Chapter 1 Prerequisites

This chapter is a precis of the basic definitions and theorems used in the sequel. It is presumed that the reader is familiar with naive set theory (see Halmos [\[4](#page-20-0)]) and the properties of real numbers and real functions (see Bartle [\[1\]](#page-20-1)). Other mathematical concepts and theorems relevant to specific sections of a chapter will be recalled therein.

1.1 Topological Spaces

This section collects important concepts and results from topology. For proofs and other details, Dugundji [\[3\]](#page-20-2), Kelley [\[7\]](#page-20-3), Munkres [\[9\]](#page-20-4) and Simmons [\[13](#page-20-5)] may be consulted.

Definition 1.1.1 Let *X* be a non-empty set. A collection of *J* of subsets of *X* is called a topology on *X*, if

(i) $\phi, X \in \mathcal{T}$,

(ii) $G_1 \cap G_2 \in \mathcal{T}$ for $G_1, G_2 \in \mathcal{T}$ and

(iii) $\bigcup_{G \in \mathcal{F}} G \in \mathcal{F}$ for any $\mathcal{F} \subseteq \mathcal{F}$.

Any subset of *X* belonging to $\mathscr T$ is called an open set or more precisely $\mathscr T$ -open set. The pair (X, \mathcal{T}) is called a topological space. Given a topological space (X, \mathcal{T}) , the interior of $A \subseteq X$, denoted by A^0 is the largest open subset of A.

For a subset *S* of *X*, where (X, \mathcal{T}) is a topological space, $\mathcal{T}_S = \{G \cap S : G \in \mathcal{T}\}\$ is a topology on *S*, called the relative topology (or subspace topology) on *S*.

Example 1.1.2 For a non-empty set *X*, the family $\{\phi, X\}$ is a topology on *X* called the indiscrete topology on X , 2^X , the power set of X or the set of all subsets of X is a topology on *X* called the discrete topology on *X*. The family of all subsets of *X*

https://doi.org/10.1007/978-981-13-3158-9_1

[©] Springer Nature Singapore Pte Ltd. 2018

P. V. Subrahmanyam, *Elementary Fixed Point Theorems*, Forum for Interdisciplinary Mathematics,

whose complements are finite sets together with the empty set is also a topology on *X* called the co-finite topology on *X*.

Since the intersection of any collection of topologies on *X* is a topology on *X*, for any family $\mathcal F$ of subsets of *X*, there is the smallest topology on *X* containing $\mathcal F$, called the topology generated by *F*.

Example 1.1.3 A subset *G* of real numbers is called open if for each $x \in G$, an open interval containing *x* lies in *G*. (Evidently the empty set is open.) This collection of all open subsets of \mathbb{R} , the real number system is a topology on \mathbb{R} , called the usual topology on R.

Definition 1.1.4 Let (X, \mathcal{T}) be a topological space. A neighbourhood of a point *x* ∈ *X* is any subset of *X* containing an open subset $G \in \mathcal{T}$, containing *x*. A neighbourhood base or local base at *x* is a family \mathcal{N}_x of neighbourhoods of *x* such that for any neighbourhood *N* of *x*, there is a neighbourhood $N_x \in \mathcal{N}_x$ such that $x \in N_x \subseteq N$. A topological space is called first countable if for each point there is a countable local base. An interior point of *A* is a point $a \in A$ such that *A* contains a neighbourhood of *a*.

Definition 1.1.5 A subset *F* of a topological space (X, \mathcal{T}) is called a closed subset of *X* if $X - F$ is \mathscr{T} -open. The closure of a subset *A* of *X* denoted by \overline{A} is the smallest closed set containing *A*. A subset *S* of *X* is said to be dense in *X* if $\overline{S} = X$. A topological space (X, \mathcal{T}) is called separable if it has a countable dense subset.

Remark 1.1.6 Let (X, \mathcal{T}) be a topological space and $A, B \subseteq X$. Then

- (i) $\phi^0 = \phi$, $\overline{\phi} = \phi$, $X^0 = X$ and $\overline{X} = X$;
- (ii) $\overline{A} \supseteq A$ and $A^0 \subseteq A$;
- (iii) $\overline{A \cup B} = \overline{A} \cup \overline{B}$, $(A \cap B)^\circ = A^\circ \cap B^\circ$;
- (iv) $(\overline{\overline{A}}) = \overline{A}$ and $(A^{\circ})^{\circ} = A^{\circ}$. Further $\overline{A} = \{x \in X : \text{every neighbourhood of } x \text{ has } \overline{A} \}$ a non-void intersection with *A*}. $A^0 = \{a \in A : a \text{ is an interior point of } A\}.$

Definition 1.1.7 For a topological space (X, \mathcal{T}) $\mathcal{B} \subseteq \mathcal{T}$ is called a base (or basis) for \mathcal{T} is for $A_1, A_2 \in \mathcal{B}$ and $x \in A_1 \cap A_2$, there exists $A_3 \in \mathcal{B}$ such that $x \in A_3 \subseteq$ *A*₁ ∩ *A*₂. A subfamily $\mathscr S$ of $\mathscr T$ is called a subbase for $\mathscr T$ of *B*, if the family of intersections of all finite subfamilies of $\mathscr S$ is a base for $\mathscr T$. If the topology $\mathscr T$ has a countable base, then the topological space is called second countable.

Remark 1.1.8 If *S* is a family of subsets of *X* with $\cup \{S : S \in \mathcal{S}\} = X$, then *S* is a subbase for a topology on *X*, for which *B* the family of subsets of *X* which are the intersections of finite subfamilies of $\mathcal S$ is a base for this topology.

Remark 1.1.9 The family of all subintervals of the form $[a, b), a < b, a, b \in \mathbb{R}$ is a base for a topology on $\mathbb R$, called the lower limit topology on $\mathbb R$. Similarly, the family $\{(a, b): a < b, a, b \in \mathbb{R}\}$ is a base for a topology on R called the upper limit topology on $\mathbb R$. The usual (standard) topology on $\mathbb R$ has the family of all open intervals $(a, b), a < b, a, b \in \mathbb{R}$ as a base. \mathbb{R} with the usual topology is separable and second countable. However, $\mathbb R$ with the lower limit topology is separable and first countable but is not second countable.

Definition 1.1.10 A binary relation \leq on a non-empty subset *X* is called a quasiorder if the following conditions are satisfied:

- (i) $x \leq x$ for all $x \in X$ (reflexivity);
- (ii) if $x < y$ and $y \le z$, for $x, y, z \in X$, then $x \le z$ (transitivity). If, in addition a quasi-order ≤ satisfies
- (iii) if $x \leq y$ and $y \leq x$, then $x = y$ (anti-symmetry),

then the quasi-order \leq is called a partial order. Accordingly if \leq is a quasi-order on *X*, then (X, \leq) is called a quasi-ordered space. If \leq is a partial order on *X*, then (X, \leq) is called a partially ordered set or poset.

Definition 1.1.11 A partial order \leq on a set *X* is called a linear order or total order if for any pair of elements $x, y \in X$ either $x \leq y$ or $y \leq x$. A linearly ordered set is also called a chain.

Definition 1.1.12 A partially ordered set (D, \leq) is called a directed set if for any pair $x, y \in X$, there exists $z \in D$ such that $x \le z$ and $y \le z$.

Definition 1.1.13 A net in a topological space *X* is a pair $(S, >)$ where *S* is a function from a directed set (D, \geq) into *X*. A net (S, \geq) in a topological space is said to converge to an element $x \in X$ if for each open set G containing x, there is an element *m* of *D* such that for $n \ge m$, $n \in D$, $S(n) \in G$. Clearly, a sequence in a topological space is a net directed by the set of natural numbers with the usual ordering.

Proposition 1.1.14 *A subset S of a topological space* (X, \mathcal{T}) *is closed if and only if no net in S converges to an element of X – S. An element* $s \in \overline{S}$ *for S* $\subseteq X$ *if and only if there is a net in S converging to s.*

Definition 1.1.15 Let (X_i, \mathcal{T}_i) , $i = 1, 2$ be topological spaces. A map $f : X_1 \rightarrow X_2$ is said to be continuous if for each \mathcal{T}_2 -open subset *G* of X_2 , $f^{-1}(G)$ is \mathcal{T}_1 -open in *X*₁. If *f* is one-one and onto *X*₂ and if both *f* and f^{-1} are continuous maps, then *f* (as also f^{-1}) is called a homeomorphism from X_1 onto X_2 (from X_2 onto X_1).

A map $f: X_1 \to X_2$ is said to be continuous at $x \in X_1$, if for each neighbourhood $N_{f(x)}$ of $f(x)$ in X_2 , there is a neighbourhood N_x of x such that $f(N_x) \subseteq N_{f(x)}$. A map $g: X_1 \to X_2$ is called open if it maps open subsets of X_1 onto open subsets of X_2 .

The following theorem is well-known.

