
Chapter 1
Prerequisites

This chapter is a precis of the basic definitions and theorems used in the sequel. It is
presumed that the reader is familiar with naive set theory (see Halmos [4]) and the
properties of real numbers and real functions (see Bartle [1]). Other mathematical
concepts and theorems relevant to specific sections of a chapter will be recalled
therein.

1.1 Topological Spaces

This section collects important concepts and results from topology. For proofs and
other details, Dugundji [3], Kelley [7], Munkres [9] and Simmons [13] may be
consulted.

Definition 1.1.1 Let X be a non-empty set. A collection of J of subsets of X is
called a topology on X , if

(i) φ, X ∈ T ,
(ii) G1 ∩ G2 ∈ T for G1, G2 ∈ T and
(iii)

⋃
G∈F G ∈ T for any F ⊆ T .

Any subset of X belonging to T is called an open set or more precisely T -open
set. The pair (X,T ) is called a topological space. Given a topological space (X,T ),
the interior of A ⊆ X , denoted by A0 is the largest open subset of A.

For a subset S of X , where (X,T ) is a topological space,TS = {G ∩ S : G ∈ T }
is a topology on S, called the relative topology (or subspace topology) on S.

Example 1.1.2 For a non-empty set X , the family {φ, X} is a topology on X called
the indiscrete topology on X , 2X , the power set of X or the set of all subsets of X is
a topology on X called the discrete topology on X . The family of all subsets of X
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whose complements are finite sets together with the empty set is also a topology on
X called the co-finite topology on X .

Since the intersection of any collection of topologies on X is a topology on X ,
for any family F of subsets of X , there is the smallest topology on X containing F ,
called the topology generated by F .

Example 1.1.3 A subset G of real numbers is called open if for each x ∈ G, an open
interval containing x lies in G. (Evidently the empty set is open.) This collection of
all open subsets of R, the real number system is a topology on R, called the usual
topology on R.

Definition 1.1.4 Let (X,T ) be a topological space. A neighbourhood of a point
x ∈ X is any subset of X containing an open subset G ∈ T , containing x . A neigh-
bourhood base or local base at x is a familyNx of neighbourhoods of x such that for
any neighbourhood N of x , there is a neighbourhood Nx ∈ Nx such that x ∈ Nx ⊆ N .
A topological space is called first countable if for each point there is a countable local
base. An interior point of A is a point a ∈ A such that A contains a neighbourhood
of a.

Definition 1.1.5 A subset F of a topological space (X,T ) is called a closed subset
of X if X − F is T -open. The closure of a subset A of X denoted by A is the
smallest closed set containing A. A subset S of X is said to be dense in X if S = X .
A topological space (X,T ) is called separable if it has a countable dense subset.

Remark 1.1.6 Let (X,T ) be a topological space and A, B ⊆ X . Then

(i) φ0 = φ, φ = φ, X0 = X and X = X ;
(ii) A ⊇ A and A0 ⊆ A;
(iii) A ∪ B = A ∪ B, (A ∩ B)◦ = A◦ ∩ B◦;
(iv) (A) = A and (A◦)◦ = A◦. Further A = {x ∈ X : every neighbourhood of x has

a non-void intersection with A}. A0 = {a ∈ A : a is an interior point of A}.
Definition 1.1.7 For a topological space (X,T ) B ⊆ T is called a base (or basis)
for T is for A1, A2 ∈ B and x ∈ A1 ∩ A2, there exists A3 ∈ B such that x ∈ A3 ⊆
A1 ∩ A2. A subfamily S of T is called a subbase for T of B, if the family of
intersections of all finite subfamilies of S is a base for T . If the topology T has a
countable base, then the topological space is called second countable.

Remark 1.1.8 If S is a family of subsets of X with ∪{S : S ∈ S } = X , then S is
a subbase for a topology on X , for which B the family of subsets of X which are the
intersections of finite subfamilies ofS is a base for this topology.

Remark 1.1.9 The family of all subintervals of the form [a, b), a < b, a, b ∈ R is
a base for a topology on R, called the lower limit topology on R. Similarly, the
family {(a, b] : a < b, a, b ∈ R} is a base for a topology on R called the upper limit
topology onR. The usual (standard) topology onR has the family of all open intervals
(a, b), a < b, a, b ∈ R as a base. R with the usual topology is separable and second
countable. However, Rwith the lower limit topology is separable and first countable
but is not second countable.
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Definition 1.1.10 A binary relation ≤ on a non-empty subset X is called a quasi-
order if the following conditions are satisfied:

(i) x ≤ x for all x ∈ X (reflexivity);
(ii) if x ≤ y and y ≤ z, for x, y, z ∈ X , then x ≤ z (transitivity).

If, in addition a quasi-order ≤ satisfies
(iii) if x ≤ y and y ≤ x , then x = y (anti-symmetry),

then the quasi-order ≤ is called a partial order. Accordingly if ≤ is a quasi-order
on X , then (X,≤) is called a quasi-ordered space. If ≤ is a partial order on X , then
(X,≤) is called a partially ordered set or poset.

Definition 1.1.11 A partial order ≤ on a set X is called a linear order or total order
if for any pair of elements x, y ∈ X either x ≤ y or y ≤ x . A linearly ordered set is
also called a chain.

Definition 1.1.12 A partially ordered set (D,≤) is called a directed set if for any
pair x, y ∈ X , there exists z ∈ D such that x ≤ z and y ≤ z.

Definition 1.1.13 A net in a topological space X is a pair (S,≥) where S is a
function from a directed set (D,≥) into X . A net (S,≥) in a topological space is
said to converge to an element x ∈ X if for each open set G containing x , there is
an element m of D such that for n ≥ m, n ∈ D, S(n) ∈ G. Clearly, a sequence in
a topological space is a net directed by the set of natural numbers with the usual
ordering.

Proposition 1.1.14 A subset S of a topological space (X,T ) is closed if and only
if no net in S converges to an element of X − S. An element s ∈ S for S ⊆ X if and
only if there is a net in S converging to s.

Definition 1.1.15 Let (Xi ,Ti ), i = 1, 2 be topological spaces. Amap f : X1 → X2

is said to be continuous if for each T2-open subset G of X2, f −1(G) is T1-open in
X1. If f is one-one and onto X2 and if both f and f −1 are continuous maps, then f
(as also f −1) is called a homeomorphism from X1 onto X2 (from X2 onto X1).

Amap f : X1 → X2 is said to be continuous at x ∈ X1, if for each neighbourhood
N f (x) of f (x) in X2, there is a neighbourhood Nx of x such that f (Nx ) ⊆ N f (x).
A map g : X1 → X2 is called open if it maps open subsets of X1 onto open subsets
of X2.

