15] may
be consulted.

Definition 2.6.2 Let (S, ·) be a semigroup. An element e of S is called an idempotent
if e.e = e2 = e. An element 0 is termed zero if 0.x = 0 for all x ∈ S. 1 is called an
identity of S if 1.x = x = x .1 for all x ∈ S. In a semigroup S if ax = ay (xa = ya)
implies x = y for all a, x, y in S then S is called a semigroup satisfying the left
(right) cancellation law. If S satisfies both the left and right cancellation laws, it is
called a semigroup satisfying cancellation law.

The following is a basic result in the theory of topological semigroups and the
proof is essentially from Ellis [15].

Lemma 2.6.3 Let S be a compact Hausdorff topological semigroup. Then S has an
idempotent element.

Proof LetF be the family of all compact subsets K of S such that K 2 ⊆ K .F �= φ,
as S ∈ F .F is partially ordered by set inclusion. As every chain inF has a lower
bound F has a minimal element A in F . If r ∈ A, then r A is a non-void compact
subset of S as r A is the image of the compact set A under the continuous map
x → r.x . So r A ∈ F and r A ⊆ A. Since A is minimal r A = A. So there exists
p ∈ A such that rp = r . Define L = {a ∈ A : ra = r}. Clearly p ∈ L and L is a
compact subset of A. Let �1, �2 ∈ L . Then r�1�2 = r�2 = r and hence �1 ◦ �2 ∈ L .
So L2 ⊆ L . Hence L ∈ F . As L ⊆ A and A is minimal L = A. Since r ∈ A = L ,
r2 = r from the definition of L . Thus S has an idempotent element. �

We skip the proof of the following.

Lemma 2.6.4 Let S be a compact T2 topological semigroup which is commutative.
For x ∈ S and 
(x) = cl{x, x2, . . . , }, we have
(i) 
(x) contains exactly one idempotent;
(ii) if e is an identity for 
(x), then 
(x) is a group and x has an inverse in 
(x);
(iii) if e is a zero for 
(x), then xn → e.

The following lemma makes use of the basic properties of analytic functions.

Lemma 2.6.5 If the analytic function e ∈ FG is idempotent, then e(z) ≡ z on e(z)
is constant for all z ∈ G.

Proof If e(z) is constant for all z ∈ G, clearly it is an idempotent. Suppose e is a
non-constant analytic function onG, then f is an openmapping. SoG1 = e(G) is an
open set. Since e2(z) = e(z), e(z) = z on G1. As G1 is uncountable, and the analytic
functions, viz. identity function and e coincide on G1, e(z) must be z at each z
in G. �



46 2 Fixed Points of Some Real and Complex Functions

We also recall some classical results from complex analysis (see Conway [11]
and Ahlfohrs [1].

Theorem 2.6.6 (Montel) Let H(G) be the linear space of analytic functions on the
open region G. A family F in H(G) is normal in the sense that every sequence in
F has a convergent subsequence if and only if F is locally bounded in H(G) (i.e.
for each compact subset K of G, there is a positive constant Mk with | f (z)| ≤ Mk

for all f ∈ F and z ∈ K).

Theorem 2.6.7 (Hurwitz) Let A(G) be the linear space of all analytic functions
with the topology of uniform convergence on compact subsets of G. If ( fn) converges
to f in H(G) and fn never vanishes on G for each n, then f ≡ 0 or f is non-zero
throughout G.

Lemma 2.6.8 Let D be the open unit disc in the complex planeC and f : D → D be
a bilinear (Mobius) transformation of D onto D. Then there arise three possibilities:

(i) f (z) = z on D;
(ii) f has exactly one fixed point in the closed unit disc;
(iii) f has two distinct fixed points in the unit circle and the iterates of f converge

to one of these fixed points.