Theorem 1.1.16 *Let* (X_i, \mathcal{T}_i) *,* $i = 1, 2$ *be topological spaces and* $f : X_1 \rightarrow X_2$ *be a map. The following statements are equivalent:*

- *(i)* f *is continuous on* X_1 *;*
- *(ii)* f is continuous at each point of X_1 ;
- *(iii)* $f^{-1}(F)$ *is closed in* (X_1, \mathcal{T}_1) *for each closed subset* F *of* X_2 *;*
- *(iv) if* $G \in \mathcal{S}$, *a subbase for* \mathcal{T}_2 , *then* $f^{-1}(G) \in \mathcal{T}_1$ *;*
- (*v*) *for each net* (S, \geq) *converging to x in* X_1 , $(f(S), \geq)$ *converges to* $f(x)$ *in* X_2 ;
- *(vi) for each subset A of X₁,* $f(\overline{A}) \subseteq f(A)$ *;*
- (vii) for each subset B of Y, $\overline{f^{-1}(B)}$ ⊂ $f^{-1}(\overline{B})$.

Theorem 1.1.17 *A topological space* (X, \mathcal{T}) *is said to be disconnected if* $X =$ *A* ∪ *B where A and B are non-empty disjoint proper open subsets of X. A pair of sets A and B is said to be separated if* $\overline{A} \cap B = \overline{B} \cap A = \emptyset$, where A and B are non*empty. A topological space is called connected if it is not disconnected (A connected space is not the union of two non-void separated sets). A subset Y of X is called connected if Y is connected in the subspace topology. A maximal connected subset of X is called a component.*

Definition 1.1.18 A topological space is called totally disconnected if the only connected subsets are singletons.

Definition 1.1.19 A topological space is said to be locally connected if the family of open connected subsets is a base for the topology.

Remark 1.1.20 A discrete topological space with more than one element is locally connected, though totally disconnected. The set $(0, 1) \cup (2, 3)$ with the subspace topology inherited from $\mathbb R$ with the usual topology is locally connected and disconnected though not totally disconnected.

Theorem 1.1.21 *Let* (X, \mathcal{T}) *be a topological space. Then*

- *(i)* if A is a connected subset of X and $A \subseteq B \subseteq \overline{A}$, then B is a connected subset;
- *(ii) the union of a family of connected subsets of X, no two of which are separated is connected;*
- *(iii) components of X are closed and any two components are either identical or disjoint;*
- *(iv) any component of an open subset of a locally connected space is open.*

Definition 1.1.22 A family of open sets $\{G_{\lambda} : \lambda \in \Lambda\}$ of a topological space (X, \mathcal{T})
is called an open sourc for Y if $Y = \frac{1}{2} C$. If systems against Y has a sountable is called an open cover for *X*, if $X = \bigcup_{\lambda \in \Lambda} G_{\lambda}$. If every open cover of *X* has a countable $\lambda \in \Lambda$

subcover, the topological space is said to be Lindelof. If each open cover of *X* has a finite subcover, then the topological space is called compact.

Definition 1.1.23 A topological space is called locally compact, if each element has a compact neighbourhood.

Definition 1.1.24 Let $(X_{\lambda}, \mathcal{T}_{\lambda})$, $\lambda \in \Lambda$, $\Lambda \neq \phi$ be a family of topological spaces.
The Certarian product of all these sets X , denoted by $X = \prod X$, is the set of all The Cartesian product of all these sets X_{λ} denoted by $X = \prod_{\lambda \in \Lambda} X_{\lambda}$ is the set of all

 λ ∈Λ functions $f: \Lambda \to \bigcup_{\lambda \in \Lambda} X_\lambda$ such that $f(\lambda) \in X_\lambda$ for each $\lambda \in \Lambda$. The map $P_\lambda: X \to Y_\lambda$

*X*_{λ} such that $P_{\lambda}(f) = f(\lambda)$ for each $f \in X$ is called the projection of the set *X* into the *M* is coordinate set *X*. The topology of *X* having $IP^{-1}(I) \cdot I \subseteq \mathcal{R}$, $\lambda \in \Lambda$ as the λ th coordinate set X_{λ} . The topology of *X* having $\{P_{\lambda}^{-1}(U) : U \in \mathcal{T}_{\lambda}, \lambda \in \Lambda\}$ as subhase is called the product topology on *X* and *X* with this topology is referred a subbase is called the product topology on *X* and *X* with this topology is referred as the product (topological) space.

Theorem 1.1.25 *Let* $\{(X_\lambda, \mathcal{T}_\lambda): \lambda \in \Lambda, \Lambda \neq \emptyset\}$ *be a family of topological spaces* and *X be the product space with the product topology* \mathcal{T} *Then and X be the product space with the product topology* \mathscr{T} *. Then*

- *(i)* P_{λ} , the projection of X into X_{λ} is continuous for each $\lambda \in \Lambda$; *ii)* a man $f: Y \to X$ where Y is a topological space is continuous
- *(ii) a map f* : $Y \rightarrow X$ *, where Y is a topological space is continuous if and only if* $P_{\lambda} \circ f : Y \to X_{\lambda}$ *is continuous for each* $\lambda \in \Lambda$;
a net S in X converges to an element s if and
- *(iii) a net S in X converges to an element s if and only if its projection in each coordinate space converges to the projection of s.*
- *(iv) X is connected if and only if each* X_{λ} *is connected;*
- *(v)* (Tychonoff's theorem) X is compact if and only if each X_λ is compact.

Definition 1.1.26 A topological space *X* is said to be

- (i) T_1 if for each pair of distinct elements x and y, there exist neighbourhoods N_x of *x* not containing *y* and N_v of *y* not containing *x*;
- (ii) *T*² (Hausdorff) if each pair of distinct elements has disjoint neighbourhoods;
- (iii) regular, if for each $x \in X$ and any closed subset *F* of *X* not containing *x*, there exist disjoint open sets G_1 and G_2 with $x \in G_1$ and $F \subseteq G_2$ (*X* is called T_3 if it is T_1 and regular);
- (iv) normal, if for each pair of disjoint closed subsets F_i , $i = 1, 2$ of X, there exist disjoint open sets G_i , $i = 1, 2$ with $F_i \subseteq G_i$, $i = 1, 2$ (*X* is called T_4 if it is T_1 and normal).

(Every T_4 space is T_3 and each T_3 space is T_2 , while a T_2 space is necessarily T_1).

Theorem 1.1.27 (Urysohn's Lemma) *If A and B are disjoint closed subsets of a normal space X, then there is a continuous function f* : $X \rightarrow [0, 1]$ *such that* $f \equiv 0$ *on A and* $f \equiv 1$ *on B.*

Theorem 1.1.28 Let X and Y be topological spaces and $f : X \rightarrow Y$ be a continuous *map. If X is compact, then f* (*X*) *is a compact subset of Y . If X is connected, then f* (*X*) *is a connected subset of Y .*

Corollary 1.1.29 If X is a compact topological space and $f: X \to \mathbb{R}$ is a continu*ous map, then f attains its maximum and minimum on X. If X is a connected space and* $f: X \to \mathbb{R}$ *is continuous, then* $f(X)$ *is an interval.*

1.2 Metric Spaces

In this section, basic concepts and theorems from the theory of metric spaces are recalled. For details, in addition to the references cited in Sect. [1.1,](#page-0-0) Kaplansky [\[6\]](#page-20-6) may be consulted.

Definition 1.2.1 Let *X* be a non-void set. A map $d : X \times X \rightarrow [0, \infty)$ (= \mathbb{R}^+) is called a metric if

- (i) $d(x, x) = 0$ for all $x \in X$;
- (ii) $d(x, y) = 0$ implies $x = y$;
- (iii) $d(x, y) = d(y, x)$, for all $x, y \in X$;
- (iv) $d(x, y) \leq d(x, z) + d(z, y)$ for all *x*, *y*, *z* (triangle inequality).

The pair (X, d) is called a metric space. A map *d* satisfying (i), (iii) and (iv) is called a pseudometric and the corresponding (*X*, *d*) is called a pseudometric space.

Definition 1.2.2 If (X, d) is a metric space, the set $B(x_0; r) = \{x \in X : d(x_0, x)$ *r*} for *r* > 0 is called an open sphere of radius *r* centred at x_0 , while the set { $x \in X$: $d(x_0, x) \leq r$ is referred as the closed sphere of radius *r* with centre x_0 .

Remark 1.2.3 The family of all open spheres ${B(x; r) : x \in X, r > 0}$ is a base for a topology on *X* called the metric topology on *X* induced by *d*.