The following theorem is well-known.

Theorem 1.1.16 Let (Xi ,Ti ), i = 1, 2 be topological spaces and f : X1 → X2 be
a map. The following statements are equivalent:

(i) f is continuous on X1;
(ii) f is continuous at each point of X1;

(iii) f −1(F) is closed in (X1,T1) for each closed subset F of X2;
(iv) if G ∈ S , a subbase for T2, then f −1(G) ∈ T1;
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(v) for each net (S,≥) converging to x in X1, ( f (S),≥) converges to f (x) in X2;
(vi) for each subset A of X1, f (A) ⊆ f (A);

(vii) for each subset B of Y , f −1(B) ⊆ f −1(B).

Theorem 1.1.17 A topological space (X,T ) is said to be disconnected if X =
A ∪ B where A and B are non-empty disjoint proper open subsets of X. A pair of
sets A and B is said to be separated if A ∩ B = B ∩ A = φ, where A and B are non-
empty. A topological space is called connected if it is not disconnected (A connected
space is not the union of two non-void separated sets). A subset Y of X is called
connected if Y is connected in the subspace topology. A maximal connected subset
of X is called a component.

Definition 1.1.18 A topological space is called totally disconnected if the only con-
nected subsets are singletons.

Definition 1.1.19 A topological space is said to be locally connected if the family
of open connected subsets is a base for the topology.

Remark 1.1.20 A discrete topological space with more than one element is locally
connected, though totally disconnected. The set (0, 1) ∪ (2, 3) with the subspace
topology inherited from R with the usual topology is locally connected and discon-
nected though not totally disconnected.

Theorem 1.1.21 Let (X,T ) be a topological space. Then

(i) if A is a connected subset of X and A ⊆ B ⊆ A, then B is a connected subset;
(ii) the union of a family of connected subsets of X, no two of which are separated

is connected;
(iii) components of X are closed and any two components are either identical or

disjoint;
(iv) any component of an open subset of a locally connected space is open.

Definition 1.1.22 A family of open sets {Gλ : λ ∈ �} of a topological space (X,T )

is called an open cover for X , if X =
⋃

λ∈�

Gλ. If every open cover of X has a countable

subcover, the topological space is said to be Lindelof. If each open cover of X has a
finite subcover, then the topological space is called compact.

Definition 1.1.23 A topological space is called locally compact, if each element has
a compact neighbourhood.

Definition 1.1.24 Let (Xλ,Tλ), λ ∈ �, � �= φ be a family of topological spaces.
The Cartesian product of all these sets Xλ denoted by X =

∏

λ∈�

Xλ is the set of all

functions f : � →
⋃

λ∈�

Xλ such that f (λ) ∈ Xλ for each λ ∈ �. Themap Pλ : X →
Xλ such that Pλ( f ) = f (λ) for each f ∈ X is called the projection of the set X into
the λth coordinate set Xλ. The topology of X having {P−1

λ (U ) : U ∈ Tλ,λ ∈ �} as
a subbase is called the product topology on X and X with this topology is referred
as the product (topological) space.
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Theorem 1.1.25 Let {(Xλ,Tλ) : λ ∈ �,� �= φ} be a family of topological spaces
and X be the product space with the product topology T . Then

(i) Pλ, the projection of X into Xλ is continuous for each λ ∈ �;
(ii) a map f : Y → X, where Y is a topological space is continuous if and only if

Pλ ◦ f : Y → Xλ is continuous for each λ ∈ �;
(iii) a net S in X converges to an element s if and only if its projection in each

coordinate space converges to the projection of s.
(iv) X is connected if and only if each Xλ is connected;
(v) (Tychonoff’s theorem) X is compact if and only if each Xλ is compact.

Definition 1.1.26 A topological space X is said to be

(i) T1 if for each pair of distinct elements x and y, there exist neighbourhoods Nx

of x not containing y and Ny of y not containing x ;
(ii) T2 (Hausdorff) if each pair of distinct elements has disjoint neighbourhoods;
(iii) regular, if for each x ∈ X and any closed subset F of X not containing x , there

exist disjoint open sets G1 and G2 with x ∈ G1 and F ⊆ G2 (X is called T3 if
it is T1 and regular);

(iv) normal, if for each pair of disjoint closed subsets Fi , i = 1, 2 of X , there exist
disjoint open sets Gi , i = 1, 2 with Fi ⊆ Gi , i = 1, 2 (X is called T4 if it is T1

and normal).
(Every T4 space is T3 and each T3 space is T2, while a T2 space is necessarily T1).

Theorem 1.1.27 (Urysohn’s Lemma) If A and B are disjoint closed subsets of a
normal space X, then there is a continuous function f : X → [0, 1] such that f ≡ 0
on A and f ≡ 1 on B.

Theorem 1.1.28 Let X and Y be topological spaces and f : X → Y be a continuous
map. If X is compact, then f (X) is a compact subset of Y . If X is connected, then
f (X) is a connected subset of Y .

Corollary 1.1.29 If X is a compact topological space and f : X → R is a continu-
ous map, then f attains its maximum and minimum on X. If X is a connected space
and f : X → R is continuous, then f (X) is an interval.

1.2 Metric Spaces

In this section, basic concepts and theorems from the theory of metric spaces are
recalled. For details, in addition to the references cited in Sect. 1.1, Kaplansky [6]
may be consulted.

Definition 1.2.1 Let X be a non-void set. A map d : X × X → [0,∞) (=R
+) is

called a metric if
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(i) d(x, x) = 0 for all x ∈ X ;
(ii) d(x, y) = 0 implies x = y;
(iii) d(x, y) = d(y, x), for all x, y ∈ X ;
(iv) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z (triangle inequality).

The pair (X, d) is called a metric space. A map d satisfying (i), (iii) and (iv) is called
a pseudometric and the corresponding (X, d) is called a pseudometric space.

Definition 1.2.2 If (X, d) is a metric space, the set B(x0; r) = {x ∈ X : d(x0, x) <

r} for r > 0 is called an open sphere of radius r centred at x0, while the set {x ∈ X :
d(x0, x) ≤ r} is referred as the closed sphere of radius r with centre x0.

Remark 1.2.3 The family of all open spheres {B(x; r) : x ∈ X, r > 0} is a base for
a topology on X called the metric topology on X induced by d.

Example 1.2.4 (i) If X is a non-empty set the map d : X × X → R
+ defined by

d(x, y) = 1 for x �= y and d(x, x) = 0 is a metric on X called the discrete
metric. The corresponding metric topology on X is the discrete topology.