Proof The general form of such a bilinear transformation is f (z) = α (z−a)

(1−a)z where|α| = 1, |a| < 1.
If f is not the identity function the fixed points z = f (z) are given by

az2 − (1 − α)z − αz = 0

As this equation is invariant under z → 1
z , the fixed points of f (z) are inverses of

each other with respect to the unit circle. So there is a fixed point inside and another
outside the circle or there is a ‘double fixed point’ or two distinct fixed points on the
unit circle. �

Lemma 2.6.9 Let f ∈ FG, be the subset of H(G) containing all analytic functions
mapping G into itself. Suppose f is not a homeomorphism of G onto itself. Then
there is a point z0 in G and a subsequence { fni } of f -iterates such that fni (z) → z0
uniformly on compact subsets of G.

Proof Write 
( f ) = cl{ f n} in H(G). If 
( f ) ⊆ FG , then 
( f ) is a compact semi-
group under composition of functions and contains an idempotent element e(z) by
Lemma 2.6.3.

By Lemma 2.6.5 e(z) ≡ z for all z ∈ G or is a constant z0 for all z ∈ G. If the
identitymapbelongs to
( f ), then byLemma2.6.4,
( f ) is a group and f ∈ 
( f ) ⊆
FG would be invertible in F(G) contradicting that f is not a homeomorphism. Hence
e(z) ≡ z0, for all z ∈ G and is thus a zero for 
( f ). So again by Lemma 2.6.4 f n(z)
converges to z0 in the topology of FG .

Suppose g ∈ 
( f ) does not belong to FG . Since fn(G) ⊆ G, g(G) ⊆ G. As
g /∈ FG , there is a point z′ ∈ G with g(z′) = z0 /∈ G. We claim that g(z) ≡ z0.
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As g ∈ 
( f ), we can find fnk , a subsequence of f iterates converging to g in
H(G). Now fnk (z) − z0 never vanishes in G as z0 ∈ G and converges to g(z) − z0.
So by Lemma 2.6.7 (Hurwitz Theorem), g(z) − z0 is identically zero in G or never
vanishes inG. But already for z = z′ ∈ G, g(z′) − z0 = 0. So g(z) ≡ z0 for all z ∈ G.
�

Lemma 2.6.10 Let f ∈ FG and suppose f is not a homeomorphism of G onto itself.
Let z0 be the element of G such that fni converges to z0 in H(G). Then z0 is a common
fixed point for all continuous g on G that map G into itself and commute with f .

Proof ByLemma2.6.9, there exists z ∈ Gwith lim fni (z) = z0 in FG . For g ∈ C(G),
g(z0) = g(lim fni (z)) = lim fni (g(z)) = z0.

The following remarks are relevant.

Remark 2.6.11 If f is a bilinear map of the open unit disc D onto itself with two
distinct fixed points on the boundary, consider p a bilinear map, mapping D onto
the upper half-plane and taking these fixed points into 0 and ∞. For g = p f p−1,
0 and ∞ are fixed points of g and g maps the upper half-plane onto itself. Hence
g is a dilatation and is of the form g(z) = az, a > 0 and a �= 1 as f (z) �≡ z. So
gn(z) = anz tends to zero or to∞. Thus the iterates of f converge to one of the fixed
points of f .

Remark 2.6.12 Wolff [32] and Denjoy [13] have shown independently in 1926 that
if f is analytic in D and f (D) ⊆ D, then either f is a bilinear map of D onto itself
with exactly one fixed point or f n converges to a constant C ∈ D.

We are now in a position to prove a theorem of Shields [28] on the fixed points
of commuting family of analytic functions on D.

Theorem 2.6.13 (Shields [28])Let F be a commuting family of continuous functions
on D which are analytic in D. Then there is a common fixed point z0 for all functions
in F.