- *Example 1.2.4* (i) If *X* is a non-empty set the map $d : X \times X \to \mathbb{R}^+$ defined by $d(x, y) = 1$ for $x \neq y$ and $d(x, x) = 0$ is a metric on *X* called the discrete metric. The corresponding metric topology on *X* is the discrete topology.
- (ii) On $\mathbb{R}, d(x, y) = |x y|$, the absolute value of $x y$ defines a metric called the usual (or standard) metric on $\mathbb R$ and the topology induced is the usual topology on $\mathbb R$ (with the base comprising all open intervals).
- (iii) On \mathbb{R}^n , the set of all *n*-tuples of real numbers, $d(\overline{x}, \overline{y}) = \left(\sum_{n=1}^{\infty} \overline{y}\right)^n$ *i*=1 $|x_i - y_i|^2\bigg)^{\frac{1}{2}}$, where $\overline{x} = (x_1, x_2, \ldots, x_n)$ and $\overline{y} = (y_1, y_2, \ldots, y_n)$ defines a metric, called

the Euclidean metric on R*ⁿ*. (iv) $C[a, b]$, the set of all continuous real-valued function on the closed interval $[a, b]$, where $a < b$, $a, b \in \mathbb{R}$ is a metric space under the metric

$$
d(f, g) = \sup\{|f(x) - g(x)| : x \in [a, b]\}
$$

where $f, g \in \mathcal{C}[a, b]$. This metric is called Tschebyshev or uniform metric.

- (v) More generally $C(X)$, the set of all continuous real-valued functions on a compact topological space becomes a metric space with the metric *d* defined by $d(f, g) = \sup\{|f(x) - g(x)| : x \in X\}$ where $f, g \in C(X)$.
- (vi) $d(f, g) = \int_a^b |f(t) g(t)| dt$ also defines a metric on $\mathcal{C}[a, b]$ the set of all continuous real-valued functions on $[a, b]$ tinuous real-valued functions on [*a*, *b*].
- (vii) If (X, d) is a metric space and $S \subseteq X$, then the restriction of *d* to $S \times S$ is a metric and this metric topology is precisely the topology of *S* relative to the metric topology on *X*.

Theorem 1.2.5 *A metric space is second countable if and only if it is separable.*

Theorem 1.2.6 *Every metric space is a Hausdorff normal space.*

Definition 1.2.7 A sequence (x_n) in a metric space (X, d) is called Cauchy (fundamental) if $d(x_m, x_n) \to 0$ as $m, n \to \infty$. A metric space is said to be complete if every Cauchy sequence in *X* converges to an element of *X*.

Theorem 1.2.8 (Baire) *No complete metric space can be written as a countable union of closed sets having empty interior.*

Definition 1.2.9 Let (X_i, d_i) , $i = 1, 2$ be metric spaces. A map $T : X_1 \rightarrow X_2$ is called an isometry if $d_2(Tx_1, Tx_2) = d_1(x_1, x_2)$ for all $x_1, x_2 \in X_1$.

Theorem 1.2.10 *Each metric space* (*X*, *d*) *can be isometrically embedded in a complete metric space* $(\overline{X}, \overline{d})$ *as a dense subset. Further such a complete metric space* \overline{X} *, called the completion of* X *is unique up to isometry.*

Remark 1.2.11 In example [1.2.4,](#page-5-0) except the space described in (vi), the metric spaces in examples (i)–(v) are complete.

Theorem 1.2.12 *If*(*X*, *d*) *is a metric space, then* $d_1(x, y) = \min\{1, d(x, y)\}\,$, $x, y \in$ *X defines a metric on X and the topologies induced on X by these metrices are the same.*

Theorem 1.2.13 *If* (X_n, d_n) , $x \in \mathbb{N}$ *is a sequence of metric spaces, then* $X = \prod X_n$ *ⁿ*∈^N

is a metric space under the metric d defined by

$$
d(\overline{x}, \overline{y}) = \sum_{n=1}^{\infty} \frac{1}{2^n} \left(\frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)} \right),
$$

where $\bar{x} = (x_n)$ *and* $\bar{y} = (y_n)$ *are in X. Further, if each* (X_n, d_n) *is complete, then* (*X*, *d*) *is complete.*

The following metrization theorem is classical.

Theorem 1.2.14 (Urysohn) *A regular T*¹ *second countable topological space is metrizable (in the sense that there is a metric on this space whose metric topology is the given topology).*

A concept basic to the study of the metrization problem is defined below.

Definition 1.2.15 A family *F* of subsets of a topological space (X, \mathcal{T}) is called

- (i) locally finite, if each point of the space has a neighbourhood that intersects only finitely many sets in \mathcal{F} ;
- (ii) discrete if each point of the space has a neighbourhood that intersects at most one member of \mathcal{F} ;
- (iii) σ -locally finite (σ -locally discrete) if it is the union of a countable collection of locally finite (finite) subfamilies.

Theorem 1.2.16 (Metrization theorems) *A topological space is metrizable if and only if it is T*¹ *and regular with*

^a σ*-locally finite base (Nagata–Smirnov); or ^a* σ*-discrete base (Bing).*

Another important notion is that of paracompactness formulated below.

Definition 1.2.17 A topological space *X* is called paracompact if each open cover *U* of *X* has an open locally finite refinement U^* (viz. U^* is locally finite and each member of U^* is open and is a subset of some set in U).

Theorem 1.2.18 *Every pseudometric space is paracompact and a paracompact T*² *space is normal.*

Definition 1.2.19 Let *X* be a topological space. A family $\{f_\lambda : \lambda \in \Lambda \neq \emptyset\}$ of con-
tinuous functions manning *X* into [0, 1] is called a partition of unity if for each tinuous functions mapping X into $[0, 1]$ is called a partition of unity if for each $x \in X$, $\sum_{\lambda \in A} f_{\lambda}(x) = 1$ and all but a finite number of f_{λ} 's vanish on some neighbour-

hood of *x*. A partition of unity $\{f_{\lambda} : \lambda \in \Lambda \neq \emptyset\}$ in subordinate to a cover *U* if each f_{λ} vanishes outside some member of *U* f_{λ} vanishes outside some member of \mathcal{U} .

Theorem 1.2.20 *A regular* T_1 *space is paracompact if and only if for each open covering of X, there is a partition of unity subordinate to this covering. For every compact T*² *space, every open cover has a partition of unity subordinate to it.*

Definition 1.2.21 A subset *S* of a metric space (X, d) is said to be totally bounded, if for each $\epsilon > 0$, there exists a finite subset $\{x_1, x_2, \ldots, x_n\}$ (depending on ϵ) such that

 $S \subseteq \bigcup_{i=1}^{n} B(x_i; \epsilon)$. A subset *S* is said to be bounded if $S \subseteq B(x; r)$ for some $x \in X$ and some $r > 0$.

Theorem 1.2.22 *For a metric space* (*X*, *d*)*, the following are equivalent:*

- *(i) X is compact;*
- *(ii) X is complete and totally bounded;*
- *(iii) every sequence in X has a convergent subsequence;*
- *(iv) X has the Bolzano–Weierstrass property, viz. for every infinite subset A of X has a limit point* $x_0 \in X$ *, i.e. a point* x_0 *such that every neighbourhood of* x_0 *meets A.*

Theorem 1.2.23 *Let* (X_i, d_i) *,* $i = 1, 2$ *be metric spaces and* $f: X_1 \rightarrow X_2$ *be a continuous map. If X*¹ *is compact, then f is uniformly continuous in the sense that for each* $\epsilon > 0$ *there exists* $\delta > 0$ *depending only on* ϵ *so that* $d_2(f(x), f(y)) < \epsilon$ *whenever* $x, y \in X_1$ *and* $d_1(x, y) < \delta$.

Definition 1.2.24 For a non-void subset *A* of a metric space (X, d) , the distance of a point *x* from *A* is defined as $D(x, A) = \inf \{ d(x, a) : a \in A \}.$

Theorem 1.2.25 *Let A be a non-void subset of a metric space* (X, d) *. Then* $\overline{A} =$ ${x \in X : D(x, A) = 0}$ *. Further,* $|D(x, A) - D(y, A)| \le d(x, y)$ *for any x*, *y* ∈ *X and the map* $x \to D(x, A)$ *is a continuous map of* X *into* \mathbb{R}^+ *.*

1.3 Normed Linear Spaces

Normed linear spaces, constituting the base of Functional Analysis are metric spaces with a richer (algebraic) structure. They provide a natural setting for mathematical modelling of many natural phenomena. Bollabos [\[2](#page-20-7)], Kantorovitch and Akhilov [\[5](#page-20-8)], Lyusternik and Sobolev [\[8](#page-20-9)], Rudin [\[11,](#page-20-10) [12\]](#page-20-11), Simmons [\[13\]](#page-20-5) and Taylor [\[14](#page-20-12)] may be consulted for a detailed exposition of the following concepts and theorems. It is assumed that the reader is familiar with the concepts of groups, rings and fields.