(ii) OnR, d(x, y) = |x − y|, the absolute value of x − y defines a metric called the
usual (or standard) metric on R and the topology induced is the usual topology
on R (with the base comprising all open intervals).

(iii) On R
n , the set of all n-tuples of real numbers, d(x, y) =

(
n∑

i=1

|xi − yi |2
) 1

2

,

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) defines a metric, called
the Euclidean metric on R

n .
(iv) C[a, b], the set of all continuous real-valued function on the closed interval

[a, b], where a < b, a, b ∈ R is a metric space under the metric

d( f, g) = sup{| f (x) − g(x)| : x ∈ [a, b]}

where f, g ∈ C[a, b]. This metric is called Tschebyshev or uniform metric.
(v) More generally C(X), the set of all continuous real-valued functions on a com-

pact topological space becomes a metric space with the metric d defined by
d( f, g) = sup{| f (x) − g(x)| : x ∈ X} where f, g ∈ C(X).

(vi) d( f, g) = ∫ b
a | f (t) − g(t)|dt also defines a metric on C[a, b] the set of all con-

tinuous real-valued functions on [a, b].
(vii) If (X, d) is a metric space and S ⊆ X , then the restriction of d to S × S is a

metric and this metric topology is precisely the topology of S relative to the
metric topology on X .

Theorem 1.2.5 A metric space is second countable if and only if it is separable.

Theorem 1.2.6 Every metric space is a Hausdorff normal space.

Definition 1.2.7 A sequence (xn) in a metric space (X, d) is called Cauchy (fun-
damental) if d(xm, xn) → 0 as m, n → ∞. A metric space is said to be complete if
every Cauchy sequence in X converges to an element of X .
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Theorem 1.2.8 (Baire) No complete metric space can be written as a countable
union of closed sets having empty interior.

Definition 1.2.9 Let (Xi , di ), i = 1, 2 be metric spaces. A map T : X1 → X2 is
called an isometry if d2(T x1, T x2) = d1(x1, x2) for all x1, x2 ∈ X1.

Theorem 1.2.10 Each metric space (X, d) can be isometrically embedded in a
complete metric space (X , d) as a dense subset. Further such a complete metric
space X, called the completion of X is unique up to isometry.

Remark 1.2.11 In example 1.2.4, except the space described in (vi), themetric spaces
in examples (i)–(v) are complete.

Theorem 1.2.12 If (X, d) is a metric space, then d1(x, y) = min{1, d(x, y)}, x, y ∈
X defines a metric on X and the topologies induced on X by these metrices are the
same.

Theorem 1.2.13 If (Xn, dn), x ∈ N is a sequence of metric spaces, then X =
∏

n∈N
Xn

is a metric space under the metric d defined by

d(x, y) =
∞∑

n=1

1

2n

(
dn(xn, yn)

1 + dn(xn, yn)

)

,

where x = (xn) and y = (yn) are in X. Further, if each (Xn, dn) is complete, then
(X, d) is complete.

The following metrization theorem is classical.

Theorem 1.2.14 (Urysohn) A regular T1 second countable topological space is
metrizable (in the sense that there is a metric on this space whose metric topology
is the given topology).

A concept basic to the study of the metrization problem is defined below.

Definition 1.2.15 A family F of subsets of a topological space (X,T ) is called

(i) locally finite, if each point of the space has a neighbourhood that intersects only
finitely many sets in F ;

(ii) discrete if each point of the space has a neighbourhood that intersects at most
one member of F ;

(iii) σ-locally finite (σ-locally discrete) if it is the union of a countable collection
of locally finite (finite) subfamilies.

Theorem 1.2.16 (Metrization theorems) A topological space is metrizable if and
only if it is T1 and regular with

a σ-locally finite base (Nagata–Smirnov);
or

a σ-discrete base (Bing).
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Another important notion is that of paracompactness formulated below.

Definition 1.2.17 A topological space X is called paracompact if each open cover
U of X has an open locally finite refinement U∗ (viz. U∗ is locally finite and each
member of U∗ is open and is a subset of some set in U).
Theorem 1.2.18 Every pseudometric space is paracompact and a paracompact T2

space is normal.

Definition 1.2.19 Let X be a topological space. A family { fλ : λ ∈ � �= φ} of con-
tinuous functions mapping X into [0, 1] is called a partition of unity if for each
x ∈ X ,

∑

λ∈�

fλ(x) = 1 and all but a finite number of fλ’s vanish on some neighbour-

hood of x . A partition of unity { fλ : λ ∈ � �= φ} in subordinate to a cover U if each
fλ vanishes outside some member of U .
Theorem 1.2.20 A regular T1 space is paracompact if and only if for each open
covering of X, there is a partition of unity subordinate to this covering. For every
compact T2 space, every open cover has a partition of unity subordinate to it.

Definition 1.2.21 A subset S of ametric space (X, d) is said to be totally bounded, if
for each ε > 0, there exists a finite subset {x1, x2, . . . , xn} (depending on ε) such that

S ⊆
n⋃

i=1

B(xi ; ε). A subset S is said to be bounded if S ⊆ B(x; r) for some x ∈ X

and some r > 0.

Theorem 1.2.22 For a metric space (X, d), the following are equivalent:

(i) X is compact;
(ii) X is complete and totally bounded;

(iii) every sequence in X has a convergent subsequence;
(iv) X has the Bolzano–Weierstrass property, viz. for every infinite subset A of X

has a limit point x0 ∈ X, i.e. a point x0 such that every neighbourhood of x0
meets A.

Theorem 1.2.23 Let (Xi , di ), i = 1, 2 be metric spaces and f : X1 → X2 be a
continuous map. If X1 is compact, then f is uniformly continuous in the sense that
for each ε > 0 there exists δ > 0 depending only on ε so that d2( f (x), f (y)) < ε
whenever x, y ∈ X1 and d1(x, y) < δ.

Definition 1.2.24 For a non-void subset A of a metric space (X, d), the distance of
a point x from A is defined as D(x, A) = in f {d(x, a) : a ∈ A}.
Theorem 1.2.25 Let A be a non-void subset of a metric space (X, d). Then A =
{x ∈ X : D(x, A) = 0}. Further, |D(x, A) − D(y, A)| ≤ d(x, y) for any x, y ∈ X
and the map x → D(x, A) is a continuous map of X into R

+.
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1.3 Normed Linear Spaces

Normed linear spaces, constituting the base of Functional Analysis are metric spaces
with a richer (algebraic) structure. They provide a natural setting for mathematical
modelling of many natural phenomena. Bollabos [2], Kantorovitch and Akhilov [5],
Lyusternik and Sobolev [8], Rudin [11, 12], Simmons [13] and Taylor [14] may
be consulted for a detailed exposition of the following concepts and theorems. It is
assumed that the reader is familiar with the concepts of groups, rings and fields.