Proof If F contains a constant function then that constant is the common fixed point.
Suppose it contains only non-constant continuous functions on D which are analytic
in D. So by the Maximum Modulus Theorem f (D) ⊆ D for each f ∈ F . Suppose
not all functions of F are bilinear maps of D onto D. So there exists f , different
from the identity map in F . Then Lemma 2.6.10 can be invoked to conclude that
there is a common fixed point for each f ∈ F . On the other hand if all the members
of F are bilinear, then if one of them has just one fixed point, then it is a common
fixed point for all. In case these have two fixed points then by Remark 2.6.11, the
iterates converge to one of the two fixed points and so invoking Lemma 2.6.10, we
conclude that for each f in F there is a common fixed point. �

Remark 2.6.14 Theorem2.6.13 due to Shields has been generalized toHilbert spaces
by Suffridge [29].
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2.7 Fixed Points of Meromorphic Functions

In this section, an interesting theorem on the fixed points of meromorphic functions,
due to Bergweiler [4] is detailed. Bergweiler’s short proof is elementary, though it
invokes Picard’s theorem. We recall

Theorem 2.7.1 (Picard (see Conway [11])) Suppose an analytic function f has an
essential singularity at a. Then in each neighbourhood of a, f assumes each complex
number, with one possible exception, infinitely many times.

Corollary 2.7.2 Anentire functionwhich is not a polynomial assumes every complex
number, with one exception infinitely many times.

In response to aquestion raisedbyGross [16],Bergweiler [4] proved the following.

Theorem 2.7.3 (Bergweiler [4]) Let f be a meromorphic function that has at least
two different poles and let g be a transcendental entire function. Then the composite
function f ◦ g has infinitely many fixed points.

The theorem above makes use of the following lemmas.

Lemma 2.7.4 Let f be a meromorphic function and z0 be a pole of order p. Then
there is a function h, defined and analytic in a neighbourhood of 0 such that h(0) = 0
and f (h(z) + z0) = z−p for z �= 0.

Proof The function k defined as k(z)−p = f (z + z0) is analytic in a neighbourhood
of 0 and k ′(0) �= 0. So k(z) is invertible in a neighbourhood of 0 and this inverse h(z)
is analytic in a neighbourhood of 0. Now k(0) = 0. So h(0) = 0 and f (h(z) + z0) =
z−p for z �= 0. �

Lemma 2.7.5 Let f and g bemeromorphic functions. Then f ◦ g has infinitelymany
fixed points if and only if g ◦ f does.

Proof If x0 = f g(x0), then gx0 = g f (g(x0)) so that g(x0) is a fixed point of g f .
If x0 = f g(x0) and x1 = f g(x1), then g(x0) = g(x1) would imply that f g(x0) =
f g(x1) so that x0 = x1. Thus g maps the set of fixed points of f ◦ g injectively into
the set of fixed points of g ◦ f . Indeed if x∗ is a fixed point of g ◦ f , then f (x∗) is
a fixed point of f ◦ g. Similarly f maps the set of fixed points of g ◦ f injectively
into the set of fixed points of f ◦ g. Thus the sets of fixed points of f ◦ g and g ◦ f
have the same cardinality. (Indeed g maps the set of fixed points of f ◦ g bijectively
onto the set of fixed points of g ◦ f ). �

Now we provide the proof of Theorem 2.7.3.

Proof Let z1 and z2 be poles of f of order p1 and p2. Using Lemma 2.7.4 choose the
functions h j for j ∈ {1, 2}. Let k1(z) = h1(z p2) + z1 and k2(z) = h2(z p1) + z2. Now
f (k1(z)) = f (k2(z)) = z−p1 p2 for z �= 0 in a neighbourhood of 0. Define u(z) =
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g(z−p1 p2). Then 0 is an essential singularity of u and in a punctured neighbourhood
of 0, u(z) = g( f k1(z)) = g f (k2(z)).

If f ◦ g has only finitely many fixed points, then so has g ◦ f only finitely many
fixed points by Lemma 2.7.5. So u(z) �= k j (z) for j = 1, 2 in a punctured neigh-
bourhood of 0, since k1(0) = z1 �= z2 = k2(0). Define

v(z) = u(z) − k1(z)

k2(z) − k1(z)
.

0 is an essential singularity for u and v does not take the values 0, 1 and ∞ in a
punctured neighbourhood of 0. This contradicts Picard’s Theorem 2.7.1. Hence the
theorem. �

Remark 2.7.6 It can be similarly shown that if f and g are transcendental meromor-
phic functions and if either f or g has at least three poles, then f ◦ g has infinitely
many fixed points.
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