Definition 1.3.1 A linear space or vector space over a field *F* is a triple $(V, +, \cdot)$, where $+$ is a binary operation (called vector addition or simply addition) and \cdot is a mapping from $F \times V$ into *V* (called scalar multiplication) satisfying the following conditions;

- (i) $(V, +)$ is a commutative group with θ (called zero vector) as its identity element;
- (ii) for all $\lambda \in F$, $x, y \in V$ λ . $(x + y) = \lambda x + \lambda y$;
- (iii) for all $\lambda, \mu \in F$ and $x \in V$ ($\lambda + \mu$). $x = \lambda.x + \mu.x$ and $\lambda \cdot (\mu \cdot x) = (\lambda \cdot \mu) \cdot x$ (where $\lambda \mu$ is the product of λ and μ under the multiplication in the field *F*);
- (iv) $0 \cdot x = \theta$, $1 \cdot x = x$ for all $x \in V$, where 0 is the additive identity and 1 the multiplicative identity of the field *F*.

Often 0 is also used to represent the zero vector and the context will clarify this without much difficulty. If F is the field of real (complex) numbers then V is called a real (complex) vector space. In what follows, we will be concerned only with real or complex vector spaces. Also a linear subspace V_1 of V is a subset of V which is a linear space over *F* with vector addition and scalar multiplication of *V* restricted to V_1 .

Definition 1.3.2 A subset *S* of a linear space *V* over a field *F* is said to be linearly independent if for every finite subset $\{s_1, \ldots, s_n\}$ of *S*, $\sum_{n=1}^{n}$ $\sum_{i=1}^n \alpha_i s_i = \theta$ implies $\alpha_i = 0$

for $i = 1, 2, ..., n$ where $\alpha_i \in F$. An element of the form $\sum_{i=1}^{n} \alpha_i s_i$ where $\alpha_i \in F$ and $s_i \in S$ is called a finite linear combination of members of *S*.

Definition 1.3.3 A subset *S* of a linear space *V* over a field *F* is said to span *V* if every element of *V* can be written as a finite linear combination of elements from *S*. A maximal linearly independent subset of a linear space *V* over *F* is called a basis

for *V*.

Any two bases of a vector space have the same cardinality.

Definition 1.3.4 The cardinality of a basis of a linear space *V* is called the dimension of the linear space. If a linear space has a finite dimension, then it is called a finitedimensional vector space. Otherwise the linear space is infinite-dimensional.

Definition 1.3.5 Let $(X, +, \cdot)$ be a linear space over $F = \mathbb{R}$ or \mathbb{C} . A map $\|\cdot\|$: $X \to \mathbb{R}^+$ is called a norm if the following conditions are satisfied:

- 1. $||x|| = 0$ if and only if $x = 0$;
- 2. $\|x + y\| \le \|x\| + \|y\|$ for all $x, y \in X$ (triangle inequality);
- 3. $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in F$ and all $x \in X$, $|\alpha|$ being the modulus of α . The pair $(X, \|\cdot\|)$ is called a normed linear space.

Remark 1.3.6 If $(X, \|\cdot\|)$ is a normed linear space, then $d(x, y) = \|x - y\|, x, y \in$ *X* is a metric on *X*.

Definition 1.3.7 A normed linear space $(X, \|\cdot\|)$ is called a Banach space if it is complete in the metric induced by the norm.

Remark 1.3.8 The linear spaces in (ii)–(v) of Example [1.2.4](#page-5-0) are Banach spaces with the norms defined by $||x|| = d(x, \theta)$ where *d* is the metric described in the corresponding case, while (vi) of Example [1.2.4](#page-5-0) is a normed linear space under the norm $\int_a^b |f(t)|dt$. However, this is not a Banach space.

Definition 1.3.9 Let $(X_i, \|\cdot\|_i), i = 1, 2$ be normed linear spaces over $F = \mathbb{R}$ or \mathbb{C} . A linear operator is a map $T: X_1 \to X_2$ such that $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$ for all $\alpha, \beta \in F$ and $x, y \in X_1$. If X_2 is the base field $F (= \mathbb{R}$ or \mathbb{C} with the modulus or absolute value as a norm) which is also a normed linear space, the linear operator is called a linear functional. If the linear operator T is continuous as a map between the metric spaces X_1 and X_2 with metrics induced by the norms, then it is called a continuous linear operator.

Theorem 1.3.10 Let $(X_i, \|\cdot\|_i)$, $i = 1, 2$ be normed linear spaces over $F = \mathbb{R}$ or \mathbb{C} *and* $T: X_1 \to X_2$ *a linear operator. Then the following are equivalent:*

- *(i) T is continuous on X*1*;*
- *(ii) T* is continuous at some $x_0 \in X_1$;

(iii) there exists $K > 0$ *such that* $||Tx||_2 \le K||x||_1$ *for all* $x \in X_1$ *.*

Remark 1.3.11 A linear operator satisfying (iii) of Theorem [1.3.10](#page-9-0) is called bounded. In view of the theorem above, bound linear operators are precisely continuous linear operators.

If $T: X_1 \to X_2$ is a continuous linear operator where $(X_i, \|\cdot\|_i)$, $i = 1, 2$ are normed linear spaces, then

inf{*K* > 0 : *x* ∈ *X*₁ and $||Tx||_2 \le K||x||_1$ } = sup{ $||Tx||_2 : ||x||_1 = 1, x ∈ X_1$ }

is finite and is called the norm of the linear operator and is denoted by $||T||$.

Theorem 1.3.12 *For i* = 1, 2, let $(X_i, \|\cdot\|_i)$ be normed linear spaces. $B(X_1, X_2)$ *the set of all bounded (continuous) linear operators is a normed linear space under the norm described in Remark [1.3.11.](#page-9-1) If* $(X_2, \|\cdot\|_2)$ *is complete so is* $B(X_1, X_2)$ *under this norm.*

Theorem 1.3.13 (Hahn–Banach) *If f is a bounded linear functional from a linear subspace* N of a normed linear space $(X, \|\cdot\|)$, then there is a bounded linear *functional* f^* *on X such that* $f^* \equiv f$ *on* $\mathbb N$ *and* $\|f\| = \|f^*\|$.

The Hahn–Banach theorem insures the abundance of continuous linear functionals in any nontrivial normed linear space.

Definition 1.3.14 Given a normed linear space $(X, \|\cdot\|)$, the space of all continuous linear functionals on *X* is called the dual or conjugate of *X* and is denoted by *X*∗. The dual of *X*[∗] denoted by *X*∗∗ is called the second dual or second conjugate of *X*.

Even, if *X* is incomplete, X^* and X^{**} are complete.

Theorem 1.3.15 *Let* $(X, \|\cdot\|)$ *be a normed linear space. The map f_x defined by* $f \rightarrow f(x)$ *for each* $x \in X$ *is a bounded linear functional on* X^* *and* $||f_x|| = ||x||$ *. The map* $\varphi: X \to X^{**}$ *defined by* $\varphi(x) = f_x$ *is one-one, isometric linear map of X into X*∗∗ *and is called the duality mapping. The duality mapping is the natural embedding (of X into X*∗∗*).*

Definition 1.3.16 If the duality mapping φ maps *X* onto *X*^{∗∗}, the second dual of *X*, then *X* is said to be reflexive.

Definition 1.3.17 If $(X, \|\cdot\|)$ is a normed linear space, then the weak topology on *X* is the smallest topology on *X* with respect to which all the functionals of *X*[∗] are continuous. The weak * topology on X^* is the smallest topology on X^* such that $\varphi(x)$ (= f_x), φ being the natural embedding of *X* into *X*^{**} is continuous.

Theorem 1.3.18 (Alaoglu) *The unit sphere S*[∗] *in X*[∗] *is compact in the weak * topology on X*∗*.*

Theorem 1.3.19 *A Banach space is reflexive if and only if the closed unit sphere* $S = \{x \in X : ||x|| \leq 1\}$ *is compact in the weak topology.*

The following three theorems are basic to Functional Analysis.