Definition 1.3.1 A linear space or vector space over a field F is a triple (V,+, ·),
where + is a binary operation (called vector addition or simply addition) and · is a
mapping from F × V into V (called scalar multiplication) satisfying the following
conditions;

(i) (V,+) is a commutative groupwith θ (called zero vector) as its identity element;
(ii) for all λ ∈ F , x, y ∈ V λ.(x + y) = λx + λy;
(iii) for all λ,μ ∈ F and x ∈ V (λ + μ).x = λ.x + μ.x and λ · (μ · x) = (λ · μ) · x

(where λμ is the product of λ and μ under the multiplication in the field F);
(iv) 0 · x = θ, 1 · x = x for all x ∈ V , where 0 is the additive identity and 1 the

multiplicative identity of the field F .

Often 0 is also used to represent the zero vector and the context will clarify this
without much difficulty. If F is the field of real (complex) numbers then V is called
a real (complex) vector space. In what follows, we will be concerned only with real
or complex vector spaces. Also a linear subspace V1 of V is a subset of V which is
a linear space over F with vector addition and scalar multiplication of V restricted
to V1.

Definition 1.3.2 A subset S of a linear space V over a field F is said to be linearly

independent if for every finite subset {s1, . . . , sn} of S,
n∑

i=1

αi si = θ implies αi = 0

for i = 1, 2, . . . , n where αi ∈ F . An element of the form
n∑

i=1

αi si where αi ∈ F

and si ∈ S is called a finite linear combination of members of S.

Definition 1.3.3 A subset S of a linear space V over a field F is said to span V if
every element of V can be written as a finite linear combination of elements from S.
A maximal linearly independent subset of a linear space V over F is called a basis
for V .

Any two bases of a vector space have the same cardinality.

Definition 1.3.4 The cardinality of a basis of a linear space V is called the dimension
of the linear space. If a linear space has a finite dimension, then it is called a finite-
dimensional vector space. Otherwise the linear space is infinite-dimensional.

Definition 1.3.5 Let (X,+, ·) be a linear space over F = R or C. A map ‖ · ‖ :
X → R

+ is called a norm if the following conditions are satisfied:
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1. ‖x‖ = 0 if and only if x = 0;
2. ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ X (triangle inequality);
3. ‖αx‖ = |α|‖x‖ for all α ∈ F and all x ∈ X , |α| being the modulus of α. The

pair (X, ‖ · ‖) is called a normed linear space.

Remark 1.3.6 If (X, ‖ · ‖) is a normed linear space, then d(x, y) = ‖x − y‖, x, y ∈
X is a metric on X .

Definition 1.3.7 A normed linear space (X, ‖ · ‖) is called a Banach space if it is
complete in the metric induced by the norm.

Remark 1.3.8 The linear spaces in (ii)–(v) of Example 1.2.4 are Banach spaces
with the norms defined by ‖x‖ = d(x, θ) where d is the metric described in the
corresponding case, while (vi) of Example 1.2.4 is a normed linear space under the
norm

∫ b
a | f (t)|dt . However, this is not a Banach space.

Definition 1.3.9 Let (Xi , ‖ · ‖i ), i = 1, 2 be normed linear spaces over F = R orC.
A linear operator is a map T : X1 → X2 such that T (αx + βy) = αT (x) + βT (y)

for all α,β ∈ F and x, y ∈ X1. If X2 is the base field F (=R or C with the modulus
or absolute value as a norm) which is also a normed linear space, the linear operator
is called a linear functional. If the linear operator T is continuous as a map between
the metric spaces X1 and X2 with metrics induced by the norms, then it is called a
continuous linear operator.

Theorem 1.3.10 Let (Xi , ‖ · ‖i ), i = 1, 2 be normed linear spaces over F = R or
C and T : X1 → X2 a linear operator. Then the following are equivalent:

(i) T is continuous on X1;
(ii) T is continuous at some x0 ∈ X1;

(iii) there exists K > 0 such that ‖T x‖2 ≤ K‖x‖1 for all x ∈ X1.

Remark 1.3.11 Alinear operator satisfying (iii) ofTheorem1.3.10 is called bounded.
In view of the theorem above, bound linear operators are precisely continuous linear
operators.

If T : X1 → X2 is a continuous linear operator where (Xi , ‖ · ‖i ), i = 1, 2 are
normed linear spaces, then

inf{K ≥ 0 : x ∈ X1 and ‖T x‖2 ≤ K‖x‖1} = sup{‖T x‖2 : ‖x‖1 = 1, x ∈ X1}

is finite and is called the norm of the linear operator and is denoted by ‖T ‖.
Theorem 1.3.12 For i = 1, 2, let (Xi , ‖ · ‖i ) be normed linear spaces. B(X1, X2)

the set of all bounded (continuous) linear operators is a normed linear space under
the norm described in Remark 1.3.11. If (X2, ‖ · ‖2) is complete so is B(X1, X2)

under this norm.
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Theorem 1.3.13 (Hahn–Banach) If f is a bounded linear functional from a linear
subspace N of a normed linear space (X, ‖ · ‖), then there is a bounded linear
functional f ∗ on X such that f ∗ ≡ f on N and ‖ f ‖ = ‖ f ∗‖.

The Hahn–Banach theorem insures the abundance of continuous linear function-
als in any nontrivial normed linear space.

Definition 1.3.14 Given a normed linear space (X, ‖ · ‖), the space of all continuous
linear functionals on X is called the dual or conjugate of X and is denoted by X∗.
The dual of X∗ denoted by X∗∗ is called the second dual or second conjugate of X .

Even, if X is incomplete, X∗ and X∗∗ are complete.

Theorem 1.3.15 Let (X, ‖ · ‖) be a normed linear space. The map fx defined by
f → f (x) for each x ∈ X is a bounded linear functional on X∗ and ‖ fx‖ = ‖x‖.
The map ϕ : X → X∗∗ defined by φ(x) = fx is one-one, isometric linear map of
X into X∗∗ and is called the duality mapping. The duality mapping is the natural
embedding (of X into X∗∗).

Definition 1.3.16 If the duality mapping ϕ maps X onto X∗∗, the second dual of X ,
then X is said to be reflexive.

Definition 1.3.17 If (X, ‖ · ‖) is a normed linear space, then the weak topology on
X is the smallest topology on X with respect to which all the functionals of X∗ are
continuous. The weak * topology on X∗ is the smallest topology on X∗ such that
ϕ(x) (= fx ), ϕ being the natural embedding of X into X∗∗ is continuous.