Theorem 1.3.20 (Open Mapping Theorem) *For* $i = 1, 2$, *let* $(X_i, \|\cdot\|_i)$ *be Banach spaces. If* $T : X_1 \rightarrow X_2$ *is a continuous linear operator mapping* X_1 *onto* X_2 *, then T is an open mapping (i.e. a function for which the image of any open set is open). Consequently a continuous linear bijection of X*¹ *onto X*² *is a linear homeomorphism.*

Theorem 1.3.21 (Closed Graph Theorem) *For* $i = 1, 2$, let $(X_i, \|\cdot\|_i)$ be Banach *spaces and T* : $X_1 \rightarrow X_2$ *a linear operator. T is continuous if and only if the graph of* $T = \{(x, Tx) : x \in X_1\}$ *is a closed subset of the product topological space* $X_1 \times X_2$ *.*

Theorem 1.3.22 (Banach–Steinhaus theorem) *Let* $T_{\lambda}: X_1 \to X_2$, $\lambda \in \Lambda \neq \emptyset$ becontinuous linear operators manning a Banach space X, into a normed linear space *continuous linear operators mapping a Banach space X*¹ *into a normed linear space X*₂ *such that for each* $x \in X_1$, $\{||T_\lambda(x)|| : \lambda \in \Lambda\}$ *is a bounded set of real numbers.*
Then $\{||T_\lambda|| : \lambda \in \Lambda\}$ *is hounded Then* $\{\|T_\lambda\| : \lambda \in \Lambda\}$ *is bounded.*

Theorem 1.3.23 *A normed linear space is finite-dimensional if and only if the unit sphere is compact.*

Theorem 1.3.24 If $\|\cdot\|_i$, $i = 1, 2$ are two norms on a finite-dimensional normed *linear space then* $\|\cdot\|_1$ *and* $\|\cdot\|_2$ *are equivalent in the sense that there exist two positive numbers* K_1 *and* K_2 *such that*

$$
K_1||x||_1 \le ||x_2|| \le K_2||x||_1 \text{ for all } x \in X.
$$

Consequently a finite-dimensional normed linear space over $\mathbb R$ *or* $\mathbb C$ *is equivalent to* \mathbb{R}^n *or* \mathbb{C}^n *with the norm given by* $\|(x_1, \ldots, x_n)\| = \left(\sum_{n=1}^{\infty} \frac{1}{n}\right)$ *i*=1 $|x_i|^2\right)^{\frac{1}{2}}$ *and is a Banach*

space.

Among normed linear spaces, inner product spaces have rich geometric properties. Many features of the Euclidean spaces carry over to inner product spaces. Parseval identity for orthogonal functions has a crisp functional analytic formulation.

Definition 1.3.25 A linear space $(V, +, \cdot)$ over $F = \mathbb{R}$ or \mathbb{C} is called an inner product space, if there is a map $\langle \rangle : V \times V \rightarrow F$ called an inner product satisfying the following conditions:

(i) $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$ for all $x, y, z \in V$ and $\alpha, \beta \in F$; (ii) $\langle x, y \rangle = \langle y, x \rangle$ for all $x, y \in V$, \overline{z} being the complex conjugate of $z \in \mathbb{C}$; (iii) $\langle x, x \rangle \ge 0$ for all $x \in V$ and $\langle x, x \rangle = 0$ if and only if $x = \theta$.

Proposition 1.3.26 *An inner product space is a normed linear space with the norm* $\|\cdot\|$ *defined by* $\|x\| = \sqrt{\langle x, x \rangle}$ *(the positive square root of* $\langle x, x \rangle$ *), as* $| \langle x, y \rangle | \leq ||x|| ||y||$ for all x, y in V (Schwarz inequality).

Definition 1.3.27 A Hilbert space is an inner product space which is complete in the norm induced by the inner product.

Example 1.3.28 (i) \mathbb{R}^n or \mathbb{C}^n is a Hilbert space in the norm induced by the inner product defined by $\langle x, y \rangle = \sum^{n}$ *i*=1 *xi yi* $\left(\sum_{n=1}^{n}$ *i*=1 $x_i \overline{y}_i$ \setminus for $x = (x_1, ..., x_n), y =$ $(y_1, \ldots, y_n) \in \mathbb{R}^n \mathbb{(C}^n)$.

(ii) ℓ_2 , the space of complex sequences (z_n) with $\sum_{n=1}^{\infty}$ *n*=1 $|z_n|^2 < +\infty$ is a Hilbert

space with the inner product defined by $\langle x, y \rangle = \sum_{n=1}^{\infty} x_n \overline{y}_n$ for $x = (x_n)$, *n*=1 *y* = (y_n) ∈ ℓ_2 .

(iii) $C_{\mathbb{C}}[a, b]$, the linear space of all continuous complex-valued functions on [a, b] is an inner product space under the inner product $\lt f$, $g \gt = \int_a^b f(x) \overline{g(x)} dx$.
This is not a Hilbert space as the space is not complete in the induced norm This is not a Hilbert space as the space is not complete in the induced norm $|| f || = \left(\int_a^b |f(x)|^2 dx \right)^{\frac{1}{2}}$. However, its completion is $L_2[a, b]$, the Hilbert space of Lebesgue measurable complex functions which are square-integrable with respect to the Lebesgue measure.

Theorem 1.3.29 *Every incomplete inner product space can be isometrically embedded as a dense subspace of a Hilbert space.*

Theorem 1.3.30 A normed linear space $(X, \|\ \|)$ is an inner product space if and *only if the following parallelogram law is valid:*

$$
for x, y \in X, ||x + y||^{2} + ||x - y||^{2} = 2(||x||^{2} + ||y||^{2})
$$

Definition 1.3.31 A subset *C* of a linear space *V* over $F = \mathbb{R}$ or \mathbb{C} is called convex if $tx + (1 - t)y$ ∈ *C* for all $t \in [0, 1]$, whenever $x, y \in C$.

Theorem 1.3.32 *A non-empty closed convex subset of a Hilbert space contains a unique element with least norm.*

Definition 1.3.33 Let $(V, \leq, >)$ be an inner product space over \mathbb{R} or \mathbb{C} . $x \in V$ is said to be orthogonal to $y \in V$ if $\langle x, y \rangle = 0$ and we write $x \perp y$ (or $y \perp x$). For $S \subseteq V$, $S^{\perp} = \{v \in V : v \perp s$, for all $s \in S$. S^{\perp} is called the orthogonal complement of *S*.

Theorem 1.3.34 *If M is a proper closed linear subspace of a Hilbert space H, then*

- *(i)* M^{\perp} *is a closed linear subspace of H;*
(ii) $M \cap M^{\perp} = \{\theta\}$;
-
- *(ii)* $M \cap M^{\perp} = \{\theta\}$;
 (iii) each $h \in H$ can be written uniquely as $h = m_1 + m_2$, where $m_1 \in M$, $m_2 \in M^{\perp}$ *and* $||h||^2 = ||m_1||^2 + ||m_2||^2$. *(In this case, we write* $H = M \oplus M^{\perp}$ *and call H the direct sum of M and its orthogonal complement* M^{\perp} *).*

Definition 1.3.35 A non-empty set *S* of a Hilbert space *H* is called orthogonal if $x, y \geq 0$ whenever $x, y \in S$ and $x \neq y$. *S* is called orthonormal if each element of *S* has unit norm and *S* is orthogonal.

Theorem 1.3.36 *If* $S = \{e_{\lambda} : \lambda \in \Lambda \neq \emptyset\}$ *is an orthonormal set in a Hilbert space*
H and *if* $x \in H$ then $\{e_{\lambda} : \lambda \in \Lambda \geq \Lambda\}$ is either empty or countable. Also $\sum_{n=1}^{\infty}$ $| < x, e_{\lambda} > |^2 \leq ||x||^2$. *Further, a nonzero Hilbert space has a maximal H* and if $x \in H$, then $\{e_{\lambda} : x, e_{\lambda} > \neq 0\}$ is either empty or countable. Also

 $\lambda \in \Lambda$
orthonormal set of vectors, called an orthonormal basis. If $\{e_\lambda : \lambda \in \Lambda \neq \emptyset\}$ *is an*
orthonormal basis for H and $\mu \in H$, then $\mu \in \Lambda$ as a whome $\mu \in \Lambda$ is $\mu \in \Lambda$. *orthonormal basis for H and* $x \in H$, then $x = \sum$ $\lambda \in \Delta$ $a_{\lambda}e_{\lambda}$ *, where* $a_{\lambda} = \langle x, e_{\lambda} \rangle$.

Theorem 1.3.37 (Parseval identity) *If* $\{e_\lambda : \lambda \in \Lambda \neq \emptyset\}$ *is an orthonormal basis of <i>I* than $\|\mathbf{w}\|^2$ $\sum_{\lambda} |\mathbf{w}|^2 \leq \sum_{\lambda} |\mathbf{w}|^2$ $\sum_{\lambda} |\mathbf{w}|^2$ *H* then $||x||^2 = \sum$ $\lambda \in \Lambda$ $| < x, e_{\lambda} > |^{2}.$

Example 1.3.38 (i) $L_2[0, 2\pi]$, the space of complex-valued Lebesgue measurable functions *f* on $[0, 2\pi]$ which are square-integrable in the sense that $\int_0^{2\pi} |f(x)|$ $\int_0^{2\pi} |f(x)|^2 dx < +\infty$ is a Hilbert space under the inner product $\langle f, g \rangle =$
 $\int_0^{2\pi} f(x) \overline{g}(x) dx$. The set $\left\{ \frac{e^{inx}}{\overline{g}} : n = 0, \pm 1, \pm 2, \ldots \right\}$ is an orthonormal basis. $\int_0^{2\pi} f(x)\overline{g}(x)dx$. The set $\left\{\frac{e^{inx}}{\sqrt{2\pi}} : n = 0, \pm 1, \pm 2, \dots\right\}$ is an orthonormal basis.

(ii) $L_2(\mathbb{R})$, the space of all Lebegue-measurable functions for which $\int_{-\infty}^{\infty} |f^2(x)| dx$ is finite, is also a Hilbert space under the inner product < $f, g \geq f \int_{-\infty}^{\infty} f(x)$ $\overline{g}(x)dx$. $\{x^n e^{-\frac{x^2}{2}}, n = 0, 1, 2, \ldots\}$ gives rise to an orthonormal basis for $L_2(\mathbb{R})$ via the Gram–Schmidt orthogonalization process (see Simmons [13]) via the Gram–Schmidt orthogonalization process (see Simmons [\[13](#page-20-5)]).

Among normed linear spaces, strictly convex spaces and the more specialized uniformly convex spaces resemble the Euclidean spaces geometrically.

Definition 1.3.39 A normed linear space $(N, \|\cdot\|)$ over $F = \mathbb{R}$ or \mathbb{C} is said to be strictly convex if for *x*, $y \in N$ with $||x|| = ||y|| = 1$ and $x \neq y$, $||\frac{x+y}{2}|| < 1$.

Definition 1.3.40 A normed linear space $(N, \|\cdot\|)$ is called uniformly convex if there exists an increasing positive function $\delta : (0, 2] \rightarrow (0, 1]$ such that for $x, y \in N$, $||x||, ||y|| \le r$ and $||x - y|| \ge \epsilon r$ imply that $\left\| \frac{x + y}{2} \right\| < (1 - \delta(\epsilon))r$.

Remark 1.3.41 The above definition is equivalent to the requirement that for $||x_n||, ||y_n|| \le 1$ and $||x_n + y_n|| \to 2, ||x_n - y_n|| \to 0$ as $n \to \infty$.

Clearly, every Hilbert space is uniformly convex. Also $L_p[0, 1]$ for $p \ge 2$ is uniformly convex. While every uniformly convex space is strictly convex, *C*[0, 1] is not even strictly convex.

Hilbert spaces are isometric to their duals, in view of the following.

Theorem 1.3.42 (Riesz Representation Theorem) *Let H be a Hilbert space over* R *or* $\mathbb C$ *and* $f \in H^*$ *, the dual of H. Then there exists a unique element* $y_f \in H$ *such that* $f(x) = \langle x, y_f \rangle$ *for each* $x \in H$ *and* $||f|| = ||y_f||$ *.*

For $f_y \in H^*$ *defined by* $f_y(x) = \langle x, y \rangle$ *the correspondence* $T_y = f_y$ *maps H onto* H^* *so that* $||T(y)|| = ||y||$, $T(y_1 + y_2) = Ty_1 + Ty_2$ *and* $T(\alpha y) = \overline{\alpha}T(y)$ *for all* $y \in H$.

Theorem 1.3.43 *Every Hilbert space is reflexive.*

In view of the above theorems for a bounded linear operator $T : H \to H$, *H* being a Hilbert space over $\mathbb R$ or $\mathbb C$, there is a unique bounded linear operator $T^* : H \to H$ such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x, y \in H$.

Definition 1.3.44 Let *H* be a Hilbert space and $T : H \rightarrow H$ a bounded linear operator. A linear operator T^* : $H \to H$ satisfying, $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x, y \in H$ is called an adjoint operator of *T*.

Theorem 1.3.45 *If* $T \in B(H)$ *, the space of all bounded linear operators mapping H* into itself, then T [∗] the adjoint of T is uniquely defined. Further,

- (i) $(T_1 + T_2)^* = T_1^* + T_2^*$, (ii) $(\alpha T)^* = \overline{\alpha} T^*$
- (iii) $(T_1T_2)^* = T_2^*T_1^*$,
- (iv) $(T^*)^* = T^*$,
- (V) $||T^*||^2 = ||T||^2 = ||T^*T||.$

Definition 1.3.46 A linear operator $T \in B(H)$, the space of all bounded linear operators on a Hilbert space *H* is said to be self-adjoint if $T = T^*$.

Definition 1.3.47 For $T \in B(H)$, the spectrum of *T* is the set { $\lambda \in \mathbb{C} : T - \lambda I$ is not invertible}, *I* being the identity operator. An eigenvalue of *T* is a number $\lambda \in \mathbb{C}$ such that there exists a nonzero vector $x_0 \in H$ with $Tx_0 = \lambda x_0$ and in this case x_0 is called an eigenvector (corresponding to the eigenvalue λ).

Theorem 1.3.48 *For* $T \in B(H)$ *, the space of all bounded linear operators on a Hilbert space H is self-adjoint if and only if* $\langle Tx, x \rangle$ *is real for all* $x \in H$ *. So the eigenvalues of a self-adjoint operator are real. Further* $\sigma(T)$ *, the spectrum of T* lies in $[m, M]$ *, where* $m = \inf \{ \langle X, x \rangle : x \in H \text{ and } ||x|| = 1 \}$ and $M = \sup \{ \langle X, x \rangle : x \in H \text{ and } ||x|| = 1 \}$ $Tx, x >: x \in H$ *and* $||x|| = 1$ *, Also, m, M* $\in \sigma(T)$ *.*

Definition 1.3.49 A linear operator *P* in $B(H)$ is called a projection if *P* is selfadjoint and $P^2 = P$.

Remark 1.3.50 If *P* is a projection on a Hilbert space *H*, then $P = M \oplus M^{\perp}$ where $M = \{Px : x \in H\}$, the range of *P* and M^{\perp} , the range of *I*-*P*. Further, every representation of *H* as the orthogonal sum $M + M^{\perp}$ defines a unique projection of *H* onto *M*.

Theorem 1.3.51 *For any self-adjoint operators T in B(H), there is a family* $\{P_\lambda\}$: $\lambda \in \mathbb{R}$ *of projections on H satisfying the following conditions:*

- *(i) if* $TC = CT$ *for* $C \in B(H)$ *, then* $P_{\lambda}C = CP_{\lambda}$ *for all* $\lambda \in \mathbb{R}$ *;*
- *(ii)* $P_{\lambda}P_{\mu} = P_{\lambda}$ *, if* $\lambda < \mu$ *;*
- (*iii*) $P_{\lambda-0} = \lim_{\mu \to \lambda-0} P_{\mu} = P_{\lambda}$ (*i.e.* P_{λ} *is continuous from the left with respect to* λ *)*;
(*iv*) $P_{\lambda} = 0$ *if*) $\leq m$ *and* $P_{\lambda} = I$ for $\lambda > M$
- *(iv)* $P_{\lambda} = 0$ *if* $\lambda \leq m$ *and* $P_{\lambda} = I$ *for* $\lambda > M$ *. (Such a family of projections* P_{λ} *is called a resolution of identity generated by T).*

Theorem 1.3.52 (Spectral theorem) *For every self-adjoint operator* $T \in B(H)$ *and* $any \epsilon > 0,$

$$
T = \int_{m}^{M+\epsilon} \lambda dP_{\lambda}
$$

where the Stieltjes integral is the limit of (appropriate) integral sums in the operatornorm topology.

Definition 1.3.53 A linear operator $T : N_1 \rightarrow N_2$ where N_1 and N_2 are normed linear spaces is said to be a compact operator if $\overline{T(U)}$ is compact in N_2 for each bounded subset *U* of *N*1.

Theorem 1.3.54 *Let* $T : B \rightarrow B$ *be a compact linear operator on a Banach space B.* σ(*^T*)*, the spectrum of T is finite or countably infinite and is contained in* $[-\|T\|, \|T\|]$. Every nonzero number in $\sigma(T)$ is an eigenvalue of T. If $\sigma(T)$ is *countably infinite, then 0 is the only limit point of* $\sigma(T)$ *.*

1.4 Topological Vector Spaces

It is convenient to recall the definition of a topological group and list some of its properties (see Kelley [\[7](#page-20-3)], Rudin [\[11\]](#page-20-10) and Royden [\[10](#page-20-13)]).

Definition 1.4.1 Let (G, \cdot) be a group with the identity element *e* and for each $x \in G$, x^{-1} denote the inverse of *x* (with respect to the binary operation ·). The triple (G, \cdot, \mathscr{T}) is called a topological group where \mathscr{T} is a topology on the group G with the binary operation \cdot such that the map $(x, y) \rightarrow xy^{-1}$ mapping $G \times G$ into G is continuous. (Here $G \times G$ carries the product topology.)

If (G, \cdot) is a group and $A, B \subseteq G$, we write $A \cdot B = \{a \cdot b : a \in A, b \in B\}$.