Theorem 1.3.18 (Alaoglu) The unit sphere S∗ in X∗ is compact in the weak *
topology on X∗.

Theorem 1.3.19 A Banach space is reflexive if and only if the closed unit sphere
S = {x ∈ X : ‖x‖ ≤ 1} is compact in the weak topology.

The following three theorems are basic to Functional Analysis.

Theorem 1.3.20 (Open Mapping Theorem) For i = 1, 2, let (Xi , ‖ · ‖i ) be Banach
spaces. If T : X1 → X2 is a continuous linear operator mapping X1 onto X2, then
T is an open mapping (i.e. a function for which the image of any open set is open).
Consequently a continuous linear bijection of X1 onto X2 is a linear homeomorphism.

Theorem 1.3.21 (Closed Graph Theorem) For i = 1, 2, let (Xi , ‖ · ‖i ) be Banach
spaces and T : X1 → X2 a linear operator. T is continuous if and only if the graph of
T = {(x, T x) : x ∈ X1} is a closed subset of the product topological space X1 × X2.

Theorem 1.3.22 (Banach–Steinhaus theorem) Let Tλ : X1 → X2, λ ∈ � �= φ be
continuous linear operators mapping a Banach space X1 into a normed linear space
X2 such that for each x ∈ X1, {‖Tλ(x)‖ : λ ∈ �} is a bounded set of real numbers.
Then {‖Tλ‖ : λ ∈ �} is bounded.

Theorem 1.3.23 A normed linear space is finite-dimensional if and only if the unit
sphere is compact.



12 1 Prerequisites

Theorem 1.3.24 If ‖ · ‖i , i = 1, 2 are two norms on a finite-dimensional normed
linear space then ‖ · ‖1 and ‖ · ‖2 are equivalent in the sense that there exist two
positive numbers K1 and K2 such that

K1‖x‖1 ≤ ‖x2‖ ≤ K2‖x‖1 for all x ∈ X.

Consequently a finite-dimensional normed linear space over R or C is equivalent to

R
n or C

n with the norm given by ‖(x1, . . . , xn)‖ =
(

n∑

i=1

|xi |2
) 1

2

and is a Banach

space.
Among normed linear spaces, inner product spaces have rich geometric prop-

erties. Many features of the Euclidean spaces carry over to inner product spaces.
Parseval identity for orthogonal functions has a crisp functional analytic formula-
tion.

Definition 1.3.25 Alinear space (V,+, ·)over F = RorC is called an inner product
space, if there is a map < >: V × V → F called an inner product satisfying the
following conditions:

(i) < αx + βy, z >= α < x, z > +β < y, z > for all x, y, z ∈ V and α,β ∈ F ;
(ii) < x, y > = < y, x > for all x, y ∈ V , z being the complex conjugate of z ∈ C;
(iii) < x, x > ≥ 0 for all x ∈ V and < x, x > = 0 if and only if x = θ.

Proposition 1.3.26 An inner product space is a normed linear space with the
norm ‖ · ‖ defined by ‖x‖ = √

< x, x > (the positive square root of < x, x >), as
| < x, y > | ≤ ‖x‖‖y‖ for all x, y in V (Schwarz inequality).

Definition 1.3.27 A Hilbert space is an inner product space which is complete in
the norm induced by the inner product.

Example 1.3.28 (i) R
n or Cn is a Hilbert space in the norm induced by the inner

product defined by < x, y >=
n∑

i=1

xi yi

(
n∑

i=1

xi yi

)

for x = (x1, . . . , xn), y =
(y1, . . . , yn) ∈ R

n (Cn).

(ii) �2, the space of complex sequences (zn) with
∞∑

n=1

|zn|2 < +∞ is a Hilbert

space with the inner product defined by < x, y >=
∞∑

n=1

xn yn for x = (xn),

y = (yn) ∈ �2.
(iii) CC[a, b], the linear space of all continuous complex-valued functions on [a, b]

is an inner product space under the inner product < f, g >= ∫ b
a f (x)g(x)dx .

This is not a Hilbert space as the space is not complete in the induced norm

‖ f ‖ =
(∫ b

a | f (x)|2dx
) 1

2
.However, its completion is L2[a, b], theHilbert space

of Lebesgue measurable complex functions which are square-integrable with
respect to the Lebesgue measure.
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Theorem 1.3.29 Every incomplete inner product space can be isometrically embed-
ded as a dense subspace of a Hilbert space.

Theorem 1.3.30 A normed linear space (X, ‖ ‖) is an inner product space if and
only if the following parallelogram law is valid:

for x, y ∈ X, ‖x + y‖2 + ‖x − y‖2 = 2(‖x‖2 + ‖y‖2)

Definition 1.3.31 A subset C of a linear space V over F = R or C is called convex
if t x + (1 − t)y ∈ C for all t ∈ [0, 1], whenever x, y ∈ C .

Theorem 1.3.32 A non-empty closed convex subset of a Hilbert space contains a
unique element with least norm.

Definition 1.3.33 Let (V,<,>) be an inner product space over R or C. x ∈ V is
said to be orthogonal to y ∈ V if < x, y > = 0 and we write x ⊥ y (or y ⊥ x). For
S ⊆ V , S⊥ = {v ∈ V : v ⊥ s, for all s ∈ S}. S⊥ is called the orthogonal complement
of S.

Theorem 1.3.34 If M is a proper closed linear subspace of a Hilbert space H, then

(i) M⊥ is a closed linear subspace of H;
(ii) M ∩ M⊥ = {θ};

(iii) each h ∈ H can be written uniquely as h = m1 + m2, where m1 ∈ M, m2 ∈ M⊥
and ‖h‖2 = ‖m1‖2 + ‖m2‖2.
(In this case, we write H = M ⊕ M⊥ and call H the direct sum of M and its
orthogonal complement M⊥).

Definition 1.3.35 A non-empty set S of a Hilbert space H is called orthogonal if
< x, y > = 0 whenever x, y ∈ S and x �= y. S is called orthonormal if each element
of S has unit norm and S is orthogonal.

Theorem 1.3.36 If S = {eλ : λ ∈ � �= φ} is an orthonormal set in a Hilbert space
H and if x ∈ H, then {eλ :< x, eλ >�= 0} is either empty or countable. Also∑

λ∈�

| < x, eλ > |2 ≤ ‖x‖2. Further, a nonzero Hilbert space has a maximal

orthonormal set of vectors, called an orthonormal basis. If {eλ : λ ∈ � �= φ} is an
orthonormal basis for H and x ∈ H, then x =

∑

λ∈�

aλeλ, where aλ =< x, eλ >.

Theorem 1.3.37 (Parseval identity) If {eλ : λ ∈ � �= φ} is an orthonormal basis of
H then ‖x‖2 =

∑

λ∈�

| < x, eλ > |2.

Example 1.3.38 (i) L2[0, 2π], the space of complex-valued Lebesgue measur-
able functions f on [0, 2π] which are square-integrable in the sense that
∫ 2π
0 | f (x)|2dx < +∞ is a Hilbert space under the inner product < f, g >=

∫ 2π
0 f (x)g(x)dx . The set

{
einx√
2π

: n = 0,±1,±2, . . .
}
is an orthonormal basis.
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(ii) L2(R), the space of all Lebegue-measurable functions for which
∫ ∞
−∞ | f 2(x)|dx

is finite, is also a Hilbert space under the inner product < f, g >= ∫ ∞
−∞ f (x)

g(x)dx . {xne− x2

2 , n = 0, 1, 2, . . . } gives rise to an orthonormal basis for L2(R)

via the Gram–Schmidt orthogonalization process (see Simmons [13]).
Among normed linear spaces, strictly convex spaces and the more specialized

uniformly convex spaces resemble the Euclidean spaces geometrically.

Definition 1.3.39 A normed linear space (N , ‖ · ‖) over F = R or C is said to be
strictly convex if for x, y ∈ N with ‖x‖ = ‖y‖ = 1 and x �= y,

∥
∥ x+y

2

∥
∥ < 1.

Definition 1.3.40 A normed linear space (N , ‖ · ‖) is called uniformly convex if
there exists an increasing positive function δ : (0, 2] → (0, 1] such that for x, y ∈ N ,
‖x‖, ‖y‖ ≤ r and ‖x − y‖ ≥ εr imply that

∥
∥ x+y

2

∥
∥ < (1 − δ(ε))r .

Remark 1.3.41 The above definition is equivalent to the requirement that for
‖xn‖, ‖yn‖ ≤ 1 and ‖xn + yn‖ → 2, ‖xn − yn‖ → 0 as n → ∞.

Clearly, every Hilbert space is uniformly convex. Also L p[0, 1] for p ≥ 2 is
uniformly convex. While every uniformly convex space is strictly convex, C[0, 1] is
not even strictly convex.

Hilbert spaces are isometric to their duals, in view of the following.

Theorem 1.3.42 (Riesz Representation Theorem) Let H be a Hilbert space over R
or C and f ∈ H∗, the dual of H. Then there exists a unique element y f ∈ H such
that f (x) =< x, y f > for each x ∈ H and ‖ f ‖ = ‖y f ‖.

For fy ∈ H∗ defined by fy(x) = < x, y > the correspondence Ty = fy maps H
onto H∗ so that ‖T (y)‖ = ‖y‖, T (y1 + y2) = T y1 + T y2 and T (αy) = αT (y) for
all y ∈ H.

Theorem 1.3.43 Every Hilbert space is reflexive.

In view of the above theorems for a bounded linear operator T : H → H , H being
a Hilbert space over R or C, there is a unique bounded linear operator T ∗ : H → H
such that < T x, y > = < x, T ∗y > for all x, y ∈ H .

Definition 1.3.44 Let H be a Hilbert space and T : H → H a bounded linear
operator. A linear operator T ∗ : H → H satisfying, < T x, y > = < x, T ∗y > for
all x, y ∈ H is called an adjoint operator of T .

Theorem 1.3.45 If T ∈ B(H), the space of all bounded linear operators mapping
H into itself, then T ∗ the adjoint of T is uniquely defined. Further,

(i) (T1 + T2)
∗ = T ∗

1 + T ∗
2 ,

(ii) (αT )∗ = αT ∗,
(iii) (T1T2)

∗ = T ∗
2 T ∗

1 ,
(iv) (T ∗)∗ = T ∗,
(v) ‖T ∗‖2 = ‖T ‖2 = ‖T ∗T ‖.
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Definition 1.3.46 A linear operator T ∈ B(H), the space of all bounded linear oper-
ators on a Hilbert space H is said to be self-adjoint if T = T ∗.

Definition 1.3.47 For T ∈ B(H), the spectrum of T is the set {λ ∈ C : T − λI is
not invertible}, I being the identity operator. An eigenvalue of T is a number λ ∈ C

such that there exists a nonzero vector x0 ∈ H with T x0 = λx0 and in this case x0 is
called an eigenvector (corresponding to the eigenvalue λ).

Theorem 1.3.48 For T ∈ B(H), the space of all bounded linear operators on a
Hilbert space H is self-adjoint if and only if < T x, x > is real for all x ∈ H. So
the eigenvalues of a self-adjoint operator are real. Further σ(T ), the spectrum of
T lies in [m, M], where m = inf{< T x, x >: x ∈ H and ‖x‖ = 1} and M = sup{<
T x, x >: x ∈ H and ‖x‖ = 1}. Also, m, M ∈ σ(T ).

Definition 1.3.49 A linear operator P in B(H) is called a projection if P is self-
adjoint and P2 = P .

Remark 1.3.50 If P is a projection on a Hilbert space H , then P = M ⊕ M⊥ where
M = {Px : x ∈ H}, the range of P and M⊥, the range of I–P . Further, every rep-
resentation of H as the orthogonal sum M + M⊥ defines a unique projection of H
onto M .

Theorem 1.3.51 For any self-adjoint operators T in B(H), there is a family {Pλ :
λ ∈ R} of projections on H satisfying the following conditions:

(i) if T C = CT for C ∈ B(H), then PλC = C Pλ for all λ ∈ R;
(ii) Pλ Pμ = Pλ, if λ < μ;

(iii) Pλ−0 = lim
μ→λ−0

Pμ = Pλ (i.e. Pλ is continuous from the left with respect to λ);

(iv) Pλ = 0 if λ ≤ m and Pλ = I for λ > M.
(Such a family of projections Pλ is called a resolution of identity generated by
T ).

Theorem 1.3.52 (Spectral theorem) For every self-adjoint operator T ∈ B(H) and
any ε > 0,

T =
∫ M+ε

m
λd Pλ

where the Stieltjes integral is the limit of (appropriate) integral sums in the operator-
norm topology.

Definition 1.3.53 A linear operator T : N1 → N2 where N1 and N2 are normed
linear spaces is said to be a compact operator if T (U ) is compact in N2 for each
bounded subset U of N1.