Theorem 1.4.2 *Let* (G, \cdot, \mathcal{F}) *be a topological group with the identity e. Then*

- *(i)* the map $x \to x^{-1}$ mapping G into G and the map $(x, y) \to xy$ mapping G \times G *into G are continuous. Conversely if* \mathcal{T}_1 *is a topology on a group* (G, \cdot) *such that* $x \to x^{-1}$ *and* $(x, y) \to xy$ *are continuous on G with the topology* \mathcal{T}_1 *, then* $(G, \cdot, \mathscr{T}_1)$ *is a topological group.*
- *(ii) the inversion map i, defined by* $i(x) = x^{-1}$ *is a homeomorphism of G onto G; for each a* \in *G*, $L_a(R_a)$ *called the left (right) translation by a, defined by* $L_a(x) = ax \t R_a(x) = xa$ *are homeomorphisms;*
- *(iii) a subset S of G is open if and only if for each* $x \in S$ *,* $x^{-1}S$ *(or equivalently Sx*−1*) is a neighbourhood of e;*
- *(iv) the family N of all neighbourhoods of e has the following properties:*

 $(iv-a)$ *for* $U, V \in \mathcal{N}, U \cap V \in \mathcal{N}$; *(iv-b)* for *U* ∈ N , $V \cdot V^{-1}$ ⊆ *U* for some $V \in N$;

- *(iv-c)* for *U* ∈ *N* and *x* ∈ *G*, *x*.*U*.*x*⁻¹ ∈ N ;
- *(v) the closure of a (normal) subgroup of G is a (normal) subgroup of G;*
- *(vi) every subgroup G*¹ *of G with an interior point is both open and closed and G*¹ *is closed or* $\overline{G_1} - G_1$ *is dense in* G_1 *;*
- *(vii) G is Hausdorff if it is a T*⁰ *space in the sense that for every pair of distinct points, there is a point for which some neighbourhood does not contain the other point.*

A topological vector space can be defined in analogy with a topological group.

Definition 1.4.3 The quadruple $(X, +, \cdot, \mathcal{F})$ where $(X, +, \cdot)$ is a vector space over $F = \mathbb{R}$ or \mathbb{C} and \mathscr{T} is a topology on *X* is called a topological vector space (linear topological space) if the following assumptions are satisfied:

- (i) (X, \mathscr{T}) is a T_1 -space;
- (ii) the function $(x, y) \rightarrow x + y$ mapping $X \times X$ into *X* is continuous and
- (iii) the function $(\alpha, x) \to \alpha.x$ mapping $F \times X$ into *X* is continuous.

Often, we simply say that *X* is a topological vector space (or t.v.s for short) when the topology $\mathscr T$ on X and the vector space operations are clear from the context.

Definition 1.4.4 A subset *S* of a topological vector space *X* is said to be bounded for every neighbourhood *V* of θ in *X*, there is a real number *s* such that $S \subseteq t$. *V* for every $t > s$. $S \subseteq X$ is called balanced if $\alpha.S \subseteq S$ for all $\alpha \in F$ with $|\alpha| \leq 1$. *S* is called absorbing if $X = \bigcup$ *t*.*S*.

Theorem 1.4.5 *Let X be a t.v.s. For each a* \in *X and* $\lambda \neq 0 \in F$ *define the translation operator* T_a *and the multiplication operator* M_λ *by the rules* $T_a(x) = x + a$ *and* $M_{\lambda}(x) = \lambda$ *x respectively for each* $x \in X$ *. Then,* T_a *and* M_{λ} *are homeomorphism of X onto X.*

Further G \subseteq *X is open if and only if* T_a (*G*) *is open for each a* \in *X. So the local base at 0 completely determines the local base at any* $x \in X$ *and hence the topology on X.*

Remark 1.4.6 Every normed linear space is a t.v.s.

t>0

Definition 1.4.7 A function *p* mapping a vector space *X* over F (=R or C) into *F* is called a seminorm if

- (i) $p(x + y) \leq p(x) + p(y)$ for all $x, y \in X$ and
- (ii) $p(\alpha x) = |\alpha| p(x)$ for all $x \in X$ and all $\alpha \in F$.

A seminorm is a norm if $p(x) \neq 0$ for $x \neq \theta$. A family P of seminorms is separating if for each $x \neq y$, there is a seminorm $p \in \mathcal{P}$ with $p(x - y) \neq 0$.

Theorem 1.4.8 *If P is a separating family of seminorms on a vector space V , then* $V(p, n) = {x \in X : p(x) < \frac{1}{n}}$, $p \in \mathcal{P}$ *is a local base of convex sets for a topology T on X. Thus,*(*X*, *T*)*is locally convex and each p is continuous. Also, E is bounded if and only if* $p(E)$ *is bounded for each* $p \in \mathcal{P}$ *.*

Definition 1.4.9 For an absorbing subset *A* of a t.v.s. *X*, the map $\mu_A : X \to \mathbb{R}$ defined by $\mu_A(x) = \inf\{t > 0 : t^{-1}x \in A\}$ is called the Minkowski functional of *A*.

Listed below are some of the basic properties and features of a topological vector space.

Theorem 1.4.10 *Let X be a topological vector space*

- *(i) if* $S \subseteq X$, $\overline{S} = \bigcap \{S + V : V \text{ is a neighbourhood of } 0\};$
- *(ii) if* $S_1, S_2 \subseteq X$, $\overline{S_1} + \overline{S_2} \subseteq \overline{S_1 + S_2}$;
- *(iii) if* $C \subseteq X$ *is convex, so are* C^0 *and* \overline{C} *;*
- *(iv) if* $B \subseteq X$ *is balanced, so is* \overline{B} *and if in addition* $0 \in B^0$ *,* B^0 *is balanced*;
- *(v) the closure of a bounded set is also bounded;*
- *(vi) every neighbourhood of 0 also contains a balanced neighbourhood of 0 and so X has a balanced local base;*
- *(vii) every convex neighbourhood of 0 contains a balanced convex neighbourhood of 0;*

(viii) if V is a neighbourhood of 0 and $r_n \uparrow +\infty$ *where* $r_1 > 0$ *,* $X = \bigcup_{n=0}^{\infty}$ *n*=1 *rnV ;*

- *(ix) if V is a bounded neighbourhood of 0 and* $\delta_n \downarrow 0$, $\delta_1 > 0$, $\{\delta_n V : n \in \mathbb{N}\}\$ *is a local base at 0;*
- *(x) if X is first countable, then it is metrizable and the metric is translation invariant;*
- *(xi) if X is locally compact, then X is finite dimensional.*

Theorem 1.4.11 *If A is a convex absorbing subset of a vector space X, then*

- (ι) $\mu_A(x + y) \leq \mu_A(x) + \mu_A(y)$ *for all x*, $y \in X$;
- (iii) $\mu_A(tx) \leq t \mu_A(x)$ *for* $t \geq 0$ *;*
- *(iii)* ^μ*^A is a seminorm, when A is balanced;*
- *(iv)* $B = \{x : \mu_A(x) < 1\} \subseteq A \subseteq C = \{x : \mu_A(x) \leq 1\}$ *and* $\mu_A = \mu_B = \mu_C$.

Theorem 1.4.12 *If B is a local base for a t.v.s.* (*X*, *J*) *comprising convex balanced neighbourhood, then* $\{\mu_V : V \in \mathcal{B}\}\$ *is a family of continuous seminorms that are separating (i.e. for x, y ineq X, then there is a* μ_V *such that* $\mu_V(x) \neq \mu_V(y)$). Further, *the topology having a local base generated by these seminorms of the form* {*x* : $\mu_V(x) < \frac{1}{n}$, $V \in \mathcal{B}$, $n \in \mathbb{N}$ *coincides with the topology on* X.

Definition 1.4.13 A t.v.s is said to be locally convex if it has a local base of convex sets. It is called an *F*-space if the topology is generated by complete translationinvariant metric. A locally convex *F*-space is called a Frechet space.

Theorem 1.4.14 *If* $\mathcal{P} = \{p_i : i \in \mathbb{N}\}\$ *is a countable separating family of seminorms on a vector space X, then the topology on X induced by P is metrizable and this metric d is given by*

$$
d(x, y) = \sum_{i=1}^{\infty} \frac{p_i(x, y)}{2^i (1 + p_i(x, y))}
$$

is translation invariant.

Theorem 1.4.15 (Kolmogorov) *A topological vector space is normable if and only if the origin has a convex balanced neighbourhood.*

Example 1.4.16 Let Ω be the union of a sequence of compact sets $K_n \subseteq R^m$ for $n = 1, 2, \ldots$ with $K_n \subseteq K_{n+1}^o$, $n = 1, 2, \ldots$. Define for each $f \in C(\Omega)$, the set of all complex-valued functions on Ω , $p_n(f) = \sup\{|f(x)| : x \in K_n\}$. Then, ${p_n, n = 1, 2, \ldots}$ is a separating family of continuous seminorms defining a complete translation-invariant metric on $C(\Omega)$. As the origin has no bounded neighbourhood, $C(\Omega)$ is non-normable. Since $C(\Omega)$ is locally convex, it is a Frechet space.

If Ω is any non-empty open subset $\mathbb C$, then $H(\Omega)$, the set of all complex functions analytic on Ω is a closed subspace of $C(\Omega)$. $H(\Omega)$ too is not normable.