Theorem 1.3.54 Let T : B → B be a compact linear operator on a Banach space
B. σ(T ), the spectrum of T is finite or countably infinite and is contained in
[−‖T ‖, ‖T ‖]. Every nonzero number in σ(T ) is an eigenvalue of T . If σ(T ) is
countably infinite, then 0 is the only limit point of σ(T ).
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1.4 Topological Vector Spaces

It is convenient to recall the definition of a topological group and list some of its
properties (see Kelley [7], Rudin [11] and Royden [10]).

Definition 1.4.1 Let (G, ·) be a group with the identity element e and for each
x ∈ G, x−1 denote the inverse of x (with respect to the binary operation ·). The triple
(G, ·,T ) is called a topological group where T is a topology on the group G with
the binary operation · such that the map (x, y) → xy−1 mapping G × G into G is
continuous. (Here G × G carries the product topology.)

If (G, ·) is a group and A, B ⊆ G, we write A · B = {a · b : a ∈ A, b ∈ B}.
Theorem 1.4.2 Let (G, ·,T ) be a topological group with the identity e. Then

(i) the map x → x−1 mapping G into G and the map (x, y) → xy mapping G × G
into G are continuous. Conversely if T1 is a topology on a group (G, ·) such
that x → x−1 and (x, y) → xy are continuous on G with the topology T1, then
(G, ·,T1) is a topological group.

(ii) the inversion map i, defined by i(x) = x−1 is a homeomorphism of G onto
G; for each a ∈ G, La(Ra) called the left (right) translation by a, defined by
La(x) = ax (Ra(x) = xa) are homeomorphisms;

(iii) a subset S of G is open if and only if for each x ∈ S, x−1S (or equivalently
Sx−1) is a neighbourhood of e;

(iv) the family N of all neighbourhoods of e has the following properties:

(iv-a) for U, V ∈ N , U ∩ V ∈ N ;
(iv-b) for U ∈ N , V .V −1 ⊆ U for some V ∈ N ;
(iv-c) for U ∈ N and x ∈ G, x .U.x−1 ∈ N ;

(v) the closure of a (normal) subgroup of G is a (normal) subgroup of G;
(vi) every subgroup G1 of G with an interior point is both open and closed and G1

is closed or G1 − G1 is dense in G1;
(vii) G is Hausdorff if it is a T0 space in the sense that for every pair of distinct

points, there is a point for which some neighbourhood does not contain the
other point.

A topological vector space can be defined in analogy with a topological group.

Definition 1.4.3 The quadruple (X,+, ·,T ) where (X,+, ·) is a vector space over
F = R or C and T is a topology on X is called a topological vector space (linear
topological space) if the following assumptions are satisfied:

(i) (X,T ) is a T1-space;
(ii) the function (x, y) → x + y mapping X × X into X is continuous and
(iii) the function (α, x) → α.x mapping F × X into X is continuous.

Often, we simply say that X is a topological vector space (or t.v.s for short) when
the topology T on X and the vector space operations are clear from the context.
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Definition 1.4.4 A subset S of a topological vector space X is said to be bounded
for every neighbourhood V of θ in X , there is a real number s such that S ⊆ t.V for
every t > s. S ⊆ X is called balanced if α.S ⊆ S for all α ∈ F with |α| ≤ 1. S is
called absorbing if X =

⋃

t>0

t.S.

Theorem 1.4.5 Let X be a t.v.s. For each a ∈ X and λ �= 0 ∈ F define the transla-
tion operator Ta and the multiplication operator Mλ by the rules Ta(x) = x + a and
Mλ(x) = λ.x respectively for each x ∈ X. Then, Ta and Mλ are homeomorphism of
X onto X.

Further G ⊆ X is open if and only if Ta(G) is open for each a ∈ X. So the local
base at 0 completely determines the local base at any x ∈ X and hence the topology
on X.

Remark 1.4.6 Every normed linear space is a t.v.s.

Definition 1.4.7 A function p mapping a vector space X over F(=R or C) into F
is called a seminorm if

(i) p(x + y) ≤ p(x) + p(y) for all x, y ∈ X and
(ii) p(αx) = |α|p(x) for all x ∈ X and all α ∈ F .

A seminorm is a norm if p(x) �= 0 for x �= θ. A family P of seminorms is sepa-
rating if for each x �= y, there is a seminorm p ∈ P with p(x − y) �= 0.

Theorem 1.4.8 If P is a separating family of seminorms on a vector space V , then
V (p, n) = {x ∈ X : p(x) < 1

n }, p ∈ P is a local base of convex sets for a topology
T on X. Thus, (X,T ) is locally convex and each p is continuous. Also, E is bounded
if and only if p(E) is bounded for each p ∈ P .

Definition 1.4.9 For an absorbing subset A of a t.v.s. X , the map μA : X → R

defined by μA(x) = inf{t > 0 : t−1x ∈ A} is called the Minkowski functional of A.

Listed below are some of the basic properties and features of a topological vector
space.

Theorem 1.4.10 Let X be a topological vector space

(i) if S ⊆ X, S = ∩{S + V : V is a neighbourhood of 0};
(ii) if S1, S2 ⊆ X, S1 + S2 ⊆ S1 + S2;

(iii) if C ⊆ X is convex, so are C0 and C;
(iv) if B ⊆ X is balanced, so is B and if in addition 0 ∈ B0, B0 is balanced;
(v) the closure of a bounded set is also bounded;

(vi) every neighbourhood of 0 also contains a balanced neighbourhood of 0 and
so X has a balanced local base;

(vii) every convex neighbourhood of 0 contains a balanced convex neighbourhood
of 0;

(viii) if V is a neighbourhood of 0 and rn ↑ +∞ where r1 > 0, X =
∞⋃

n=1

rn V ;
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(ix) if V is a bounded neighbourhood of 0 and δn ↓ 0, δ1 > 0, {δn V : n ∈ N} is a
local base at 0;

(x) if X is first countable, then it is metrizable and the metric is translation invari-
ant;

(xi) if X is locally compact, then X is finite dimensional.

Theorem 1.4.11 If A is a convex absorbing subset of a vector space X, then

(i) μA(x + y) ≤ μA(x) + μA(y) for all x, y ∈ X;
(ii) μA(t x) ≤ tμA(x) for t ≥ 0;

(iii) μA is a seminorm, when A is balanced;
(iv) B = {x : μA(x) < 1} ⊆ A ⊆ C = {x : μA(x) ≤ 1} and μA = μB = μC .

Theorem 1.4.12 If B is a local base for a t.v.s. (X, J ) comprising convex balanced
neighbourhood, then {μV : V ∈ B} is a family of continuous seminorms that are
separating (i.e. for x, y ∈ X, then there is a μV such that μV (x) �= μV (y)). Further,
the topology having a local base generated by these seminorms of the form {x :
μV (x) < 1

n }, V ∈ B, n ∈ N coincides with the topology on X.

Definition 1.4.13 A t.v.s is said to be locally convex if it has a local base of convex
sets. It is called an F-space if the topology is generated by complete translation-
invariant metric. A locally convex F-space is called a Frechet space.

Theorem 1.4.14 If P = {pi : i ∈ N} is a countable separating family of seminorms
on a vector space X, then the topology on X induced by P is metrizable and this
metric d is given by

d(x, y) =
∞∑

i=1

pi (x, y)

2i (1 + pi (x, y))

is translation invariant.

Theorem 1.4.15 (Kolmogorov) A topological vector space is normable if and only
if the origin has a convex balanced neighbourhood.

Example 1.4.16 Let � be the union of a sequence of compact sets Kn ⊆ Rm

for n = 1, 2, . . . with Kn ⊆ K o
n+1, n = 1, 2, . . . . Define for each f ∈ C(�), the

set of all complex-valued functions on �, pn( f ) = sup{| f (x)| : x ∈ Kn}. Then,
{pn, n = 1, 2, . . . } is a separating family of continuous seminorms defining a com-
plete translation-invariant metric on C(�). As the origin has no bounded neighbour-
hood, C(�) is non-normable. Since C(�) is locally convex, it is a Frechet space.

If� is any non-empty open subsetC, then H(�), the set of all complex functions
analytic on � is a closed subspace of C(�). H(�) too is not normable.

Example 1.4.17 Let � be a non-void open set in R
n . A multi-index α is an

ordered n-tuple of the form α = (α1, . . . ,αn) where αi are non-negative inte-
gers. For each multi-index, the differential operator Dα associated is defined by

Dα =
(

∂
∂x1

)α1

. . .
(

∂
∂xn

)αn

whose order is |α| = α1 + · · · + αn and for |α| = 0,
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Dα f = f . A complex-valued function defined on � is said to belong to C∞(�) if

Dα f ∈ C(�) for every multi-index α. Let � =
∞⋃

m=1

Km where each Km is compact

and Km ⊆ K 0
m+1,m = 1, 2, . . . . Define the seminormsφm onC∞(�),m = 1, 2, . . . ,

by φm( f ) = sup{|Dα f (a)| : x ∈ Km, |α| ≤ m}. Then, C∞(�) is a Frechet space
under the topology generated by the seminorms φm . Although every closed bounded
subset of C∞(�) is sequentially compact (and hence compact in this case), C∞(�)

is not locally bounded and hence not normable.

Example 1.4.18 For 0 < p < 1, let L p[0, 1] be the linear space of all Lebegue-
measurable functions f on [0, 1] for which δ( f ) = ∫ 1

0 | f (a)|pdx < +∞. Then d,
defined by d( f, g) = δ( f − g) defines a translation-invariant metric on L p[0, 1] and
this metric is complete. Thus L p[0, 1] is an F-space. However, it is not locally
convex. Indeed L p[0, 1] is the only open convex set. So, 0 is the only continuous
linear functional on L p[0, 1] for 0 < p < 1 (See Rudin [12]).

Definition 1.4.19 Let X be a topological vector space. The dual of X , denoted by
X∗ is the set of all continuous linear functionals on X .

Theorem 1.4.20 If X is a locally convex t.v.s, then X∗ separates points in X.

Definition 1.4.21 Let K be a non-empty subset of a vector space X . A point s ∈ K
is called an extreme point of K if s = t x + (1 − t)y for t ∈ (0, 1) for some x, y ∈ K
implies x = y = s. The convex hull of a set E ⊆ X is the smallest convex set in X
containing E . The closed convex hull of E is the closure of its convex hull.

Theorem 1.4.22 (Krein-Milman [11]) If X is a topological vector space on which
X∗ separates points. Every compact convex set in X is the closed convex hull of the
set of its extreme points. So in a locally convex t.v.s X every compact convex set in
X is the closed convex hull of the set of its extreme points.

In this context, it is pertinent to recall Riesz Representation theorem (see Rudin
[12]).

Theorem 1.4.23 (Riesz-Representation) Let X be a locally compact T2 space and L
be a positive linear functional on CC(X) the linear space of all continuous complex-
valued functions with compact support and the supremum norm. Then, there exists
a σ-algebra S on X containing all the Borel subsets of X and a unique positive
measure μ on S representing L according to the formula

L f =
∫

X
f dμ for f ∈ CC(X)

with the following properties:

(i) μ(K ) < +∞ for each compact subset of X;
(ii) for each E ∈ S , μ(E) = inf{μ(G) : G ⊇ E and G is open in X};
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(iii) μ(E) = sup{μ(K ) : K ⊆ E and K compact} is true for each open set E and
for any E ∈ S with μ(E) < +∞;

(iv) for E ∈ S with μ(E) = 0, A ∈ S for any A ⊆ E and μ(A) = 0.

When X is compact, μ can be chosen so that μ(X) = 1, i.e. a Borel probability
measure.

Remark 1.4.24 In a Frechet space, for the convex hull H of a compact set, H is
compact and in a finite-dimensional spaceRn , H itself is compact. Also if an element
x lies in the convex hull and a set E ⊆ R

n , then it lies in the convex hull of a subset
of E that contains at most n + 1 points.

We now proceed to define vector-valued integrals. Rudin [11] may be consulted
for further details.

Definition 1.4.25 Let (Q, J,μ) be ameasure space, X a t.v.s for which X∗ separates
points and f : Q → X be a function such that � f is integrable with respect to μ for
each � ∈ X∗ (here (� f )(q) = �( f (q)) for q ∈ Q). If there exist y ∈ X such that

�y =
∫

Q
� f dμ

for each � ∈ X∗, then we define

∫

Q
f dμ = y.

Theorem 1.4.26 Let X be a t.v.s such that X∗ separates points and μ be a Borel
probability measure on a compact Hausdorff space Q. If f : Q → X is continuous
and if the convex hull H of f (Q) has compact closure H in X, then the integral

y =
∫

Q
f dμ

exists (as per Definition 1.4.25).

Theorem 1.4.27 Let X be a t.v.s such that X∗ separates points and Q, a compact
subset of X and H, the closed convex hull of Q be compact.

y ∈ H if and only if there is a regular Borel probability measure μ on Q such that

y =
∫

Q
xdμ.

When X is a Banach space we also have

Theorem 1.4.28 Let Q be a compact T2 space, X a Banach space, f : Q → X a
continuous map and μ a positive Borel probability measure on Q. Then
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‖
∫

Q
f dμ‖ ≤

∫

Q
‖ f ‖dμ.

Indeed vector-valued integrals can also be defined more directly as limits of
(integral) sums.
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