Example 1.4.17 Let Ω be a non-void open set in \mathbb{R}^n . A multi-index α is an ordered *n*-tuple of the form $\alpha = (\alpha_1, \ldots, \alpha_n)$ where α_i are non-negative integers. For each multi-index, the differential operator D^{α} associated is defined by $D^{\alpha} = \left(\frac{\partial}{\partial x_1}\right)$ $\int^{\alpha_1} \cdots \left(\frac{\partial}{\partial x_n} \right)$ $\int_{0}^{\alpha_n}$ whose order is $|\alpha| = \alpha_1 + \cdots + \alpha_n$ and for $|\alpha| = 0$,

 $D^{\alpha} f = f$. A complex-valued function defined on Ω is said to belong to $C^{\infty}(\Omega)$ if $D^{\alpha} f \in C(\Omega)$ for every multi-index α . Let $\Omega = \bigcup_{m=1}^{\infty} K_m$ where each K_m is compact and $K_m \subseteq K_{m+1}^0$, $m = 1, 2, ...$. Define the seminorms ϕ_m on $C^{\infty}(\Omega)$, $m = 1, 2, ...$,
by $\phi_m(f) = \sup\{D^{\alpha} f(a) | : x \in K_m | \alpha | \le m\}$. Then $C^{\infty}(\Omega)$ is a Frechet space by $\phi_m(f) = \sup\{|D^{\alpha} f(a)| : x \in K_m, |\alpha| \leq m\}$. Then, $C^{\infty}(\Omega)$ is a Frechet space under the topology generated by the seminorms ϕ_m . Although every closed bounded subset of $C^{\infty}(\Omega)$ is sequentially compact (and hence compact in this case), $C^{\infty}(\Omega)$ is not locally bounded and hence not normable.

Example 1.4.18 For $0 < p < 1$, let $L_p[0, 1]$ be the linear space of all Lebeguemeasurable functions *f* on [0, 1] for which $\delta(f) = \int_0^1 |f(a)|^p dx < +\infty$. Then *d*, defined by $d(f, a) = \delta(f - a)$ defines a translation-invariant metric on *L*, [0, 1] and defined by $d(f, g) = \delta(f - g)$ defines a translation-invariant metric on $L_p[0, 1]$ and this metric is complete. Thus $L_p[0, 1]$ is an *F*-space. However, it is not locally convex. Indeed $L_p[0, 1]$ is the only open convex set. So, 0 is the only continuous linear functional on $L_p[0, 1]$ for $0 < p < 1$ (See Rudin [\[12](#page-20-11)]).

Definition 1.4.19 Let *X* be a topological vector space. The dual of *X*, denoted by *X*[∗] is the set of all continuous linear functionals on *X*.

Theorem 1.4.20 *If X is a locally convex t.v.s, then X*[∗] *separates points in X.*

Definition 1.4.21 Let *K* be a non-empty subset of a vector space *X*. A point $s \in K$ is called an extreme point of *K* if $s = tx + (1 - t)y$ for $t \in (0, 1)$ for some $x, y \in K$ implies $x = y = s$. The convex hull of a set $E \subseteq X$ is the smallest convex set in X containing *E*. The closed convex hull of *E* is the closure of its convex hull.

Theorem 1.4.22 (Krein-Milman [\[11](#page-20-10)]) *If X is a topological vector space on which X*[∗] *separates points. Every compact convex set in X is the closed convex hull of the set of its extreme points. So in a locally convex t.v.s X every compact convex set in X is the closed convex hull of the set of its extreme points.*

In this context, it is pertinent to recall Riesz Representation theorem (see Rudin [\[12\]](#page-20-11)).

Theorem 1.4.23 (Riesz-Representation) Let X be a locally compact T_2 space and L be a positive linear functional on $C_C(X)$ the linear space of all continuous complex*valued functions with compact support and the supremum norm. Then, there exists ^a* σ*-algebra ^S on X containing all the Borel subsets of X and a unique positive measure* μ *on ^S representing L according to the formula*

$$
Lf = \int_X f d\mu \text{ for } f \in C_C(X)
$$

with the following properties:

- *(i)* $\mu(K) < +\infty$ *for each compact subset of X;*
- *(ii)* for each $E \in \mathcal{S}$, $\mu(E) = \inf \{ \mu(G) : G \supseteq E \text{ and } G \text{ is open in } X \}$;
- *(iii)* $\mu(E) = \sup\{\mu(K) : K \subseteq E \text{ and } K \text{ compact}\}\$ is true for each open set E and *for any* $E \in \mathcal{S}$ *with* $\mu(E) < +\infty$;
- *(iv)* for $E \in \mathcal{S}$ *with* $\mu(E) = 0$, $A \in \mathcal{S}$ for any $A \subseteq E$ and $\mu(A) = 0$.

When X is compact, μ *can be chosen so that* $\mu(X) = 1$ *, i.e. a Borel probability measure.*

Remark 1.4.24 In a Frechet space, for the convex hull *H* of a compact set, \overline{H} is compact and in a finite-dimensional space \mathbb{R}^n , *H* itself is compact. Also if an element *x* lies in the convex hull and a set $E \subseteq \mathbb{R}^n$, then it lies in the convex hull of a subset of *E* that contains at most $n + 1$ points.

We now proceed to define vector-valued integrals. Rudin [\[11](#page-20-10)] may be consulted for further details.

Definition 1.4.25 Let (Q, J, μ) be a measure space, *X* a t.v.s for which X^* separates points and $f: Q \to X$ be a function such that Λf is integrable with respect to μ for each $\Lambda \in X^*$ (here $(\Lambda f)(a) = \Lambda(f(a))$ for $a \in \Omega$) If there exist $y \in X$ such that each $\Lambda \in X^*$ (here $(\Lambda f)(q) = \Lambda(f(q))$ for $q \in Q$). If there exist $y \in X$ such that

$$
\Lambda y = \int_{Q} \Lambda f d\mu
$$

for each $\Lambda \in X^*$, then we define

$$
\int_{Q} f d\mu = y.
$$

Theorem 1.4.26 *Let X be a t.v.s such that* X^* *separates points and* μ *be a Borel probability measure on a compact Hausdorff space Q. If* $f : Q \rightarrow X$ *is continuous and if the convex hull H of* $f(Q)$ *has compact closure* \overline{H} *in X, then the integral*

$$
y = \int_{Q} f d\mu
$$

exists (as per Definition [1.4.25\)](#page-19-0).

Theorem 1.4.27 *Let X be a t.v.s such that X*[∗] *separates points and Q, a compact subset of X and* \overline{H} *, the closed convex hull of Q be compact.*

 $y \in \overline{H}$ *if and only if there is a regular Borel probability measure* μ *on* Q *such that*

$$
y = \int_{Q} x d\mu.
$$

When *X* is a Banach space we also have

Theorem 1.4.28 Let Q be a compact T_2 space, X a Banach space, $f: Q \rightarrow X$ a *continuous map and* μ *a positive Borel probability measure on Q. Then*

1.4 Topological Vector Spaces 21

$$
\|\int_{Q} f d\mu\| \le \int_{Q} \|f\| d\mu.
$$

Indeed vector-valued integrals can also be defined more directly as limits of (integral) sums.

References

- 1. Bartle, R.G.: The Elements of Real Analysis, 2nd edn. Wiley, New York (1976)
- 2. Bollobas, B.: Linear Analysis, An Introductory Course, 2nd edn. Cambridge University Press, Cambridge (1999)
- 3. Dugundji, J.: Topology. Allyn and Bacon Inc., Boston (1966)
- 4. Halmos, P.R.: Naive Set Theory. D. Van Nostrand Co., Princeton (1960)
- 5. Kantorovich, L.V., Akilov, G.P.: Functional Analysis, Translated from the Russian by Howard L. Silcock, 2nd edn. Pergamon Press, Oxford-Elmsford (1982)
- 6. Kaplansky, I.: Set Theory and Metric Spaces, 2nd edn. Chelsea Publishing Co., New York (1977)
- 7. Kelley, J.L.: General Topology. D. Van Nostrand Company, Inc., Toronto (1955)
- 8. Lusternik, L.A., Sobolev, V.J.: Elements of Functional Analysis. Hindustan Publishing Corporation, Delhi (1974)
- 9. Munkres, J.R.: Topology: A First Course. Prentice-Hall, Inc., Englewood Cliffs (1975)
- 10. Royden, H.L.: Real Analysis, 3rd edn. Macmillan Publishing Company, New York (1988)
- 11. Rudin, W.: Functional Analysis. Tata McGraw-Hill Publishing Co. Ltd., New Delhi (1974)
- 12. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)
- 13. Simmons, G.F.: Introduction to Topology and Modern Analysis. McGraw-Hill Book Co., Inc., New York (1963)
- 14. Taylor, A.E.: Introduction to Functional Analysis. Wiley, New York; Chapman Hall, Ltd., London (1958)